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Computation-Universal Models of Two-Dimensional 
16-State Reversible Cellular Automata 

SUMMARY A reversible (or injective) cellular automaton 
( RCA) is a "backward deterministic" CA, i.e., every 
configuration of it has at most one predecessor. Margolus has 
been shown that there is a computation-universal two­
dimensional 2-state RCA model. Although his model is very 
interesting, it differs from a standard CA model because of its 
somewhat spatial and temporal non-uniformity. In this paper, we 
present two kinds of simple 16-state computation-universal 
models using the framework of two-dimensional reversible par­
titioned CA (PCA). Since PCA can be considered as a subclass 
of standard CA, we can immediately obtain 16-state standard 
RCA models from them. For each of these models, we designed 
a configuration which simulates a Fredkin gate. Since Fredkin 
gate has been known to be a universal logic element, 
computation-universality of these two models is concluded. 
key words: cellular automata, reversibility, computation­
universality 

1. Introduction 

A cellular automaton (CA) is a system consisting 
infinite number of finite automata (celled cells) con­
nected uniformly in a space. By applying a local 
(transition) function, which determines the next state 
of each cell depending on the present states of its 
neighboring cells, to all the cells in parallel, global 
transition of the entire state (configuration) of the cell 
space occurs. 

A CA is called reversible if every configuration of 
it has at most one predecessor. Therefore, in a revers­
ible CA (RCA), one can uniquely retrace its move­
ment. Although RCA satisfies such very strong con­
straint, computation-universality of these systems has 
been proved. Toffoli <5> showed that every k­
dimensional irreversible CA can be simulated by a (k 
+ 1 )-dimensional reversible one, arid thus two­
dimensional RCA is computation universal. Morita et 
aI.<3> proved that the dimension of computation univer­
sal RCA is reduced to 1 by showing any Turing 
machine can be simulated by a one-dimensional RCA. 
However, these computation-universal RCAs need 
many internal states per cell. 

Margolus<2>, on the other hand, proposed a two­
dimensional 2-state model of RCA, and showed its 
universality. Thus, in the two-dimensional case, very 
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simple universal RCA can be constructed. Though his 
model is interesting, it differs from the standard CA 
formulation because it is slightly non-uniform both in 
time and in space. 

In this paper, we investigate how the number of 
states of universal RCA in standard formulation can 
be reduced. To do so, we use a partitioned cellular 
automaton (PCA) <3> as a subsidiary framework. Each 
cell of PCA is partitioned into the equal number of 
parts to the neighborhood size, and the information 
stored in each part is sent to only one of the neighbor­
ing cells. In PCA, the reversibility of a local function 
is equivalent to that of a global function. Therefore, to 
design a reversible model in the framework of PCA is 
easier than to design in the framework of standard CA. 

Here we shall give two models of computation­
universal two-dimensional 16-state RPCA. Since PCA 
can be regarded as a subclass of standard CA, universal 
16-state standard RCAs are immediately obtained. The 
local function of the first model satisfies the constraints 
of conservativity, isotropy, and symmetry as well as 
reversibility, and has some similarity with Margolus 
model. The second model is conservative and isotropic 
but not symmetric. 

Margolus<2> showed that Billiard Ball Model 
(BBM) 0> can be embedded in his reversible cellular 
space. BBM is a kind of computing model in which 
logical operations are performed by elastic collisions 
of balls. On the other hand, it has been shown by 
Fredkin et aJ.<0 that "Fredkin gate" can be realized in 
BBM. Fredkin gate is a 3-input 3-output reversible and 
bit-conserving logic element, and is universal in the 
sense that any logic circuit can be constructed by using 
only Fredkin gates and unit delays. By above, univer­
sality of Margolus model is concluded. 

In this paper, we also go along this approach. We 
show how signals (corresponding to balls in BBM) 
propagate, interact, and bounce in each of our RPCA 
models, then design some building components, and 
finally give complete configurations which simulate a 
Fredkin gate. 

2. Two-Dimensional Partitioned Cellular Auto­

mata 

In a standard cellular automaton (CA), a local 
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function determines the next state of each cell depend­
ing on the present states of its neighboring cells. Figure 
1 shows the case of two-dimensional 4-neighbor CA. 
In such a case, since the local function maps a combi­
nation of four cell states into one cell state, it is very 
difficult to design a CA whose global function is 
reversible. 

Margolus<2> proposed a framework of CA having 
"Margolus meighborhood" to design a reversible one. 
In his CA, each cell is bordered by alternating solid 
and dotted lines as shown in Fig. 2 ( a ) , and the local 
function is applied to a block of 4 cells bordered by 
solid or dotted lines. At even time step, it is applied to 
the ones with solid border, and at odd time step, to the 
ones with dotted border. Figure 2 ( b ) is an example of 
a local function of 2-state CA, to which Margolus gave 
a proof of universality. In such a CA, the global 
function becomes reversible if the local function is so. 
However, it differs from the framework of standard CA 
by its temporal and spatial non-uniformity, and this 
difference makes it a little complicated to obtain a 
reversible CA model with desired property. 

t+l 

Fig. I Domain and range of a local function in a standard 

4-neighbor CA. 

Fig. 2 (  a) 

( b )  
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Margolus neighborhood. 

The local function of the Margolus model. 

t+l 
Fig. 3 Domain and range of a local function in a 4-neighbor 

PCA. 
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In this paper, to facilitate the clear design of a 
reversible CA of a standard formulation, we use a 
framework of partitioned cellular automaton 
(PCA) <3>, In k-neighbor PCA, each cell is partitioned 
into k parts, and the next state of each cell is deter­
mined depending on the present states of k parts taken 
from k neighboring cells by a specified manner (not 
depending on the whole states of the neighboring 
cells). Figure 3 shows a two-dimensional 4-neighbor 
case. 
Definition 2. 1 : A determinitic two-dimensional 4-
neighbor partitioned CA (2PCA (4)) is a system 
defined by 

P= (Z2, U, R, D, L, fp) 

where Z is the set of all integers, U, R, D, and L are 
non-empty finite sets of up, right, down and left inter­
nal states of each cell, andfp: DX L X U X R - U X R 
X DX L is a mapping called a local function. 
A configuration over U X RX D x L (or of P) is a 
mapping c : z2- U x R x D x L. The set { c I c : z2-
U X RX DX L} of all configurations of P is denoted by 
conj ( UXRXDXL). 

Let "UP" ("RIGHT", "DOWN", "LEFT", respec­
tively) be the projection function which picks out the 
up (right, down, left) element of a quadruple in U x 
RX DX L. The global function Fp : conj ( U X RX D 
XL)- conj ( UXRXDXL) of P is defined as fol­
lows. 

Fp(c) (i, j) 
= fp (DOWN (c (i, j + 1)), LEFT(c(i + 1, j)), 

UP(c(i, j-1)), RIGHT(c(i -1,j))) 
(l jEZ) 

Definition 2. 2 : Let P be a 2PCA ( 4). P is called 
locally reversible if fp is an injection, and is called 
globally reversible if Fp is an injection. 

For 2PCA(4), the following lemmas hold. 
(Proofs are omitted, since they are essentially the same 
as in the one-dimensional case<3>.) 
Lemma 2. 1 : Let P be a 2PCA ( 4). P is globally 
reversible iff P is locally reversible. 

Thus, in what follows, a globally or locally revers­
ible 2PCA (4) is called simply "reversible" and ab­
breviated as 2RPCA (4). From this lemma, we can see 
that in order to obtain a globally reversible 2PCA(4) 
it is sufficient to design a locally reversible one. 
Lemma 2. 2 : For any 2PCA ( 4) P, there exists a 
two-dimensional 4-neighbor ( standard ) CA whose 
global transition function is identical with that of P. 

This lemma says that 2PCA ( 4) is a subclass of 
standard two-dimensional 4-neighbor CA. 

3. Fredkin Gate 

In this section, we describe several definitions and 
known results concerning Fredkin gate, which are 
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Fig. 4 ( a )  An F-gate. 
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Fig. 5 An I-gate and an inverse I-gate. 

needed in the next section (to be more precise see Ref. 
( 1 ) ) . 

Fredkin gate (F-gate) is a basic element in the 
theory of Conservative Logic proposed by Fredkin and 
Toffoli0l. It is a reversible (i.e., the logical function is 
injective) and bit-conserving (i.e., the number of l's is 
conserved between inputs and outputs) logic gate 
shown in Fig. 4. It has been known that any com­
binational logic element (especially AND, OR, NOT, 
and fan-out element) can be realized only with F-gates. 
Thus, any sequential circuit can be constructed from 
F-gates and unit delays. 

Fredkin and Toffoli also showed that an F-gate 
can be embedded in Billiard Ball Model (BBM). It is 
a reversible and conservative physical model of compu­
tation, in which logical operations are performed by 
elastic collisions of ideal balls. In order to realize an 
F-gate in BBM, they introduced simpler logic gates 
called an interaction gate (I-gate) and a switch gate 
(S-gate) from which an F-gate is constructed. 

An I-gate is a 2-input 4-output reversible and 
bit-conserving gate shown in Fig. 5, and directly real­
ized by a collision of two balls in BBM. The inverse 
I-gate is a 4-input 2-output gate having the inverse 
logical function of I-gate. Note that, in the inverse 
I-gate, the first and the last inputs among four must be 
the identical value x, and x, y, z must be mutually 
exclusive (i.e., at most one of them has the logical 
value 1) in order to keep it reversible. 

An S-gate is a 2-input 3-output reversible and 
bit-conserving gate shown in Fig. 6. An inverse S-gate 
realizes the inverse function of an S-gate, provided that 
the inputs satisfy the conditions cz=O and cy=O. 

As in Fig. 7, an S-gate is constructed from an 
I-gate and an inverse I-gate. An inverse S-gate is real-
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Fig. 6 An S-gate and an inverse S-gate. 
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Fig. 7 Construction of an S-gate by an I-gate and an inverse 

I-gate. 

x = cp + cq, y = cp + cq 

Fig. 8 Construction of an F-gate by S-gates and inverse S-gates. 

ized by the inverse circuit (i.e., the circuit obtained by 
reversing the directions of arrows) of Fig. 7. Finally, 
Figure 8 shows how an F-gate is constructed from 
twos-gates and two inverse S-gates. 

4. Realization of Fredkin Gates by 16-State 2RPCA 

(4) 

In this section, we give two models (Model l and 
2 )  of 16-state 2RPCA ( 4 )  which can simulate an 
F-gate. A 16-state model considered here is a system P 
= (Z 2, U, R, D, L, JP) such that U=R=D=L={O, 
l}. For 16-state 2RPCA (4), we define the notions of 
conservativity, isotropy, and symmetry as follows. 
(Note that the notions of isotropy and symmetry can 
be generalized to k4 -state systems such that U = R = D 
=L={So, · · -, Sk-1}.) 
Definition 4.1: A 16-state 2PCA (4) P is called 
conservative if the following condition holds for any 
(xo, X1, Xz, X3), (yo, yi, yz, y3)E{O, 1}4 such thatfp(Xo, 
X1, Xz, X3) =(yo, y1, yz, y3), where "+" is the (ordinary) 
addition on Z. 

Xo+x1 +x2+x3= Yo+ Yi+ Yz+ Y3 

Definition 4. 2: A 16-state 2PCA ( 4) P is called 
isotropic if the following condition holds for any (x0, 
X1, Xz, X3), (yo, y1, yz, y3) E {O, 1 }4 such that JP (xo, X1, Xz, 
X3) = (yo, yi, yz, y3) . 
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h(�.�.�.�)=(�.�.�.�) 

(Intuitively, the above condition says the local func­
tion is invariant under the rotation of 90, 180, and 270 
degrees. ) 
Definition 4. 3: A 16-state 2PCA ( 4) P is called 
symmetric if the following condition holds for any (x0, 
X1, X2, X3), (yo, yi, yz, y3) E{O, 1}4 such thath(x0, x1, x 
2, X3) =(yo, y1, Yz, y3) and for any iE{O, 1, 2, 3}, where 
"+" is the addition in mod 4. 

( I ) x;=X;+2 iff y;= y;+2, and 

( 2 )  x;=X;+1 and X;+2=X;+3 iff y;= y;+1 and Yi+2 

(Intuitively, the above condition says the patterns (x0, 
X1, X2, X3) and (yo, Yi. y2, y3) have the same set of axes 
of symmetry. ) 

4. 1 Model 1 

The local function of Model I is shown in Fig. 9, 
where the states 0 and I in each part are represented by 

9--.� v �11 
<O> �� 0--> iiii 

<O � fg ¢ --> IJ 

-0>--. � 9 � 1!1111 

Q �� v �lll 
v � � v �� 
Q �[;i v�� 
<O> � 8 o--. [IJ 

Fig. 9 The local function of 2RPC A (4) Model 1. 
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white and black, respectively. This model satisfies the 
conditions of conservativity, isotropy, and symmetry 
besides reversibility. We now construct a configuration 
�aving the function of an F-gate. In this model, a 
signal (corresponding to a ball in BBM) consists of 
two black parts as shown in Fig. 10, and goes straight 
if no obstacle exists. A stable block is a square consist­
ing of eight black parts which remains unchanged 
(Fig. 11). Two consecutive stable blocks play a role of 
a mirror which reflects a signal as shown in Fig. 12. An 
I-gate is realized by colliding two signals at right 
angles at some place (Fig. 13). Note that the I-gate 
configuration itself has no black parts except those of 
signals. An inverse I-gate is obtained by supplying the 
input signals from the output positions in the I-gate 

Fig. 10 Propagation of a signal in Model I .  

Fig. 1 1  A stable block in Model I .  

Fig. 12 Reflection of a signal by a mirror in Model I. 
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Fig. 13 Realization of an I-gate in Model I.  
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V-• 
Q-rJI 
v - iiii 

v-� 
v -"" 
-0> - iii;] 

v-� 
0-tx 

x Fig. 16 The local function of 2RPCA (4) Model 2. 
Fig. 14 A configuration of an S-gate in Model I.  

Fig. 15 A configuration of an F-gate in Model I .  
x = cp + cq, y = cp + cq 
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Fig. 17 Reflection of a signal by a mirror in Model 2. 

c-

I• ...... 
';"I 

.... Iii. .L ' 
"'I " '  

·� 
... 

' ;"I ,. 
i..1111 ... ... ... 
'Ill,.. ., .. "'I "' 

' 
' ' 

' ' 

..... k 
'Ill,.. 

' 
' : 

' 

x 

' 
..1111 llli.. 
'Ill,.. 

..1111 ... 

c 
t 

"'I"' -

! I , I, -- -
... .. 
'Ill ,.. 
... ... 

.. 
' • ..1111 ... 

'Ill ,.. 
I 

- ex 

-ex 

Fig. 18 A configuration of an S-gate in Model 2. 
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configuration. By combining an I-gate, an inverse 1-
gate, and mirrors as in Fig. 14 we realize a circuit of 
Fig. 7 and thus have an S-gate configuration. A 
configuration of an F-gate is given in Fig. 15, where 
S-gates, inverse S-gates, and mirrors are appropriately 
assembled to obtain the circuit shown in Fig. 8. The 
time delay between the input and the output in this 
configuration is 164 steps. 

4. 2 Model 2 

The local function of Model 2 is shown in Fig. 16. 
It is conservative, isotropic and reversible but not 
symmetric. A signal, a stable block, and an I-gate are 
the same as in Model 1. As for a stable block, it is 
broken by a signal coming from rightward. However, if 
a signal comes from leftward, it works as a mirror (Fig. 
17). Thus, left-turn of a signal is realized by only one 
block, while right-turn must be realized by three left­
turns. Figure 1 8  is a configuration of an S-gate, and 
Fig. 19  is that of an F-gate. The time delay in this case 
is 174 steps. 

5. Conclusion 

We proposed two simple models of 16-state 
2RPCA (4) which can simulate an F-gate. Since logical 
universality of F-gate is shown in Ref. ( 1 ) , and more 
concrete realization method of a universal computing 
mechanism by F-gates is shown in Ref. ( 4 ), universal­
ity of the proposed two models is concluded. The 
configurations of F-gate given here were verified by a 
computer simulation, where the behavior of them for 
each combination of input values is displayed as an 
animation. 
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Fig. 19 A configuration of an F-gate in Model 2. 
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In the case of 2RPCA ( 4), if the isotropy condition 
is supposed (in this case U=R=D=L must hold), 
the above 16-state ( = 24-state) universal models are the 
smallest ones in the number of states, since, apparently, 
a 14-state model is not universal. While we can find 
many 32-state isotropic universal 2RPCA (5) models, 
it seems very hard to find other 16-state isotropic 
universal 2RPCA (4) models except the above two 
(and the mirror image of Model 2). It is also an open 
problem whether there exist interesting universal 
models in the case that the isotropy or the conser­
vativity condition does not hold, or the cases of 
2RPCA (3), 2RPCA (2), etc. 

The results of this paper suggests the possibility of 
constructing a computing system by using simple 
microscopic physical phenomena which obey a revers­
ible and conservative law. 
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