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1. Introduction

There is a traditional field of mathematics education research on indirect proof. Freudenthal (1973), a
leading mathematician in mathematics education research, addressed this topic in the early stage of this research field.
He characterized indirect proof as having the role of a heuristic device and argued that students must experience it as
a useful pattern of thinking before encountering it as a form of writing. Since then, it has been commonly recognized
that students find it difficult to learn indirect proof. There is a longstanding debate regarding the major factors
influencing this difficulty: the special structure of argumentation of indirect proof (Antonini & Mariotti, 2008; Leron,
1985) and its mathematical contents (Barnard & Tall, 1997; Dawkins & Karunakaran, 2016). Researchers continue
to explore how students can overcome the difficulty of indirect proof with the support of their teachers (cf. Hayata,
Hakamata, & Uegatani, 2018). However, most current studies in this field are biased toward particular types of
indirect proof, namely proof by contradiction and by contraposition. Although all Japanese mathematics textbooks
for eighth grade students prove the converse of the Pythagorean theorem by coincidence and the converse of the
inscribed angle theorem by conversion, there are only a few studies on these types of indirect proof (e.g., Byham,
1969; Uegatani, Hayata, & Hakamata, 2019). There is thus a need for more studies on these two specific topics.

This paper aims to report how students engage in a mathematical activity, especially to construct proof by
conversion in a mathematical lesson, and to hypothesize a potential barrier against indirect proof. The structure of
this paper is as follows. In Section 2, we will review the existing literature. In Section 3, we will propose two
hypotheses and develop our research questions based on the results of the literature review. Further, in Section 4, we
will describe the design of an experimental lesson and its expected results from our hypotheses. Section 5 will explain
our method, and Section 6 will report its actual results. Subsequently, in Section 7, we will discuss and hypothesize
a potential barrier against indirect proof by conversion in particular and indirect proof in general. Finally, in the last
section, we will provide a conclusion, stating that there is an interwoven relationship between insufficient recognition

of the goal of proving and ineptitude of using local mathematical techniques for proving.

2. Literature review
2.1. What is proof by conversion?

According to a famous Japanese glossary of terms in mathematics education, proof by conversion is defined



as follows:

Suppose that there is a cluster of theorems. Suppose also that the assumptions of these theorems cover all possible
cases of a topic and that any two conclusions of the theorems do not hold at the same time (i.e., they are mutually
exclusive). Then, a method of proving that all the converses of these theorems hold is called proving by conversion.

(Hasegawa, 2000, p. 296; originally written in Japanese and translated into English by us for this paper)

Let us present this definition more formally. Suppose that there is a cluster of theorems: P; = Q4,P, = Q,+, P, =
Q.. Suppose also that Py, P,,--+, B, are collectively exhaustive and that Qq, Q5, -, @,, are mutually exclusive. Then,
we can say that all the converses of these theorems, that is, Q; = P;,Q5 = Py, -, Q,, = P,, hold.

The validity of proof by conversion can be proved by contradiction as follows.

Assumptions: Py - Q, - [1]
P; = Q, - [2]
Pn - Q, - [n]
P1VP2V---VPn=T [*]
QAQ;=F(vijii#)) - [*]

(T means true; F means false)

Conclusions: @, = P;

Qz_>P2

Q, = Pn

Proof:  Suppose, for the sake of contradiction, that there exists an integer k (1 < k <n) such that —(Qy — Py)
holds. Then, =(Q; = Py) © —(=Qx V P,) & Q) A =Py -+ [***].
By the assumption [*], at least one of P;, P,,::-, or P, holds.
Let i be an integer such that P; holds.
If i =k, P; contradicts the supposition [***].
Hence, we have i # k, and Q; holds by the assumption [i].
Since Q; A Q) does not hold by the assumption [**], @, does not hold.
This contradicts the supposition [***].

Therefore, for any integer k (1 < k <n), Q, - Py.

2.2. The inscribed angle theorem, its converse, and their proofs in Japanese textbooks
Generally, in Japanese ninth grade mathematics textbooks, the inscribed angle theorem is described as

follows: 1) an inscribed angle that subtends a circular arc is half of the central angle that subtends the same circular

arc; 2) inscribed angles that subtend the same circular arc are equal. On the other hand, the expressions of the converse

of the inscribed angle theorem are complicated: suppose that two points C and P are on the same side of a straight



line AB; if ZAPB = £ACB, then the four points A, B, C, and P lie on a common circle. From a mathematical point
of view, there are two problems about how to deal with these two theorems in Japanese junior high school
mathematics textbooks.

First, the converse of the inscribed angle theorem is not really a converse in the strict sense. Japanese junior
high school students learn the converse of the proposition “if P, then Q” as the proposition “if @, then P.” The
abovementioned converse of the inscribed angle theorem does not fit into this definition of a converse. We can, for
example, better describe the inscribed angle theorem and its converse as follows. The inscribed angle theorem is that,
suppose that two points C and P are on the same side of a straight line AB; the four points A, B, C, and P lie on a
common circle, then ZAPB = £ACB. Its converse is that, suppose that two points C and P are on the same side of
a straight line AB; if ZAPB = £ACB, then the four points A, B, C, and P lie on a common circle. However, since
these new descriptions do not mention the relationship between the inscribed angles and the central angle, they are
still problematic.

Second, by the definition of proof by conversion presented in the previous section, it is wrong in the strict
sense to say that we prove the converse of the inscribed angle theorem by conversion. Proof by conversion can be
applied to a cluster of theorems. Hence, for example, it can be applied to the following cluster of theorems: suppose
that two points C and P are on the same side of a straight line AB; 1) if ZAPB < £ACB, then P lies outside of the
circumscribed circle of the triangle ABC; 2) if ZAPB = £ACB, then P lies on the circumscribed circle of the triangle
ABC; 3) if £APB > £ACB, then P lies inside the circumscribed circle of the triangle ABC. In Japanese junior high
school textbooks, the cluster of these three theorems are virtually proved by conversion, and only the second theorem
is displayed as the converse of the inscribed angle theorem.

2.3. Cognitive unity of a theorem

An influential study on indirect proof by Antonini and Mariotti (2008) argued about the potential of the

idea of the cognitive unity of a theorem (Garuti, Boero, & Lemut, 1998). It is based on the continuity between

conjecturing and proving. Garuti, Boero, and Lemut (1998) proposed the following tentative hypothesis:

the greater is the gap between the exploration needed to appropriate the statement and the proving process, the greater
is the difficulty of the proving process
(p. 347, italics in the original)

A practical implication for teaching proving in general can be drawn from this hypothesis. A mathematics teacher
should provide her students with opportunities to explore a target mathematical topic, to produce a conjecture, and
to prove it in sequence in a lesson or in some lessons. A traditional style of proving tasks “prove that...” is less
informative for students in terms of what they should do. Students obtain not only a conviction of what statement is
true but also a clue for constructing its proof, through a sequence of exploring and conjecturing activities.

Recent development of research on cognitive unity has focused on rationality from Habermas’ perspective.
Boero (2017) analyzed students’ think-aloud solving processes and identified a need of cognitive unity on epistemic,
teleological, and communicative rationality between conjecturing and proving. Furthermore, it is worth mentioning
the theoretical construct of meta-cognitive unity in indirect proof proposed by Arzarello and Sabena (2011). They

argued that the difficulty of proving in an indirect way lies in the rupture between a teleological aspect at the meta-



level and an epistemic one at the ground-level. Indirect argumentations often inform students why a statement holds
and why its negation does not hold. Thus, after they make indirect argumentations, they lose their motivation toward
the next proving process.

Over twenty years after Garuti, Boero, and Lemut’s (1998) proposal, some readers of the current paper,
who acknowledge mathematics learning through activities, may think that a didactic approach like the cognitive unity
approach is trivial. It is certainly easier for students to construct a proof if the two activities of conjecturing and
proving are unified in a sense. However, Antonini and Mariotti’s (2008) implication goes beyond this triviality. It is
especially with regard to proving by contradiction that they argue the efficiency of the cognitive unity approach.
Given a task of proving a statement P, students can never know where a contradiction comes from in advance. For
this reason, if they want to prove the given statement P, they must temporarily shift from the current proving stage
to the exploring and conjecturing stages before successfully proceeding to proof construction. For example, in the
case of proof by contradiction, students should conjecture what a statement R is such that both R and =R
simultaneously hold. Since there is a large gap between an explicit requirement to construct a proof of the given
statement P and an implicit requirement to conjecture the statement R different from P, the construction of an

indirect proof (not an indirect argument) seems to be unnatural for students and not spontaneous.

3. Hypotheses and research questions: Teacher’'s role and a shift of attention to a
complementary set

Based on the result of the literature review presented in the previous section, we believe that junior high
school students seldom spontaneously prove the converse of the inscribed angle theorem by conversion. On the other
hand, we also believe that direct teaching of proving by conversion is less fruitful. If students cannot understand the
motivation toward proving by conversion, they cannot acknowledge this method in general. At most, they understand
that the method is only for the converse of the inscribed angle theorem. They are unlikely to become willing to use
this method.

To avoid the problem that students cannot acknowledge the method of proving by conversion, it seems
important to create the missing cognitive unity in proof by conversion, which is a role that mathematics teachers
should fulfill. If students solely engage in mathematical activities for exploring a given topic, making a conjecture,
and proving it, then indirect proof construction can never occur spontaneously because there would be cognitive
ruptures. Hence, our first hypothesis is that if the teacher bridges such ruptures suitably and at an appropriate time,
then students can engage in such mathematical activities with cognitive unity.

Moreover, we also propose a potential difficulty in constructing indirect proof: a shift of attention to a
complementary set. This idea can be compared with the idea of a shift of attention from the particular to the general
proposed by Mason (1989). For students to construct direct proof through the cognitive unity approach, they require
a shift of attention from the particular to the general. For example, suppose that students explore a property of the
sums of two odd numbers. Then, they may interpret Fig 1(A) as Fig 1(B) through activities. This change of
interpretation is characterized as a shift of attention from the particular to the general. This type of shift of attention
can occur even if they consider only pairs of odd numbers. There is no need to consider pairs of odd and even numbers

nor pairs of even numbers, that is, elements in the complement of the set of all the pairs of odd numbers. On the other



hand, the construction of indirect proof requires a different shift of attention. When we want to prove the converse of
the inscribed angle theorem by conversion, we must consider not only the case of ZAPB = 2ACB but also the cases
of ZAPB < £ACB and 2ZAPB > £ACB. This extension of the scope of consideration can be described as a shift
of attention to the complement of the initial scope. When we want to prove a statement by contradiction or by
contraposition, we must also explore under the condition that the negation of the initial conclusion holds. This
extension can also be described as the same type of shift of attention. We thus characterize such a flexible way of

exploration as a shift of attention to a complementary set.
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Fig 1: An example of shifts of attention from the particular (A) to the general (B)

As described by Mason (1989), a shift of attention from the particular to the general is a “delicate” shift.
The structural similarity between before and after holds. However, this similarity implies the existence of cognitive
unity between the particular and the general statements. On the other hand, a shift of attention to a complementary
set is a kind of turning back. It means that we expand our scope, discarding the narrower scope. Choosing this strategy
is choosing a roundabout route. Therefore, an indirect way of proving is somehow artificial and is unlikely to be
spontaneous. Following the abovementioned first hypothesis, we therefore propose the second hypothesis that this
cognitive rupture between going in a direct way and in a roundabout way should be bridged by the teacher.

Now, we present our research questions, which are as follows: What didactic supports by the teacher
establish her students’ cognitive unity between direct and indirect exploration, especially when students are expected

to prove by conversion? How do students engage with such supports?

4. Lesson design

To explore the two abovementioned research questions, we designed an experimental mathematics lesson
for ninth grade students and observed the implemented lesson. The lesson consists of four stages: exploring,
conjecturing, proving, and summarizing.

First, students engage in a mathematical activity of exploring the position of a point P. We interpret the
converse of the inscribed angle theorem as a property of the single point P, rather than as a property of the four points
A, B, C, and P. At this stage of the lesson, the teacher poses the following task: suppose that there is a triangle ABC
such as that shown in Fig 2; now, we want to get a point P, where ZAPB = £ACB; then, where is P? Since students
know the inscribed angle theorem, they conjecture a set of all possible points such as those shown in Fig 3 or Fig 4.
In both figures, the bold lines are potential candidates for the location of P. Because we aim to emphasize “the same

side of the line AB,” it is not assumed that the two points C and P are on the same side of the line AB.
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Fig 3: The first conjecture of students’ responses responses (triangles ABC and ABC’ are

congruent)

Second, students engage in a classroom discussion to formulate a conjecture. After sharing students’
answers to the task in the first stage, the teacher asks them if the point P cannot be on the circumscribed circles of the
triangle ABC or ABC’. This question is expected to play the role of shifting students’ attention to the complement of
the initial scope. Since they have already finished the initial task, their answers to this question are likely to be yes.
However, we conjecture that students cannot provide mathematically rigorous reasons for their affirmative answer.
They are likely to recognize that ZAPB > 2ACB if P is inside the circumscribed circle of the triangle ABC, and
that ZAPB < £ACB if P is outside the circumscribed circle of the triangle ABC, but their understanding will
probably remain intuitive. They are unlikely to immediately construct the proof. Thus, this stage is a conjecturing
stage. The teacher summarizes students’ conjecture and asks the following key question: How different are £APB
and £ACB if P is inside or outside the circumscribed circle of the triangle ABC? This question is needed, based on
the second hypothesis presented in the previous section. A shift of students’ attention to the complement of the initial
scope is insufficient to motivate them to prove in a mathematically rigorous manner, because they may obtain
satisfaction from their intuitive understanding. We conjecture that this question plays a role of orienting them toward
the construction of proof, that is, it succeeds in bridging the cognitive rupture.

Third, students try to conjecture their answers to the abovementioned key question and to prove them. They
are expected to smoothly construct the proof because of the established cognitive unity.

Fourth, the teacher shares students’ way of proving and summarizes their proved conclusion as the converse

of the inscribed angle theorem. This is the goal of this experimental lesson.



5. Method

The experimental lesson was conducted in 2019 in a ninth-grade class at a Japanese junior high school
attached to a national university. It was a fifty-minute-long lesson. Twenty female students and twenty-one male
students participated in the lesson. The teacher of this lesson, who regularly teaches mathematics in this school, is
the first author of this paper. We video-recorded the lesson and obtained a copy of students’ worksheets after the

lesson. Two video cameras, one at the front and the other at the rear, captured the classroom discussion.

6. Result of the experimental lesson

The lesson proceeded based on the abovementioned design. At the exploring stage, referring to Fig 2,
students explored the position of a point P. About three minutes after the start of exploration, because several students
could not find a possible location of the point P, the teacher suggested a possible location on the blackboard (Fig 5).
About two more minutes later, the teacher advised all students to plot some potential candidates for grasping a full
picture. The teacher drew the circumscribed circle of the triangle ABC on the blackboard about three minutes before
the conjecturing stage, so that students could refer to it at that stage. The exploring stage lasted for about eleven
minutes.

The conjecturing stage started when the teacher asked students to stop exploring. Students were asked about

the possible position of P. One student answered as follows:

S1: We can put (point P) everywhere on the circle (drawn on the blackboard).
T:  Everywhere? (Pointing to a point on the minor arc) Can we put it here?

S1: Ah, on the circle, except on the shorter arc AB.
The teacher asked a different student who thought like S1 to explain why.

S2: Using what was learned in the last class, that inscribed angles that subtend the same arc are equal, the angles

(£APB) are the same wherever (the point P is).
The teacher then asked if there were students who chose different locations.

S3: The arc AB .... Under the arc AB. The arc AB is on the upper side.

T: Do you mean that because the arc AB is on the upper side, the circle is on the lower side (of the arc AB)? What
circle did you draw?

S3: Passing through A and B....

T:  What circle? We can draw various sizes of circles passing through the two points A and B.

S3: A circle, which is the same size as the circle now on the blackboard.

After this interaction, the teacher confirmed that the inscribed angle theorem is also applicable to this case.

The teacher then asked all students if that was all and encouraged them to discuss with each other. About
one minute later, the teacher indicated a point and asked if we could put point P at that point (Fig 6). This question
seemed to play the role of shifting students’ attention to the complement of the initial scope. Two students, S4 and

S5, said no, but they could not provide sufficient reasons. They only argued that it was because the point was not on



Fig 5: The teacher’s suggestion

Fig 6: The teacher’s question: Can we put the point P here?

the circle. The teacher thus additionally asked how large £APB is if ZAPB # 2ACB. A student answered as

follows:

S6: It becomes smaller.

T:  Oh, OK? When we put point P outside the circle, is £APB smaller?

The teacher continued to ask what would happen when we put point P inside the circle. A different student answered

the following:
S7: It becomes larger.

After this confirmation, the teacher summarized the discussion and formulated a fact and two conjectures. The fact
was as follows: by the inscribed angle theorem, when we put point P on the circle, ZAPB = £ACB. The conjectures
are as follows: 1) when we put point P inside the circle, ZAPB > £ACB; and 2) when we put point P outside the
circle, ZAPB < £ACB.

The teacher moved toward the next proving stage, giving the following instruction: “If we can show how
different 2APB and £ACB are, then we can find that these are not equal. [...] Divide them into inside and outside
cases and then consider each case. Please write down your explanation.” This instruction corresponded to the
designed key question. Students subsequently started to prove. About five minutes later, the teacher again asked all
students how different ZAPB and 2ACB are, and advised them, “it is fine if we can show that there is a difference
between this and this; it is fine if we can show that the difference is the same size as that in the figure.” After that,
the teacher encouraged students to discuss with each other. About three minutes later, the teacher added another
advice: “if it is difficult for you to directly compare [the angle P] with the angle C, then construct an angle somewhere
the same size as the angle C; it is fine if we can show that the angle P is evidently larger or smaller than the angle.”
After this final advice, the teacher found that at least two students constructed the expected proof.

About twelve minutes after the start of the proving stage, the teacher decided to share the expected proof
with all students, starting with the case that point P was inside the circle. The teacher confirmed that if we could show
that ZAPB = 2ACB + “a positive number,” then it would be evident how large 2APB is in comparison with ZACB.

Showing Fig 7 to students, the teacher asked a student which angle was the same size as the difference between



Fig 7: The shared figure for proving

(the label is added by us to enhance clarity of the image)

2APB and £ACB. The student seemed confused for a moment but soon responded as follows:
S8: Which angle? ... Ah, (£APB is equal to) £PQB + 2QBP.

Based on this response, the idea of applying the exterior angle theorem was shared in the classroom.
Additionally, the teacher and students constructed a similar proof for the case that point P was outside the circle.
Reflecting on these two proofs, the teacher formulated the converse of the inscribed angle theorem as an implication.

Finally, after completing the lesson, the teacher summarized the contents of the lesson.

7. Discussion

In this section, we reflect on students’ actual responses in the experimental lesson from the perspective of
cognitive unity. We do not intend to discuss how deeply each student understood the method of proving by conversion.
Rather, we intend to analyze the classroom situation and, based on that, to derive some implications. We discuss two
implications here.

First, students cannot explicitly shift their attention to the points inside or outside the circle by themselves.
Two students, S4 and S5, could not provide a sufficient reason when the teacher asked if we could put point P inside
the circle. They could not even focus on the difference between 2APB and ZACB. We can interpret their quandary
as follows: although they implicitly consider the complement of the initial scope, they do not feel the need to
explicitly consider the difference between 2APB and ZACB. As we hypothesized, there is a cognitive rupture
between focusing on the initial scope and its complement. Mathematics teachers should bridge this rupture at least
when they first encounter a new type of indirect proof.

Second, it is noteworthy that students did not seem to express reluctance to understand the logic of proof
by conversion; rather, they expressed their confusion because they could not grasp what they should show. Even if
they could retrospectively understand that the application of the exterior angle theorem is useful for showing the
difference between the two angles, only a few students were able to prospectively apply the theorem without the
teacher’s advice. This suggests that there is a content-specific barrier against indirect proof: an interwoven

relationship between insufficient recognition of the goal of proving and ineptitude of using local mathematical



techniques for proving. As Arzarello and Sabena (2011) argued, we can also argue that this is a kind of meta-cognitive
rupture. However, our claim is slightly different from theirs. We argue that this is an issue of mathematical mindset
rather than that of a meta-cognitive rupture. The two elements of the barrier we proposed are interwoven. On the one
hand, if students were skilled with the application of the exterior angle theorem to proving the difference between
two angles, then they could easily understand what they should show. On the other hand, if they understood that the
goal of proving was the graphical illustration of the difference between the two angles, then they could come up with
the application of the exterior angle theorem in that context. It is suggested that proof by conversion and the sub-
proofs themselves are not difficult for students, but that their ineptitude of using local mathematical techniques for
proving prevents them from naturally completing proof construction. Because Japanese mathematics curriculum does
not strongly intend to cultivate students’ skills related to local mathematical techniques, this is an environmental
barrier against indirect proof. This is also a new barrier since it is different from the difficulty in understanding the

structure of indirect proof as well as in understanding the contents of the proof.

8. Conclusion

This paper reported how students engage in an experimental lesson and hypothesized a potential barrier
against indirect proof. Through the lesson, on the one hand, we realized a didactic support for shifting students’
attention to the complement of the initial scope; one the other hand, as a potential environmental barrier against
indirect proof, we indicated an interwoven relationship between insufficient recognition of the goal of proving and
ineptitude of using local mathematical techniques for proving. Based on this observation, we found potential answers
to our two research questions. First, a didactic support for shifting students’ attention to a complementary set can
bridge the cognitive rupture between direct and indirect exploration. Second, if they are skilled with using local
mathematical techniques, students can smoothly complete the construction of proof by conversion. Our findings
therefore suggest that, to develop a better lesson design, it can be useful to identify local mathematical techniques
necessary for the construction of indirect proof and to analyze how students learn those techniques. Such an analysis
can help teachers conjecture when and why students cannot smoothly continue proof construction. However, our
claims are only based on a single classroom observation, and the generalizability of our findings are thus limited.

Further empirical research on this topic is therefore necessary.
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1. Fi#

BABEMRIZRBNTE, & <HOREBEREH O SVTWND. (153 E B2 HERE S8 O RN TH
DIMTOWTIE, WAEDS 2 DI TER, MEEREH O EIZH KT 520 ) FE (Antonini & Mariotti,
2008; Leron, 1985) &, M#EREM THRONLEFHINEIZHDHEVD F4E (Barnard & Tall, 1997; Dawkins &
Karunakaran, 2016) 23&%. L2>U7eh 0, BIFEGEIINIZEIE, & BLESCKHMBREEE WO KR E DX A 7 D HERE
IR TS, AARDEFEOBFRE T, EBIELR—ELN) 2 SOZAT ORBEGEEIHIEL RO TV,
ZNHDOMZEIFIRBA TN D (iﬁ(d‘foﬁb VEIE LTI, filZ1E, Byham, 1969; Uegatani, Hayata, & Hakamata, 2019).
FTCARRRIL, FRICHRHAEICE S 2 Y T, PO CEIEEHER T 572D OFUFNIEENC I T, A
DEDINTIRDFEOI DA HAE L, IEEEEINCKRT T HEEEIZ DWW TGRA N THIEA BNET 5. fiame L TR
FETIL, SET 5 BAEDO A+ 5372585k ERE D720 O [T 72 B F I E AR O R ZAD M O, 8 B AKAFRIBERO
AR, HIEERERN e D RRREL LTl 3 2.

2. XHLEax—
2.1, ERiEREEEIA?

—HEOEE P> QP> Qy -, By > Qq BBV, PPy, Py 1T T XRTCOLHAERILTEY, ho,
Q1, Q2+, Q 1T APHAI THHETD. ZDLE, —FFEDOEHT N TOMER Q; - P1,Qy = Py, Qy > By
IMEEONLD. ZOFFEEFH LI GENEZERRIE L)),

22. HAADERE, £0OH, BRIZEITSENLDEEA

ElKi:}o‘m‘éW%%@Ei@k%@i@@%ﬂ‘ﬂ_ob\f X, M REAIIBA TV, T, MEADOTH
DA, P2 AEATEI W OB T, W25 TRV EIZHD. P - Q IZHLT, IEFEIC Q » P D
2725 TUVVRND TH 5.

Fo, —I, EHRIESH OO TODESI TS, ZILh IEFEICITSHRIEIC e > TR, BRfaiEE, —
FEDE PR L T FH SN DREIER DO THh-C, HJE A O E BRI CEDIEFNE TITRWING THD.
2.3. TEORMMM—14

WA OB REIBEERMFZEO 1 -2, Antonini and Mariotti (2008) 1%, [EHEEOFRENAIHKE— ) (Garuti, Boero,
& Lemut, 1998) LW\ T AT 4703, EEHNRBIZETe ). EBLORIAT —MEEE, ZOSHEFI A3
DI E PRI, ZOFEH OMFRIZH HIEN K ETFIUTREWIZE, FEAOBRRICE! %l%ﬁ‘%ké«
2BV AE BB IR 2, PRICIFR LAE B R IR NI ICHE — 72 ChHDLZENE LT 5B
H%. ITH-TIL, Boero (2017) 23—/ N—< 2O HBHEOE S5, R — LN S BMEICB W TR T
WAMLEAEABSNZ T2, Arzarello and Sabena (2011) 73, RIEEREBHICEA OFBEIRIR—IEEL T, AXFH
AR — AR L 720 L T 5.

BFHTEEN O HEMESUENDMES TR W T, SBAIRHR— DT AT o 7 I B I R 2 55512872
STE. LnLenh, MEGERICBWTE, ARAEH T REFHEEERICTEA T REFNRTILTNDD,
ZDEBHGER T REFWHD, SEEENCADRINDIME THL LIRSV (Fl21E, FEIE T, FEEE
IDE T REDPDRIFETITZRVY). D728, BIEEGERIZH W TE, ZORMBKRK —EnLY—BEEICR
HEBZHND.
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3. REREUH—F -0yl ar BEIDIKE IJHﬁ%Af\O),I DT

FATWIIEINDRBESNVDIGERIE, IRD 2 D ThD. H—IT, ZEHHTRIEEFE L FE 2 0D 78 540 HY Wi 2 15 5]
PR IT YR B AR T CHRE T B, A ?’gx’ﬁﬂE’Jﬁ*‘@%%otéﬂt%ﬂ’ﬂﬁﬁb CIRARTeZ M TED.
B AT, MEGEIIXEIVER R IR DT, HoBE IR TICEIE L TRIR T LW EBEHDHIT
BN I DG L DL B THD. FriZHE _OMGEIE, EAERIERZEICIITS Mason (1989) O HRFERNG — ik ~D
HEEOBAT FmE b TauUd, MIEERIERZCI LTI OERZEHTH O DRE S ~DIEEDOBAT ) & U TR
oD, ZNOOREEREX, A ITIROVY—F 7 xyal i Th. EDDITHRIEIC L DRE SRR
MDA, BHIOE A7 FAL TN ERNRIT L BRI OB MBI — a2 ML T 2002 Fiz, 2517
FNL TR, AEEIZE D IR ERHT e D7 2
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BEMNS2D. HRIEDEMETIE, Fig 2 @ =2 ABC (25 T, LAPB = £ACB &7&5 m P O EZRIETD.
M JE A O EFEZ > TWDAERE /D, Fig 3 X° Fig 4 # THET 5L HEND. THOEMTIL, BELKT, B
ROBPETHRONTZ PRI OWTIRETT 2. BlililE, A ~DIEBEOBATERT 20D, K P OALENR, =
ATE ABC OIMEM ONRIIMAITTIZHVERNDED. EDE, L, £APB 28 £ACB Jhi K
BRIV ELTR AT VL TLEI VI ZEEE X HEBEZDNDHD T, EDZAIL T TREZMD. H P OALED,
Zf4F ABC OAMEMONEICHMUITH T35, LAPB & £ACB X, ERLKDWIEIDN? ZORWA, #is
BIEIC L DAFIR B O TR LD LB 2 5. MAAOTELY, SMEM EOSAIXFEARE 2720 T, FEHO RS
TIE, P BIMEMOWNEICH 86 EIMBIZHDLYGAIZ £APB & LACB 3ENLKDUVNEI DD EFEH] T2,

5. Ak

FEERZZEIT, 2019 FRIZ, HARDOBDE NI KZEMEFFR O 3 AT LU CHESE (RFERH 50 47, &
20 &, B 21 £). ZOREOHENL, ZOITATEBENSEFEERZ TRY, KEOHE —E45Ths. %
HIIET A I AT 2 B THEOH T % T IOERESI, EFEEOY —7 —hDab’ — )Mz 2% I IES L.

6. RERIREXOHER

FEEREZ L, BT AL EmIHETT L7z, PRI BRSO, FaliD TARIEY, Fig 3 X° Fig 4 OfZENEN
72, e PO E T, HETOMMmAELU T, HEADOEHELY, M2 7 DX, Fig3 O TRY,
Fig 4 OHFIPHNZY THLTHAIZEDERINT. D T, ZEhE, AEERBIZINTT X TNEIDN%E
VY, BV T 2IE2 R L7, 1 i imS 7o tk, ZEi: =M ABC OOMNMEMONEO— 8%+
#L, B P IIZZICEWEL)ERDTZ (Fig 6). ZORWE, S ~DEBOBITEELIZIDICEbns. L
MU, fes SR 2 40, [ EIC20vD o el 7en g2 EIRTHO A ThH o7z, £ CHENT
LT, £APB # £ACB 725, £APB [ZENSOWREVDNERHT-. Fash S B/, Vhahed L&z
7. FHOIMANZDOWTY, [ARRICHERBSITZ. ZOMERDE, IROIIZHHINL TR RENTZ. 1) 5 P 23H
DOWERIZHDHEX, LAPB > LACB Thb. 2) M P NHDIMNTICHHEE, LAPB < LACB Thh.

ZOTEOERAERET, FEOBMIIRBITUZ. #llinnix, MOWNEETIZST T, LAPB & £ACB
ENLKBWRRDONZEHLNIL, GET DI RN 52072, 2L T, AT 2 iEAZ G072, &
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W, FERTEENBR 4RO 5 0%, BETIXX R OMINERIC KESIZTEI ZENRE bR & BE 2RI
S, AHEEmR T IR, EBITHK 3 9%, BEHIZIHIZ, A4 P & C BEHEELIZQWEET, £2

(Zf C LRICKRESOAEHL, TOMAEM P 2L TR/PER~NUTINWZ 222 RICE S L. K%
DS D%, Hll, D7t 2 NAOAED, HIFFSTGEZER L QWD 0% B L.

AE OB CRATL T 12 0%, BT if Shiit B 2 A2 B LRE 3508772 Fig 7 &7”L
7230, FUMAS, LAPB & £LACB EDEWX, EOALFRICREENERH LA, fEA SN AL, —BF
BNE RAET2L D0, ZEROEXAZHAEL, 2LAPB 7% £PQB + £QBP LW EZ R,

OB IESE A EBEICH T T AT AT RSN AT, BhhiLAEEIL. HOINHIZA P 23
BT DEH AT DOWTHRIBROFEHZ R L 72, LTz 2 DOREAZIRVIED e’ 5, #ifiL, To&EEEL
T, MEADERDOWZERI L. HZIT, ZENTEOREONE LKL TRELKZT-.

7. BR

TR EAARVIRDZETRONDRIRN 2 Sd Db, F—I2, EEETAOHAONECIMLD A~EEEE
RHNIAT T HZ LT TERNEITH -2, 1D1E, LAPB & £ACB O REEDEWE, BRIIZH# R T 50
BHAREURNL) ThoTz, IREREL TR L QW ek, &8~ Sk s, %@%ﬁ%/\mmﬁ
FALE DRI OFBABINHEN DD IO Th D, BF DI, D7edsb, BFEENHTLWZ AT ORIEEZEIC H
HEXIX, TOWIHEAGIEL T & THD.

BT, AR, MEBSEINEORBELOBMIITIRIZ R & o7 Bbhs. LA, (2R3 ~&
DS OMDIRDNSTZENI T, IRELE R L. %ﬁa@i@fﬁ)ﬂmﬁﬂ%&;é_&m W I BRfR T =& LT
b, MO ST > TV ERZ I CETZAEITD T CThoTo. ZOZ &, MHEEREIITT T 2NEHE
B OWEREDEAEZ /R T, 37205, FEI T2 BIEDO R+ 7238 %k LRE O 720 O JR T B 72 BU 7B H Al
KD O, 1 HEARIFHIBRERDS, FEEELZ2 > TS, 24U, Arzarello and Sabena (2011) 23R 72 AZFRENHY
WiaD—FEL L CHIRZ BN, Box OFRIE, HOLIFTE T RS, Fox ik, AZEMBEiEE L0,
PR MEOMBE THLHEE L. BUED HARD AL DE A DAV F 27 MRV TUE, ADRIIOE
ZRE T L2 LAV EHATE T 580 )T 7 =y 7 DFREN RN E RSV TOD DT TRV, 20729,
RIS CRIERE DR EECHH LN K0T, EREEN MHERE 2 IR ITHE AL CE 7R\ R BRI BERE A3 7
TET5EEZRDIIOVHEYITHHIDTE DD, 2L, MEEREHAOREEMEEL T2 ETHIEMIN TET, Wk
AERAOREE D BRfE T, F‘ﬁ%éft%@?ﬂ@@@ﬁﬁr%;ﬁfm, H=DERETHD.

8. #Eim

AFETIHE, fEA~DOEEOBAITER T EI P TN CEERBLLI-— T, MEEREIC R T D ER 725
BEfREREL L C, FEA 5 BEEO AR+ 720i8 ik LA O 7230 O BTN B B R O R FVO [ D, 8 EAKAF
HIRAGRZ R LT, BRI ZE DB RITIHE DL, AROVY—F -V =y ial ~OREIL, IROINTR~NDT
EMTELD. I, fEA~DOEEOBATER T FIL UL, BT A TRIE O M ORI Wit s
BERG T HZENTED. B, AEENRITREIFIT 7 =y ZIE AL TD7eh, 1EOIEMVEIZERHE D
AEAAMER T D2 8N TED. Fox DRFIE, BFOHEC LT, HIFRFSILDFE ORI E e R TR 723K
FWT I = I SHTL CRBLIENHH THLENIZEERIRT 5. LInLARRD, Fox OERIT, H—0fR¥%
BZRIZOBIESNTWD. RO —ALDT=DIZ, — DRI TEN LI THS.
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