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1.1 Soil salinity and alkalinity 

Salinity is generally defined as the presence of excessive amounts of soluble salts that 

inhibit or affect the normal functions needed for plant growth. Sodium chloride (NaCl), 

sodium sulphate (Na2SO4), sodium nitrate (NaNO3), magnesium sulphate (MgSO4), 

magnesium chloride (MgCl2), potassium sulphate (K2SO4), calcium carbonate (CaCO3) etc. 

are present in saline soils, although NaCl and Na2SO4 cause most of the salt problems for 

higher plants in nature (Kawanabe and Zhu, 1991). In addition, saline soils are those with 

electrical conductivity (ECe) more than 4 dS m-1 (equivalent to 40 mM NaCl), exchangeable 

sodium percentage (ESP) of less than 15% and pH below 8.5 (USDA, 1954; Szabolcs, 1994). 

On the other hand, alkaline (sodic) soils are those which have ECe of less than 4 dS m-1, ESP 

greater than15% and pH greater than 8.5 (USDA, 1954; Szabolcs, 1994). The most 

predominant salts in alkaline soils are NaHCO3 and Na2CO3 which induce much stronger 

destructive effects on plants than neutral salts (NaCl and Na2SO4) (Yang et al., 2008a). 

Alkaline soils are prone to water logging because of their low water infiltration capacity, 

exposure to soil erosion and the spread of alkalinity and soluble salts into adjoining areas and 

poor in hydraulic conductivity (Rengasamy, 2002, 2006). Na+, K+, Ca2+, and Mg2+ are the 

main cations of dissoluble mineral salts, and Cl–, SO4
2–, HCO3

–, CO3
2–, and NO3

– are the 

corresponding main anions in saline and alkaline soils, which come from neutral salts or 

alkaline salts (Läuchli and Lüttge, 2002). 

 

1.2 Causes of soil salinity and alkalinity 

There are two major types of salinity and alkalinity based on groundwater processes 

found all over the world namely, primary (natural) and secondary (artificial) (Ghassemi et al., 

1995). The source of primary salinization is mostly seawater, since it contains around 500 

mM NaCl (Taiz and Zeiger, 2002). Salt accumulation is high when water table is less than 

1.5 m below the soil surface (Rengasamy, 2006). However, this threshold depth may vary 
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depending on soil hydraulic properties and climatic conditions. Therefore, the area in close 

proximity to the sea is vulnerable to salinity especially, those with tidal water flowing over 

the areas. The problem becomes acute when tidal water goes away and soil becomes dry. It 

may also happen in areas that come in contact with seawater through rivers, canals and 

creeks. Moreover, cyclones, like those which occurred in Bangladesh in 1991, 2007 (Sidr), 

and 2009 (Aila) or exceptionally high tides, for example, the recent Tsunami occurred in 

Indonesia (2004) and in Japan (2011) pushed the saline water front further inland and into the 

groundwater. In secondary salinity (irrigation associated salinity), salts introduced by poor 

quality irrigation water are stored within the root zone due to insufficient leaching, low 

hydraulic conductivity of soil layers as found in heavy clay soils and sodic soils. High 

evaporative conditions also accelerate secondary salinization. Use of highly saline effluent 

water and improper drainage and soil management increases the risk of salinity in irrigated 

soils. Rengasamy (2006) described another type of salinity named non-groundwater-

associated salinity (NAS) which occurs when salts are introduced by rain, weathering, and 

aeolian deposits are stored within the soil solum. In drier climatic zones, where water table is 

deep (solum layers) and drainage is poor, salt stores are usually found there. However, poor 

hydraulic properties of shallow solum layers can lead to the accumulation of salts in the 

topsoil and subsoil layers affecting agricultural productivity. In regions where sodic soils are 

predominant, this type of salinity is a common feature. 

 
1.3 Saline and alkaline affected area 

The United Nations Environment Program (UNEP) estimated that approximately 20% 

of the world’s agricultural land and nearly 50% of all irrigated land are adversely affected by 

soil salinity (Flowers and Yeo, 1995). It is a worldwide problem, but most acute in North and 

Central Asia, Australia and South America (Pessarakli, 1999). Some of the most serious 
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problems occur in semi-arid regions associated with the great river systems of South-East 

Asia. In Bangladesh, over 30% of the net cultivable areas lie in the coastal zone of Bay of 

Bengal, of which approximately 53% are affected by varying degrees of salinity (Haque, 

2006). The salt affected area in the coastal zone of the country was about 0.83 million ha in 

1966-76, which expanded to 3.1 million ha over the last three decades (Haque, 2006). In 

addition, more area in that zone is expected to become saline in the future due to increase in 

sea water level as a consequence of the greenhouse effect. The other concern is that the area 

under irrigation is increasing worldwide day-by-day leaving more areas vulnerable to salinity 

stress. As estimated by FAO, about 20-30 million ha of irrigated lands worldwide were 

seriously damaged in 2002 due to the build-up of salts (Martínez-Beltrán and Manzur, 2005). 

Moreover, in the same investigation it was also reported that every year 0.25-0.50 million ha 

of irrigated lands worldwide are lost from production due to build-up of salts and alkali. 

 
1.4 Plant categories under saline and alkaline environment  

Plants are classified as glycophytes or halophytes according to their capacity to grow 

on high saline-alkaline medium. Halophytes are native to saline soils (around 500 mM NaCl) 

and able to complete their life cycle in that environment (Colmer et al., 2006). Glycophytes 

or non-halophytes, on the other hand, cannot survive at a high salt concentration. Most of the 

agricultural crops are glycophytes and cannot tolerate salt-stress, although some of them like 

sugar beet, barley, wheat etc. can tolerate salt to some extent. To achieve salt-tolerance, the 

foremost task is either to prevent or alleviate the damage, or to re-establish the homeostatic 

conditions in the new stressful environment.  

 
1.5 Impacts on agricultural land and production 

The salinization and alkalization of soil are widespread environmental problems. In 

some areas, alkalization of the soil as a result of NaHCO3 and Na2CO3 accumulation may be 
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a more severe problem than soil salinization caused by neutral salts such as NaCl and Na2SO4. 

For example, in northeast China, more than 70% of the land areas are alkaline grassland 

(Kawanabe and Zhu, 1991), and only a few alkaline-tolerant halophytes can survive there 

(Zheng and Li, 1999). The distribution of saline-sodic and sodic soils on more than half a 

billion ha worldwide, warrants attention for their efficient, economical and environmentally 

acceptable management practices to be taken. Most of the salt affected lands lie in the arid 

and semiarid environment (Khan et al., 2010). Saline and sodic soils exist in over 100 

countries, and cover about 10 % of total arable lands (Läuchli and Lüttge, 2002). The area in 

the close vicinity of the seashore is prone to salt stress and thus, agricultural production in 

those areas is reduced. Salt problem in agricultural crops, however, commonly develops in 

the irrigated areas when salts from the irrigation water build up in the root zone. Out of the 

total world’s cropland, nearly 17% are under irrigation, but irrigated agriculture contributes 

to more than 30% of the total agricultural production (Hillel, 2000). Since the cropland under 

irrigation has substantially been increasing as discussed earlier, salt stress in irrigated 

agriculture is a major concern for world food security. The crop production through irrigated 

agriculture is increasingly being emphasized across the globe in response to escalating food 

demands in the face of the adverse consequence of global climate change. Many workers 

stipulate that the success or failure of any irrigated agriculture is determined by the extent to 

which salt and sodium problems are controlled (Muya et al., 2009). 

 
1.6 Effects on plant growth and productivity 

Soil salinity and alkalinity influence plant growth by inducing adverse effects on 

different physiological and metabolic processes, ultimately diminishing growth and yield 

(Yang et al., 2008a, 2009a). Saline and alkaline stresses induce specific changes in 

morphology and anatomy of the cells, tissues and organs (Li et al., 2009). The mechanisms 
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responsible for reduction in plant growth under salt stress are: 1) osmotic stress, 2) specific 

ion toxicity, and 3) nutritional imbalance. 

1.6.1 Osmotic stress 

Saline and alkaline stresses present in plant growth media exert high osmotic pressure 

and reduce soil water potential making water unavailable to plants (Munns et al., 2006). This 

reduces cell turgor, photosynthetic rate (Pn) and ultimately reduces activity of cell division 

and elongation and overall plant growth (Saqib et al., 2004).  

1.6.2 Specific ion toxicity 

The primary cause of growth reduction due to excessive amount of certain ions (Na+ 

and Cl-) under salt stress is termed as specific ion toxicity (Guo et al., 2009; Li et al., 2010). 

 1.6.3 Nutritional imbalance 

Salinity and alkalinity reduced plant growth and development through nutritional 

imbalance (Yang et al., 2007): N accumulation is reduced due to interaction between Na+ and 

NH4
+ and / or between Cl- and NO3

- that ultimately reduces growth and yield of the crops 

(James et al., 2006); low solubility of Ca-P minerals (Qadir and Schubert, 2002); interference 

in the acquisition of K+ by the roots (Suhayda et al., 1990); the low concentration of Ca2+ 

(Cakmak, 2005) and Mg2+ (Hu and Schmidhalter, 1997). In addition, micronutrient 

deficiencies are also very common under salt-alkali stress owing to high pH (Zhu et al., 

2004). 

 
1.7 Urgent need to address the saline and alkaline problems 

The world population is increasing rapidly and may reach 7 to 9.3 billion by the year 

2050 (http://www.unfpa.org/swp/200/), whereas the crop production is decreasing rapidly 

because of the negative impact of various environmental stresses; therefore, it is now very 

important to develop stress tolerant varieties to cope with this upcoming problem of food 

security. Among stresses, abiotic stress is the principal cause of decreasing average yield of 
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major crops by more than 50%, which causes losses worth hundreds of million dollars in 

each year (Mahajan and Tuteja, 2005). Soil degradation caused by salinization and 

sodification is of universal concern. According to the FAO Land and Nutrition Management 

Service, over 6% of the world’s land is affected by either salinity or sodicity which accounts 

for more than 800 million ha of land (FAO, 2008). This problem manifests itself especially in 

arid and semiarid regions with poorly drained soils because of continual addition of salts with 

irrigation practices (Ayars and Tanji, 1999). Flowers and Yeo (1995) showed that the UNEP 

estimated 20 % of the agricultural land and 50% of the cropland in the world are salt-stressed. 

El-Kharbotly et al. (2003) mentioned that salinity imposes serious environmental problems 

that affect grassland cover and the availability of animal feed in arid and semi-arid regions. 

Therefore, the amelioration of saline sodic-soils is of great importance to restore these 

degraded soils and make them suitable for agriculture. 

 
1.8 Approaches to improve stress tolerance 

Plants being generally characterized by a high degree of homeostatic plasticity in 

response to salinity and alkalinity stresses have evolved a number of adaptive strategies to 

overcome such abiotic stresses (Bartels and Sunkar, 2005). The most common type of 

osmotic adjustment in plant cells involves accumulation of compatible solutes like proline 

(Vinocur and Altman, 2005) and exudation of organic acids in cytoplasm (Rhodes and 

Hanson, 1993). The compatible solutes and organic acids which are commonly employed as 

osmoprotectants, can lower the osmotic potential in cells without interfering with the 

metabolic processes or protein structuring and functioning, and consequently, maintain water 

content of cells under stresses (Yancey et al., 1982).  

 
Proline 
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Proline is a well-known compatible solute that plays a pivotal role in osmotic 

adjustment in plants by helping maintain sufficient cell turgor for growth (Nanjo et al., 2003), 

and exogenous proline is known to mitigate the detrimental effects of Na and improve 

growth and survival under various stresses (Okuma et al., 2004; Sun and Hong, 2010a). It is 

synthesized from glutamate by the actions of the two enzymes, pyrroline-5-carboxylate 

synthetase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) in higher plants (Delauney 

and Verma, 1993) (Fig. 1.1). It is reported that proline acts as free radical scavengers and / or 

enzyme protectant (Hoque et al., 2007). It is also reported that proline protects higher plants 

against salt/osmotic stresses by adjusting osmotic pressure (Chinnusamy et al., 2005; Vinocur 

and Altman, 2005). In contrast, Moftah and Michel (1987) reported that proline content could 

not be use as a sensitive indicator of salt stress. Similarly, a negative relationship between 

proline accumulation and salt tolerance was observed by Ashraf (1989) in Vigna mungo, and 

in tomato by Aziz et al. (1998). Salt resistant rice cultivars accumulated lesser amount of 

proline than the salt sensitive ones (Lutts, et al., 1999), while salt sensitive species of tomato 

accumulated more than in tolerant wild relatives (Tal et al., 1979). However, in view of these 

contrasting reports on the role of proline in salt tolerance, its use as selection criterion for salt 

tolerance has been questioned and which should be further investigated.  

 
                      Pyrroline-5-carboxylate                               Spontaneous                          Pyrroline-5-carboxylate  
                      synthetase                                                     cyclization                              reductase 
Glutamate                        Glutamate                                Pyrroline-5-                            Proline    
                                          semialdehyde                          carboxylate           
 

Fig.1.1 Biosynthetic pathway of proline in higher plants.  

 
Citric acid 

Citric acid (CA) is a symmetric tricarboxylic acid involved in the tricarboxylyc caid 

(TCA) cycle. It is the product of the citrate synthase, an enzyme of the mitochondrial 

oxidative TCA cycle and does not accumulate under normal growth conditions (Goldberg et 
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al., 2006). Early research on stress tolerance indicates that organic acid metabolism correlates 

closely with the mechanism of alkali tolerance (Shi and Sheng, 2005). It is reported that citric 

acid accumulation increased under alkali stress in Puccinellia tenuiflora (Guo et al., 2010), in 

rice (Wang et el., 2011), in sea buckthorn (Chen et al., 2009), in alfalfa roots under salt stress 

(Fougére et al., 1991), and in cotton plants under drought stress (Timpa et al., 1986). It has a 

strong relationship with stress tolerance of heavy metal (Zeng et al., 2008; Mailloux et al., 

2008). It has also been reported that plants often combat or overcome aluminum toxicity by 

accumulating organic acids in their cells or by secreting them from their root tips (Larsen et 

al., 1998). The metabolism of organic acids is also reported to play a crucial part in the 

plant’s response to iron deficiency (López-Millán et al., 2000) and phosphorus deficiency 

(Watt and Evans, 1999), as well as to promote uranium uptake (Ebbs et al., 1998). However, 

no study has yet examined the relationship of citric acid and stress tolerance of Foxtail millet 

and Proso millet under saline and alkaline conditions. 

 
1.8.1 Exogenous proline to alleviate saline and alkaline stresses 

Exogenous application of proline can play an important role in enhancing plant stress 

tolerance. This role can be in the form of either osmoprotection (Handa et al., 1986) or 

cryoprotection (Santarius, 1992). For example, in various plant species growing under saline 

conditions, exogenously-supplied proline facilitated osmoprotection and growth (Yancey, 

1994), protected cell membranes from salt-induced oxidative stress by enhancing activities of 

various antioxidants in soybean (Yan et al., 2000), acted as a protectant of enzymes and 

membranes in tobacco (Okuma et al., 2000), increased activities of superoxide dismutase and 

peroxidase, which contributed to increase its salt tolerance (Hua and Guo, 2002), decreased 

Na+ and Cl− accumulations and an increase in growth in barley (Lone et al., 1987), promoted 

Ca uptake in Phaseolus seedlings (Rana and Rai, 1996), relieved salt toxicity in barley 
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plantlets by changing salt transport from root to shoot (Lone et al., 1987), increased K 

content and alleviated salt stress effects in Vigan radiata (Kumar et al., 1990)  and 

(Tipirdamaz and Karakullucku, 1993), increased K uptake in Raphanus seedlings by 15%  

(Khanna,1998), and stabilized the plasma membrane (Mansour, 1998). In general, 

accumulation of proline in the cytoplasm is associated with a reduction in the concentration 

of toxic ions and an increase in the cytosolic water volume (Cayley et al., 1992). In contrast 

to the above findings on beneficial effects of exogenous application of proline, there are a 

few reports cautioning its use. For example, exogenous application of proline did not 

influence Na+ and Cl− accumulation in rice leaves (Lutts et al., 1996) and in wheat (Colmer et 

al., 1995). It caused damages to ultra-structures of chloroplast and mitochondria in 

Arabidopsis plants (Hare et al., 2002) and exacerbated the deleterious effects of salt on rice 

(Garcia et al., 1997). The role of proline in salt tolerance needs to be further elucidated before 

considering it as a salt tolerance indicator. However, in spite of its positive and negative roles 

on salt tolerance and crop production, very little attention has been paid to the responses of 

Foxtail millet and Proso millet under exogenous application of proline. 

 
1.8.2 Exogenous citric acid to alleviate saline and alkaline stress  

It has been reported that organic acids (OA) like citric acid has a potential role as 

metabolically-active solutes in osmotic adjustment, balance of cation exchange, and pH 

homeostasis under saline and alkaline conditions (Guo et al., 2010; Wang et el., 2011). In 

recent years, reports have shown that some alkali-tolerant halophytes accumulate high 

concentrations of OA under alkali stress (Yang et al., 2008b), but not in alkali sensitive 

maize (Qu and Zhao, 2004), or the alkali tolerant halophyte Suaeda salsa (Qu and Zhao, 

2003). However, no evidence exists regarding the effects of exogenous application of citric 

acid to stress tolerance of glycophytes under SS and AS conditions except the report of Sun 
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and Hong (2010a) in halophytes (Leymus chinensis Trin.) who reported that exogenous citric 

acid can mitigate the saline and alkaline stress as like proline. Although there is evidence that 

exogenous application of citric acid to the hydroponic solution alleviated the inhibitory effect 

of toxic Al on root extension in cotton (Hue et al., 1986) and shoot growth in corn (Bartlett 

and Riego, 1972). These reports demonstrated that exogenous application of citric acid might 

have a positive role on stress responses of crop plants. 

 
1.9 Aim of the study 

The aim of the present study was to investigate the mechanisms of salt tolerance of 

Foxtail millet (Setaria italica L.) and Proso millet (Panicum miliaceum L.) which are 

particularly important food grains and fodder crops grown in arid and semi-arid regions. The 

water requirements of these millets are very low as compared to the other major cereals 

which allowed them to grow successfully in the drought prone areas, such as the northern 

parts of Bangladesh. Considering their significant roles of the food security and the 

expanding salt problem in the vast areas of the country, the Bangladesh Government recently 

approved research approaches towards developing high-yielding crops that can be grown in 

the salt affected areas. To enable for growing such crops, it is necessary to know how tolerant 

plants are able to adapt in saline and alkaline conditions. During recent decades, research on 

the stress responses of halophytic plants has aided our understanding of the mechanisms of 

stress adaption and stress tolerance in plants. But very little attention has been paid to the 

responses to saline stress and alkaline stress in the glycophytes. In spite of their versatile uses 

and adaptation in drought prone areas, these crops have not yet been properly addressed or 

studied under saline and alkaline conditions as like other halophytes and glycophytes. Based 

on the results of Sun and Hong (2010a), it can be hypothesized that citric acid is a component 

of the stress response and that exogenous citric acid can improve salt tolerance by stimulating 

http://en.wikipedia.org/wiki/Cereal
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plant growth and metabolic activities. The present study was, therefore, conducted to identify 

the saline and alkaline tolerance of Foxtail millet and Proso millet by comparing to their 

growth and metabolic responses under saline and alkaline conditions and to explore the 

potentiality of the sensitive one cultivated with or without the application of exogenous citric 

acid and proline and to compare the effects of citric acids and proline by judging the growth 

and metabolic responses. In order to achieve these aims, the objectives of this work were as 

follows: 

1) To investigate the nature of tolerance of Foxtail millet and Proso millet under saline and 

alkaline environments, 

2) To assess whether exogenous application of citric acids and proline could alleviate the 

adverse effects of saline stress (SS) and alkaline stress (AS), and 

3) To find out the strategies how citric acid and proline ameliorate saline and alkaline stresses. 
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COMPARATIVE STUDIES ON GROWTH AND PHYSIOLOGICAL 

RESPONSES TO SALINE AND ALKALINE STRESSES OF FOXTAIL 

MILLET (Setaria italica L.) AND PROSO MILLET (Panicum miliaceum L.) 
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2.1 INTRODUCTION 

Environmental stresses adversely affect growth and productivity of plants, 

particularly those which are sensitive to salinity and alkalinity. These stresses cause severe 

changes in growth, physiology and metabolism of plants, thus threatening the cultivation of 

plants around the globe (Lunde et al., 2007). According to an estimate, the world’s land 

surface occupies about 13.2x109 ha, no more than 7.0x109 ha are potentially arable, and only 

1.5x109 ha are currently cultivated. Of the cultivated area, about 0.34x109 ha (23%) are saline 

and another 0.56x109 ha (37%) are sodic (Tanji, 1990). The loss of potentially cultivable land 

is likely to increase over the next 20 years and threats the world food supply. For example, in 

the northeast of China, area of alkalinized grassland has reached more than 70% (Kawanabe 

and Zhu, 1991); because soil salinization and alkalinization frequently co-occur, the 

conditions in naturally salinized and alkalinized soils are very complex; the total salt contents, 

their composition and the proportion of neutral to alkaline salts may vary in different soils. 

Grain productivity through green revolution has reached a ceiling, whereas the world 

population continues to grow (Akhtar and Saqib, 2008). Therefore, improving crop yields in 

normal and less productive soils, including saline and alkaline soils by combating those 

stresses is highly desirable to feed the ever-increasing population. 

 
Plants under saline conditions encounter three inevitable factors (Islam, 2001). First, 

salt decreases osmotic potential of soil solution effectively generating water stress for plants. 

It can result in specific ion toxicity due to excess accumulation of Na+ or Cl- in plant cells, 

which is the second effect on plants. Lastly, the interaction of salts with mineral nutrients 

may result in nutrient imbalances and deficiencies (Munns and Tester, 2008). Halophytes 

cope with this situation by actively taking up Na+, and compartmentalizing Na+ into vacuoles, 

which acts as an osmoticum to maintain the water potential gradients necessary for 
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continuous water uptake (Ehret and Plant, 1999). These plants also generate a higher level of 

osmotically active compounds (proline, glycine betaine, etc.) in the cells in order to sustain 

adequate osmotic gradients for water uptake (Hasegawa et al., 2000). To induce tolerance 

against toxic Na+ sensed by plants, the regulation of K+ uptake and / or prevention of Na+ 

entry, efflux of Na+ from the cell, and utilization of Na+ for osmotic adjustment are the 

strategies commonly used by plants to maintain desirable Na+/ K+ ratios in the cytosol (Glenn 

and Brown, 1999). The Na+, K+, Ca2+, and Mg2+ are the main cations of dissoluble mineral 

salts, and Cl–, SO4
2–, HCO3

–, CO3
2–, and NO3

– are the corresponding main anions in saline 

and alkaline soils, which come from neutral salts or alkaline salts (Läuchli and Lüttge, 2002). 

Alkaline salts (NaHCO3 and Na2CO3) induce much stronger destructive effects on plants than 

neutral salts (NaCl and Na2SO4) (Shi and Yin, 1993). When salinized soil contains HCO3
– 

and / or CO3
2–, which raise the soil pH, plants suffer damaging effects of both saline and 

alkaline stresses (Yang et al., 2008a). 

 
The contributory role of proline to osmotic adjustment has been reported by many 

researchers (Ashraf and Foolad, 2007). Proline has also been considered as a carbon and 

nitrogen source for growth, a stabilizer for the membrane and some macromolecules and also 

a free radical scavenger under stress conditions (Okuma et al., 2000). However, to date, 

researches into salt stress have emphasized NaCl as the main contributing factor to proline 

accumulation, but there is very little published information available regarding this issue 

under alkaline stress condition. 

 
Proso millet (Panicum miliaceum L.) is an important forage species of the largest 

genus Panicum, which includes more than 400 species (Roshevits, 1980). This plant naturally 

grows in hot and dry areas where a high salt content is the characteristic of most soils and it 

has been cultivated for both its high food and feed value. Foxtail millet (Setaria italica L.) is 



 16 

also widely cultivated in arid and semi-arid regions as a food and fodder crop. The morpho-

physiological, cellular and molecular responses of many crop species to salinity/alkalinity 

stresses have been extensively investigated but, unfortunately, millets like Foxtail and Proso 

millets have not been explored in this way to date. Therefore, the present study was aimed to 

assess inter-species variation in saline and alkaline tolerance of Foxtail millet and Proso 

millet in their vegetative stage.  

 

2.2 MATERIALS AND METHODS 

2.2.1 Plant material and culture conditions  

Seeds of Foxtail millet (Setaria italica L. cv: BARI kaun-3) and Proso millet 

(Panicum miliaceum L., cv: BARI china-1) were collected from Bangladesh Agricultural 

Research Institute (BARI), Gazipur, Bangladesh. Seeds of both species were surface-

sterilized with 5% thiophanate-methyl for 5 min and air-dried. Seeds were sown into 5 L 

plastic pots containing a soil mixture of granite regosol soil and perlite (2:1 v/v). After 

germination, 20 uniform seedlings were kept at an identical distance in each pot. Pots were 

maintained under greenhouse conditions. Plants were irrigated with nutrient solution at each 

watering using an irrigation system.  The basal nutrient solution contained 8.3 mM NO3-N, 

0.8 mM NH4-N, 0.5 mM P2O5, 2.2 mM K2O, 0.7 mM MgO, 2.1 mM CaO, 11 μM MnO, 5 

μM B2O3 and 13 μM Fe.  To simulate saline stress (SS) and alkaline stress (AS) conditions in 

nature (Chen et al., 2009; Liu et al., 2010), two stress treatments were applied: neutral salts of 

NaCl and Na2SO4 (9:1 molar ratio) and alkaline salts of NaHCO3 and Na2CO3 (9:1 molar 

ratio). At four weeks after sowing, plants were subjected to stress treatments every day until 

water was drained-out from the bottom of the pot. Before applying 100 mM SS and AS 

treatments for 7 days, plants were subjected to SS and AS of 25, 50 and 75 mM 

concentrations every 3 days alternatively for the hardening of plants. The pH/EC (S m-1) of 
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saline and alkaline solutions was 6.9/1.217 and 9.2/0.930, respectively. Each treatment was 

applied to three replicates located randomly in the greenhouse in order to avoid positional 

effects.  

 
2.2.2 Plant sampling and measurements 

Plants in each pot were sampled and separated into the leaves, stems (culms) and 

roots before the application of treatments and at 16 d after treatment initiation. The separated 

segments were wiped with tissue towel paper to remove moisture and their fresh weights 

were measured. The fresh samples were kept frozen in liquid nitrogen, then freeze-dried and 

we measured the dry weight. Dry samples were ground into fine powder using a vibrating 

sample mill (Model TI-100, Heiko Seisakusho Ltd., Tokyo, Japan) for chemical analysis. 

Leaf samples were taken in triplicate from a composite pool of physiologically mature leaves 

of each genotype. The leaf area was measured using a leaf area meter (AMM-5 type leaf area 

meter, Hayashi-Denko, Tokyo, Japan) and the leaves were oven-dried at 80°C for 72 h and 

the dry weight was determined. The leaf area ratio was calculated as the total leaf area per 

unit leaf dry mass. The RGR was calculated using the method of Kingsbury et al. (1984). The 

RWC of the leaf was estimated according to the method of Saneoka et al. (1995). The Na and 

K concentrations were determined after digestion by nitric acid–hydrogen peroxide, using a 

flame photometer (ANA 135, Eiko Instruments Inc., Tokyo, Japan). The Ca and Mg 

concentrations were determined using an atomic absorption spectrophotometer (U-3310 

Hitachi Co. Ltd., Tokyo, Japan). Proline was determined spectrophotometrically following 

the ninhydrin method described by Bates et al. (1973), using L-proline as a standard. The total 

N content was determined using a Kjeldahl nitrogen digester and distillator (Kjeldatherm 

Type TT100 & Vapodset Type 20, Gerhardt, Germany). 

 
2.2.3 Statistical analysis.  
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Data were examined using one-way ANOVA and presented as the mean ± S.E. for 

each treatment and species (n=3). Multiple comparisons of means of data among the 

treatments within the plants were performed using Duncan’s test at the 0.05 significance 

level (all tests were performed with SPSS Version 16.0 for Windows). 

 

2.3 RESULTS 

2.3.1 Plant growth 

The plant dry matter yield of both Foxtail millet and Proso millet declined with SS 

and AS and the decline was mostly caused by a reduction in leaf and stem biomass. However, 

Proso millet produced a significantly greater amount of dry matter than Foxtail millet (Fig. 

2.1). A marked relative reduction (37 and 62% under SS and AS, respectively) in the shoot 

dry mass was observed in Foxtail millet, as compared to Proso millet (22 and 45%, 

respectively). Moreover, decreases of 40 and 17% more than the control were also recorded 

for root dry mass under the AS condition in Foxtail millet and Proso millet, respectively. The 

values for the root/shoot ratio increased with the stress treatments and reached a maximum in 

Foxtail millet under the AS condition (data not shown). The RGR and NAR of both species 

decreased significantly under AS condition. The reduction percentages of RGR and NAR of 

alkaline treated Foxtail millet were 44 and 33%, whereby 31 and 27% in the case of Proso 

millet, respectively (Table 2.1). It is noteworthy that a noticeable reduction of the LAR was 

observed only in Foxtail millet under AS but no statistical differences were observed among 

the treatments in Proso millet.  

 
2.3.2 Relative water content 

Stress treatments caused a significant decrease in the RWC and rate of reduction was 

greater in AS than in SS in both tested species (Fig. 2.2). The relative reduction was more 
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marked in Foxtail millet than in Proso millet. The RWC was almost the same between the 

two species under control treatment (87 and 88% in Foxtail millet and Proso millet, 

respectively), however, under stress conditions, it tended to be lower in Foxtail millet (70 and 

61% under SS and AS, respectively) than in Proso millet (74 and 68% under SS and AS, 

respectively). 

 
2.3.3 Ionic status 

Sodium  

The Na concentrations in leaves, stems and roots increased under both stresses, and 

the increases under the AS condition were significantly greater than those under SS in all of 

the plant parts of both species with the exception of the roots of Foxtail millet, which 

accumulated a significantly higher concentration of Na under the SS condition (Table 2.2). 

Compared to Proso millet, the leaves of Foxtail millet accumulated 1.55 times more Na under 

the SS condition and 1.61 times more Na under the AS condition (Table 2.3). Interestingly, 

the roots of Proso millet accumulated a higher amount (40%) of Na (2.67 times higher) than 

the roots of Foxtail millet (15%) under AS (Table 2.3).  

Potassium  

The AS caused a significant decrease in the K concentration of the studied plant 

segments in both species except for the leaves of Proso millet. The leaves of both species 

achieved the highest concentration of K under the SS condition compared to the other 

treatments (Table 2.4). Significantly lower concentrations of K were observed in all of the 

plant parts in Foxtail millet under AS compared to under SS; however, this tendency was 

found only in the roots but not in the leaves and stems of Proso millet.  

Na / K ratio 

The ratio of Na ⁄ K increased under both stresses and it was higher under AS 

compared to SS in all of the plant parts (Table 2.5).  
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Calcium  

The calcium concentration was noticeably reduced by SS and AS in the leaves and by 

AS in the stems of Foxtail millet. The leaves accumulated a higher concentration than the 

stems and roots of both species (Table 2.6). Saline stress caused a significant decrease in root 

Ca concentration of both species, whereas AS increased the roots Ca concentration more 

markedly in Foxtail millet. The relative reduction due to stresses was greater in Foxtail millet 

than in Proso millet.  

Magnesium 

The Mg concentration was decreased significantly by the stresses in the leaves and 

roots of both species (Table 2.7). The relative inhibition was greater (39 and 52% under SS 

and AS) in the roots of Foxtail millet than Proso millet (23 and 40% under SS and AS, 

respectively) but the rates of reduction were more in the leaves and stems of Proso millet 

than Foxtail millet. The significant inhibition was mainly observed in the stems of AS treated 

plants of both species. 

 
2.3.4 Nitrogen and proline  

The total N content decreased in all plant parts under both stresses and the reductions 

were more severe in AS than in SS (Fig. 2.3). Significant reductions were observed in Foxtail 

millet under both SS and AS, showing values (relative reduction plant-1) of 25 and 63%, 

respectively. However, a significant reduction (54%) was observed only under AS but not 

under SS (14%) in Proso millet. The proline concentration increased under SS and AS 

conditions and the increase was greater under SS than under AS for both species (Fig. 2.4). 

Furthermore, these results demonstrated that Foxtail millet produced 14.7 and 12.6 times 

more than the control under SS and AS conditions, respectively; while those values in Proso 

millet were only 5.2 and 2.3.  
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2.4 DISCUSSION 

2.4.1 Plant growth 

The decreased biomass weights of plants under saline and alkaline conditions are correlated 

with the reduced leaf area, which results in decreases of photosynthetic area and Pn (Yang et 

al., 2008a). It is thought that a decreased Pn under stress could have reduced the shoot growth 

and development, thus finally leading to lower biomass production compared to the control 

(Campbell and Nishio, 2000). In the present study, the lower stress-induced reduction of 

growth in Proso millet compared with Foxtail millet (Fig. 2.1) might be attributed to the 

lower reduction of the RGR (SS:21/13% and AS:44/31% for Foxtail millet/Proso millet, 

respectively) and also NAR in the salt-stressed plants (Table 2.1). These results indicate that 

Proso millet is a comparatively saline and alkaline tolerant species with the inhibitory effect 

of alkalinity being stronger than that of salinity. It is suppose that a high pH appearing in the 

rhizosphere might be a primary factor for a more pronounced inhibition of plant growth by 

disturbing some mineral nutrition and other physiological functions. This finding is also in 

agreement with the previous studies (Sharma et al., 2001; Nuttall et al., 2003). The reduction 

of plant growth at a higher saline concentration was mainly due to the reduction of the 

photosynthetic area as reported by Marcelis and Van-Hooijdonk (1999) and James et al. 

(2002). The other factors mainly depend on the cumulative effects of leaf water and osmotic 

potential, biochemical constituents (Dixit and Chen, 2010), contents of photosynthetic 

pigments (Koyro, 2006) and ion toxicities in the cytosol (James et al., 2006). The RGR value 

reflects the life-sustaining activities of plants, and is considered an optimum index for 

degrees of stress and plant responses to stresses. Severe salt stress generally leads to growth 

arrest and even to death of plants (Parida and Das, 2005). In the present study, the decreases 

of RGR under AS (44 and 31% in Foxtail millet and Proso millet, respectively) were greater 

than that under SS (21 and 13% in Foxtail millet and Proso millet, respectively) (Table 2.1). 
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This more injurious effect by AS compared with SS is consistent with the previous study 

reported by Yang et al. (2007). The RGR is the product of NAR and LAR, where NAR is 

largely the net result of carbon gain (Pn) and carbon losses (respiration) expressed per unit 

leaf area. The alkaline stress exerts the same stress factors as SS but under AS plants have to 

deal with the stress of an elevated pH. The AS induced severe reductions in water content in 

plants (Fig. 2.2). These results indicate that high pH due to AS in the soil surrounding the 

roots might cause damage to root structures and functions such as reduced water uptake (Fig. 

2.2), and inability to prevent accumulation of Na (Table 2.3) and to uptake the essential 

elements like K, Ca, Mg showing reduced concentrations (Tables 2.4, 2.6 and 2.7) following 

reduced LAR and NAR (Table 2.1). These may be the main reasons explaining the lower 

RGR value under AS than under SS of Foxtail millet and Proso millet. The injurious effects 

of salinity are commonly thought to be a result of low water potentials and ion toxicities 

(Munns, 2002). 

 
2.4.2 Relative water content  

Under saline conditions, plants suffer from osmotic shock due to lower osmotic 

potential and synthesize different metabolites to maintain turgor (Orcutt and Nilsen, 2000). 

However, in this study, the RWC decreased under SS and AS, and a more marked reduction 

was also observed under AS in Foxtail millet compared to Proso millet (Fig. 2.2), which may 

represent the cumulative effects of a greater reduction in the leaf area and LAR, as well as 

severe damage to root structures by a higher concentration of Na. Nonetheless, Foxtail millet 

plants have to face a more pronounced water deficit under AS, imposed by a low external 

water potential due to a higher concentration of Na accumulation in extracellular regions 

reaching a toxic threshold, causing severe damage to plant tissues. Our results suggest that 
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the better water relation in plant under stress conditions obviously contributed to the 

maintaining of higher plant growth in Proso millet than in Foxtail millet. 

 
2.4.3 Ionic status  

Under saline conditions, halophytes usually accumulate inorganic ions in vacuoles to 

decrease the cell water potential because energy consumption to absorb inorganic ions is far 

less than that needed to synthesize organic compounds (Moghaieb et al., 2004; Shi and Sheng, 

2005), and they generally compartmentalize Na+ in vacuoles to avoid Na+ toxicity in the 

cytosol (Serrano and Rodriguez-Navarro, 2001; Zhu, 2003). Additionally, halophytes usually 

absorb Na+ and inhibit K+ uptake under saline and alkaline stresses (Tammam et al., 2008). In 

this study, Na concentration was induced under both stresses in all the plant segments (Table 

2.2) and K concentration was reduced in the stems and roots of both species (Table 2.4), 

indicating that there is a competitive inhibition between the absorption of Na and K. 

However, in leaves, the concentration of Na and K increased under SS, which implies that 

there was no competitive inhibition for absorption Na and K in leaves. No competitive 

inhibition between Na+ and K+ uptake was observed by Saneoka et al. (1995, 1999) in maize 

and wheat. The acquisition of K was inhibited more by AS than by SS of both species, 

possibly due to the high pH under AS which increased the interference with the selective 

absorption of K to Na in roots and elevated intracellular Na concentration to a toxic level. A 

more markedly decreased acquisition of K in Chloris virgata under AS than under SS was 

noticed by Yang et al. (2008a). Recently some investigations also reported that both Na and 

K concentrations increased with elevating salinity in the shoots of Suaeda glauca and Kochia 

sieversiana (Yang et al., 2007, 2008c), in the leaf blade of bread wheat (Hidhab) 

(Benderradji et al., 2011). Thus, the pattern of Na and K accumulation to SS and AS in 

halophytes may be varied by their genotypic nature. Those antagonistic-synergistic effects 
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for uptaking Na and K may need to investigate further. The Na / K ratios have been shown to 

increase with rising salinity in many halophytes (Yang et al., 2007; 2008b) and a high Na / K 

ratio implies metabolic disorders (Brady et al., 1984). In the present study, AS sharply 

increased the Na / K ratio and Foxtail millet showed higher ratios than Proso millet (Table 

2.5). It is thought that the severe depressive effect of alkalinity over salinity on plant growth 

could be related to a greater increase of Na and decline of K concentration in aerial plant 

parts. Proso millet restricted the transportation of Na from roots to shoots resulted in a higher 

ratio of Na / K in Proso millet roots. Yang et al. (2008a) reported the similar results whereby 

a high pH caused by alkaline stress may enhance interference with the selective absorption of 

Na / K in roots and may increase intracellular Na to a toxic level. The Ca2+ and Mg2+ 

accumulation is inhibited by salt stress in many plants (Yousif et al., 2010). In this 

observation, the Ca concetration was inhibited significantly in the Foxtail millet leaves under 

SS and AS, and stems under AS. In case of Proso millet, the inhibition was insignificant in 

the leaves under SS and stems under both stresses (Table 2.6), indicating that Proso millet is 

more tolerant than Foxtail millet. The Mg concentration also decreased in the leaves and 

roots of both species under SS and AS and the extent of decreases under AS were higher than 

under SS (Table 2.7).  It may be due to the high pH under AS reducing the availability of Ca 

and Mg in the root zones by precipitating them into CaCO3 and MgCO3.  

 
2.4.3 Nitrogen and proline 

Decreased nitrogen uptake under SS and AS conditions may be due to the interaction 

between Na+ and NH4
+ and / or between Cl- and NO3

- that ultimately reduces the growth of 

crops. Moreover, the lower accumulation of Na+ in Proso millet as compared to Foxtail millet 

is thought to be the result of a higher N uptake due to the reduced antagonistic effects of Na+-

NH4
+ in roots and the lower influence of Na+ on NH4

+ loading into the xylem. Na+-NH4
+ / Cl-
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-NO3
- interactions under stresses from a biochemical perspective indicate a decreased N 

accumulation that ultimately reduces growth and yield of crops as described by Bar et al. 

(1997). N deprivation adversely affects plant growth and development by reducing the 

photosynthetic area (James et al., 2002), having cumulative effects on the leaf water and 

osmotic potential (Munnns, 2002), and increasing ion toxicities in the cytosol (James et al., 

2006). In this case, It is to predict that a more markedly decreased leaf area, RWC and 

increased Na+ accumulation under AS in Foxtail millet induced higher-level inhibition of the 

NAR, ultimately mediated by a reduced nitrogen content (Fig. 2.3). The roles of proline have 

been widely reported as cell osmotic adjustment, membrane stabilization and the 

detoxification of injurious ions and correlation with stress tolerance in plants exposed to salt 

stress (Ashraf and Foolad, 2007; Tammam et al., 2008). It is evident from our study that the 

proline concentration of both species increased under SS and AS (Fig. 2.4). These results 

suggest that the induction of proline is related to the changes in not only salinity, but also 

alkalinity. It is common for proline to be correlated with stress tolerance (Kavi Kishor et al., 

2005; Younis et al., 2009) but the significance of proline accumulation in osmotic adjustment 

is still being debated and varies according to the species (Rodriguez et al., 1997). These 

results indicate that the increment of proline concentration is not only being osmolyte and 

protectant, but it may also have other roles related to alkaline stress, which should be further 

investigated.  

 

Proso millet showed a more favorable leaf area, LAR, NAR, RGR and Na-K levels 

under saline and alkaline conditions by reducing stress-induced changes in all physiological 

and biochemical functions. Meanwhile, the deleterious effects of alkaline stress on all plant 

traits were always higher than that of saline stress, and thus Proso millet may have evolved 

specific mechanisms to tolerate saline and alkaline stresses and these should be investigated 

further. 
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Fig 2.1 Effects of SS and AS on the dry weight of leaves, stems and roots of Foxtail millet 
and Proso millet. The values are the means (± S.E) of three replicates. 
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Fig. 2.2 Effects of SS and AS on the RWC in the leaves of Foxtail millet and Proso millet. 
The values are the means (± S.E) of three replicates. 



 27 

0

2

4

6

8

Control SS AS Control SS AS

Foxtail millet Proso millet

N
 c

on
te

nt
 (m

g 
pl

an
t-1

)

Leaves
Stems
Roots

 
 

Fig. 2.3 Effects of SS and AS on total N content in the leaves, stems and roots of Foxtail 
millet and Proso millet. The values are the means (± S.E) of three replicates. 
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Fig. 2.4 Effects of SS and AS on the proline concentration in the leaves of Foxtail millet and 
Proso millet. The values are the means (± S.E) of three replicates. 
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Table 2.1 Effects of SS and AS on the RGR, NAR and LAR of Foxtail millet and Proso 
millet. The values are the means (± S.E) of three replicates.  
 

Growth 
parameters 

Foxtail millet Proso millet 

Control SS AS Control SS AS 
RGR 

(mg g-1 day-1) 59.3±4.04a 46.7±5.67ab 33.2±4.58b 54.2±0.58a 46.9±1.53ab 37.5±4.63b 

NAR 
(mg cm-2 day-1) 0.110±0.01a 0.091±0.01ab 0.074±0.00b 0.140±0.01a 0.122±0.00ab 0.102±0.02b 

LAR (cm2 g-1) 537.6±11.5a 513.3±6.57ab 448.2±12.72b 389.4±12.46a 385.4±7.60a 367.9±6.94a 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.2 Effects of SS and AS on Na concentration (mg g-1 DW) in the leaves, stems and 
roots of Foxtail millet and Proso millet. The values are the means (± S.E) of three replicates. 
 

Genotypes Treatments Na 
Leaves Stems Roots 

Foxtail 
millet 

Control 0.86±0.04c 1.72±0.09c 1.85±0.29c 

SS 26.30±1.81b 28.60±1.53b 20.44±1.79a 

AS 41.02±3.93a 37.67±4.15a 13.60±0.93b 

Proso 
millet 

Control 0.84±0.02c 1.56±0.05c 2.45±0.11c 
SS 8.53±0.38b 10.92±0.79b 21.38±1.01b 
AS 19.28±1.76a 22.14±1.00a 28.73±2.43a 
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Table 2.3 Effects of SS and AS on Na accumulation (mg plant-1) in the leaves, stems and 
roots of Foxtail millet and Proso millet. The values are the means of three replicates. 
 

Genotypes Treatments 
Na  

Leaves stems Roots Total 

Foxtail 
millet 

Control 0.11 0.22 0.23 0.56 
(19) (39) (42) (100) 

SS 2.11 2.36 1.70 6.16 
(34) (38) (28) (100) 

AS 2.17 1.99 0.71 4.88 
(45) (40) (15) (100) 

Proso 
millet 

Control 0.06 0.11 0.18 0.36 
(17) (32) (51) (100) 

SS 0.55 0.70 1.29 2.54 
(22) (27) (51) (100) 

AS 1.17 1.35 1.70 4.22 
(28) (32) (40) (100) 

              ( ): Na partitioning as percentage in the leaves, stems and roots 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.4 Effects of SS and AS on K concentration (mg g-1 DW) in the leaves, stems and 
roots of Foxtail millet and Proso millet. The values are the means (± S.E) of three replicates. 
 

Genotypes Treatments K 
Leaves Stems Roots 

Foxtail 
millet 

Control 38.84±1.55a 42.88±1.80a 3.31±0.41a 
SS 41.15±2.01a 36.46±2.82a 2.84±0.427a 
AS 32.95±0.34b 23.50±2.48b 0.88±0.07b 

Proso 
millet 

Control 16.27±0.62b 27.61±0.65a 5.89±0.09a 
SS 20.20±0.87a 20.10±1.11b 3.50±0.31b 
AS 18.19±0.37ab 19.67±0.28b 1.87±0.12c 
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Table 2.5 Effects of SS and AS on Na / K ratio in the leaves, stems and roots of Foxtail millet 
and Proso millet. The values are the means of three replicates. 
 

Genotypes Treatments N / K 
Leaves Stems Roots 

Foxtail 
millet 

Control 0.03 0.04 0.56 

SS 0.76 0.79 7.20 

AS 1.49 1.60 15.45 

Proso 
millet 

Control 0.02 0.06 0.42 

SS 0.72 0.54 6.04 

AS 1.15 1.13 15.36 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.6 Effects of SS and AS on Ca concentration (mg g-1 DW) in the leaves, stems and 
roots of Foxtail millet and Proso millet. The values are the means (± S.E) of three replicates. 
 

Genotypes Treatments Ca 
Leaves Stems Roots 

Foxtail 
millet 

Control 2.84±0.00a 1.94±0.06a 0.84±0.08b 

SS 2.44±0.09b 1.64±0.13ab 0.59±0.01c 

AS 2.12±0.07c 1.48±0.10b 1.12±0.05a 

Proso 
millet 

Control 2.19±0.02a 1.47±0.15a 1.12±0.03a 
SS 2.16±0.04ab 1.35±0.10a 0.86±0.03b 
AS 2.07±0.03b 1.18±0.04a 1.17±0.09a 
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Table 2.7 Effects of SS and AS on Mg concentration (mg g-1 DW) in the leaves, stems and 
roots of Foxtail millet and Proso millet. The values are the means (± S.E) of three replicates. 
 

Genotypes Treatments Mg 
Leaves Stems Roots 

Foxtail 
millet 

Control 1.92±0.10a 1.50±0.09a 0.33±0.02a 
SS 1.33±0.16b 1.12±0.09b 0.20±0.02b 
AS 1.26±0.05b 0.71±0.09c 0.16±0.01b 

Proso 
millet 

Control 2.82±0.14a 0.99±0.03a 0.80±0.03a 
SS 1.79±0.17b 0.91±0.14a 0.62±0.01b 
AS 1.34±0.07b 0.37±0.03b 0.48±0.01c 
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CHAPTER 3 

 

GROWTH AND METABOLIC RESPONSES OF FOXTAIL MILLET 

(Setaria italica L.) AND PROSO MILLET (Panicum miliaceum L.) TO 

SALINE AND ALKALINE STRESSES 
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3.1 INTRODUCTION 

Soil salinity and alkalinity seriously affect about 932 million ha of land globally, 

reducing productivity in about 100 million ha in Asia alone (Rao et al., 2008). In many 

agricultural areas of Asia, alkalinity (high pH) is an important factor limiting crop 

productivity (Wang et al., 2011). More than 70% of the land area in northeast China is 

alkaline grassland, where the soil becomes alkaline as a result of hydrolysis of two 

carbonates (NaHCO3 and Na2CO3) (Yang et al., 2007). Salt stress in soil generally involves 

osmotic stress and ion-induced injury (Munns, 2002), and there is an additional high pH 

effect with alkali stress. A high-pH environment surrounding the roots can cause metal ions 

and phosphorus to be precipitated, with loss of the normal absorptive functions of the roots 

and the destruction of the root cell structure (Li et al., 2009). Alkali stress can inhibit the 

absorption of inorganic anions such as Cl–, NO3
– and H2PO4

–, greatly affects the selective 

absorption of K+-Na+, and disrupts the ionic balance (Yang et al., 2007, 2008b, 2009a). Thus, 

plants in alkaline soil must cope with physiological drought and ion toxicity, and should also 

maintain intracellular ion balance and regulate pH outside the roots. 

 
To date, research of salt stress still emphasizes NaCl as the main subject, but it is 

rapidly developing towards various aspects such as Na+ metabolism (Serrano et al., 1999), 

molecular biology of salt resistance genes (Quesada et al., 2002), and salt stress signal 

transduction (DeWald et al., 2001), and so on. However, there are only a few reports 

regarding alkaline stress on crop plants and it has been reported that alkali stress more 

severely affects on the plant growth and metabolism than salt stress (Ma et al., 2007; Yang et 

al., 2008a; Liu et al., 2008). 

 
Reclamative and preventive measures for rendering saline-alkaline affected soils fit 

for crop production are usually expensive and generally considered temporary solutions. 
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Crops differ considerably in their ability to tolerate salinity-sodicity and these intergenic 

differences can be exploited for selecting the crops that produce satisfactory yield under 

given levels of root zone salinity and sodicity (Koyama et al., 2001). Therefore, selection and 

breeding of species / cultivars tolerant to salinity is a feasible and economical approach for 

utilizing salt affected soils (Munns et al., 2006). Substitution of salt-tolerant crop species for 

sensitive species is still practiced in all saline growing areas of the world. However, the 

success of this approach depends on the presence of genetic variation in the gene pool of 

inter-intra species.  

 
It has been reported in the previous chapter that Foxtail millet is more sensitive than 

Proso millet under 100 mM saline and alkaline conditions, especially in more deleterious 

alkaline conditions. In fact, Foxtail millet could not survive longer under that AS condition 

making it unavailable for measurement of physiological attributes. Therefore, the present 

study was undertaken using lower levels of SS and AS (50 and 75 mM) for closely 

investigating the growth, membrane stability, water status, photosynthetic pigments and gas 

exchange characters, mineral composition and organic metabolites of Foxtail millet and 

Proso millet.   

 

3.2 MATERIALS AND METHODS 

3.2.1 Plant material and culture conditions  

The collection of seeds of Foxtail millet (Setaria italica L.) and Proso millet 

(Panicum miliaceum L.) was described in Chapter 2. The seeds were surface-sterilized with 

5% thiophanate-methyl for 5 min and air-dried and sown into 1 L plastic pots containing a 

soil mixture of granite regosol soil and perlite (2:1 v/v). Six uniform seedlings were kept 

after germination at an identical distance in each pot. Plants were irrigated with basal nutrient 
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solution containing 8.3 mM NO3-N, 0.8 mM NH4-N, 0.5 mM P2O5, 2.2 mM K2O, 0.7 mM 

MgO, 2.1 mM CaO, 11 μM MnO, 5 μM B2O3 and 13 μM Fe. Two neutral salts of NaCl and 

Na2SO4 (9:1 molar ratio) and two alkaline salts of NaHCO3 and Na2CO3 (9:1 molar ratio 

were used to simulate saline stress (SS) and alkaline stress (AS) conditions in nature). At six 

weeks after sowing, plants were subjected to stresses twice a day until water was drained-out 

from the bottom of the pot. Plants were subjected to 25 mM SS and AS for 3 d and 50 mM 

SS for next 3 d for the hardening of plants before applying original treatments. The pH and 

EC (S m-1) of SS solutions was 6.5 and 1.217, respectively while in AS solution the values 

were 9.0 and 0.930, respectively. Each treatment was applied to four replicates located 

randomly in the greenhouse in order to avoid positional effects.  

 
3.2.2 Plant sampling and measurements 

Before the application of treatments and at 14 d after treatment initiation, plants in 

each pot were sampled and separated into the leaves, stems and roots. The separated plant 

parts were wiped with tissue towel paper to remove moisture and their fresh weights were 

measured. The fresh samples were kept frozen in liquid nitrogen, freeze-dried and measured 

the dry weight. Dry samples were ground into fine powder using a vibrating sample mill 

(Model TI-100, Heiko Seisakusho Ltd., Tokyo, Japan) for chemical analysis. Leaf samples 

were taken in a composite pool of physiologically mature leaves of each genotype. The leaf 

area was measured using a leaf area meter (AMM-5 type leaf area meter, Hayashi-Denko, 

Tokyo, Japan) and the leaves were oven-dried at 80°C for 72 h and the dry weight was 

determined. The leaf area ratio was calculated as the total leaf area per unit leaf dry mass. 

The relative water content (RWC) of the leaf was estimated according to the method of 

Saneoka et al. (1995). The Na and K concentrations were determined after digestion by nitric 

acid–hydrogen peroxide, using a flame photometer (ANA 135, Eiko Instruments Inc., Tokyo, 



 36 

Japan). Ca and Mg concentrations were determined using an atomic absorption 

spectrophotometer (U-3310 Hitachi Co. Ltd., Tokyo, Japan). Fresh plant materials (0.5 g) 

were randomly sampled to determine Chl concentrations in acetone (80%) extracts 

spectrophotometrically as described by Zhu (1993). Proline was determined 

spectrophotometrically following the ninhydrin method described by Bates et al. (1973), 

using L-proline as a standard. The total N content was determined using a Kjeldahl nitrogen 

digester and distillator (Kjeldatherm Type TT100 & Vapodset Type 20, Gerhardt, Germany). 

 
3.2.3 Measurement of leaf water potential and photosynthetic rate 

The leaf water potential (ΨLW) was measured according to the method described by 

Saneoka et al. (1995), using the uppermost fully expanded leaf employing a pressure 

chamber (Daiki-Rika Instruments, Tokyo, Japan) at 14 d after the initiation of the salt 

treatments. Fourteen days after the treatments, the photosynthetic rate (Pn), stomatal 

conductance and transpiration (Tr) of the third uppermost fully expanded leaves from the top 

of the plants were determined by using a portable open gas exchange system (LI-6400P 

model of Li-Cor, Inc., Lincoln, NE, USA). The photosynthetic photon flux density was 

maintained at 1,000 μmol m-2 s-1. The temperature of the leaf was 25oC and the ambient CO2 

concentration of the measurement chamber was 380 μL L-1 while measurements were taken. 

 
3.2.4 Membrane permeability 

Membrane permeability can be reflected by electrolyte leakage rate (ELR) which was 

measured with the method described by Lutts et al. (1996). Fresh leaves (1 g) were cut into 

pieces of 5 mm length and equally placed into test vials containing 30 ml deionized water. 

The vials were incubated at 25oC on a rotary shaker for 2 h, and then the initial electrical 

conductivity (EC1) was measured using a DDS-11C conductivity meter (Hongyi Company, 

Shanghai, China). Then the vials were autoclaved at 120oC for 20 min to release all 
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electrolytes and finally cooled to 25oC for the measurement of the electrical conductivity 

(EC2). ELR can be defined as follows: 

                     ELR (%) = EC1 / EC2 X 100 
 
3.2.5 Determination of sugar and starch content 

The soluble sugars were extracted by boiling 50 mg of dry powdered plant material 

with 10 ml of 80% ethanol at 80oC for 20 mins. A clear extract was obtained by 

centrifugation at 3000 rpm for five min and collected into 50 ml beaker. This step was 

repeated for the second and third time and the collected supernatant was heated at 80oC to 

remove ethanol. Then the residues were kept into a 50 ml volumetric flask and made up with 

distilled water and the aliquot was taken for the estimation of the content of soluble sugar 

with anthrone reagent by spectrophotometer (U-2001, Hitachi, Japan) using D-glucose 

solution as a standard, according to the method of Yemm and Willis (1954). The residues 

after ethanolic extraction were dissolved in perchloric acid (9.2 and 4.6 N) and the collected 

supernatant transferred into 100 ml volumetric flask and made up with distilled water. The 

aliquot was taken for the estimation of the content of starch with anthrone reagent by 

spectrophotometer (U-2001, Hitachi, Japan) using glucose solution as a standard. 

 
3.2.6 Statistical analysis  

Data were examined using one-way ANOVA and presented as the mean ± S.E. for 

each treatment and species (n=4). Multiple comparisons of means of data among different 

saline and alkaline treatments within the plants were performed using Duncan’s test at the 

0.05 significance level (all tests were performed with SPSS Version 16.0 for Windows). 

 

3.3 RESULTS 

3.3.1 Plant growth 
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Plant height and leaf area decreased with the increasing salinity and alkalinity in both 

species, however 50 mM SS did not reduce the plant height (Fig. 3.1) and leaf area (Fig. 3.2) 

significantly in Proso millet but reduced the leaf area significantly in Foxtail millet plants. 

Plant dry weight decreased by 30/41% at 50 mM SS/AS and 42/53% at 75 mM SS/AS 

treatments in Foxtail millet. On the other hand, in Proso millet, it decreased by 22/36% under 

50 mM SS/AS and 30/43% relative to the control under 75 mM SS/AS treatments (Fig. 3.3).  

 
3.3.2 Electrolyte leakage rate 

Electrolyte leakage rate, which is attributed to the damaged leaf membranes resulting 

from the SS and AS, increased gradually with increasing salinity and alkalinity in both 

species. In the case of Foxtail millet, the injury increased (over the unstressed control) 51 and 

93% at 50 and 75 mM of SS, and 118 and 161% under AS at 50 and 75 mM of AS, 

respectively. On the other hand, injury in Proso millet leaves intensified under the same 

stresses, showing an increase of 11 and 40% at 50 and 75 mM of SS, and 54 and 73% at 50 

and 75 mM of AS, respectively (Fig. 3.4).  

 
3.3.3 Water status 

The RWC decreased remarkably with increasing SS and AS in both crops and the rate 

of reduction was higher in Foxtail millet than in Proso millet (Fig. 3.5). AS reduced RWC 

more severely than SS did in all levels of stresses, and the higher level of AS (75 mM) 

reduced the RWC in Foxtail and Proso millet to 80 and 86% of the control, respectively. The 

effect of 75 mM SS was almost similar to that of 50 mM AS on this trait. 

The leaf water potential (ΨLW) declined significantly with the intensification of SS 

and AS in both species, and the reduction was greater under AS than under SS. Foxtail millet 

reduced 1.4/2.6-fold at 50 mM SS/AS and 1.7/3.4-fold at 75 mM SS/AS treatments. On the 
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other hand, Proso millet reduced similarly at 1.3/1.7 and 1.5/2.6-fold at 50 and 75 mM SS/AS, 

respectively (Fig. 3.6). 

 
3.3.4 Chlorophylls and gas exchange characters  

Chlorophylls concentration significantly decreased with increasing stresses and the 

decrease was greater in Foxtail millet under AS conditions (Fig. 3.7). The photosynthesis 

(Pn), stomatal conductance (gs) and transpiration rate (Tr) of Foxtail millet decreased 

significantly under SS and AS conditions and the rate of reduction was greater in AS than in 

SS at all levels (Table 3.1). On the contrary, no significant variations of those parameters 

were observed under 50 mM SS in Proso millet, however but the reduction was remarkable 

under all other treatments (Table 3.1). Foxtail millet showed more reduced values of Pn, gs 

and Tr in all treatment conditions compared with those of Proso millet. 

 
3.3.5 Ionic status 

Sodium 

Under SS and AS conditions, Foxtail and Proso millet plants acquired significantly 

higher concentration of Na in all plant segments as compared to unstressed plants. On the 

other hand, Proso millet acquired very less concentration of Na as compared to Foxtail millet 

under SS and AS conditions (Table 3.2). The roots of Foxtail millet transported a greater 

amount of accumulated Na to the leaves under SS and AS conditions (Table 3.3). In contrast, 

Proso millet transported very less amount of Na from roots to leaves in both conditions.  

Potassium  

The K concentration in the roots of both species gradually decreased with increasing 

salinity and alkalinity, and a significant reduction was observed in Foxtail millet under both 

stresses while in Proso millet only under alkaline stress (Table 3.4). The concentration in the 

leaves and stems of Foxtail millet under SS conditions remain unchanged from control plants 
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but significantly reduced under AS conditions. The leaves of Foxtail millet accumulated 

higher amount of K than the leaves of Proso millet. On the other hand, the roots of Foxtail 

millet accumulated lower amount of K than the roots Proso millet (Table 3.5). 

Na / K ratio 

The ratio of Na / K increased with increasing the levels of SS and AS in all the plant 

segments of both species. The ratio was higher under AS compared to SS and Foxtail millet 

showed greater values than did Proso millet (Table 3.6). 

Calcium  

The leaves of Foxtail millet contained higher concentration of Ca than the leaves of 

Proso millet; on the contrary, it was higher in the roots of Proso millet than in the roots of 

Foxtail millet (Table 3.7). Under AS conditions, the leaves of Foxtail millet and Proso millet 

accumulated 66-81% and 39-42% Ca, respectively (Table 3.8). The relative reduction due to 

stresses was greater under AS than under SS and as well as greater in Foxtail millet than in 

Proso millet.  

Magnesium 

The stems of Foxtail millet contained higher concentration of Mg than the Proso 

millet stems; on the other hand, the leaves and roots of Proso millet acciquisited higher 

concentration than the leaves and roots of Foxtail millet (Table 3.9). The relative reduction 

due to stresses was greater under AS than in SS. Foxtial millet leaves accumulated higher 

amount of Mg in AS than in SS conditins; on the other hand, Proso millet accumulated higher 

amont in SS than in AS (Table 3.10). 

 
3.3.6 Total nitrogen  

The total N concentration in leaves and roots decreased gradually with increasing 

stresses and the reductions were more severe in AS than in SS, as well as more in the leaves 

than in the roots (Figs. 3. 8 and 3.9). However, Foxtail millet was severely affected under 



 41 

both SS and AS, whereas in Proso millet this was true only under AS conditions. The leaves 

of both species accumulated greater amount of N over control under stress conditions (Table 

3.11). 

 
3.3.7 Proline  

The proline content increased under SS and AS conditions and the increase was greater under 

AS than under SS in both species (Fig. 3.10). Furthermore, Foxtail millet produced higher 

concentration of proline relative to its control than the Proso millet.  

 
3.3.8 Total soluble sugar and starch  

Total soluble sugar (TSS) in the leaves of Foxtail millet increased significantly with 

increasing salinity and alkalinity. On the other hand, the TSS of Proso millet increased 

significantly only under alkaline stress (Fig 3.11). Starch content in the leaves decreased 

significantly with increasing intensity of SS and AS in both species except in Proso millet 

under 50 mM SS condition (Fig. 3.12). The relative reduction was higher in Foxtail millet 

than in Proso millet. 

 

3.4 DISCUSSION 

3.4.1 Plant growth 

Plant height, leaf area and dry matter accumulation are ideal indicators of plant 

growth. In this study, all three indicators were inhibited under both SS and AS conditions and 

the effects of alkalinity were more severe than those of salinity (Figs. 3.1, 3.2 and 3.3). The 

relative reductions of those growth parameters were greater in Foxtail millet than those of 

Proso millet. The effects of saline stress on the membrane permeability (Fig. 3.4) and RWC 

(Fig. 3.5) were slight, while, alkaline stress induced severe reductions in RWC and sharply 

increased ELR. The results can be explained as SS generally involves osmotic stress and ion-
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induced injury, whereas alkalinity exerts the same stress factors, even in less concentration of 

AS, with the added influence of high pH in the root zone that is involved in inhibiting plant 

growth intensely. These results were also in agreement with the previous studies reported by 

Shi and Sheng (2005); Yang et al., (2007).  Many of the published data have shown that high 

pH is a key factor in limiting plant growth and development under alkaline conditions (Yang 

et al., 2008a, 2009a,b). 

 
3.4.2 Electrolyte leakage rate 

The AS induced injurious effect was greater than that of SS at the same levels of 

stresses, and is consistent with previous reports (Shi and Yin, 1993; Yang et al., 2007). Proso 

millet showed higher membrane stability under the same stress conditions, especially more 

deleterious AS conditions, indicating its higher tolerance in comparison with Foxtail millet. 

The injurious effects of salinity are commonly thought to be a result of low water potentials 

and ion toxicities (Munns, 2002). The high pH under AS may have triggered the damaging 

effects on root cell structure and functions such as the absorption of more Na ion (Tables 3.2 

and 3.3) and a sharp increase in ELR (Fig. 3.4).  

 
3.4.3 Water status 

It is reported that plants usually can reduce RWC as a quick and economical approach 

to osmotic adjustment in response to osmotic stress (Lissner et al., 1999). The RWC 

decreased significantly with increasing salinity and alkalinity, with the extent of reductions 

under AS greater than that under SS (Fig. 3.5). However, the RWC of Proso millet was 

greater compared to Foxtail millet in both SS and AS conditions, indicating that Proso millet 

faced less stress induced by SS and AS through the  increasing ΨLW and less accumulation of 

toxic Na.  
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The more reduced ΨLW in Foxtail millet under AS as compared to SS conditions (Fig. 

3.6) indicated the desiccation of cell that resulted in limited water availability (Fig. 3.5) for 

cell expansion processes. Higher accumulation of Na in Foxtail millet under AS conditions 

might also be another reason for reducing the ΨLW. The severe reduction of gs and Tr are 

closely correlated with changes in ΨLW under salt stress (Koyro, 2006) and salt-alkali stress 

(Liu et al., 2010).  

 
3.4.4 Gas exchange characters 

Pn, gs and Tr of a plant usually decrease with increasing salinity or alkalinity (Yang 

et al., 2009a,), and it has been reported that alkaline stress, even at low alkalinity (15 mM), 

limited the photosynthesis of barley (Yang et al., 2009b) and wheat (Yang et al., 2008c). 

However, it is observed that the Pn and Tr of Proso millet did not decrease under 50 mM SS 

(Table 3.1). Zhang and Mu (2009) found similar results and concluded that the Pn, gs and Tr 

of Lathyrus quinquenervius did not decrease under moderate (30 mM) saline stress or 

alkaline stress. The more reduced Pn under higher salinity probably results from a reduction 

in intracellular CO2 partial pressure caused by stomatal closure or of non-stomatal factors 

(Bethke and Drew, 1992). The non-stomatal factors mainly depend on the cumulative effects 

of leaf water potential and osmotic potential, reduced photosynthetic area (Marcelis and Van-

Hooijdonk, 1999), contents of photosynthetic pigments ( Fig. 3.7) and ion toxicities in the 

cytosol (Zhang and Mu, 2009). The results of the present study showed that the inhibitory 

effects of AS on gas exchange characters were greater than those of SS at the same levels of 

stress and Proso millet performed well under AS conditions, indicating its higher tolerances 

compared to Foxtail millet. 

 
3.4.5 Ionic status 
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Under saline stress, plants usually accumulate high concentrations of Na+ in vacuoles 

to reduce cell water potential (Munns and Tester, 2008), simultaneously inhibiting K+ 

absorption (Shi and Sheng 2005). The lower concentration of Na and the higher conentration 

of K and as well as the lower Na / K ratio in plants have been considered good physiological 

trait indicators of salt tolerance in plants (Morsy et al., 2007; Kaya et al., 2007). However, 

the Na concentrations in the leaves and stems of Proso millet were very low under all 

treatments as compared to Foxtail millet whereas K concentrations in the stems and roots of 

Proso millet were almost the same as the Foxtail millet. Therefore, the lower Na / K in Proso 

millet indicated its high tolerance than Foxtail millet. The selectivity of low Na / K ratio in 

plants is an important control mechanism and is also a selection criterion for salt tolerance 

(Wenxue et al., 2003). The ability of plant to limit Na+ transport into the shoot is critically 

important for the maintenance of high elongation cells from the toxic effects of Na+ 

(Razmjoo et al., 2008). This could be attributed to the ability of root to exclude Na+ from the 

xylem sap flowing to the shoot, which would result to the better growth of shoot than root 

(Kaya et al., 2007). In the present study, the roots of Proso millet accumulated greater 

amount of Na than the roots of Foxtail millet under stresses but Proso millet transported less 

amount of Na to the leaves than Foxtail millet (Table 3.3), proving that Proso millet is more 

tolerant than Foxtail millet.  

 

The Mg (the key component of chlorophyll) and Ca (maintains membrane stability) 

accumulation in many plants are inhibited by salt stress (Khan, 2001). However, in this study, 

Foxtail millet accumulated more Ca in the leaves and less in the roots. On the other hand, 

Proso millet accumulated almost equal amounts in the leaves and stems and less in roots but 

greater amount than Foxtail millet roots (Table 3.8). The Mg concentration also decreased in 

both species under SS and AS and the extent of decreases under AS was higher than that 
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under SS.  It may be due to the high pH under AS which reduced the availability of Ca and 

Mg in the root zones by precipitating them into CaCO3 and MgCO3. 

 
3.4.6 Total nitrogen  

Nitrogen is one of the most essential elements and plays an important role in the 

maintenance of intracellular ionic balance and osmotic adjustment when plants are subjected 

saline and alkaline stress (Yang et al., 2007, 2008b, 2009a). Salt stress reduces N uptake in 

many plants due to the antagonistic effect between Na+ and NH4
+ and / or NO3

- and Cl- 

(Parida and Das, 2004). In this study, the N concentration in the leaves and roots gradually 

decreased with increasing salinity and alkalinity in both species, and the reduction was 

greater under AS than under SS (Figs. 3.8 and 3.9). The reduction of N concentration was 

insignificant in Proso millet at 50 mM SS, whereas it was significant under all levels of AS in 

both species. Alkaline stress might interfere the uptake or metabolism of NO3
−. It has been 

proposed that NO3
− uptake is mediated by a H+ / NO3

− symport mechanism, which relies on 

the transmembrane proton gradient (Crawford and Glass, 1998). The reduction in NO3
− in the 

root under alkali stress might be related to the lack of external protons due to the high pH.  

 
3.4.7 Proline  

It has been widely reported that plants under stresses accumulate compatible solutes 

such as proline for osmotic adjustment and detoxification of injurious ions (Kavi Kishor et al., 

2005; Tammam et al., 2008). In this study, the proline concentration of both species 

increased with increasing SS and AS (Fig 3.10). It is common for proline to be correlated 

with stress tolerance (Ashraf and Foolad, 2007; Younis et al., 2009) but the significance of 

proline accumulation in osmotic adjustment is still being debated and varies according to the 

species (Rodriguez et al., 1997). Therefore, the role of proline on alkaline stress tolerance 

should be further investigated.  
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3.4.8 Total soluble sugar and starch 

Plants under stress conditions accumulated compatible solutes like total soluble sugar 

to adjust the osmotic stress (Jiménez-Bremont et al., 2006; Yang et al., 2007; Khadri et al., 

2007; Palma et al., 2009) and decreased starch content (Murakeozy et al., 2003). In this study, 

soluble sugar concentration increased significantly with increasing SS and AS. The increase 

in TSS concentration was greater under AS than under SS suggesting that AS might induce 

more severe stress and plants accumulated more TSS to adjust to osmotic shock (Fig. 3.11) 

On the other hand, decreased starch concentration might be related to the lower RWC, ΨLW 

and ultimately the reducing photosynthetic activities which yielded lower starch (Fig. 3.12).   

 
In conclusion, Proso millet showed more capability to survive under SS and AS 

conditions as compared to Foxtail millet based on almost all plant traits examined. The more 

tolerant ability of Proso millet under SS and AS conditions, especially more destructive 

alkaline conditions, might be related to its genetic ability and it should be emphasized to 

investigate this crop further on genetic aspects.  
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Fig. 3.1 Effect of SS and AS on the plant height of Foxtail millet and Proso millet. The 
values are the means (± S.E) of four replicates. 
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Fig. 3.2 Effect of SS and AS on the leaf area of Foxtail millet and Proso millet. The values 
are the means (± S.E) of four replicates.   
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Fig. 3.3 Effects of SS and AS on the plant dry weight of Foxtail millet and Proso millet. The 
values are the means (± S.E) of four replicates. 
 

 

 

   
                      Foxtail millet                                            Proso millet                 

0

10

20

30

40

50

0 50 75
Na concentration (mM)

El
ec

tro
ly

te
 le

ak
ag

e 
ra

te
 (%

) 

SS
AS

0

10

20

30

40

50

0 50 75
Na concentration (mM)

El
ec

tro
ly

te
 le

ak
ag

e 
ra

te
 (%

)

 

Fig. 3.4 Effects of SS and AS on the electrolyte leakage rate in the leaves of Foxtail millet 
and Proso millet. The values are the means (± S.E) of four replicates.    
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Fig. 3.5 Effects of SS and AS on the relative water content in the leaves of Foxtail millet and 
Proso millet. The values are the means (± S.E) of four replicates. 
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Fig. 3.6 Effects of SS and AS on the leaf water potential of Foxtail millet and Proso millet. 
The values are the means (± S.E) of four replicates. 
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Fig. 3.7 Effects of SS and AS on the total Chl (a+b) of Foxtail millet and Proso millet. The 
values are the means (± S.E) of four replicates. 
 

 

 

 

 

 

Table 3.1 Effects of SS and AS on the photosynthesis (Pn), stomatal conductance (gs), and 
transpiration rate (Tr) of Foxtail millet and Proso millet.  The values are means (± S.E) of 
three replicates. 
 

Genotypes Treatment 
groups 

Treatments 
(mM) 

Pn  gs Tr 
(µmol CO2 m-2 s-1) (mol m-2 s-1 )  (mmol m-2 s-1) 

Foxtail 
millet 

Control 0 23.15±0.70a 0.138±0.01a 3.28±0.21a 

SS 50 15.52±0.21b 0.075±0.01b 2.00±0.04b 

75 7.06±1.30c 0.038±0.00c 0.97±0.08c 

AS 50 1.21±0.10d 0.007±0.00d 0.19±0.08d 

75 0.11±0.01d 0.007±0.00d 0.17±0.01d 

Proso millet 

Control 0 20.23±2.98a 0.165±0.04a 2.87±0.45a 

SS 50 16.05±0.07a 0.118±0.00ab 2.36±0.17ab 

75 9.35±0.10b 0.069±0.00bc 1.71±0.02bc 

AS 50 5.91±0.33bc 0.057±0.00c 1.28±0.13cd 

75 3.24±0.11c 0.028±0.00c 0.68±0.12c 
In a column, values with the same letter are not significantly different, and that with different letters 
are significantly different at P<0.05 using Duncan test, values are means ±S.E (n=3). 
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Table 3.2 Effects of SS and AS on Na concentration (mg g-1 DW) in the leaves, stems and 
roots of Foxtail millet and Proso millet. The values are the means (± S.E) of four replicates. 
 

Genotypes Treatment 
groups 

Treatments 
(mM) 

Na 

Leaves Stems Roots 

Foxtail millet 

Control 0 0.083±0.02d 1.17±0.13e 4.43±0.41d 

SS 50 5.14±0.47c 13.34±0.12d 15.16±0.31b 

75 14.95±1.82b 19.00±1.04c 17.76±0.45a 

AS 50 21.17±0.53a 22.34±0.52b 9.05±0.24c 
75 23.55±0.80a 25.96±0.68a 10.36±0.25c 

Proso millet 

Control 0 0.42±0.06c 0.89±0.14d 5.83±0.70d 

SS 50 2.05±0.03b 5.21±0.28c 12.21±0.37c 

75 4.57±0.39a 10.54±0.87a 16.03±0.14a 

AS 50 3.06±0.19b 7.74±0.47b 14.19±0.44bc 

75 5.15±0.19a 10.01±0.67a 15.27±0.28ab 
In a column, values with the same letter are not significantly different, and that with different letters 
are significantly different at P<0.05 using Duncan test, values are means ±S.E (n=4). 
 

 

 

 

Table 3.3 Effects of SS and AS on Na accumulation (mg plant-1) in the leaves, stems and 
roots of Foxtail millet and Proso millet. The values are the means of four replicates. 
 

Genotypes Treatment 
groups  

Treatments     
(mM) 

Na  
Leaves Stems Roots Total 

Foxtail millet 

Control 0 0.05 1.05 1.74 2.85 
(2) (37) (61) (100) 

SS 
50 2.30 8.97 3.42 14.69 

(16) (61) (23) (100) 

75 6.12 9.98 3.41 19.51 
(31) (51) (18) (100) 

AS 
50 9.19 10.88 1.21 21.28 

(43) (51) (6) (100) 

75 7.88 11.39 1.38 20.65 
(38) (55) (7) (100) 

Proso millet 

Control 0 0.08 0.48 0.46 1.02 
(8) (47) (45) (100) 

SS 
50 0.39 2.17 0.60 3.16 

(12) (69) (19) (100) 

75 0.75 4.07 0.75 5.57 
(14) (73) (13) (100) 

AS 
50 0.42 2.81 0.56 3.79 

(11) (74) (15) (100) 

75 0.51 3.20 0.60 4.30 
(12) (74) (14) (100) 

  ( ): Na partitioning as percentage in leaves, stems and roots.  
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Table 3.4 Effects of SS and AS on K concentration (mg g-1 DW) in the leaves, stems and 
roots of Foxtail millet and Proso millet. The values are the means (± S.E) of four replicates. 
 

Genotypes Treatment 
groups 

Treatments 
(mM) 

K 

Leaves Stems Roots 

Foxtail millet 

Control 0 29.51±0.24b 32.17±0.15a 4.73±0.31a 

SS 50 33.88±0.23a 31.66±0.76a 3.42±o.13b 

75 33.98±0.34a 31.38±1.19a 3.37±0.19b 

AS 50 26.36±0.90c 25.17±0.79c 1.36±0.06c 

75 27.84±1.03bc 25.17±1.34b 1.29±0.01c 

Proso millet 

Control 0 14.08±0.24b 21.39±0.72b 7.59±0.78a 

SS 50 18.87±0.27a 24.24±0.11a 7.32±0.35a 

75 19.63±0.32a 25.17±0.91a 7.07±0.22a 

AS 50 19.26±0.30a 20.43±0.56bc 4.14±0.17b 

75 19.20±0.67a 19.29±0.33c 3.53±0.14b 
In a column, values with the same letter are not significantly different, and that with different letters 
are significantly different at P<0.05 using Duncan test, values are means ±S.E (n=4). 
 
 
 
 
 
Table 3.5 Effects of SS and AS on K accumulation (mg plant-1) in the leaves, stems and roots 
of Foxtail millet and Proso millet. The values are the means of four replicates. 
 

Genotypes Treatment 
groups  

Treatments     
(mM) 

K  
Leaves Stems Roots Total 

Foxtail 
millet 

Control 0 18.91 29.01 1.86 49.77 
(38) (58) (4) (100) 

SS 
50 15.16 21.29 0.77 37.22 

(41) (57) (2) (100) 

75 13.91 16.49 0.65 31.05 
(45) (53) (2) (100) 

AS 
50 11.44 12.26 0.18 23.88 

(48) (51) (1) (100) 

75 9.32 11.04 0.17 20.53 
(45) (54) (1) (100) 

Proso millet 

Control 0 2.80 11.55 0.60 14.95 
(19) (77) (4) (100) 

SS 
50 3.58 10.10 0.36 14.04 

(25) (72) (3) (100) 

75 3.24 9.71 0.33 13.28 
(249 (73) (2) (100) 

AS 
50 2.65 7.42 0.16 10.23 

(26) (72) (2) (100) 

75 1.91 6.16 0.14 8.21 
(23) (75) (2) (100) 

         ( ): K partitioning as percentage in leaves, stems and roots.  
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Table 3.6 Effects of SS and AS on Na / K in the leaves, stems and roots of Foxtail millet and 
Proso millet. The values are means of four replicates. 
 

Genotypes Treatment 
groups 

Treatments 
(mM) 

Na / K 
Leaves Stems Roots 

Foxtail millet 

Control 0 0.003 0.04 0.94 

SS 50 0.15 0.42 4.44 
75 0.44 0.61 5.27 

AS 50 0.83 0.89 6.65 
75 0.95 1.12 8.03 

Proso millet 

Control 0 0.03 0.04 0.82 

SS 50 0.11 0.22 1.67 
75 0.23 0.42 2.09 

AS 50 0.16 0.38 3.43 
75 0.34 0.52 4.33 

 

 

 

 

 

 

Table 3.7 Effects of SS and AS on Ca concentration (mg g-1 DW) in the leaves, stems and 
roots of Foxtail millet and Proso millet. The values are means (± S.E) of four replicates. 
 

Genotypes Treatment 
groups 

Treatments 
(mM) 

Ca 

Leaves Stems Roots 

Foxtail millet 

Control 0 1.75±0.03a 0.39±0.03a 0.48±0.02b 

SS 50 1.55±0.05b 0.33±0.02b 0.61±0.03a 

75 1.35±0.09bc 0.41±0.02a 0.46±0.03b 

AS 50 1.36±0.09bc 0.15±0.04b 0.46±0.03b 

75 1.29±0.06c 0.41±0.02a 0.29±0.05c 

Proso millet 

Control 0 1.00±0.01a 0.38±0.01a 0.92±0.04a 

SS 50 0.98±0.06a 0.36±0.01ab 0.78±0.02b 

75 0.89±0.03a 0.32±0.03b 0.69±0.03c 

AS 50 0.70±0.05b 0.33±0.01ab 0.81±0.01b 
75 0.68±0.03d 0.22±0.01c 0.60±0.01d 

In a column, values with the same letter are not significantly different, and that with different letters 
are significantly different at P<0.05 using Duncan test, values are means ±S.E (n=4). 
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Table 3.8 Effects of SS and AS on Ca accumulation (mg plant-1) in the leaves, stems and 
roots of Foxtail millet and Proso millet. The values are means of four replicates. 
 

Genotypes Treatment 
groups  

Treatments     
(mM) 

Ca 
Leaves Stems Roots Total 

Foxtail 
millet 

Control 0 
(%) 

1.12 0.35 0.19 1.66 

(68) (21) (11) (100) 

SS 
50 0.69 0.22 0.14 1.05 

(66) (21) (13) (100) 

75 0.55 0.22 0.09 0.86 

(65) (25) (10) (100) 

AS 
50 0.59 0.07 0.06 0.72 

(81) (10) (9) (100) 

75 0.43 0.18 0.04 0.65 
(66) (28) (6) (100) 

Proso millet 

Control 0 0.20 0.21 0.07 0.48 
(42) (43) (15) (100) 

SS 
50 0.19 0.15 0.04 0.37 

(50) (40) (10) (100) 

75 0.15 0.12 0.03 0.30 

(48) (41) (11) (100) 

AS 
50 0.10 0.12 0.03 0.25 

(39) (48) (13) (100) 

75 0.07 0.07 0.02 0.16 
(42) (44) (14) (100) 

         ( ): Ca partitioning as percentage in leaves, stems and roots. 
 
 

 
Table 3.9 Effects of SS and AS on Mg concentration (mg g-1 DW) in the leaves, stems and 
roots of Foxtail millet and Proso millet. The values are means (± S.E) of four replicates. 
 

Genotypes Treatment 
groups 

Treatments 
(mM) 

Mg 

Leaves Stems Roots 

Foxtail millet 

Control 0 2.32±0.03a 1.33±0.02b 0.50±0.01a 

SS 
50 2.09±0.02ab 1.49±0.01a 0.55±0.02a 

75 2.07±0.02ab 1.46±0.04a 0.51±0.03a 

AS 50 1.97±0.13b 1.14±0.03c 0.35±0.01b 

75 1.95±0.07b 1.06±0.01c 0.29±0.00b 

Proso millet 

Control 0 3.71±0.15a 0.98±0.01a 2.18±0.07a 

SS 50 3.57±0.03ab 0.96±0.05a 2.03±0.01b 

75 3.30±0.12b 0.90±0.03ab 1.89±0.02b 

AS 50 2.71±0.12c 0.63±0.02c 1.62±0.05c 

75 2.66±0.09d 0.83±0.05b 1.50±0.05c 
In a column, values with the same letter are not significantly different, and that with different letters 
are significantly different at P<0.05 using Duncan test, values are means ±S.E (n=4). 
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Table 3.10 Effects of SS and AS on Mg accumulation (mg plant-1) in the leaves, stems and 
roots of Foxtail millet and Proso millet. The values are means of four replicates. 
 

Genotypes Treatment 
groups  

Treatments     
(mM) 

Mg 
Leaves Stems Roots Total 

Foxtail 
millet 

Control 0 
(%) 

1.49 1.20 0.20 2.88 
(52) (41) (7) (100) 

SS 
50 0.94 1.00 0.12 2.06 

(45) (49) (6) (100) 

75 0.85 0.77 0.10 1.71 
(49) (45) (6) (100) 

AS 
50 0.85 0.56 0.05 1.46 

(59) (38) (3) (100) 

75 0.65 0.46 0.04 1.16 
(57) (40) (3) (100) 

Proso millet 

Control 0 0.74 0.53 0.17 1.44 
(51) (37) (12) (100) 

SS 
50 0.68 0.40 0.10 1.18 

(58) (34) (8) (100) 

75 0.54 0.35 0.09 0.98 
(56) (35) (9) (100) 

AS 
50 0.37 0.23 0.06 0.67 

(56) (34) (10) (100) 

75 0.26 0.27 0.06 0.59 
(45) (45) (10) (100) 

         ( ): Mg partitioning as percentage in leaves, stems and roots. 
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Fig. 3.8 Effects of SS and AS on the total nitrogen concentration in the leaves of Foxtail 
millet and Proso millet. The values are the means (± S.E) of four replicates. 
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Fig. 3.9 Effects of SS and AS on the total nitrogen concentration in the roots of Foxtail millet 
and Proso millet. The values are the means (± S.E) of four replicates. 
 

 
Table 3.11 Effects of SS and AS on N accumulation (mg plant-1) in the leaves and roots of 
Foxtail millet and Proso millet. The values are means of four replicates. 
 

Genotypes Treatment 
groups  

Treatments     
(mM) 

N 
Leaves Roots Total 

Foxtail 
millet 

Control 0 10.05 3.93 13.99 
(72) (28) (100) 

SS 
50 5.21 1.75 6.96 

(75) (25) (100) 

75 4.29 1.25 5.54 
(77) (23) (100) 

AS 
50 3.66 0.83 4.49 

(82) (18) (100) 

75 2.68 0.76 3.45 
(78) (22) (100) 

Proso millet 

Control 0 2.57 0.63 3.20 
(80) (20) (100) 

SS 
50 2.24 0.35 2.59 

(87) (13) (100) 

75 1.59 0.32 1.91 
(83) (17) (100) 

AS 
50 1.24 0.24 1.48 

(84) (16) (100) 

75 0.74 0.23 0.97 
(77) (23) (100) 

            ( ): N partitioning as percentage in leaves and roots. 
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Fig. 3.10 Effects of SS and AS on the proline concentration in the leaves of Foxtail millet and 
Proso millet. The values are the means (± S.E) of four replicates. 
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Fig. 3.11 Effects of SS and AS on the sugar concentration in the leaves of Foxtail millet and 
Proso millet. The values are the means (± S.E) of four replicates. 
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Fig. 3.12 Effects of SS and AS on the starch concentration in the leaves of Foxtail millet and 
Proso millet. The values are the means (± S.E) of four replicates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 59 

 

 

 

 

 

 

 

 

CHAPTER 4 

 

EFFECTS OF EXOGENOUS APPLICATION OF CITRIC ACID AND 

PROLINE TO FOXTAIL MILLET AND ANALYSIS OF STRESS 

TOLERANCE FACTORS UNDER SALINE AND ALKALINE 

CONDITIONS 
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4.1 INTRODUCTION 

Arable lands are subjected to salinization and alkalinization day by day in a alarming 

rate. Increasing food demand from the fast growing human population reminds us to 

ameliorate the harmful effects of salinity and alkalinity on agricultural lands by using various 

strategies. Most of the crop species are glycophytes which generally show limited growth and 

development under saline and alkaline conditions. High salinity and alkalinity cause 

reduction of plant growth, enhancement of soluble sugars, organic acids and proline in many 

glycophytic crops like wheat (Guo et al., 2009), Lathyrus quinquenervius (Zhang and Mu, 

2009), barley (Yang et al., 2009a) and sunflower (Liu et al., 2010). Glycophytic species 

employ different strategies to withstand saline and alkaline stress. The increase in salt 

resistance may involve protection of cell and organelle membranes (Mansour and Salama, 

2004) and the accumulation of some protector components (Mansour, 2000).  

 
Plants are generally characterized by a high degree of homeostatic plasticity in 

response to environmental stresses, thereby optimizing growth and development in a way that 

maximizes their opportunities for survival and reproduction. The higher plants have evolved 

a number of adaptive strategies to overcome such abiotic stresses (Tester and Davenport, 

2003; Bartels and Sunkar, 2005). The most common type of osmotic adjustment in plant cells 

involves the accumulation of compatible solutes and exudation of organic acids in cytoplasm 

(Rhodes and Hanson, 1993). Compatible solutes and organic acids which are commonly 

employed as osmoprotectants can lower the osmotic potential for cells without interfering 

with the metabolic processes or protein structuring and functioning and, consequently, 

maintain the water content of the cells under stresses (Yancey et al., 1982). Proline and citric 

acid (CA) may act as modulators by suppressing or enhancing the stress responses of plants 

(Sun and Hong, 2010a,b).  
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Proline is a well-known compatible solute which plays a pivotal role in osmotic 

adjustment in plants by helping to maintain sufficient cell turgor for growth (Nanjo et al., 

1999). Exogenous proline is known to mitigate the detrimental effects of Na and improve 

growth and survival under various stresses (Okuma et al., 2004; Sun and Hong, 2010b). It is 

reported that proline acts as free radical scavengers and / or enzyme protectant (Okuma et al., 

2002; Hoque et al., 2007). It is also reported that proline protects higher plants against salt / 

osmotic stresses, not only by adjusting osmotic pressure (Chinnusamy et al., 2005; Vinocur 

and Altman, 2005), but also by stabilizing many functional units such as complex II electron 

transport (Hamilton and Heckathorn, 2001), membranes and proteins (McNeil et al., 1999; 

Yan et al., 2000) and enzymes (Makela et al., 2000). Until now, little information has been 

reported about proline-related stress defense mechanisms that help to maintain plant growth 

and antioxidant enzyme activities under alkaline conditions. 

 
Citric acid is an important organic acid for plant growth and has apparent 

relationships with stress tolerance. Metabolism and accumulation of CA increased under salt 

stress in alfalfa (Fougére et al., 1991); under alkali stress in Puccinellia tenuiflora (Guo et al., 

2010), in rice (Wang et el., 2011), in sea buckthorn (Chen et al., 2009), and under drought 

stress in cotton plants (Timpa et al., 1986). Phosphorus fixation and its precipitation as 

insoluble compounds are considered to be one of the major constraints to crop production in 

alkaline soils. Organic acid can manipulate the availability of P either indirectly through 

promoting the growth of microorganisms and the subsequent mineralization of organic P 

(Richardson, 1994), or directly by inducing shifts in rhizosphere pH, shifting chemical 

equilibrium in soil solution and inducing the dissolution of sparingly soluble P minerals 

(Hocking, 2001). The effectiveness of organic acids to mobilize soil P depends on the 

number of its carboxyl groups they possess and tends to follow the series tricarboxylic > 
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dicarboxylic > monocarboxylic acid (Jones, 1998). CA contains three carboxylic groups and 

varying negative charges which favors for uptake of nutrients and detoxification of metals 

(Al, Fe etc.) (Jones, 1998). However, no study has yet examined the relationship of CA and 

stress tolerance in glycophytic crops under saline and alkaline conditions. On the other hand, 

there are some lines of evidence that exogenous application of CA alleviated the inhibitory 

effect of toxic Al on root extension in cotton (Hue et al., 1986) and shoot growth in corn 

(Bartlett and Riego, 1972). Recently Sun and Hong (2010a) reported that exogenous CA can 

mitigate the saline and alkaline stress in halophytes (Leymus chinensis Trin.) like proline. 

However, to the best of my knowledge no evidence exists regarding the exogenous 

application of CA to the stress tolerance of glycophytic crops under SS and AS conditions. 

 
It has been reported in the previous chapters that Foxtail millet is comparatively more 

sensitive than Proso millet under saline and alkaline conditions, especially in alkaline 

condition. However, no study has yet been examined the ameliorating effects of exogenous 

proline and CA on plant growth and metabolism under saline and alkaline conditions. 

Therefore, the present study was conducted to investigate the effects of exogenous 

application of CA and proline on the growth, membrane stability, water status, 

photosynthetic apparatus, minerals composition, organic metabolites of Foxtail millet plant 

under saline and alkaline conditions. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Plant material and culture conditions  

Seeds of Foxtail millet (Setaria italica L. cv: BARI kaun-3) were surface-sterilized 

with 5% thiophanate-methyl for 5 min and air-dried. Seeds were sown into 1 L plastic pots 

containing a soil mixture of granite regosol soil and perlite (2:1 v/v). After germination, 6 
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uniform seedlings were kept at equal distances in each pot. Pots were maintained under 

greenhouse conditions. Plants were irrigated with nutrient solution at each watering using an 

irrigation system.  The basal nutrient solution contained 8.3 mM NO3-N, 0.8 mM NH4-N, 0.5 

mM P2O5, 2.2 mM K2O, 0.7 mM MgO, 2.1 mM CaO, 11 μM MnO, 5 μM B2O3 and 13 μM 

Fe.  To simulate saline stress (SS) and alkaline stress (AS) conditions in nature, two stress 

treatments were applied: neutral salts of NaCl and Na2SO4 (9:1 molar ratio) and alkaline salts 

of NaHCO3 and Na2CO3 (9:1 molar ratio). At six weeks after sowing, plants were subjected 

to stresses every day until water was drained-out from the bottom of the pot. Before applying 

75 mM SS and 50 mM AS stresses, plants were subjected to SS and AS of 25, and 50 mM 

concentrations every 3 d alternatively for the hardening of plants.  

 
4.2.2 Application of exogenous CA and proline treatments  

Two levels of citric acids (Citric Acid Monohydrates), CA1 and CA2, and proline (L-

Proline) at the rate of 0.25 (CA1), 0.5 (CA2) and 0.5 mM, respectively, were applied with the 

SS and AS solutions on alternate days. The pH and EC (S m-1) of saline solutions were 

6.4~6.5 and 1.0~1.2 and those of alkaline solution were 9.0~9.1 and 0.850~0.900, 

respectively. Each treatment was applied to four replicates located randomly in the 

greenhouse in order to avoid positional effects.  

 
4.2.3 Plant sampling and measurements 

Plants in each pot were sampled and separated into the leaves, stems (culms) and 

roots before the application of treatments and at 14 d after treatment initiation. The separated 

segments were wiped with tissue towel paper to remove moisture and their fresh weights 

were measured. The fresh samples were kept frozen in liquid nitrogen, then freeze-dried and 

their dry weight measured. Dry samples were ground into fine powder using a vibrating 

sample mill (Model TI-100, Heiko Seisakusho Ltd., Tokyo, Japan) for chemical analysis. 
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Leaf samples were taken in triplicate from a composite pool of physiologically matured 

leaves. The leaf area was measured using a leaf area meter (AMM-5 type leaf area meter, 

Hayashi-Denko, Tokyo, Japan) and the leaves were oven-dried at 80°C for 72 h and the dry 

weight was determined. The leaf area ratio was calculated as the total leaf area per unit leaf 

dry mass. The RWC of the leaf was estimated according to the method of Saneoka et al. 

(1995). The Na and K concentrations were determined after digestion by nitric acid–

hydrogen peroxide using a flame photometer (ANA 135, Eiko Instruments Inc., Tokyo, 

Japan). The Ca, Mg and Fe concentrations were determined using an atomic absorption 

spectrophotometer (U-3310 Hitachi Co. Ltd., Tokyo, Japan). Aliquots of the fresh plant 

materials (0.5 g) were randomly sampled to determine Chl concentrations in acetone (80%) 

extracts spectrophotometrically as described by Zhu (1993). Proline was determined 

spectrophotometrically following the ninhydrin method described by Bates et al. (1973) 

using L-proline as a standard. CA was measured with the enzymatic bioanalysis method using 

spectrophotometer followed by Mollering and Gruber (1966). The total N concentration was 

determined using a Kjeldahl nitrogen digester and distillator (Kjeldatherm Type TT100 & 

Vapodset Type 20, Gerhardt, Germany). Phosphorus was determined spectrophotometrically 

following the molybdenum reaction solution described by Chen et al. (1956). 

 
4.2.4 Measurement of leaf water potential and photosynthetic rate 

    The leaf ΨLW was measured according to the method described by Saneoka et al. 

(1995) using the uppermost fully expanded leaf employing a pressure chamber (Daiki-Rika 

Instruments, Tokyo, Japan) at 14 d after the initiation of the salt treatment. The Pn, gs and Tr 

of the third uppermost fully expanded leaves from the top of the plants were determined by 

using a portable open gas exchange system (LI-6400P model, Li-Cor, Inc., Lincoln, NE, 

USA). The photosynthetic photon flux density was maintained at 1,000 μmol m-2 s-1. The 
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temperature of the leaf was 25oC and the ambient CO2 concentration of the measurement 

chamber was 380 μL L-1 when measurements were taken. 

 
4.2.5 Membrane permeability 

Membrane permeability can be expressed by electrolyte leakage rate (ELR) which 

was measured with the method described by Lutts et al. (1996). Fresh leaves (1 g) were cut 

into pieces of 5-mm length and equally placed into test vials containing 30 ml deionized 

water. The vials were incubated at 25oC on a rotary shaker for 12 h, and then the initial 

electrical conductivity (EC1) was measured using a DDS-11C conductivity meter (Hongyi 

Company, Shanghai, China). Then the vials were autoclaved at 120oC for 20 min to release 

all electrolytes and finally cooled to 25oC for the measurement of the electrical conductivity 

(EC2). ELR can be defined as follows: 

   ELR (%) = EC1 / EC2 X 100 

 
4.2.6 Determination of sugar and starch content 

The soluble sugars were extracted by boiling 50 mg of dry powdered plant material 

with 10 ml of 80% ethanol at 80oC for 20 mins. A clear extract was obtained by 

centrifugation at 3000 rpm for 5 min and collected into a 50 ml beaker. This step was 

repeated twice and the collected supernatant was heated at 80oC to remove ethanol. Then the 

residues were kept in a 50 ml volumetric flask and made up with distilled water and the 

aliquot was taken for the estimation of the content of soluble sugar with the anthrone reagent 

by spectrophotometer (U-2001, Hitachi, Japan) using D-glucose solution as a standard 

according to the method of Yemm and Willis (1954). The residues after ethanolic extraction 

were dissolved in perchloric acid (9.2 and 4.6 N) and the supernatant collected into a 100 ml 

volumetric flask and made up with distilled water. The aliquot was taken for the estimation 
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of the content of starch with the anthrone reagent by spectrophotometer (U-2001, Hitachi, 

Japan) using D-glucose solution as a standard. 

 
4.2.7 Statistical analysis.  

Data were examined using one-way ANOVA and presented as the mean ± S.E. for 

each treatment and species (n=4). Multiple comparisons of means of data among different 

saline and alkaline treatments within the plants were performed using Duncan’s test at the 

0.05 significance level (all tests were performed with SPSS Version 16.0 for Windows). 

 

4.3 RESULTS 

4.3.1 Plant growth  

Plant growth was evaluated using the height and leaf area and a significant difference 

in plant height was observed among the SS and AS treated plants and untreated plants (Fig. 

4.1). The plant height increased remarkably and consistent with the control plants with the 

exogenous application of CA1, CA2 and proline increased under SS conditions and CA1 and 

CA2 under AS conditions. SS and AS treatments significantly reduced the leaf area and dry 

weight as compared to unstressed plants with the reduction more in SS than in AS plants. The 

use of exogenous CA and proline a little bit reversed the reduced leaf area in all cases (Fig. 

4.2). Plant dry weight under SS and AS decreased 42 and 47% (relative to the control), 

respectively (Fig. 4.3). However, due to the addition of exogenous CA1, CA2 and proline the 

reduction in SS plants were 28, 23 and 30%, and in AS plants 34, 33 and 40%, respectively.  

The role of CAs in affecting plant growth is a little bit more significant than proline. 

 
4.3.2 Electrolyte leakage rate (ELR) 

The ELR is a good strain index as it reflects the degree of plant injury as a result of 

environmental stresses. It substantially increases in the leaves of SS and AS treated plants as 
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compared to unstressed plants and the injury can be more severe in AS plants than in SS 

plants (Fig. 4.4). Application of CAs and proline significantly reduced the injury in the 

stressed plants and the rate of reduction was greater in AS condition, and CA is better than 

proline in maintaining membrane permeability under both conditions.    

 
4.3.3 Water status 

Relative water content (RWC)  

The RWC in the leaves exposed to SS and AS conditions decreased significantly and 

the rate of reductions under AS conditions was greater than those under SS (Fig. 4.5). 

However, the uses of CA and proline have significantly increased the RWC in the leaves of 

SS and AS plants and the rate of increment were greater in SS than in AS plants. Nonetheless, 

no statistical differences were observed among the treatments but the effectiveness of 

containing the water in the leaf cells was higher in CA treated plants, while proline was less 

effective under AS condition. 

Leaf water potential  

The stress treatments caused a significant reduction of the ΨLW in the plants and the 

extent of the reductions under AS was greater (2.6-fold) than that under SS (1.6-fold) (Fig. 

4.6). However, CA and proline addition led to significant improvement that were almost 

equal between SS (24~26%) and AS (17~26%) conditions. There was no significant 

difference among the treatments of CA1, CA2 and proline under both SS and AS conditions. 

Proline was a less responsive treatment under AS condition where it did not induce a 

significant increase as it did to SS plants.  

 
4.3.4 Chlorophylls and gas exchange characters 

Under stressful conditions, the plants undergo a rapid and significant effect on the 

chlorophyll concentration and gas exchange characteristics (Pn, gs and Tr) as compared to 
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the unstressed plants while the damaging effects were more severe in AS than in SS plants 

(Tables 4.1 and 4.2). The addition of CA and proline significantly relieved the effects of 

saline stress based on these parameters. The role of proline was less effective under AS 

condition. No remarkable differences were observed between CA1 and CA2 in all traits 

examined.  

 
4.3.5 Ionic status 

Sodium  

Na concentrations in the leaves, stems and roots increased significantly with the 

intensification of stresses, and the increases under the AS condition were significantly greater 

than those under SS in all plant segments with the exception of the roots, which contained a 

significantly higher concentration of Na (two times more) under the SS condition (Table 4.3). 

SS plants transported a lesser amount of accumulated Na (32%) from roots to leaves, 

contrary to AS plants which were unable to retain the Na that it transported greater amount 

(43%) from roots to leaves (Table 4.4). However, exogenous application of CA and proline 

effectively reduced the Na concentrations in all plant segments and proline was less effective 

in the leaves and stems under SS and in the roots under AS conditions. CA and proline 

reduced the Na accumulation in the leaves (Table 4.4). 

Potassium  

AS caused a significant decrease in the K concentration in all plant segments and a 

similar trend was observed only in the roots of SS plants. The shoots (leaves and stems) 

achieved greater concentration of K than roots under both stress conditions and significantly 

lower concentrations of K were observed in all plant parts under AS compared to those under 

SS (Table 4.5). However, the use of CA and proline slightly increased K concentration in the 

leaves and roots under AS conditions and significant increase was observed in the roots of SS 
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plants. K uptake by the roots was also increased with the exogenous application of CA and 

proline (Table 4.6). 

Na / K ratio 

The ratio of Na ⁄ K increased under both stresses and it was greater under AS 

compared to SS in all plant parts (Table 4.7). Compared with the untreated stressed plants, 

the use of CAs and proline decreased the ratio in all cases except for the stem of SS plants 

treated with proline.  

Calcium  

Calcium concentration was reduced significantly in the leaves and stems by AS, and 

in the stems by SS (Table 4.8). The leaves contained a higher concentration than the stems 

and roots under both stresses. However, application of CA and proline led to increase Ca 

concentration in all plant parts and a remarkable increase was observed in the leaves and 

roots (except proline) of SS treated plants and in the stems and roots (except CA1) of AS 

treated plants (Table 4.8). Ca accumulation in the roots and stems was also increased by the 

application of CA and proline under AS conditions (Table 4.9). 

Magnesium 

SS and AS reduced the Mg concentration in all plant segments but a remarkable 

reduction was observed only in the stems of alkaline stressed plants (Table 4.10). The 

application of CA significantly enhanced Mg concentration in all plant parts under SS 

condition and CA1 treated stems under AS condition. 

Iron 

SS and AS remarkably decreased Fe concentration in all plant parts, and the decrease 

was greater under AS than that of SS condition (Table 4.12). However, exogenous CA and 

proline slightly increased Fe concentration in all plant parts and significant increase was 

observed in roots and leaves under SS and in roots and stems under AS conditions. Fe uptake 

increased a little bit in the leaves under SS and roots under AS conditions (Table 4.13). 
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4.3.6 Phosphorus  

Phosphorus (P) concentration in the leaves and roots of SS and AS plants decreased 

and the reduction was greater under AS than that of SS conditions (Table 4.14). However, the 

exogenous CA significantly increased P concentration in the leaves and roots under SS and in 

the roots under AS conditions. P accumulation in the stems and roots also increased in CA 

and proline treated plants under AS conditions (Table 4.15), and the relative influence of CA 

on P acquisition was higher than that of proline.  

 
4.3.7 Total nitrogen 

Total N concentrations were dropped as a result of exposure to the stresses relative to 

the controls and the relative reduction was higher in AS plants than in SS plants (Figs. 4.7). 

With exogenous application of CA and proline in stressed plants, the situation improved 

significantly, increased N concentration compared to those of stressful plants except in the 

leaves of SS plants (Fig. 4.7) where CA and proline induced a little but non-significant 

increase. N accumulation in the roots also increased due to application of CA and proline 

(Table 4.16). 

 
4.3.8 Citric acid 

Compared to unstressed leaves, internal citric acid concentration increased 

significantly under SS and AS conditions and the increase was remarkably higher in AS than 

in SS conditions (Fig. 4.8). However, the exogenous application of CA and proline in the AS 

plants significantly reduced internal CA concentration as compared to stressed (AS) plants. 

There was no remarkable decrease of internal CA concentration in salt stressed plants with 

the exogenous CA and proline application.  

 

4.3.9 Proline  
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Proline concentration in the leaves significantly increased under saline and alkaline 

conditions than in unstressed plants (Fig. 4.9). Exogenous application of CA1 and CA2 and 

proline significantly reduced the internal proline concentration in the leaves of both SS and 

AS treated plants. Exogenous proline significantly reduced internal proline concentration 

only in SS treated plants. There were no statistical differences among the different levels of 

CAs and proline under SS conditions but proline treated plants produced more internal 

proline (49.61 µmol g-1 DW) than CA1 and CA2 treated plants did (48.05 and 45.46 µmol g-1 

DW). Similar pattern of responses on the internal proline was also observed under AS 

conditions with the greater difference in the concentration between proline treated and CAs 

treated plants. No statistical difference was observed between stressed (control) and proline-

treated stressed plants.  

 
4.3.10 Total soluble sugar and starch  

The sugar and starch contents in the leaves were significantly influenced by SS and 

AS treatments (Fig. 4.10). The highest amount of sugar content was recorded in both stressful 

situations, and the application of CAs and proline was found to be effective in reducing the 

sugar content. No significant variation was observed among the treatments under SS 

condition but CA1 reduced the sugar content effectively under AS condition. SS and AS 

markedly reduced the starch content in the leaves and the application of exogenous CAs and 

proline effectively counteracted the stresses by producing a greater amount of starch; proline 

was markedly less effective than CAs in increasing starch concentration under AS condition 

(Fig. 4.11). 

 
 
4.4 DISCUSSION 

4.4.1 Plant growth 
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Plant height, leaf area and dry matter accumulation are ideal indicators of plant 

growth. In this study, dry matter accumulation and leaf area were inhibited under both SS and 

AS conditions, and the effects of alkalinity were more severe (Figs. 4.1, 4.2 and 4.3). This 

can be explained as SS generally involves osmotic stress and ion-induced injury, whereas 

alkalinity exerts the same stress mechanisms even in low concentration of AS. The added 

influence of high pH in the root zone further inhibits plant growth intensely. These results 

were in agreement with the previous studies reported by Munns (2002), James et al. (2002), 

Shi and Sheng (2005).  Many of the published data show high pH as a key factor in limiting 

plant growth and development under alkaline conditions (Yang et al., 2007, 2008a, c, 2009a). 

However, with the exogenous application of CA or proline, the height of the plants increased 

slightly under SS condition but increased significantly under AS condition, particularly in the 

case of CA2 treatment. The leaf area as well as dry matter of plants significantly increased 

with the addition of exogenous CA under both stresses. Sun and Hong (2010a) also reported 

the similar results in Leymus chinensis (Trin.) Tzvel., the Chinese lyme grass. 

 
4.4.2 Electrolyte leakage rate (ELR) 

Electrolyte leakage rate is an important plant traits to asses the tissue injury in plant 

under stress. Generally, intensifying stress causes increasing injury of plasma membranes 

thus leading to increasing ELR. The use of ELR to document the degree of stress injury to 

plants has been reported by many authors (Surjus and Durand, 1996; Li et al., 2010). The 

membrane permeability decreased with the intensification of SS and AS, and the severity of 

damage higher in AS plants (Fig. 4.4). AS also induced severe reductions in water content 

(Fig. 4.5), leaf water potential and a sharp increase in ELR indicating that high-pH from AS 

might have damaged root structure and functions as seen in reduced absorption of water (Fig. 

4.5) and leaf water potential (Fig. 4.6), which may have caused decreasing membrane 
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permeability. However, the addition of exogenous CA and proline to plants under SS and AS 

conditions significantly reduced the leakage rate (Fig. 4.4). Stress impaired membrane 

permeability (increasing electrolyte leakage rate) was alleviated by the application of proline 

and glycinebetaine as reported by Mansour (1998) and Gadallah (1999) and by the 

application of salicylic acid as reported by Stevens et al. (2006) and Tuna et al. (2007). Those 

solutes might provide protection against the destabilization of proteins and membranes. 

 
4.4.3 Water status 

Relative water content 

The reduced water content in the leaves of plants subjected to SS and AS improved 

with the application CAs and proline (Fig. 4.5) possibly due to the inhibition of water efflux 

through the effects of those solutes on the destabilization of membrane (Fig. 4.4) and reduced 

transpiration rate (Table 4.2). Nonetheless, those solutes may be involved in osmoregulation. 

Many authors reported that the reduced water content as a result of SS and AS can be 

alleviated with the addition of exogenous proline (Sun and Hong, 2010a, b), proline and 

glycinebetaine (Gadallah, 1999; Ahmed et al., 2010) and CA (Sun and Hong, 2010a). 

Leaf water potential  

The ΨLW sharply decreased under AS treatment as compared to SS treatment (Fig. 

4.6). The restoration of better plant water status and inhibition of Na accumulation under 

CAs and proline treatments revealed the capacity for osmotic adjustment, which allows the 

growth to continue under stress conditions. This result is in agreement with the previous 

studies of Huber (2003) and Ahmed et al. (2010). The gs and Tr are closely correlated with 

changes in water potential under salt stress (Koyro et al., 2006) and salt-alkali stress (Liu et 

al., 2010).  

 
4.4.4 Chlorphylls and gas exchange characters 



 74 

SS and AS significantly reduced Pn compared to the control plants with AS causing a 

marked reduction of Pn as compared to SS conditions (Table 4.2). This phenomenon was 

also observed by many authors in both halophytes and glycophytes (Zhang and Mu, 2009; Li 

et al., 2010; Liu et al., 2010). The reduced plant Pn under stresses is generally considered a 

result of either reduced intracellular CO2 partial pressure caused by stomatal closure, (Bethke 

and Drew, 1992), reduced photosynthetic pigments (Koyro et al., 2006) or ion toxicities in 

the cytosol (James et al., 2006). This finding pointed that changes of gs and Tr under SS and 

AS (more effective) might be a response to decreased ΨLW (Fig. 4.6). However, this may also 

be related to physiological drought that was caused by the reduction of water uptake by 

plants (Fig. 4.5). High pH caused by alkaline conditions may seriously affect stomatal 

opening and closing, and gas exchange. Leaf area directly affects photosynthetic production 

(Yang et al., 2008b) thereby affecting growth and metabolism (Sheng et al., 1999). Improved 

photosynthesis in stressed plants by exogenous proline and CA application could be 

associated with an increase in gs along with Tr and chlorophyll concentrations (Tables 4.1 

and 4.2). No evidence was found in the case of CA effects on Pn as well as on gs and Tr but 

the capability to significantly improve Pn under stress conditions has been reported for other 

solutes such as proline (Lopéz-Climent et al., 2008; Ahmed et al., 2010), glycinebetaine 

(Yang and Lu, 2005; Dubey, 2005; Raza et al., 2006; Nawaz and Ashraf, 2010) and ascorbic 

acid (Khodary, 2004). The increased Pn in CA and proline treated stressed plants might also 

be related to increased photosynthetic pigments (Table 4.1). This is in agreement with the 

results of Athar and Ashraf (2005) and Lawlor and Cornic (2002). 

 
4.4.5 Ionic status 

The primary physiological response of plants to osmotic stress is to undergo osmotic 

adjustments by the accumulation of ions in the vacuole. The metabolism of Na+ and K+ is an 



 75 

important component of salt stress (Cheeseman, 1988) and it is essential to maintain lower 

Na+ and higher K+ in the cytoplasm for enzymatic processes (Munns and Tester, 2008). 

Usually, Na+ increases and K+ decreases in salt stressed plants (de Lacerda et al., 2003). This 

result showed that Na concentration increased and K concentration decreased in all plant 

parts under SS (except in the leaves) and AS conditions (Tables 4.3 and 4.5), a phenomenon 

perhaps related to plasma membrane being destroyed more severely by alkaline stress, which 

was demonstrated here in the form of increased ELR (Fig. 4.4). However, stressed plants 

receiving CA and proline substantially reduced Na concentration in all plant parts compared 

to untreated stressed plants. This might be aided through decreased transpiration rate, causing 

fewer ions to be carried through the transpiration stream. Exogenous application of proline 

resulted in a decrease in Na+ and Cl- accumulations and an increase in growth in barley (Lone 

et al., 1987). On the other hand, K concentration was increased in the leaves and roots by the 

application of exogenous CA and proline probably due to the reduced competitive inhibition 

between Na and K. This is in agreement with Gadallah (1999) using vaba bean, Kumar and 

Sharma (1989) using Vigna radiata and Khanna (1998) using Raphanus seedlings.  

 
The lower Na / K ratio in plants has been considered a physiological trait indicator of 

salt tolerance in plants (Morsy et al., 2007). The results in this study conformed to those 

obtained by Chartzoulakis et al. (2002) and Kaya et al. (2007). The selectivity of low Na / K 

ratio in plants is an important control mechanism and a selection criterion for salt tolerance 

(Wenxue et al., 2003; Cuin et al., 2003). The reduced Ca, Mg and Fe concentrations due to 

SS and AS were revised by the exogenous CA and proline (Tables 4.8, 4.10 & 4.12). Rana 

and Rai (1996) showed that the exogenous proline promoted Ca uptake in Phaseolus 

seedlings. The CA efficiently mobilizes the di and tri-valent cations like Ca, Mg and Fe into 

soil solutions (Jones and Darrah, 1994). 



 76 

4.4.6 Phosphorus  

The reduced P concentration under SS and AS conditions was alleviated and 

increased by the addition of exogenous CA and proline and the relative influence of CA was 

higher than that of proline (Table 4.14). The CA has been hypothesized to be involved in the 

mobilization and solubilization of poorly soluble nutrients like P, reduced rhizosphere pH 

and increased activities of soil microbes which influenced the availability of P. This resul is 

in agreement with the previous studies of Micales (1997) and Jones et al. (2003). 

 
4.4.7 Total nitrogen 

Nitrogen is one of the most essential elements in all biological materials, playing an 

important role in the maintenance of intracellular ionic balance and osmotic adjustment when 

plants are under salt or alkali stress (Yang et al., 2007, 2008b, 2009a,b). Total N 

concentration is reduced more in AS than in SS plants. An explanation for this may be due to 

more concentration of Na under AS that competes with N in the form of NH4
+ (Fig. 4.7) 

resulting higher accumulation of N in the roots (Table 4.16). Proline activated the acquisition 

of N more than CA in the roots of SS plants. This is in agreement with Kumar et al. (1990) 

who reported that exogenous proline mitigated the antagonistic effects of Na+-NH4
+ / Cl--

NO3
-, and relaxed stresses and improved plant growth. 

 
4.4.8 Citric acid 

Plants induce intrinsic stress defense molecules such as organic materials to 

counteract environmental stresses (Shlizerman et al., 2007). In particular, the exudation of 

CA has been reported to be closely-related with alkaline stress (Timpa et al., 1986), high 

salinity (Fougére et al., 1991), aluminum poisoning (Ma and Furukawa, 2003), iron stress 

(Shlizerman et al., 2007). In this study, alkaline stressed plants increased CA concentration 
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prominently in the leaves. However, exogenous CA reduced the internal CA concentration by 

deducting stress damage effects (Fig. 4.9). 

 
4.4.9 Proline 

Biosynthesis of compatible solutes in the cytosol for osmotic adjustment is one of the 

primary physiological responses of plants under stress conditions. Accumulated proline under 

SS and AS is usually considered as an organic-compatible osmolyte, a protecting agent for 

the activity of intracellular macromolecules (Tang, 1989) and a nitrogen source for plant 

growth (Okuma et al., 2000). In this study, proline content increased under both stresses and 

it is more pronounced under lower level of AS (50 mM) than higher levels of SS (75 mM) 

(Fig. 4.10). This suggests that the induction of proline synthesis is related to the severity of 

the stress, which is induced by high pH. However, the use of exogenous CA and proline in 

SS and AS plants remarkably reduced the proline concentration. Exogenously-supplied 

proline provided osmoprotection (Csonka and Hanson, 1991; Yancey, 1994), protected cell 

membranes from salt-induced oxidative stress (Yan et al., 2000), increased activities of 

superoxide dismutase and peroxidase, (Hua and Guo, 2002), decreased Na+ and Cl − 

accumulations, and facilitated growth (Lone et al., 1987). 

 
4.4.10 Total soluble sugar and starch 

Total soluble sugar (TSS) concentration in the leaves significantly increased, on the 

other hand, starch concentration decreased under stressful situations. The increments and 

decreases of those solutes were greater under AS as compared to SS (Fig. 4.11). It is well 

documented that plants under osmotic stress conditions accumulate compatible solutes for 

osmotic adjustment. Plants grown under AS conditions faced more severe stress and 

produced more TSS than those under SS conditions. This result is in agreement with the 

studies of Jiménez-Bremont et al. (2006), Khadri et al. (2007) and Palma et al. (2009). 
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Stressed plants treated with CAs and proline revealed a significant reduction of elevated TSS 

by protecting enzymes and membranes thereby reducing stress (Okuma et al., 2000; El-

Tayeb, 2005). On the other hand, the decrease of starch concentration the stressed plants (Fig. 

4.11) might be related to the reduced photosynthetic activities. Similar results were also 

reported by Rathert (1985) and Murakeozy et al. (2003).  

 
Under SS and AS conditions plant growth arrested and decreased due to damaging 

root structure and functions (increased ELR), maintained lower water status (reduced RWC 

and ΨLW), inhibited metabolism and uptake of nutrients (reduced N, P, K, Ca, Mg and Fe), 

reduced Pn (by damaging chlorophylls and lower water) and unable to restrict toxic Na 

accumulation. However, the exogenous application of CA and proline remarkably improved 

all the aforementioned plant traits and maintained good plant growth. CA and proline contain 

more carboxylic groups and varying negative charges which favor the complexation of metal 

cations in solution and the displacement of anions from the soil matrix by the mobilisation 

and uptake of nutrients and the detoxification of metals, microbial proliferation in the 

rhizosphere, and the dissolution of soil minerals. CA also involves in energy production as 

intermediates in the tricarboxylic (TCA) cycle, balances cation charges or for maintaining 

osmotic potential, governs primarily C fixation. The role of CA in alleviating AS should be 

further investigated in other crops. 
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Fig. 4.1 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on plant height of 
Foxtail millet under SS and AS conditions. The values are the means (± S.E) of four 
replicates. 
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Fig. 4.2 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on the leaf area of 
Foxtail millet under SS and AS conditions. The values are the means (± S.E) of four 
replicates. 
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Fig. 4.3 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on the plant dry 
weight of Foxtail millet under SS and AS conditions. The values are the means (± S.E) of 
four replicates. 
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Fig. 4.4 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on the electrolyte 
leakage rate in the leaves of Foxtail millet under SS and AS conditions. The values are the 
means (± S.E) of four replicates. 
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Fig. 4.5 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on the relative water 
content in the leaves of Foxtail millet under SS and AS conditions. The values are the means 
(± S.E) of four replicates. 
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Fig. 4.6 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on leaf water 
potential of Foxtail millet under SS and AS conditions. The values are the means (± S.E) of 
four replicates. 
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Table 4.1 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on Chl a, Chl b, 
total Chl and Chl a/b ratio of Foxtail millet under SS and AS conditions. The values are the 
means (± S.E) of three replicates. 
 

Treatment 
groups Treatments 

Chlorophylls 

Chl a (mg g-1) Chl b (mg g-1) Total Chl Chl a/b 

Control  0.210±0.13abc 0.359±0.36a 0.569±0.45a 0.59±0.13d 

 SS 

SS 0.210±0.08abc 0.314±0.09b 0.524±0.72b 0.68±0.39cd 
SS+CA1 0.216±0.10ab 0.375±0.52a 0.591±0.53a 0.58±0.02d 
SS+CA2 0.223±1.53a 0.384±0.44a 0.607±0.38a 0.58±0.17d 

SS+Proline 0.209±4.15abc 0.372±0.27a 0.581±0.26a 0.56±0.01d 

 AS 

AS 0.068±0.24e 0.025±0.07e 0.093±0.30e 2.69±0.11a 

AS+CA1 0.182±0.86c 0.117±0.98c 0.299±1.74c 1.63±0.15c 

AS+CA2 0.189±1.19bc 0.108±0.74c 0.298±1.93c 1.76±0.05c 

AS+Proline 0.152±0.63d 0.077±0.35d 0.229±0.98d 2.00±0.07b 
In a column, values with the same letter are not significantly different, and those with different letters 
are significantly different at P<0.05 using Duncan test, values are means ±S.E (n=3). 
 
 
 
 
 
 
 
 
Table 4.2 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on photosynthesis 
(Pn), stomatal conductance (gs) and transpiration rate (Tr) of Foxtail millet under SS and AS 
conditions. The values are the means (± S.E) of three replicates. 
 

Treatment 
groups Treatments 

Pn  gs Tr 
(µmol CO2 m-2 s-1) (mol m-2 s-1 )  (mmol m-2 s-1) 

Control   23.15±0.70a 0.138±0.01a 3.28±0.21a 

SS 

SS 7.06±1.30c 0.038±0.00cd 0.97±0.08cd 
SS+CA1 12.78±1.71b 0.059±0.01b 1.45±0.24b 
SS+CA2 12.18±0.70b 0.061±0.00b 1.37±0.09bc 
SS+Pro 11.63±0.20b 0.051±0.00b 1.31±0.26bc 

AS 

AS 1.21±0.01e 0.007±0.00e 0.19±0.04e 

AS+CA1 3.68±0.40d 0.026±0.01d 0.46±0.06d 

AS+CA2 3.59±0.31d 0.025±0.00d 0.42±0.02d 

AS+Pro 2.89±0.38de 0.010±0.00e 0.26±0.04de 
In a column, values with the same letter are not significantly different, and those with different letters 
are significantly different at P<0.05 using Duncan test, values are means ±S.E (n=3). 
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Table 4.3 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on Na 
concentration (mg g-1 DW) in the leaves, stems and roots of Foxtail millet under SS and AS 
conditions. 
 

Treatment 
groups Treatments 

Na 
Leaves Stems Roots 

Control   0.09±0.02g 1.17±0.13e 4.43±0.41e 

SS 

SS 14.95±1.83cd 19.00±1.03bc 17.62±0.43a 
SS+CA1 9.37±0.49f 15.75±0.89d 16.01±0.50b 
SS+CA2 10.16±1.09ef 15.79±1.16d 16.98±0.49ab 
SS+Pro 12.56±0.72de 17.38±0.72cd 15.78±0.61b 

AS 

AS 21.04±0.61a 22.59±0.38a 9.05±0.24c 
AS+CA1 17.63±0.97bc 19.72±0.64b 7.42±0.17d 
AS+CA2 18.26±0.54ab 19.92±0.33b 7.36±0.29d 
AS+Pro 17.42±1.34bc 20.12±0.60b 8.95±0.50c 

In a column, values with the same letter are not significantly different, and those with different 
letters are significantly different at P<0.05 using Duncan test, values are means ±S.E (n=4). 
 
 
 
 

 
Table 4.4 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on Na 
accumulation (mg plant-1) in the leaves, stems and roots of Foxtail millet under SS and AS 
conditions. 
 

Treatment 
groups Treatments 

Na 
Leaves Stems Roots Total 

Control   0.06 1.05 1.74 2.85 
 (2) (37) (61) (100) 

SS 

SS 6.12 9.98 3.38 19.48 
  (31) (51) (17) (100) 

SS+CA1 4.58 10.90 3.52 19.00 
  (24) (57) (19) (100) 

SS+CA2 5.26 11.17 4.42 20.85 
  (25) (54) (21) (100) 

SS+Proline 5.94 10.99 3.60 20.54 
  (29) (54) (18) (1009 

AS 

AS 9.18 10.95 1.28 21.42 
  (43) (51) (6) (100) 

AS+CA1 8.87 12.07 1.29 22.22 
  (40) (54) (6) (100) 

AS+CA2 9.05 11.94 1.25 22.24 
  (41) (54) (6) (100) 

AS+Proline  7.75 10.93 1.45 20.12 
  (39) (54) (7) (100) 

           ( ): Na partitioning as percentage in leaves, stems and roots. 
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Table 4.5 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on K concentration 
(mg g-1 DW) in the leaves, stems and roots of Foxtail millet under SS and AS conditions. 
 

Treatment 
groups Treatments 

K 

Leaves Stems Roots 

Control   29.51±0.46ab 32.17±0.15a 4.73±0.31a 

SS 

SS 33.98±0.34a 31.38±1.19a 3.37±0.19c 
SS+CA1 33.08±1.02a 30.86±0.86ab 4.14±0.32b 
SS+CA2 32.09±0.90a 28.51±1.20b 3.50±0.11c 
SS+Pro 31.97±0.58a 28.08±0.54b 3.38±0.10c 

AS 

AS 25.35±0.51c 25.24±0.79c 1.36±0.06d 
AS+CA1 26.85±0.90bc 24.12±0.25c 1.76±0.03d 
AS+CA2 26.74±1.03bc 24.15±1.18c 1.58±0.02d 
AS+Pro 26.36±0.34bc 24.57±1.38c 1.47±0.13d 

In a column, values with the same letter are not significantly different, and those with different letters 
are significantly different at P<0.05 using Duncan test, values are means ±S.E (n=4). 
 
 
 
 
 
Table 4.6 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on K accumulation 
(mg plant-1) in the leaves, stems and roots of Foxtail millet under SS and AS conditions. 
 

Treatment 
groups Treatments 

K 
Leaves Stems Roots Total 

Control   18.91 29.00 1.86 49.78 
 (38) (58) (4) (100) 

SS 

SS 13.91 16.49 0.65 31.05 
 (45) (53) (2) (100) 

SS+CA1 16.15 21.55 0.91 38.62 
 (42) (56) (2) (100) 

SS+CA2 16.63 20.16 0.91 37.71 
 (44) (53) (2) (100) 

SS+Proline 15.95 17.76 0.77 34.48 
 (46) (51) (2) (100) 

AS 

AS 11.44 12.23 0.18 23.85 
 (48) (51) (1) (100) 

AS+CA1 12.75 14.78 0.27 27.80 
 (46) (53) (1) (100) 

AS+CA2 13.43 14.45 0.25 28.14 
 (48) (51) (1) (100) 

AS+Proline 11.95 13.35 0.31 25.60 
 (47) (52) (1) (100) 

           ( ): K partitioning as percentage in leaves, stems and roots. 
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Table 4.7 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on Na / K ratio in 
the leaves, stems and roots of Foxtail millet under SS and AS conditions. 
 

Treatment 
groups Treatments 

Na / K 

Leaves Stems Roots 

Control   0.003 0.04 0.94 

SS 

SS 0.44 0.61 5.23 
SS+CA1 0.28 0.51 3.88 
SS+CA2 0.32 0.55 4.85 
SS+Pro 0.39 0.62 4.67 

AS 

AS 0.83 0.90 6.65 

AS+CA1 0.66 0.82 4.70 

AS+CA2 0.68 0.82 5.01 

AS+Pro 0.65 0.82 5.09 
 
 
 
 
 
 
  
 
 
 
 
 
 Table 4.8 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on Ca 
concentration (mg g-1 DW) in the leaves, stems and roots of Foxtail millet under SS and AS 
conditions. 
 

Treatment 
groups Treatments 

Ca 

Leaves Stems Roots 
Control   1.75±0.03ab 0.41±0.02a 0.48±0.02cd 

SS 

SS 1.35±0.09c 0.38±0.03ab 0.45±0.02d 
SS+CA1 1.94±0.09a 0.45±0.00a 0.59±0.02ab 
SS+CA2 1.85±0.11a 0.44±0.03a 0.57±0.03abc 
SS+Pro 1.79±0.03a 0.42±0.03a 0.46±0.07cd 

AS 

AS 1.36±0.09c 0.15±0.04d 0.46±0.03cd 
AS+CA1 1.45±0.03c 0.30±0.01c 0.56±0.01abc 
AS+CA2 1.54±0.07bc 0.33±0.02bc 0.64±0.03ab 
AS+Pro 1.41±0.09c 0.28±0.02c 0.68±0.04a 

In a column, values with the same letter are not significantly different, and those with different letters 
are significantly different at P<0.05 using Duncan test, values are means ±S.E (n=4). 
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Table 4.9 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on Ca 
accumulation (mg plant-1) in the leaves, stems and roots of Foxtail millet under SS and AS 
conditions. 
 

Treatment 
groups Treatments 

Ca 
Leaves Stems Roots Total 

Control   1.75 0.19 0.35 2.29 
 (77) (8) (15) (100) 

SS 

SS 1.35 0.09 0.21 1.66 
  (82) (5) (13) (100) 

SS+CA1 1.94 0.13 0.31 2.38 
  (81) (5) (13) (100) 

SS+CA2 1.85 0.15 0.31 2.31 
  (80) (6) (13) (100) 

SS+Proline 1.79 0.11 0.26 2.16 
  (83) (5) (12) (100) 

AS 

AS 1.36 0.06 0.07 1.49 
  (91) (4) (5) (100) 

AS+CA1 1.44 0.10 0.18 1.72 
  (84) (6) (11) (100) 

AS+CA2 1.54 0.11 0.19 1.85 
  (83) (6) (11) (100) 

AS+Proline  1.41 0.12 0.15 1.68 
  (84) (7) (9) (100) 

            ( ): Ca partitioning as percentage in leaves, stems and roots. 
 
 
Table 4.10 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on Mg 
concentration (mg g-1 DW) in the leaves, stems and roots of Foxtail millet under SS and AS 
conditions. 
 

Treatment 
groups Treatments 

Mg 

Leaves Stems Roots 

Control   2.32±0.09abc 1.33±0.02b 0.50±0.01bc 

SS 

SS 2.07±1.76bc 1.36±0.04b 0.49±0.02c 
SS+CA1 2.50±0.04a 1.54±0.04a 0.58±0.01a 
SS+CA2 2.48±1.81a 1.48±o.06a 0.56±0.02ab 
SS+Pro 2.40±3.93ab 1.47±0.03a 0.51±0.03bc 

AS 

AS 1.97±1.76c 1.14±0.03d 0.34±0.01cd 

AS+CA1 2.26±0.02abc 1.28±0.06bc 0.37±0.02c 

AS+CA2 2.30±0.38abc 1.19±0.03cd 0.35±0.01c 

AS+Pro 2.18±1.76abc 1.17±0.04cd 0.35±0.03c 
In a column, values with the same letter are not significantly different, and those with different letters 
are significantly different at P<0.05 using Duncan test, values are means ±S.E (n=4). 
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Table 4.11 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on Mg 
accumulation (mg plant-1) in the leaves, stems and roots of Foxtail millet under SS and AS 
conditions. 
 

Treatment 
groups Treatments 

Mg 
Leaves Stems Roots Total 

Control   
1.49 1.20 0.20 2.89 
(52) (42) (7) (100) 

SS 

SS 0.85 0.77 0.09 1.71 
(50) (45) (5) (100) 

SS+CA1 1.22 1.06 0.13 2.41 
(51) (44) (5) (100) 

SS+CA2 1.29 1.05 0.15 2.48 
(52) (42) (6) (100) 

SS+Proline 1.20 0.93 0.12 2.25 
(53) (42) (5) (100) 

AS 

AS 0.86 0.55 0.05 1.46 
(59) (38) (3) (100) 

AS+CA1 1.14 0.72 0.06 1.92 
(59) (38) (3) (100) 

AS+CA2 1.16 0.72 0.06 1.93 
(60) (37) (3) (100) 

AS+Proline 0.97 0.69 0.07 1.73 
(56) (40) (4) (100) 

           ( ): Mg partitioning as percentage in leaves, stems and roots. 
 
 
 
 
Table 4.12 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on Fe 
concentration (µg g-1 DW) in the leaves, stems and roots of Foxtail millet under SS and AS 
conditions. 
 

Treatment 
groups Treatments 

Fe 
Leaves Stems Roots 

Control   306.5±22.9a 206.9±13.1a 2824.0±0.1a 

SS 

SS 228.5±10.0cd 166.2±4.4bc 1948.4±0.1d 
SS+CA1 266.4±11.5bc 177.3±6.3bc 2197.3±22.8bc 
SS+CA2 267.0±11.5bc 177.6±11.4bc 2020.7±32.2cd 
SS+Pro 270.4±15.3ab 160.1±2.1bc 2005.2±1.4cd 

AS 

AS 214.1±7.8d 158.1±2.7cd 1827.5±24.9d 

AS+CA1 221.9±5.4d 173.6±10.2bc 1981.8±27.2cd 

AS+CA2 221.2±9.4d 187.2±4.7b 1954. 5±25.7d 
AS+Pro 236.3±10.8bcd 160.0±2.5bc 2248.2±18.8b 

In a column, values with the same letter are not significantly different, and that with different letters 
are significantly different at P<0.05 using Duncan test, values are means ±S.E (n=4). 
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Table 4.13 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on Fe 
accumulation (µg plant-1) in the leaves, stems and roots of Foxtail millet under SS and AS 
conditions. 
 

Treatment 
groups Treatments 

Fe 
Leaves Stems Roots Total 

Control  
196.4 186.6 1110.8 1493.7 
(13) (12) (74) (100) 

SS 

SS 93.5 87.3 373.7 554.6 
(17) (16) (67) (100) 

SS+CA1 130.1 122.7 483.7 736.5 
(18) (17) (66) (100) 

SS+CA2 138.4 125.6 526.4 790.4 
(18) (16) (67) (100) 

SS+Proline 134.9 101.2 457.8 693.9 
(19) (15) (66) (100) 

AS 

AS 92.9 76.6 244.8 414.3 
(22) (19) (59) (100) 

AS+CA1 111.6 106.2 343.3 561.0 
(20) (19) (61) (100) 

AS+CA2 111.1 108.6 331.6 551.3 
(20) (20) (60) (100) 

AS+Proline 105.1 86.9 395.3 587.3 
(18) (15) (67) (100) 

               ( ): Fe partitioning as percentage in leaves, stems and roots. 
 
 
 

Table 4.14 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on P 
concentration (mg g-1 DW) in the leaves, stems and roots of Foxtail millet under SS and AS 
conditions. 
 

Treatment 
groups Treatments P  

Leaves Stems Roots 
Control   1.75±0.04a 2.01±0.04a 0.98±0.04a 

SS 

SS 1.46±0.01c 1.84±0.05ab 0.87±0.03b 
SS+CA1 1.60±0.04b 2.06±0.12a 0.94±0.03ab 
SS+CA2 1.53±0.01bc 1.94±0.07a 0.96±0.01a 
SS+Pro 1.52±0.05bc 1.89±0.04a 0.91±0.01ab 

AS 

AS 1.12±0.06d 1.44±0.02c 0.57±0.03d 

AS+CA1 1.17±0.04d 1.62±0.06bc 0.65±0.01c 

AS+CA2 1.24±0.03d 1.62±0.05bc 0.66±0.02c 

AS+Pro 1.15±0.05d 1.55±0.11c 0.70±0.02c 
In a column, values with the same letter are not significantly different, and that with different letters 
are significantly different at P<0.05 using Duncan test, values are means ±S.E (n=4). 
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Table 4.15 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on P 
accumulation (mg plant-1) in the leaves, stems and roots of Foxtail millet under SS and AS 
conditions.  
 

Treatment 
groups Treatments 

P 
Leaves Stems Roots Total 

Control   
1.12 1.76 0.39 3.27 
(34) (54) (12) (100) 

SS 

SS 0.60 1.01 0.16 1.76 
(34) (57) (9) (100) 

SS+CA1 0.78 1.43 0.20 2.41 
(32) (59) (8) (100) 

SS+CA2 0.79 1.38 0.21 2.39 
(33) (58) (9) (100) 

SS+Proline 0.76 1.17 0.23 2.16 
(35) (54) (11) (100) 

AS 

AS 0.49 0.70 0.08 1.26 
(38) (56) (6) (100) 

AS+CA1 0.59 1.00 0.11 1.71 
(35) (59) (7) (100) 

AS+CA2 0.63 0.96 0.11 1.70 
(37) (57) (7) (100) 

AS+Proline 0.51 0.90 0.12 1.54 
(33) (59) (8) (100) 

         ( ): P partitioning as percentage in leaves, stems and roots.        
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Fig. 4.7 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on the total N 
concentration in the leaves and roots of Foxtail millet under SS and AS conditions. The 
values are the means (± S.E) of four replicates. 
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Table 4.16 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on N 
accumulation (mg plant-1) in the leaves, stems and roots of Foxtail millet under SS and AS 
conditions. 
 

Treatment 
groups Treatments 

N 
Leaves Roots Total 

Control   
10.05 3.93 13.98 
(72) (28) (100) 

SS 

SS 4.30 1.21 5.50 
(78) (22) (100) 

SS+CA1 5.50 1.71 7.21 
(76) (24) (100) 

SS+CA2 6.00 2.14 8.14 
(74) (26) (100) 

SS+Proline 5.36 1.91 7.27 
(74) (26) (100) 

AS 

AS 3.66 0.82 4.47 
(82) (18) (100) 

AS+CA1 4.76 1.58 6.34 
(75) (25) (100) 

AS+CA2 4.84 1.63 6.47 
(75) (25) (100) 

AS+Proline 4.25 1.31 5.56 
(76) (24) (100) 

           ( ): N partitioning as percentage in leaves, stems and roots. 
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Fig. 4.8 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on the internal citric 
acid concentration in the leaves of Foxtail millet under SS and AS onditions. The values are 
the means (± S.E) of four replicates. 
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Fig. 4.9 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on the internal 
proline concentration in the leaves of Foxtail millet under SS and AS conditions. The values 
are the means (± S.E) of four replicates. 
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Fig. 4.10 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on the sugar 
content in the leaves of Foxtail millet under SS and AS conditions. The values are the means 
(± S.E) of four replicates. 
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Fig. 4.11 Effect of CA1 (0.25 mM), CA2 (0.5 mM) and proline (0.5 mM) on the starch 
content in the leaves of Foxtail millet under SS and AS conditions. The values are the means 
(± S.E) of four replicates. 
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5.1 GENERAL DISCUSSION 

 
5.1.1 Comparative studies on saline and alkaline stresses of Foxtail millet (Setaria italica 

L.) and Proso millet (Panicum miliaceum L.) and analysis their stress tolerance factors 

 
Proso millet is comparatively more tolerant than Foxtail millet under high levels of 

SS and AS conditions (100 mM). Due to exposure to higher concentration of AS as well as 

the early application to the plant (4 weeks seedlings), Foxtail millet damaged early under AS 

condition, making it unavailable for the measurements of physiological attributes. Therefore, 

another study was conducted using lower concentration of SS and AS (50 and 75 mM) 

applied to six weeks plants to investigate in details and combined results are discussed this 

section.    

 

The biomass production per plant significantly decreased with increasing stresses and 

the relative reduction was higher in Foxtail millet than in Proso millet under AS conditions. 

The reduced dry matter is correlated with the reduced leaf area, RWC, ΨLW (Munns, 2002) 

and increased ELR (Zhang and Mu, 2009) as a result of stresses. The effects of stress were 

higher in Foxtail millet as indicated its lower plant growth compared with Proso millet. The 

high pH in the root zone under AS was involved in inhibiting plant growth. These results 

were in agreement with the previous studies reported by Yang et al. (2007, 2008a, 2009a).  

 

Plants reduce RWC as a quick and economical approach to osmotic adjustment in 

response to osmotic stress (Lissner et al., 1999). However, a greater reduction in the leaf area 

and in Foxtail millet indicates that it is a more sensitive species compared to Proso millet. 

The higher RWC in Proso millet under AS noticed its higher tolerance compared with Foxtail 

millet. The redeced ΨLW under salt-alkali stress is closely correlated with the reduction of gs 

and Tr (Liu et al., 2010).  
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It is reported that the Pn, gs and Tr of plants usually decrease with increasing salinity 

or alkalinity (Yang et al., 2009a,b). In this study lower level of AS (50mM) inhibited Pn, gs 

and Tr severely than the higher levels of SS (75 mM) in both species. This result is in 

agreement with Zhang and Mu (2009) who found that the Pn, gs and Tr of Lathyrus 

quinquenervius did not decrease under moderate (30 mM) saline stress as alkaline stress did.  

 

The Na concentration was increased by SS and AS in all plant segments and K 

concentration was reduced in the stems and roots by the higher concentration SS and AS . 

This result indicates that there was no competitive inhibition between Na and K uptake in 

Proso millet species. Similar results were observed by Saneoka et al. (1995, 1999) in maize 

and wheat and Benderradji et al. (2011) in bread wheat. The high pH under AS might 

increase the interference with the selective absorption of K to Na in roots and elevated 

intracellular Na concentration to a toxic level for Foxtail millet. The lower ratio of Na / K in 

Proso millet indicated its high tolerance compared with Foxtail millet. The ability of plant to 

limit Na+ transport into the shoot is critically important for the maintenance of high plant 

growth from the toxic effects of Na+ (Razmjoo et al., 2008). Proso millet transported less 

amount of Na from root to shoot than Foxtail millet did, which might explain higher 

tolerance of Proso millet than Foxtail millet. The Ca and Mg concentration decreased more in 

AS plants. The high pH under AS reduced the availability of Ca and Mg in the root zones by 

precipitating them into CaCO3 and MgCO3. This result is in agreement with the results of Shi 

and Sheng (2005) and Yousif et al. (2010).  

 

The N concentration decreased under SS and AS conditions and a marked reduction 

was observed in Foxtail under AS conditions. A lower concentration of N in Foxtail millet is 

thought to be the result of a higher accumulation of Na in plants which competes more with 

N as Na+-NH4
+ and / or NO3

- and Cl- in the uptake site of roots.  The higher influence of Na+ 
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on NH4
+ loading into the xylem ultimately reduced the N accumulation as reported by Bar et 

al. (1997), Marcelis and Van-Hooijdonk, (1999) and James et al. (2006).  

 

Plants under stresses accumulate compatible solutes such as proline for osmotic 

adjustment and detoxification of injurious ions (Tammam et al., 2008), and proline 

accumulation in plants is correlated with stress tolerance (Younis et al., 2009). The greater 

concentration of proline in Foxtail millet indicates that Foxtail millet faced more stress than 

Proso millet. However, under higher stress conditions, SS induced more proline than AS but 

in lower stress conditions, AS induced more than SS although it was established that AS is 

more destructive than SS in both experiments. It might be due to the fact that higher 

concentration of AS severely damaged plant growth and Foxtail millet damaged earlier, 

stopping their accumulation of proline while the accumulation was still continued in plants 

under SS.  

 

Plants under stress conditions accumulate TSS to adjust to osmotic stress (Palma et al., 

2009). The increase of TSS concentration was greater under AS than under SS. This might be 

due to AS inducing higher stress forcing plants to accumulate more TSS to adjust to osmotic 

shock as like proline. The lower concentration of TSS in Proso millet indicates that SS and 

AS cause less stress effects in this species than in Foxtail millet. On the contrary, starch 

concentration decreased with increasing stresses and relative reduction was higher in Foxtail 

millet than in Proso millet under AS. This result is in agreement with previous result of 

Murakeozy et al. (2003). The reduced starch might be related to the lower RWC, water 

potential and ultimately the reduction of photosynthetic activities which yielded lower starch. 

The higher starch in Proso millet under stresses indicates its higher tolerance than Foxtail 

millet.  
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5.1.2 Effects of exogenous application of citric acid and proline to Foxtail millet and analysis of 

stress tolerance factors under saline and alkaline conditions 
 

The effects of exogenous application of CA and proline on the growth, membrane 

stability, water status, gas exchange characters, mineral composition and organic metabolites 

of SS and AS sensitive Foxtail millet are presented (Chapter 4) and discussed here.  

Plant height, leaf area and dry weight significantly reduced under SS and AS 

conditions.  However, with the exogenous application of CA and proline significantly 

increased dry matter of plants. This result is consistent with the previous reports that different 

antioxidants like CA and ascorbic acid mitigated salt and alkaline stresses and enhanced 

tolerance in Leymus chinensis (Trin.) (Sun and Hong, 2010a) and in soybean (Sheteawi, 

2007).  

The ELR increased sharply under SS and AS which indicates that the high-pH might 

damage root structure. However, the addition of exogenous CA and proline to plants under 

SS and AS conditions significantly reduced the ELR, with CA being more effective than 

proline. It has been reported that stress-impaired membrane permeability was revised by the 

application of proline and salicylic acid (Stevens et al., 2006; Tuna et al., 2007).  
 

The RWC decreased 13% under SS and 17% under AS with the intensification of 

stresses. However, the application of CA and proline improved the RWC in the leaves and 

the recovery rate was little bit higher under SS plants. Many authors reported that the reduced 

water content due to saline and alkaline stresses was alleviated by the addition of exogenous 

proline (Sun and Hong, 2010b), proline and glycinebetaine (Ahmed et al., 2010), and CA 

(Sun and Hong, 2010a). Azooz (2009) reported similar results for salicylic acid. Exogenous 

application of CAs and proline effectively revived the reduced ΨLW with proline being less 

effective than CA. These results are in agreement with the previous studies of Huber (2003) 

and Ahmed et al. (2010).  
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SS and AS significantly reduced Pn, gs and Tr and AS led to marked reduction of Pn 

as compared to SS conditions which was supported by many authors both in halophytes and 

glycophytes (Li et al., 2010; Liu et al., 2010). The high pH caused by AS may seriously 

affect stomatal opening and closing thereby reducing Pn. However, Pn, gs and Tr were 

revived in the stressed plants by exogenous proline and CA. This result is in agreement with 

the results of Sun and Hong (2010a,b) and Farouk (2011). Salicylic acid also effectively 

stimulated photosynthetic activities in salt stressed maize plant (Khodary, 2004) and in apple 

leaves (Liu et al., 1999).  

The application of CA and proline substantially reduced the Na accumulation in the 

leaves compared to untreated stressed plants. This might occur through the decreased Tr, 

causing fewer ions to be carried through the transpiration stream. It has been reported that SS 

and AS can have either inhibiting effects (Tammam et al., 2008), and inducing effects 

(Benderradji et al., 2011) on K uptake of plants. This is in agreement with Gadallah (1999) 

and Khanna (1998). Exogenous CA and proline decreased Na concentration remarkably 

which influenced the reduction of the Na / K ratio in the presence of SS and AS. The lower 

Na / K ratio in plants has been considered a physiological trait indicator of salt tolerance in 

plants (Morsy et al., 2007). The reduced Ca amd Mg uptake due to SS and AS was revised by 

the exogenous CA and proline. Rana and Rai (1996) showed that the exogenous proline 

promoted Ca and Fe uptake in Phaseolus seedlings. 

N and P concentration decreased more in AS than in SS plants and exogenous CA and 

proline relaxed the stresses and increased their uptake.  Proline activated the acquisition of N 

more effectively than CA in the roots under SS, but very less effective under AS. Internal CA 

and proline concentration increased more under AS than under SS.  This suggests that the 

induction of CA and proline synthesis is related to the severity of the stress, which is induced 

by pH. However, the application of exogenous CA and proline remarkably reduced internal 
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CA and proline concentration, which be might be a stress coping. Exogenously-supplied 

proline provides osmoprotection (Yancey, 1994), protects cell membranes from salt-induced 

oxidative stress (Yan et al., 2000), increases activities of superoxide dismutase and 

peroxidase (Hua and Guo, 2002), decreases Na+ and Cl− accumulations, and facilitate growth 

(Lone et al., 1987). 

TSS concentration in the leaves significantly increased under SS and AS.  Plants 

grown under AS induced more TSS than those under SS as reported by Khadri et al. (2007) 

and Palma et al. (2009). Stressed plants treated with CA and proline revealed a significant 

reduction of elevated TSS. Similar results were also observed by Okuma et al. (2000) and El-

Tayeb (2005). On the other hand, starch concentration decreased in the stressed plants, which 

might be related to the reduced photosynthetic activities and inhibition of photo assimilates to 

the growing regions. Similar results were also reported by Rathert (1985), Murakeozy et al. 

(2003). Nonetheless, the added CA and proline played an important role in starch synthesis 

and, thus, lessened the pressure on the photosynthetic chain by reducing toxic ions and 

causing an increase in the cytosolic water volume (Cayley et al., 1992). Khan et al. (2003), 

Khodary (2004) and Yildirim et al. (2008) concluded that exogenous salicylic acid 

application remarkably controlled the increased TSS and decreased starch in opposite 

directions in salt stressed plants.  

Due to containing more carboxylic groups and varying negative charges of CA allows 

the complexation of metal cations in solution and the displacement of anions from the soil 

matrix by the mobilisation and uptake of nutrients (N, K, P, Ca, Mg and Fe) and the 

detoxification of metals (Jones, 1998), microbial proliferation in the rhizosphere, and the 

dissolution of soil minerals (Marschner, 1995). CA and proline enhance to maintain good 

water status in the rhizospheres which helps to revived root activities for uptaking required 

nutrients. 
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SUMMARY 

 

The salinization and alkalization of soil are widespread environmental problems that 

lead to loss of agricultural land day by day. Great awareness should be generated in the world 

for the utilization of that degraded land for crop production to meet the needs of the fast 

expanding population. Therefore, development of proper technologies to grow crops in 

degraded soils has become extremely essential. To achieve that goal, the foremost task is to 

identify the salt-alkali tolerant species and then to prevent or alleviate the stress damage 

under stressful environments. Foxtail millet (Setaria italica L.) and (Panicum miliaceum L.) 

are important food and fodder grain crops grown in arid and semi-arid regions. Growth 

responses of many crops to salinity stress have been extensively investigated but 

unfortunately millets like Foxtail millet and Proso millet, which are naturally adapted to 

drought stress, have not been explored in alkaline stress, to date. The present study was, 

therefore, conducted to 1) investigate the nature of the tolerance of Foxtail millet and Proso 

millet under saline and alkaline environments, 2) assess whether exogenous application of 

citric acids and proline could alleviate the adverse effects of saline stress (SS) and alkaline 

stress (AS), and 3) find out the strategies how these compounds ameliorate saline and 

alkaline stresses. 

 
1. Comparative studies on saline and alkaline stresses of Foxtail millet and Proso millet 

and analysis their stress tolerance factors 

 
To achieve the first objective, Foxtail millet and Proso millet were grown in 100 mM 

saline and alkaline conditions. For more clarification and confirmation about the tolerances, 

this experiment was repeated with imposing lower concentration (50 and 75 mM) of SS and 

AS to observe some physiological attributes.  
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The data indicated that the reduction of all plant parameters were more pronounced in 

Foxtail millet and less in Proso millet in both the stressful situations. The biomass production 

per plant significantly decreased with the increasing salinity and alkalinity in both species 

and Proso millet produced a significantly greater amount of dry matter than Foxtail millet in 

both stressful situations. The stress-induced injurious effect on the electrolyte leakage rate 

(ELR) was greater in Foxtail millet than in Proso millet. The reduction of relative water 

content (RWC) was more marked in Foxtail millet than in Proso millet. The leaf water 

potential (ΨLW) decreased with the intensity of saline stress and alkaline stress and the 

reductions in Foxtail millet were greater under alkaline stress than saline stress conditions, 

indicates that Foxtail millet is a sensitive species compared to Proso millet. The inhibitory 

effect of alkaline stress on the photosynthetic rate (Pn), stomatal conductance (gs) and 

transpiration rate (Tr) were greater than that of saline stress and the inhibition was higher in 

Foxtail millet than in Proso millet. Foxtail millet accumulated greater concentration of Na 

under the saline stress and alkaline stress conditions as compared to Proso millet. The roots 

of Proso millet attained a higher concentration of Na than the roots of Foxtail millet.  The K 

concentration was reduced in the stems and roots of both species by the higher concentration 

(100 mM) of saline stress and alkaline stress but did not reduce significantly in the leaves and 

stems of Proso millet at lower concentration of saline stress and alkaline stress (50 and 75 

mM) as Foxtail millet did under alkaline conditions. This result indicates that there was no 

competitive inhibition between Na+ and K+ uptake in Proso millet species. Foxtail millet 

showed greater values of Na / K ratios than Proso millet except in the alkaline stress treated 

Proso millet roots. These results suggested that Proso millet is more tolerant to saline stress 

and alkaline stress than Foxtail millet due to a higher ability of maintain the root function for 

the uptake and supply of water to shoot under both stress conditions, and a lower 

accumulation of sodium and  its transportation from root to leaves. 
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2. Effects of exogenous application of citric acid and proline to Foxtail millet and analysis 

of stress tolerance factors under saline and alkaline conditions 

 

It is important to study the effective management practices that can improve stress 

tolerances of plants. The effects of exogenous application of citric acid (CA) and proline on 

the growth, membrane stability, water status, photosynthetic apparatus, mineral composition 

and organic metabolites in Foxtail millet under saline stress and alkaline stress studied. Plant 

dry weight significantly reduced under both stress conditions and the percentage of reduction 

was greater under alkaline stress condition.  However, exogenous application of CA and 

proline significantly increased plant dry matter, and proline was less effective under alkaline 

stress condition. Saline and alkaline stresses increased ELR, and with the addition of 

exogenous CA and proline significantly reduced the leakage rate. The application of external 

CA and proline improved RWC in the leaves and recovery rate was almost similar between 

saline stressed and alkaline stressed plants, although it was little bit higher in saline stressed 

plants. Alkaline stress sharply decreased ΨLW and exogenous application of CA and proline 

effectively reestablished the ΨLW.  

 
The Na concentration increased in all plant parts under both stress conditions and the 

increase was greater under alkaline stress condition. However, CA and proline substantially 

reduced the Na concentration in all plant parts compared to untreated stressed plants, and CA 

was more effective than proline in reducing Na accumulation in leaves and also transport 

from root to leaves.  N, P, Ca, Mg and Fe uptake were decreased under both stress conditions, 

however uptake of these nutrients was increased by the application of exogenous CA and 

proline under both stress conditions.  The total soluble sugar concentration in the leaves 

significantly increased and the increment was greater under AS compared to saline stress. CA 

and proline application significantly reduced the total soluble sugar concentration, however 
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starch concentration decreased in both stress conditions, which indicated the CA and proline 

played an important role in starch synthesis under stress conditions. 

 
3. Conclusion 

Proso millet showed more capability to survive under both stress conditions as 

compared to Foxtail millet regarding of almost all plant traits examined. Foxtail millet 

accumulated greater concentration of Na under saline and alkaline stress conditions in the 

leaves and stems, and showed greater values of Na / K ratios as compared to Proso millet. 

Proso millet maintained a higher photosynthetic activities and a higher water status under 

both stress conditions due to supply of required water in shoot. The exogenous application of 

CA and proline alleviated saline and alkaline stress damages. CA and proline application 

increased water content, N, P Ca, Mg and Fe accumulation and reduced Na accumulation in 

leaves under saline and alkaline conditions. These results suggested that CA and proline 

application enhanced plant growth due to more water and nutrients uptake, and reduced toxic 

sodium accumulation in leaves resulting increased salt tolerance. 
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