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Sperm motility patterns are continuously changed after ejaculation to fertilization in
the female tract. Hyperactivated motility is induced with high glucose medium in vitro
or the oviduct fluids in vivo, whereas sperm maintain linear motility in the seminal
plasma or the uterine fluids containing low glucose. Therefore, it is estimated that
sperm motility patterns are dependent on the energy sources, and the mitochondrial
oxidative phosphorylation is activated to produce ATP in low glucose condition. To
elucidate these hypotheses, boar sperm was incubated in different energy conditions
with the transcription and translation inhibitors in vitro. Sperm motility parameters,
mitochondrial activity, ATP level, gene expression and protein synthesis were analyzed.
Sperm progressive motility and straight-line velocity were significantly increased with
decreasing glucose level in the incubation medium. Moreover, the mitochondrial protein
turnover meaning transcription and translation from mitochondrial genome in sperm is
activated during incubation. Incubation of sperm with mitochondrial translation inhibitor
(D-chloramphenicol) suppressed mitochondrial protein synthesis, mitochondrial activity
and ATP level in sperm and consequently reduced the linear motility speed, but not
the motility. Thus, it is revealed that the mitochondrial central dogma is active in sperm,
and the high-speed linear motility is induced in low glucose condition via activating the
mitochondrial activity for ATP generation.

Keywords: metabolic activity, glycolysis, mitochondrial oxidative phosphorylation, sperm motility pattern,
energy source

INTRODUCTION

Mammalian spermatozoa reside in the female genital tracts for several hours from ejaculation to
fertilization process. Linear motility, as defined by low lateral amplitude and high straight-line
velocity, is essential for sperm migration from the cervix to the uterus and then to oviduct (Shalgi
et al., 1992; Suarez and Pacey, 2006). Just after ovulation, capacitated sperm leave the oviduct
epithelial cells and move to the oocyte (Demott and Suarez, 1992; De Lamirande et al., 1997).
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The capacitated sperm show hyperactivated status (Suarez, 2008),
defined as high curvilinear velocity as well as high lateral
amplitude, and penetrate the oocyte for successful fertilization
(Stauss et al., 1995). Sperm motility patterns are dependent on
flagellar motion; the symmetry flagellar motion induces the linear
motility pattern, whereas the asymmetry one is associated with
hyperactivation (Phillips, 1972; Suarez et al., 1991; Ho et al., 2002;
Curtis et al., 2012). The flagellum of mammalian sperm consists
of nine fused pairs of microtubule doublets surrounding two
central single microtubules (Fawcett, 1970; Woolley and Fawcett,
1973). Moreover, the sliding filament theory is adapted to sperm
flagella, namely the sperm motility is induced by ATP production
(Huxley and Niedergerke, 1954; Summers and Gibbons, 1971;
Brokaw, 1972).

Glycolysis and mitochondrial oxidative phosphorylation
(OXPHOS) are two main metabolic pathways for ATP
production in mammalian cells. The metabolic pathways of
cells are changed depending on the oxygen availability and
the composition of metabolic substrates in their environment
(Gohil et al., 2010; Potter et al., 2016). When HepG2 cells
were cultured in the medium containing a high level of
glucose, glycolysis pathway was highly activated; however,
the reduction of glucose level in the medium switched off the
glycolytic pathway to turn on OXPHOS pathway to generate
ATP in the cells (Marroquin et al., 2007). Amino acids and
pyruvate are the substrates of TCA cycle in mitochondria
present at high concentrations in both seminal plasma
and uterus fluids (Marden, 1961; Brown-Woodman and
White, 1974; Harris et al., 2005). On the other hand, the
high level of glucose is detected in the oviductal fluids,
especially after ovulation (Nichol et al., 1992; Vecchio et al.,
2007; Umehara et al., 2018). Therefore, for the successful
fertilization in vivo, the sperm probably use the different
metabolic pathways to produce ATP in each condition as
similar to those in somatic cells (Ruiz-Pesini et al., 2007;
Storey, 2008). It is generally accepted that the glycolysis
pathway is essential for sperm hyperactivation (Du Plessis
et al., 2015). However, there is limited information about the
roles of mitochondria in producing ATP regarding sperm
motility patterns.

Mitochondria, double membrane sub-cellular organelles
have their own maternally inherited genome mitochondrial
DNA (mtDNA) which encodes 13 polypeptides, 22 tRNAs,
and 2 rRNAs. The polypeptides are essential subunits for
mitochondrial electron transport chain (ETC) complexes
wheras the tRNAs and rRNAs are essential for translation of
the polypeptides (Anderson et al., 1981). The mitochondrial
mRNA transcription (such as NADPH dehydrogenase subunits
1–6 (mt-Nd1 – mt-Nd6), cytochrome c oxidase subunits
1–3 (CoxI – CoxIII), etc. and their translation processes are
activated with increasing the mitochondrial activity and ATP
level in serum-stimulated HeLa cells (Xiong et al., 2012).
Therefore, we hypothesized that mitochondrial OXPHOS is
activated in sperm for ATP supply, and their transcription
and translation process become functioning to the sperm
motility. Hence, the present study was performed to (1)
determine whether sperm motility patterns and metabolic

pathways in different glucose levels are changed or not, (2)
understand the induction of gene expression and protein
synthesis in sperm mitochondria, and (3) elucidate the
roles of the mitochondrial transcription and translation
in sperm motility.

MATERIALS AND METHODS

Materials
Routine chemicals and reagents were obtained from Nakarai
Chemical Co. (Osaka, Japan) or Sigma Chemical Co. (St. Louis,
MO, United States).

Animals and Semen Collection
Five healthy, fertile, and mature boars (between the ages
of 2 and 4 years) were used in this study. The boars
were housed individually, maintained under natural daylight,
fed basal diets and been free access to water. The sperm-
rich fraction was collected weekly from each boar using the
gloved-hand technique. The sperm-rich fraction was filtered
through double gauze.

Ethics Statement
All animals and experimental procedures were treated in
accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals, approved by the
Animal Care and Use Committee at Hiroshima University
(approval number: E18-1).

Sperm Incubation
Fresh sperm was diluted with Modena solution composed
of 153 mM D-glucose, 26.7 mM trisodium citrate, 11.9 mM
sodium hydrogen carbonate, 15.1 mM citric acid, 6.3 mM
EDTA-2Na, 46.6 mM Tris, 1000 IU/mL penicillin G potassium
and 1 mg/mL amikamycin (Okazaki et al., 2012). The
concentration of glucose in Modena solution (153 mM) was
defined as 100%. Lactose was used partially with glucose
to make the different dose of glucose extender (153, 122.4,
91.8, 61.2, 30.6, and 0 mM; namely 100%, 80%, 60%, 40%,
20%, and 0%) because sperm did not use lactose as an
energy substrate. Sperm were incubated for 1 h at 37◦C
in each media containing different levels of glucose. Some
of the sperm were incubated with various concentrations of
rotenone (0, 10, 100 nM, an inhibitor of complex I) for
3 h at 37◦C in 30.6 mM glucose media (20% glucose).
Other sperm were incubated with various concentrations of
D-chloramphenicol (a mitochondrial translation inhibitor, CRP:
0, 200, 400, 600, 800 ng/mL), cycloheximide (mRNA translation
inhibitor, CHX: 0, 50, 100 ng/mL) and α-amanitin (nuclear
transcription inhibitor, AMNT: 0, 10, 50, 100 ng/mL) for
3 h at 37◦C in 30.6 mM glucose media (20% glucose).
Furthermore, sperm were also incubated in 30.6 mM glucose
media (20% glucose) for up to 6 h at 37◦C to evaluate whether
the transcription and translation in sperm mitochondria is
working or not.
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Evaluation of Sperm Motility by
Computer-Assisted Sperm Analysis
(CASA) System
After incubation of sperm in different treatments, a total
of 10 µL of sample was placed in a pre-warmed counting
chamber. According to our previous study (Umehara et al.,
2018), sperm tracks (0.5 s, 45 frames) were captured at 60 Hz
using a CASA system (HT CASA-Ceros II; Hamilton Thome,
MA, United States). More than 200 individual trajectories
were recorded. Non-progressive motility (%) = total motility
(%)− progressive motility (%).

Membrane Integrity
Membrane integrity was evaluated using a LIVE/DEAD
Sperm Viability Kit (L7011; Thermo Fisher Scientific), as
described previously (Zhu et al., 2017). Briefly, samples
were stained with SYBR-14/PI. The staining was analyzed
in a flow cytometer (FAC-S Calibur, BD Biosciences) with
Excitation/Emission = 485/535 nm for SYBR-14 fluorescence,
Excitation/Emission = 525/590 nm for PI fluorescence. A total of
50,000 sperm-specific events were analyzed. Data were processed
by using the CellQuest program (BD Biosciences).

Mitochondrial Activity
Sperm mitochondrial activity was measured with MitoPT R© JC-1
Assay Kit (911, ImmunoChemistry Technologies, llc.) according
to Treulen et al. (2016). Briefly, sperm samples were incubated
with 500 µL 1x working solution at 37◦C for 30 min in dark,
the mitochondrial activity was analyzed by flow cytometry using
a filter with a bandwidth of 574/26 nm (Attune R©NxT Acoustic
Focusing Cytometer, Invitrogen) and measured as the mean
fluorescence intensity (MFI) of JC-1 orange aggregates. A total
of 50,000 sperm events were analyzed.

Measurement of Sperm ATP Level
EnzylightTM ATP Assay Kit (EATP-100, Bioassay System,
Hayward, CA, United States) was used to detect sperm ATP
level according to the manufacturer’s instruction. Briefly, sperm
samples were mixed with assay buffer and substrates, and then
the luminescence was measured with a luminometer (2030
Multilabel Reader ARVO X4; PerkinElmer Inc., Waltham, MA,
United States). The ATP production was calculated over sperm
concentration and expressed as nmol/107 of sperm.

RNA Extraction and Reverse
Transcription-Polymerase Chain
Reaction (RT-PCR)
Total RNA was obtained from fresh sperm and the granulosa
cells (positive control) using the RNAeasy mini kit (QIAGEN
Sciences, Germantown, MD, United States), according to the
manufacturer’s instructions. Reverse transcription (RT) was
performed using 500 ng poly-deoxythymidine and 0.25 U avian
myeloblastosis virus reverse transcriptase (Promega, Madison,
WI, United States) at 42◦C for 75 min and 95◦C for 5 min. RT-
PCR analyses were performed with KOD FX Neo (TOYOBO
Life Science, Osaka, Japan) according to the manufacturer’s

instructions. Specific primers pairs used in the RT-PCRs
are shown in Table 1; PCR products were resolved on 2%
(wt/vol) agarose gels.

Quantitative PCR Analyses
Quantitative real-time PCR analyses were performed as
previously (Shimada et al., 2008). Briefly, cDNA and primers
shown in Table 1 were added to 15 µL total reaction volume of
the Power SYBR Green PCR master mix (Applied Biosystems).
PCRs were then performed using the StepOne real-time PCR
system (Applied Biosystems).

Immunofluorescence
Sperm cells were washed with PBS and fixed with 4%
paraformaldehyde for 5 min. The sperm were spread onto

TABLE 1 | List of primers employed for RT-PCR and the expected size.

Gene name Primer sequences Product size (Kb)

mt-Nd1 F: AATATGGCGAAAGGTCCGGC 104

R: ACCCTAGCAGAAACCAACCG

mt-Nd2 F: TGGCTAGGGCCATGGTTATT 152

R: CCTAACACAAGCCACAGCCT

mt-Nd3 F: GAGGCCTGCTGATCCTATCG 130

R: AACCCTAGCCTCCCTACTCG

mt-Nd4 F: AGGAGTGTTTGCAGTCCTCG 149

R: TTGCCCACGGACTAACATCC

mt-Nd4L F: AGCTAGGGTGAAGTGTGTGT 127

R: GATCGCCCTTGCAGGGTTAC

mt-Nd5 F: GAAGGCGTAGGATACGGTGG 154

R: CCCATTCGCCTCACTCACAT

mt-Nd6 F: AAGCAGCAATCCCCATAGCTT 118

R: GCGTTGAAGGAAGAGGAAGTAGA

Cytb F: TAGGGCCAACACTCCACCTA 115

R: CACCCCAGCAAACCCACTAA

CoxI F: ACAGTTCATCCAGTACCCGC 169

R: TCCCGATATGGCCTTTCCAC

CoxII F: GGCATGAAGCTGTGGTTTGA 108

R: AGATGCTATCCCAGGACGACT

CoxIII F: ATACTCCTGAGGCGAGGAGG 132

R: CCTAGCACCAACACCCGAAT

Atp6 F: TTGGATCGAGATTGTGCGGT 188

R: TGCCCCCACGATAATAGGAC

Atp8 F: ATACCCAGCAAGCCCAGAAT 115

R: GTGGGGGCAATAAAAGAGGCA

Ndufa7 F: TTCCCAGCAGTCCTAGCGTA 126

R: AGCTTCGCCTGTAAGTCTCG

Ndufb10 F: ACCCTGTCACCTACCTTACGA 149

R: GCACTCTGTGATGTCTGGCA

Ndufs4 F: GGATCTTTGTTCCTGCTCGC 127

R: GGATCAGCCGTTGATGACCA

mt-Nd1 – mt-Nd6, NADPH dehydrogenase subunits 1–6; Cytb, mitochondrially
encoded cytochrome b; CoxI – CoxIII, cytochrome c oxidase subunits 1–3; Atp6,
mitochondrially encoded ATP synthase 6; Atp8, mitochondrially encoded ATP
synthase 8; Ndufa7, NADH-ubiquinone oxidoreductase subunit A7; Ndufb10,
NADH-ubiquinone oxidoreductase subunit B10; Ndufs4, NADH-ubiquinone
oxidoreductase subunit S4.

Frontiers in Physiology | www.frontiersin.org 3 March 2019 | Volume 10 | Article 252

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00252 March 9, 2019 Time: 17:33 # 4

Zhu et al. Mitochondria Regulates Sperm Linear Motility

glass slides, then permeabilized by 0.5% Triton X-100 in PBS.
Non-specific binding was blocked with PBS contained 10%
bovine serum albumin (w/v) (Life Technologies, Grand Island,
NY, United States) for 30 min at room temperature. Sperm
were proved with a 1:100-diluted NADPH dehydrogenase
subunits 1 (MT-ND1) antibody (1973-1-AP, Proteintech,
United States), NADPH dehydrogenase subunits 6 (MT-ND6)
antibody (bs-3955R; Bioss, Inc., Boston, MA, United States),
and NADH-ubiquinone oxidoreductase subunit A7 (NDUFA7)
antibody (ab140871; Abcam, United States). The antigens
were visualized with biotinylated goat anti-rabbit Cy3-IgG
or donkey anti-goat FITC-IgG (1:200). Subsequently, sperm
were incubated with 4′,6′-diamidino-2-phenylindole (DAPI;
5 µg/mL; Sigma-Aldrich). Digital images were captured
using a BZ-9000 microscope (Keyence Co., Osaka, Japan).
Negative control was prepared at the same time without the
primary antibody.

Western Blotting
Western blotting analyses were performed according to our
previous study (Umehara et al., 2018). Total protein was
extracted from sperm in sodium dodecyl sulfate (SDS) sample
buffer. The protein was separated by 12.5% SDS-PAGE and
transferred to PVDF blotting membrane (GE Bioscience,
Newark, NJ, United States). Non-specific binding sites were
blocked by incubation in Tris-buffered saline (TBS) containing
0.1% (v/v) Tween-20 and 5% (w/v) bovine serum albumin
(Life Technologies, Grand Island, NY, United States). The
membranes were immunoblotted with primary antibodies
[anti-MT-ND1, anti-MT-ND6, anti-NDUFA7 and anti-
α-tubulin (2148; Cell Signaling Technology, Inc.)] diluted
in 5% bovine serum albumin in TBS-Tween (1:1000 dilution)
overnight at 4◦C. Followed by incubation with HRP conjugated
secondary [goat anti-rabbit antibody (7074S, Cell Signaling
Technology, Inc.) for MT-ND1, MT-ND6, and α-tubulin,
donkey anti-goat (ab97110, Abcam, United States) for
NDUFA7, 1:5000 dilution]. After washing in TBST, enhanced
chemiluminescence (ECL) detection was performed by using
the ECLTM Prime Western Blotting Detection Reagents
(RPN2235, GE Bioscience) according to the manufacturer’s
specifications, and appropriate exposure of blots to Fuji X-ray
film (Fujifilm, Tokyo, Japan). Band intensities were analyzed
using a Gel-Pro Analyzer (Media Cybernetics, Rockville,
MD, United States).

Statistical Analysis
All data were tested for normality and variance homogeneity
prior to statistical analysis. Data were transformed by arc-
sin square root transformation when it is necessary. Data
from three replicates for comparison were performed by
either Student’s t-test or one-way analysis of variance
followed by Tukey’s post hoc test (Statview; Abacus
Concepts, Inc., Berkeley, CA, United States). All the
values are presented as the mean ± standard error (SE).
Treatments were considered statistically different from one
another at p < 0.05.

RESULTS

Low Glucose Condition Increases the
Mitochondrial Activity and Motility
Patterns of Sperm at 1 h Incubation
The sperm motility tracks generated by CASA revealed that the
incubation in high glucose media made circle-like tracks, while
low glucose condition made it linear-like tracks (Figure 1A).
The sperm total motility wasn’t significantly changed in all
glucose concentration [from 30.6 mM (20%) to 153 mM (100%)]
in the media (Figure 1B). However, the reduction of glucose
level from 153 mM to 30.6 mM significantly increased the
sperm progressive motility and straight-line velocity, decreased
the non-progressive motility in a dose-dependent manner
(Figures 1A,C–E). The high linier motility was observed until
3 h; however, the total motility, progressive motility, and
straight-line velocity were significantly decreased at 6 h of
incubation (Supplementary Figure 2). Meanwhile, no significant
difference was observed in lateral amplitude (Figure 1F), an index
for evaluating hyperactivation among the treatment groups.
The mitochondrial activity was also significantly increased
by the reduction of glucose level in the incubation medium
(Figure 1G and Supplementary Figure 1). However, the ATP
level showed no significant difference among the treatment
groups (Figure 1H).

Addition of Rotenone to Incubation
Media Reduces the Mitochondria
Activity, ATP Level and Kinetic Patterns
of Sperm
To understand the relationship between sperm motility pattern
and mitochondrial ATP production, rotenone (an inhibitor
of complex I) was added to the low glucose medium
[30.6 mM (20%) glucose]. The sperm motility tracks and
the CASA analytic data revealed that the progressive motility
and straight-line velocity were significantly decreased with
the treatment with rotenone at 1- and 3-h points in a
dose-dependent manner, whereas the non-progressive motility
was increased (Figures 2A–D). However, the addition of
rotenone did not alter sperm total motility during incubation
(Figure 2E). Apart from the motility data, the sperm membrane
integrity used for survival evaluation showed no significant
difference among the treatment groups (Figure 2F). The
mitochondrial activity and ATP levels were significantly reduced
by the addition of rotenone in a dose-dependent manner
(Figures 2G,H) at 1-h point.

Transcription and Translation in Sperm
Mitochondria Is Working During
Incubation
To elucidate whether the transcription and translation in
sperm mitochondria is working or not, we checked the
expression of 13 genes derived from mtDNA and 3 genes
derived from nuclear DNA in sperm. Granulosa cells were
used as the positive control. We detected all of the 13
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FIGURE 1 | Low glucose condition improves the sperm motility patterns through enhancing the mitochondrial activity at 1 h of incubation. (A) CASA derived
changes in the sperm motility track from circular to linear by reducing the glucose level from 153 mM to 0 mM (namely 100–0%). (B–F) Dynamic changes in the
sperm parameters: (B) total motility, (C) non-progressive motility (D) progressive motility, (E) straight-line velocity and (F) lateral amplitude. (G) Kinetic changes in the
mitochondrial activity. (H) ATP level in the sperm. Values are specified as mean ± standard error of mean (SEM) of three replicates. Columns with different lowercase
letters differ significantly (p < 0.05). The letters in X-axis are symbolized as – G, glucose; L, lactose; FS, fresh sperm.

mitochondrial-encoded mRNAs in both sperm and granulosa
cells. However, the nucleus-encoded mRNAs of NDUFA7,
NDUFB10, and NDUFS4 were not detected in sperm by 40-
cycles PCR, although strongly expressed in granulosa cell
(Figure 3A). Moreover, the expression of genes mt-Nd1 and
mt-Nd6 were significantly increased at 3-h and 6-h points,
but no change at 1-h point (Figures 3B,C). Similarly, western
blot positive bands of MT-ND1 and MT-ND6 showed that
the intensities of mitochondrial proteins were significantly
increased at 3 h and 6 h but not changed at 1-h point
(Figures 3D–F, p < 0.05). Meanwhile, the signal of the nuclear
encoded NDUFA7 protein was not changed throughout the 6-
h incubation period (Figures 3D,G). We also observed that
the immunolocalizations of MT-ND1, MT-ND6, and NDUFA7

were in the sperm midpiece which also the location of
mitochondria (Figure 3H).

Mitochondrial Translational Inhibitor
(CRP) Reduces the Mitochondrial
Activity, ATP Level, Protein Synthesis, as
Well as Motility Patterns of Sperm
Sperm were incubated with various doses (0, 200, 400, 600, 800
ng/mL) of CRP, a specific mitochondrial translational inhibitor
for 3 h. At 3 h point, the progressive motility, straight-line
velocity, mitochondrial activity and ATP levels were significantly
decreased at 400, 600, and 800 ng/mL doses (Figures 4A,C–F)
while the non-progressive motility was increased (Figure 4B).
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FIGURE 2 | Sperm incubated with rotenone in 30.6 mM glucose media alters the mitochondrial activity, ATP level and kinetic patterns. (A–E) Kinetic changes in the
sperm motility patterns at 1 and 3 h of incubation, (A) motility tracks generated from CASA, (B) non-progressive motility, (C) progressive motility, (D) straight-line
velocity, (E) total motility. (F–H) Rotenone-induced changes in mitochondrial attributes at 1 h of incubation, (F) membrane integrity, (G) mitochondrial activity, and
(H) ATP levels. Values are specified as mean ± SEM of three replicates. Columns with different lowercase letters differ significantly (p < 0.05).

Moreover, the intensity of MT-ND1 and MT-ND6 proteins are
observed to be significantly decreased only at higher (600 and 800
ng/mL) doses (Figures 4G–J). The sperm membrane integrity
showed no significant difference (Figure 4K).

In terms of time-dependent experiment, a significant
(p < 0.05) decrease was observed with 600 ng/mL CRP

in the sperm progressive motility, straight-line velocity
(Figures 5A,D,E), mitochondrial activity and ATP levels
(Figures 5F,G) at 3 h of incubation point but not at 1-h point.
Moreover, addition of 600 ng/mL CRP significantly increased
non-progressive motility at 3-h point incubation (Figure 5C).
However, the total motility was not changed with addition of 600
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FIGURE 3 | The transcription and translation in sperm mitochondria. (A) RT-PCR derived expression of mitochondrial and nuclear genes, where – S, boar sperm; P,
positive control (porcine ovarian granulosa cell). (B,C) Time-dependent changes in the expression of mt-Nd1 (B) and mt-Nd6 (C) genes during 6 h incubation.
(D) Western blotting image showing the expression of the mitochondria-encoded protein (MT-ND1 and MT-ND6), nuclear-encoded protein (NDUFA7), and α-tubulin
during 6 h incubation. (E–G) Quantitative expression of the MT-ND1, MT-ND6, and NDUFA7 over α-tubulin (control) generated from western blotting.
(H) Immunolocalizations of MT-ND1, MT-ND6, and NDUFA7 in boar sperm, scale bar indicates 5 µm. Values are specified as mean ± SEM of three replicates.
Columns with different lowercase letters differ significantly (p < 0.05).
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FIGURE 4 | Effect of D-chloramphenicol (CRP) on boar sperm at 3 h incubation with different doses (0, 200, 400, 600, 800 ng/mL). (A–F) Dose-dependent changes
in the sperm (A) total motility, (B) non-progressive motility, (C) progressive motility, (D) straight-line velocity, (E) mitochondrial activity, and (F) ATP level. (G) Western
blotting image showing the expression of the MT-ND1, MT-ND6, NDUFA7, and α-tubulin. (H–J) Quantitative expression of the MT-ND1, MT-ND6, and NDUFA7 over
α-tubulin (control) generated from western blotting. (K) Membrane integrity measured in sperm. Values are means ± SEM of three replicates. Columns with different
lowercase letters differ significantly (p < 0.05).

ng/mL CRP both at 1-h and 3-h points (Figure 5B). Furthermore,
when sperm were incubated with 600 ng/mL CRP, the intensity
of MT-ND1 and MT-ND6 proteins was significantly decreased at
3-h point but not changed at 1-h point (Figures 5H–J, p < 0.05),
whereas the NDUFA7 protein signal was not changed during
incubation (Figures 5H,K).

Cytoplasmic Translation Inhibitor (CHX)
and Nuclear Transcription Inhibitor
(AMNT) Do Not Affect the Sperm Quality
For further confirmation of our hypothesis that sperm linear
motility patterns are solely dependent on transcription and
translation in mitochondria but not in nucleus and cytoplasm,
we incubated sperm with CHX and AMNT for 3 h. However,
sperm incubated with different doses (0, 50, 100 ng/mL) of
CHX revealed that the sperm motility tracks were unchanged
(Figure 6A). Moreover, no significant difference was observed
among the treatment doses in motility patterns [total motility,
non-progressive motility, progressive motility, and straight-line
velocity (Figures 6B–E)], mitochondrial activity (Figure 6F) and

the intensity of the proteins (MT-ND1, MT-ND6, and NDUFA7)
(Figures 6G–J). Similarly, sperm incubated with AMNT showed
a non-significant difference in the total motility, straight-line
velocity and mitochondrial activity (Figures 6K–M).

DISCUSSION

In vivo fertilization, sperm are ejaculated to the female
reproductive tract with seminal plasma and swim toward oviduct
for the fertilization (Suarez and Pacey, 2006). During the journey
of sperm in female reproductive tracts, the motility pattern of
sperm is altered from linear motility in the uterus to zigzag
motility in the oviduct (De Lamirande et al., 1997). It is well
known that the sperm motility is regulated by ATP produced
either from glycolytic pathway in cytoplasm or OXPHOS in
mitochondria or both (Storey, 2008; Mukai and Travis, 2012; Du
Plessis et al., 2015). Especially, Odet et al. (2008) demonstrated
that the glycolysis was important for hyperactivated motility
using Ldh-c knock out mice model. On the other hand, in vitro
incubation in low-glucose or glucose-free BWW medium with
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FIGURE 5 | Effect of 600 ng/mL CRP on boar sperm during 3 h incubation in 30.6 mM glucose media. (A) Changes in the motility tracks of sperm generated by
CASA system. (B–G) Time-dependent changes in the sperm (B) total motility, (C) non-progressive motility (D) progressive motility, (E) straight-line velocity, (F)
mitochondrial activity, and (G) ATP level. (H) Western blotting image showing the expression of the MT-ND1, MT-ND6, NDUFA7, and α-tubulin. (I–K) Quantitative
expression of the MT-ND1, MT-ND6, and NDUFA7 over α-tubulin (control) generated from western blotting. Values are means ± SEM of three replicates. Columns
with different lowercase letters differ significantly (p < 0.05).

rotenone, an inhibitor of complex I, decreased the sperm
progressive motility and straight-line velocity in stallion (Plaza
Davila et al., 2015) and human (Barbonetti et al., 2010),
suggesting that mitochondrial ATP production is also important
for sperm motility. However, the different roles of metabolomics
pathways in sperm motility remain unclear. In this study, using
the medium containing different doses of glucose we revealed
that mitochondrial activity was increased under low glucose
condition, and the ATP produced in mitochondria was associated
with a high-speed linear motility in boar sperm.

Mitochondria have several functions, such as cell calcium
homoeostasis (Contreras et al., 2010), lipid homoeostasis
(Labbe et al., 2014), release of cytochrome c (Wang, 2001)
and the ATP synthesis via OXPHOS (Bratic and Trifunovic,
2010), etc. Especially, the production of ATP in mitochondria
is essential for cell survival and cell homeostasis (Osellame
et al., 2012). However, during the process of ATP production
in mitochondria, reactive oxygen species (ROS) are produced
as the by-products, and then the excessive accumulation
of ROS reduces the production of mitochondrial ATP via
enzyme degradation. The mitochondrial (TC) complexes,
including NADH dehydrogenase (complex I), succinate
dehydrogenase/fumarate reductase (complex II), cytochrome
c reductase (complex III), cytochrome c oxidase (complex IV)
and ATP synthase (complex V) are required for ATP production

in mitochondria (Lenaz and Genova, 2010). In addition, the 13
mtDNA-encoded polypeptides are partly subunits of complex I,
III, IV, and V (Chomyn et al., 1985; Amaral et al., 2013). Thus,
to keep ATP level in sperm, the gene expression and protein
synthesis in mitochondria would be required.

To elucidate the function of mitochondrial transcription
and translation in sperm, the expression and protein synthesis
in mitochondria were examined in our study. The genes
encoding mitochondria were highly expressed in sperm but
the genes encoding nuclear genome were not detected during
incubation. The protein turnover system in mitochondria was
essential for sperm motility when the sperm were incubated
in low glucose media. Gur and Breitbart (2006) showed that
the addition of D-chloramphenicol, a mitochondrial translation
inhibitor, in modified Tyrode’s glucose-free medium suppressed
protein synthesis in bull sperm. Moreover, transcripts of all the
mitochondrial genes were detected in mouse epididymal sperm
(Alcivar et al., 1989). Interestingly, the cycloheximide (CHX), an
inhibitor to cytoplasmic translation did not suppress the intensity
of proteins encoded by not only mtDNA, but also by nuclear
genome in this study, indicating that the nuclear genome encoded
protein is more stable and resistant to oxidative stress during
incubation. In addition, when HeLa cells were cultured with
a ROS generator, the levels of mitochondrial encoded proteins
(MT-ND6, MT-ND1, and MT-CYB) were significantly decreased,
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FIGURE 6 | Effects of cycloheximide (CHX) and α-amanitin (AMNT) on boar sperm at 3 h of incubation 30.6 mM glucose media. (A) Tracks of sperm motility
incubated with different concentrations of CHX (0, 50, and 100 ng/mL) generated by CASA system. (B–E) Motility patterns: (B) total motility, (C) non-progressive
motility, (D) progressive motility, (E) straight-line velocity. (F) Mitochondrial activity. (G) Western blotting image showing the expression of the MT-ND1, MT-ND6,
NDUFA7, and α-tubulin. (H–J) Quantitative expression of the MT-ND1, MT-ND6, and NDUFA7 over α-tubulin (control) generated from western blotting. (K) Total
motility, (L) straight-line velocity, and (M) mitochondrial activity of sperm were not changed after 3 h of incubation with different concentrations of AMNT (0, 10, 50,
and 100 ng/mL). Values are means ± SE of three replicates. Columns with different lowercase letters differ significantly (p < 0.05).

but the HSP9A levels, a nuclear-encoded and mitochondria-
localized protein showed no significant change (Xie et al., 2012).
About 92% of proteins in mammals have at least one cysteine
residue containing exposed thiol which is free to interact with the
aqueous solvent (Miseta and Csutora, 2000). Requejo et al. (2010)
reported that mammalian mitochondria had a large number of
redox-active exposed thiols on the surface of native proteins,
especially the 75-kDa subunit (NDUFS1) complex I that encoded
by nucleus (Hurd et al., 2008). Moreover, the cysteine residue
of mitochondrial encoded protein is comparatively lower than

those of nuclear-encoded protein in the mitochondrial ETC
complexes (cysteine residue per protein:1.69 vs. 3.56; cysteine
residue% of protein sequence: 0.773 vs. 1.667%; the data were
counted from the protein sequence in GeneCards Database1),
signifying that the resistant performance for scavenging ROS of
mitochondrial-encoded protein is lower than that in nuclear-
encoded protein. Additionally, post-translational modifications
including the formation of sulfenic acids (Charles et al., 2007)

1https://www.genecards.org
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and S-nitrosothiols (Hogg, 2002) or glutathionylation (Cotgreave
and Gerdes, 1998) to the protein thiols are important to maintain
cellular redox signaling and protein stability. Usually, most of the
nuclear-encoded proteins in mitochondria are potentially post-
translationally modified in the cytoplasm prior to translocate
to the mitochondria (Hofer and Wenz, 2014), suggesting that
the mitochondrial-encoded proteins were more sensitive to ROS
and unstable than nuclear-encoded proteins in sperm. Therefore,
to keep the ATP production and the linear motility pattern,
the transcription and translation in mitochondria are activated
during incubation and may also be in the uterus for the successful
in vivo fertilization.

In this study, the mitochondria activity and high-speed
linear motility similar to uterus were up-regulated with the
reduction of glucose concentration. Previous study showed that
the concentration of glucose in the mice uterus is lower than
those in oviduct during fertilization process (Harris et al., 2005).
Additionally, sperm linear motility is induced in the semen
plasma and uterus (De Lamirande et al., 1997), suggesting that
sperm mitochondria would be activated in uterus when it was
presented in the low glucose uterus fluid. However, when sperm
was injected to uterus in artificial insemination technique, the
sperm was diluted with human tubal fluid (HTF) medium
that is commonly used for in vitro fertilization in human and
with Modena solution that contains a high dose of glucose
in pig. The artificial insemination technique is commercially
applied worldwide to breed pigs; however, the technique is
still not efficient, as the large sperm numbers per sow in
estrus is required for getting high reproductive performance as
similar to that by natural mating (5–7 × 109 sperm for per
sow fertilization) (Knox, 2016). The large sperm numbers are
a critical limitation for artificial insemination application not
only in pigs but also in human infertility treatment. Because in
human artificial insemination, 1 × 107 or more motile sperm
are required (Van Voorhis et al., 2001), in vitro fertilization or
intracytoplasmic sperm injection (ICSI) are usually selected in
the case of oligospermia. Our novel insight in which high-speed
linear motility is induced by low glucose medium might provide a
new strategy for improving the artificial insemination technique
of both livestock animals and human infertility care.

CONCLUSION

In conclusion, the transcription and translation in sperm
mitochondria is active and the low glucose condition

improves sperm progressive motility, straight-line velocity and
mitochondrial activity during incubation in vitro. Reduction
of the glucose level in diluted medium enhances the duration
of high-speed linear motility via activating the mitochondrial
activity for ATP generation in the present study. Thus, high-
speed linear motility induced by low glucose medium is a novel
factor that improves the fertilization of artificial insemination
in livestock animals and human infertility care. It is possible
that diluting sperm with low glucose insemination medium will
enhance sperm high-speed linear motility in the female genital
tracts to improve fertilization as a simple and low-cost approach.
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