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Abstract

KLOTHO deficiency is associated with the progression of kidney dysfunction, whereas its

overexpression exerts renoprotective effects. Oxidative stress suppresses KLOTHO

expression in renal epithelial cells but upregulates microRNA-200c (miR-200c) in human

umbilical vein endothelial cells. In this study, we investigated whether oxidative stress-

induced miR-200c is implicated in KLOTHO downregulation in human renal tubular epithe-

lium (HK-2) cells. HK-2 cells were stimulated with hydrogen peroxide (H2O2) to examine the

effect of oxidative stress. A luciferase reporter containing the KLOTHO 30-UTR was used to

investigate the effect of miR-200c on KLOTHO mRNA metabolism. The expressions of

KLOTHO, oxidative stress markers, and miR-200c were determined in human kidney biopsy

specimens. H2O2 suppressed KLOTHO expression without a reduction in KLOTHO mRNA

levels but upregulated miR-200c expression. Similarly, transfection of a miR-200c mimic

reduced KLOTHO levels and luciferase activity without a reduction in KLOTHO mRNA lev-

els. In contrast, transfection of a miR-200c inhibitor maintained KLOTHO expression. Immu-

nofluorescent assay revealed KLOTHO was present in the cytosol and nuclei of HK-2 cells.

In human kidney biopsies, KLOTHO expression was inversely correlated with levels of oxi-

dative stress markers (8-hydroxy-20-deoxyguanosine: ρ = −0.38, P = 0.026; 4-hydroxy-2-

hexenal: ρ = −0.35, P = 0.038) and miR-200c (ρ = −0.34, P = 0.043). Oxidative stress-

induced miR-200c binds to the KLOTHO mRNA 30-UTR, resulting in reduced KLOTHO

expression.

Introduction

Chronic kidney disease (CKD) is recognized as a risk factor in the development of end-stage

kidney disease [1], and all-cause mortality [2–5]. Consequently CKD has a substantial eco-

nomic burden [6]. Currently, oxidative stress is defined as an imbalance between the produc-

tion of reactive oxygen species (ROS) and anti-oxidant defenses [7]. Although past studies

have reported that increased ROS levels play a pivotal role in the progression of CKD [8,9],
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ROS are also involved in physiological processes, including cell signaling [10], gene expression

[11], and cell growth [12]. Therefore, inhibition of ROS has not been established as a therapy

for CKD [13]. In addition to ROS damage per se, recent studies have revealed that oxidative

stress also participates in renal damage through the downregulation of renoprotective factors

[14–16]. These findings indicate that oxidative stress-induced downregulation of such factors

is a potential therapeutic strategy to prevent the progression of CKD.

KLOTHO is a single-pass transmembrane protein consisting of 1012 amino acids [17,18],

and is strongly and weakly expressed in distal renal tubular epithelial cells and proximal renal

tubular epithelial cells, respectively [19]. In addition to phosphate excretion, KLOTHO exhib-

its multiple functions, including the amelioration of oxidative stress [20,21], and inhibition of

signaling pathways of insulin growth factor [22], Wnt/β-catenin [23], transforming growth

factor-β1 [24], and mechanistic target of rapamycin signaling [25]. Overexpression of the

Klotho gene or injection of KLOTHO protein shows beneficial effects in rodent models of vari-

ous renal diseases [26]. These findings suggest that maintaining KLOTHO expression is a

novel therapeutic strategy during the development of CKD. However, another study showed

that hydrogen peroxide (H2O2), a ROS, contributed to the downregulation of KLOTHO

expression in renal epithelial cells [14,15], causing renal damage [27]. Therefore, the underly-

ing mechanism by which H2O2 decreases KLOTHO expression should be clarified to identify

a therapeutic target.

Gene expression is regulated by epigenetic alterations, including histone modification,

DNA methylation and microRNA (miRNA) expression [28–31]. Among these, miRNAs,

which are small, endogenous, non-coding and single-stranded RNAs of 21–25 nucleotides,

play a major role in repressing gene expression post-transcriptionally by binding to specific

sites within the 30-untranslated region (30-UTR) of a target gene mRNA [32–34]. H2O2 upre-

gulated microRNA-200c (miR-200c) in human umbilical vein endothelial cells [35], and, nota-

bly, there are two putative miR-200c binding sites in the 30-UTR of the KLOTHO mRNA.

These findings led us to the hypothesis that H2O2 suppresses KLOTHO expression through

the induction of miR-200c. To test this, we investigated whether miR-200c regulates KLOTHO

expression in kidney cells under oxidative stress.

In this study, we show that H2O2 suppresses KLOTHO expression without reducing levels

of KLOTHO mRNA. We also show that H2O2-induced miR-200c downregulates KLOTHO

expression by binding to the KLOTHO mRNA 30-UTR. Last, KLOTHO expression is associ-

ated with markers of oxidative stress and miR-200c in renal biopsy samples from IgA nephrop-

athy patients. These findings indicate that oxidative stress suppresses KLOTHO expression

through the induction of miR-200c.

Materials and methods

Cell culture

Human renal proximal tubular epithelium (HK-2) cells were obtained from the American

Type Culture Collection (CRL-2190, Lot No. 61218770, Manassas, VA). Mycoplasma was not

detected during the experimental period. The cells were maintained in RPMI-1640 medium

containing 10% fetal bovine serum (FBS) (Nichirei Bio Science, Tokyo, Japan) and penicillin/

streptomycin (Nacalai, Kyoto, Japan). For stimulations, HK-2 cells were treated with 100 μM

H2O2 (Sigma-Aldrich, St. Louis, MO) for 6–24 hours (hrs) and 100–1000 μM paraquat

(Sigma-Aldrich) for 24 hrs. ERK (#6560), JNK (#6232), p38 (#6564) and control (#6568) siR-

NAs were purchased from Cell Signaling Technology (Danvers, MA). Cells were transfected

using Lipofectamine 2000 Reagent (Invitrogen, Waltham, MA) in accordance with the
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manufacturer’s protocol. After incubation with transfection complexes for 24 hrs, the medium

was changed, and the cells were stimulated with 100 μM H2O2 for 24 hrs.

miRNA transfection

To examine the effect of miR-200c in HK-2 cells, hsa-miR-200c mimic (miRVana miRNA

mimic, Applied Biosystems, Foster City, CA) or mimic control (miRVana miRNA mimic neg-

ative control, Applied Biosystems) were transfected into HK-2 cells using Lipofectamine

RNAiMAX (Invitrogen) in accordance with the manufacturer’s instructions. To evaluate the

inhibitory effects of miR-200c and miR-21 on KLOTHO expression, hsa-miR-200c and hsa-

miR-21 inhibitor (miRVana miRNA inhibitor, Applied Biosystems) or inhibitor control (miR-

Vana miRNA inhibitor negative control, Applied Biosystems) were transfected into HK-2 cells

using Lipofectamine RNAiMAX (Invitrogen). Mimic control or inhibitor control were used as

negative controls.

Western blotting

Western blot analysis was performed as described previously [24,36,37]. Primary antibodies

used were rat monoclonal anti-human KLOTHO antibody (KM2076, TransGenic, Kobe,

Japan), mouse monoclonal anti-α-TUBULIN (TUBA) antibody (T9026, Sigma-Aldrich,

St. Louis, MO), rabbit monoclonal anti-ERK1/2 antibody (#4696, Cell Signaling Technology),

rabbit monoclonal anti-JNK antibody (#9252, Cell Signaling Technology) and rabbit monoclo-

nal anti-p38 antibody (#8690, Cell Signaling Technology). The intensity of detected proteins

was determined using ImageJ software (version 1.50i; National Institutes of Health, Bethesda,

MD).

Gene expression

1) Quantitative PCR (q-PCR) for KLOTHO, ACTIN B (ACTB), pri-hsa-miR-200c and

pri-hsa-miR-21. Total RNA was extracted from conditioned cells using an RNeasy Mini Kit

(Qiagen, Venlo, Netherlands). For the synthesis of complementary DNA (cDNA), total RNA

was reverse transcribed using a High-Capacity cDNA Reverse Transcription Kit (Applied Bio-

systems). KLOTHO and ACTB mRNAs were quantified using TaqMan Gene Expression

Assays (assay ID: Hs00183100_ml for KLOTHO and assay ID: Hs01060665_gl for ACTB)

(Applied Biosystems) and a 7500 Fast Real-Time PCR (RT-PCR) System (Applied Biosystems).

ACTB was used to verify equal sample loading. The expressions of pri-hsa-miR-200c and pri-

hsa-miR-21 were quantified by TaqMan Pri-miRNA Assays (assay ID: Hs03303157_pri for

pri-hsa-miR-200c, Hs03302625_pri for pri-hsa-miR-21) (Applied Biosystems) and a 7500 Fast

RT-PCR System. The amplification of specific PCR products was confirmed by the 2(−ΔΔCT)

method with dissociation curve analysis for each primer pair.

2) q-PCR for miRNA. For q-PCR analysis of hsa-miR-200c, hsa-miR-21 and U6 snRNA,

RNA was extracted from conditioned cells using a miRNeasy Mini Kit (Qiagen). Five nano-

grams of RNA were converted to cDNA using a TaqMan MicroRNA Reverse Transcription

Kit (Applied Biosystems). q-PCR was performed using TaqMan MicroRNA Assays and a 7500

Fast RT-PCR. U6 snRNA was used as a reference gene.

KLOTHO 30-UTR reporter assay

A KLOTHO 30-UTR reporter clone in pMirTarget (pMirTarget-KL30-UTR) was obtained

from OriGene (SC217236, Rockville, MD). HK-2 cells were transfected with the plasmid for 4

hrs using Lipofectamine 2000 Reagent (Invitrogen) in accordance with the manufacturer0s
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protocol. Has-miR-200c mimic, mimic control, has-miR-200c inhibitor or inhibitor control

were simultaneously transfected with the reporter plasmid in some experiments. After chang-

ing the medium, HK-2 cells were cultured for a further 12 hrs before sampling. The cells were

lysed using passive lysis buffer (Promega, Madison, WI) and expression from the luciferase

reporter construct was quantified using the Luciferase Reporter Assay System (Promega) on

an Infinite 200Pro plate reader (Tecan, Kanagawa, Japan). The luciferase activity was normal-

ized against protein quantity.

Plasmid construction

Site-directed mutation of the miR-200c target sites in the pMirTarget-KL30-UTR was gener-

ated using a QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent Technologies,

Santa Clara, CA) in accordance with the manufacturer’s instructions. The resulting plasmid

was named pMirTarget-KL30-UTR-MUT, which contained two 6 nucleotide substitutions at

sites 568–573 and 1904–1909. Primer pairs used for construction were as follows; (forward,

50-GAATGTTCCTTTCGAAAGCAATGCTTCTATCAAATACTCTGCGGAATTTATGTATCTGG
TTAATGACATACTTGGAGAGCAA-30; reverse, 50-TTGCTCTCCAAGTATGTCATTAACCAG
ATACATAAATTCCGCAGAGTATTTGATAGAAGCATTGCTTTCGAAAGGAACATTC-30) and

(forward, 50-TCCTTGACTGTAAAGAGAAGTAATTTTGCTCCTTGATAACTGCGGATATTAA
TAATAAATCTGCCTGCAACTTTTTGCCTTCTT-30; reverse, 50-AAGAAGGCAAAAAGTTGC
AGGCAGATTTATTATTAATATCCGCAGTTATCAAGGAGCAAAATTACTTCTCTTTACAGTC
AAGGA-30).

Clinical sample collection and ethics statement

Kidney specimens were obtained by renal biopsy at Hiroshima University Hospital between

April 2014 and December 2016 from 35 patients who were diagnosed with IgA nephropathy.

The patients’ demographic and clinical characteristics are shown in S1 Table. The Japanese

glomerular filtration rate (GFR) equation based on serum creatinine (Cr) was used to estimate

glomerular filtration rate (eGFR). eGFR (mL/min/1.73 m2) = 194 × Cr−1.094 × Age−0.287 (×
0.739 if female). This study adhered to the declaration of Helsinki and was approved by the

Ethics Committee of Hiroshima University (E-633-2). Informed consent was obtained in the

form of opt-out on the web-site. The ethics committee waived the requirement for written

informed consent because of the retrospective nature of the study.

Histology and immunohistochemistry of human kidney tissue

The following primary antibodies were used: rat monoclonal anti-human KLOTHO antibody

(KM2076, TransGenic), mouse monoclonal anti-8-hydroxy-2’-deoxyguanosine (8-OHdG)

antibody (MOG-020P, Japan Institute for the Control of Aging, Shizuoka, Japan) and mouse

monoclonal anti-4-hydroxy-2-hexenal (4-HHE) antibody (MHH-030n, Japan Institute for the

Control of Aging). Immunostaining of KLOTHO and 8-OHdG was performed as described

previously [38]. 4-HHE was identified with the EnVision System (Dako, Santa Clara, CA). A

positive area was quantified as the mean of five randomly selected fields using ImageJ software

(National Institutes of Health).

Immunofluorescence assay

HK-2 cells were washed with phosphate-buffered saline (PBS), fixed in 4% paraformaldehyde

(Nacalai) and permeabilized with 0.5% Triton X-100 (Nacalai) at room temperature. After

blocking with 5% Blocking One Histo (Nacalai) for 10 minutes (min), the cells were incubated
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with rabbit polyclonal KLOTHO antibody (1:100, PA5-21078, ThermoFisher Scientific) at

37˚C for 30 min. After washing with PBS, the cells were incubated with Alexa Flour 488 goat

anti-rabbit IgG (1:10,000, Invitrogen) at 37˚C for 30 min in the dark. The nucleus was labeled

with 40,6-diamidino-2-phenylindole (DAPI) (H-1200, Vector Laboratories). Images were cap-

tured using a Keyence BZ-9000 fluorescence microscope.

In situ hybridization

In situ hybridization (ISH) was performed on formalin-fixed paraffin-embedded human kid-

ney biopsy specimens. Double digoxigenin (DIG)-labeled miRNA probes were designed by

Exiqon (Venlo, Netherlands) to target has-miR-200c-3p. ISH was performed using a miR-

CURY LNA microRNA ISH Optimization Kit (Exiqon) in accordance with the manufacturer’s

instructions. Proteinase-K incubation was performed with 15 μg/mL for 25 min. The miRNA

probe was used at 80 nM, and the U6 snRNA probe at 2 nM. The U6 snRNA and scrambled

probes were used as a positive technical control and a negative control, respectively. The miR-

200c positive area was quantified as the mean of five randomly selected fields using LuminaVi-

sion (version 4.2.1.2; Mitani, Tokyo, Japan).

Statistical analysis

Results are expressed as the mean ± standard deviation. Statistical analyses were performed

using SPSS statistical software (version 25; IBM Corporation, Armonk, NY). Comparison

between two groups was analyzed by the Mann-Whitney U-test. For multiple group compari-

son, the Mann-Whitney U-test with Bonferroni correction was applied. The correlation was

calculated using Spearman’s rank correlation coefficient. Values of P< 0.05 were considered

statistically significant.

Results

KLOTHO expression is inhibited by H2O2

We carried out in vitro experiments to investigate the underlying mechanism by which oxida-

tive stress regulates KLOTHO gene expression in HK-2 cells. First, we examined the mRNA

and protein levels in HK-2 cells with or without H2O2 stimulation. Protein levels of KLOTHO

decreased in HK-2 cells with H2O2 stimulation, whereas KLOTHO mRNA levels were induced

at 6 hrs and 12 hrs compared with controls (Fig 1A and 1B).

Next, we used a luciferase reporter system to investigate the effect of H2O2 on the transla-

tion of KLOTHO mRNA in HK-2 cells. A reporter plasmid harboring the 30-UTR of KLOTHO
mRNA was used to analyze whether the expression of KLOTHO is mediated by its 30-UTR.

The activity of the luciferase reporter harboring the KLOTHO mRNA 30-UTR was significantly

reduced by H2O2 stimulation in HK-2 cells (Fig 1C).

miR-200c and miR-21 are upregulated by H2O2

We used the online prediction tool, microRNA.org [39], to assess the potential binding of

miR-200c to the 30-UTR of KLOTHO mRNA. There are two possible miR-200c binding sites

in the KLOTHO 30-UTR (Fig 2A and 2B). Base pairing between the KLOTHO 30-UTR and

miR-200c is shown (Fig 2B). Quantification of the expression of pri-miR-200c and miR-200c

in HK-2 cells showed they were significantly induced by H2O2 stimulation (Fig 2C). We also

found that microRNA-21 (miR-21), another miRNA with a predicted binding sequence in the

30-UTR of KLOTHO mRNA, was upregulated by H2O2 stimulation (Part A in S1 Fig).
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miR-200c inhibits KLOTHO expression

To examine the inhibitory effect of miR-200c on the metabolism of KLOTHO mRNA, we com-

pared protein levels, luciferase activity and mRNA levels in HK-2 cells with or without the

transfection of miR-200c. The transfection of miR-200c suppressed protein levels of KLOTHO

in HK-2 cells (Fig 3A). Consistent with these results, co-transfection of miR-200c with the

KLOTHO 30-UTR reporter plasmid dampened luciferase activity (Fig 3B). Moreover, we

examined the mRNA expression of KLOTHO in HK-2 cells to determine the effect of miR-

200c on KLOTHO mRNA metabolism. The expression of KLOTHO mRNA was not signifi-

cantly different between HK-2 cells transfected with miR-200c or control RNA (Fig 3C). Bioin-

formatics analysis indicated the presence of two potential binding sites of miR-200c in the

KLOTHO 30-UTR. To determine whether these sites were actual targets of miR-200c, we

mutated both sites (Fig 3D) and examined plasmid luciferase activity. Mutations of these sites

restored luciferase activity (Fig 3E). Immunofluorescent assay revealed that the miR-200c

mimic reduced KLOTHO expression, and the expression of KLOTHO was observed in the

cytosol and nuclei of HK-2 cells (Fig 3F).

We further examined the effect of miR-200c on KLOTHO expression in H2O2-stimulated

HK-2 cells with or without transfection of the miR-200c inhibitor. As shown in Fig 4A, the

miR-200c inhibitor upregulated the protein level of KLOTHO compared with control RNA.

The expression level of KLOTHO mRNA was not significantly different between HK-2 cells

transfected with miR-200c inhibitor or control RNA (Fig 4B), although KLOTHO mRNA was

upregulated by H2O2 stimulation compared with control transfected HK-2 cells without expo-

sure to H2O2 (S2 Fig). By immunofluorescent assay, miR-200c inhibitor was shown to retain

KLOTHO expression (Fig 4C).

The H2O2-induced miR-21 also has a putative binding site in the KLOTHO mRNA 30-UTR;

however, the miR-21 inhibitor did not improve KLOTHO protein expression (Part B in S1

Fig). Paraquat, another oxidative stress inducer, reduced KLOTHO expression (S3 Fig).

Fig 1. H2O2 suppresses KLOTHO expression in HK-2 cells at the level of translation. (A) Protein expression of

KLOTHO in HK-2 cells treated with 100 μM H2O2 for 24 hours (hrs). Band intensities were analyzed and normalized

against levels of α-TUBULIN (TUBA) using densitometry. (B) Expression of KLOTHO mRNA in HK-2 cells treated

with 100 μM H2O2 for the indicated times. (C) Luciferase activities in HK-2 cells transfected with pMirTarget Vector

harboring human KLOTHO 30-UTR with or without 100 μM H2O2 treatment for 12 hrs. Luciferase activity was

normalized against protein amount. Values represent individual measurements and the mean ± SD. Data were

analyzed using the Mann-Whitney U-test or the Mann-Whitney U-test with Bonferroni correction. �P< 0.05, n = 6.

https://doi.org/10.1371/journal.pone.0218468.g001
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KLOTHO expression is inversely correlated with levels of oxidative stress

markers and miR-200c in human kidney specimens

We examined the degree of oxidative stress in renal biopsy samples obtained from patients

with IgA nephropathy (n = 35) by immunohistochemical staining. Details of the clinical char-

acteristics are shown in S1 Table. Consistent with a previous report [38], the expression of oxi-

dative stress markers, 8-OHdG and 4-HHE, were clearly detected in all samples. To evaluate

the link between oxidative stress and KLOTHO expression in human kidneys with IgA

nephropathy, we performed immunohistochemical staining for KLOTHO. As shown in Fig

5A, KLOTHO was detected in distal renal tubules and was inversely correlated with levels of

8-OHdG (ρ = −0.38, P = 0.026) and 4-HHE (ρ = −0.35, P = 0.038) (Fig 5B).

We also examined miR-200c expression in the same series of specimens using ISH. miR-

200c was detected in distal renal tubules (Fig 6A). Consistent with our in vitro examination,

miR-200c expression was inversely correlated with KLOTHO expression (ρ = −0.34,

Fig 2. miR-200c is complementary to the human KLOTHO mRNA 30-UTR and is upregulated by H2O2 exposure. (A) Putative miR-200c

binding sites (underlined sequence) in the KLOTHO 30-UTR sequence predicted by an online algorithm (www.microrna.org). (B) Predicted

target sites of miR-200c in the KLOTHO mRNA 30-UTR. There are two possible binding sites. (C) q-PCR analysis of pri-miR-200c and miR-

200c expression in HK-2 cells cultured with or without 100 μM H2O2 at the indicated time points. U6 snRNA was used for normalization.

Values represent individual measurements and the mean ± SD. Data were analyzed using the Mann-Whitney U-test with Bonferroni

correction. �P< 0.05, n = 6.

https://doi.org/10.1371/journal.pone.0218468.g002
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P = 0.043), whereas it was positively correlated with levels of 8-OHdG (ρ = 0.39, P = 0.020) and

4-HHE (ρ = 0.53, P = 0.002) (Fig 6B).

Discussion

In this study, we show that H2O2 suppressed KLOTHO expression in HK-2 cells. We also

show that H2O2 induced the expression of miR-200c, which has two putative binding sites in

the 30-UTR of KLOTHO mRNA. Our KLOTHO 30-UTR reporter assay indicated that miR-

200c downregulates KLOTHO expression. In renal biopsy specimens of patients with IgA

nephropathy, miR-200c was mainly detected by ISH in distal tubules, where KLOTHO is also

Fig 3. miR-200c decreases KLOTHO expression in HK-2 cells by translational repression. (A) KLOTHO protein expression in HK-2 cells 24 hrs after

transfection with 25 nM mimic control or miR-200c mimic. Cells were cultured for another 48 hrs without mimic control or miR-200c mimic before sampling.

Band intensities were analyzed and normalized against TUBA using densitometry. (B) A KLOTHO 30-UTR reporter plasmid in combination with 50 nM

mimic control or miR-200c mimic was transfected into HK-2 cells for 4 hrs. After a medium change, HK-2 cells were cultured for another 12 hrs before

sampling. Luciferase activity was normalized against protein amount. (C) HK-2 cells were transfected with 50 nM mimic control or miR-200c mimic for 4 hrs

and cultured for another 24 hrs before harvesting total RNA. KLOTHO mRNA levels were evaluated by q-PCR. (D) Mutations were introduced into the 30-

UTR of KLOHO mRNA as indicated. (E) The effect of 100 nM miR-200c mimic on the reporter activity of wild type (WT, pMirTarget-KL30-UTR-WT) and

mutant (MUT, pMirTarget-KL30-UTR-MUT) plasmids in HK-2 cells was measured by luciferase assay. (F) HK-2 cells were stained with anti-KLOTHO

antibody and Alexa Fluor 488-labeled goat anti-rabbit IgG. KLOTHO protein was evaluated under fluorescence microscopy. Scale bar = 10 μm. Values

represent individual measurements and the mean ± SD. Data were analyzed using the Mann-Whitney U-test or the Mann-Whitney U-test with Bonferroni

correction. �P< 0.05, n = 6. n.s.; not significant.

https://doi.org/10.1371/journal.pone.0218468.g003
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expressed. Moreover, the KLOTHO immunostained area was inversely correlated with areas

positive for oxidative stress markers and miR-200c. Importantly, another miRNA candidate

that we expected to regulate KLOTHO expression, miR-21, did not affect KLOTHO expres-

sion. These data indicate that oxidative stress reduces KLOTHO expression through the induc-

tion of miR-200c.

miRNA binds to the 30-UTR of a target mRNA to suppress target gene expression by inhib-

iting translation or mRNA degradation [33]. In the present study, H2O2 inhibited KLOTHO

protein expression without reducing KLOTHO mRNA levels, indicating that miR-200c sup-

presses KLOTHO expression at the mRNA level, not at the transcriptional level. Indeed, endo-

nucleolytic cleavage of mRNA occurs only when the sequence of the miRNA is completely

Fig 4. KLOTHO protein is preserved by inhibiting miR-200c in HK-2 cells. (A) The effect of a miR-200c inhibitor

on KLOTHO protein expression in HK-2 cells treated with H2O2. KLOTHO protein expression in HK-2 cells treated

with 100 μM H2O2 for 24 hrs after the transfection of inhibitor control (25 nM) or miR-200c inhibitor (25 nM) for 4

hrs. Band intensities were analyzed and normalized against TUBA using densitometry. �P< 0.05, n = 6 (B) The effect

of a miR-200c inhibitor on KLOTHO mRNA expression in HK-2 cells treated with H2O2. HK-2 cells were transfected

with inhibitor control (25 nM) or miR-200c inhibitor (25 nM) and 12 hrs later were treated with 100 μM H2O2.

KLOTHO mRNA was detected by q-PCR. (C) HK-2 cells were stained with anti-KLOTHO antibody and Alexa Fluor

488-labeled goat anti-rabbit IgG. KLOTHO protein was evaluated under fluorescence microscopy. Scale bar = 10 μm.

Values represent individual measurements and the mean ± SD. Data were analyzed using the Mann-Whitney U-test or

the Mann-Whitney U-test with Bonferroni correction. �P< 0.05, n = 6. n.s.; not significant.

https://doi.org/10.1371/journal.pone.0218468.g004
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complementary with that of the target gene, and this is rare in mammals [40,41]. As shown in

Fig 2B, the miR-200c sequence and the putative binding sites in the 30-UTR of KLOTHO
mRNA were not perfectly matched in humans. We also provide evidence that the transfection

of a miR-200c mimic reduced KLOTHO expression, and that luciferase activity was decreased

without any reduction in KLOTHO mRNA levels. These findings suggest that miR-200c inhib-

its KLOTHO expression through translational repression, but not by the degradation of

KLOTHO mRNA.

A number of studies have described the involvement of oxidative stress in the development

of various kidney diseases, such as diabetic kidney disease (DKD) [42], and acute kidney injury

(AKI) [43,44]. However, in the BEACON trial (Bardoxolone Methyl Evaluation in Patients

with Chronic Kidney Disease and Type 2 Diabetes Mellitus: the Occurrence of Renal Events),

antioxidant therapy with bardoxolone methyl increased the risk for cardiovascular disease

without a beneficial effect on the incidence of end-stage kidney disease in patients with DKD

[45]. A possible explanation is that the oxidative response in vivo is not always detrimental and

may be physiologically important. Therefore, the systemic inhibition of oxidative stress may

lead to adverse effects. However, KLOTHO overexpression exhibited a protective effect in

Fig 5. KLOTHO expression inversely correlates with oxidative stress markers in kidney biopsy specimens from IgA nephropathy

patients. (A) Representative images of KLOTHO and oxidative stress markers (8-OHdG and 4-HHE) in patients with immunoglobulin A

nephropathy. The levels of 8-OHdG and 4-HHE were higher, and those of KLOTHO were lower, in kidney specimens from patients with

reduced eGFR compared with patients with conserved eGFR. Scale bar = 100 μm. (B) KLOTHO levels are inversely correlated with

8-OHdG (ρ = −0.38, P = 0.026) and 4-HHE (ρ = −0.35, P = 0.038) levels. Correlations were calculated using Spearman’s rank correlation

coefficient. n = 35.

https://doi.org/10.1371/journal.pone.0218468.g005
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various rodent models of renal diseases as well as heart diseases [23,46–48]. The current data

suggest that KLOTHO downregulation induced by oxidative stress is an attractive therapeutic

strategy.

Renal fibrosis is the most common pathological feature of CKD regardless of the underlying

disease [49]. During the development of renal fibrosis, a major source of extracellular matrix

(ECM) proteins results from the transformation of resident fibroblast cells into myofibroblasts,

while epithelial-mesenchymal transition (EMT) accounts for 10% of ECM proteins in this pro-

cess [50]. miR-200a prevents EMT, leading to protection from renal fibrosis [51,52], while

miR-29 inhibits renal fibrosis through the prevention of ECM deposition [53–56]. These miR-

NAs can be regarded as beneficial for kidneys; however, several miRNAs might have detrimen-

tal effects on kidneys. For example, miR-21 [57,58], miR-192 [59–61], and miR-433 [62],

exacerbated renal fibrosis in mice. Both miR-339 and miR-556 decreased the expression of

KLOTHO in vitro [63], and in this study we show that oxidative stress-induced miR-200c was

involved in repressing KLOTHO protein expression, because transfection of a miR-200c

inhibitor maintained KLOTHO expression. KLOTHO deficiency caused renal fibrosis,

whereas the overexpression or injection of KLOTHO ameliorated it [23,24,27]. Combined,

Fig 6. miR-200c expression inversely correlates with KLOTHO expression, and positively correlates with oxidative stress marker levels

in kidney biopsy specimens from IgA nephropathy patients. (A) Representative images of miR-200c in the kidneys of patients with IgA

nephropathy detected by in situ hybridization. Scrambled and U6 snRNA probes were used as negative and positive controls, respectively.

Scale bar = 100 μm. (B) miR-200c levels are inversely correlated with KLOTHO levels (ρ = −0.34, P = 0.043), but positively correlated with

8-OHdG (ρ = 0.39, P = 0.020) and 4-HHE (ρ = 0.53, P = 0.002) levels. Correlations were calculated using Spearman’s rank correlation

coefficient. n = 35.

https://doi.org/10.1371/journal.pone.0218468.g006
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these findings indicate that the inhibition of miR-200c exhibits a beneficial effect in tissues that

express KLOTHO protein.

The inhibition of miR-200c induced the expression of zinc finger E-box-binding

homeobox (ZEB) 1 and ZEB2, resulting in the promotion of EMT through a reduction of E-

cadherin in cells that do not express KLOTHO [64,65]. In contrast, KLOTHO protein confers

the ability to prevent EMT by various mechanisms, such as PI3K/Akt.GSKβ3/Snail signaling

[66], Wnt/β-catenin signaling [67], and TGF-β1 signaling [24]. Thus, the effect of miR-200c

on renal fibrosis remains controversial despite our assumption that the inhibition of miR-200c

may show beneficial effects against renal fibrosis. It should, therefore, be investigated in an ani-

mal model of renal fibrosis. However, the KLOTHO 30-UTR sequence is different between

humans and rodents, raising the possibility that another miRNA may influence KLOTHO

expression in mice or rats. Moreover, although previous studies have reported that H2O2

induced the activation of mitogen-activated protein kinases [68,69], the inhibition of these

Fig 7. Summary of the results. In HK-2 cells, oxidative stress induced pri-miR-200c and miR-200c, a miRNA that is complementary with the 30-UTR of

KLOTHO mRNA at two different sites. miR-200c binds to the KLOTHO mRNA 30-UTR with Argonaute protein (AGO) to suppress the expression of

KLOTHO by inhibiting translation. Transfection of a miR-200c mimic reduced KLOTHO expression without a reduction in KLOTHO mRNA levels and

transfection of a miR-200c inhibitor maintained KLOTHO expression.

https://doi.org/10.1371/journal.pone.0218468.g007

miR-200c reduces KLOTHO expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0218468 June 14, 2019 12 / 18

https://doi.org/10.1371/journal.pone.0218468.g007
https://doi.org/10.1371/journal.pone.0218468


signaling pathways did not improve KLOTHO expression (S4 Fig). Major limitations of this

study are that we did not assess the actual effect of miR-200c on KLOTHO expression in vivo,

and that we could not identify the transcriptional factor responsible for miR-200c-mediated

KLOTHO downregulation.

Although immunohistochemistry indicated that KLOTHO was expressed mainly in the

cytoplasm of distal tubular cells and not the nucleus, immunofluorescent staining of HK-2

cells revealed that, in addition to the cytosol, KLOTHO was present in the nucleus. HK-2 cells

are mainly derived from proximal tubular cells, suggesting that the cellular localization of

KLOTHO might be different between cell types. Previous studies reported that KLOTHO

exists as secreted, transmembrane and intracellular forms [18,70,71], and that KLOTHO

expression is observed at the peripheral portion of the nucleus and the nucleolus in choroid

plexus cells and cerebellar Purkinje cells [72]. These findings indicate that the localization of

KLOTHO in HK-2 cells is similar to that in brain cells. However, miRNAs were reportedly

localized at all major cellular organelles [73]. In this study, we obtained consistent data from

our in vitro study and immunohistochemistry on human biopsy samples that oxidative stress

decreased KLOTHO expression even though its localization was different in these experi-

ments. The resulting data suggest that oxidative stress-induced miR-200c plays an important

role in the downregulation of KLOTHO in proximal and distal tubular cells.

In summary, we show that H2O2 suppresses KLOTHO expression without a reduction in

KLOTHO mRNA levels. The luciferase activity of a KLOTHO 30-UTR reporter was decreased

in response to H2O2 stimulation, indicating that an H2O2-induced miRNA regulates

KLOTHO expression. A candidate miRNA is miR-200c, which has two possible binding sites

in the KLOTHO 30-UTR. Transfection of a miR-200c mimic decreased KLOTHO expression,

whereas transfection of a miR-200c inhibitor maintained KLOTHO expression (Fig 7). In

human renal biopsy samples, the levels of oxidative stress markers, such as 8-OHdG and

4HHE, were correlated with miR-200c and KLOTHO expression. These findings suggest that

oxidative stress suppresses KLOTHO expression through the induction of miR-200c.

Supporting information

S1 Fig. miR-21 is upregulated by H2O2 exposure, but does not alter KLOTHO expression

in HK-2 cells. (A) q-PCR analysis of pri-miR-21 and miR-21 expression in HK-2 cells cultured

with or without 100 μM H2O2 at the indicated time points. U6 snRNA was used for normaliza-

tion. (B) KLOTHO protein expression in HK-2 cells treated with 100 μM H2O2 for 24 hrs after

the transfection of an inhibitor control (50 nM) or miR-21 inhibitor (50 nM) for 24 hrs. Band

intensities were analyzed and normalized against TUBA using densitometry. �P< 0.05, n = 6.

Values represent individual measurements and the mean ± SD. Data were analyzed using the

Mann-Whitney U-test or the Mann-Whitney U-test with Bonferroni correction. n.s.; not sig-

nificant.

(TIF)

S2 Fig. Upregulation of KLOTHO mRNA levels by H2O2 stimulation is conserved in miR-

200c inhibitor transfected HK-2 cells. The effect of H2O2 stimulation on KLOTHO mRNA

expression in HK-2 cells transfected with miR-200c inhibitor was investigated. HK-2 cells

were transfected with inhibitor control (25 nM) or miR-200c inhibitor (25 nM) and 12 hrs

later they were treated with 100 μM H2O2. KLOTHO mRNA was detected by q-PCR.
�P< 0.05, n = 6. Values represent individual measurements and the mean ± SD. Data were

analyzed using the Mann-Whitney U-test or the Mann-Whitney U-test with Bonferroni cor-

rection.

(TIF)

miR-200c reduces KLOTHO expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0218468 June 14, 2019 13 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0218468.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0218468.s002
https://doi.org/10.1371/journal.pone.0218468


S3 Fig. Paraquat suppresses KLOTHO expression in HK-2 cells. KLOTHO protein expres-

sion in HK-2 cells treated with Paraquat for 24 hrs.

(TIF)

S4 Fig. Inhibition of the MAP kinase pathway does not restore KLOTHO suppression by

H2O2 in HK-2 cells. (A, C, E) KLOTHO protein expression in HK-2 cells treated with 100 μM

H2O2 for 24 hrs after the transfection of siRNAs (si-ERK, si-JNK and si-p38) or negative con-

trol siRNA (25 nM) for 24 hrs. Band intensities were analyzed and normalized against TUBA

using densitometry. (B, D, E) MAP kinase expression in HK-2 cells treated with siRNAs.

MAP; Mitogen-activated Protein, ERK; Extracellular Signal-regulated Kinase, JNK; c-Jun N-

terminal Kinase.

(TIF)

S5 Fig. Full length western blots for Figs 1A, 3A and 4A.

(TIF)

S1 Table. Clinical characteristics related to renal function of IgA nephropathy patients.

(TIF)
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