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Abstract

I review the tensor renormalization group (TRG) algorithm and propose a new

algorithm to improve the accuracy of the truncation involved in TRG algorithm.

TRG has been developed and investigated to study critical phenomena in nature in

terms of statistical mechanics. Although the renormalization group (RG) theory has

been widely applied to investigate critical phenomena, TRG brings new insight into

RG so that a part of difficulties in RG theory, such as the block spin transformations

can not be exactly constructed for general systems, is resolved. Especially TRG is

free from the Monte Carlo simulations and is applicable to systems with complex

numbered Hamilton. This means that TRG could be free from the so called sign

problem. The lattice quantum chromodynamics (LQCD) at non-zero chemical po-

tential has this sign problem so that the nature of high density matter of hadrons is

not yet quantitatively understood from the first principle. If TRG is applicable to

LQCD, TRG could be one of the resolution to investigate the nature of high density

matter as it is free from the sign problem. Before applying TRG to LQCD, several

difficulties remain to resolve in TRG. In this thesis I focus on the improvement on

the truncation algorithm used in TRG. In TRG, the partition function represented

in a tensor product form will be evaluated recursively by repeating a singular value

decomposition and partial tensor contraction. To reduce the computational cost, the

dimensionality of tensor is truncated at every singular value decomposition. This

truncation is the key point of TRG to be effective, however, this introduces un-

wanted behavior, discontinuous jumps on observables, when the system parameter

is varied with a fixed small truncation cutoff. The origin of the jump has not yet

been understood well so far, I confirm that the level crossing of singular value at the

truncation cutoff occurs when the system parameter cross the jump. In this thesis

I further uncover the origin of the jump in terms of the properties of the singular

vectors associated with the singular values crossing the cutoff. Having been the

nature of the jump, I propose a method to relax the irregular behavior in TRG by

introducing a smooth cutoff in the truncation process. Two smooth cutoff proce-

dures are introduced and investigated in the two dimensional Ising model and the

effectiveness of the the proposed method is discussed.
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1 Introduction

In the particle physics the theories for elementary interactions are explained by

gauge theories. The theory of strong interaction, which explains the formation of

atomic nuclei in terms of quarks and gluons, is the SU(3) non-Abelian gauge theory

and the theory is called quantum chromodynamics (QCD). QCD has two interesting

properties. One is the asymptotic freedom and another is the quark confinement.

The asymptotic freedom is the property that the interaction strength logarithmi-

cally vanishing in the short distance due to the renormalization effect of the theory.

This means that the coupling constant of the theory depends on the energy scale of

the interaction where events take place. Quarks and gluons behave as free particles

in high energy (short distance) scale. Thanks to this asymptotic freedom property,

QCD can be systematically analyzed in terms of the coupling expansion using the

standard perturbation theory. In contrast to the asymptotic freedom, the mecha-

nism of the quark confinement is not theoretically established and it is only known

that the qualitative behavior of the coupling constant in the long distance, where the

interaction becomes strong. To understand the quark confinement, moreover, the

formation of proton or neutron, a non-perturbative treatment of QCD is required.

The lattice QCD (LQCD) has been invented by K. G. Wilson [1] to understand the

confinement of quark non-perturbatively. The formulation is based on Feynman’s

path-integral formulation of quantum systems, however, LQCD regularizes the con-

tinuous and infinite space-time to a discretized finite sized lattice grid so that the

path-integral is approximated to a multi-dimensional integration with finite degrees

of freedom. On the lattice the gauge symmetry, which is the most important prop-

erty of gauge theories, is maintained. With this lattice regularization, the numerical

computation of LQCD became possible and has been successfully applied to study

the properties of QCD.

One of the current concerns in LQCD is to determine the properties in finite

temperature and density environments, such as the phase diagram or the equa-

tion of state of quark-gluon plasma phase. The finite temperature in zero baryon

(quark) chemical potential (zero density) QCD has been studied using LQCD and

the quark-gluon phase transition and the chiral phase transition have been quanti-

tatively investigated. Improving the accuracy of the phase transition temperature
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1 Introduction

and the equation of state in zero density is being carried out using LQCD equipped

with super-computers. On the other hand the properties in finite density are not yet

precisely extracted from QCD and effective theories have been used. The main ob-

stacle to the finite density calculation of LQCD is the existence of the so called sign

problem in the simulation algorithm. The simulation algorithm used in LQCD is

based on the Monte Carlo method by which the Feynman’s path integral is evaluated

numerically at a low computational cost. This requires that the weight function in

the integrant should be real and non-negative. The action of LQCD in zero density

satisfies this requirement. However introducing the baryon chemical potential in

LQCD yields a complex phase to the action, which prevent us to utilize the Monte

Carlo method. The appearance of complex numbers in the weight is generally called

sign problem. Although several algorithms have been proposed to tackle the sign

problem [2–18], no efficient algorithm to avoid the sign problem within simulation

algorithms based on the Monte Carlo method.

The tensor renormalization group (TRG) method [19] is one of the promising

method to avoid the sign problem. TRG was successfully applied to investigate the

two dimensional Ising model in the pioneering work by Levin and Nave [19], where

the critical point of the finite temperature phase transition was quite efficiently and

accurately evaluated with TRG. After their work TRG has been realized to be a very

effective method to investigate the phase transition phenomena in statistical physics.

Many Intensive studies [20–32] have been carried out on the application of TRG to

quantum field theories in recent years. Several difficulties are realized in applying

TRG to practical quantum field theories such as Yang-Mills gauge theory in four-

dimension. The major bottleneck of TRG to the practical lattice field theories is the

exponential growth of the computational cost in the dimensionality of the system.

TRG in [19] has been applied to the two-dimensional Ising model so that the cost

is rather mild. A naive extension to the D dimensional Ising model shows that the

cost becomes large.In order to keep the accuracy of TRG at low computational cost

for a four dimensional lattice field theory, TRG still needs various improvements in

the methodology. Several exploratory studies have been carried out to reduce the

computational cost in higher dimensional models [33–35]. Other problem is that the

numerical result from TRG has the irregular parameter dependence. In this thesis

I focus on this irregular behavior and I propose an idea to suppress the behavior.

The structure of this thesis is as follows. In chapter 2 I give the brief review of

QCD and LQCD. In section 2.1 I explain the property of the strong interaction,

and the reason why LQCD is important. In section 2.2 I give Lagrangian for QCD.

LQCD is explained in section 2.3. The path integral on which LQCD is based is
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defined in subsection 2.3.1. The form of Lagrangian and the action for gluons and

fermions in the lattice are discussed in subsections 2.3.2 and 2.3.3, respectively. In

section 2.4 I explain the sign problem. TRG, which is used to avoid the sign problem,

is introduced in chapter 3. As an example I apply TRG to the two dimensional Ising

model in this thesis. The algorithm is given in section 3.1, and several results are

shown in section 3.2. In chapter 4 I study about the irregular behavior of result

from TRG. In section 4.1 I show the origin of the behavior and propose the idea

to suppress it. The former and the latter are studied in subsection 4.1.1 and 4.1.2,

respectively. I test the above idea and the numerical result is shown in section 4.2.

Finally I summarize this thesis and express the outlook in chapter 5.
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2 Lattice Gauge Theory

2 Lattice Gauge Theory

n the particle physics, all known elementary particles and interactions in nature

are classified by the standard model. One of the notable structure of the standard

model is that all elementary interactions named strong, weak, and electromagnetic,

are uniquely determined by gauge principle. The standard model is a composition of

three gauge theories. The nuclear force among protons and neutrons is very strong

than the repulsive electric force among protons to form an atomic nuclei. The nuclear

force now a days is not a fundamental interaction but a kind of covalent bonding

emerging from exchanging virtual pions. More fundamentally protons, neutrons,

and pions are all composite particles made of quarks and binded by a quark-quark

interaction which is called strong interaction. The quark-quark interaction is medi-

ated by gluons, which is very similar to that the electromagnetic interaction between

electrons is mediated by photons. The dynamics of quarks and gluons are described

by so called the quantum chromodynamics (QCD), which is one of the component

of the standard model. Similar to the electromagnetic theory, which is based on the

U(1) gauge symmetry, QCD is based on the SU(3) gauge symmetry. The properties

of quarks and gluons, which are appeared as fundamental degrees of freedom in very

high energetic collider experiments, are well described in terms of QCD. The success

of QCD at the high energy experiments is due to the property of asymptotic freedom,

the coupling constant is small in the high energy region, which enables us to utilize

the standard perturbation theory. In the high energy scale quarks behave as free

particles, which is called asymptotic freedom. On the other side, in the low energy

scale the strength of interaction becomes strong so that the standard perturbation

theory fails. The experiment fact that an isolated quark is not observed in nature

is an important property of QCD. Theoretically all physical properties of hadrons,

composite particles of quarks, should be explained in terms of QCD. However this

is difficult technically due to strong interaction strength originating from the non-

linear property of the interaction. In order to analyze QCD non perturbatively,

K. G. Wilson invented Lattice QCD (LQCD) in 1974 [1] by reformulating SU(3)

gauge theory on a lattice grid (discretized space-time). The discretized space-time

has been introduced as the UV-cutoff which is inevitable to regularize any quantum

field theory, the gauge symmetry was maintained exactly on the lattice by introduc-
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2.1 Strong Interaction

ing gauge link variables as the element of SU(3) group. This construction enables us

to define Feynman’s path integral of QCD mathematically well defined and opens a

way to numerical simulations without perturbation expansion in the coupling con-

stant. LQCD is one of the most important tool to investigate the properties of quark

sector from the first-principle in the standard model today.

In this chapter I briefly review the properties of strong interaction and the for-

mulation of LQCD. The last section of this chapter is devoted to describe the sign

problem of QCD which emerges in studying the properties of QCD with finite quark

(baryon) chemical potential.

2.1 Strong Interaction

The strong interaction has two important properties; the quark confinement and

the asymptotic freedom. The former says that we cannot observe an isolated quark,

and the latter says that the coupling constant becomes weak in short distance. In

this section I explain these properties using a phenomenological potential model

between static quarks.

A static potential for a pair of quark and anti-quark separated by r is known

phenomenologically as

V (r) ∝ −g
2(r)

r
+ σr + V0, (2.1)

where g(r) is the effective coupling constant, and σ is a proportionality factor called

the string tension. Using the potential (2.1), experimental results, e.g. mass spec-

trums of quarkonium, are explained. In (2.1), the Coulomb term dominates in small

r region, but the linear term becomes dominant in large r. It means that we need

infinite energy to observe an isolated quark, but it is impossible due to the pair

production of quark and anti-quark. This phenomena in the long distance is called

quark confinement, and it is caused by the linear term in eq. (2.1).

On the other hand, in the short distance the effective coupling constant g(r)

becomes zero asymptotically.This phenomena is called asymptotic freedom. As ex-

plained in the preamble of this chapter, the property of asymptotic freedom makes

the perturbative QCD self consistent in sufficiently high energy region as the relia-

bility of coupling expansion increases in weak coupling region. To study QCD in the

low energy region, however, we need a new method other than the perturbation the-

ory. LQCD is one of the non-perturbative theory by which we can study the physics

of the strong interaction in the low energy region where the non-perturbative effect

cannot be neglected.
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2 Lattice Gauge Theory

2.2 QCD

Theory for the strong interaction is non-abelian SU(3) gauge theory. Quark and

anti-quark fields is written as follows,

ψ(x) =

ψ1(x)

ψ2(x)

ψ3(x)

 , ψ(x) =
(
ψ1(x) ψ2(x) ψ3(x)

)
, (2.2)

where subscripts 1, 2 and 3 indicate the degrees of freedom for the color charge. The

components of ψi(x) are Dirac fields, and anti-quark fields are defined as ψi(x) ≡
ψ†
i (x)γ0. Here γµ is Dirac gamma matrix. Gluon fields which are carriers of the

strong interaction among quarks and anti-quarks are written as

Aµ(x) = Aa
µ(x)Ta, a = 1, . . . , 8. (2.3)

Here Ta is a generator of SU(3) group and I give the specific expressions in ap-

pendix A.

The Lagrangian for QCD is invariant under the SU(3) gauge transformation,

V (x) = eg0θ
a(x)Ta , i = 1, . . . , 8, (2.4)

where g0 is a bare coupling constant and θa is a parameter of gauge transformation.

Gauge transformations for quark and gluon fields are defined by

ψ′(x) = V (x)ψ(x), ψ
′
(x) = ψ(x)V †(x), (2.5)

A′
µ(x) = V (x)AµV

†(x) +
1

g0
V (x)∂µV

†(x), (2.6)

respectively. Using covariant derivative,

Dµ ≡ ∂µ + g0Aµ, (2.7)

we obtain the Lagrangian for quark field which is invariant under the gauge trans-

formations (2.5) and (2.6) as,

Lq = −ψ(x)(γµDµ +m)ψ(x), (2.8)

where m is the quark mass. The Lagrangian for the gluon field is also obtained as

Lg = −1

2
Tr[FµνF

µν ] = −1

4
F a
µνF

aµν , (2.9)

where the field strength Fµν is given by

Fµν = F a
µνTa ≡

1

g
[Dµ, Dν ] = ∂µAν − ∂νAµ + g0[Aµ, Aν ]. (2.10)

From eqs. (2.8) and (2.9) the Lagrangian for QCD is written by

LQCD = Lq + Lg. (2.11)
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2.3 LQCD

2.3 LQCD

In the previous section I showed the form of the Lagrangian for QCD (2.11). In

this section I give the Lagrangian for LQCD and show several numerical results

obtained using LQCD.

2.3.1 Path Integral

To define LQCD the path integral is usually used for the quantization. This

formulation is proposed by R. P. Feynman in 1948 [36]. In this formulation the

expectation value ⟨O⟩ of an observable O is described as the summation over all

possible paths between the initial and final state weighted by the action S[ϕ],

⟨O⟩ = 1

Z

∫
Dϕ OeiS[ϕ], (2.12)

where the partition function Z is given by

Z =

∫
Dϕ eiS[ϕ]. (2.13)

The measure of path integral Dϕ is equivalent to the product of measures for all

variables ϕ in the action S[ϕ]. In LQCD approach, the path integral is redefined

on the euclidian space-time finite lattice with momentum cut-off, and the non-

pertuabative calculation is just available.

2.3.2 Gluons on the Lattice

The lattice field theory is defined on the euclidian four dimensional hyperspace

whose volume is V = L1 × L2 × L3 × T ,

Γ =
{
x
∣∣x ∈ Z4, 0 ≤ xk ≤ Lk, 0 ≤ x4 ≤ T ; k = 1, 2, 3

}
. (2.14)

Linear size of each directions are arbitrary, but I take Lk = T ≡ L unless otherwise

noted in the following. In the lattice field theory the hyperspace (2.14) is descritized

by introducing the lattice spacing a, and the fields are defined on the lattice. It

means that coordinates x are replaced with sites n on the lattice,

x→ an = a(n1, n2, n3, n4), nµ = 0, 1, . . . , L/a, (2.15)

and quark fields ψ(x) is defined on the site, ψ(x) → ψ(n). Gluon fields on the

lattice, Uµ(n), correspond to the translation operator of quark field ψ(n),

ψ∥(n+ µ̂) = Uµ(n)ψ(n), (2.16)
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2 Lattice Gauge Theory

and Uµ(n) is called the link variable since it is defined on the link between sites on

the lattice. µ̂ in eq. (2.16) is the unit vector in µ-th direction µ and its norm is

|µ̂| = 1. The link variable Uµ(n) is written by the gauge field Aµ(n) as

Uµ(n) = eag0Aµ(n). (2.17)

The gauge transformation of link variable is defined as follows,

U ′
µ(n) = V (n)Uµ(n)V

†(n+ µ̂). (2.18)

From eq. (2.18) a trace of link variables on a closed path C, Tr[P[
∏

C U ]], is gauge

invariant, where P is the operator of the path ordered product. The Lagrangian

of gluon on the lattice, which corresponds to the one in the continuum theory eq.

(2.9), is written as

LW =
1

g20

∑
µ,ν

(µ̸=ν)

ℜ [Tr [1− Pµν(n)]] , (2.19)

where Pµν(n), called plaquette, is defined by the products of link variables on the

smallest square on the lattice,

Pµν(n) = Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν(n). (2.20)

Therefore the action of gluon fields on the lattice is given by the summation of the

Lagrangian (2.19) over the all lattice points,

SW =
1

g20

∑
n

∑
µ,ν

(µ ̸=ν)

ℜ [Tr [1− Pµν(n)]] . (2.21)

The above action (2.21) is called the Wilson gauge action or the plaquette action [1].

Note that the form of the action on the lattice has an arbitrariness, because essen-

tially important thing is that the action of LQCD in the continuum limit a/L → 0

should be the original action defined from the Lagrangian of QCD (2.8) and (2.9).

2.3.3 Fermions on the Lattice

To obtain the action for quarks on the lattice, one should replace the covariant

differential operator in (2.8) to the lattice covariant differential operator to maintain

the lattice gauge symmetry. The lattice regularization to the fermion action intro-

duces another kind of difficulty in the lattice theory. The massless fermion in the

continuum space-time possesses chiral symmetry, which is the important property

9



2.3 LQCD

when the low energy physics of QCD is discussed in terms of light mesons such as

pion’s and Kaon’s. The important property of QCD in the low energy scale is the

spontaneous symmetry breaking of the flavor chiral symmetry of SUL(3)xSUR(3)

when up, down, and strange quarks are considered. The naive construction of lat-

tice fermion action, unfortunately, yields an unwanted effect of the particle spectrum

of the fermion action, so called species doubling problem, where 16 massless quarks

are involved in the naive lattice action. This is known as the doubling problem. To

avoid the problem one often adds an additional term called the Wilson term, and

one obtain the action for quarks on the lattice as the following form [37],

SW = a4
∑
n

ψ̄(n)

[
1

2

∑
µ

{
γµ
(
∇∗

µ +∇µ

)
− ar∇∗

µ∇µ

}
+m

]
ψ(n), (2.22)

where 0 < r ≤ 1 is the Wilson parameter which is usually taken to be r = 1. The

forward and the backward differences are defined as,

∇µψ(n) =
1

a
[Uµ(n)ψ(n+ µ̂)− ψ(n)] (2.23)

∇∗
µψ(n) =

1

a

[
ψ(n)− U †

µ(n− µ̂)ψ(n− µ̂)
]

(2.24)

respectively. The action (2.22) is called the Wilson fermion action [1]. Note that

the form of the action on the lattice has an arbitrariness as is the case in the action

for gluons on the lattice.

In the Wilson fermion action (2.22) the Wilson term gives the discretization error

of O(a), while the Wilson gauge action has the error of O(a2). Practically controlling

the error of O(a) is hard, so the improvement procedure is studied [38–40]. To cancel

the error of O(a) B. Sheikholeslami and R. Wohlert proposed an additional term of

the additional five dimensional operator [41],

Simp. = a4
i

4
aκrcSWψ̄(n)σµνF̂µν(n)ψ(n), (2.25)

where σµν = (i/2)[γµ, γν ], κ is the hopping parameter,

κ =
1

2ma+ 8r
, (2.26)

F̂µν(n) is the clover type field strength,

F̂kl =
1

8a2
(Qµν(n)−Qνµ(n)) , (2.27)

Qµν(n) =Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν(n)

+ Uν(n)U
†
µ(n− µ̂+ ν̂)U †

ν(n− µ̂)Uµ(n− µ̂)

+ U †
µ(n− µ̂)U †

ν(n− µ̂− ν̂)Uµ(n− µ̂− ν̂)Uν(n− ν̂)

+ U †
ν(n− ν̂)Uµ(n− ν̂)Uν(n+ µ̂− ν̂)U †

µ(n), (2.28)
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2 Lattice Gauge Theory

and cSW is the coefficient known as the following [42],

cSW =
1− 0.656g20 − 0.152g40 − 0.054g60

1− 0.922g20
, 0 ≤ g0 ≤ 1. (2.29)

The action for quarks on the lattice with the discretization error of O(a2) is written

as

SWC = SW + Simp., (2.30)

and it is called the Wilson clover action or O(a)-improved Wilson fermion action.

Using actions (2.9) and (2.30), the vacuum expectation value of a correlation

function for observables O1, O2, . . . , On is given by the following form,

⟨0 |T (O1O2 · · ·On) | 0⟩ =
1

ZWC

∫
DU ⟨O1O2 · · ·On⟩Wick det (DWC[U ]) e

−SW ,

(2.31)

ZWC =

∫
DU det (DWC[U ]) e

−SW (2.32)

where T is the operator of the time ordered product, and DWC is the O(a)-improved

Wilson Dirac operator defined as

SWC = a4
∑
n,m

ψ̄(n)DWC[U ](n,m)ψ(m). (2.33)

⟨O1O2 · · ·On⟩Wick in eq. (2.31) means that all pairs of fermion and anti-ferion fields

involved in the operators are replaced by two point correlation functions in all possi-

ble ways by Wick contraction. In the LQCD analysis, the path integral in eq. (2.31)

is usually evaluated by the Monte-Carlo simulation.

2.4 Sign Problem

As I mentioned above, the lattice field theory is a powerful tool to study the

field theory non-perturbatively. Especially LQCD, which makes it possible to study

QCD numerically and non-perturbatively, had brought a lot of successes, e.g. a

prediction of hadron masses of grand state, evaluating standard model parameters

like the lambda parameter, and understanding the property of the chiral symmetries.

Physicists are also interested in QCD at finite density, however LQCD approach at

finite density is not available at this time. Figure 2.1 is an expected picture of the

phase diagram of QCD. As shown in the figure, LQCD approach is only applicable

to the region at or near the vanishing baryon chemical potential (µB = 0 region

11



2.4 Sign Problem

Barion chemical potential

Temperature

Hadronic phase

Quark-Gluon plasma

Color superconductors

LQCD approach is available

FIGURE 2.1 Phase diagram of QCD.

in the figure). At zero chemical potential, eq. (2.31) can be evaluated using the

Monte Carlo method on which the standard LQCD simulations at zero or finite

temperature relay as the weight det (DWC) e
−SW is real and non negative. When we

include the baryon (or quark) chemical potential in the LQCD partition function to

study the finite baryon density state of QCD, the fermion determinant det[DWC]

takes complex numbers in general. In this case we cannot employ the Monte Carlo

method to evaluate eq (2.31) as the weight det (DWC[U, µB]) is complex number.

Even if we could evaluate eq. (2.31) with an integration scheme (quadrature) on

the multi dimensional integration
∫
dUmu(n) on the link variables, the complex

phase from the determinant could rapidly oscillate so that the precise numerical

evaluation becomes impossible due to a large cancellation. This problem is called

the sign problem. To avoid the sign problem various method are proposed so far, for

example the reweighting method [2], Taylor expansion method [3,4], the method of

analytic continuation from imaginary to real chemical potential [5–13], the complex

Langevin method [14–16] and the Lefschetz-thimble method [17, 18]. The tensor

renormalization group is one such method. In this thesis I focus on TRG and I

mention the detail of TRG with the use of two dimensional Ising model in the next

chapter.
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3 Tensor Renormalization Group

3 Tensor Renormalization Group

TRG can be used to evaluate the partition function of a system on lattice very

approximately and effectively when the partition function has a form of so called

tensor network form. The advantage of the use of TRG is that TRG directly eval-

uates the partition function numerically without using any Monte Carlo method.

Thus TRG is free from the sign problem. Moreover TRG has only a systematic

error since a clear and computable definition of observable is given by TRG on the

lattice. M. Levin and C. P. Nave proposed TRG analysis for the two dimensional

Ising model [19]. Several applications of TRG to various models in the lattice field

theory have been studied [20–32]. However TRG analysis has several unsolved prob-

lems. One is that the use of TRG in the higher dimensional system is still hard due

to the computational cost. When we apply TRG method to an relativistic quantum

field theory, which is always defined on four-dimensional lattice, the computational

cost becomes quite large compared to the two-dimensional theory. Other problem

is that numerical results in TRG analysis has an irregular parameter dependence.

This irregular behavior causes a difficulty to evaluate the error.

In this chapter I explain TRG algorithm and its effectiveness showing some nu-

merical results for the two-dimensional Ising model. In the next section I introduce

the algorithm. The numerical results is given in the last section of this chapter.

I show the properties of TRG by investigating the Helmholtz free energy and the

specific heat by varying parameters of TRG.

3.1 Tensor Renormalization Group for 2D-Ising

Model

I define the Hamiltonian and partition function of the two-dimensional Ising

model. Then I transform the partition function into the so called tensor net-

work form by replacing the dynamical variables form Ising spin to index. I con-

sider a M × N finite lattice. The lattice site is labeled by n = (n1, n2), where

n1 = 1, 2, . . . ,M and n2 = 1, 2, . . . , N . The spin variable on the site n is denoted

as σn, and its value takes ±1. Here I consider two interactions, nearest neighbor
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3.1 Tensor Renormalization Group for 2D-Ising Model

interaction and external field interaction. The Hamiltonian of this model is written

as

H({σ}) =
∑
n

[
−J1σnσn+1̂ − J2σnσn+2̂ − hσn

]
, (3.1)

whereJ1, J2 and h are coefficients of interactions, and µ̂ is the unit vector in the

direction µ. From the Hamiltonian the partition function is,

Z =

(∏
m

∑
σm=±1

)
exp (−βH({σ})) (3.2)

=

(∏
m

∑
σm=±1

)∏
n

exp
(
J1βσnσn+1̂ + J2βσnσn+2̂ + hβσn

)
(3.3)

=
∏
n

∑
σn=±1

exp
(
J1βσnσn+1̂ + J2βσnσn+2̂ + hβσn

)
, (3.4)

where β is inverse of temperature T .

The first step to introduce TRG is rewriting the partition function Z in the tensor

network representation (TNR),

Z =
∑

i,j,k,l,...

Ti,j,k,lTk,m,n,p · · · . (3.5)

Figure 3.1 shows a schematic picture of TNR. T s build the network from the lattice,

and its indices behave as the link of the lattice. Note that tensors T on each site are

independent on the site index n , which will be explained more explicitly in below.

The contraction of the tensor in eq. (3.5) depend on the boundary condition of the

lattice. In this thesis I employ the periodic boundary condition.

Here I introduce the form of T . The exponential part in eq. (3.4) can be written

as

eJµβσnσn+µ̂ = cosh(Jµβσnσn+µ̂) + sinh(Jµβσnσn+µ̂) (µ = 1, 2)

= cosh(Jµβ) + σnσn+µ̂ sinh(Jµβ)

= cosh(Jµβ) (1 + σnσn+µ̂ tanh(Jµβ))

= cosh(Jµβ)
1∑

in=0

[σnσn+µ̂ tanh(Jµβ)]
in , (3.6)

eJµβσn = cosh(hβ) + σn sinh(hβ). (3.7)
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3 Tensor Renormalization Group

FIGURE 3.1 Picture of TNR.

Therefore I obtain the form of T as follows,

Z =
∏
n

∑
σn=±1

∑
in=0,1

∑
jn=0,1

[
cosh(J1β) cosh(J2β)

× (cosh(hβ) + σn sinh(hβ))

× σin
n σ

in
n+1̂

σjn
n σ

jn
n+2̂

tanh(J1β)
in tanh(J2β)

jn

]
(3.8)

=
∏
n

∑
σn=±1

∑
in=0,1

∑
jn=0,1

[
cosh(J1β) cosh(J2β)

× (σ
in+in−1̂+jn+jn−2̂
n cosh(hβ) + σ

in+in−1̂+jn+jn−2̂+1
n sinh(hβ))

× tanh(J1β)
in+i

n−1̂
2 tanh(J2β)

jn+j
n−2̂
2

]
(3.9)

=
∏
n

∑
in=0,1

∑
jn=0,1

[
2 cosh(J1β) cosh(J2β) cosh(hβ) tanh(J1β)

in+i
n−1̂
2 tanh(J2β)

jn+j
n−2̂
2

× δ(in+in−1̂+jn+jn−2̂) mod 2,0

+ 2 cosh(J1β) cosh(J2β) sinh(hβ) tanh(J1β)
in+i

n−1̂
2 tanh(J2β)

jn+j
n−2̂
2

× δ(in+in−1̂+jn+jn−2̂) mod 2,1

]
(3.10)

≡
∏
n

∑
in=0,1

∑
jn=0,1

Tin,jn,in−1̂,jn−2̂
(3.11)
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3.1 Tensor Renormalization Group for 2D-Ising Model

The TNR form of eq.(3.11) is exactly identical to the original partition function

(3.2) and there is no computational benefit from (3.11) when all the summation on

the bond indexes (in, jn) are taken exactly. Note that the tensor with four legs Tijkl

does not depend on the site index n. The system size N and M is simply involved

in the number of tensors contained in the tensor products. TRG approximates the

summation on the bond indexes by recursively taking the partial tensor products

around a site followed by an approximation on the resulting tensor reducing the

bond degree of freedom. The reduction of the degree of the bond index of a tensor is

achieved by applying the singular value decomposition (SVD) on the tensor. Before

applying SVD on tensor with four legs, I briefly explain the SVD for a matrix and

the approximation. SVD theorem states that aM×N matrix A can be decomposed

as

Ai,j =
M∑

m=1

N∑
n=1

Ui,mΛm,nV
†
n,j, (3.12)

where Λ is a M × N diagonal matrix, and U and V are the M ×M and N × N

unitary matrices, respectively. The singular values λ1, λ2, . . . , λmin(M,N) are assigned

on the diagonal component of Λ, Λ = diag
(
λ1, λ2, . . . , λmin(M,N), 0, . . .

)
. We assume

that the magnitude of the singular values lambdak have a hierarchy, and it is ordered

as λ1 > · · · . In this case we can approximate the matrix A with a low lank diagonal

components by dropping the minor components from the SVD. When the singular

values have a large gap at λDcut ≫ λDcut+1, we can approximate A very precisely as

Ai,j ≃
Dcut∑
m=1

Dcut∑
n=1

Ui,mΛm,nV
†
n,j (3.13)

=
Dcut∑
k

Ui,kλkV
†
k,j. (3.14)

Using the SVD, we can approximate T as

Ti,j,k,l ≃


Dcut∑
a=1

U(i,j),aλaV
†
a,(k,l)

Dcut∑
a=1

U (l,i),aλaV
†
a,(j,k).

(3.15)

Here we assume that the singular values of the matrix constructed from the tensor

has the desired gap at Dcut. To construct a matrix from a tensor with four legs,

there are several combinations in grouping the indexes. Two forms in eq. (3.15)

are used to take partial contraction of four tensors. In Figure 3.2 shows the tensor
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3 Tensor Renormalization Group
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FIGURE 3.2 The diagram of SVD for T．

network diagrams before and after the SVD of a T . From the singular value λk and

λk, and corresponding matrix U , U , V and V , one obtains a new tensor W ,

Wa,b,c,d ≡
χ∑

i,j,k,l=1

(
U(i,j),a

√
λa

)(
U (j,k),b

√
λb

)(√
λcV

†
c,(k,l)

)(√
λdV

†
d,(l,i)

)
, (3.16)

where χ is the degrees of freedom of the subscript i, j, k, l of Ti,j,k,l. New TNR is

defined by the new tensor W , and figure 3.3 shows the diagram. The approximation

introduced by the cut Dcut reduces the degree of freedom of the bond indexes on

the new tensor W at Dcut as a, b, c, d ∈ [1, . . . , Dcut]. The scale of the new TNR is

that 1/
√
2 times the original scale. It is corresponding to the renormalization of the

scale of the lattice. Repeating the above procedure, the partition function is can be

written by the contraction on by four tensors,

Z =
∑

i,j,k,l,m,n,o,p

Xi,j,k,lXk,m,i,nXp,n,o,mXo,l,p,j. (3.17)

If we employ Dcut in the last SVD approximation in the iteration, the computational

cost of the last truncation in eq (3.17) is about O(D6
cut).

3.2 Numerical Results

I explained the TRG algorithm and give the form of the partition function to

compute by TRG in the previous section. Here I show several numerical results

for two dimensional Ising model obtained by the use of TRG. In this thesis I set

parameters in Hamiltonian (3.1) to J1 = J2 = 1 and h = 0.

Figure 3.4 shows the computation time of TRG algorithm against the cutoff Dcut

for several V = (L/a)2 lattice. The vertical axis is the system time divided by

D6
cut. The lattice size effect for the computation time , which is proportional to the
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FIGURE 3.3 The diagram of the construction of W．

logarithmic function of the lattice size, is dominant for small Dcuts, but for large

Dcuts the computation time behaves O(D6
cut). The above behavior is consistent with

the analytic accounting of the computational cost of eq. (3.17).

Figure 3.5 shows the typical behavior of the singular value. The singular values

in this figure are obtained from the course grained tensor after four TRG steps.

The singular values are sorted by the order of magnitude, and labeled by the serial

number. The vertical axis is the singular value normalized by the maximum singular

value, and the horizontal axis is the serial number. One can find the degeneracy

in the singular values which structure will be more closely investigated in the next

chapter.

Once the partition function is obtained, from which we can extract any thermo-

dynamic observables. Here I calculate the Helmholtz free energy F and the specific

heat CV , wchich is obtained by the numerical derivative of Z, as examples,

F ≡ − 1

V β
log(Z), (3.18)

CV = −β2 ∂
2

∂β2
(βF ) . (3.19)

For the two dimensional Ising model there is the exact solution given in [43,44], then

we can compare the numerical results with the exact solutions. Figure 3.6 shows the

temperature dependence of the free energy density simulated on V = (216)2 lattice

for several Dcut. The black solid line is the exact solution, and the black dotted

line denotes the exact solution of the critical temperature of the two dimensional

Ising model, T exact
c = 2/[log(1+

√
2)] = 2.2691853 · · · . Increased Dcut, the numerical

results obtained by TRG are approaches the exact solution. Especially for Dcut ≥ 4

the relative error of the free energy is the order of 10−5. Examples of the value of
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3 Tensor Renormalization Group

FIGURE 3.4 Computation time to obtain Z by TRG.

the free energy obtained by using TRG algorithm at β = 0.35 for several lattices

and Dcut are in table 3.1. Comparing the numerical results of F with the exact

solutions, which are written in parentheses in the table, one can see that the TRG

yields quite precise approximations to the free energy, e.g. the result for Dcut = 32

on V = (1024)2 lattice is consistent within 8-digit. Figure 3.7 shows the temperature

dependence of the specific heat CV evaluated on V = (1024)2 lattice for severalDcuts.

The black solid line is the exact solution, and the black dotted line denotes the exact

Tc. In this figure one can see that the position of the sharp peaks converge to the

exact critical temperature as increasing Dcut. Fluctuations shown in the figure is

caused due to the irregular parameter dependence which is looked more closely in

the next chapter. Figure 3.8 shows the temperature dependence of the specific heat

obtained by TRG for Dcut = 32 on several lattices. The black solid line is the exact

solution, and the black dotted line denotes the exact Tc. From this figure one can

see that the result on the lattice with larger volume is closer to the exact solution

for the infinite volume.

The transition temperature Tc is evaluated from the peak position of the specific

heat CV . Figure 3.9 shows the Dcut dependence of the transition temperature Tc

evaluated on the V = (1024)2 lattice. The black points and the solid line are the

results obtained from TRG analysis, and the horizontal dashed line denotes the

exact solution of the critical temperature T exact
c . As one can see in the figure, the
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3.2 Numerical Results

FIGURE 3.5 Typical behavior of the singular value.

results for the sufficiently large Dcut approach the exact solution.
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lattice.
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3.2 Numerical Results

TABLE 3.1 Comparison table of the free energy F . The simulation

is done for β = 0.35. Values in parentheses are the exact

solution given in [44].

V Dcut F V Dcut F

(4)2 4 −2.4222181375925 (128)2 4 −2.3714194439588

8 −2.4222181375925 8 −2.3714328162421

16 −2.4222181375925 16 −2.3714819994446

32 −2.4222181375925 32 −2.3714822244363

(−2.4222181375925) (−2.3714822353167)

(8)2 4 −2.3744926368303 (256)2 4 −2.3714194439588

8 −2.3749307990750 8 −2.3714328162417

16 −2.3749713762661 16 −2.3714819994445

32 −2.3749713762661 32 −2.3714822244363

(−2.3749713762660) (−2.3714822353167)

(16)2 4 −2.3714400743885 (512)2 4 −2.3714194439588

8 −2.3714810565284 8 −2.3714328162415

16 −2.3715309388402 16 −2.3714819994444

32 −2.3715311887095 32 −2.3714822244363

(−2.3715311978132) (−2.3714822353167)

(32)2 4 −2.3714194462786 (1024)2 4 −2.3714194439588

8 −2.3714328351104 8 −2.3714328162415

16 −2.3714820305271 16 −2.3714819994444

32 −2.3714822561175 32 −2.3714822244363

(−2.3714822671500) (−2.3714822353167)

(64)2 4 −2.3714194439588

8 −2.3714328162440

16 −2.3714819994457

32 −2.3714822244364

(−2.3714822353168)
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4 Simulations and Results

In this chapter I focus on a problem of TRG analysis, then I propose and test an

improvement idea to avoid this problem.

4.1 Irregular Behavior in TRG Analysis

In figure 3.7 shown in section 3.2, the irregular behavior arise as the fluctuation of

the result. I focus on this irregular behavior in my work. In this section I identify the

origin of this behavior and propose an idea of the improvement of TRG algorithm

to avoid this problem.

4.1.1 Crossover of Singular Values

Here I consider a cause of the above problem. I expect that the cause is crossover

of singular values at Dcut. Eq. (3.15) can be rewritten as the form,

T ≃
Dcut∑
m=1

λm[u⃗m]
Tv⃗m ≡ T (1), (4.1)

where u⃗m and v⃗m are the left and right singular vector related to λm, respectively.

If Nth and N ′th singular values are degenerated, λN ∼ λN ′ , Nth and N ′th left

and right singular vectors, u⃗N , u⃗N ′ , v⃗N and v⃗N ′ , are commutative. Here I assume

N > N ′. The crossover of the singular vectors is not important when Dcut ̸= N .

However if Dcut = N , and u⃗N ̸= u⃗′N and v⃗N ̸= v⃗′N , the crossover affects the final

result.

Actually the effect of the crossover is observed in Figure 4.1. This figure shows

the temperature dependence of the relative residual of the free energy F obtained by

TRG simulations on the V = (16)2 lattice with Dcut = 8, 12, 16, 20. In this figure,

one can find some discontinuity points. It seems that there is no systematic tendency

on the location of the discontinuity points to the temperature and Dcut. These

discontinuity points causes an unexpected behavior shown in Figure 4.2, which is an

Internal energy obtained by the numerical derivative of the free energy. The irregular
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FIGURE 4.1 Temperature dependence of the relative residual of the free energy F

evaluated for Dcut = 8, 12, 16, 20 on V = (16)2 lattice. The gray band in an enlarged

figure at the bottom right is the temperature which the irregular behavior is caused.

behavior in terms of ”T” may lead one to misidentify a important observable like

a critical point. Avoiding to misidentify the observable, it is important to study

an origin and treatment of the discontinuity point. In order to see the origin of

these discontinuities , I trace the singular values near Dcut around the discontinuity

and found that level crossing occurs at Dcut and the discontinuity temperature as a

function of inverse temperature as described above.

For example I show a case with the discontinuity point on Tref ∼ 2.608 for Dcut =

12 simulation which case is magnified in figure 4.1. In this case, the crossover

behavior at Dcut = 12 occurs in the 6th SVD. The singular values λ12 and λ13 almost

degenerates and the replacement of singular vectors occurs when the temperature

cross Tref . The important point in this level crossing is the singular vectors are

completely different each others as,

u⃗
(T<Tref)
12 ̸= u⃗

(T>Tref)
13 , u⃗

(T>Tref)
12 ≃ u⃗

(T<Tref)
13 ,

v⃗
(T<Tref)
12 ̸= v⃗

(T>Tref)
13 , v⃗

(T>Tref)
12 ≃ v⃗

(T<Tref)
13 , (4.2)

even with the degenerate singular values. Thus the numerical value of T (1) (eq.

(4.1)) approximated by the SVD with Dcut shows the discontinuity when the tem-

perature cross Tref . Here, in the case of V = (16)2 lattice, SVD is done 6 times until
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evaluated for Dcut = 8, 12, 16, 20 on V = (16)2 lattice.

I compute the contraction of tensor.

Figure 4.3 shows the crossover between the 12th singular value and 13th. Open

and Filled circles in T < Tref are the singular values for λ12 and λ13, respectively.

When T becomes higher than Tref , the ordering of singular values is interchanged so

that open circles are for λ13 and filled circles are for λ12.

Here I show that the discontinuity points in figure 4.1 does not arise when the

above interchanging of singular values around Tref is not caused. In order to clar-

ify the effect of the crossover on the free energy, I introduce the following SVD

approximation, ,

T (2) =


T (1) for T < Tref ,
Dcut−1∑
m=1

λm[u⃗m]
Tv⃗m + λDcut+1[u⃗Dcut+1]

Tv⃗Dcut+1 for T ≥ Tref ,
(4.3)

T (3) =


Dcut−1∑
m=1

λm[u⃗m]
Tv⃗m + λDcut+1[u⃗Dcut+1]

Tv⃗Dcut+1 for T < Tref ,

T (1) for T ≥ Tref .

(4.4)

The replacement of singular pairs at Tref and Dcut is removed by hand in these tensor

approximations.
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FIGURE 4.3 Crossover between the 12th singular value and 13th one obtained in the

course of TRG analysis for Dcut = 12 on the V = (16)2 lattice. The gray band is the

temperature which the irregular behavior is caused. See text for lines and points.

Figure 4.4 is a comparison among three simulations obtained from the each defini-

tion T (1), T (2) and T (3). The blue dashed line corresponds to the original result with

T (1), while green and cyan thick lines are results with T (2) and T (3), respectively.

From this figure, we can see that the discontinuity disappears with T (2) and T (3)

for which the replacement of singular pairs in the approximation is absent. Thus I

confirm the origin of discontinuity is in the SVD approximation when the crossover

of degenerated singular pairs occurs crossing the temperature.

In the next subsection I propose a method to suppress this discontinuity.

4.1.2 Introduction of Smooth cutoff

In the previous subsection, I investigated the crossover effect of the singular vector.

This problem is caused by the sharp cutoff at Dcut in eq. (3.15), where the singular

vectors are completely replaced over Tref . I call this conventional method as ”sharp

cutoff method”. We can generalize the approximation by introducing a weight factor

in the SVD decomposition as

Ti,j,k,l ≃
χ∑

m=1

U(i,j),mλmV
†
m,(k,j)wm, (4.5)
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FIGURE 4.4 Comparison of the temperature dependence of the relative residue of the

free energy obtained from the definition T (1), T (2) and T (3) with Dcut = 12 on V = (16)2

lattice.

where wm is the weight factor. The sharp cutoff method corresponds to

wm =

1 for (m = 1, 2, ..., Dcut)

0 for m = Dcut + 1, ..., χ
. (4.6)

Similarly we introduce the same weight factor for the SVD approximation with

Ū, V̄, λ̄. This method might not pick entirely the important part in Z which should be

considered with same extent. To avoid this problem I propose to introduce a smooth

cutoff method. The idea is that if the weight factor w for singular values decrease

gradually in some region, the crossover effect is mitigated and Dcut dependence of

the result which computed by TRG simulation becomes smooth.

In this work I propose two types of smooth-cut: (A) a slanting cutoff and (B)

a Fermi distribution function like cutoff (a FDF-cut). (A) The slanting cutoff is

defined as the form which corresponds to eq. (3.15),

Ti,j,k,l ≃


Dcut∑
m=1

U(i,j),mw
(A)
m λmV

†
m,(k,l)

Dcut∑
m=1

U (l,i),mw
(A)
m λmV

†
m,(j,k),

(4.7)
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where w
(A)
m is the weight factor defined by

w(A)
m =

1 (1 ≤ m ≤ Dcut)

(Dcut+∆)−m
∆

(Dcut < m ≤ Dcut +∆)
. (4.8)

Delta is the width of the weight in which the factor linearly decreases from unity to

zero. (B) The FDF cutoff is defined as the form which corresponds to eq. (3.15),

Ti,j,k,l ≃


Dcut∑
m=1

U(i,j),aw
(B)
m λmV

†
m,(k,l)

Dcut∑
m=1

U (l,i),aw
(B)
m λmV

†
m,(j,k),

(4.9)

where the weight factor is defined as the form,

w(B)
m =

1

e(m−Dcut)/σ + 1
, (4.10)

where σ is the extent to which the weight factor w
(B)
m is squeezed. I show the shape

of the wight factors w
(A)
m and w

(B)
m in figure 4.5. In the next section, I test these

smooth cutoff methods.
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4.2 Numerical Results

I test the TRG with two types of smooth cutoffs, eqs. (4.7) and (4.9), on V =

(16)2 lattice. The parameters for the weight factors are ∆ = 3 and σ = 1 for

the slanting cutoff (A) and the FDF cutoff (B), respectively. Figure 4.6 shows the

relative residual of the free energy obtained with w
(A)
m and w

(B)
m . The dotted and

dash-dot lines are for the results from (A) and from (B), respectively. Comparing this

figure and figure 4.1, we can see that the irregular discontinuities are well suppressed

with the smooth cutoff methods. A smoother T dependence of observable like an

internal energy are obtained by using smooth cutoff methods, since a numerical

derivative of a smoother F in terms of T are evaluated safer. Figure 4.7 shows

the relative residual of the Internal energy for several Dcuts obtained by using the

smooth cutoff method (B) on V = (16)2 lattice. Although several small jumps still

survive, a smoother T dependence of the internal energy are observed compared

with figure 4.2. It imposes that the smooth cutoff scheme is effective to avoid the

unexpected behavior in the result obtained by sharp cutoff scheme.
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5 Summary and Outlook

In the field of particle physics, Lattice QCD has became one of the most important

tool and brought a lot of successful contribution to understand the physics of QCD.

Although hadron masses of grand state and any other observables are computable

with good accuracy by using LQCD approach, the analysis at finite density is still

hard due to the sign problem. Various methods are proposed to solve this problem,

and recently TRG, which is unrelated to the sign problem, is receiving a lot of

attention and studied.

Using TRG analysis, the numerical evaluation of the partition function is possible

when the tensor network representation is available for the target system. Especially

when the spatial dimension of the system is lower, more precisely in two-dimension,

the TRG method works very effectively and the approximation is quite accurate

even at the critical point of the system. However the application of TRG analysis

to the field theory is still hard because the computational cost grows exponentially

as increasing the system dimension. Another difficulty of the TRG is the systematic

control of the truncation error from the cutoff in the singular value decomposi-

tion approximation, namely the effect of Dcut. As shown in this thesis with the

two-dimensional Ising model as an example, the cutoff introduces uncontrollable

discontinuity in the free energy. This discontinuity behavior makes the system-

atic analysis of the phase transition or thermo dynamics properties difficult before

knowing the detailed property of a target system. Because quantum field theories

typically defined in four-dimension space-time, we have to employ TRG with a lower

cut off to have lower computational cost. However its thermodynamic properties are

not known a priori, the discontinuity introduced by the lower cutoff may spoil the

quality of results obtained with TRG.

In this thesis, I focused on the discontinuity caused by the cutoff and uncovered the

nature of the discontinuity using the two-dimensional Ising model. I showed that this

irregular behavior is caused by the crossover of the singular values in approximating

the tensor with truncated SVD. Having identified the origin of the discontinuity, I

proposed the smooth cutoff method and tested the method. I confirmed that the

smooth cutoff method actually works to relax the discontinuity in the free energy.

On the other hand the precision of the numerical result obtained with the smooth
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cutoff are decreased in comparison to the result with the same computational cost

for the sharp cutoff method. This is because the smooth cutoff method is a rough

approximation than the sharp cutoff method. Further improvement is expected to

realize the controllable irregular parameter dependence with good accuracy in the

future.
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Appendix

A Generator of SU(3) group

Generators of SU(3) group is written by using Gell-Mann matrices λa (a =

1, . . . , 8) as

Ta =
i

2
λa. (A.1)

Specific expressions of Gell-Mann matrices are as follows,

λ0 =

1 0 0

0 1 0

0 0 1

 , λ1 =

0 1 0

1 0 0

0 0 0

 , λ2 =

0 −i 0

i 0 0

0 0 0

 ,

λ3 =

1 0 0

0 −1 0

0 0 0

 , λ4 =

0 0 1

0 0 0

1 0 0

 , λ5 =

0 0 −i

0 0 0

i 0 0

 ,

λ6 =

0 0 0

0 0 1

0 1 0

 , λ7 =

0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 . (A.2)

Ta is anti-hermitian due to the property of Gell-Mann matrices, and it satisfy a

orthonormality,

Tr[TaTb] = −1

2
δab, (A.3)

and a commutation relation,

[Ta, Tb] = fabcTc. (A.4)

fabc is structure constants in SU(3) group which is completely antisymmetric for

(a, b, c), and it satisfy

f123 = 1,

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2
,

f456 = f678 =

√
3

2
. (A.5)
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Completeness of Ta is written as

T a
ijT

a
kl =

1

2

(
δilδjk −

1

N
δijδkl

)
, (A.6)

and adjoint representations are given by

Ad[Ta]bc = −fabc. (A.7)
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