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Chapter 1  

General introduction 
 

1. Phosphorus resource and food production 
 

The world has reached 7 billion people in October 2011, and it is 

estimated that another billion will added to our numbers by 13 years from now 

(UNFPA, http://www.unfpa.org/public/). Therefore, development of sustainable 

food production systems is critically important to avoid famine or health 

deterioration.  

Phosphorus (P) is one of the major mineral nutrients required by plants. 

Owing to the strong reactivity of phosphates with soil minerals, P is largely 

unavailable to plants. Furthermore, P is exported from the field in the harvested 

products. The addition of P fertilizers to sustain crop production is thus required. 

However, unfortunately, P fertilizers are manufactured from nonrenewable 

resources that are increasingly becoming more costly and less available. It was 

estimated that mined rock phosphate reserves could easily be depleted by 2060 

(Steen 1998, Vance et al. 2003). On the basis of an assumption that the increasing 

rate of phosphate rock production from 2009 to 2010 will continued in the future, 

the phosphate rock reserves will be depleted at 53 years from 2011 (Table 1-1). 

Especially, the increase of phosphate rock consumption is huge in China, ca. 3 

times increased during this decade (US Geological Survey, http://www.usgs.gov/). 

As the result of the excess amount of P application in China, P accumulation is still 

progressed in the arable lands (Li et al. 2011). 

Paradoxically, part of the applied P in intensive cropping systems can 

enter the waterways through runoff and erosion, contributing to pollution of 

surrounding lakes and marine environments. To solve the environmental problems 
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Table 1-1 Production and probable reserves of rock phosphate and life of phosphate rock 
estimated by the data from US Geological Survey, 2011 among main country and region of the 
world. 

and to achieve the sustainable agriculture system, it is concluded that the 

utilization of accumulated P in soils is very important. That is to say, it is important to 

understand and apply strategies of crop plants to mobilize unavailable P in soils. 

  

 

2. Plant responses to P-deficient condition 
 

Plants acquire P as the inorganic phosphate ion (Pi) through Pi 

transporters on plasma membranes of roots. However, the availability of Pi is often 

limited, because Pi can easily bind and precipitate with metal cations such as Al, 

Fe and Ca, and alter into organic compounds in soils (Raghothama 1999). The 

organic P generally makes up 30 - 80% of the total P in soil, and the predominant 

form of organic P is phytate, which composes up to 50% of soil organic P (Turner et 

al. 2008).  

To avoid the limited availability of Pi, plants have evolved a repertoire of 

adaptive responses, which involve diverse developmental and biochemical 

processes, to increase Pi acquisition and utilization (Raghothama 1999). White 

lupin (Lupinus albus L.) has been well studied as a model of tolerant to 

Country or region Production of 2010 
(million tons) 

Probable reserves 
(million tons) 

Life of phosphate rock resources  (year) 

No increase Rate of increase in 2010 

China 6.50  　 370  　 57  　 22 
US 2.61  140  54  84 
Morocco and Western Sahara 2.60  5,000  1923  63 
Russia 1.00  130  130  >100 
Tunisia 0.76  10  13  25 
Jordan 0.60  150  250  >100 
Brazil 0.55  34  62  27 
Israel 0.30  18  60  19 
Syria 0.28  180  643  35 
South Africa 0.23  150  652  >100 
Togo 0.08  6  75  >100 
Senegal 0.07  18  277  >100 
Other Countries 1.15  282  245  12 
Total 17.60  　 6,500  　 370  　 53 　
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Figure 1-1 Morphological, physiological and molecular response of 
white lupin to P deficiency.  

P-deficiency harboring 

various strategies to 

acquire P from soils. For 

example, mobilization of 

organic P and sparingly 

soluble P by secretion of 

organic acids and 

phosphatases (Ozawa 

et al. 1995; Gilbert et al. 

1999; Neumann et al. 

1999, 2000), 

modification of root 

architecture (Williamson 

et al. 2001), induction of 

H+-ATPase and subsequent secretion of protons (Yan et al. 2002), and exudation of 

flavonoids (Weisskopf et al. 2006) (Fig. 1-1). 

For mobilizing P in soil, it has been known that white lupin has a high 

ability to secrete organic acids and acid phosphatase (APase) from roots under P 

deficient condition (Gilbert et al. 1999; Neumann et al. 1999, 2000). White lupin 

forms unique root clusters like bottle blushes, so-called ‘cluster roots’ (or proteoid 

roots, because the typical roots are found in Proteaceae roots), when it is grown 

under poor conditions in nutrients such as P and Fe (Neumann and Martinoia 2002). 

It was shown that the cluster roots formed under P deficient conditions had specific 

ability to obtain P by not only the increase of root surface area but also the 

acquisition ability by increase of Pi transporters and exudation of organic acids and 

APases (Liu et al. 2001; Miller et al. 2001; Wasaki et al. 2003, 2008). 
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Figure 1-2 Roles of organic acids and acid phosphatases 
secreted from root P deficient soils.  
 

3. Roles of organic acids and APases secreted from plant roots and 
utilization of the functions by gene modification 

 

Not only the lupin, 

most plants respond to P 

deficiency by secretion of 

organic acids and APases from 

roots (e.g. Hoffland et al. 1989; 

Jones 1998). Therefore, it is 

believed that secretion of 

organic acids and APases from 

roots is the important response 

to P deficiency for mobilizing 

soil P (Fig.1-2). However, the 

detail of the mechanisms is not clarified yet. In case of organic acid secretion, the 

transporters of organic acids responding to P deficiency are still unveiled.  

Organic acids are known to compete with Pi for the same sorption sites 

(ligand exchange) or solubilize Pi via ligand promoted mineral dissolution. Under P 

deficient condition, it has been considered that citrate, malate, oxalate and acetate 

are major organic acids secreted from plant roots (Jones 1989). The extraction 

efficiency of inorganic P by the organic acids appears to follow series; citrate > 

oxalate > malate > acetate (Lan et al. 1995).  

Organic acid secretion from plant roots into the rhizosphere plays an 

important role also in Al detoxification (Raghothama 1999; Vance et al. 2003; Ma et 

al. 2001; Ryan et al. 2001; Kochian et al. 2004). The mechanism of Al detoxification 

by organic acid secretion has been well investigated and it was known some 

important genes, such as wheat (Triticum aestivum L.) aluminum-activated malate 

transporter; TaALMT1 (Sasaki et al. 2004) and Al inducible multidrug and toxin 

extrusion (MATE) family citrate transporters; HvAACT1 (Furukawa et al. 2007) and 
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SbMATE (Magalhaes et al. 2007) from barley (Hordeum vulgare L.) and sorghum 

(Sorghum bicolor L.), respectively.  

There are some studies to improve organic acid secretion from roots by 

modification of genes involved in the metabolisms of organic acids such as citrate 

synthase (CS) and isocitrate dehydrogenase (ICDH) (López-Bucio et al. 2000; 

Kihara et al. 2005). López-Bucio et al. (2000) reported that P accumulation of 

tobacco was improved as the result of CS overproduction.  However, Delhaize et 

al. (2001) reported that transgenic tobacco plants overexpressing CS increased 

there protein but it did not show increased accumulation of citrate in roots or 

increased Al-activated efflux of citrate from roots. On the other hands, transgenic 

barley expressing the TaALMT1 shows enhanced the ability to acquire P from an 

acid soil (Delhaize et al. 2009). Thus, it is important not only modification of the 

genes involved in organic acids metabolisms but also transporter itself. Ma (2005) 

suggested that the molecular mechanisms of malate exudation are different 

between Al-stress and P-deficiency. Considering these reports, a hypothesis is 

raised that any homologs of ALMT and/or MATE family genes are involved in 

malate and citrate transport under P deficient conditions.  

 APases comprise a family of metal-containing glycoproteins that catalyze 

the hydrolysis of a wide range of phosphate esters and anhydrides. Many plant 

APase genes, such as LePS2 from tomato (Solanum lycopersicum L.) (Baldwin et 

al. 2001, 2008), StPAPs from potato (Solanum tuberosum L.) (Zimmermann et al. 

2003), and MtPAP1 from Medicago truncatula (Xiao et al. 2006), were isolated and 

characterized. These APases are thought to play a role in the mobilization of Pi 

from organic P sources in the rhizosphere and in Pi scavenging (Duff et al. 1994). 

There were many studies to engineer crop plants improved mobilization of organic 

P from soils. Gene introduction of phytases was the main strategy of this, because 

the main form of organic P is phytate; such as phyA of Aspergillus niger (George et 

al. 2004, 2005b; Mudge et al. 2003; Richardson et al. 2001), 168phyA of Bacillus 

subtilis (Yip et al. 2003), synthetic gene for secretory phytase (Zimmermann et al. 
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2003), and MtPHY1 of Medicago truncatula (Xiao et al. 2005). Gene modification 

for non-specific APases was also tried, such as MtPAP1 of Medicago truncatula 

(Xiao et al. 2006) and LASAP2 of white lupin (Wasaki et al. 2009) (Table 1-2). Most 

of them concluded that these transgenic plants have improved ability to acquire P 

from phytate when grown in sterile agar, but show limited contributions to P uptake 

when grown in soil. It was considered that the low solubility of phytate-P in soils was 

restricted the efficiency of phytate-P utilization in soils (George et al. 2004).  

When crude APase collected from white lupin exudates was injected into 

the rhizospheres of tomato and sugar beet plants, growth and P absorption of 

these plants increased (Tadano and Komatsu 1994). Ozawa et al. (1995) purified 

and characterized the APase protein, and the cDNA has been isolated and 

designated as LASAP2 (Wasaki et al. 2000). Then, LASAP1 and LASAP3, 

homologs of LASAP2, were isolated from P deficiency roots and germinating seeds 

of white lupin, respectively (Wasaki et al. 1999b, 2003). LASAP2 has wide substrate 

specificity, and is stable at pH 4.0 – 9.0 (Ozawa et al. 1995). Like many other 

secreted proteins, APase is glycosylated, which protects it against proteolytic 

enzymes and contributes to its stability (Ozawa et al. 1995). Deduced amino acid 

sequence of LASAP3 was highly identical (82%) with a phytase from germinating 

seeds of soybean, GmPhy7 (Hegeman and Grabau 2001), although the similarity of 

the sequence of LASAP3 was not very high with LASAP1 and LASAP2 (23 and 30%, 

respectively). It was shown that a recombinant protein of LASAP3 produced in 

Escherichia coli exhibited phytase activity with a Km value = 83.1 µM at pH 5.5 

(Kaneko 2004). The sequence similarities and in vitro activity all strongly support 

the notion that LASAP3 also has phytase activity in white lupin plants. Therefore, it 

is believed that the LASAP2 and LASAP3 have a potential for utilization of organic P 

in soil, although it is required to investigate the expression properties of LASAP3. 
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4. Hypotheses and aims of this study 
 

The theme of my study is ‘Study on Organic Acid Transporters Induced by 

Phosphorus Deficiency and Mobilization of Unavailable Phosphate in Soil by Root 

Exudates’. As outlined above, organic acids and APases secreted from plant roots 

are important responses to mobilize unavailable P in soils. It is hypothesized that 

the transport of organic acids is the key factor for the solubilization of sparingly 

soluble P in soil. In order to mobilize organic P in soil, mineralization is a key factor, 

although the mechanism of mineralization by APase is not still detailed. Therefore, it 

was focused on the roles of P mobilization by organic acids and APases secreted 

from plant roots and four experiments were conducted to prove the hypotheses. 

In chapter 2, root exudates of Arabidopsis thaliana under P deficient 

condition were characterized. In chapters 3 and 4, malate and citrate transporters 

induced by P deficiency in Arabidopsis roots were characterized, respectively. In 

chapter 5, characteristics of the expression of genes for APases of Lupinus albus 

and mobilization of organic phosphate by exogenous phosphatase and phytase 

were investigated. The possibility of application for improvement of P utilizing 

efficiency by using genetic modification was also estimated. This approach will 

provide a basis for the development of sustainable agriculture. 
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Chapter 2 

Characterization on phosphorus deficient 

tolerance of Arabidopsis thaliana 
 
1. Introduction 
 

As Arabidopsis thaliana is the most important model in the plant kingdom, 

the genome sequence was firstly completed (Arabidopsis Genome Initiative 2000). 

It allowed us to conduct comprehensive analyses of gene expressions and 

metabolic changes by the P deficiency. The transcriptomics, proteomic, and 

metabolomic analyses have been already carried out (e.g. Hammond et al. 2003; 

Tran et al. 2008; Thibaud et al. 2010). However, it is difficult to understand whole 

aspects of P mobilizing mechanisms by root exudates under P deficiency by the 

transcriptomic, proteomic, and metabolomic analyses targeted to intracellular 

samples. Therefore, this chapter aimed to elucidate the characteristics of exudates 

from roots of Arabidopsis thaliana grown under P deficient condition based on the 

metabolomics and in silico analyses. 

 

2. Results 
 

2-1. Plant growth and phosphorus status of Arabidopsis thaliana 
Arabidopsis thaliana plants were aseptically cultivated in gel media 

containing half strength Murashige-Skoog basal salts with or without P. Fresh 

weight and P concentration of Arabidopsis shoots were measured, and total P 

content was determined (Fig. 2-1). Fresh weight and P content of plants grown 

under +P condition were significantly higher than –P condition at 10, 20 and 25 

days after transferred (DAT) (Fig.2-1A and B). P concentration of plants grown 
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Figure 2-1 Flesh weight (A) and P content (B) and P concentration (C) of Arabidopsis shoot 
grown under P sufficient condition and P deficient condition. 
 

under +P condition was highest at 10 DAT.  The P concentration of plants grown 

under –P condition was less than 2 mg-P/g DW at 20 and 25 DAT (Fig. 2-1C), 

indicating that the P treatments influenced on the P status of Arabidopsis plants as 

expected.   

 

2-2. Profiling of the detected metabolites in root exudates 

 To analyze comprehensive metabolic alterations of root exudates of 

Arabidopsis, metabolomics approach was conducted using GC/MS. The fresh 

weight of the roots at 10 DAT could not be measured because of the insufficient 

growth. Therefore, the root exudates of +P and –P plant roots were collected at 20 

DAT. The result of metabolite profiling of the root exudates is shown in Table 2-1. 

As a result of an analysis of the GC/MS peaks, peaks for 39 compounds were 

detected in one GC/MS scan. There were 17 amino acid peaks and 9 organic acid 

peaks detected (Table 2-1). Among the organic acids, glyceric acid, pipecolic acid, 

citric acid, threonic acid, malic acids and fumalic acid were significantly induced 

by P deficiency. Among the sugars, sucrose of -P condition was increased 30.39 

times compared to the +P condition. Moreover, galactose and arabinose was 

significantly induced by P deficiency. In case of amino acids, arginine, glutamine 

and threonine in the exudates were significantly induced by P deficiency. 
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Table 2-1 List of the compounds detected by GC/MS analysis. Data are presented as the mean ± 
standard error (n=3). Values followed by asterisks are significantly different from the +P condition 
according to Student’s t-test results (*P<0.05, **P<0.01). Red or blue characters indicate significant 
increased or decreased.     

 

　 Name 　 +P 　 -P 　 T-test

　 　 　 　 　 　 　 　 　 　 　 　

Amino acids

Arg 1.00 ± 0.27 12.51 ± 5.01 *

Gln 1.00 ± 0.17 5.70 ± 2.59 

Pro 1.00 ± 0.29 4.07 ± 1.87 

Thr 1.00 ± 0.19 3.87 ± 1.09 *

Lys 1.00 ± 0.31 3.69 ± 2.25 

Asn 1.00 ± 0.24 3.35 ± 1.51 

Glu 1.00 ± 0.18 2.35 ± 0.61 *

Asp 1.00 ± 0.18 2.06 ± 0.48 

Ala 1.00 ± 0.33 2.01 ± 1.04 

Val 1.00 ± 0.22 1.72 ± 0.64 

Tyr 1.00 ± 0.22 1.71 ± 0.62 

Ile 1.00 ± 0.22 1.63 ± 0.51 

Phe 1.00 ± 0.19 1.61 ± 0.73 

βAla 1.00 ± 0.32 1.61 ± 0.28 

GABA 1.00 ± 0.19 1.60 ± 0.42 

Gly 1.00 ± 0.21 1.48 ± 0.47 

Ser 1.00 ± 0.26 0.90 ± 0.29 

Organic acids

Glyceric acid 　 1.00 ± 0.17 　 6.46 ± 0.46 　 **

Pipecolic acid 1.00 ± 0.48 5.01 ± 1.70 *

Citric acid 1.00 ± 0.21 4.08 ± 0.64 **

Threonic acid 1.00 ± 0.21 3.78 ± 0.25 *

Malic acid 1.00 ± 0.19 3.54 ± 0.17 **

Fumaric acid 1.00 ± 0.25 1.86 ± 0.29 *

Gluconic acid 1.00 ± 0.15 1.36 ± 0.09 

Succinic acid 1.00 ± 0.11 1.27 ± 0.33 

Lactic acid 　 1.00 ± 1.09 　 0.26 ± 1.47 　 　

Sugars and 
Sugar alcohols

Sucrose 1.00 ± 0.37 30.39 ± 11.92 *

Glucose 1.00 ± 0.27 7.30 ± 3.12 

Galactose 1.00 ± 0.15 3.75 ± 0.29 **

Glycerol 1.00 ± 0.07 3.60 ± 0.50 **

Fructose 1.00 ± 0.26 2.90 ± 1.41 

Fructose 1.00 ± 0.28 2.76 ± 1.21 

Arabinose 1.00 ± 0.10 2.05 ± 0.21 **

Ribose 1.00 ± 0.15 1.12 ± 0.27 

myo-Inositol 　 1.00 ± 0.11 　 0.89 ± 0.12 　 　

Others

Pyroglutamic acid 1.00 ± 0.23 3.89 ± 1.72 

Suberyl 1.00 ± 0.21 2.67 ± 0.45 *

Guanine 1.00 ± 0.27 1.73 ± 0.90 

Phosphoric acid 　 1.00 ± 0.02 　 0.21 ± 0.03 　 **
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Figure 2-2 Malate and citrate exudation from Arabidopsis thaliana roots grown under P sufficient 
condition and P deficient condition. Data are presented as the mean ± standard error (n=3). Values 
followed by asterisks are significantly different from the +P condition according to Student’s t-test test 
results (*P<0.05). 
 

2-3. Determination of organic acids content and APase activity in the exudates 

Exudation of organic acids and APase is the key component for 

mobilization of unavailable P in soils. Thus, the substantial amount of organic acids 

and the activity of APase in the exudate of Arabidopsis roots were analyzed here. 

The major forms of root-secreted organic acids under -P conditions are 

citrate and malate in the most plants (Jones 1989), therefore, citrate and malate 

contents in the exudates of Arabidopsis were quantitatively determined using the 

enzyme assay kits. The exudation of both malate and citrate from -P plants was 

significantly higher than +P plants (Fig. 2-2). However, the amount of malate and 

citrate in the root exudates of Arabidopsis was not high level compared to 

P-tolerant plants such as lupin (e.g. citrate; 1.16 µmol h-1 g root FW-1 in -P mature 

cluster roots, malate; 0.61 µmol h-1 g root FW-1 in -P normal roots, Neumann et al. 

1999).  
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Figure 2-3 APase activity of root exudates of Arabidopsis grown under P sufficient and P deficient 
condition. Data are presented as the mean ± standard error (n=24). Values followed by asterisks are 
significantly different from the +P condition according to Student’s t-test test results (*P<0.05). 

 

APase activity of the root exudate was determined by using p-nitrophenyl 

phosphate (p-NPP) as a substrate. Similar to other plants, APase from Arabidopsis 

roots under P deficient condition was higher than P sufficient condition (Fig. 2-3). 

The level of APase activity under P deficiency was similar level to the other crop 

plants analyzed in previous study (Tadano and Sakai 1991), although the 

increasing rate in P deficiency was not very high in Arabidopsis (Fig. 2-3).  

 

 

 

2-4. Transcriptomic analysis by microarray 

Purple acid phosphatase (PAP) family proteins are the major phosphatase 

in plants. It was found that 29 PAP family proteins existed in Arabidopsis genome 

(Li et al. 2002). Previously, Choi (2009) conducted transcritomic analysis of P 

deficient Arabidopsis root and shoot by microarray. As the result of in silico 

analysis of the data, it was revealed that various genes were induced or repressed 

by P deficiency. The expression data of PAPs was extracted from the 
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transcriptomic analysis. Among 29 genes for APase in Arabidopsis, AtPAP6, 7, 10, 

12, 17, 22, 23, 24, and 25 were up-regulated by P deficient condition in root, on the 

other hands, AtPAP3 was down-regulated (Table 2-2). This was corresponded to 

the data by Tran et al. (2010), who reported that AtPAP12 and AtPAP26 are the 

predominant PAP isozymes secreted by P deficient Arabidopsis root. Recently, 

Wang et al. (2011) concluded AtPAP10 was the APase associated with the root 

surface after secretion. 
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The three homologs of PAPs were also isolated from white lupin and 

designated LASAP1, LASAP2 and LASAP3 (Wasaki et al. 1999, 2000, 2003). 

Phylogenetic tree of all Arabidopsis PAPs and three isolated PAPs of white lupin 

was prepared to estimate the structural similarities among PAPs (Fig. 2-4). 

AtPAP10, AtPAP12 and AtPAP26 belonged to a clade containing LASAP1 and 

LASAP2, which had been reported as the non-specific APases (Wasaki et al. 1999, 

2000). It is suggested that PAPs in the clade are the major players in mobilization of 

organic P in the rhizosphere.  
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Figure 2-4 Phylogenetic relationship of AtPAP proteins in Arabidopsis thaliana and LASAP1, 2 and 3 
in Lupinus albus. The deduced amino acid sequences were aligned by ClustalW. 
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3. Discussion 
 

3-1. Characteristics of low molecular weight compounds in root exudates of 

Arabidopsis grown under P deficient conditions 

 Root exudates contain sugars, amino acids, organic acids, flavonoids, 

enzymes, and nucleotides (Rovira 1969). In P deficient conditions, it has been 

known that plants secrete various metabolites, such as organic acids, 

strigolactones and flavonoids (Gardner et al. 1983; Weisskopf et al. 2006). Recently, 

it was enabled to analyze comprehensive metabolites in the organisms, so-called 

‘metabolomics’, by using mass spectrometer. The novel concept ‘secretome’, i.e. 

the comprehensive analysis of root exudate was also proposed to understand the 

nutrient dynamics or plant-microbial interactions. Thus, it was analyzed that the 

secretome components in root exudates of Arabidopsis was analyzed by GC/MS, 

although this method could not give quantitative values. It was revealed in this 

study that secretion of many organic acids, including malate and citrate, amino 

acids and sugars increased in the exudates of P deficient Arabidopsis roots (Table 

2-1). The data suggested that the secretomic approach could be a valuable tool for 

characterization of complex responses for nutrient stresses in the future. 

 Increase of arginine, glutamine and threonine in the exudates by P 

deficiency were suggested (Table 2-1). Tawaraya et al. (in press) were also 

analyzed the root exudate of rice by secretomic approaches using CE-TOF MS, 

and they found that several amino acids in root exudates were altered by P status. 

It has been reported that some amino acids, such as arginine, serine and cysteine, 

are affect the growth of rhizosphere microorganisms (Griffiths et al. 1999). The 

increased exudation of amino acids may contribute to the modification of the 

microbial community structures of the rhizosphere including the 

phosphate-solubilizing bacteria. Interestingly, sucrose in the root exudates of –P 

samples was induced about 30 times higher than in +P condition (Table 2-2). 

Under P starvation, plants modify sugar metabolisms and accumulate starch in 
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their leaves. Increased loading of sucrose to the phloem under P starvation not only 

functions to relocate carbon resources to the roots, which increases their size 

relative to the shoot, but also has the potential to initiate sugar-signaling cascades. 

The sugar-signaling alter the expression of genes involved in optimizing root 

biochemistry to acquire soil P through increased expression and activity of 

inorganic phosphate transporters, the secretion of APases and organic acids to 

release P from the rhizosphere, and the optimization of internal P use (Hammond 

and White 2008, 2011). Moreover, Zhou et al. (2008) reported that exogenous 

sucrose in media was influenced to the formation of cluster roots of white lupin 

under P deficiency. Therefore, sucrose from root to the rhizosphere might have the 

role for the signaling molecule of the modification of root architectures. 

 Predictably, root-secreted malate and citrate were also induced by P 

deficiency in quantitative evaluation (Table 2-1, Fig. 2-2). Increased root exudation 

of citric acid, malic acid and oxalic acid under P deficient condition has been 

reported in Lupinus albus (Gardner et al. 1983), Brassica napus (Hoffland et al. 

1989), and Cicer arietinum (Ohwaki and Hirata 1992). It was also reported that 

many organic acids in root exudates of rice were altered by P status (Tawaraya et 

al. in press). It was shown that malate exudation was not altered by P deficiency in 

rice, and citrate in the exudate significantly decreased. It can be concluded that 

major contributors among organic acid molecules to P mobilization are diverse 

among plant species. 

The responses of minor organic acids were also suggested in this study 

(Table 2-1). An increase of glyceric acid in Arabidopsis exudates by P deficiency 

was found, although it was contradicted in rice (Tawaraya et al. in press). Increases 

of pipecolic acid and threonic acid in root exudates of P deficient condition found 

in this study (Table 2-1) have not been reported yet. Further studies are required to 

understand the function of minor organic acids responded to P status shown in this 

study. 

 



Chapter 2 Characterization on phosphorus deficient tolerance of Arabidopsis thaliana 

 18 

3-2. Characteristics of APase, citrate and malate in root exudates of Arabidopsis 

grown under P deficient conditions 

 Activity of root-secreted APase in Arabidopsis was significantly high in P 

deficient conditions than in P sufficient conditions (Fig. 2-3). It was suggested by 

microarray analysis that many APase homologs were induced by -P (Table 2-2). 

These results are consistent with previous reports. Tran et al. (2010) reported that 

AtPAP12 and AtPAP26 are the predominant PAP isozymes secreted by P deficient 

Arabidopsis root. Moreover, Hurley et al. (2010) reported that AtPAP26 is the 

principal contributor to P deficiency inducible APase activity, and that it plays an 

important role in the Pi metabolism of P deficient Arabidopsis. In addition, Wang et 

al. (2011) investigated and concluded that AtPAP10 was induced by P limitation at 

both transcriptional and posttranscriptional levels and associated with the root 

surface after secretion. They suggested that AtPAP10 played an important role in 

plant tolerance to P deficiency.  

Gene expression of AtPAP15 was not so much induced by -P (Table 2-2). 

It has been reported that AtPAP15 has phytase activity and hydrolyzes phytate to 

myo-inositol and free Pi (Zhang et al. 2008; Kuang et al. 2009). They mentioned that 

AtPAP15 might be not secreted from root under P deficient condition, although the 

mRNA accumulation was in the root. AtPAP15 was the closest homolog among 

AtPAPs to LASAP3 (Fig. 2-4), which is the white lupin PAP homolog with a 

phytate-specific activity (Kaneko 2004). Similarly, it is not clarified whether LASAP3 

is secreted protein or not, therefore, further investigation on the expression 

properties of LASAP3 is required to understand the functions of these phytases. 

 

 In conclusion, Arabidopsis also have several mechanisms responded to 

P-deficiency as found in other plants in general. However, the amount of malate 

and citrate in the root exudates was not high level such as P-tolerant plants such as 

white lupin. APase activity secreted from Arabidopsis roots under P-deficient 

conditions was also low level rather than white lupin as indicated by Tadano and 
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Sakai (1991). These facts suggest that the function of P mobilization in Arabidopsis 

is not very high.  

 
 
4. Materials and methods 
 

4-1. Growth condition and collection of root exudates of Arabidopsis thaliana 
Surface-sterilized seeds of Arabidopsis thaliana (ecotype Columbia; 

Col-0) were germinated in 10×10 cm plastic dishes containing sterile Murashige–

Skoog basal salts at half strength and 0.5% gellan gum (pH 5.6; 1/2 MS media) for 

4 days. Seedlings were transferred to same dish containing +P (0.625 mM) or –P (0 

mM) 1/2 MS media. After 10, 20 and 25 days, cultivated plants were transferred to 

inclined square dishes containing 2 mL distilled water in a corner of the dish after 

washing with distilled water (Fig. 2-5). The root exudates were collected for three 

hours.  
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Figure 2-5 The system for growing and collection of root exudates of Arabidopsis thaliana. 
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4-2. Metabolomic analysis of root exudates of Arabidopsis thaliana 
The collected root exudates were used for metabolomics analysis by 

GC/MS. The GC/MS analysis was kindly conducted by Keiki Okazaki in National 

Agricultural Research Center for Hokkaido Region. GC/MS peaks were identified 

by RI and mass spectrum based on Okazaki et al. (2008) and Suzuki et al. (2009). 

Citrate and malate contents in the exudates were determined using the enzyme 

assay kits (E-kit; Roche Diagnostics, Basel, Switzerland).  

 

4-3. Measurement of APase activities 

The collected root exudates were used for measurement of APase activity. 

APase activity of root exudate was determined by using p-NPP as a substrate 

according to the Gilbert et al. (1999). 
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Chapter 3  

Characterization of malate transporter 

induced by phosphorus deficiency 
 
1. Introduction 

 

In Arabidopsis thaliana, TaALMT1-like genes form a small protein family of 

14 members (Hoekenga et al. 2006). For example, AtALMT1 is malate transporter 

involved in Al tolerance (Hoekenga et al. 2006), AtALMT9 is vacuolar malate 

channel (Kovermann et al. 2007) and AtALMT12 is anion transporter involved in 

stomatal closure (Sasaki et al. 2010). These reports indicated that AtALMT family 

genes have multiple functions in Arabidopsis thaliana, although some of them were 

not well characterized yet, including the relationships in the malate secretion under 

P-deficient conditions. In this chapter, it was revealed that AtALMT3, a homolog of 

the AtALMT family genes, was involved in malate transport induced by P 

deficiency.  

 

2. Results 
 

2-1. Expression of AtALMTs under phosphorus deficient condition 
First, the expression pattern of AtALMT genes in both shoots and roots of 

Arabidopsis thaliana grown under +P and -P conditions was compared by 

microarray analyses (Table 3-1). AtALMT1 was accumulated only in roots and not 

induced by P deficiency. AtALMT3 was also root specific and higher in -P than +P. 

Some of AtALMTs, e.g. AtALMT6, were shoot specific. AtALMT9 transcripts were 

found mainly in roots but it was not regulated by P nutrient. AtALMT12 seemed 

constitutive in whole plant both +P and -P conditions.  
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Deduced amino acid sequences of AtALMTs were compared to estimate 

the similarity of protein structures (Fig. 3-1). AtALMTs can be classified three 

groups in the phylogenetic tree (Fig. 3-1). Amino acid sequence of AtALMT3 was 

the most similar to AtALMT9 with 56% identity. AtALMT3 and AtALMT1, a malate 

transporter induced by Al stress, were belonged to the different clades and 

showed only 24% identities (Fig. 3-1).  

RT-PCR was performed to certify the results showed by microarray 

analyses (Fig. 3-2A). The data of RT-PCR showed similar trends with the results of 

microarray analyses. For the further confirmation, quantitative real-time RT-PCR 

(qRT-PCR) was performed for transcripts of AtALMT1 and AtALMT3. qRT-PCR 

revealed that mRNA of AtALMT3 was significantly up-regulated in -P than in +P 

condition, while that of AtALMT1 was down-regulated (Fig. 3-2B). AtIPS1, a P 

deficiency response non-coding RNA belonging to TPSI1/Mt4 family, was also 

significantly up-regulated by -P condition (Fig. 3-2B).  

　 　 　 !""#$ 　 %&""#$
'()*+,-*.#/$ '()*+,-*.#0$ '()*+,-*.#/$ '()*+,-*.#0$

　 　 %1$ 　 　 %1$ 　 　 %1$ 　 　 %1$
23-*$ 451$ 　 67$ 　 89$ :9$ 　 67$ 　 89$ :9$ 　 67$ 　 89$ :9$ 　 67$ 　 89$ :9$

4#4;<=/$ 4#/>?@AB?$ ?C0?$$ D@E$$ //D$$ ?CBB$$ AAA$$ /A@$$ /C/A$$ /0/$$ /B@$$ /C/0$$ /0F$$ /A?$$
4#4;<=0$ 4#/>?@AA?$ /CB0$$ 0G$$ BG$$ /CBE$$ 0F$$ BF$$ ?CEG$$ G?$$ E/$$ /C?@$$ D@$$ F0$$
4#4;<=B$ 4#/>/@A0?$ 0CAD$$ 0FD$$ FAG$$ 0CEG$$ 0@/$$ E@A$$ ?CGE$$ DG$$ D@$$ ?CD0$$ DB$$ 0@$$
4#4;<=A$ 4#/>0DA@?$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$
4#4;<=D$ 4#/>F@F??$ ?CD/$$ A0$$ 0/$$ /CB/$$ DG$$ E@$$ 0CF@$$ /BGF$$ BEAB$$ 0CGE$$ //??$$ B0E0$$
4#4;<=F$ 4#0>/EAE?$ /C??$$ 0/$$ 00$$ /C??$$ 0E$$ 0?$$ /C/D$$ @@$$ /?0$$ /CEG$$ GA$$ /FE$$
4#4;<=E$ 4#0>0E0A?$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$
4#4;<=@$ 4#B>//F@?$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$
4#4;<=G$ 4#B>/@AA?$ /C?F$$ /ADA$$ /DAF$$ /C0@$$ //F?$$ /A@/$$ /C?0$$ /BG?$$ /A0?$$ /C0F$$ //?0$$ /B@E$$
4#4;<=/?$ 4#A>??G/?$ ?CAA$$ F?@$$ 0E?$$ ?CB?$$ @A?$$ 0D/$$ /C??$$ 0/$$ 0G$$ /C??$$ 0@$$ 0?$$
4#4;<=//$ 4#A>/ED@D$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$
4#4;<=/0$ 4#A>/EGE?$ 0C@D$$ EF$$ 0/D$$ 0CDA$$ @/$$ 0?F$$ 0C/A$$ BF0$$ EEA$$ 0CG@$$ BEF$$ //0B$$
4#4;<=/B$ 4#D>AFF??$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$ .H$
4#4;<=/A$ 4#D>AFF/?$ ?CGB$$ /DF$$ /AD$$ /C/E$$ /B0$$ /DD$$ ?CEE$$ /A@$$ //A$$ /C?0$$ /AE$$ /AG$$

.*>3IJ*$K".#+"L$ 　 /C/?$$　 0?$$ 0D$$ 　 /C//$$　 0@$$ 0?$$ 　 /C/?$$　 0/$$ BB$$ 　 /C/F$$　 0G$$ /G$$

Table 3-1 List of the gene expression of AtALMTs in the root and shoot of Arabidopsis detected by 
microarray analysis. Fold change (FC) means signal Intensity (SI) of  –P/+P condition. Experiment 1 
and experiment 2 indicate replications. Red and blue characters indicate more than double or less 
than half. 
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AtALMT1

AtALMT2

AtALMT3
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AtALMT5
AtALMT6

AtALMT7

AtALMT8
AtALMT9

AtALMT10

AtALMT11AtALMT12
AtALMT13

AtALMT14

0.2

Figure 3-1 Phylogenetic relationship of AtALMT proteins in Arabidopsis thaliana. AtALMT3 was 24% 
identical to AtALMT1. The deduced amino acid sequences were aligned by ClustalW. 
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Figure 3-2 mRNA accumulation of AtALMTs, UBQ1 and AtIPS1 analyzed by semi-quantitative 
RT-PCR, A, and quantitative RT-PCR ,B. qRT-PCR was performed for cDNAs of Arabidopsis thaliana 
roots cultivated under phosphorus sufficient condition and phosphorus deficient condition with 
triplicate (error bar = SE). AtIPS1 is a P starvation responsive non-coding RNA belonging to 
TPSI1/Mt4 family.  
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2-2. Loss-of-function analysis  

To analyze the function of AtALMT3, we obtained two AtALMT3 mutant 

lines (atalmt3-1 and atalmt3-2, provided by Salk institute as Salk_013699 and 

CS841593, respectively). T-DNA was inserted at 6 bp upstream of the stop codon 

and 248 bp upstream of the start codon in atalmt3-1 and atalmt3-2, respectively 

(Fig. 3-3).  

 

The mRNA was significantly down- and up-regulated compared to WT in 

atalmt3-1 and atalmt3-2, respectively (Table 3-2, Fig. 3-4A). It is considered that 

T-DNA sequence might act as enhancer in AtALMT3 expression in atalmt3-2 

mutant.  

 

 

 

 

The exudation of both malate and citrate from -P plants was higher than 

+P plants in all lines (Fig. 3-4B). Malate exudation of atalmt3-1 decreased by 34% 

compared to WT in –P condition, although it was not significant (P=0.08). On the 
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Figure 3-3 Schematic of the AtALMT3 locus (at1g18420) showing T-DNA insertion sites and 
P1BS element site.  
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Table 3-2 AtALMT1 and AtALMT3 gene expressions of WT, atalmt3-1, atalmt3-2 and atalmt1. 
qRT-PCR was performed for cDNAs of Arabidopsis thaliana roots cultivated under phosphorus 
sufficient condition and phosphorus deficient condition with triplicate. 
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other hand, that of atalmt3-2 

increased by 31% (P=0.05). 

There were no differences of 

citrate exudation among 

three lines (Fig. 3-4B). These 

results suggested that 

AtALMT3 was involved in the 

malate exudation from 

Arabidopsis roots induced 

by P-deficiency. 

 

 

 

2-3. Histochemical and 

subcellular localization of 

AtALMT3  
To investigate 

histochemical localization of 

AtALMT3 expression, I have 

generated transgenic 

Arabidopsis thaliana plants 

harboring a reporter gene, 

ß-glucuronidase (GUS), 

under the control of the putative AtALMT3 promoter (2,049 bp upstream from the 

start codon). AtALMT3 promoter::GUS lines showed strong expression in 

epidermal cells and root hairs, especially in the adjacent region of the meristem of 

roots (Fig. 3-5A-F). There were no differences of the localization of GUS activities 

between +P and -P condition (Fig. 3-5C,D). AtALMT3 expression was not detected 

in shoot tissues (Fig. 3-5G).  

Figure 3-4 Effect of P nutrition on mRNA accumulation (A) 
and malate and citrate exudation from Arabidopsis thaliana 
roots (B). (n = 3, error bar = SE) 
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 Figure 3-5 Localization of AtALMT3 promoter::GUS in transgenic seedlings. Transgenic plants 
carrying a AtALMT3 promoter::GUS construct were used for GUS staining after cultivated +P condition 
for 8 day (D) and –P condition for 20 Days, (A, E and G), and 8 Days, (B, C and F).  A and B, Whole 
plant. C and D, Region behind the root tip. E, Cross-sectional view of root. F, Portion of root tip and 
meristematic regions of lateral roots. G, Shoot.  Bar=1mm (A, B and G), 500 µm (C, D and F) and 50 
µm (E). 
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To investigate subcellular localization of AtALMT3, AtALMT3::GFP fusion 

protein was transformed into Arabidopsis under the control of NP (native promoter). 

Plasma membranes were stained by a short incubation with the hydrophobic red 

fluorescent dye FM4-64 (Fig. 3-6F), which was found to colocalize with the green 

AtALMT3-dependent fluorescence after the two separate images were merged (Fig. 

3-6G). It was revealed that NP::AtALMT3::GFP protein located at root hair cells and 

located in plasma membrane (Fig. 3-6). 

 

 

A B C

D E F G

Figure 3-6 Localization of AtALMT3 promoter::AtALMT3::GFP protein in transgenic seedlings. 
Transgenic plants were grown under P deficient condition for 10 days were used. Bright field image (A 
and D), fluorescence image (B and E), plasma membrane were stained red with FM4-64 (F), and 
merged image (C and G). Bar=500 µm (A, B and C) and 50 µm (D, E, F and G). 
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2-4. Growth of the AtALMT1 and AtALMT3 mutants in soil culture 

To investigate the role of AtALMT3, the mutants and wild type plants were 

cultivated in the soil. The growth and P content of shoot were shown in Table 3-3. 

The differences of both growth and P content were not significantly among plant 

lines, although P treatments significantly influenced to their growth and P 

accumulation. The relationships between the growth and P content of each pot 

were shown in Fig. 3-7. Interestingly, P uptake ability of atalmt3-1 and atalmt1 was 

lower compared to WT, while atalmt3-2 was similar to WT (Fig. 3-7). Reduction rate 

of P uptake in atalmt1 was bigger than atalmt3-1 (Fig. 3-7). 
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Table 3-2 AtALMT1 and AtALMT3 gene expressions of WT, atalmt3-1, atalmt3-2 and atalmt1. 
qRT-PCR was performed for cDNAs of Arabidopsis thaliana roots cultivated under phosphorus 
sufficient condition and phosphorus deficient condition with triplicate. 
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Figure 3-7 Relationship between plant dry weight and P accumulation of shoots of WT (A), atalmt3-1 
(B), atalmt3-2 (C) and atalmt1 (D).  
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3. Discussion 
 

3-1. AtALMT3 is involved in malate transport under phosphorus deficiency in 

Arabidopsis thaliana 
Under phosphorus deficient condition, plants secrete organic anions such 

as malate and citrate into the rhizosphere to mobilize insoluble P, which is bound 

with the metal ions such as Ca, Fe and Al (Raghothama 1999; Vance et al. 2003). It 

is considered that the organic acid transporters play very important roles on 

utilization of insoluble P in soils, although the P-deficiency responsive organic acid 

transporter genes have not yet isolated. 

AtALMT3 gene expression was only found in roots and up-regulated by 

P-deficiency (Fig. 3-2). It was predicted that AtALMT3 had 6 transmembrane 

domains (data not shown). AtALMT3 showed highest similarity to AtALMT9, which 

was reported localized in the vacuolar membrane. AtALMT9 was not up-regulated 

by P-deficiency in roots (Fig. 3-2A). While, gene expression of AtALMT1, the 

aluminum activated malate transporter localized in roots, was down-regulated (Fig. 

3-2B). It has been suggested that the mechanisms of organic acid secretion are 

different between P-deficiency and Al stress (Ma 2005). Therefore, AtALMT3 can 

be targeted as a candidate gene for malate transporter induced in roots of 

P-deficient Arabidopsis thaliana. 

In fact, malate exudation under P deficiency reduced in the AtALMT3 

knockdown mutant, atalmt3-1, and increased in overexpression mutant, atalmt3-2 

(Fig. 3-4). This indicates that AtALMT3 is involved in malate exudation from 

Arabidopsis roots under P deficient conditions. However, the malate transport 

activity could not be detected by several electrophysiological analyses of AtALMT3 

using oocytes of Xenopus laevis (data not shown). Kobayashi et al. (2007) reported 

that malate release from AtALMT1 was regulated both transcriptional and 

posttranscriptional levels. AtALMT3 might have also posttranscriptional regulation. 

It might be reason why 10.5 times up-regulation of AtALMT3 caused only 1.3 times 
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higher malate exudation in atalmt3-2 (Fig. 3-4). In addition, Fetter et al. (2004) 

reported that heteromerization of maize (Zea mays) plasma membrane aquaporins 

ZmPIP1 and ZmPIP2 were required to act as a functional water channels. Therefore, 

AtALMT3 might have the interaction of other protein such as other ALMT family 

protein. 

P uptake ability of the mutants and WT was compared by soil culture. pH 

of soil used in this experiment was 5.45, therefore, the Al stress was not critical. P 

uptake efficiency of atalmt3-1 and atalmt1 from soil was less than WT (Fig. 3-7). 

Thus, it is concluded that not only AtALMT3 but also AtALMT1 is involved in P 

mobilization in the rhizosphere. 

 

3-2. Localization of AtALMT3 is linked to other functions for P uptake from the 

rhizosphere in Arabidopsis thaliana 
Skene (2003) reported that exudation of low molecular weight exudates 

and phosphate uptake could be seen to peak at a region just behind the root tip. 

From results of promoter analyses, it is clearly demonstrated that AtALMT3 is 

specifically expressed in epidermal cells and root hairs, especially in the adjacent 

region of the meristem of roots, just behind the root tip (Figs. 3-5 and 3-6). 

NP::AtALMT3::GFP analysis also demonstrated that AtALMT3 located in plasma 

membrane of root hair cells (Fig. 3-6). These results suggest that AtALMT3 

transport malate from inside to outside of epidermal and root hair cells under 

P-deficient condition. Root hair is very important to uptake nutrient, especially P, 

from soil (Gahoonia et al. 1998). In addition, the phosphate transporter genes of 

Arabidopsis (Pht1;2) or barley (HvPht1;1) also up regulated in root hair under 

P-deficient condition (Karthikeyan et al. 2002; Mudge et al. 2002; Schunmann et al. 

2004). Furthermore, in our previously study, acid phosphatase activity was high in 

the root hair cells of hydroponically and soil-cultured white lupin under P-deficient 

conditions (Wasaki et al. 2008). Thus, plant has a very efficient system to secrete 

organic acids and phosphatases and uptake P by the phosphate transporter in 
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same tissues.  

In conclusion, results obtained in this chapter suggest that AtALMT3 has 

properties that allow it to function as a malate efflux transporter localized plasma 

membrane of epidermis and root hair cells induced by P-deficiency, although the 

activity of malate transport was still not directly detected. 

 
4. Materials and Methods 
 

4-1. Arabidopsis accessions 

Arabidopsis thaliana (Col-0) was used for all of the control experiments. 

The T-DNA insertion mutants of AtALMT3, atalmt3-1 (Salk_013699), atalmt3-2 

(CS841593) and AtALMT1 knockout mutant, atalmt1 (Salk_009629) were obtained 

from the Arabidopsis Biological Resource Center (ABRC). Homozygous plants 

were identified by PCR using appropriate primer sets (Table 3-4). 

 

4-2. Plant material and growth condition 

Surface-sterilized seeds of each Arabidopsis line were germinated in 10 x 

10 cm plastic dishes containing sterile 1/2 media and 0.5% gellan gum (pH 5.6) for 

4 days. Seedlings were transferred to same sized dishes containing 1/2 MS media 

with or without 0.625 mM phosphate. After 20 days, cultivated plants were 

transferred to inclined square dishes containing 2 mL distilled water in a corner of 

the dishes after washing with distilled water. The root exudates were collected for 6 

h. Citrate and malate contents in the exudates were determined using the enzyme 

assay kits (E-kit; Roche Diagnostics). Fresh weight of root and shoot were weighted 

and immediately frozen in liquid N2, and kept at -80˚C until use for RNA isolation. 
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4-3. RT-PCR and quantitative RT-PCR 

 Total RNA was extracted using the Agilent Plant RNA Isolation Mini kit 

(Agilent Technologies, Santa Clara, IL, USA) as recommended by the manufacturer. 

Total RNA (300 ng) was reverse-transcribed into cDNA in a 10 µL reaction using the 

SuperScript® VILOTM  cDNA Synthesis Kit (Invitorogen, Carlsbad, CA, USA). The 

cDNAs and specific primer sets (Table 3-4) were used for RT-PCR and qRT-PCR. 

RT-PCR was carried out 94°C for 1 min, followed by 30 cycles of 94°C for 30 s, 55°C 

for 30 s, and 72°C for 1 min using Ex taq (Takara-bio, Otsu, Japan). PCR products 

were separated by 2% agarose gel and stained with SYBR Green I, detected with 

Lumivision (Aisin, Kariya, Japan). Quantitative real-time RT-PCR was performed 

using an ABI StepOne real-time PCR system (Applied Biosystems, Piscataway, CA, 

USA) and SYBR Green kit (Takara-bio). The real-time PCR process comprised an 

initial denature at 95˚C for 10 min, followed by 40 cycles of 95˚C for 15 sec and 60˚C 

for 1 min, and a final dissociation stage of 95˚C for 15 sec, 60˚C for 1 min and 95˚C 

for 15 sec. The data were analyzed using the ABI StepOne system software (Applied 

Biosystems). Transcripts were relatively quantified using actin transcripts as a 

control. Primer sequences for using RT-PCR and qRT-PCR are shown in Table 3-4. 
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Table 3-4 List of primers used in this chapter. 
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4-4. Construction of binary plasmids and transformation of plants 

For construction of plasmids, PCR was performed using high fidelity 

enzyme Prime STAR GXL DNA polymerases (Takara-bio). To amplify the 2,049 bp 

genomic sequence upstream of the longest ORF for AtALMT3, the primers were 

used as follows. Forward primer: 

5'-ccgtcgacGAAACACTTGATAAAGCCACAAGTC-3' and reverse primers: 

5'-gcgccggctctagaTTCTGGTTCTTGATTCCGATGATTGC-3' (capitals indicate the 

native sequence of AtALMT3; lower case letters indicate the adopter sequences). 

These primers include restriction-endonuclease-site sequences (underlined) and 

are designed for cloning to pENTR 3C entry plasmid (Invitrogen). The construction 

of the AtALMT3 promoter::GUS reporter gene was performed using pGWB3 

plasmid (Nakagawa et al. 2007) by the Gateway cloning system (Invitrogen). The 

AtALMT3 open reading frame (coding sequence) of 1,743-bp (except for stop 

codon), were amplified using primers 

5'-ccgtcgactctagaATGGCGGCACCAAAGCTGGAATC-3' and 

5'-ccgcggccgcaaaggatcctccgccaccCTCAGAGACAGCTTCTTTG-3' which include 

restriction sites (underlined) and additional linkers (double underlined) for fusion of 

C-terminal GFP derived from the plasmid pTH2 (Chiu et al. 1996). Binary plasmid of 

the AtALMT3 promoter fused to the coding sequence::GFP were modified from the 

AtALMT3 promoter::GUS reporter gene plasmid using pGWB3 by replacing GUS 

gene with the AtALMT3::GFP fragments.  

The binary plasmids were introduced into Agrobacterium tumefaciens 

strain EHA101 (Hood et al. 1986) or LBA4404. Transformations were performed 

floral dipping method as described previously (Clough and Bent 1998). Transgenic 

plants (T1) were selected on Murashige-Skoog (MS) medium containing 20 µg/mL 

kanamycin and 100 µg/ml carbenicillin, and then grown in soil. The self-pollinated 

progeny (T2) were selected by kanamycin resistant and analyzed for the gene 

expression, GUS staining and GFP fluorescence. GUS staining sample was 

observed on microscopes (SZ61 and CX31; Olympus, Tokyo, Japan). 
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Fluorescence was observed on All-in-One Fluorescence Microscope BZ9000 

(Keyence, Osaka, Japan), with 488 nm excitation and 505 to 530-nm emission for 

GFP. For the staining of plasma membrane, plants were incubated with 20 mM 

FM4-64 (Molecular Probes) for 5 min, washed three times in water. Plates were 

scanned with excitation at 473 nm and detection with a 495- to 545-nm filter (green; 

GFP fluorescence) and a >560-nm filter (red; FM4-64) by confocal laser scanning 

microscope (FLUOVIEW1000-D BX-61; Olympus). 

 

4-5. Soil culture and phosphorus analysis 

A commercial Loamy soil was sieved through 2 mm holes. Three levels of 

phosphorus application treatments (0, 100, and 300 mg-P kg-soil-1 of Ca 

(H2PO4)2•H2O) were prepared. As nitrogen and potassium sources, 150 mg-N 

kg-soil-1 as (NH4)2SO4 and 150 mg-K kg-soil-1 as K2SO4 were applied to all 

treatments. Seeds of Arabidopsis thaliana were directly sown on the 4.5 × 4.5 × 4.5 

cm3 plastic pots (10-20 seeds/pot) containing 50 g soil prepared below. After 

incubated 4˚C for 4 days for vernalization, plants were grown in a growth chamber 

under 16h/8h light period at 23˚C with 75 µmol cm-2 s-1. After additional 25 d 

cultivation, the shoots of plants were cultivated. The shoots were oven-dried at 

70˚C for 3 d. The dry matter of shoots was weighed, and then ground to a fine 

powder. Grind samples were digested with H2SO4-H2O2. The P concentration in the 

digested solution was quantified using the vanado-molybdate blue method 

(Murphy and Riley 1962). 

 

4-6. Statistical analysis 

All cultivations were replicated three times. Student's t-test and Tukey's 

test was performed using SPSS version 16J (SPSS Inc., Chicago, IL, USA). 

Significance was accepted at P<0.05. 

The amino acid sequences were aligned by ClustalW program (Thompson 

et al. 1994) through a web server on DNA Data Bank of Japan (DDBJ; 
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http://www.ddbj.nig.ac.jp/). The phylogenetic tree was created by the NJplot 

software (Perrière and Gouy 1996). 
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Chapter 4  

Characterization of citrate transporter 

induced by phosphorus deficiency 
 
1. Introduction 
 

Citrate secretion from plant roots into the rhizosphere plays an important 

role for mobilizing soil P. However, the citrate transporter induced by P deficient 

conditions is not identified yet. On the other hand, Al inducible multidrug and toxin 

extrusion (MATE) family citrate transporters; HvAACT1 (Furukawa et al. 2007), 

SbMATE (Magalhaes et al. 2007) and AtMATE (Liu et al. 2009) have been reported. 

Citrate is the major molecule of the root-secreted carboxylates in P-deficient white 

lupin. P-deficiency induced MATE gene has been suggested as potential 

candidate for citrate secretion during P deficient white lupin, although the detail 

mechanism of organic acid secretion by P-deficiency is still unclear (Vance et al. 

2003). Molecular approach is easier in model plant such as Arabidopsis rather than 

in specific plants. Therefore, in this chapter, we aimed to identify the transporter 

involved in citrate secretion on the P deficient conditions in Arabidopsis thaliana, 

which has also an ability to secrete citrate under P deficient conditions as shown in 

Chapter 2. 

 

2. Results 
 

2-1. Expression of AtMATEs under phosphorus deficient condition 
First, the expression patterns of 56 AtMATE genes in both shoots and 

roots of Arabidopsis thaliana grown under +P and –P conditions were compared by 

using microarray data (Table 4-1). Seven and eight AtMATEs 
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　 　 　 Root 　 Shoot

Experiment1 Experiment2 Experiment1 Experiment2

　 　 SI 　 　 SI 　 　 SI 　 　 SI

　 Number AGI code FC 　 +P -P 　 FC 　 +P -P 　 FC 　 +P -P 　 FC 　 +P -P

AtMATE1 1 AT1G11670 1.16 5581 6487 1.67 4890 8156 1.30 550 713 1.06 568 537 

AtMATE2 2 AT1G12950 3.32 795 2642 2.89 844 2440 1.13 197 222 0.74 171 233 

AtMATE3 3 AT1G15150 1.10 326 358 1.32 339 447 0.91 427 388 0.91 395 436 

AtMATE4 4 AT1G15160 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE5 5 AT1G15170 0.80 1140 916 0.94 1218 1147 1.01 1410 1430 1.03 1236 1199 

AtMATE6 6 AT1G15180 0.94 335 315 1.09 326 355 0.63 5080 3209 1.63 6155 3784 

AtMATE7 7 AT1G23300 1.73 782 1353 1.52 819 1249 1.04 162 169 1.29 222 172 

AtMATE8 8 AT1G33080 0.56 999 559 0.50 1045 526 0.68 545 369 1.39 491 354 

AtMATE9 9 AT1G33090 1.28 278 356 1.32 215 285 1.52 197 300 1.74 191 331 

AtMATE10 10 AT1G33100 1.37 229 313 0.91 238 217 1.33 228 302 1.18 250 294 

AtMATE11 11 AT1G33110 0.79 1107 871 0.71 1213 865 1.66 934 1551 1.80 955 1715 

AtMATE12 12 AT1G47530 0.46 5056 2304 0.50 5996 2989 1.11 8429 9341 1.25 8586 10702 

AtMATE13 13 AT1G51340 1.05 18859 19827 1.09 18393 20040 1.05 17090 17861 1.06 20285 21568 

AtMATE14 14 AT1G58340 0.32 659 212 0.26 1003 257 0.72 279 200 1.39 163 226 

AtMATE15 15 AT1G61890 0.73 11129 8087 1.35 7456 10038 1.82 7206 13147 1.21 7228 8746 

AtMATE16 16 AT1G64820 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE17 17 AT1G66760 1.83 2225 4072 2.04 2050 4177 1.42 2162 3077 0.87 2194 1903 

AtMATE18 18 AT1G66780 0.95 1892 1799 1.01 2244 2261 0.97 2115 2060 0.91 1822 1662 

AtMATE19 19 AT1G71140 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE20 20 AT1G71870 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE21 21 AT1G73700 1.17 35 41 1.26 44 56 2.90 106 308 2.40 119 286 

AtMATE22 22 AT2G04040 0.99 2288 2274 1.00 3143 3131 0.99 3859 3838 1.07 1776 1896 

AtMATE23 23 AT2G04050 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE24 24 AT2G04066 0.82 117 96 1.01 133 133 0.88 117 103 0.83 119 99 

AtMATE25 25 AT2G04070 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE26 26 AT2G04080 1.20 677 815 1.15 799 918 1.05 739 775 1.13 796 897 

AtMATE27 27 AT2G04090 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE28 28 AT2G04100 1.36 935 1270 1.23 851 1051 1.27 218 276 1.72 192 330 

AtMATE29 29 AT2G21340 1.17 1186 1389 1.06 1129 1195 1.28 3326 4244 1.15 3606 4146 

AtMATE30 30 AT2G34360 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE31 31 AT2G38330 0.68 413 279 0.57 409 234 1.02 2588 2645 0.84 3170 2670 

AtMATE32 32 AT2G38510 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE33 33 AT3G03620 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE34 34 AT3G08040 1.18 1251 1474 1.39 707 982 1.04 160 167 1.65 122 201 

AtMATE35 35 AT3G21690 1.79 1470 2630 1.32 1598 2110 1.68 1592 2673 1.95 1383 2700 

AtMATE36 36 AT3G23550 0.15 1640 253 0.26 1502 385 0.11 5361 596 0.63 2441 1541 

AtMATE37 37 AT3G23560 0.81 1526 1230 0.76 1771 1345 1.16 980 1134 1.68 683 1146 

AtMATE38 38 AT3G26590 1.40 486 681 1.34 440 592 2.04 146 297 2.52 86 217 

AtMATE39 39 AT4G00350 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE40 40 AT4G21903 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE41 41 AT4G21910 1.58 9142 14478 1.75 8994 15755 1.42 5055 7160 2.00 4356 8713 

AtMATE42 42 AT4G22790 1.78 630 1119 1.23 793 972 1.65 185 304 1.70 202 343 

AtMATE43 43 AT4G23030 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE44 44 AT4G25640 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE45 45 AT4G29140 0.30 978 297 0.36 1076 388 0.75 818 616 1.06 732 777 

AtMATE46 46 AT4G38380 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE47 47 AT4G39030 1.49 2095 3124 1.79 1498 2683 2.06 537 1106 2.33 375 876 

AtMATE48 48 AT5G10420 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE49 49 AT5G17700 4.77 167 798 2.78 199 553 2.74 595 1632 2.71 508 1376 

AtMATE50 50 AT5G19700 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE51 51 AT5G38030 1.77 410 723 1.71 340 581 1.05 179 187 1.21 55 67 

AtMATE52 52 AT5G44050 nd nd nd nd nd nd nd nd nd nd nd nd

AtMATE53 53 AT5G49130 1.00 20 23 1.00 23 19 1.00 28 30 1.82 29 52 

AtMATE54 54 AT5G52050 0.86 9343 8061 1.15 7366 8462 2.80 9005 25245 1.25 7443 9266 

AtMATE55 55 AT5G52450 1.38 2355 3258 1.15 2292 2645 1.64 1777 2917 2.12 1513 3213 

AtMATE56 56 AT5G65380 2.29 2752 6294 1.37 3013 4120 0.57 6253 3542 0.63 6708 4233 

negative control 1.10 　 20 25 　 1.11 　 28 20 　 1.10 　 21 33 　 1.16 　 29 19 

Table 4-1 List of the gene expression of AtMATEs in the root and shoot of Arabidopsis detected by 
microarray analysis. Fold change (FC) means signal Intensity (SI) of  –P/+P condition. Experiment 1 
and experiment 2 indicate replications. Red and blue characters indicate more than double or less 
than half. 
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were up-regulated by –P treatment in roots and shoots, respectively. At1g12950 

was accumulated only in roots and higher in –P than +P. At1g12950 was highest 

induced among 7 AtMATEs genes up-regulated in –P roots. Transcripts for 

At1g51340, which has been reported as Al activated MATE (AtMATE), were found 

mainly in roots, but it was not regulated by P status. Therefore, At1g12950 was 

selected for the further analysis as a candidate of P deficiency responsive citrate 

transporter, and named AtMATE-PI1 (P-deficient Induced gene 1).  

Deduced amino acid sequences of AtMATEs were compared to estimate 

the similarity of protein structures (Fig. 4-1). It was clarified that AtMATEs were 

highly varied and AtMATE-PI1 and AtMATE were classified different clades in the 

phylogenetic tree (Fig. 4-1). AtMATE-PI1 was closest to At1g61890, which was not 

regulated by P status.  
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Figure 4-1 Phylogenetic relationship of AtMATEs proteins in Arabidopsis thaliana. The number is 
matched the number of Table 4-1. The amino acid sequences were aligned by ClustalW. 
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Since it is well known that the MATE family proteins transport not only 

citrates but also various other substrates (Omote et al. 2006), MATEs confirmed 

citrate transport activities or related properties in several plant species were used 

for similar analysis (Fig. 4-2). AtMATE-PI1 was closest to LaMATE from white lupin 

(Lupinus albus L.) among nominated MATEs from other species, although it had 

been reported that citrate transport activity was not detected for LaMATE by 

electrophysical analyses (Uhde-Stone et al. 2005). 
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Figure 4-2 Phylogenetic relationship of AtMATE-PI1 proteins in Arabidopsis and different plant 
species containing GmMATE (Rogers et al. 2009), HvAACT1 (Furukawa et al. 2007), LaMATE 
(Uhde-Stone et al. 2005), OsFRDL1 (Yokosho et al. 2009) and SbMATE (Magalhaes et al. 2007). 
AtMATE-PI1 is low similarity (13%) to AtMATE, which was isolated Al activated citrate transporter. The 
amino acid sequences were aligned by ClustalW. 
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Quantitative RT-PCR revealed that mRNA of AtMATE-PI1 was significantly 

up-regulated in -P than in +P condition, while that of AtMATE was not changed (Fig. 

4-3).  

 

 

2-2. Loss-of-function analysis  

To analyze the function of AtMATE-PI1, two AtMATE-PI1 mutant lines 

(atmate-pi1-1 and atmate-pi1-2, provided by Salk institute as CS859621 and 

Salk_136631, respectively) were obtained. T-DNA was inserted in intron and exon 

in atmate-pi1-1 and atmate-pi1-2, respectively (Fig. 4-4).  
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Figure 4-3 mRNA accumulation of AtMATE-PI1 and AtMATE. qRT-PCR was performed for cDNAs of 
Arabidopsis roots with triplicate (error bar = SE). AtMATE are Al activated citrate transporter.  
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Figure 4-4 Gene structure of AtMATE-PI1. Two mutant lines were established and designated as 
atmate-pi1 and atmate-pi1-2, which were inserted T-DNA in the exon and intron of AtMATE-PI1, 
respectively. 
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The mRNA for 

AtMATE-PI1 was completely 

disappeared in both mutants 

(Fig. 4-5A). The exudation of 

both malate and citrate from 

-P plants was higher than +P 

plants in all lines (Fig. 4-5A). 

Citrate exudation decreased 

significantly by the knockout 

of AtMATE-PI1 (Fig. 4-5B). 

The decreasing rate of 

citrate exudation in 

atmate-pi1-1 and 

atmate-pi1-2 was 30 and 

35% in –P condition, and 63 

and 47% in +P condition, 

respectively. There were no 

differences of malate 

exudation in three lines (Fig. 

4-5B). These results 

suggested that AtMATE-PI1 

was involved in the citrate 

exudation from Arabidopsis roots in normal condition and induced by P-deficiency.  
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Figure 4-5 Effect of P nutrition on mRNA accumulation (A) and 
malate and citrate exudation from Arabidopsis thaliana roots 
(B).  (n = 3, error bar = SE). 
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2-3. Histochemical localization of AtMATE-PI1 
 To investigate histochemical localization of AtMATE-PI1 expression, I have 

generated transgenic Arabidopsis thaliana plants harboring a reporter gene, 

ß-glucuronidase (GUS), under the control of the putative AtMATE-PI1 promoter 

(2,041 bp upstream from the start codon). AtMATE-PI1 promoter::GUS lines 

showed expression in root hairs, especially in the adjacent region of the meristem 

of roots (Fig. 4-6). 

 

Figure 4-6 Localization of AtMATE-PI1 promoter::GUS in transgenic seedlings. Transgenic plants 
carrying a AtMATE-PI1 promoter::GUS construct were used for GUS staining after cultivated –P 
condition for 20 Days. (Bar=1mm) 
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3. Discussion 
 

3-1. AtMATE-PI1 is involved in citrate transport under phosphorus deficiency in 

Arabidopsis thaliana 
The loss of function analysis indicated that AtMATE-PI1 was involved in 

citrate exudation under P deficient condition in Arabidopsis (Fig. 4-5). Won et al. 

(2009) have reported that At1g12950 is one of the Root Hair-Specific Genes. WoLF 

PSORT program showed the score of subcellular localization for AtMATE-PI1 as 

below; plasma membrane 11, vacuole 1.0 and ER 1.0. This indicates that 

AtMATE-PI1 has a high possibility to locate in plasma membrane. AtMATE-PI1 

promoter::GUS lines showed expression in root hairs, especially in the adjacent 

region of the meristem of roots (Fig. 4-6). These facts support the hypothesis that 

AtMATE-PI1 is the citrate transporter located in plasma membrane of root hair cell 

and play a role for citrate transport from root to the rhizosphere under P deficient 

conditions. 

Although the expression of AtMATE-PI1 was knocked-out in both 

atmate-pi1-1 and atmate-pi1-2 mutants, more than half of citrate exudation of them 

was remained in –P condition (Fig. 4-5). This indicated that there were other 

important transporter(s) involved in citrate exudation from root to the rhizosphere. 

In Arabidopsis, the MATE family comprises 56 genes (Table 4-1 and Fig. 4-1; 

Rogers and Guerinot 2002; Omote et al. 2006). They are involved in quite wide 

roles, such as lateral root formation (ALF5; Diener et al. 2001), iron homeostasis 

(FRD3; Rogers and Guerinot 2002), or disease resistance (EDS5; Nawrath et al. 

2002). It was clarified that AtFRD3 played a role in iron uptake and was mainly 

expressed in the stellar tissues of Arabidopsis roots (Green and Rogers 2004). The 

microarray data indicated that AtFRD3 expression was not induced by P deficient 

condition (Table 4-1). However, transgenic plants overexpressing the AtFRD3 

shows enhanced citrate efflux from the root (Durrett et al. 2007). This indicates that 

there is a possibility that AtFRD3 or other MATE transporters involved in citrate 
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efflux from roots. As the phylogenetic tree of AtMATE proteins, At5g38030 and 

At1g23300, which belonged to a clade containing AtMATE-PI1 (Fig. 4-1), 

At5g38030 and At1g23300 were predominantly expressed in roots and induced by 

–P (Table 4-1). Therefore, the two genes might be involved in citrate exudation 

under P deficient condition. 

 

3-2. Perspectives 

Shen et al. (2005) demonstrated that up-regulation of plasma membrane 

H+-ATPase was associated with the secretion of citrate from soybean roots. 

Moreover, Tomasi et al. (2009) reported that burst of citrate exudation from cluster 

roots of P deficient white lupin depended on plasma membrane H+-ATPase. In fact, 

it was suggested from transcriptomic analyses by using microarrays that some 

H+-ATPase genes induced by P deficiency in root were presented (data not shown). 

Therefore, it is required to analyze the role of H+-ATPases under P deficient 

condition.  

The citrate transport activity could not be detected in this study. 

Electrophysiological analyses of AtMATE-PI1, the complementation analysis of the 

gene, and subcellular localization of AtMATE-PI1 will be provided to important 

information to understand detail functions of AtMATE-PI1. 

 

 

4. Materials and Methods 
 

4-1. Arabidopsis accessions 

Arabidopsis thaliana (Col-0) was used for all of the control experiments. 

The T-DNA insertion mutants, atmate-pi1-1 (CS859621), atmate-pi1-2 

(Salk_136631) were obtained from the Arabidopsis Biological Resource Center 

(ABRC). Homozygous plants were identified by PCR using appropriate primers 

(Table 4-2). 
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4-2. Plant material and growth condition 

Surface-sterilized seeds of each Arabidopsis line were germinated in 10 x 

10 cm plastic dishes containing sterile 1/2 media and 0.5% gellan gum (pH 5.6) for 

4 days. Seedlings were transferred to same sized dishes containing 1/2 MS media 

with or without 0.625 mM phosphate. After 20 days, cultivated plants were 

transferred to inclined square dishes containing 2 mL distilled water in a corner of 

the dishes after washing with distilled water. The root exudates were collected for 6 

h. Citrate and malate contents in the exudates were determined using the enzyme 

assay kits (E-kit; Roche Diagnostics). Fresh weight of root and shoot were weighted 

and immediately frozen in liquid N2, and kept at -80˚C until use for RNA isolation. 

 

4-3. Quantitative RT-PCR 

 Total RNA was extracted using the Agilent Plant RNA Isolation Mini kit 

(Agilent Technologies) as recommended by the manufacturer. Total RNA (300 ng) 

was reverse-transcribed into cDNA in a 10 µL reaction using the SuperScript® VILOTM 

cDNA Synthesis Kit (Invitorogen). The cDNAs and specific primer sets (Table 4-2) 

were used for qRT-PCR. Quantitative real-time RT-PCR was performed using an ABI 

StepOne real-time PCR system (Applied Biosystems) and SYBR Green kit 

(Takara-bio). The real-time PCR process comprised an initial denature at 95˚C for 10 

min, followed by 40 cycles of 95˚C for 15 sec and 60˚C for 1 min, and a final 

dissociation stage of 95˚C for 15 sec, 60˚C for 1 min and 95˚C for 15 sec. The data 

were analyzed using the ABI StepOne system software (Applied Biosystems). 

Transcripts were relatively quantified using actin transcripts as a control. Primer 

sequences for using qRT-PCR are shown in Table 4-2. 
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4-4. Construction of binary plasmids and transformation of plants 

For construction of plasmids, PCR was performed using Takara EX Taq 

(Takara-bio). To amplify the 2,041 bp genomic sequence upstream of the ORF for 

AtMATE-PI1, the primers were used as follows. Forward primer: 

5'-GGCCAGATTTCTTCCTTGAC-3' and reverse primers: 

5'-TCTCCGACGACAAGAGAAAG-3'. The PCR products sequences cloning to 

pCR8®/GW/TOPO® TA Cloning vector (Invitrogen) and the construction of the 

AtMATE-PI1 promoter::GUS reporter gene was performed using pGWB3 plasmid 

(Nakagawa et al. 2007) by the Gateway cloning system (Invitrogen).  

The binary plasmids were introduced into Agrobacterium tumefaciens 

strain LBA4404. Transformations were performed floral dipping method as 

described previously (Clough and Bent 1998). Transgenic plants (T1) were 

selected on MS medium containing 20 µg/mL kanamycin and 100 µg/ml 

carbenicillin, and then grown in soil. The self-pollinated progeny (T2) were selected 

by kanamycin resistant and analyzed for the gene expression, GUS staining. GUS 

staining sample was observed on a microscope (SZ61; Olympus).  

 

 

 

!"#$%&'$%(%' )#*+%#'("+%' ,%-.%(/%'012'&3'425' ).#637%'
8&98!:;)<='08&=$=>?1@5' 8&=$=>?1@;A>' !8!!B!C!BB8B!BBC!B!B'

D!;)CDE'-D!;)CD'
8&=$=>?1@;D>' CC8!!B88BCC!C!!!C!CC'

C,F1?G>=H)　 !BBCB!B8B!!C!C!88CC8C'
C,F1?G>=D)　 888BC88B8!C8!BB!C8!BB'

8&98!:'08&=$1=4I@5' 8&98!:;A' BC8!8BB8C!!CCB!!!B!BBC8'
-D!;)CD'

8&98!:;D' CB88C8C888CBC!88BBC8'
8&8C!J'08&1$@?F=@5' "/K(;A' !C!C!8!BCC8B!BB!CB!8'

D!;)CDE'-D!;)CD'
　 "/K(;D' CC!C8BB8C88CBB88!C'

Table 4-2 List of primers used in this chapter. 
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4-5. Statistical analysis 

 All cultivations were replicated three times. Student’s t-test and Tukey's 

test was performed using SPSS version 16J (SPSS Inc.). Significance was 

accepted at P<0.05. 

 The amino acid sequences were aligned by ClustalW program (Thompson 

et al. 1994) through a web server on DNA Data Bank of Japan (DDBJ; 

http://www.ddbj.nig.ac.jp/). The phylogenetic tree was created by the NJplot 

software (Perrière and Gouy 1996). Subcellular localization of the protein was 

predicted by the WoLF PSORT program (Horton et al. 2007; http://wolfpsort.org/). 
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Chapter 5  

Organic phosphate mobilization by 

exogenous phosphatase and phytase 
 
1. Introduction 
 

Most plants respond to P deficiency by producing increased amounts of 

acid phosphatases (APases) in roots. Secretion of APase from roots is an important 

plant response to P deficiency. White lupin has an enhanced ability to secrete 

APase from roots under P-deficient conditions (Tadano and Sakai 1991; Wasaki et 

al. 2003). Ozawa and co-workers (1995) purified and characterized the APase 

protein, and cDNA has been isolated and named LASAP2 (Wasaki et al. 2000). 

LASAP2 has wide substrate specificity, and is stable at pH 4.0–9.0 (Li et al. 1996, 

Miller et al. 2001). 

When crude APase collected from white lupin exudates was injected into 

the rhizospheres of tomato and sugar beet plants, growth and P absorption of 

these plants increased (Tadano and Komatsu 1994). LASAP2-overexpressing 

tobacco has also shown a high ability to use organic P in sterile media (Wasaki et al. 

2009). However, utilization of phytate in soil was not very high, although LASAP2 

transformants had somewhat better organic P utilization compared to that of wild 

type (WT) tobacco. 

Phytase, the phytate-specific phosphomonoesterase, is known to play an 

important role in phytate degradation. Because manipulation of the expression of 

phytase to improve phytate-P uptake from soil is an attractive strategy, many 

studies have inserted overexpression phytase genes of non-plants into plants to 

promote P uptake from soil (George et al. 2004, 2005b; Lung et al. 2006; Liu et al. 

2011; Mudge et al. 2003; Richardson et al. 2001; Xiao et al. 2005, 2006; Yip et al. 
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2003; Zimmermann et al. 2003). However, clear effects of genetic modification 

have been shown only for soluble forms of P. 

White lupin plants can use phytate-P in the soil (Adams and Pate 1992), 

although LASAP2 has a low specificity for phytate (Miller et al. 2001). Therefore, it 

has been hypothesized that root-secreted phytase of white lupin improves 

phytate-P mobilization in soils. Additionally, the adsorption capacity of organic 

phosphate reportedly shows the same tendency of the adsorption capacity of 

inorganic phosphate (Turner et al. 2002). Therefore, it can be speculated that 

effects of phosphatase and phytase on P mobilization are high in low P-adsorptive 

soils. Recently, a phytate specific phosphatase was isolated from white lupin 

(Kaneko 2004), although characteristics were still unknown. 

This chapter aimed to investigate the effect of LASAP3 overexpression on 

utilization of organic P in soils by tobacco plants. First, it was investigated the roles 

of APase homologs of white lupin based on their expression analysis. The LASAP3 

overexpression line was established and used for soil culture with a 

LASAP2-overexpressing line and wild type. Additionally, the effects of white 

lupin-derived phosphatase and phytase overexpression on P accumulation from 

two soils with differing P adsorption capacities were investigated. 

 

 

2. Results 
 

2-1. Gene expression of LASAP1, 2 and 3 for Lupinus albus under P deficient 

condition 
P acquisition strategy of low P tolerant plant, white lupin, is well 

investigated, such as the function of root-secreted APase, designated as LASAP2, 

and other homologs, LASAP1 and LASAP3 (Wasaki et al. 1999, 2003). LASAP2 is a 

major player to enable P from organic P in the rhizosphere (Wasaki et al. 2000, 

2009), however, roles of others were still not well explained. Therefore, the 
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expressions of the APase homologs were characterized here. 

The data of qRT-PCR for LASAP1, LASAP2 and LASAP3 were shown in 

Table 5-1. LASAP1 was constitutive but up-regulated to some extent by –P in all 

tested organs, especially in roots. The amount of LASAP1 mRNA in senescent 

leaves was higher than in younger leaves. Accumulation of LASAP1 mRNA in 

cotyledons, flowers and pods was found but not very high. Expression of LASAP2 

gene was specific in roots under –P conditions. mRNA for LASAP3 was most 

abundant in ripening seeds. Accumulation of LASAP3 mRNA was much in 

immature leaves, whereas it was less in older leaves, stems and roots (Table 5-1).  
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Table5-1 mRNA accumulation for LASAP1, LASAP2 and LASAP3, analyzed by qRT-PCR. (a) 
Germinating stage, (b) Vegetative growth stage and (c) Flowering and grain-filling stage.  
Over 500 pg / µg-total RNA are indicated by red characters.  
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2-2 Identification of a LASAP3-overexpressing tobacco line 
The cDNA of LASAP3 was amplified by PCR and introduced into tobacco 

plants under control of the CaMV35S promoter. After transformation, two 

kanamycin-resistant lines (lines 1 and 3) of tobacco plants were selected. 

Quantitative RT-PCR for T1 plants revealed that line 3 plant showed about three 

times higher expression of LASAP3 in roots than line 1 showed (data not shown). 

The T2 seedlings were tested for 

a Mendelian segregation ratio of 

3:1. The homozygous line 3-3 

(35S-LASAP3) was established 

and used for experiment of 

APase activity. The GmPhy7 

sequence exhibited a high 

similarity to a class of 

metallophosphoesterases, which 

show wide substrate specificities 

(Hegeman and Grabau 2001). 

Therefore, the APase activity was 

analyzed instead of phytase. 

APase activity of root exudate 

from 35S-LASAP3 plant was 

significantly higher than that from 

WT plant at pH 5.5 condition and 

was almost identical to that from 35S-LASAP2 (Fig. 5-1). 

 

2-3. Soil analysis 

Two different type soils were used for plants cultivation. Properties of the 

two soils are presented in Table 2. Soil pH (1:2.5 of H2O) of the Andosols and 

Regosols was, respectively, 5.2 and 5.6 (Table 5-1). Regosols show a 
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Figure 5-1 APase activity of root exudates of tobacco 
plants. Data are presented as the mean ± standard error 
(n=5). Values followed by asterisks are significantly 
different from the WT according to Dunnett test results 
(**P<0.01). 
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comparatively low P absorption coefficient (60.9 ± 11.7 mg-P2O5/ 100g soil) 

compared to that of Andosols (808.5 ± 6.8 mg-P2O5/ 100g soil). Total P in Andosols 

(247.4 ± 19.9 mg-P/ kg soil) was about three times higher than that in Regosols 

(89.6 ± 2.9 mg-P/ kg soil). However, available P in Andosols (13.4 ± 0.7 mg-P/ kg 

soil) was about one-half of that in Regosols (20.5 ± 2.3 mg-P/ kg soil). 

 

 

2-4. Growth and P accumulation of plants in Andosols 

Fig. 5-2A shows the plant growth on the Andosols at 49 d after 

transplanting. The growth of both overexpression lines was increased significantly 

compared to WT in +Po and +Pi treatment. The 35S-LASAP2 and 35S-LASAP3 

lines showed similar trends, although the accumulated dry weight of the 

35S-LASAP3 line was slightly higher than that of the 35S-LASAP2 line. 

The P contents of plants grown on Andosols are portrayed in Fig. 5-2B. 

The P uptake by both overexpression lines was higher than that of the WT in all 

treatments, similar to the trend shown for plant growth. The P contents of the 

35S-LASAP2 lines were increased by 33%, 17%, and 52%, respectively, in No P, 

+Po, and +Pi treatments. The P contents of 35S-LASAP3 lines were increased by 

30%, 19%, and 75%, respectively, in No P, +Po, and +Pi treatments. The P 

contents of 35S-LASAP3 lines were slightly higher than those of the 35S-LASAP2 

lines in the +Po treatments. However, no significant difference was found between 

the two lines. 
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Table 5-2 Properties of used soils. 
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2-5. Growth and P accumulation of plant in Regosols 

Fig. 5-3A shows the plant growth on the Regosols at 42 d after 

transplanting. The growth of each overexpression line was greater than that of WT 

in No P treatment, although no significant differences were found from either the 

+Po or +Pi treatment. 

 The P contents of the plants are presented in Fig. 5-3B. The P uptake by 

35S-LASAP2 and 35S-LASAP3 lines was higher than that of the WT in all treatments. 

The P contents of 35S-LASAP2 lines were increased by 114%, 34%, and 2%, 

respectively, in No P, +Po, and +Pi treatments. The P contents of 35S-LASAP3 lines 

were increased by 59%, 21%, and 4%, respectively, in No P, +Po, and +Pi 

treatments. 

 

 

2-6. P uptake efficiency of three tobacco lines under low available P conditions 

Fig. 5-4 shows the relation between plant growth and P contents in the 

shoots grown in the low available P (No P and +Po) treatments. In all plants, 

positive correlation was found in plants grown in Regosols (r2 = 0.96–0.99), 

although weaker correlation was found in plants grown in Andosols (r2 = 0.48–0.88). 

The slope, which indicates the P uptake ability of plants from soils, was higher in 

Regosols than in Andosols for all three lines. The slopes of 35S-LASAP2 (0.0058) 

and 35S-LASAP3 (0.0050) were higher than WT (0.0044) in Regosols. This result 

indicates that LASAP2 and LASAP3 overexpression can improve the acquisition of 

organic P from soils, especially in Regosols. 
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Figure 5-2  Growth (A) and P uptake (B) of the tobacco plants cultured in Andosols. Blue, red, and 
green bars respectively show wild type (WT), 35S-LASAP2, and 35S-LASAP3 lines. Data are 
presented as the mean ± standard error (n=5). Values followed by asterisks are significantly different 
from those of WT according to Dunnett test results (*P<0.05; **P<0.01). 
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Figure 5-3 Growth (A) and P uptake (B) of tobacco plants cultured in Regosols. Blue, red, and green 
bars respectively show wild type (WT), 35S-LASAP2, and 35S-LASAP3 lines. Data are presented as 
the mean ± standard error (n=5). Values followed by asterisks are significantly different from WT 
according to Dunnett test results (*P<0.05). 
 



Chapter 5 Organic phosphate mobilization by exogenous phosphatase and phytase 

 56 

Figure 5-4 Relation between dry weight of plants and P content of shoots of WT (A,B), 35S-LASAP2 
(C,D) and 35S-LASAP3 (E,F). Circle and triangle symbols respectively denote data of Regosols and 
Andosols. 
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3. Discussion 
 

3-1. Role of three APase homologs of white lupin under P deficient condition 

 Quantitative mRNA accumulation of LASAP1, 2 and 3 was analyzed to 

understand the roles of APase homologs of L. albus under P deficient condition. At 

first, mRNA accumulation of LASAP2 was most abundant in the cluster roots 

formed under -P conditions (Table 5-1). These data were consistent with results in 

previous studies (Wasaki et al. 2003, 2008). Deduced amino acid sequences for 

LASAP1 and LASAP2 were similar to AtPAP12, 10 and 26 (Fig. 2-4). Tran et al. 

(2010) reported that AtPAP12 and AtPAP26 are the predominant purple acid 

phosphatase (PAP) isozymes secreted by P deficient Arabidopsis root. Moreover, 

Hurley et al. (2010) reported that AtPAP26 is the principal contributor to Pi stress 

inducible APase activity, and that it plays an important role in the Pi metabolism of 

P deficient Arabidopsis. In addition, Wang et al. (2011) investigated and concluded 

that AtPAP10 was induced by Pi limitation at both transcriptional and 

posttranscriptional levels and associated with the root surface after secretion. 

Moreover, they suggested that AtPAP10 played an important role in plant tolerance 

to Pi limitation. These facts support the hypothesis that LASAP1 and LASAP2 are 

strongly involved in Pi metabolism and P uptake by secretion from roots. The 

deduced amino acid sequence of LASAP3 was closest to AtPAP15 among 29 

PAPs of Arabidopsis (Fig. 2-4). It has been reported that AtPAP15 has phytase 

activity and hydrolyzes phytate to myo-inositol and free Pi (Zhang et al. 2008; 

Kuang et al. 2009). AtPAP15 might be not secreted from root, although the mRNA 

accumulation was in the root. However, it was suggested that primary structure of 

LASAP3 was secretory type protein based on the Target-P program (data not 

shown). Thus, LASAP3 may play a role for release P from phytate in the 

rhizosphere. 
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3-2. Organic phosphate mobilization by exogenous phosphatase and phytase 

A transgenic tobacco line was established overexpressing LASAP3 gene, 

which is the lupin ortholog of phytase isolated from germinating soybean (GmPhy7). 

It has been suggested that GmPhy7 shows hydrolyzing activities not only to 

phytate but also other general organic phosphate compounds (Hegeman and 

Grabau 2001). In our experiments, the APase activity in root exudates of 

35S-LASAP3 was significantly higher than WT (Fig. 5-1). The result suggests that 

35S-LASAP3 line has higher ability to secrete APase than the WT of tobacco. 

Moreover, it was concluded that LASAP3 could have activities not only of APase 

but also phytase. Several genes for APase having phytase activity have been 

identified from some plants such as soybean, Medicago truncatula, and tobacco 

(Hegeman and Grabau 2001; Xiao et al. 2005; Lung et al. 2005). 

In the present experiment, the effect of LASAP2 and LASAP3 

overexpression on the growth of tobacco plants in soil of two types under different 

P conditions was evaluated and compared to that of wild type of tobacco. Results 

clarified that growth and P accumulation of both 35S-LASAP2 and 35S-LASAP3 

lines showed similar trends and were higher than those of WT (Figs. 5-2 and 5-3). In 

our previous study, the potential for the LASAP2-overexpressing tobacco to 

increase organic P in a brown lowland soil from a -P plot from the long-term 

experimental field of Hokkaido University was evaluated (Wasaki et al. 2009). 

Growth and P acquisition of LASAP2 transgenic plants were higher than those of 

WT. These results suggest that both LASAP2 and LASAP3 overexpression can 

improve the acquisition of organic P from soils. 

Regosols show quite low P absorption coefficients compared to those of 

Andosols (Table 5-1). The P uptake of both overexpression lines from +Po in 

Regosols was higher than that of WT. However, the increase of P uptake from +Po 

in Andosols was low (Figs. 5-2 and 5-3). Moreover, the P uptake efficiency of all 

three lines grown under low available P conditions was higher in Regosols than in 

Andosols (Fig. 5-4). These results support the hypothesis that the solubility of 
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organic P is a limiting factor for mobilization in the soil, as inferred from results of 

other studies (George et al. 2005a; Wasaki et al. 2009). 

It was expected that 35S-LASAP3 plants would show a much greater 

effect on increases of growth and P accumulation than 35S-LASAP2 plants in +Po 

treatment. The results of 35S-LASAP2 and 35S-LASAP3 plants showed a similar 

trend, but 35S-LASAP2 plants showed increased P accumulation in +Po of 

Regosols. For Regosols, the P content of WT in the +Po treatment was higher than 

that in the No P treatment (Figs. 5-2 and 5-3). This result might derive from the fact 

that tobacco native secreted APase (NtPAP), which also had phytase activity (Lung 

et al. 2008). Therefore, the effect of APase and phytase overexpression on the 

improvement of phosphorus use ability can be thought to depend on the difference 

of the substrate specificities to existing organic P that is originally present in the 

soil. 

Phytate mostly exists in soils in an unavailable form such as Fe-Phytate or 

Al-Phytate (Turner et al. 2002). For effective use of these forms, chelation by 

organic acids is important (George et al. 2005a; Wasaki et al. 2009). Adams and 

Pate (1992) reported that white lupin plants can use phytate-P in the soil. White 

lupin is well known to form a unique root structure under P-deficient conditions to 

mobilize unavailable P forms, so-called cluster roots (Neumann and Martinoia 

2002). Reportedly, huge amounts of organic acids and phosphatases were 

secreted from the cluster roots of white lupin under P deficient conditions (Tadano 

and Sakai 1991; Neumann et al. 1999; Wasaki et al. 2003). Further improvement in 

phytate-P mobilization is expected from the tandem genetic manipulation of 

phytase and a key protein for exudation of organic acids, such as citrate or malate. 

Elucidation of key functions necessary for organic acid exudation from roots under 

low P conditions is also anticipated in the near future. 

It is equally important to investigate the interactions of microorganisms in 

the rhizosphere. Doolette et al. (2010) reported that phytate was decomposed 

rapidly by soil microorganisms to other organic phosphates, meaning that phytate 
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is not highly stable, but that it might be a biologically available form of P. Exudation 

of organic acids by plants is also closely involved in the dynamics of sparingly 

soluble P and interactions with soil microorganisms. Dynamics and effects of 

microorganisms on P in the soils should be considered carefully. 

 

 

4. Materials and Methods 
 

4-1. Quantitative RT-PCR for LASAP1, LASAP2 and LASAP3 
White lupin was cultured in a nutrient solution containing 0 or 64 µM P 

according to Ozawa et al. (1995). Plants were separated into roots, stems and 

leaves at 7 days after germination and 23 d after P treatment (34 day after 

geramination) and immediately frozen in liquid N2. The roots of plant grown 0P 

condition were separated three parts. Total RNA was extracted from samples using 

an SDS–phenol method (Palmiter 1974). First-strand cDNA was prepared using a 

Super Script Ⅲ First-Strand Synthesis System for RT-PCR (Invitrogen) and used as 

templates for quantitative RT-PCR. Fragments for LASAP1, LASAP2 and LASAP3 

cDNA was amplified by Smart Cycler Ⅱ System Takara-bio SC200N using specific 

primers (Table 5-3) as follows conditions: 95°C for 5 s and 60℃ for 20 s for 45 

cycles (for LASAP1 and LASAP2), 95°C for 5 s, 57℃ for 20 s and 72℃ for 15 s for 

50 cycles (for LASAP3).  

 

 

!"#$%&'$%(%' )%*+%(,%'-./'&0'123' 4#56%#'("6%' !6' 7%($&8-9:3'

!"#"$%&
!;!<!!;;!;!!!!;=;<!;;<;;'' ,)<4>#&?)@' .ABA'

>C.'
;;<<<;=<;!;<!!;!;!=<!;;' ,)<4>#&?<@' .ABC'

!"#"$'&
<;!<;!!!!;!!;=<<!<;=!!'　 )<4@?D!.)' EC'

>>F'
;==<;!;;<!<!;==<=!!;<!<;'' )<4@;?<@' .C'

!"#"$(&
===!=<!!<=<<;==<!;<;' G"48H?).' .FB1'

>.E'
=<==!;<=!<;!<<!<<;==!;' ,)<41#&?<' .FBC'

Table5-3 List of primers used in this chapter. 
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4-2. Transformation of Nicotiana tabacum 
The PCR product of the full-length LASAP3 cDNA was cloned into the 

pCR8®/GW/TOPO® TA Cloning vector (Invitrogen) and sequenced. The fragment 

was cloned downstream of the CaMV35S promoter of the pK7WG2D vector using 

the Gateway system according to the manufacturer’s instructions (Invitrogen). The 

construct was transferred to the Agrobacterium tumefaciens LBA4404 strain using 

an electroporation system (Gene Pulser Xcell; Bio-Rad Laboratories, Inc., Hercules, 

CA, USA). Tobacco (Nicotiana tabacum L. cv. SR1) plants were transformed with 

LASAP3 cDNA using Agrobacterium-mediated transformation (Horsch et al. 1985). 

Transformation of LASAP3 was checked by PCR amplification of the full-length 

LASAP3 cDNA using genomic DNA of the T1 generation. A 3:1 segregation test of 

T2 seeds for kanamycin resistance was conducted for 2 weeks. The lines of all 

surviving plants were used for additional experiments. A transgenic tobacco line 

expressing LASAP2 under control of the CaMV35S promoter (Wasaki et al. 2001) 

was also used. 

Roots of T1 tobacco plants were used for total RNA extraction. Plants were 

grown under hydroponic culture conditions for about 1 month in a growth chamber 

with a 16/8 h day/night cycle, light intensity of 300 µmol m-2 s-1, and a 25/20°C 

day/night temperature regime with relative humidity of 60%. The hydroponic culture 

solution components were identical to those used in a previous study (Ozawa et al. 

1995). Total RNAs of tobacco plants were isolated using an SDS–phenol method. 

The RNA was treated with DNase I (RT grade; Roche Diagnostics) at 37°C for 30 

min to digest contaminating genomic DNA; then it was reverse-transcribed using 

the Superscript III first Strand cDNA Synthesis Kit for RT-PCR (Invitrogen). The first 

strand cDNAs and specific primers for LASAP3 (LASAP3-S7: 

5'-AGCATAGACATTCTGTTCCT-3' and reverse primers: 

5'-GATAGTGTGTGTGACATTCA-3') were used as templates for quantitative 

reverse transcription PCR using a SmartCyclerTM II System (Cepheid, Sunnyvale, 

CA, USA), which was run as follows: 94°C for 5 s, 57°C for 20 s and 72°C for 15 s 
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for 50 cycles. 

 

4-3. Measurement of acid phosphatase activity of root exudate 

Tobacco seeds were bathed in a sodium hypochlorite solution (0.5% 

available chlorine) with agitation for 1–2 min. Surface-sterilized seeds were washed 

thoroughly three times in sterilized water and germinated in 10 × 10 cm plastic 

dishes containing sterile media with 1/2 MS media and 0.5% gellan gum (pH 5.6) 

for 14 days. Three plants were transferred to another 1/2 MS media dish and 

cultivated vertically. At 21 days after transplanting, plant roots were transferred to 

inclined square dishes containing 2 mL distilled water in a corner of the dish after 

washing of the roots with distilled water. The root exudates were collected for three 

hours, and the plant root fresh weight was weighed. 

APase activity of root exudates was measured according to the method 

described by Wasaki et al. (2005) with minor modification using a fluorogenic 

substrate, 4-methylumbelliferyl phosphate, and a microplate reader (ALVO X1; 

PerkinElmer, Inc., MA, USA). Substrates were dissolved with dimethylsulfoxide 

(DMSO) as a solvent and diluted to 1 mM with the 0.1 M 

2-(N-morpholino)-ethanesulfonic acid (MES) buffer (pH 5.5). Then 20 μL of the root 

exudate solution was mixed with 80 μL of the MES buffer and 100 μL of the 

substrate solution in 96-well microplates. Fluorescence was measured for 1 h at 

30°C with an excitation wavelength of 360 nm and an emission wavelength of 460 

nm. Fluorescence readings were performed every 2 min. Results were expressed 

as the increasing rate of 4-methylumbelliferone liberation per root FW (μmol h-1 g 

root FW-1). 
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4-4. Soils for pot culture experiments 

 

Andosols 

A commercial soil containing no fertilizers and deficient in microorganisms 

(Hokkai Sankyo Co., Ltd., Hokkaido, Japan) was sieved through 2 mm screens. 

Three plots were prepared as follows: No P (0 mg-P kg-soil-1 of Ca (H2PO4)2•H2O), 

+Pi (100 mg-P kg-soil-1 of Ca (H2PO4)2•H2O) and +Po (100 mg-P kg-soil-1 of inositol 

hexakisphosphate, dodecasodium salt; Sigma, St. Louis, MO, USA). As nitrogen 

and potassium sources, 150 mg-N kg-soil-1 as (NH4)2SO4 and 150 mg-K kg-soil-1 as 

K2SO4 were applied to all plots. Pots were filled with approximately 100 g of soil and 

deionized water was added to 60% of water holding capacity. 

 

Regosols 

A field soil at Hiroshima University was sieved through 2 mm holes and 

mixed with 10% (w/w) peat moss. Three plots were prepared similarly to 

preparations used for Andosols. Pots were filled with approximately 250 g of soil 

and deionized water was added to 50% of water holding capacity. 

 

Soil analysis 

Part of prepared soils in above was used for soil analysis. Soil pH was 

measured in a water suspension (ratio 1:2.5). The P absorption coefficient was 

analyzed according to methods described in an earlier report (Sekiya 1970). The 

total P concentration of soil was determined using the vanadomolybdate blue 

method (Murphy and Riley 1962) after digestion of the sample using H2SO4-H2O2. 

The available P concentration was analyzed as Truog-P (Truog 1930). 
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4-5. Growth conditions of pot culture 

Tobacco seeds of the wild-type (WT), a LASAP2 transgenic line 

(35S-LASAP2), and a LASAP3 transgenic line (35S-LASAP3) were sterilized as 

preparatory procedures. The seeds were sown in 1/2 MS medium containing 3.0% 

(w/v) sucrose and 0.8% (w/v) agar. After germination for 14 days, the seedlings 

were transferred to pots. Three plants were transferred per pot and cultured in a 

growth chamber with a 16/8 h day/night cycle, light intensity of 300 µmol m-2 s-1, a 

25/20°C day/night temperature regime with relative humidity of 60%. To maintain 

the soil water concentration, deionized water was supplied every 2–3 d. Plant 

shoots were collected at 49 d (on Andosols) and 42 d (on Regosols) after sowing. 

They were weighted after oven-dried at 70°C for 3 d. An aliquot of approximately 80 

mg for each sample was weighed and digested using H2SO4-H2O2. The P 

concentration in the digested solution was quantified using the vanadomolybdate 

blue method (Murphy and Riley 1962). 

 

4-6. Statistical analysis 

For this study, five pots (five samples) were prepared for each soil 

treatment. Plants from each pot were analyzed individually. Significant differences 

were inferred using general analysis of variance (ANOVA). Gene modification 

means were compared using Dunnett tests (SPSS ver. 16; SPSS Inc.). 
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Chapter 6  

General discussion 
 

For developing sustainable agriculture system, reducing consumption of 

finite P resource, we should increase the efficiency of P uptake from arable lands to 

crop plants via ability of mobilizing unavailable P in soils. Therefore it is important to 

elucidate the P mobilizing mechanism in soil by plants. In this study, Arabidopsis 

thaliana and Lupinus albus were used for understanding the detail mechanisms of 

P mobilization. In this study, I obtained two main results; 1) novel transporters for 

malate and citrate exudation induced by P deficient Arabidopsis thaliana were 

characterized, 2) solubility of soil P is important for the mobilization of organic P by 

root-secreted enzymes. Here, I will discuss about these results in this study as 

below. 

 

 

1. Impacts of organic acids in root exudates induced by P deficient 
condition on P dynamics and microbial communities in the rhizosphere 

 

In P deficient conditions, it has been known that plants secrete various 

metabolites, such as organic acids, amino acids and sugars (e.g. Raghothama and 

Karthikeyan 2005). Arabidopsis also increased the exudation rate of organic acids, 

especially glyceric acid, pipecolic acid, citric acid, threonic acid and malic acid 

(Table 2-1). Malate and citrate are the common organic acids of root exudates 

induced by P deficiency. Jones (1998) reported in review paper that the most of 

organic acids in the rhizosphere will be rapidly adsorbed to the soil’s exchange 

phase while the resultant concentration in the soil solution will be in the range of 

1-100 μM depending on Al and P stress level. The concentration of malate and 
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citrate from the Arabidopsis were quite low in this study, however, the P uptake 

ability from soil was lower in mutants of malate secretion than WT. Therefore, it is 

concluded that organic acid secretion from root is important for P mobilization in 

soils. 

The rhizosphere was defined as a specific region affected by high 

microbial densities (Hiltner 1904). Organic acids in root exudates may have strong 

impacts on the microorganisms, including phosphate-solubilizing bacteria, in the 

rhizosphere. However, little is known about the effect such as changing the 

microbial community structure. Marschner et al. (2002) analyzed the effect of 

organic acids for the community structure in the rhizosphere of cluster roots of lupin 

by PCR-DGGE. They concluded that the microbial community structures were 

dependent on the kind of organic acids. Wasaki et al. (2005) also obtained similar 

results in the experiment to investigate the effects of elevated CO2 on the microbial 

community structure in the rhizosphere of white lupin. It was suggested by 

PCR-DGGE and functional analyses that the age of cluster roots of white lupin had 

the strongest effect on the microbial community structure.  

The effects of microbes in the rhizosphere on P mobilization must not be 

negligible, although it was not estimated in this study. Soil microorganisms are 

mediating P availability with multiple ways, as reviewed by Richardson and 

Simpson (2011). The effects of root exudates, such as organic acids as carbon 

sources and minor organic acids and secondary metabolites as the signal 

molecules on the microorganisms involved in P dynamics in the soils should be 

considered carefully. 
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2. Roles and applications of organic acid transporters 
 

Loss of function analysis and some supportive results indicated that 

AtALMT3 and AtMATE-PI1 are the malate and citrate transporters induced by P 

deficiency, respectively. Both of them were located in the root hair cells. Therefore, 

it is concluded that these transporters are functioned for organic acid transport in 

the root hair under P deficient condition. It is the first report to characterize the 

organic acid transporters induced by P deficiency.  

The detailed mechanisms of organic acid transport stimulated by P 

deficiency have not been well explained. Here, it is firstly found that AtALMT3 and 

AtMATE-PI1 are involved in malate and citrate exudation from roots under P 

deficient conditions. These molecules could be models to analyze the detailed 

mechanisms of organic acid transport from roots to the rhizosphere under the P 

deficiency. The important properties such as substrate specificity and kinetics of 

transport are not yet clarified in this study. It is required to further analysis to clarify 

the detail roles of them in the future.  

Recently, the mechanism of regulation for TaALMT1, a malate transporter 

activated by Al stress, was reported by Furuichi et al. (2010). They concluded that 

an extracellular hydrophilic carboxyl terminal domain regulated the activity of this. It 

might be the useful knowledge to reveal the function and structure of AtALMT3.  

Delhaize et al. (2001) reported that transgenic tobacco plants 

overexpressing citrate synthase increased the protein but it did not show increased 

accumulation of citrate in roots or increased Al-activated efflux of citrate from roots. 

This fact suggests that not only enzymes involved in the metabolism of organic 

acids but also transporters for exudation of organic acids to the rhizosphere are 

important for organic acid secretion. AtALMT3 and AtMATE-PI1 have the roles of 

organic acid transport, therefore, they could be helpful molecules to increase 

organic acid exudation.  
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3. Interactions between P deficiency and Al stress on the responses and 
molecular regulation 

 

In acidic soil, Al stress and P deficiency occur at the same time. Therefore 

we have to consider the relationships between P and Al stresses. Expression of 

AtMATE, which confers Al tolerance in Arabidopsis thaliana by a mechanism based 

on Al-activated root citrate exudation, has been found to depend on STOP1 (Liu et 

al. 2009), a zinc finger transcription factor involved in tolerance to protons in 

Arabidopsis thaliana (Iuchi et al. 2007). In fact, STOP1 appears to be involved in 

signal transduction pathways regulating a number of Al- and H+-responsive genes 

in Arabidopsis thaliana (Sawaki et al. 2009), revealing a broader effect that goes 

beyond that in AtMATE and AtALMT1 (Liu et al. 2009). Yamaji et al. (2009) reported 

a zinc finger transcription factor ART1 regulates genes for Al tolerance in rice and 

Tsutsui et al. (2011) identify the cis-acting element as GGN(T/g/a/C)V(C/ 

A/g)S(C/G) by gel-shift assay. On the other hands, PHR1 has been positively 

identified to mediate P starvation responses (Rubio et al. 2001; Franco-Zorilla et al. 

2004). The MYB-like domain of PHR1 binds to a DNA motif GNATATNC, termed 

P1BS (Rubio et al. 2001), which is present in the promoter of many Pi 

starvation-induced genes (Franco-Zorilla et al. 2004; Muller et al. 2007). Promoter 

sequences of AtALMT3 and AtMATE-PI1 contained P1BS element, although it 

could not be detected in the promoter sequence of AtALMT1. Promoter sequence 

of AtALMT1 contained many ART1 binding sequences. Therefore, these P deficient 

inducible organic acid transporters might be regulated by PHR1, as well as STOP1 

and ART1 under Al stresses. 

 Hoekenga et al. (2006) and Kobayashi et al. (2007) concluded that 

AtALMT1 is one of the important Al tolerances of Arabidopsis. However, the 

function of AtALMT1 in P deficient condition has not been studied. In chapter 3, it 

was shown that P uptake by atalmt3-1 and atalmt1 from soil was decreased than in 

WT (Fig. 3-7). The expression of AtALMT3 was specific in epidermis (Fig. 3-5), 
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whereas AtALMT1 was specific in endodermis (Kobayashi et al. 2007). It is 

concluded that AtALMT1 and AtALMT3 have not only functionally but also spatially 

different properties. It can be hypothesized that AtALMT1 is involved in malate 

transport from endodermis to apoplast not only Al stress condition but also under P 

deficient condition, while AtALMT3 is involved in malate transport from epidermal 

cells to the rhizosphere (Fig. 6-1).  

 The knowledge of 

the detailed properties of 

AtMATE is lacking to discuss 

the similarity or difference to 

the AtMATE-PI1 

characterized in this study. It 

is also required to 

characterize both AtMATEs 

for understanding the detailed mechanisms of citrate transport from roots to the 

rhizosphere under Al and/ or P stresses. 

 

  

4. Gene modification for utilizing unavailable P in soil 
 

APase activity from Arabidopsis root under –P condition was only 1.3 

times higher than that of +P condition (Fig. 2-3). It suggests that Arabidopsis do not 

have a high ability to increase the secretion of APase induced by P deficient 

condition, even though Arabidopsis has general ability to secrete APase into the 

soil. Tadano and Sakai (1991) investigated APase activities of nine crop species, 

including white lupin grown under +P and –P condition. In this report, APase 

activity from white lupin roots under –P condition was 19.9 times higher than that of 

+P condition. That is to say, white lupin has the useful ability to mobilizing P in soil 

compared with other plants.  

Endodermis Epidermis

Casparian strips Rhizosphere

!"!#$%&
!"!#$%'
$()("*

Figure 6-1 Hypothesis of role of AtALMT1 and AtALMT3.   
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In the chapter 5, the effects of exogenous phosphatase and phytase from 

white lupin, designated LASAP2 and LASAP3, respectively, on plant growth and P 

uptake were investigated. The positive effects were obtained on the P uptake, 

although the effects were highly differed by the types of soil. In our recent study, 

LASAP2-overexpressing tobacco has also shown a high ability to use organic P in 

sterile media (Wasaki et al. 2009). However, utilization of phytate in soil was not 

very high, although LASAP2 transformants had somewhat better organic P 

utilization compared to that of wild type (WT) tobacco. Thus, it is important the 

solubility of organic P is a limiting factor for mobilization in the soil.  

White lupin secretes a huge amount of organic acids and phosphatase 

from cluster roots under P deficient conditions. It is believed that the exudative 

burst is the key of the tolerance to P deficiency in white lupin. Uhde-Stone et al. 

(2005) reported the MATE family protein designated LaMATE, which induced by P 

deficient lupin roots. However, they could not detect citrate transport activity by this 

MATE protein. AtMATE-PI1 has only 12% similarity to LaMATE, implying that the 

property and function are completely different from LaMATE. It is expected to be 

isolated and characterized an ortholog for AtMATE-PI1 from white lupin, which 

involved in citrate exudate from P deficient white lupin roots. It is also expected to 

be isolated and characterized white lupin ortholog for AtALMT3 involved in the 

malate transport. These are the candidates for application to enhance organic 

exudations by genetic modifications.  
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5. Conclusion and perspective 
 

Root-secreted organic acids mobilize sparingly soluble P, not only 

inorganic but also organic forms. Phosphatase can hydrolyze organic P only after 

solubilization with organic acids. Therefore, secretion of organic acids is very 

important for efficient use of not only adsorbed P but also organic P in soil.  

This study is the first in the world to report the characterization of malate 

and citrate transporters induced by P deficiency and involved in secretion to the 

rhizosphere. It is a helpful knowledge to understand the mechanisms of organic 

acid transport and to apply the functions for other plants, such as white lupin 

and/or other main crops. Moreover, it is also found that not only phosphatase but 

also organic acids are important to mobilize organic P, including phytate. I can 

conclude that multiple gene modification of organic acid transporters and 

phosphatases is the key in order to improve the use of unavailable phosphate in 

soil by gene modification. In the near future, we have to challenge for developing a 

sustainable agriculture by efficient use of accumulated P in soil. I believe that 

results shown in this study will be useful for the efficient P utilization in soils. 
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Summary 
 
 

1 緒論 
 
リン肥料の原料であるリン鉱石は地球規模で枯渇が憂慮されている。その一方で、畑な

どの土壌中には施肥したリンが難溶性リンや有機態リンといった作物が直接利用できない
リン（難利用性リン）として残存している。そのため、作物に土壌中の難利用性リンを効
率的に吸収させることは、農学上重要な課題の一つである。植物は根から有機酸や酸性ホ
スファターゼを分泌して土壌中難利用性リンを可給化すると考えられているが、詳細な機
構については未解明の部分が多く、特にリン欠乏条件での有機酸の分泌を担う分子はこれ
までに知られていない。そこで本研究は、モデル植物であるシロイヌナズナと低リン耐性
の強いシロバナルーピンの土壌中の難利用性リン可給化機構を明らかにすることを目的と
して、以下の４つの実験を実施した。 
 

 

 
2 シロイヌナズナの低リン応答 
 
モデル植物のシロイヌナズナはゲノムが解読され、リン欠乏での体内代謝変動や遺伝子

発現の網羅的な解析が実施されている。しかしながら、リン欠乏での詳細なリン可給化機
構は明らかになっていない。そこで、本章ではシロイヌナズナのリン可給化能力を評価す
ることを目的とし、根分泌物の解析を行った。 
リン栄養条件の異なる条件で栽培したシロイヌナズナ根を材料とし、根分泌物中の低分

子代謝産物を GC-MS を用いて網羅的に解析した。その結果、リン欠乏条件ではリンゴ酸、
フマル酸、クエン酸などの有機酸や、アルギニン、スレオニン、グルタミン酸などのアミ
ノ酸、スクロース、アラビノースなどの糖の分泌が高まることが示された。根分泌液中の
ホスファターゼ活性およびリンゴ酸、クエン酸濃度を定量的に測定したところ、いずれも
リン欠乏で有意に増加していた。 
以上の結果から、シロイヌナズナはリン欠乏条件で多くの代謝産物を分泌しており、他

の一般的な植物と同様に根分泌物を通した普遍的なリン可給化機構を保持していることが
示唆された。 



Summary 

 89 

3 シロイヌナズナ根におけるリン欠乏誘導型リンゴ酸 
トランスポーターの同定と機能解析 
 
根から分泌されるリンゴ酸は土壌中からのリン可給化に重要な役割を果たすと考えられ

ている。シロイヌナズナは低リン条件に応答してリンゴ酸の分泌を誘導することが前章で
示されたことから、本章ではシロイヌナズナにおけるリン欠乏条件でのリンゴ酸分泌を担
うトランスポーターを新規に同定し、その機能解析を実施することを目的とした。 
ALMTタンパク質はアルミニウムに応答したリンゴ酸分泌を担うトランスポーターファ

ミリーである。シロイヌナズナのゲノムには ALMT遺伝子が 14 個存在する。これらのう
ち、シロイヌナズナの根において再現性よくリン欠乏で誘導される ALMT 遺伝子をマイク
ロアレイ解析および RT-PCR での発現解析によって調査したところ、AtALMT3が選抜さ
れた。2 系統の T-DNA 挿入変異株を用いて AtALMT3 遺伝子変異による形質を調査した
ところ、1 系統は AtALMT3 の発現がノックダウンし、根分泌リンゴ酸量が減少した。も
う 1 つの系統では、AtALMT3 が過剰発現し、根分泌リンゴ酸量が増加した。また、
AtALMT3 の promoter::GUS コンストラクトを作成して発現の組織局在性を調査したと
ころ、AtALMT3 は根端分裂組織のすぐ上部に存在する根毛細胞で強く発現していた。
AtALMT3::GFP 融合タンパク質を発現させた個体により細胞内局在を調査した結果、GFP
の蛍光は細胞膜に認められた。土耕栽培で AtALMT3 の変異株を栽培したところ、リンゴ
酸の分泌が減少した系統はリンの吸収能力が野生株と比べて減少していた。これらのこと
から、AtALMT3 はリン欠乏に応答して根毛からリンゴ酸を分泌するトランスポーターで
あり、分泌されたリンゴ酸が土壌中のリン可給化に効果があることが示唆された。 
 

 

4 シロイヌナズナ根におけるリン欠乏誘導型クエン酸トランスポー
ターの同定と機能解析 
 

根から分泌されるクエン酸もまた、土壌中のリン可給化に重要であることが知られてい
る。前々章において、シロイヌナズナはリン欠乏に応答してクエン酸の分泌が上昇するこ
とが示されたことから、本章ではシロイヌナズナにおけるリン欠乏条件でのクエン酸分泌
を担うトランスポーターを新規に同定し、その機能解析を実施することを目的とした。 
MATE タイプ遺伝子をマイクロアレイ解析の結果から選抜したところ、根毛特異的に発

現すると報告のある１つのMATE タイプ遺伝子がリン欠乏条件で誘導されることが示唆さ
れた。この遺伝子を AtMATE-PI1 と名付けて T-DNA 挿入変異株を用いた機能の調査を行
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った。２系統のノックアウト変異株では、遺伝子発現と根分泌クエン酸量が野生株と比較
してともに減少していた。また、これらの変異株を土耕栽培したところ、野生株と比べて
リンの吸収能力が減少していた。これらのことから、AtMATE-PI1 は根毛で特異的に発現
し、リン欠乏条件下で根毛からのクエン酸分泌を担うトランスポーターであることが示唆
された。 
 

 

5 シロバナルーピン由来ホスファターゼおよびフィターゼ導入によ
る植物の土壌中有機態リン利用 
 
低リン耐性の強い植物であるシロバナルーピンの有機態リンの獲得に関して、これまで

に根分泌性の酸性ホスファターゼ LASAP2 とそのホモログ遺伝子 LASAP1、フィターゼ
活性をもつ LASAP3が単離されている。しかしながら、これらの遺伝子発現に関する詳細
な調査は行われていない。また、これまでに LASAP2 を導入したタバコは土壌中のリンを
利用する能力が高まる結果を得ている。しかしながら、土壌中有機態リンの主な形態であ
るフィチン酸の利用にはフィターゼが重要であるが、LASAP2 はフィチン酸に対して特異
性が低い。そこで、この章では、シロバナルーピンの有機態リン利用における LASAP1, 2, 
3 の役割を明らかにし、さらにフィターゼ活性をもつ LASAP3 を導入したタバコを新たに
作出し、土壌中フィチン酸の利用に対するホスファターゼとフィターゼの効果を検証する
ことを目的とした。 
LASAP1, LASAP2, LASAP3 の発現解析を行った結果、LASAP1 はリン欠乏で誘導は

されたが全ての器官で恒常的に発現することが示された。LASAP2 はこれまでの知見と同
じくリン欠乏の根、特にクラスター根で特異的に発現していた。LASAP3 は根を含む全て
の器官で発現したが、特に登熟過程の子実において多く発現していた。これらのホスファ
ターゼのアミノ酸配列をシロイヌナズナゲノムに存在する 29 個の全ホスファターゼと比
較したところ、LASAP1 と LASAP2 はシロイヌナズナにおいてもリン欠乏で発現が上昇し、
根から分泌すると考えられるグループと近いことが示された。LASAP3 はフィターゼ活性
をもつと報告のある AtPAP15 と近かった。これらのことから、リン欠乏条件での土壌中
からのリン利用において特に LASAP2 が重要であることが確認された。LASAP3 はフィタ
ーゼ活性をもつこと、根においても比較的高い発現が確認されたことから、土壌中のフィ
チン酸の利用にも関与するものと考えられた。 
LASAP2 と LASAP3 を導入したタバコは野生株と比べて根からの分泌ホスファターゼ

活性が有意に上昇していた。LASAP2 と LASAP3 を導入した系統をリン施肥区、フィチン
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酸施肥区、リン無施肥区を設け、リン吸着能力が異なる２種類の土壌で栽培した。その結
果、LASAP2 および LASAP3 形質転換系統の乾物重量とリン吸収量は、両方の土壌のすべ
ての処理区で野生株より高かった。このことから、LASAP2 および LASAP3 のようなホス
ファターゼとフィターゼの遺伝子を植物に導入することは、土壌中のリン利用を改善する
ための手段として効果があることが実証された。また、リン吸着能力の高い黒ボク土にお
けるリン利用効率は、リン吸着能力の低いマサ土と比べて顕著に低かった。その一方で、
系統間のリン利用効率には有意差は認められなかった。これらの結果から、フィチン酸由
来のリン利用のボトルネックは酵素の基質特異性ではなく土の中の可溶性であると考えら
れた。 
 

 

6 まとめ  
 

本研究においては、これまで詳細な調査が行われていなかったシロイヌナズナの低リン
条件でのリン可給化に関わる根分泌物の特性を明らかにした。また、これまで未解明であ
ったリン欠乏条件でのリンゴ酸ならびにクエン酸の分泌に関わるトランスポーターの同定
に成功した。低リン耐性の強いシロバナルーピンでは、LASAP2 は土壌中からの積極的な
リン可給化に、LASAP3 は土壌中のフィチン酸可給化にそれぞれ貢献することが示唆され
た。LASAP2 と LASAP3 の導入系統は野生株と比べてリンの吸収能力が向上した。しかし
ながら、土壌中の有機態リンが可溶性の形態で存在することが有機態リンの利用において
も重要だと考えられた。以上より、植物自身による土壌中難利用性リン可給性を向上する
ためには、有機酸トランスポーターとホスファターゼの同時組換えが鍵であるという結論
を得た。 
 
 


