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Abstract 

Humans can detect and identify a multitude of objects in a scene with little effort, despite the 

wide variability in appearance of outdoor scenes, such as complex backgrounds, different poses 

and illumination conditions. However, it is still challenging for a computer to recognize objects 

in an image or video sequence. Many efforts have been made to solve the task over multiple 

decades. Object recognition plays a key role in various fields, including smart vehicle 

technologies such as advanced driver assistance systems (ADAS), advanced human computer 

interfaces, robotics, surveillance, security, and intelligent transportation systems. For example, 

the ADAS uses the images acquired from a camera mounted on the vehicle, detecting the 

pedestrians and vehicles in images. The recognized results can be utilized to prevent accidents.  

Pedestrian detection is a challenging work because of various clothes, changing lighting 

conditions, viewpoints, and a wide range of people’s positions and sizes. Recent studies have 

shown that the sliding-window based methods can overcome these obstacles and obtain 

improved recognition performances. A feature descriptor extracts the representative data of an 

image, improving perception of the surrounding environment and transforming the sensed 

signals into a suitable data format required for the subsequent recognition processing. The 

histogram of orientation gradients (HOG) algorithm was proposed to distinguish pedestrians in 

images, obtaining good recognition results through extracting a robust feature set based on 

gradients. HOG features have been widely applied in image classification and scene 

understanding tasks.  

However, the huge computational complexity of the HOG descriptor remains as a problem for 

the processing speed. An image has plenty of the sliding windows, and there are several 

thousand dimensional features in each sliding window. The enormous complexity of 

computation makes its application almost impossible for real-time processing. Studies have 

shown that the HOG descriptor can obtain good recognition performance and processing speed 

in a PC environment. However, the vehicle and robot systems, which use an embedded 

processor platform, have no access to the same computing resources as PC environments. The 

feature space is too large for embedded systems and the processing power of an embedded 

platform is much lower than that of a PC platform, making it hard for systems based on 

embedded platforms to recognize objects in real-time.  

In addition to recognition, learning internal representations of the perceived environment is 

essential because it bridges the gap between the representations of the object and the data 

needed by the computer to perform its task. Learning vector quantization (LVQ) neural 
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networks have been successfully used for a broad range of technical applications, such as image 

compression and object recognition. In the literature, the LVQ was implemented in software 

off-line on computer systems or embedded processors. Unfortunately, the software-based 

approaches cannot deliver reasonable performance for online learning due to the high cost of 

computational requirements.  

Hardware-based accelerators for computer vision can meet the low power and real-time 

processing requirements for mobile devices because the accelerator architecture can be tailored 

to specific applications and can be massively parallelized. A high energy efficiency and high 

throughput are the advantages over software-based solutions and general-purpose hardware. 

In this thesis, I present two application specific integrated circuits (ASICs), aiming at low 

power, portable, and real-time applications and markets, such as Advanced Driver Assistance 

System (ADAS), robotics, drones, or mobile phones. One is an inference system designed to 

extract features from images using the HOG feature extractor and to reason based of the results 

of a nearest-neighbor-search (NNS) classifier. The other is an online learning system aimed to 

learn from the images, featuring an LVQ neural network. The ability to reason and the ability 

to learn are the two major capabilities associated with these systems. 

The inference system combines the feature extraction and dimension reduction in an 

intermediate step using partial-least-squares-regression in order to avoid the curse of high 

dimensionality. The design reduces the redundancy in original feature vectors, converting high-

dimensional feature-vectors into low-dimensional feature-vectors. The following NNS works 

on feature vectors in a reduced-dimension space. The developed hardware-oriented algorithm 

exploits the cell-based scan strategy which enables image-sensor synchronization and 

extraction-speed acceleration. Furthermore, buffers for image frames or integral images are 

avoided. The fabricated test chip in 180 nm CMOS technology achieves fast processing speed 

and large flexibility for different image resolutions with substantially reduced hardware cost 

and energy consumption. For the application example of XGA (1024 × 768) resolution videos, 

HOG-feature vectors can be extracted at 120 MHz operating frequency with a maximum frame 

rate of 122 fps. An improved version was fabricated in 65 nm CMOS technology which can 

process XGA (1024 × 768, 30 fps) video in real time, achieving 50 MHz feature extraction and 

200 MHz classification, with energy consumption of 906 pJ/pixel. Detection accuracy can be 

improved using complementary features in addition to the HOG feature, at the cost of an extra 

40% power consumption, 64% area requirement, and 53% memory size. 

The online learning system is based on a modular and reconfigurable pipeline architecture 

(MRPA) for LVQ.  The MRPA consists of dynamically reconfigurable modules and realizes a 
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run-time and on-chip configuration for recognition and learning. The developed architectures 

enable to speed up system development time and to provide better performance. The design 

effectively utilizes the available memory of the given hardware resources. Prototype 

fabrication in 65-nm CMOS technology verifies high integration density and memory-

utilization efficiency, good performance, and considerable flexibility in vector dimensionality, 

number of weight-vectors, and adaption strategies. Compared with embedded microprocessors, 

which rely on single-instruction-multiple-data (SIMD) processing, the developed MRPA-

prototype increases the performance of both recognition and learning operations. The achieved 

improvements amount to approximately factors 40 and 101 on the well-established 

performance metrics of million connections per second (MCPS) for recognition and of million 

connection updates per second (MCUPS) for learning, respectively. 

The prototype ASIC consumes 21.5 mW working at 150 MHz and 1 V voltage, with 2.14 mm2 

area overhead in 65nm CMOS technology. A small accuracy loss mainly comes from the 

truncation operation of the fixed-point operation, resulting in a quite small peak signal-to-noise 

ratio (PSNR) loss of 0.128 dB. The applied pipeline reconfiguration leads to a reduction in 

computation time and high efficiency for integration density. The applied modularity 

contributes to easy scalability in a both upward- and downward-compatible fashion. 

Additionally, the introduced shared memory-pool increases the flexibility for both the 

dimensionality and the number of weight vectors. Further, an implemented parameterization 

for system configuration adds flexibility to the choice of adaption strategies in different 

applications. 
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1 CHAPTER 1 Introduction 

Machine vision application is under a major shift regarding the implementation and 

development. One of the most noticeable trends of this shift are the platforms that vision 

algorithms run on: from all-powerful workstations to embedded processors [1]. As is often the 

case, the shift origins from the intersection of market needs and available technologies. In turn, 

a new inter-disciplinary field has emerged from the vision community and the processor 

community to handle the new challenges: embedded machine vision and learning.   

Over the past decades, the synergistic advances in embedded processing architectures, machine 

vision algorithms, integrated circuit technologies, semiconductor processes and electronic 

system design methodologies have increasingly expanded the application domain of embedded 

vision. The target market focuses on high-volume, battery-operated, cost-centric consumer 

applications. For example, the embedded vision techniques can help the needs for safety and 

security of the society. The portable platforms are well suitable for automotive safety 

applications, which aim to assist the driver and improve road safety. 

1.1 Machine Vision and Its Embedded Applications for Mobile Devices 
Human vision is incredibly fascinating and complicated. Billions of years since the evolution of our 

sense of sight we found that computers are on their way to matching human vision. It all started 

billions of years ago, where small organisms developed a mutation that made them sensitive to 

light. Fast forward to today, and there is an abundance of life on the planet which all have very 

similar visual systems. They include eyes for capturing light, receptors in the brain for 

accessing it, and a visual cortex for processing it. Genetically engineered and balanced pieces 

of a system help us do things as simple as appreciating a sunrise.  

Legends are said that the machine vision began as a summer project given by Professor Marvin 

Minsky at Massachusetts Institute of Technology (MIT) in 1966, to an undergraduate student 

who is actually now a Professor at MIT, Gerald Jay Sussman. Professor Minsky said: “For this 

summer project, why don’t you solve the computer vision problem? You know, this really 

shouldn’t take too long”, and wrote an outline of what he was supposed to do. The anecdote 

probably have happened but in reality, the 1st machine vision project was launched by Professor 

Seymour Papert at MIT and given to a group of 10 students including Professor Sussman as a 

coordinator. The original document outlined a plan to conduct image segmentation in   

homogeneous backgrounds with distinct texture and color. More than half a century passed, 

machine vision today is far different from its definition in 1966. Plenty of topics have derived 
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from machine vision such as embedded vision, pedestrian detection, machine learning, and so 

on.    

In the past 50 year, we’ve made even more strides to extending this amazing visual ability, not 

just to ourselves, but to machines as well. We’ve been able to closely mimic how the human 

eyes can. The first type of photographic camera was invented around 1816 where a small box 

held a piece of paper coated with silver chloride. When the shutter is open, the sliver chloride 

would darken where it was exposed to light. Now, 200 years later, we have much more 

advanced versions of the system that can capture photos right into digital form. So we’ve been 

able to closely mimic how the human eye can capture light and color. But it’s turning out that 

was the easy part. Understanding what’s in the photo is much more difficult.  

The term of machine vision has not appeared in the popular media that much until recently.  

Part of that is because when something became successful, it got renamed. Actually, computer 

vision has already entered our lives. Like bar code scanning is an instance of computer vision. 

According to Bill Freeman, a Senior Research Scientist at Google, the computer vision 

researchers don’t really understand how a computer see. It is like alchemy and chemistry. The 

alchemy came first, and then chemistry came in. Right now, we are in the alchemy stage of 

computer vision. Where it works, but we are not sure why. And it is the chemistry stage that 

we look forward to. 

Consider the Fig. 1-1, our human brain can look at it and immediately know that there are 

pedestrians regardless the color. Our brains are cheating since we’ve got a couple million years 

worth of revolutionary context to help immediately understand what this is. But a computer 

doesn’t have that same advantage.  

 
Fig. 1-1. Human vision. Human brain can immediately know that there are pedestrians in the 
picture. 
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From the computer perspective, the image is really just an array of numbers (Fig. 1-2), just a 

massive array of integer values which represent intensities across the color spectrum. There’s 

no context here, just a massive pile of data. Or if it is color, it would be three arrays of numbers. 

By themselves, these pixels don’t mean anything to a computer. We need to tell exactly what 

to do to the computer. It seems that is the computer that needs to interpret what they are. But it 

is not true. Computers cannot make decisions on their own. Programmers are going to build 

these decisions into the program, and all the computer is going to do is to reach the decision 

point. It turns out the context is the crux of getting algorithms to understand image content in 

the same way that the human brain does. And to make this work, we use an algorithm very 

similar to how the human brain operates using machine learning.   

Machine vision is essential because it is a quite effective way to learn about the world. If we 

can parse what is visually around ours, we can learn a lot of information about the real world 

that we would not have access to otherwise. 

Machine vision is the science and technology aiming to help the machines to see, representing 

an exciting part of cognitive and computer science. The related research includes the theory, 

design and implementation of algorithms that can automatically process visual data to 

recognize objects, track and recover their shape and spatial layout. In recent years, state-of-art 

advances have produced artificial systems that have reached or even surpassed human 

capabilities in several domains such as face detection and optical character recognition. 

Machine learning helps the computers to automatically improve through experience. Machine 

learning allows us to effectively train the context for a data set, so that an algorithm can 

understand what all those numbers in a specific organization actually represent. With the 

machine leaning model, we can take a bunch of images of pedestrian, and as long as we feed it 

enough data, it will eventually be able to properly tell the difference between the two. Machine 

vision is taking on increasingly complex challenges and it seeing accuracy that rivals humans 

 
Fig. 1-2. Machine vision. There’s no context here, just a massive pile of data. 
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performing the same image recognition tasks. But like humans, these models aren’t perfect. 

They do sometimes make mistakes.      

1.1.1 Pedestrian Detection  
Pedestrian detection has always been an attractive research area among the applications of 

machine vision. According to the survey done by the Cisco Study [2], by 2021, roughly 80% 

of traffic on the internet will be video. Besides the research territory, the industry contributed 

enormous efforts in pedestrian recognition in various platforms such as the advanced driver 

assistance systems (ADAS) and integrated smart security systems market. Among the available 

approaches, machine vision on the embedded and portable platform is in the top tier. The 

current embedded platforms that rely on sophisticated algorithms have not been able to fully 

exploit the potential performance of machine vision algorithms, especially concerning low 

power consumption. Complex algorithms impose extensive computation and communication 

demands, requiring various stages of preprocessing, processing and machine learning blocks 

that need to operate concurrently. The market demands embedded platforms to operate with a 

power consumption of only a few watts. Efforts have been made to accelerate traditional 

embedded approaches by adding more powerful processors. This solution may solve the 

computation problem but still increases the power consumption. In this research, a coprocessor 

for sliding window-based pedestrian detection with multiple scales is proposed. The 

coprocessor realizes low power in a relatively small area. 

Pedestrian detection became a popular research topic since advanced driving assistant systems 

(ADAS) and unmanned aerial vehicles need fast enough detection and decision making for 

enabling appropriate actions. The existing feature descriptors, including the Histogram of 

Oriented Gradients (HOG) [3], the Gradient Location-Orientation Histogram (GLOH) [4], the 

shape context [5], the Local Binary Pattern (LBP) [6], the Scale Invariant Feature Transform 

(SIFT) [7], and its successor the Speeded Up Robust Features (SURF) [8], have demonstrated 

their robustness in pedestrian detection applications. Subsequently, the Haar-like feature is 

often applied in face recognition [9] and in pedestrian detection [10]. Furthermore, due to the 

fast training speed, Haar-like feature was also used to extract a region of interest (ROI) for a 

second stage recognition with HOG. The two-stages and combinational feature descriptor 

achieved higher detection accuracy in ([11]-[13]) than a single feature descriptor. 

The traditional software implementations involve translating the raw pixels into an integral 

image to construct a look-up table for speeding up the necessary calculations during feature 

extraction [14]. This commonly used integral image solution, taking advantage of an enormous 



 

5 

 

amount of memory resources, is mainly suitable for software applications on PCs. On the other 

hand, a sub-integral image offers a practical solution in hardware implementations [15]. 

Most state-of-the-art frameworks follow the sliding-window paradigm ([16]-[18]), which 

quantifies how likely it is for a window to cover a searched-for object in an image. Each 

window is divided into local regions (cells or blocks) for calculating feature vectors according 

to various strategies. Taking the popular research work in pedestrian detection [3], the detection 

window scans the image in a Raster manner. In fact, each window is divided into a number of 

sub-regions, called cells where a local feature vector is computed. Then blocks, each of which 

contains multiple normalized local cell features, are used to construct the window feature 

vector for detection by a classifier. The overlapped cells and blocks demonstrate that the 

sliding-window method represents an iterative process.  

Meanwhile, many researchers have implemented the popular “HOG plus SVM (Support Vector 

Machine)” framework in hardware ([19]-[21]). Only multiplication and comparison are applied 

in [19] during the HOG execution for bin assignment, instead of the general complicated arc-

tangent computing. Similar to the original algorithm, the cell features in a block are normalized 

with the L1-Sqrt-norm. Finally, a portion-wise classification is adopted to avoid the huge 

amount of memory for buffering all block features of a window. In [20], the gradient 

calculation is implemented by a relatively complicated coordinate rotation digital computer 

(CORDIC) solution. Then, the normalization processing is simplified by the Newton method 

with an approximated initial value. For classification, as also in [19], the partial SVM product 

is applied, but early rejection and detection are used. The difference of [21] in comparison to 

[19] and [20]is the improved energy efficiency due to the applied more advanced process 

technology. In summary, comparing to the original framework in [3], a partial classification is 

performed after the block-based normalization to avoid large feature buffers. 

1.1.2 Battery-Operated Mobile Vision Requirements and Challenges 
The mobile environment poses uniquely challenging constraints for designers of embedded 

computer vision systems. There are traditional issues such as size, weight, and power, which 

are readily evident. However, there are also other less tangible obstacles related to technology 

acceptance and business models that stand in the way of a successful product deployment. In 

this section, I describe these issues as well as other qualities desired in a mobile smart camera 

using vision algorithms to “see and understand” the scene. The target platform of discussion is 

the mobile handset, as this platform is poised to be the ubiquitous consumer device all around 

the world. 
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1.1.2.1 Power Consumption 
Power dissipation is an important consumer metric for mobile handsets as it dictates the usage 

time (talk time, Internet use time, video playback time, audio playback time, etc.) and standby 

time. It is obvious that the longer the usage and standby time, the more desirable the device. At 

the same time, there is an opportunity to reduce the size and weight of the battery to achieve 

the same usage and standby time.  

Mobile handsets have low-power consumption while operating (much less than desktop and 

laptops), and an almost negligible standby power when the device is not in use. This is evident 

in the drive for low power designs in the application processors ([22]-[24]). Consequently, 

designers should pay attention to the energy budget in the battery and not expect a computer 

vision algorithm to run continuously. To save power, for example, designers may consider 

turning off the camera module when it is not needed or lowering the frame rate when the desired 

performance is not needed. 

1.1.2.2 Memory 
In addition to computational horsepower needed by the computer vision algorithms, the 

designer should also consider memory bandwidth and memory allocation during early stages 

of the design process. These items are often considered as a design afterthought, which may 

cause the application to run slower than expected. This could result in poor device usability. 

While still image processing consumes a small amount of bandwidth and allocated memory, 

video can be considerably demanding on today’s memory subsystem. At the other end of the 

spectrum, memory subsystem design for computer vision algorithms can be extremely 

challenging because of the extra number of processing steps required to detect and classify 

objects. 

1.1.2.3 Platform 
In order to consider computer vision algorithms, the designer should consider how it would be 

integrated into the overall user experience. For example, in an operating scenario where a 

normal voice call is being made, the application processor may be lightly loaded, making it 

suitable to run other applications. In another example where the user is browsing the web, the 

camera-module companion chip may be lightly loaded or not used at all. It is important to make 

the computer vision application run seamlessly alongside existing applications. Otherwise, user 

acceptance would be low when the overall user experience suffers. 

1.1.3 Machine Learning 
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In machine vision, we try to teach computers how to see, and that seeing can refer to 

understanding scenes, reconstructing 3D objects, recognizing objects,  avoiding obstacles, 

helping blind people navigate. And a lot of this makes use of machine learning, and it also 

makes use of geometry and applied math.  

Machine learning is a subfield of artificial intelligence (AI). Early AI programs typically 

excelled at just one thing. For example, Deep Blue could play chess at a championship level, 

but that's all it could do. Today we want to write one program that can solve many problems 

without needing to be rewritten. AlphaGo is a great example of that. But similar software can 

also learn to play Atari games. Machine Learning is what makes that possible. It’s the study of 

algorithms that learn from examples and experience instead of relying on hard-coded rules. 

Classifier is a function that needs to be trained. It takes some data as input and assigns a label 

to it as output. The technique to write the classifier automatically is called supervised learning. 

To use supervised learning, we need to follow a recipe with a few standard steps. Step one is 

to collect training data. These are examples of the problem we want to solve. For example, to 

classify fruits, a description of the fruit as input based on features like its weight and texture is 

necessary. The training data is actually a table describing the features of different fruits. A good 

feature makes it easy to discriminate between different types of fruit. Think of these as all the 

examples we want the classifier to learn from. The more training data you have, the better a 

classifier you can create. A classifier is a box of rules, with feature as the input and labels as 

the output. The input and output type are always the same while there are many different types 

of classifier. 

Before training, a classifier is just an empty box of rules. To train it, a learning algorithm is 

necessary.  The learning algorithm is the procedure to create the box of rules, finding patterns 

in the training data.    

Besides supervised learning, the second is known as unsupervised learning in which each 

training data contains the values of the attributes but does not contain the label. Unsupervised 

learning tries to find regularities in the unlabeled training data (such as different clusters under 

some metric space), infer the class labels and sometimes even the number of classes. In the 

unsupervised learning framework, a variety of methods and algorithms can be found in the 

literature. Major instances are represented by data clustering, density estimation, and 

dimensionality reduction. The goal of the learning process is usually defined through an 

objective function, where the learning schemes use the observations without prior knowledge 

of the class labels. 
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1.1.4 Application Example: Advanced Driver-Assistance Systems (ADAS) 
Vision-based automotive safety systems have received considerable attention over the past 

decade. Such systems have advantages compared to those based on other types of sensors such 

as radar, because of the availability of low-cost and high-resolution cameras and abundant 

information contained in video images. Many automotive safety systems that used to rely on 

radar, laser, ultrasound, or other types of sensors now have their counterparts using cameras. 

However, various technical challenges exist in such systems. One of the most prominent 

challenges lies in running sophisticated computer vision algorithms on low-cost embedded 

systems at frame rate.  

1.2 Platforms for Mobile Vision Applications 
Machine vision is gaining momentum thanks to the improvement of the computational ability 

of the CPU. As one alternative, GPU gains plenty of attention in the machine vision research 

due to its parallel architecture. However, GPU is not able to competently handle the task-

parallelism computations and suffers from limited interfaces. Moreover, the life cycle of GPU 

is quite short. As long as the new generation of GPU chips coming out, modifications on the 

code are required for re-optimization. Superior to both the CPU and GPU in power and 

resources aspect, ASIC allows the algorithms to deploy dedicated architecture, resulting in 

minimizing buffering to external memory and host memory. For machine vision on portable 

devices such as mobile phones, drones, and cars in daily human life, rather than CPU and GPU 

based solutions that consume high power and resources, the embedded implementation is 

anticipated to be the destination.  
This technology category includes any device that executes vision algorithms or vision system 

control software. The following diagram shows a typical computer vision pipeline; processors 

are often optimized for the compute-intensive portions of the software workload. 
The following examples represent distinctly different types of processor architectures for 

embedded vision, and each has advantages and trade-offs that depend on the workload. For this 

reason, many devices combine multiple processor types into a heterogeneous computing 

environment, often integrated into a single semiconductor component. In addition, a processor 

can be accelerated by dedicated hardware that improves performance on computer vision 

algorithms. 

1.2.1 Co-processors 
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Coprocessor is common today to supplement the functions of primary processor (CPU). A 

coprocessor is a computer processor used to supplement the functions of the primary processor 

(the CPU). Operations performed by the coprocessor may be floating point arithmetic, graphics, 

signal processing, string processing, cryptography or I/O interfacing with peripheral devices. 

By offloading processor-intensive tasks from the main processor, coprocessors can accelerate 

system performance. Coprocessors allow a line of computers to be customized, so that 

customers who do not need the extra performance do not need to pay for it.  

Coprocessors for floating-point arithmetic first appeared in desktop computers in the 1970s 

and became common throughout the 1980s and into the early 1990s. Early 8-bit and 16-bit 

processors used software to carry out floating-point arithmetic operations. Where a coprocessor 

was supported, floating-point calculations could be carried out many times faster. Math 

coprocessors were popular purchases for users of computer-aided design (CAD) software and 

scientific and engineering calculations. Some floating-point units, such as the AMD 9511, Intel 

I8231 and Weitek FPUs were treated as peripheral devices, while others such as the Intel 8087, 

Motorola 68881 and National 32081 were more closely integrated with the CPU. 

Another form of coprocessor was a video display coprocessor, as used in the Atari 8-bit family, 

the Texas Instruments TI-99/4A and MSX home-computers, which were called "Video Display 

Controllers". The Commodore Amiga custom chipset included such a unit known as the Copper, 

as well as a Blitter for accelerating bitmap manipulation in memory. 

As microprocessors developed, the cost of integrating the floating point arithmetic functions 

into the processor declined. High processor speeds also made a closely integrated coprocessor 

difficult to implement. Separately packaged mathematics coprocessors are now uncommon in 

desktop computers. The demand for a dedicated graphics coprocessor has grown, however, 

particularly due to an increasing demand for realistic 3D graphics in computer games. 

Implementation of an algorithm in specific hardware is called co-processor. An algorithm 

implemented directly in the hardware, can execute it faster, because the only instruction that 

has to make is “execute the algorithm”. The principal reason of being faster, is that we are not 

tied to a general instruction set that there are more freedom to decide the way to resolve the 

problem. To implement the algorithm, the basic components of the hardware (logic gates) are 

joined to build other components more complex. To the implementation, several optimization 

techniques can be used, that cannot be used in the software implementation. For instance, 

divide the problem in parts to resolve at the time (parallelize).  



 

10 

 

1.2.1.1 Vision-Specific Processors and Cores: Application-Specific 

Integrated Circuit (ASIC)  
ASICs are specialized, highly integrated chips tailored for specific applications or application 

sets. ASICs may incorporate a CPU, or use a separate CPU chip. By virtue of their 

specialization, ASICs for vision processing typically deliver superior cost- and energy-

efficiency compared with other types of processing solutions. Among other techniques, ASICs 

deliver this efficiency through the use of specialized coprocessors and accelerators. And, 

because ASICs are by definition focused on a specific application, they are usually provided 

with extensive associated software. This same specialization, however, means that an ASIC 

designed for vision is typically not suitable for other applications. ASICs’ unique architectures 

can also make programming them more difficult than with other kinds of processors; some 

ASICs are not user-programmable. 

If we implement an algorithm in a chip we were talking about a specific purpose processor. For 

instance, image a processor that only have the instruction “sum two numbers”. If we have to 

multiply two numbers with the instruction, the processor will have to execute it several times 

to get the result. Instead, if we have implemented hardware that allows multiply directly, we 

only would have to execute the multiply instruction once. In conclusions, when more complex 

is the instruction to implement, we will save time if we implement it in hardware. Some well-

established products and highly publicized technologies may be seen as early examples of 

embedded machine vision. Two examples are the optical mouse (which uses a hardware 

implementation of an optical flow algorithm), and NASA’s Martian rovers, Spirit and 

Opportunity (which used computer vision on a processor of very limited capabilities during the 

landing, and which have a capability for vision-based self-navigation). 

1.2.1.2 Field-Programmable Gate Array (FPGA)  
Instead of incurring the high cost and long lead-times for a custom ASIC to accelerate computer 

vision systems, designers can implement an FPGA to offer a reprogrammable solution for 

hardware acceleration. With millions of programmable gates, hundreds of I/O pins, and 

compute performance in the trillions of multiply-accumulates/sec (tera-MACs), high-end 

FPGAs offer the potential for highest performance in a vision system. Unlike a CPU, which 

has to time-slice or multi-thread tasks as they compete for compute resources, an FPGA has 

the advantage of being able to simultaneously accelerate multiple portions of a computer vision 

pipeline. Since the parallel nature of FPGAs offers so much advantage for accelerating 

computer vision, many of the algorithms are available as optimized libraries from 
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semiconductor vendors. These computer vision libraries also include preconfigured interface 

blocks for connecting to other vision devices, such as IP cameras.   

1.2.2 General-Purpose CPUs 
The software always has to be executed in the hardware of the machine where resides. 

Normally, always we have a general purpose processor, the name is due to is built to execute 

any algorithm,   

While computer vision algorithms can run on most general-purpose CPUs, desktop processors 

may not meet the design constraints of some systems. However, x86 processors and system 

boards can leverage the PC infrastructure for low-cost hardware and broadly-supported 

software development tools. Several Alliance Member companies also offer devices that 

integrate a RISC CPU core. A general-purpose CPU is best suited for heuristics, complex 

decision-making, network access, user interface, storage management, and overall control. A 

general purpose CPU may be paired with a vision-specialized device for better performance on 

pixel-level processing. 

1.2.3 Graphics Processing Units (GPU) 
High-performance GPUs deliver massive amounts of parallel computing potential, and 

graphics processors can be used to accelerate the portions of the computer vision pipeline that 

perform parallel processing on pixel data. While General Purpose GPUs (GPGPUs) have 

primarily been used for high-performance computing (HPC), even mobile graphics processors 

and integrated graphics cores are gaining GPGPU capability-meeting the power constraints for 

a wider range of vision applications. In designs that require 3D processing in addition to 

embedded vision, a GPU will already be part of the system and can be used to assist a general-

purpose CPU with many computer vision algorithms. Many examples exist of x86-based 

embedded systems with discrete GPGPUs. 

1.3 Contributions: Power-Efficient Acceleration Coprocessors for 

Embedded Vision 
As architectures evolve towards multi-cores composed of a mix of cores and accelerators, a 

machine learning accelerator is able to reach the rare combination of efficiency and application 

flexibility. Most of the previous machine-learning accelerators focused on efficient 

implementation of the computational part of the algorithms, paying little attention on the usage 

of memory. As a result, recent state-of-the-art accelerators are characterized by their large size.  
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In this study, we design two accelerators. One is for HOG-based inference, utilizing a cell-

based image-scan strategy. The original HOG algorithm is implemented in a further improved 

hardware-oriented way, applying a cell-based scan manner. A powerful cell-feature reuse 

method is employed to improve the performance by vastly reducing the number of the cell-

features that must be repetitively calculated in the original HOG algorithm, which applies a 

block-based scan manner. Furthermore, the developed cell-based scan manner drastically 

reduces the memory requirements, since the need to buffer whole images is eliminated, and 

adds processing flexibility of input images with in principle unlimited height. Faster speed and 

less area consumption are achieved in comparison to previous approaches, because we employ 

fewer multiplication operations without sacrificing accuracy.  

The other is for LVQ-based learning, with a special emphasis on the impact of memory on 

accelerator design, performance and energy. The developed modular and reconfigurable 

pipeline-architecture (MRPA) for LVQ neural networks has the following advantages. First, 

the MRPA accelerates the computational speed and provides high integration density by the 

implementation of pipeline reconfiguration. All the weight-vectors share the same arithmetic 

and logic units (ALUs), rather than having individual ALUs. Meanwhile, the MRPA improves 

the memory-utilization efficiency by segregating the weight-memory blocks from the 

processing elements (PEs) as a shared memory pool. The memory sharing scheme also 

increases the flexibility of the weight-vector, in contrast to the SIMD methods, which directly 

map neurons to PEs. The size of an individual weight-memory block and the number of weight-

memory blocks limit the range of manageable dimensionality and number of weight-vectors. 

The MRPA overcomes the limitation. Both the dimensionality and number of weight-vectors 

are adaptable to a wide range of applications. Moreover, the modularity of the design in the 

MRPA leads to easy scalability for future soft-IP design. 
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2 CHAPTER 2: Theoretical Basis of Pedestrian Detection in Mobile 

Devices 

2.1 Classic Methods: Feature Based Detection 

2.1.1 Feature Extraction  
Good features are informative, independent, and simple. Classifiers are only as good as the 

features provided. That means coming up with good features is one of the most important jobs 

in machine learning. But what makes a good feature, and how can we tell. For a binary 

classification, a good feature makes it easy to decide between two different things. There’s a 

lot of variation in the world. So when thinking of a feature, it is necessary to consider how it 

looks for different values in a population. That’s why machine learning needs multiple features.  

In machine vision applications, feature vectors are used to represent the perceived environment. 

Relational descriptions are of crucial importance in high-level vision. Feature descriptor helps 

reduce the search space of the classifiers by modeling high-dimensional data as a combination 

of a few active features and, hence, can reduce the computation required for classification. In 

general, these methods can be divided into two strategies. One is part-based approaches ([1]-

[3]), which utilize individual detectors to locate single parts. The recognition results depend on 

whether the detected parts are arranged in a geometrically plausible configuration. The other 

one refers to holistic approaches which shift detection or scan windows over the image with 

dense positions and scales ([4] and [5]).  

Histograms of oriented gradient (HOG) descriptors are based on the sliding-window strategy, 

and are proved to be competitive in terms of classification performance in a large variety of 

recognition tasks and to have robustness against illumination changes, by recent experimental 

studies ([6]and [7]). Since the original HOG feature is highly-dimensional (3,780 elements per 

search window), the real-time operation is a fundamental problem in the HOG descriptor 

research field. Reference [8] reported an object-detection system composed of a HOG 

descriptor and a support vector machine (SVM) as classifier, which needs about one second to 

process a QVGA image with 320×240 pixels. According to Ref. [8], the runtime for a VGA-

image with 640×480 pixels is 13.3 s in their benchmark report.    

2.1.2 Trained Classification 
Machine learning is one of most rapidly growing technical fields, lying at the core of data 

science and artificial intelligence, and at the intersection of statistics and computer science. 

Recent progress in machine learning has originated from two sources. The first one is the 
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development of new learning algorithms and theory. The other one is exploration of the low-

cost computation. There have been two fundamentally different types of tasks in machine 

learning, supervised learning and unsupervised learning. Both of them emerge as the most 

important learning strategy. 

2.2 Deep Learning-Based Methods 
In the last few years, deep neural networks have led to breakthrough results on a variety of 

pattern recognition problems, such as computer vision and voice recognition. One of the 

essential components leading to these results has been a special kind of neural network called 

a convolutional neural network. 

At its most basic, convolutional neural networks can be thought of as a kind of neural network 

that uses many identical copies of the same neuron. It should be noted that not all neural 

networks that use multiple copies of the same neuron are convolutional neural networks. 

Convolutional neural networks are just one type of neural network that uses the more general 

trick, weight-tying. Other kinds of neural network that do this are recurrent neural networks 

and recursive neural networks. This allows the network to have lots of neurons and express 

computationally large models while keeping the number of actual parameters, the values 

describing how neurons behave, that need to be learned fairly small. 

The specific type of neural network that accomplishes recognition is called a convolutional 

neural network or CNN. CNNs work by breaking an image down into smaller groups of pixels 

called filter. Each filter is a matrix of pixels, and the network does a series of calculations of 

these pixels comparing them against pixels in a specific pattern the network is looking for. In 

the first layer of CNN, it is able to detect high-level patterns like rough edges, and curves. As 

the network performs more convolutions, it can begin to identify specific objects like faces and 

animals. How does a CNN know what to look for and if its prediction is accurate? This is done 

through a large amount of labeled training data. When the CNN starts, all of the filters values 

are randomized. As a result, its initial predictions make little sense. Each time the CNN makes 

a prediction against a labeled data, it uses an error function to compare how close its prediction 

was to the image’s actual label. Based on this error or loss function, the CNN updates its feature 

values and starts the process again. Ideally, each iteration performs with slightly more accuracy. 

What if instead of analyzing a single image, we want to analyze a video using machine learning. 

At its core, a video is just a series of image frames. To analyze a video, we can build on our 

CNN for image analysis. In still images, we can use CNNs to identify features, but when we 

move to videos, things get more difficult since the items we’re identifying might change over 
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time. Or, more likely, there’s context between the video frames that’s highly important to 

labeling. For example, if there’s a picture of a half full cardboard box, we might want to label 

it packing a box or unpacking a box depending on the frames before and after it. This is where 

CNNs come up lacking. They can only take into account spatial features, the visual data in an 

image, but can’t handle temporal or time features: how a frame is related to the one before it. 

The address this issue, researchers have taken the output of CNN and feed it into another model 

which can handle the temporal nature of videos. This type of model is called a recurrent neural 

network (RNN).  

2.3 Challenges and Limitations for Mobile Devices 
Mobile devices can be separated into three categories: low-cost, mid-tier, and smart phones. 

The lower-end phones are low-cost, high-volume devices with little to no features, except the 

ability to make phone calls. These low-cost phones may not even include a camera. The mid-

tier phones are mid-range in prices with standard features such as a megapixel camera. They 

may be targeted toward the teens and tweens, and may have a music player for music 

enthusiasts. 

Smart phones offer advanced capabilities much like a portable computer. These phones are 

decked out with features such as PDA functions, large displays, and high-resolution (multi-

megapixel) camera. They are targeted to the tech-savvy and also the business professionals, 

that is, those who can afford the premium cost. New computer vision applications are likely to 

first appear in smart phones. These mobile handsets have higher performance computing 

platform that can handle the extra application load. Furthermore, the better cameras provide 

better resolution and higher quality images for computer vision algorithms. 

Designers of computer vision algorithms should consider the psychological aspects that 

influence the acceptance of the technology. With understanding of how users effectively use 

computer vision features in a mobile handset and what motivates them to continue using the 

feature, designers can make inroads into having the technology as a commonplace feature set. 

Furthermore, we should consider the sociological impact of pervasive computer vision 

technology in our everyday lives. This statement is not necessarily a call to monitor and 

examine every aspect of the technology in our society. Instead, it is an opinion for designers to 

consider computer vision applications that have great social impact. Technology such as 

computer vision can be applied to improve daily lives by making routine tasks faster and safer. 

We should seek to utilize mobile technology to improve the way to communicate and educate 

ourselves.  
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3 CHAPTER 3: Pedestrian Detection Coprocessors 

Pedestrian detection became a popular research topic since advanced driving assistant systems 

(ADAS) and unmanned aerial vehicles need fast enough detection and decision making for 

enabling appropriate actions. This chapter reports an algorithm and hardware co-design 

approach to enable real-time and energy-efficient pedestrian-detection accelerators, which can 

process XGA (1024 × 768, 30 fps) video in real time, achieving 50 MHz feature extraction and 

200 MHz classification, with energy consumption of 906 pJ/pixel. The histogram of oriented 

gradients (HOG) algorithm for feature extraction, which is known to provide high efficiency 

and accuracy is implemented in 180 nm CMOS technology. The cell-based processing 

decomposes the high dimensional window feature-vector and reduces the overhead of parallel 

multi-window detection by reuse of the cell features, avoiding many of the massive and 

repetitive calculations in a conventional block-based algorithm. Also, an effective bin decoder 

is combined with the orientation calculation in the applied HOG feature-extraction algorithm. 

A parallelized voting element (PVE) ensures an efficient pipelined histogram calculation with 

dual-port memories. Detection accuracy can be improved using complementary features in 

addition to the HOG feature, at the cost of an extra 40% power consumption, 64% area 

requirement, and 53% memory size. 

3.1 Overview for Histogram of Oriented Gradient (HOG) Feature 

Extractor 
Intelligent computer vision systems have been presented with numerous solutions for platforms 

such as robotics, automotive systems, security systems, mobile devices, and wearable 

electronics. However, practical and robust solutions for numerous applications are still very 

challenging in the case of required real-time performance due to various constraints, e.g. 

computational power or battery capacity. Object recognition in images has been a very active 

filed of research, and attracts an enormous amount of research interest ([1]-[3]). It is still a 

challenge due to the wide variability in appearance of outdoor scenes, such as complex 

backgrounds[4], different poses[5] and illumination conditions[6]. To solve these challenges, 

a wide variety of methods have emerged in terms of algorithm and architecture developments 

for feature extraction ([7]-[10]) as well as classification ([11]-[14]). In many cases, the typical 

low power processor used for portable electronics or robotics platforms has the insufficient 

computational power to implement complex machine-learning applications for meeting real-

time constraints. One effective methodology for solving detection and recognition problems 
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while meeting these constraints is through dedicated hardware-based approaches. Even though 

hardware-architecture development may involve undesirable complexity, flexibility, and 

accuracy trade-offs for intelligent and computer vision systems, compared to purely software-

based systems, hardware architectures are capable of meeting the usually tough real-time and 

low-power constraints. 

A challenging and important issue for object recognition is feature extraction on embedded 

systems. In general, these methods can be divided into two strategies. One is part-based 

approaches ([15]-[17]), which utilize individual detectors to locate single parts. The recognition 

results depend on whether the detected parts are arranged in a geometrically plausible 

configuration. The other one refers to holistic approaches which shift detection or scan 

windows over the image with dense positions and scales ([18][19]). Histograms of oriented 

gradient (HOG) descriptors are based on the sliding-window strategy, and are proved to be 

competitive in terms of classification performance in a large variety of recognition tasks and 

to have robustness against illumination changes, by recent experimental studies ([20][21]). 

3.1.1 Original Software-Based HOG Algorithm and Previous Work 
The existing feature descriptors, including the HOG [22], the Gradient Location-Orientation 

Histogram (GLOH) [23], the shape context [24], the Local Binary Pattern (LBP) [25], the Scale 

Invariant Feature Transform (SIFT) [26], and its successor the Speeded Up Robust Features 

(SURF) [27], have demonstrated their robustness in pedestrian detection applications. 

Subsequently, the Haar-like feature is often applied in face recognition [28] and in pedestrian 

detection [29]. Furthermore, due to the fast training speed, Haar-like feature was also used to 

extract a region of interest (ROI) for a second stage recognition with HOG. The two-stages and 

combinational feature descriptor achieved higher detection accuracy in ([30]-[32]) than a single 

feature descriptor. 

The traditional software implementations involve translating the raw pixels into an integral 

image to construct a look-up table for speeding up the necessary calculations during feature 

extraction [33]. This commonly used integral image solution, taking advantage of an enormous 

amount of memory resources, is mainly suitable for software applications on PCs. On the other 

hand, a sub-integral image offers a practical solution in hardware implementations [34]. 

Most state-of-the-art frameworks follow the sliding-window paradigm ([35]-[37]), which 

quantifies how likely it is for a window to cover a searched-for object in an image. Each 

window is divided into local regions (cells or blocks) for calculating feature vectors according 

to various strategies. Taking the popular research work in pedestrian detection [22], the 



 

21 

 

detection window scans the image in a Raster manner. In fact, each window is divided into a 

number of sub-regions, called cells where a local feature vector is computed. Then blocks, each 

of which contains multiple normalized local cell features, are used to construct the window 

feature vector for detection by a classifier. The overlapped cells and blocks demonstrate that 

the sliding-window method represents an iterative process.  

Meanwhile, many researchers have implemented the popular “HOG plus SVM (Support Vector 

Machine)” framework in hardware ([38]-[49]). Only multiplication and comparison are applied 

in [38] during the HOG execution for bin assignment, instead of the general complicated arc-

tangent computing. Similar to the original algorithm, the cell features in a block are normalized 

with the L1-Sqrt-norm. Finally, a portion-wise classification is adopted to avoid the huge 

amount of memory for buffering all block features of a window. In [39], the gradient 

calculation is implemented by a relatively complicated coordinate rotation digital computer 

(CORDIC) solution. Then, the normalization processing is simplified by the Newton method 

with an approximated initial value. For classification, as also in [38], the partial SVM product 

is applied, but early rejection and detection are used. The difference of [49] in comparison to 

[38] and [39] is the improved energy efficiency due to the applied more advanced process 

technology. In summary, comparing to the original framework in [22], a partial classification 

is performed after the block-based normalization to avoid large feature buffers.  

Since the original HOG feature is highly-dimensional (3,780 elements per search window), the 

real-time operation is a fundamental problem in the HOG descriptor research field. However, 

the conventional descriptor implementations cannot process the inputted pixels immediately, 

which means they are not suitable for real-time processing. Only after the whole image is 

scanned and buffered, these descriptor implementations can begin to extract features. 

Reference [22] reported an object-detection system composed of a HOG descriptor and a 

support vector machine (SVM) as classifier, which needs about one second to process a QVGA 

image with 320×240 pixels. According to Ref. [22], the runtime for a VGA-image with 

640×480 pixels is 13.3 s in their benchmark report. There have been research efforts, 

attempting to accelerate the HOG feature construction based on software as well as hardware 

techniques. In Ref. [40], an integral map (IMAP) is utilized to speed up the HOG-descriptor 

extraction, and a cascade-of-rejecters approach is employed instead of SVM. Besides the pure 

software approaches, Ref. [41] presented an implementation based on graphic processing units 

(GPU). Reference [42] took advantage of FPGAs, and reported a simplified HOG 

implementation, which is able to process 60 frames of 752×480-pixel images per second on a 

Xilinx Virtex-4 FPGA with relatively high power consumption. In other words, the previously 
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obtained results verified that traditional software- and hardware-based implementations are 

insufficient for real-time mobile applications. 

The original HOG algorithm was firstly introduced by Dalal in 2005 [22], to extract a feature 

set from an image for object recognition tasks. The HOG descriptor characterizes local object 

shape and appearance by the distribution of local intensity gradients, instead of the precise 

knowledge of the corresponding gradient [43]. 

The default scan window for detection covers 64×128 pixels. The basic element for feature 

construction is called a cell and has 8×8 pixels. Thus a detection window is divided into 

8×16=128 cells, and overlaps 7×15 blocks across a 64×128 pixel detection window. First of 

all, the pixel gradient in horizontal Gx and vertical Gy direction is computed. Given a 

normalized input image, the HOG descriptor extraction begins with the computation of the 

vertical and horizontal gradients for every pixel in the input image. Simple one-dimensional [-

1 0 1] vertical and horizontal gradient masks are applied to each pixel for computing the 

gradients. Then, gradient orientation and magnitude according to Eqs. (3-1) and (3-2) are 

calculated for each pixel. The next step is the orientation binning. The magnitude in (3-3) is an 

approximation of the original expression (3-2) contributing to the histogram distribution. The 

orientation bins of the histogram are based on a specified number of orientation divisions 

according to (3-1), ranging between  to . Here, the variables  and  

represent the magnitude and orientation of a pixel at positions i and j. The variables  

and  are the vertical and horizontal gradients, respectively.  

                                                                                                 (3-1) 

                                                                                                     (3-2) 

                                                                                          (3-3) 
The gradient angles vary between 0 and 180°, and the range is evenly divided into nine bins 

covering 20° each, e.g., 0 to 20°. A histogram of gradient orientations in an image cell is 

computed by taking into account the contributions of all pixels in the cell. A nine-bin histogram 

for each cell is generated by accumulating weighted gradient magnitudes in each of the bins. 

In other words, the extracted information is compressed into a nine-dimensional vector for each 

cell. Groups of 2×2 adjacent cells are known as blocks, and adjacent blocks are defined to have 

horizontal and vertical overlaps of one cell. This results in 7×15=105 blocks for a detection 

window. The characteristic feature of a block is formed by concatenating the 4 cell histograms 

within the block, resulting in a 9×4=36-dimensional feature vector. The HOG descriptor of a 
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detection window is represented by a concatenation of all these block features. Consequently, 

the HOG descriptor of a detection window is represented by a vector with 105×36=3780 

dimensions. The magnitude (3-3) is the weighted vote contribution of the histogram for each 

pixel within the cell.  

The arc-tangent function is of high complexity and very expensive to calculate, especially for 

a hardware implementation. As a result, hardware-friendly approximation algorithms are 

essential. Most of these approximation algorithms either utilize an iterative architecture at the 

cost of system deceleration, e.g. CORDIC, or a lookup-table (LUT) method resulting in critical 

requirements of memory. In [38], the angle computation is replaced by simple integer 

multiplications and logical comparisons to determine the bin assignment (gradient orientation). 

Dalal et al. in [22] have analyzed the influence of the bin number on performance and claimed 

that the best performance is achieved for 9 bins. 

For the HOG descriptor, the feature extraction sub-component uses a cell size of  pixels, 

a block size of  cells, and overlapping  blocks across a  pixel detection 

window. A final feature-vector size of 3780 dimensions is obtained.                                                       

3.1.2 Hardware-Oriented Algorithm for HOG: Cell-Based 
In this research, the original HOG algorithm is implemented in a further improved hardware-

oriented way, applying a cell-based scan manner. A powerful cell-feature reuse method is 

employed to improve the performance by vastly reducing the number of the cell-features that 

must be repetitively calculated in the original HOG algorithm, which applies a block-based 

scan manner. Furthermore, the developed cell-based scan manner drastically reduces the 

memory requirements, since the need to buffer whole images is eliminated, and adds processing 

flexibility of input images with in principle unlimited height. In addition, an effective bin 

decoder is combined with the orientation calculation. One of the most important aspects of the 

proposed bin decoder comes from the capability of estimating the bin for a cell with less time 

as well as resources. Furthermore, faster speed and less area consumption are achieved in 

comparison to previous approaches ([42][44]), because we employ fewer multiplication 

operations without sacrificing accuracy. Then, the parallelized voting element (PVE) ensures 

a pipelined histogram calculation with dual-port memories. The proposed architecture with 

high hardware efficiency enables real-time speed, high processing-flexibility of different image 

sizes, and low area- as well as power consumption. To outline the resource efficiency of the 

proposed algorithm and architecture, we present the practical realization as a test chip 
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fabricated in 180 nm CMOS technology. We evaluate the high performance of this prototype 

chip by using XGA (1024×768 pixels) size images. 

3.1.2.1 Feature Extraction Scheme 
Within each sliding window, block shifting by one cell in horizontal and vertical direction 

results in 7×15 = 105 overlapping blocks. For each of these blocks, a normalization step is 

applied to adjust the contained-cell descriptors during construction of the block’s local FV. As 

shown in Fig. 3-2.  Cell-based feature extraction. The map for the reuse times of each cell in a 

sliding window (64 × 128 pixels) are summarized in relation to cell position. Sliding windows are 

shifted in block units (2×2 cells) during image-recognition processing., block 1 (B1) and block 2 

(B2) have two overlapped cells. In other words, these two overlapped cells are reused two times. 

Furthermore, the presence of e.g. cell (2, 2) in four blocks (B1, B2, B8, and B9) leads in a 4-

fold reuse of this cell. Consequently, depending on the cell positions in a window, the reuse 

time of each cell can be deduced. The complete map of the reuse time of cells (MRToC) in a 

sliding window for the descriptor vector construction is summarized in Fig. 3-2. The FV of the 

j-th sliding window (wj) is constructed according to (3-4) where  is the reuse time of the i-th 

cell belonging to wj and  is the dimensionality of the local FV of each cell. For the case of 

a window with 64 128 pixels, the dimensionality of the HOG descriptor is (

). Instead of a block-based HOG-descriptor extraction, the proposed 

cell-based scan method, which exploits the cell-overlap characteristics of blocks for cell-

 
Fig. 3-1.  Cell-based feature extraction. The map for the reuse times of each cell in a sliding 
window (64 × 128 pixels) are summarized in relation to cell position. Sliding windows are 
shifted in block units (2×2 cells) during image-recognition processing. 
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histogram reuse in multiple block histograms, needs to calculate the feature vector of each cell 

only once. Therefore, the proposed cell-based method in a raster-scan manner without 

normalization reduces the construction time of the HOG-descriptor vector by a factor of 3.28 

(420/128) in comparison to the block-based method. 

                                                                                                      (3-4) 

In addition, the cell-based scan method immediately processes each pixel data, enabling 

synchronized processing with the image sensor. This means, the frame or integral-image 

buffers are not necessary for this implementation. Furthermore, because of the prompt 

processing, the histogram memory has to store only x/8 intermediate partial descriptor vectors 

of one cell row in case of an input image with x×y pixels. After the HOG-feature calculation 

of x/8 cells is completed, the corresponding memory locations can be overwritten by the 

intermediate data for the next cell row. This leads to the processing flexibility of input images 

with in principle unlimited height.                                 

Typically, integral images are used in software implementations, exploiting a large amount of 

DRAM available in personal computers (PCs) [29]. The hardware implementations often store 

an integral image for a sub-image in addition to the image-frame buffer [34]. In case of integral-

image usage for the entire original image, the bit-width of each word for integral pixels requires 

-bit, where  is the image width,  is the image height, and  is the 

image-pixel value. For example, each word of the integral image for an original VGA gray-

scale image has a bit-width of 27-bit. On the other hand, for a sub-image with 16 16 pixels, 

the bit-width of integral image words can be reduced to 16-bit. 

Without an integral image buffer (at least 4 Kb) and an image-frame buffer, I propose a cell-

based feature extraction circuitry as illustrated in Fig. 3-2 with pixel-based pipelined 

architecture relying on the pixel-transfer frequency of the image sensor. The sizes of a window 

and its cells are depended on different target objects in the image. In this paper, we define a 

fixed size for the sliding window with 64×128 pixels and the cell with  

pixels. In the case of a cell with  pixels, a -pixel input image has  cells in 

horizontal direction. Each seriatim-input pixel from the image sensor is immediately processed 

for feature descriptor calculation. Intermediate calculation results are then temporarily saved 

in a storage unit. Once the last pixel of a cell (e.g., pixel p[7w+7] of the first cell in the first 

line of cells) is processed, the calculation of the descriptor for this cell is completed and the 

result can be transferred to the recognition unit. During the input of the last pixel line (p[7w+i], 

i [0,w-1]) of cell lines, the local FV v for a cell can be completed in every 8th clock cycle. 
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Accordingly, the one-row cell features take  clock 

cycles where the pipeline delay of the feature extraction circuit is . Eventually, the speed for 

extracting one cell is  s where f is clock frequency of the image 

sensor.  

An essential limitation of many hardware implementations for feature extraction is the critical 

requirements for memory space. In practice, different applications have different image sizes. 

To limit the necessity of excessive on-chip memory for ASIC implementations or of large 

internal SRAM blocks for FPGA implementations, an overwrite concept of obsolete 

intermediate results is proposed for optimal utilization of the embedded SRAM. The key 

feature of the concept is the capability to reuse the SRAM for intermediate cell FVs by 

overwriting obsolete results whenever possible so that memory-utilization efficiency and at the 

same time application flexibility can be significantly improved. The memory usage is 

quantitatively illustrated in (3-5) where Cwidth is the width of a cell and  is the 

dimensionality of a cell. In this work, each cell of the HOG feature has 9-d vector components 

( ). In addition, the bit precision of each vector component is 16-bit. According to (3-

5), the memory usage solely depends on the image width w. The proposed pixel-based pipeline 

architecture for cell feature extraction eliminate the influence of the image height h on memory 

consumption by the immediately processing of each pixel and the overwriting of the obsolete 

intermediate results. Furthermore, both the image width and the image height have a wide range 

of adjustability in this work. The proposed architecture is generalizable and can be useful in a 

wide range of applications.  

 
Fig. 3-3.  Cell-feature extraction by a pixel-based pipeline architecture. 
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                                                                                    (3-5) 

Comparing to the straightforward hardware implementation, besides a frame buffer with 

 bits, they need a memory to store the window-based feature with  bits for the 

case of the HOG feature. Whereas, in this work, only -bit memories are required for the 

HOG feature extraction.  

3.1.2.2 Recognition in Sliding Window Paradigm 
In the literature ([35]-[37]), the sliding window is scanned across the image to all positions on 

the defined grid of overlapping blocks. Usually, a very large buffer stores the determined 

window FVs with several thousand components each for the entire image. In general, windows 

are overlapped in block unit (e.g.  cells, W1 and W2 in Fig. 3-1).  

In this research, I propose the parallel recognition processing for each cell in all related 

overlapping sliding windows (OSWs). Within this proposal, the recognition process can be 

executed in parallel for all OSWs including a given cell. In the proposed cell-based recognition, 

the cell has a different position in each OSW according to the MRToC. Given an input image 

with w×h pixels, an OSW with Wwidth×Wheight pixels, a cell with Cwidth×Cheight pixels, and a 

block with 2×2 cells, the number of the OSWs to which the cell belongs can be derived from 

the cell position in the image C[c, r] ( , ). Initially, the first 

window (FW) containing the current cell C[c, r], should be located. The numbers of OSWs 

containing C[c, r] in horizontal and vertical directions (WNhor and WNver) are then calculated. 

The index of the FW (indexFW) with one-dimensional numbering, WNhor and WNver are derived 

from (3-6), (3-7) and (3-8), respectively, while c and r with 0  and 0  

are the indices of a cell. Furthermore, the maximum for WNhor is  and the 

maximum for WNver is . In the case of an OSW with 64×128 pixels and a cell with 8×8 

pixels, the maximum WNhor is 4 and the maximum WNver is 8. In other words, one cell can be 

included in up to  OSWs. 

We take the example of cell C[15, 41] in a VGA (640 × 480 pixels) image. In the beginning, 

the index of the FW is computed through (3-6). Since in this example  and 

, i.e.  and , the result  is determined. Then, 

and are calculated according to (3-7) and (3-8). Consequently, the 485th OSW 
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is taken as the origin and a partial recognition procedure is performed for a  matrix of 

OSWs.  

     (3-6) 

                                                                (3-7) 

                                                              (3-8) 

For partial recognition, the cell position in each OSW is used to determine the corresponding 

MRToC values of the cell FV. Then, the partial squared Euclidean distances (PSEDs) between 

the cell FVs of each OSW and the corresponding portions of all reference vectors are calculated 

and accumulated for NNS classification of all cell-related OSWs. The obtained intermediate 

results are then stored in a PSED memory so that the next cell belonging to these OSWs can 

be processed for continuing the PSED calculation, as illustrated in Fig. 3-3.  

SVM, which is widely employed in the literature, separates the positive and negative samples 

by a hyperplane with maximum-margin. Due to the limited relevance of different feature spaces, 

it becomes difficult to find an optimal hyperplane in the case of the simple combination of 

these features. In general, the pedestrian and the landscape often have different edge or texture 

feature information. Thus, the nearest-neighbor-search (NNS) classifier with hardware-friendly 

architecture produces different minimal-distance distributions for pedestrian and non-
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pedestrian samples. It is proven that different feature spaces can comply with this distance-

distribution manner.  

3.2 Hardware Architecture  
The developed five-stage pipelined architecture with dual-port histogram memories (DHMs) 

for cell-based HOG descriptor extraction and synchronization to the input pixels from the 

image sensor is depicted in Fig. 3-4. This architecture can be divided into three main functional 

parts, namely a control unit (CU), a pixel processing unit (PPU) for gradient-orientation (bin) 

and gradient magnitude calculation, and a vote unit (VU) with nine dual-port memories (DPMs) 

to store intermediate cell FVs. The pipeline registers synchronously latch input data with the 

same rising edge so that a computation result can be transferred to the following register in the 

pipeline. In other words, the proposed architecture consists of a pipeline processing cluster, 

comprising five stages pipelines. 

3.2.1 Detector  
For each pixel, the PPU firstly calculates its spatial derivatives Gx and Gy in horizontal and 

vertical directions, decodes the gradient orientation to bins, and computes the gradient 

magnitude M(i, j) according to (3-3). In the VU, M(i, j) is accumulated to the intermediate 

feature of the bin k that the current pixel belongs to. The VU contains nine magnitude storing 

units (MSUs) for accumulating the magnitudes appointed by the orientation bins. The MSU k 

in Fig. 3-4 includes a DPM k for storing the accumulated magnitudes for the bin k, a multiplexer 

MUXc to select the appropriate write-data for DPM k, and a multiplexer MUXd for write-

 
Fig. 3-5. Cell-based recognition for all OSWs to which the cell belongs. 
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conflicts avoidance. The multiplexer “MUXb” in the VU initializes the accumulated magnitude 

for each bin. When each bin is first selected for a processed cell, the “New cell (NC)” signal 

asserts to select “0”. The VU outputs nine-dimensional cell-FVs when all the pixels within one 

cell have been processed. These cell-FVs are transmitted to the recognition part, where they 

are compared to the corresponding partial reference-vectors. 

In this research, the angle range (-90°, 90°) is selected instead of the original range (0°, 180°) 

in (3-1) to avoid the singular point 90° of the tangent function. In the chosen angle range, the 

function  is a monotonically increasing odd function with mirror symmetry. The nine 

evenly spaced bins over the range (-90°, 90°) are (-90°, -70°], (-70°, -50°], (-50°, -30°], (-30°, 

-10°], (-10°, 10°], (10°, 30°], (30°, 50°], (50°, 70°], and (70°, 90°). Due to the mirror symmetry, 

we only need to initialize four thresholds for bin assignment ( , , , ) 

rather than nine thresholds in the original implementation [38] since the other half of the 

thresholds ( , , , ) can be easily obtained through 

sign changing of the initialized ones. This also eliminates four multipliers and logic 

comparators in the hardware implementation. 

 

 
Fig. 3-7. Architecture for HOG feature-extraction. The whole architecture consists of three parts: 
control unit, pixel processing unit and vote unit. 
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Then, I fractionally store the nine-dimensional vectors of each cell in nine DPMs. Only the 

FVs of  cells i.e. one cell row, have to be stored in the DPMs. The cell-feature storing-

locations can be overwritten after the feature construction of one cell is completed. As a result, 

there is no height limitation of the image size due to the applied overwriting scheme of the 

DPMs. For example, a chip with 128×9 word DPMs can processed a maximum image width 

w=1024 pixels.  

The described architecture can synchronize with the image sensor. Since the PPU processes 

one pixel in each clock cycle, the DPMs need to read and write at the same clock cycle. This 

concurrent reading and writing raise the risk of memory-access conflicts, caused by 

simultaneous accesses to identical memory addresses when adjacent pixels are assigned to the 

same bin. Actually, this situation is very common since the characteristics of adjacent pixels 

are with high probability similar except for the edge regions. The multiplexer MUXd is mainly 

utilized for avoiding this memory-conflict case in the MSUs. When adjacent pixels are assigned 

to the same bin, “kth-d cell-feature” ( ), writing is not necessary and avoided by 

selecting the previous accumulation result through signal “Conflict avoidance” as the correct 

operator for continued accumulation by addition of the current-pixel magnitude. In the 

meantime, the read operation of DPM k pauses until there is no further collision between read 

and write addresses. Otherwise, the output of DPM k is selected to update the magnitude-

accumulation result for this bin. This conflict-avoidance method also guarantees continuity of 

the whole pipeline processing. In contrast to the frame-buffer-based and integral-image-buffer-

based methods, the working frequency of the proposed architecture can synchronize to the 

image sensor at a relatively low working frequency for real-time processing with low power 

dissipation.  

3.2.2 Gradient Generator and Vote 
3.2.2.1 Sobel Filter for Gradient Calculation 
The computation of gradient value and gradient direction must have low complexity and fit 

hardware-based implementations. The Sobel operator is used for calculating the gradient-

values in x and y directions by convolution with a separable 3×3 Sobel mask and yields the 

spatial derivatives Gx and Gy for each pixel of the raw image. The gradient magnitude  

for each pixel is then simplified according to Eq. (3-3) to avoid the root operation.  

For each incoming pixel, two 2-dimensional convolution kernels (Fig. 3-5) are exploited for 

gradient calculation, working on the grayscale intensities of pixel-neighbors in a 3×3 pixel 

region. The incoming pixel (e.g., P5) is at the center of the mask and the line buffers (shift0, 
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shift1, and shift2) produce the neighboring pixels in adjacent rows and columns. After line 

buffering, multipliers and adders calculate the convolution result for each central pixel. The 

two filters for Gx and Gy work in parallel and from their output data  can be obtained in 

the calculation unit. In the vote unit,  will be accumulated to corresponding histogram in 

the DPMs. 

3.2.2.2 Bin Decoder for Orientation Calculation  
The calculation of the arc-tangent function is computationally expensive, especially for 

hardware implementation. Most of the hardware friendly approximation algorithms adopt an 

iterative architecture resulting in deceleration of the system, or a lookup-table (LUT) method 

requiring large amounts of memory. Reference [42] proposed to combine the orientation 

calculation with the bin assignment by directly discretizing the pixel into bins according to its 

value of Gx and Gy, instead of computing the angle explicitly. The bin definition has been 

analyzed in Ref. [22] to demonstrate the influence of the bin number on performance. The 

results indicate that performance is improved significantly, but decreases with the number of 

bins, and when bin number is up to about nine, the difference becomes very small. 

 
Fig. 3-9. Gradient calculations based on a Sobel filter with 3×3 kernel and an example for 
the pixel P5. 
 

shift 0
X9

P9
X8

P8
X7

P7

shift 1
X6

P6
X5

P5
X4

P4

shift 2
X3

P3
X2

P2
X1

P1

Gx_P5

Gx_P5 =

Gx_P5 =X1 P1+X2 P2+X3 P3+
X4 P4+X5 P5+X6 P6+
X7 P7+X8 P8+X9 P9

Input

P1 P2 P3

P4 P5 P6

P7 P8 P9

+1 +2 +1
0 0 0
-1 -2 -1

Y1 Y2 Y3

Y4 Y5 Y6

Y7 Y8 Y9

shift 0
Y9

P9
Y8

P8
Y7

P7

shift 1
Y6

P6
Y5

P5
Y4

P4

shift 2
Y3

P3
Y2

P2
Y1

P1

Gy_P5

Gy_P5 =Y1 P1+Y2 P2+Y3 P3+
Y4 P4+Y5 P5+Y6 P6+
Y7 P7+Y8 P8+Y9 P9

Gy_P5 =

Input

X1 X2 X3

X4 X5 X6

X7 X8 X9

P1 P2 P3

P4 P5 P6

P7 P8 P9

-1 0 +1
-2 0 +2
-1 0 +1



 

33 

 

We optimized the approach further with respect to two aspects. First of all, we selected a more 

reasonable angle-range for the orientation to simplify the bin assignment. The function tanθ 

has an infinite set of singular points, e.g.,  . This problem is fundamental to graphical 

properties of the tangent function, and the difficulty of bin decoding is increased if the singular 

point appears in the middle of the angle interval. In this paper, the angle range ( , ) is 

selected instead of the original range ( , ) in eq. (1) to avoid this problem. In the selected 

angle-range, the function tanθ is a monotonically-increasing odd function with mirror 

symmetry. The nine evenly spaced bins over the range ( , ) are shown in Fig. 3-6. 

Secondly, the value of |tanθ| is exploited in a look-up-table, so that only four tangent angles 

(bins) need to be initialized rather than nine bins, since the function |tan (θ)| is an even function 

in the selected domain, for example, |tan( )|= |tan( )|. Finally, only half of the interval 

( , ) has to be computed while the other half can be obtained by comparing the signs of 

Gx and Gy. Accordingly, the proposed method can eliminate five 23-bit signed multipliers in 

comparison to the solution of Ref. [44]. Finally, the angle computation is replaced by simple 

integer multiplications and logical comparisons as depicted in Eqs. (3-9) and (3-10) to 

determine the bin assignment (angel range). 

                                                                                                            (3-9) 

                                                                                        (3-10) 

The developed bin decoder is illustrated in Fig. 3-7 and calculates the orientation bins 

according to the computed horizontal and vertical gradients Gx and Gy. As shown in Fig. 3-8, 

three main cases i.e., , , and , can be summarized to arbitrate the final 

bin. At the beginning, four pairs of the  are computed in parallel. To further simplify 

the calculation, the signs of Gx and Gy separate the first quadrant and the fourth quadrant. A 

fixed-point-number operation is adopted by left shifting the decimal tangent number, for 

 
Fig. 3-11. Angular quantization into nine orientation bins for the range (-90o, 90o). 
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example left shift 10-bit. At the same time, |Gy| has to be shifted as shown in Fig. 3-7. Finally, 

the bin arbitration unit is a 9 × 9 channel matrix to generate the assigned bin based on Gx, Gy, 

|Gx|, and |Gy| as illustrated in Fig. 3-8.  

3.2.2.3 Parallelized Voting 
The histogram vote circuitry contains nine parallelized voting elements (PVEs) for 

accumulating the vote values appointed by the orientation bins. Each PVE, as shown in Fig.3-

9, includes a DHM unit for storing the accumulated-magnitudes of the vote value for nine bins 

and two multiplexes (MUXa and MUXb) for selecting the corresponding vote value according 

to the bin. When two adjacent pixels are assigned to the same bin, there is not enough time to 

write the updated vote value back to the DHM, and then to read it again for magnitude 

accumulation of the latter pixel. In this case the “Collision avoidance” signal in Fig. 3-9 thus 

selects the latched vote value after MUXb instead of reading it from the DHM. This also 

ensures the continuous pipeline processing for the histogram vote procedure. The comment 

multiplexer “MUXd” for the histogram vote circuitry can be used to initialize the accumulated-

magnitude vote for every bin. When the process for a new cell begins, “New cell_row” signal 

 
Fig. 3-15. Bin arbitration unit for calculating the final bin assignment. 
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Fig. 3-13. Bin decoder with four multipliers and a bin arbitration unit. 
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asserts to select “0” as the accumulated vote value. As a result, only the magnitude of the first 

cell pixel will be written to the DPM.  

In summary, the pixel contribution for the cell-based descriptor can be accumulated 

immediately after each pixel is transferred, so that the processing can be synchronized with 

image-sensor transmission. After the scanned line of the image sensor reaches to the height of 

a cell, the completed feature for one cell “1 cell feature” is transmitted to the parallel 

recognition circuit. For example, an x×y-pixel input image only requires a memory with x/8 

words for storing one row of the cells in horizontal direction. In particular, each word of the 

dual-port memory has nine-bin× B (bit precision for each bin) bits, e.g., 144 bits when B is 16-

bit. In other words, the width of the input image that this circuit can process is only determined 

by the memory size. On the other hand, there is no limitation of the image height since the 

DPM will be overwritten when the pixels for a new row of the cells are transferred from the 

image sensor. 

3.2.3 Parallelized Cell-Based Recognition  
Most conventional hardware designs would not take the feature extraction immediately when 

the pixels are inputted until the whole image is scanned due to the calculation for an integral 

image. This means they have an image-frame latency and are not real-time processing. In this 

paper, since the detection window is shifted in block units across the image in the sliding-

window paradigm, the cell-based HOG descriptor is reused in multiple detection windows. 

Consequently, the cell-based descriptors are only computed once and reused according to their 

position in the image. 

In general, the image width x should be larger than the detection window width with w pixels. 

The pixels are inputted in raster scan with line-by-line manner. There are (x-64)/16+1 detection 

 
Fig. 3-17. Hardware architecture for the parallelized voting element. 
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windows in horizontal image direction in the case of 64×128-pixel windows, 16×16-pixel 

blocks, and 8×8-pixel cells. Furthermore, the feature vector of a detection window can be 

completed only after the currently input image line reaches the last line of the window, i.e., the 

128 image line from the top of the window. 

As shown in Fig. 3-10, a cell is usually located in several search windows. The reuse time of a 

cell can be estimated by the cell location in an image. And then, the number of windows for 

this cell C[c,r] can be calculated from its position in column c and row r of the image. Given 

an input image with x×y pixels, the total number of the detection windows can be summarized 

and initialized in a look-up table. 

Finally, the nearest-neighbor-search (NNS) classifier is applied to recognize the objects in each 

window according to the Euclidean distance between the HOG descriptor of each detection 

window and the reference vectors, as illustrated in Fig. 3-11. The 3780-dimensional HOG 

feature vectors are categorized into three groups (corner, edge, internal) to determine the reuse 

time of the current cell C[c,r]. Generally, each of the simultaneously processed windows is in 

a different stage of its feature-vector construction and the partial squared Euclidean distance 

 
Fig. 3-19. A cell is normally located in several detection windows. And, the number of windows 
for a cell can be estimated by its position in the image. 
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Fig. 3-21. Block diagram of the hardware architecture for parallel pattern recognition. 
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calculation with respect to the reference feature-vectors. 

3.3 Implementation and Results 

3.3.1 Detection Accuracy 
Simulation results by software implementation are used to evaluate the effects of the cell-based 

FVs, the sliding-window recognition, and the complementary dual-feature space on the 

accuracy performance of the complementary nearest neighbor classifier (CNNC). We 

confirmed the impact of the proposed algorithms on human-detection accuracy using the 

INRIA and NICTA [45] human dataset and two evaluation criteria: true positive rate per 

window (TPPW) and true negative rate per window (TNPW). TPPW and TNPW measure the 

performance of correct classification for test windows which contain humans and which do not 

contain humans, respectively.  

The INRIA human dataset, providing a more challenging human detection problem [22], was 

used as the base-data set for comparison in many human-detection investigations. The human 

images in the dataset are challenging due to the various lighting conditions, complex postures, 

partial occlusion, and complex backgrounds. The data set contains 2416 positive training 

images and 1218 large images, which contain no humans. From these 1218 large images, 12180 

negative training images can be extracted. For the classification test, we used different sets of 

1126 positive testing images and 453 large images which contain no humans. From these large 

images, 4530 negative testing images were extracted.  

The NICTA data set is a large-scale urban dataset with a significant number of pedestrians. 

The training dataset contains 37339 positive images in which there are 25551 unique 

pedestrians and 200000 negative images. The test data set has 6877 positive images and 50000 

negative images.  

First of all, the cell-based HOG and Haar-like FVs, extracted from the training images, were 

clustered by the k-means algorithm. Then, the resulting centroids of the clustering process were 

taken as the reference FVs for classifying the training dataset to calculate the , 

, and  as shown in Fig. 3-12. Actually, a human has much more edge or 

texture characteristics than the scene background.  As a result, the positive samples tend to 

have much larger classification distances than the negative samples. We can conclude that the 

distance histograms for non-normalized HOG and Haar-like feature have the same tendency in 

different datasets (INRIA, NICTA, Caltech Pedestrian Detection Benchmark ([46]-[47]), and 

Daimler Mono Pedestrian Detection Benchmark Dataset [48]). Hence, the , 

, and  are robust to different datasets. Next, using the defined PTs to 
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classify the corresponding test datasets and presenting the graphs of the obtained TPPW and 

TNPW performance, respectively, versus the number of cluster centroids (reference FVs) used 

in the k-means training phase. 

Due to the cell-based sliding-window recognition, this work has applied no block-based 

normalization, which is considered as an important processing step in the original study of [22] 

and the hardware implementations of ([35]-[39], [49]).  

As illustrated in Fig. 3-13, the truncation of the bit precision and non-normalization lead an 

average loss of 0.05% and 7.5% in TPPW and TNPW for INRIA dataset and an average loss 

of 1.5% and 8.2% for NICTA dataset with individual HOG feature. As for the Haar-like based 

detection, the cell-based feature extraction scheme is found to show better results in TPPW 

with an average improvement of 5% and a degradation in TNPW with an average loss of 4.6% 

for INRIA dataset. Meanwhile, the accuracy has 0.9% loss in TPPW but 3.5% improvement in 

TNPW with Haar-like feature for NICTA dataset. 

 
Fig. 3-23. Definition of the priority threshold (PT) for HOG and Haar-like features derived from 
four different standard datasets. HOG and Haar-like features comply with the same distance-
distribution manner in these datasets.  

(A) Distance histogram of the nearest neighbors with HOG feature

(B) Distance histogram of the nearest neighbors with Haar-like feature
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However, the classification performance of the proposed CNNC architecture with 

complementary dual-feature space is found to achieve an average of 95.3% in TPPW and 99.4% 

in TNPW for INRIA dataset. At the same time, NICTA dataset achieves an average accuracy 

of 96% in TPPW and 99.2% in TNPW. The CNNC significantly outperforms the individual 

HOG or Haar-like feature-based classification with and without normalization. Hence, the 

accuracy loss from the hardware implementation can be compensated by the CNNC in dual 

feature space. As well as, in contrast to the individual feature, the results of the CNNC are more 

stable for normalized and non-normalized features since the dual feature space can supplement 

each other during the classification stage. The ASIC implementations in [39] and [49] have 

also been compared to the original HOG+SVM framework in [22]. We implemented the 

 

 
Fig. 3-25. Comparison of the TPPW and TNPW performances between the classification by the 
block-based algorithm with normalization (solid lines) and our cell-based algorithm without 
normalization (dashed lines) in two different datasets. Dual-feature classification with CNNC 
achieves the best TNPW results.  
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approach of [22] and obtained the results of 94.2% for TPPW and 99.5% for TNPW. In this 

paper, the cell-based feature extraction scheme without normalization leads a further reduction 

of the memory utilization and a straightforward parallelization of the sliding-window 

recognition. Furthermore, the complementary mechanism, which exploits different aspects of 

different feature spaces, consequently also produces better classification results with 2.2% 

TPPW and 0.3% TNPW improvements in comparison to the ASIC implementations of the 

HOG+SVM algorithm in ([35][36][39][49]). Comparing to our work, the accuracy loss in 

([39][49]) is controlled by complying with the original framework in [22]. As a tradeoff, one 

of the requirement for more hardware resources is the normalization circuit in ([39]-[49]).  

Because the main extraction domain of each feature emphasizes different image aspects, each 

feature’s accuracy domain is different and accurate recognition is high for these emphasized 

special characteristics. As shown in Fig. 3-14, object (A) is difficult to be distinguished by 

HOG due to the unclear edges. On the other hand, the Haar-like feature captures more 

efficiently the texture properties. It can, therefore, be inferred that the consideration of dual 

features with complementary characteristics enlarges the overall feature accuracy domain and 

can thus improve the recognition accuracy efficiently. The feature extraction sub-component 

of the developed hardware architecture implements the feature extraction for both HOG and 

Haar-like descriptors. Theses dual features are used to complement each other in the CNNC 

efficiently. The HOG descriptor attempts to characterize objects by their distribution of local 

intensity gradients, while the Haar-like descriptor can better describe the detailed internal 

characteristic of an object. 

The CNNC consists of a number of NNS classifiers in each of which the reference data is off-

line trained by the unsupervised k-means clustering algorithm in an individual feature space, 

 
Fig. 3-27.  Feature emphasis for describing different scenes. 
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in order to reduce the number of references for minimizing the computational efforts in the 

classification stage. The obtained prototypes are the centroids of clusters derived from the 

average of the clustered training samples. The number of prototypes, produced by the k-means 

clustering algorithm, is sufficiently compressed to a much lower order than that of the training 

samples. 

In this research, we capture the human-figure edge characteristics by the histogram of oriented 

gradient (HOG) descriptor and the detailed internal human-figure characteristics by the Haar-

like descriptor, both complementing each other to describe the human figure more completely. 

Because the main domain of each descriptor lays emphasis on different aspects, each 

descriptor’s accuracy domain is different and recognition accuracy is high for these specific 

aspects. It can be inferred that different descriptors with complementary characteristics have 

their own accuracy domains and that their combination can improve the overall recognition 

accuracy substantially. 

The basic idea of the CNNC is, therefore, to combine different perspectives of the multi-

domain descriptors to improve the detection performance, even though the accuracy 

performance of each individual classifier may under-perform state-of-the-art detection systems 

as e.g. SVM. For the classification mechanism, instead of simply combining dual features, 

CNNC emphasizes the classification result of the nearest-neighbor-search classifier in each 

feature space so that results can complement each other through the different perspective of 

each classifier.  

In fact, a human figure often has different edge or texture characteristics from the scene view.  

One behavior of the NNS classifier is that the positive samples tend to have more noticeably 

various classification distances than the negative samples. Accordingly, a distance for HOG or 

Haar-like feature space, which is closer to the largest distribution frequency of the positive or 

negative samples, is motivated to provide higher confidence when the classification results of 

the dual features are different. 

A priority thresholds (PT) for each feature space helps to choose the classification as the result 

of the CNNC when the individual classifier for different feature outputs different classification. 

The final classification result emphasizes the feature space with higher confidence which is 

expressed by the relative distance of the classification distance in each feature space to the PT. 

For each feature space, the PT can be determined in the training stage as following: 

Step 1: Obtain k prototypes (reference data) by independently clustering the positive and 

negative training dataset with k-means clustering algorithm.  
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Step 2: Classify the entire training dataset with the 2k prototypes and plot the distances of 

nearest neighbors for the correct classifications in Fig. 3-15. 

Step 3: Calculate the distance histograms for positive and negative training dataset, respectively.  

Step 4: Choose the distance intervals of the histogram with largest counting numbers (peaks) 

for positive and negative histogram respectively and calculate the average values of the 

distance intervals as priority thresholds (  and ). According to the experimental 

results for different datasets,  is always much larger than  while we adopt non-

normalized features.    

Then, determine the confidence parameters (CP) that show the distance relationships for the 

 and  to the nearest-neighbor distance of the input vector to the 2k prototypes 

(  according to (3-11) and (3-12). 

                                                           (3-11) 

                                                           (3-12) 

 
Fig. 3-29.  Distance histogram of the nearest neighbors using the prototypes classifying the 
entire training dataset with non-normalized features for training the PT. 
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Finally, the classification mechanism for CNNC with two feature descriptors (HOG and Haar-

like) in (3-13) chooses the classification result of the feature space with high CP that has 

smaller relative distance of the  and the PT.                    

The PSED for every OSW is invoked from the memory for the final distance comparison. 

Meanwhile, the cell position in each OSW determines the components of the reference FVs 

corresponding to the extracted cell FV. Above operation is repeated for the processing the 

OSWs, which contain this cell. 

     

1 CHog=1,  CHaar=1
-1 CHog=-1,  CHaar=-1
1 CHog=1,  CHaar=-1( > )
-1 CHog=1,  CHaar=-1 ( < )
1 CHog=-1 , CHaar=1( < )
-1 CHog=-1,  CHaar=1 ( > )

                      (3-13) 

As illustrated in Fig. 3-16, synchronized with the pixel-based HOG and Haar-like feature 

extraction, the pixel coordinates are also converted to the position of the processed cell in the 

image frame for simultaneous calculation of the corresponding FW, WNhor, and WNver data.  

At the beginning of the recognition procedure, the index of the OSW is set to FW. Then the 

index increases one by one from FW to reach FW+WNhor in the horizontal direction. After 

processing each row of the OSW matrix, the index of the OSW is re-assigned to FW+xn, where 

n = (w-Wwidth)/2×Cwidth and x (0 WNver) are the maximum OSW number in the horizontal 

direction of the input image with w × h pixels and the row number of the OSW matrix, 

 
Fig. 3-31. Block diagram of the hardware architecture for parallel cell-based recognition. The 
number of OSWs can be deduced from the cell position in an image. For each OSW, the cell 
position in the window determines the MRToC value.  
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respectively. The recognition processing terminates when the index of the OSW reaches to 

FW+(WNver-1)×n+WNhor. A control unit with finite state machine manages the increasing 

operation for the index of the OSW. After each index increment, the cell position in the 

corresponding OSW is used to read out the MRToC value from the SRAM block, which can 

be reused after eight OSW-rows to achieve a good memory efficiency. The feedback loop in 

lower right of the Fig. 3-16 is used to increase the cell position in an OSW. 

The offline trained references for HOG and Haar-like features are independently initialized in 

the “Ref. SRAM”. The NNS circuitry in Fig. 3-17 with a partial storage concept and a parallel-

pipelined computation architecture ([50]-[53]) is applied for classification. In other words, each 

reference memory stores a number of partial references. The parallelism, which is equivalent 

to the number of the parallel reference memories, is different depending on the dimensionality 

of the cell FV. In particular, in the same way, as for the storage concept of the MRToC SRAM, 

the PSED storage unit only has to store  intermediate results. Finally, the label of the 

reference vector with minimal SED is outputted as the recognition result for each OSW. 

As illustrated in Fig. 3-14, the recognition processing can already be started from the (7w+7)-

th pixel of an image frame and has to be completed with respect to the contribution from the 

1st cell row before the first cell FV of the 2nd cell row (at (15w+7)-th pixel) is determined. In 

 
Fig. 3-33. NNS circuits for individual HOG and Haar-like descriptors.  
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other words, the recognition-process contribution from one cell row only has 8w clock cycle to 

finish. Otherwise, the FIFO-length between the feature-extraction unit and the recognition 

circuitry must be increased so that it is large enough to cover the mismatch between the two 

system parts. This could amount to the necessity of having to buffer the cell FVs of almost an 

entire image frame in this FIFO. To resolve this constraint, we use two different clock 

frequency domains in the feature extraction ( ) and recognition part ( ) of our system 

architecture, where the recognition circuitry has a higher working frequency to finish the 

required processing fast enough, i.e.  =4  in this work. With above requirements fulfilled, 

the latency T for the application of pedestrian detection in an image frame becomes only 

 ms where is the working frequency of the image sensor, to which the whole 

system architecture is synchronized. In case of a XGA size camera STC-MC83PCL (1024×768 

pixels), T is about 26.94 ms while the pixel frequency ( )  is 29.5 MHz at 29.18 fps. In the 

meanwhile, the working frequency of the recognition unit ( ) is 118 MHz.  

3.3.2 Post-Layout Results 
A test chip (see Fig. 3-18) was fabricated in 180 nm CMOS technology to implement the 

architecture for HOG descriptor extraction by the cell-based scan method with synchronization 

to the pixel input. Total chip area is 1.59 mm2 where the on-chip dual-port memory of 2.25 KB 

for the nine 128×16-bit DHMs consumes about 70% area. The word precision for Gx, Gy, and 

the histogram values is 16 bit, which provides reasonable classification accuracy and minimizes 

hardware cost. Power consumption is 42.3 mW at measured maximum frequency of 120 MHz 

at 1.8 V supply voltage. 

The chosen DPM configuration for storing the x/8 intermediate HOG descriptors of an image 

row allows to handle a maximum input-image width of 1024 pixels, while the input-image 

 
Fig. 3-35. Micrograph of the fabricated chip in 180 nm CMOS technology. 
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height is unlimited. For the application example of XGA (1024 × 768) resolution videos, HOG-

feature vectors can be extracted at 120 MHz operating frequency with a maximum frame rate 

of 122 fps. 

As an update of the 180 nm porotype, a test chip fabricated in 65 nm SOTB CMOS technology, 

which is depicted in Fig. 3-19, verifies the CNNC described above. The test chip implements 

dedicated feature extraction and parallel OSW recognition with NNS circuits for HOG 

descriptor and Haar-like descriptor, respectively. Due to the cell-based sliding window 

recognition, and an overwriting scheme for obsolete intermediate data, the prototype chip 

achieves high area-density and memory-utilization efficiency with a core area of 3.22 mm2, a 

memory consumption of 0.602 Mbit, and an average power consumption of 75.48 mW at 200 

MHz and 1 V.  

The recognition circuits based on the HOG feature embeds 394 Kbit SRAM, in which 18 Kbit 

SRAM is used for cell-feature construction, 176 Kbit SRAM is reference-data memory, 128 

Kbit SRAM is for PSED intermediate storage, and 72 Kbit SRAM serves as FIFO for cell-FV 

buffering. As for the Haar-like part, the overall SRAM consumption is 208 Kbit, including 64 

Kbit SRAM for cell-feature construction, 96 Kbit SRAM for reference-data storage, 16 Kbit 

SRAM for PSED intermediate storage, and 32 Kbit SRAM as FIFO for cell-feature buffering. 

The word precision for the histogram values Gx, Gy and the Haar features Dx, Dy is 16 bit, in 

order to achieve reasonable classification accuracy and minimization of hardware cost.   

 
Fig. 3-37. Micrograph of the prototype chip in 65 nm SOTB CMOS technology and the FPGA-
base demonstration system with XGA camera and single-scale sliding window. HOG descriptor 
and Haar-like descriptor are integrated with a dedicated cell-based NNS classifier, respectively. 
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3.3.3 Architecture and Algorithmic Optimization Results 
A performance comparison between our work, which exploits dual complementary feature 

space and other ASIC implementations using the HOG + SVM framework [39], [49]is 

illustrated in Table 3-I. Both [39] and [49] can process single-scale FHD (1920 × 1080 pixels) 

videos. Our design is able to handle a maximum video size of 1024 × 1616 pixels in row scan 

manner. The memory for storing the w/8 intermediate cell FVs, implemented in the prototype 

design, allows dealing with a maximum input-image width of 1024 pixels, while the input-

image height is only limited by the processing speed requirements (e.g. fps). Maximum input-

image width can be easily increased in our architecture by using a larger memory size for 

intermediate cell-FV storage. 

In [39], dual HOG cores are employed to process single-scale images. In [49], the design 

supports multi-scale detection for fixed image resolution. Instead of limitation to a fixed image 

Table 3-I. PERFORMANCE COMPARISON TO PREVIOUS WORK. 

 [39] 
[49] 

Our work Column 
scan Row scan 

CMOS technology 65 nm 45 nm SOI 65 nm SOTB (SOI with thin gate 
oxide and BOX layers) CMOS 

Feature descriptor HOG HOG HOG & Haar 
Feature-core 

number Dual HOG cores Triple HOG cores Dual complementary cores: single 
HOG core & single Haar-like core 

Classifier SVM-based SVM-based NNS-based 

Power dissipation 
(mW) 

99.52 (42.9 MHz at 
1.1 V) 

45.3 (270 
MHz at 
0.72 V) 

58.5 (270 
MHz at 
0.72 V) 

75.48 (200 MHz at 1 V, 44.96 for 
HOG & NNS, 30.52 for Haar-like & 

NNS) 
Storage size 

(M-bit) 1.22 0.538 1.121 0.602 (0.394 for HOG & NNS, 0.208 
for Haar-like & NNS) 

Core size (mm2) 3.96 2.688 3.456 3.22 (1.96 for HOG & NNS, 1.26 for 
Haar-like & NNS) 

Image resolution 

FHD (1920 × 1080 
pixels) at 30 fps at 

110 MHz 

FHD (1920 × 1080 
pixels) at 60 fps at 

270 MHz 

1024 × ∞ pixels 
E.g., (1024 × 1616 pixels) at 30 fps 
at =50MHz and 200 MHz 

Flexibility for 
image size (pixels) only 1920×1080 only 1920×1080 1024 × ∞ 

Energy 
consumption* 1600 pJ/pixel 364 

pJ/pixel 
470 

pJ/pixel 

906 pJ/pixel for HOG based 
recognition, 

615 pJ/pixel for Haar-like based 
recognition 

*Energy consumption = power dissipation/(image resolution×fps). 
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resolution, the reported prototype for the proposed architecture realizes a resolution flexibility 

of up to  pixels, where only the actually implemented memory capacity for 

intermediate cell FVs limits the maximum image width. Note that the image-resolution 

flexibility of the proposed architecture can be exploited to support multi-scale processing. Our 

work with multiple chips can allow enlarging or reducing the scale of target objects in images 

to match the sizes of the detection window and to-be-recognized target objects. Even though 

our chip is flexible to process images with different image resolution, it consumes less memory 

because of synchronization between pixel-data transmission and clock frequency for 

processing, overwriting of obsolete data in the cell FVs storage memory, and progressive cell-

based partial recognition as soon as cell FVs become available. 

To demonstrate the robustness of the PT for different dataset, we classify the INRIA test dataset 

by the trained reference data from the NICTA training data (NICTA to INRIA). Then, using 

the references from the INRIA training data recognize the NICTA test data (INRIA to NICTA). 

 

 
Fig. 3-39. Comparison of the TPPW and TNPW performances using the references from different 
training datasets to classify different test datasets. 
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The results in Fig. 3-20 prove that CNNC is still efficient in the cross verification. In case of 

NICTA to INRIA, the average accuracy of the CNNC is 90.3% in TPPW and 99.5% in TNPW. 

With respect to INRIA to NICTA, TPPW rate is 92.9% and TNPW rate 98.1%. The accuracy 

loss shows that the compatibility of a dataset is limited due to different camera sensors and 

illumination conditions.  

In addition, the scale of the training data has small effects on the accuracy performance 

according to Fig. 3-20. However, the proportion of the positive and negative samples can affect 

the TPPW and TNPW. Even though the scale of the NICTA dataset is much larger than that of 

the INRIA dataset, only the proportion of the positive and negative samples ( ) 

affects the accuracy performance. In the case of the INRIA, . For 

NICTA, .  The more positive sample can more effectively achieve higher 

TPPW. Furthermore, in Fig. 3-21, the number of negative training sample keeps the same while 

we choose 1k, 10k, 20k, and the entire positive training samples. We can prove that the 

 

Fig. 3-41. Comparison of the TPPW and TNPW performances between different scales of the 
positive training samples.   
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proportion of positive and negative training samples rather than the scale affects the accuracy 

performance of the prototype-based nearest neighbor classifier. 

3.4 Summary 
The chapter introduces a hardware-oriented HOG algorithm which exploits the cell-based scan 

strategy. The design scheme enables image-sensor synchronization and extraction-speed 

acceleration. Furthermore, buffers for image frames or integral images are avoided. An image-

size scalable hardware architecture with an effective bin-decoder and a parallelized voting 

element (PVE) is developed and used to verify the hardware-oriented HOG implementation 

with the application of human detection. The fabricated test chip in 180 nm CMOS technology 

achieves fast processing speed and large flexibility for different image resolutions with 

substantially reduced hardware cost and energy consumption. The sliding-windows shift across 

the image in steps of overlapped blocks so that each cell can belong to more than one block 

and more than one window, so that cell-feature vectors appear several times in a single window-

feature vector and also in different window-feature vectors. This results in a large number of 

repeated calculations of cell histograms in the block-based algorithm, since most of the cells 

need to be recalculated for the feature construction of different blocks. 

To further improve the accuracy, a complementary nearest neighbor classification (CNNC) 

architecture using HOG and Haar-like feature spaces, cell-based feature-vector extraction and 

parallel sliding-window classification is developed. A coprocessor prototype in 65nm SOTB 

CMOS for pedestrian detection has good energy and Si-area efficiency, high classification 

accuracy, and fast detection-speed performance. The embedded cell-based HOG and Haar-like 

descriptor extraction units apply a pixel-based pipelined architecture, can be synchronized to 

the working frequency of the image sensor, and do not need any image-frame or integral-image 

buffer memories and have the flexibility for processing different input-image sizes. The image-

size flexibility also enables classification operation with multiple scaled images for detection 

of objects with variable sizes. The cell-based sliding-window mechanism leads to parallel 

classification capability for all overlapping windows that contain the currently processed cell. 
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4 CHAPTER 4: Reconfigurable On-chip Learning Coprocessors 

Learning vector quantization (LVQ) neural networks have already been successfully applied 

for image compression and object recognition. In this study, firstly, I propose a dual-mode 

LVQ coprocessor featured dedicated learning circuits, enabling both on-chip learning and 

classification. The designed reconfigurable pipeline with parallel p-word input (R-PPPI) 

architecture was taped-out using 180 nm CMOS technology with parallel 8-word inputs and 

102 K-bit on-chip memory. The prototype achieves low power consumption of 66.38 mW (at 

75 MHz and 1.8 V) in an area of 7.89 mm2. Secondly, I upgrade the 1st generation by a new 

modular and reconfigurable pipeline architecture (MRPA). The MRPA removes the dedicated 

learning circuits and expands the word-parallelism to 32 with 609 K-bit SRAM. The circuits 

consist of dynamically reconfigurable modules and realize a run-time and on-chip 

configuration for recognition and learning. In addition, the designed LVQ ASIC has high 

flexibility with respect to feature-vector dimensionality and reference-vector number, allowing 

the execution of many different machine-learning applications. Prototype fabrication in 65-nm 

CMOS technology achieves high-density efficiency and memory utilization efficiency with a 

core area of 2.14 mm2, and average power consumption of 9.4 mW at 100 MHz and 0.8 V 

supply voltage. Compared with the embedded microprocessors, which rely on single-

instruction-multiple-data (SIMD) processing, the developed prototype increases the 

performance of both recognition and learning operations. The MRPA prototype shows 

improvements by factors of approximately 40 and 101 on the well-established performance 

metrics million connections per second (MCPS) for recognition and million connection updates 

per second (MCUPS) for learning, respectively.  

4.1 Overview for Leaning Vector Quantization (LVQ) Trainer and 

Classifier 
Visual perception as one of the most advanced human capabilities is very difficult to achieve 

for artificial object recognition systems. Whereas, humans have the ability to detect and 

recognize thousands of objects in a scene with little or no conscious effort, despite changes in 

occlusions, illumination and the object’s pose. Artificial neural networks (ANNs) are widely 

applied and very effective for pattern recognition [1, 2], function approximation [3], scientific 

classification [4, 5], control [6], and the analysis of time serial data [7]. Usually, ANNs have 

intrinsic units with massive vector-parallelism and a large number of interconnections among 

each other. Hardware ANNs based on conventional single instruction multiple data (SIMD-
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mode) solutions, which help to achieve often necessary real-time response due to their parallel 

processing ability, have attracted increasing attention and have already been applied for color 

image compression [8], computation engines [9], robot locomotion control [10], multilayer 

perceptions [11], wind-speed sensor less control [12], olfactory systems [13], real-time object 

detection [14], and so on. 

An neural network is a parallel and distributed network of simple nonlinear processing 

elements (PEs) or neurons interconnected in a layered arrangement [15]. Parallelism, 

modularity, and dynamic adaptation are three inherent characteristics of neural networks [16]. 

The parallelism of neural networks motivates much research, because the neural system has 

the potential to mitigate the computational limitations of serial SIMD architectures. However, 

most research relies on software which sequentially implements the neural networks. As a 

result, a software implementation is insufficient for many applications because of its weak 

performance. A hardware implementation can efficiently utilize the parallelism of neural 

networks, and therefore can outperform software implementations. Many hardware 

implementations of different neural networks have been presented previously [17]-[19].  

Self-organizing-map (SOM) neural network models, which were introduced by Willshaw et al 

[20]. and Kohonen [21], have been used in a wide variety of fields such as unsupervised 

learning tasks [22], data exploration [23], and water resource exploration [24]. As an 

unsupervised vector quantization method, the self-organizing map (SOM) is closely related to 

LVQ. LVQ was introduced by Kohonen [25] as a family of intuitive, universal and efficient 

multiclass classification algorithms. There have been many applications of LVQ, such as in 

handwriting recognition [26], odor recognition [27], medical biology [28], economical 

optimization [29], and alertness detection [30].  

The learning process of LVQ is intuitively clear and classification decisions are based on the 

nearest neighbor search (NNS) among the reference vectors, also called neurons as well. In 

general, learning in the LVQ algorithm is realized by modifying the reference-vector values 

according to a distance function and the input-vector matching results, thus representing a 

process of approximating the theoretical Bayes decision borders. The winner-reference vector, 

which is most similar to the input vector, is adjusted towards the input vector, if their classes 

are the same. Otherwise, the winner-reference vector is moved away from the incorrectly 

classified input vector. At the beginning of the learning process, reference vectors at some 

initial positions are randomly selected. Then, the input vectors for the learning process are 

sequentially processed and the values of reference vectors are continuously updated to increase 

the LVQ accuracy.  
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In the literature, SOM and LVQ were implemented off-line in software on computer systems 

or embedded processors. The first reported implementation of SOM is a software 

implementation on a processor [31]. In [32], an LVQ implementation with 605 weight vectors 

takes about 0.56 seconds for recognition. Such software solutions are flexible, easy to 

implement, and are often designed in advance of a hardware implementation to help promptly 

make rational design choices during the exploration phase. The performance of single-core 

microprocessors has been improved by the multi-core parallelism in multiprocessor system-

on-chip (MPSoC) [33]. In addition, researchers have investigated the application of graphics 

processing units (GPUs) for accelerating the training by exploiting the parallel and high-

precision computing capability of GPUs. In [34] a heterogeneous computing model for LVQ 

is presented. The applied method in [34] requires memory transfers between the central 

processing unit (CPU) and the GPU’s global memory, because the weight vectors and input 

vectors are stored separately in the GPU and the CPU. The authors of [34] have executed the 

CPU implementation on a Xeon X3440 sever with 2.53 GHz clock frequency, while the GPU 

implementation was executed on GTX 680 system. A performance of 54731.3 MCUPS was 

achieved at 2.53 GHz for 3755 160-dimensional weight-vectors. However, the processor-based 

architectures are still suffering from a large degree of sequential processing and from high 

power consumption, when compared to application-specific solutions. For real-time 

applications, these software-based approaches can therefore not deliver sufficient performance 

for online learning due to the high cost of the computational-requirements. Consequently, a 

number of methods and techniques were proposed to implement LVQ or SOM in hardware 

[34]-[37].  

4.2 Previous Work on LVQ Coprocessors 
Most hardware research on LVQ concentrated on making optimal use of the parallelism by 

increasing the possible number of PEs or neurons in limited hardware resources, but did not 

explore the modularity and dynamic adaptation of neural networks. Considering that LVQ 

algorithms are “multiplication-rich,” and that the hardware cost of a multiplier is very high, a 

static-configuration hardware often leads to resource shortage and waste. More hardware than 

available may be required, whereas hardware realizing the same functions such as 

multiplication during different processing phases cannot be re-exploited. 

In this regard, Field Programmable Gate Array (FPGA) implementations of LVQ have attracted 

a lot of attention [38]-[43]. However, a FPGA represents a fine-grained reconfigurable 

architecture, which often has low efficiency. Owing to its poor routability, the routing area 
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overhead of an FPGA is normally quite large. Extensive usage of fine-grained reconfigurable 

logic to perform calculation-rich applications demonstrates a favorable tradeoff between 

flexibility and performance, as shown in Fig. 4-1 [44]. In general, the more flexible a machine 

is, the simpler the programming is, but the lower the performance becomes. Special-purpose 

hardware with coarse-grained reconfiguration can offer a flexibility closer to instruction-set 

architectures and at the same time achieve high performance near to that of fully customized 

hardware. In addition, a coarse-grained reconfigurable ASIC can achieve high area efficiency 

while maintaining low placement and routing complexity. Considering the decomposition 

method of a complicated function into sub-functions, there is no necessity to activate all the 

sub-functions at the same time. Through rapid reconfiguration, a rather small piece of hardware 

can thus realize multiple functions, required at different processing stages. 

A pipeline architecture can accelerate and simplify the reconfiguration process, because the 

implementation is piece-wise, which can massively reduce reconfiguration time [45]. In 

general, increasing the amount of hardware pieces can proportionally improve the pipeline’s 

performance. A schematic diagram of the flexibility-performance comparison between the 

traditional approaches and our research, which exploits coarse-grained reconfiguration, is 

given in Fig. 4-1.  

The SIMD-based solutions with their massive parallelism have attracted much attention to 

implementing LVQ and SOM. The well-established performance metrics MCPS (Million 

Connections per Second) and MCUPS (Million Connection Updates per Second) are separately 

used to evaluate recognition and learning modes of the designed chip. 

In [46], a vision chip was fabricated in 180-nm CMOS technology, where a SIMD processor 

could be reconfigured as a 16×16 SOM neural network, which consumed 40.8% total area (33.6 

 
Fig. 4-1. Schematic of the flexibility and performance target of the reported coarse-grained 
reconfigurable and pipelined ASIC architecture. 
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mm2). The SOM neural network was trained online through the LVQ method. The estimated 

power dissipation was about 257 mW because the power dissipation is proportional to the 

relatively large chip area. Recognition performances of 186 MCPS and 258 MCPS for 16-

dimensional and 32-dimensional vectors, respectively, were achieved at 50 MHz. 

In [48], the authors implemented LVQ on FPGA through the selection of the best option among 

a number of architectures produced by FPGA software design tools. Dedicated learning and 

recognition circuits are needed. The vector dimensionality is fixed to 23 with 16-bit precision. 

The XC3S1400AN-based prototype achieved 23.95 MCPS when it was working at 50 MHz 

with 350 weight-vectors. 

An algorithm architecture adequacy methodology for LVQ implementation was proposed in 

[49]. A performance of 11.29 MCUPS and 136.95 MCPS was achieved on a Xilinx 

XC4VLX100 FPGA working at 50 MHz with 12 21- dimensional weight-vectors and 14-bit 

precision. 

In [50], a sequential/parallel architecture for LVQ was presented. The vectors were sent in 

series to the neuro-processors which were operated in parallel. The attained performance on a 

Xilinx XCV1000 FPGA were 1115.84 MCPUS and 1543.83 MCPS at 100 MHz while 

processing 49 23-dimensional weight-vectors with 8-bit precision. 

In [51], the authors adopted on-line serial arithmetic operators for LVQ implementation. The 

best performance with a Xilinx XCV1000E FPGA was 625 MCPS at 25 MHz while processing 

25 23-dimensional weight-vectors at 8-bit precision.  

An accuracy extension of the algorithm architecture adequacy methodology for LVQ was 

implemented in [52]. The learning performance on a Xilinx XC4LX25 FPGA reached 6.25 

MCUPS at 25 MHz while processing 25 23-dimensional weight-vectors at 8-bit precision.  

The authors in [53] implemented LVQ on an Altera ACEX1k100 device with 32 neurons and 

16-bit precision. The learning was done off-chip and Manhattan distance was used. The 

recognition performance reached 6.9 MCPS at 25 MHz while processing 64-dimensional 

vectors.  

Instead of the massive parallelism, we propose a modular and reconfigurable pipeline 

architecture for accelerating the LVQ algorithm. This proposed architecture can achieve good 

performance in both recognition and learning, high integration density and memory-utilization 

efficiency. Further, the reported work adopts the Euclidean distance metric which often 

provides higher accuracy in practical applications than the Manhattan distance used in [41], 

[43] and [46].  
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4.3 LVQ Algorithms  
LVQ is a supervised-learning neural network and is popular for nearest-neuron-based 

recognition, especially multiclass recognition [21]. The LVQ neural network consists of three 

layers, which are input layer, hidden layer, and output layer. An M-dimensional vector, called 

a weight vector (w), is assigned to every neuron in the hidden layer. A winner-takes-all (WTA) 

mechanism determines the winner vector (ws), which is the weight vector having the minimal 

distance to the input vector. The interconnections between input layer and hidden layer are 

dynamically adaptable to realize learning and recognition. The input layer is problem-

dependent, so that M varies for different applications. For example, if we use Histogram of 

Oriented Gradients (HOG) features as input vectors, M is 3780. The hidden layer calculates 

either the distances between the input vector and weight vectors or the adapted ws.  

Corresponding to the learning and recognition of a LVQ neural network, the LVQ algorithms 

have two operations, learning and recognition. The learning operation includes search and 

adaptation of the ws, which is determined by a distance metric, e.g. the Euclidean distance (ED). 

After learning, the weight vectors remain unchanged for recognition. The notations that are 

used in the remaining paper are listed in Table 4-I for convenience.  

Suppose that x(t) and ws(t), which are M-dimensional vectors, respectively, represent the input 

and winner vector in the discrete-time domain. Correspondingly, vx and vs are the class labels 

of x(t) and ws(t). Furthermore, a represents the learning rate. In the learning mode, ws(t) is 

adapted to better comply with x(t) according to Step 3 of the learning process listed below. 

Step 1: Randomly initialize the weight vectors to v classes and set the learning rate a. 

Step 2: For one labeled input-vector x(t), search its ws by nearest-neighbor-search (NNS).  

Step 3: Adaption of ws based on the label-comparison result. If x(t) and ws(t) belong to same 

class, i.e., vx is equal to vs, ws(t) is moved closer to x(t) and the new value of the winner vector 

(ws(t+1)) becomes: 

                                                     ws(t+1)= ws(t)+a[x(t)- ws(t)]                                          (4-1) 
Otherwise, the new value of the winner vector becomes: 

                                                     ws(t+1)= ws(t)-a[x(t)- ws(t)]                                           (4-2) 

Step 4: Repeat Steps 2 and 3 until reaching either a threshold or other termination conditions. 

As shown in [26], the mean-square error is defined as: 

                                                                                                   (4-3) 

Where  is a volume element in the  space and  is the probability density function, 

which defines the statistical frequency for occurrence of the samples  in eq. (4-1). The 
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weight vectors  are optimally placed when E is minimized. In particular, the minus sign in 

eq. (4-2) defines corrections corresponding to the subtraction of a fraction  of the 

neighboring (overlapping) class from the class to which  belongs. As a result, the difference 

of  for the neighboring classes falls to zero at the class borders. This means the LVQ 

algorithm tends to pull the weight vectors away from the class borders [49]. In the recognition 

mode, the x(t) is unlabeled and is assigned to the same label as its ws(t).  

4.4 Hardware Architecture 

4.4.1 Modular and Reconfigurable Pipeline Architecture (MRPA) 

Table 4-I. Definition of Notations  

Symbol Definition and comments 
x Input vector 

J The number of input vectors 

w Weight vector of each neuron 

ws Winner vector 
ws(t) Old winner vector 

ws(t+1) Adapted winner vector 
v The number of classes 
vx Class label of input vector (in learning mode) 
vs Class label of winner vector 
a Learning rate 
M Vector dimensionality 

NN The number of neurons (weight vectors) 

N 
Word-parallelism/the number of parameterizable-storage modules/the 

number of weight modules /the number of elementary-adder-modules, N is 32 
for the prototype 

P 
The number of partial vectors/ local pipeline-stages of summation module 
during the adaption phase because of the partial storage, P= M/N  is the 

smallest integer not less than M/N. P 1 
G Physical pipeline-stages without partial storage,  G=log2N+6 

L Local pipeline-stages of summation module during the nearest-neighbor-
search phase because of the partial storage, L =log2N+ P 

c Stage of a static pipeline 

f Stage of a reconfigurable pipeline which realizes equivalent functionalities as 
in the c-stage static pipeline 

F Working frequency 
O Computational complexity 
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Traditionally, the massively parallel approaches, e.g. SIMD, comply with the definition of 

neurons in neural networks. Hence, each neuron corresponds to a PE, which contains a weight-

memory block and ALUs to store and process one weight-vector. The maximum 

dimensionality of the weight vectors is limited by the size of individual weight-memory block. 

In our work, we segregate the weight-memory blocks from the PEs as a shared memory-pool. 

All the weight vectors share the same ALUs rather than having individual ALUs.  

Overall, the proposed MRPA with N word-parallelism consists of one control unit (CU) and 

four specific function modules (SFMs), which are the parameterizable-storage modules 

(PSMs), weight modules (WMs), summation module (SM), and comparison module (CM), as 

shown in Fig. 4-2.  Rather than mapping each neuron to a dedicated PE, the MRPA shares its 

specific function modules with all neurons. Further, the MRPA employs a concept of partial 

processing and divides an M-dimensional vector into P N-dimensional components (P= M/N  

is the smallest integer not less than M/N). The specific function modules have pipeline registers, 

which synchronously latch the data with the same rising clock edges, so that each computed 

value can be latched in its following register. That means, the MRPA is a parallel-pipeline 

cascaded system, comprising of N parallel input ports and G physical-stage pipelines 

(G=log2N+6). Moreover, weight modules, summation module and comparison module have 

dynamical reconfigurability and realize multiple functions in different phases. The architectural 

structure, consisting of parameterizable-storage modules, weight modules and summation 

module, not only calculates the squared Euclidean distance (ED2) between input and weight 

vectors but also adapts the winner vectors. The MRPA performs partial configuration at run-

time during the adaption mode. Firstly, the MRPA is configured to search for the weight-vector 

with the minimal ED2 distance to the input sample. Then, weight modules, summation module 

 
Fig. 4-3. Modular architecture for LVQ with N word-parallelism.  
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and comparison module are dynamically configured [50] to update the best-matching weight 

vector without changing or stopping the other parts. The dynamic reconfiguration ensures that 

the MRPA can temporally partition the algorithms and time multiplex the logic to meet the 

hardware resource constraints. The MRPA reconfigures the logic at the run time, i.e., when 

parts of the logic (weight modules, summation module and comparison module) are replaced, 

while other active circuits (parameterizable-storage modules) operate uninterrupted. 

Furthermore, the MRPA offers easy scalability, and can effectively adjust the parallelism and 

communication infrastructure.   

More specifically, the control unit provides a communication infrastructure between the 

specific function modules and includes a register array which stores external control signals, 

local control signals, and local feedback signals, as depicted in Fig. 4-3. During run-time, the 

signals “Mode” and “Comparison Result” configure the data path of weight modules, 

summation module and comparison module. The parameterizable-storage modules employ a 

partial-storage concept to store vectors [51] and assign P addresses of N memory blocks to 

each M-dimensional vector (see Fig. 4-4). Each weight module realizes the multiplication 

function to calculate the 1-dimensional squared Euclidean distance [x(t)i-w(t)i]2 or the 1-

dimensional correction value ( [x(t)i-ws(t)i]) ( ). The summation module 

accumulates the partial squared Euclidean distance, or corrects the partial winner-vector. The 

comparison module searches the winner vector through comparing the squared Euclidean 

distances and determines the sign of the learning rate α or labels the input vector.  

The learning mode of LVQ has two phases, namely nearest-neighbor-search phase and 

 
Fig. 4-5. Details of the control unit (CU), the parameterizable storage module (PSM) and the 
weight module (WM).  
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adaption (updating) phase, while the recognition mode only needs the nearest-neighbor-search 

phase. During the nearest-neighbor-search phase, the MRPA searches the winner vector 

through the squared Euclidean distance comparison between the input vector and the weight 

vectors. First, the weight modules calculate the squared differences of partial input and weight-

vectors read from the parameterizable-storage modules. Then the summation module 

accumulates the partial squared Euclidean distance results from the weight modules and will 

not transmit the accumulation result to the comparison module until the summation module 

completes the processing of all the P components of one weight-vector. The comparison 

module compares the currently transferred squared Euclidean distance with the local minimum 

squared Euclidean distance.  

When searching for the whole set of weight-vectors completes, the comparison module selects 

the sign of α while in the learning mode or labels the input vector while in the recognition 

mode. During the adaption phase, the MRPA solely updates the winner vector and keeps the 

other weight-vectors invariant. The winner vector is located at the “Winner Address,” which is 

transferred from the comparison module to the control unit as shown in Fig. 4-3. The adaption 

scheme follows eq. (4-1) when input and winner vector belong to the same class, or eq. (4-2) 

when the input and winner vector have different labels. The sign of α reflects the adaptive 

direction and relies on the “Comparison Result” signal in the comparison module. The weight 

modules compute the correction value, which is the multiplication between α and the difference 

of the input vector and winner vector ( [x(t)-ws(t)]). The summation module adds the 

correction value to the winner vector and transmits the adapted winner to the parameterizable-

storage modules, where the old winner ws(t) is overwritten with the adapted winner-vector 

 
Fig. 4-7 The partial storing concept applied to vector storage. An M-dimensional vector 
occupies P cells of the N SRAMs.  
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ws(t+1). N parallel weight SRAMs in the parameterizable-storage modules concurrently write 

the N components of the adapted winner vector at the “Winner Address”.  

Critical MRPA operations can be summarized as follows: 

1. Initialize the parameters of the control register array, e.g. for mode configuration, 

dimensionality, and number of weight vectors.  

2. Initialize the weight vectors with prepared data. 

3. For the learning mode, the control unit configures to the nearest-neighbor-search phase at 

first, and then switches to the adaption phase. The recognition mode only undergoes the 

nearest-neighbor-search phase. 

4.4.1.1 Control Unit (CU), Parameterizable Storage Module (PSM) and 

Weight Module (WM) 
The control unit (see Fig. 4-3) is composed of a finite state machine, a control register array, 

and several counters. The control register array stores the predefined variables, local control 

signals, and local feedback signals. The predefined variables include the number of weight 

vectors, vector dimensionality, learning rate α, P, learning iteration times, and external control 

signals. The counters decode the external variables to dynamically changeable local control 

signals. For example, the signals “Next Neuron” and “Next Input” depend on the number of 

weight vectors. E.g., when the vector-component counter meets the predefined P, the “Next 

Neuron” signal indicates that the squared Euclidean distance calculation between the input and 

next weight-vector will start. When the neuron-number counter reaches the predefined number 

of weight vectors, the “Next Input” signal asserts to request the next input-vector. The counters 

contribute to the easy parameterization of MRPA regarding the number of weight vectors, 

vector dimensionality, and learning iterations. The flexible setting of learning rate α and 

learning iterations further contributes to the flexibility of adaption strategies. The external 

control signal “Mode” selects the appropriate mode of operation: learning or recognition. The 

“Comparison Result” signal is a local feedback signal from the comparison module which 

indicates the label-comparison result between the input and its winner-vector.  

A parameterizable-storage module (see Fig. 4-3) consists of a single-port SRAM for input 

vectors, a dual-port SRAM for weight vectors, and two pipeline registers. The N-parallel 

parameterizable-storage modules split an M-dimensional vector into P N-dimensional 

components (see Fig. 4-4). Therefore, an M-dimensional vector occupies P addresses of N 

SRAM blocks. “RD” and “WR” in Fig. 4-3 represent data-read port and data-write port of the 

dual-port SRAM, respectively. During both the nearest-neighbor-search phase and adaption 
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phase, the weight vectors are read out from the “RD” port. The “WR” ports are only activated 

during the adaption phase when writing the adapted winner-vector back to the location of old 

winner. All the weight vectors share a memory pool consisting of the N dual-port SRAMs 

instead of having individually fixed memory space. The sharing scheme satisfies the unfixed 

space requirements to parameterize both vector dimensionality, and number of weight vectors.  

Each weight module attaches to one parameterizable-storage module and comprises a 

subtractor, two multiplexers, a multiplier, and four pipeline-registers, as shown in Fig. 4-3. The 

multiplexer MUX2 decides the function of the weight module, which is a 1-dimensional 

squared Euclidean distance calculation [x(t)i-w(t)i]2 or a 1-dimensional correction value 

computation ( [x(t)i-ws(t)i]). The N weight modules deliver their outputs to the summation 

module (see Fig. 4-5).  

4.4.1.2 Summation Module (SM) and Comparison Module (CM) 
The summation module contains N elementary-adder-modules (EAMs) and a multiplexer 

(MUX3), and summarizes the operands from the weight modules, as depicted in Fig. 4-5. An 

elementary-adder-module contains two identical multiplexers (MUX4), one adder, and one 

register. The multiplexers MUX4s reconfigure the summation module to realize multiple 

functions, which are calculation and accumulation of the partial squared Euclidean distance, or 

a correction of the partial winner-vector. The MUX4 pair in each elementary-adder-module 

passes the corresponding two operands to the adder during different phases.  

During the nearest-neighbor-search phase, the summation module constructs the elementary-

adder-modules as a complete binary tree with the same length of each signal path (see Fig. 4-

 
Fig. 4-9. Detailed construction of the summation module (SM) and the elementary adder 
module (EAM). The SM includes N EAMs.  
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6), instead of as N-parallel adders with high latency and large Si-area. Owing to the 

implementation of the complete binary tree and the partial processing, the required number of 

elementary-adder-modules (NUMEAM) solely depends on the word-parallelism of MRPA. Eq. 

(4-3) is the formula to calculate the NUMEAM for the N-parallelism MRPA. NUMEAM is the sum 

of a geometric progression plus one. The geometric progression results from the complete 

binary tree architecture and the “one” follows the partial processing. The log2N refers to the 

number of levels in the complete binary tree. The last elementary-adder-module (EAMN) 

accumulates the P partial-squared Euclidean distances. The MUX3 only works during the 

nearest-neighbor-search phase and behaves like a switch, whose turn-on signal is “Next 

Neuron”. When the EAMN has accumulated all the P partial- squared Euclidean distances 

between one pair of input and weight vector, the MUX3-switch turns on. Then the summation 

module outputs the completed squared Euclidean distance to the comparison module. 

Simultaneously, the summation module initializes the partial- squared Euclidean distance as 

“0”.  

 

 
Fig. 4-11. The topological structure of weight module (WM) and summation module (SM) 
with implemented dynamic reconfiguration capability for the phases of nearest neighbor 
search (NNS) and winner-vector adaption.  
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                                                                              (4-4) 

During the adaption phase, the summation module reconfigures the elementary-adder-modules 

as a distributed interconnect-structure (see Fig. 4-6). Each elementary-adder-module attaches 

to one weight module and one parameterizable-storage module without redundancy or 

deficiency of modules.  

Owing to the two different configurations, the summation module is implemented with 

different local pipeline-stages, each of which takes one clock cycle. During both the nearest-

neighbor-search and adaption phases, the summation module reuses the physical-stages P times 

owing to the partial processing. For example, during the nearest-neighbor-search phase, the 

summation module takes L (L =log2N+ P) clock cycles and implements the L local-stages with 

log2N+1 physical-stages. During the adaption phase, the summation module uses P clock 

cycles and realizes the P local-stages using one physical-stage.  

The comparison module, shown in more detail in Fig. 4-7, includes two logic comparators, five 

registers, and one AND gate. The comparison module operates during the nearest-neighbor-

search phase and accomplishes different tasks for learning and recognition modes. In the 

learning mode, the comparison module searches and outputs the winner index to the control 

unit for the following winner-adaption. The winner index includes “Comparison Result” and 

“Winner Address”. As for the recognition mode, the comparison module outputs the “Winner 

Label” as the result. During both modes, the squared-Euclidean-distance comparator 

determines the winner by comparing the newly calculated squared Euclidean distance with the 

local minimal squared Euclidean distance. The label comparator that only works during the 

learning mode compares the label of the input vector with its winner vector and outputs the 

“Comparison Result” signal to the control unit. When the winner label is equal to the input 

label, the weight modules select +α; otherwise, the weight modules select -α.  

 
Fig. 4-13. Schematic of the comparison module (CM) to find the winner vector. The registers 
have a load enable signal.  
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4.4.1.3 Pipeline Reconfiguration, Modularity and Parameterization 
The MRPA embodies the pipeline reconfiguration and modularity using inter-stage parallelism 

and intra-stage parallelism.  

The inter-stage parallelism is enhanced by partitioning a complex function into six independent 

sub-functions which are executed in a serial and synchronized fashion. We mapped the six sub-

functions to the four specific function modules (see Fig. 4-10) rather than applying a specific 

hardware-unit for each sub-function. Two of the specific function modules (weight modules 

and summation module) attain functional reconfiguration [52] and realize multiple sub-

functions (see Fig. 4-6). The time-multiplexed units (MUX2 and MUX4 in Fig. 4-3 and Fig. 4-

5) configure the data paths of weight modules and summation module for nearest-neighbor-

search and adaption. In addition, the MRPA achieves run-time reconfiguration, which ensures 

the multiple sub-functions realization on the same hardware in the discrete time-domain. 

Moreover, the reconfiguration process is completely on-chip by applying a time-multiplexing 

concept. The communication cost including the effort for transmitting initialization data, 

training data, and input data to the external memory from the host computer is drastically 

reduced. As a result, the MRPA accelerates the operation by eliminating the extra 

reconfiguration time and avoiding the reloading of data to the pipeline. For example, in the 

learning mode, the MRPA implements nearest-neighbor-search in the beginning, and then 

automatically switches to the winner adaption. Moreover, except for a few additional 

multiplexers, no particular vector-registers or other additional-operators are required for the 

reconfiguration.  

The intra-stage parallelism is realized by dividing the N-dimensional operation into N 1-

dimensional sub-operations that can be performed independently in parallel. The 1-

dimensional vector processing matches with individual parameterizable-storage module, 

weight module, and elementary-adder-module. The modularity of 1-dimensional vector-

processing enables the easy scalability of intra-stage parallelism in both upward- and 

downward-compatible fashions for future soft-IP designs.  

Another important advantage of the MRPA is that it supports architecture parameterization 

which enhances its application areas without any changes in the ASIC hardware. The number 

of weight vectors, vector dimensionality, learning-iteration times, and α are all adjustable 

parameters.   

4.4.2 Dedicated On-Chip Learning Circuits for Reconfigurable Pipeline 
with Parallel P-word Input Architecture (R-PPPI) 
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The section (1) explains the optimized architecture (MRPA) for LVQ. In this section, the 

fundament difference of the 1st and optimized editions is demonstrated, which is dedicated on-

chip learning circuits. I eliminated the dedicated on-chip learning circuits in MRPA through 

modular reconfiguration, which saves both area and power.        

The dual-mode system implemented by the R-PPPI architecture can switches between on-chip 

learning and classification mode of the LVQ. In the architecture for the p-parallel module of 

the R-PPPI shown in Fig. 4-8, the data path for the two modes is configured according to the 

signal “L/C”. 

As described above, the on-chip learning procedure is realized by the R-PPPI architecture 

which has dual-mode capability configurable by the signal “L/C”. The learning time in clock 

cycles can be defined as in (4.5), where R is the reference number, d/p  is the partial storage 

parameter and d is the vector dimensionality. The parallelism p of R-PPPI is a power of 2, 

namely 2y. The number “3” in eq. (4-5) represents the pipeline delays of registers S1, S2 and 

S3. The register S1 separates the memory blocks of the input layer from the subtractors. S2 is 

located between the subtractors and the multipliers, and S3 is between the multipliers and the 

adders. The parameter PD is the pipeline depth defined in (4.6). In particular, the first "2" is 

the pipeline delay of S1 and S2, while the pipeline delays due to S4 and S5 are reflected in the 

second “2” of (4.6). 

                                                 Τlearning=(R+1)× d/p +PD+3                                           (4-5) 

                                                 PD=2+y+2                                                                           (4-6) 

 
Fig. 4-15. R-PPPI architecture for a memory-based LVQ neural network. The same hardware parts 
are configured to have different functionality in different operating modes of learning and 
recognition. 
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In the case of the fabricated test chip which has 8 parallel inputs, an on-chip learning step with 

one input vector needs (R+1)× d/8 +10 clock cycles. Indeed, the learning efficiency has been 

improved to a much higher factor than for the conventional solutions even though the reference 

number R and the vector dimensionality d still have some limited effects. The comparison of 

the learning efficiency to the general purpose processor (Intel® Core™ i7) and the SoC 

solution [28] for pedestrian detection with 3780-dimensional HOG feature is illustrated in Fig. 

4-9, where 2416 positive samples and 12180 negative samples in INRIA dataset [30] are used 

to train the LVQ references. The learning time with different of reference-vector numbers and 

the speedup factor to the software implementation demonstrate the very high learning 

efficiency that make online machine learning possible. Through applying a larger capacity 

memory, the designed LVQ ASIC can be extended to deal with much larger dimensional 

vectors and larger reference-vector numbers.  

As shown in Fig. 4-9, the hardware implementation remarkably outperforms the software 

implementation on a PC with an advanced 3.40GHz Intel® Core™ i7-4770 CPU and 8 GB of 

RAM memory as well as the SoC solution [28] with a low power RISC CPU. In addition, the 

larger the number of reference vectors is, the larger speedup factor becomes. When the 

reference-vector number reaches 1000, the speedup factor is nearly 200 times. For LVQ 

algorithms, the accuracy increases with larger numbers of reference vectors. Apart from the 

much faster learning speed than in the software implementation, this work with much lower 

 
Fig. 4-17. Speedup factor in comparison to a software implementation using a 3.40GHz Intel® 
Core™ i7-4770 CPU, and a SoC solution28) with a low power RISC CPU. 
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power dissipation also has very high energy efficiency. Although this work has somewhat 

lower flexibility than the general purpose CPU, the proved extendibility in vector 

dimensionality and reference-vector number allows to handle most of the real-world 

applications.   

4.5 Implementation and Results 

4.5.1 Performance Analysis 

4.5.1.1 Density Efficiency 
Density efficiency refers to the number of functions per unit area. The MRPA reconstructs the 

modules to extend its functions without extra hardware consumptions. The ALUs, such as 

multipliers, adders, and subtractors, which occupy large Si-area in hardware implementation, 

serve multiple functions. First, learning and recognition modes share the same hardware. 

Second, the MRPA implements the sequential back-propagation learning steps of the LVQ 

algorithm by dynamically reutilizing the ALUs to realize the sequence of nearest-neighbor-

search and adaption phases in each learning step [53].  

To ensure dynamic reconfiguration, the MRPA breaks a sequential processing-cycle into a 

series of stages which achieve inter-stage parallelism. All the stages are independent and 

executed in parallel. As shown in Fig. 4-10, the MRPA implements a six-stage static pipeline 

on a four-stage reconfigurable pipeline. All the specific function modules in Fig. 4-10(a) are 

static and have a dedicated sub-function whereas the weight modules and summation module 

in Fig. 4-10(b) are reconfigurable. Inside either the six-stage or the four-stage pipeline, there 

are local-stages to support the sub-functions of specific function modules. Each local-stage 

takes one clock cycle. For example, stage 3 of both static and reconfigurable pipelines in Fig. 

4-10 has L (L =log2N+ P) local-stages. Moreover, stages 2 and 4 of both static and 

reconfigurable pipelines, and the additional stages 5 and 6 of static pipelines each have two 

local-stages. To explain the reconfigurable pipeline more simply, we assume that every specific 

function module lasts one stage and ignore the clock-cycle differences within the specific 

function modules in Fig. 4-10.  

Without pipeline reconfiguration, two additional specific function modules are necessary for 

the adaption phase, which are the weight-modules for nearest-neighbor-search (WMNs) to 

calculate [x(t)-ws(t)] and the summation-module for updating (SMU) to compute ws(t+1) 

(see Fig. 4-10(a)). The weight modules in Fig. 4-10(b) can accomplish the sub-functions of 

weight-modules for nearest-neighbor-search (WMNs) and WMUs in Fig. 4-10(a). In a similar 

way, the summation module in Fig. 4-10(b) corresponds to the summation-module for nearest-



 

73 

 

neighbor-search (SMN) and SMU in Fig. 4-10(a). The additional WMNs and SMU demand 

extra area compared with the MRPA. The pipeline reconfiguration in the MRPA utilizes the 

reconfigurable weight modules and summation module to update the winner-vector, as 

indicated in Fig. 4-10(b). The control unit run-time configures weight modules and summation 

module for this purpose, without interrupting the pipeline.  

Therefore, the MRPA requires less circuit area when implementing the same function in 

comparison with the static pipeline. For instance, without reconfiguration, the area of the chip 

with 32-word parallelism will approximately increase 28% according to its layout in Fig. 4-11. 

The density efficiency of pipelined circuits is approximately proportional to . Here, c 

represents the stage number of a static pipeline and f means the stage number of a 

reconfigurable pipeline, which realizes an equivalent function as in the c-stage static pipeline. 

The density efficiency of the pipeline part in the MRPA is 1.5 (c/f=6/4=1.5). The overhead of 

reconfiguration is due to the multiplexers, required in weight modules (N MUX2) and 

summation module (2N MUX4). The area overhead of the additional multiplexers is 0.015 

 

(a) Pipeline stages without reconfiguration 

 
(a) Pipeline stages with reconfiguration 

Fig. 4-19. Implementation of a 6-stage static pipeline on a 4-stage reconfigurable pipeline: (a) 6-
stage pipeline without reconfiguration and (b) 4-stage pipeline with reconfiguration. To explain the 
reconfigurable pipeline more simply, we assume that every specific function module lasts one stage 
and ignore the clock-cycle differences within the specific function modules. 
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mm2, occupying 0.7% of the chip area. The critical path results from EAMN consisting of a 

multiplexer (MUX4) and a 46-bit full adder. The EAMN causes the critical delay because of its 

46-bit full adder. In all the other EAMs, the adders have shorter bit-length. To compare the 

density efficiency of MRPA with earlier studies, we use a comprehensive parameter-set 

consisting of normalized area, SRAM, and Matrix size (see Table 4-II).   

4.5.1.2 Memory Utilization Efficiency 
Memory utilization efficiency indicates the percentage of memory which can remain in 

constant use when number and dimensionality of weight vectors vary with applications. 

Managing allocation and mapping of memory is important to ensure the system can run a wide 

range of applications without modifications, which is particularly important to hardware where 

limited memory is available. An essential limitation of many hardware implementations for 

neural networks is the low memory utilization efficiency resulting from the fixed storage-space 

for each weight-vector. The dedicated SRAM-space for each weight-vector restricts the range 

of manageable weight-vector dimensionality and the number of individual SRAM-space units 

limits the weight-vector number. Any requests for a larger dimensionality than the size of the 

individual weight-vector SRAM-space or more weight vectors than the number of SRAM-

space units cannot be fulfilled due to the fixed storage-space for each weight-vector. As a result, 

a certain amount of memory, which could have been utilized, is often wasted. 

Without either emphasizing the necessity of on-chip memory for ASIC implementations or 

selecting FPGA with large internal SRAM blocks, we segregate the individual weight-memory 

from the PEs as a shared memory-pool so that the MRPA can support a flexible memory-space 

for each weight-vector. That is, the MRPA can sacrifice the vector dimensionality when more 

weight-vectors are needed or increase the vector dimensionality at the cost of fewer weight-

vectors. During the compile (configuring) time (see Fig. 4-10), the MRPA performs memory 

allocation and memory mapping for the weight-vectors. 

Shared memory-pool and partial-storage concept ensure that a large percentage of memory 

remains active, improving both the memory utilization efficiency and the application 

flexibility. The MRPA arranges an M-dimensional weight vector into P memory cells in each 

PSM. The separation signal for two weight vectors is asserted when the neuron address counter 

meets P. For example, a 3780-dimensional vector occupies 119 (N=32) cells in each PSM. A 

chip with 512 k-bit weight-memory and 32 word-parallelism (N=32) can process a range of 

configurations from 8 4096-dimensional weight-vectors to 1024 1-dimensional weight-vectors 

with 16-bit word-precision. Thus, both the vector dimensionality and number of weight-vectors 
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have a broad range of adjustability in this work. 

Because of the internal fragmentation, the allocation concept applied in the design is more 

suitable for large-dimensional applications such as similarity searches in live video streams, 

DNA data, and so on. The memory utilization efficiency exceeds 50% as long as the vector-

dimensionality is larger than N/2. For vectors whose dimensionality is not an integer multiple 

of N, the unused storage space is filled with “0”, and thus lowers the memory utilization 

efficiency. The vectors need to be tailored to the memory sub-banks (Fig. 4-4), and an imperfect 

fit leads to wasted storage space corresponding to the unused portions of the memory sub-

banks. Thus the design consumes more memory than its applications actually request, but 

largely increases the flexibility for usage in different applications. 1-dimensional weight 

vectors represent the worst-case situation, when only a portion of 1/N of the resources available 

in one sub-bank are actually necessary. This means the worst-case situation leaves a large 

amount of the provided logic and memory unused. For weight vectors where the dimensionality 

is exactly an integer multiple of N, represents the best-case situation for the design, i.e., all sub-

banks are completely filled. On the one hand, a small-size parallelism could mitigate the 

average resource-usage problem. However, the trade-off is that the average design performance 

will decrease and cost for implementing the communication between the reconfigurable 

modules will barely reduce for a small-size parallelism.  

4.5.2 Post-Layout Results 
For the purposes of proof-of-concept and prototyping, the architectural and algorithmic 

characteristics described above are verified by a 32 word-parallelism (N=32) test chip 

fabricated in 65 nm CMOS technology. The test chip, whose microphotograph and layout are 

shown in Fig. 4-11 with the principal parts highlighted, employs 32 parameterizable-storage 

modules, 32 weight modules, and 32 elementary-adder-modules in the summation module. The 

throughput of implementation is 512 bits per clock cycle with 16-bit word precision. The 

pipeline has 11 physical-stages, where the summation module occupies six physical-stages 

(6=log2N+1 with N=32). Additionally, 512 k-bit SRAM is embedded for weight-vector storage 

and 97 k-bit SRAM is used for label memory (9 k-bit) and buffers (20 k-bit for input FIFO 

(first-in-first-out) buffers, 4 k-bit for output FIFO buffer, and 64 k-bit for input-vector SRAM). 

The input FIFO buffers consist of 16 k-bit (256 words 64-bit) dual-port SRAM with 

independent clock for input vector, and 4 k-bit (512 word 8-bit) SRAM for input label. The 

number of input-vectors stored in the input SRAM relies on the vector dimensionality. For 
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example, the input SRAM can store 128 32-dimensional input vectors or one 4096-dimensional 

input vector. The read bandwidth of the input SRAM can reach 76.8 Gbit/s at 150 MHz working 

frequency. Nevertheless, the write bandwidth requires only 76.8/(NN P) Gbit/s since each 

input vector has to be processed NN P times. Accordingly, the designed write bandwidth of 

the input buffer with 16 Gbit/s can satisfy the requirements of the input SRAM when NN P 

exceeds five 

Due to the pipeline reconfiguration and the modularity methodology, the prototype chip 

achieves high density efficiency and memory utilization efficiency with a core area of 2.14 

mm2, and an average power consumption of 9.4 mW at 100 MHz and 0.8 V supply voltage. 

The embedded 609 k-bit memory occupies 41% of the chip area. Normally, the power 

consumption is directly proportional to this area. Fig. 4-12 shows the measured total energy 

per operation and the maximum working frequency of the prototype. When the voltage is lower 

than 0.6V, functional failures occur because the failure probability of SRAM cells significantly 

increases at low nominal voltages near the transistor threshold.  

The well-established performance metrics MCPS (Million Connections per Second) and 

MCUPS (Million Connection Updates per Second) are separately used to evaluate the chip 

 
Fig. 4-21. Micrograph and layout of the prototype chip in 65 nm CMOS technology.  
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Fig. 4-23. Measured energy per operation and maximum working frequency of the test chip.  
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when operating in recognition mode or learning mode, respectively. The MCPS and MCUPS 

metrics are defined in eqs. (4-7) and (4-8), where F, NN, and M are the working frequency, the 

number of weight-vectors, and vector dimensionality, respectively.  in eq. (4-9) is 

the number of required clock-cycles to recognize each input and  in eq. (4-10) is the 

number of required clock-cycles to update the winner vector. In eq. (4-9), apart from the 

summation module with  physical-stages, parameterizable-storage modules, weight 

modules, and comparison module contribute to the five physical-stages. The first weight-vector 

needs   additional-clocks because of the partial-calculation and accumulation to 

determine the squared Euclidean distance. The remaining (NN-1) weight-vectors require 

  clock-cycles, which results from the pipelined and partial processing. As for the 

learning mode, the MRPA subsequently shifts to the adaption phase after finishing the nearest-

neighbor-search phase. The configuration of weight modules and summation module for the 

adaption is shown in Fig. 4-6. The pipeline structure during the adaption phase is depicted in 

Fig. 4-10(b). Operation of parameterizable-storage modules, weight modules, summation 

module, and writing of the intermediate calculation results back to the parameterizable-storage 

modules cause five clocks, as illustrated in eq. (4-10). The processing of the remaining (P-1) 

N-dimensional components of the winner requires (P-1) clocks.    

                (4-7) 

 (4-8) 

 

          
(4-9) 

 

 

                                

(4-10) 

The performances of the prototype chip with  word-parallelism for recognition in terms 

of MCPS and learning in terms of MCUPS are illustrated in Fig. 4-13 and Fig. 4-14, 

respectively.  These diagrams show the dependency between the performance metrics and the 

number of weight vectors, (Fig. 4-13 (a), Fig. 4-14 (a)), as well as the vector dimensionality, 

(Fig. 4-13 (b), Fig. 4-14 (b)). The shared memory-pool allows the MRPA to extend the number 

of weight vector at the cost of lower vector dimensionality or conversely.  
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The prototype attains the maximum MCPS performance under the condition that the entire 

circuit is working. At peak performance, M can be exactly divided by N without a remainder. 

For the test chip peak performance is obtained when M is a multiple of 32 (N=32). Meanwhile, 

the number of weight vectors NN should be the largest that can be accommodated in the on-

chip SRAM for the weight-vectors (512 k-bit). Accordingly, the prototype reaches its peak 

performance when =32768 (32768=32×1024). The requirement for 

dimensionality results from the partial-storage concept, which ensures the whole specific 

function modules are efficiently working. As for MCUPS, only one condition can result in the 

maximum performance, in which the vector dimensionality should be exactly equal to the 

word-parallelism (32), and NN should have the largest possible value (1024). This is because 

when M is equal to N (P=1), the adaption time is the minimum.  

According to the equations (4-7) to (4-10), the MCPS and MCUPS performances can be 

 

 
     (a)                                                      

 
(b) 

Fig. 4-25. Prototype performance in MCPS (Million Connections per Second) as a function 
of the number of weight vectors (a) and vector dimensionality (b).  
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improved by increasing the word-parallelism N (which results in reduction of P) and working 

frequency F. The worst case of the performance of the prototype chip with 32 word-parallelism 

and 150 MHz working frequency is 25 MCPS and 9.5 MCUPS when one 1-dimensional weight 

vector is store as the weight vector. On the other hand, the best case with 4753.578 MCPS and 

4730.703 MCUPS occus when M is divisible by N and the memory blocks for weight vectors 

are fully used. In the fabricated prototype, N=32 and 1024 words for each weight-vector 

memory block are chosen, so that best performance is achieve e.g. in the case when 

=1024×32. As an ideal case, if unlimited storage-space is provided, the maximum MCPS 

and MCUPS would be 4800. The theoretical results, when a chip can provide unlimited 

memory space for weight vectors, are also included in Fig. 4-13 and Fig. 4-14. However, the 

differences between the theoretical best performance and achieved performance are so small 

that the curves almost overlap. In other words, if the word-parallelism is fixed, increasing the 

 

(a) 

 
(b) 

Fig. 4-27. Prototype performance in MCUPS (Million Connection Updates per Second) as a 
function of the number of weight vectors (a) and vector dimensionality (b).  
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memory-space will only slightly improve the performance at the cost of a quite large Si-area.  

The performance tends to saturate when either the number of weight vectors NN or the vector 

dimensionality M is large. This saturation occurs because both cases just improve the utilization 

efficiency of the circuits whereas the word-parallelism of the prototype remains unchangeable 

at 32. The saw-tooth shape of the performance dependency in Fig. 4-13 (b), Fig. 4-14 (b) is 

caused by the partial processing of the vectors.  

The prototype of the LVQ VLSI realization based on the R-PPPI architecture (p=8) was 

fabricated in 180 nm CMOS technology as shown in the photomicrograph of Fig. 4-15. Since 

8-word parallelism and 16 bit precision are chosen in this design, the R-PPPI architecture has 

a throughput of 128 bits per clock cycle and a pipeline latency of 8 stages. Moreover, the 

designed LVQ ASIC with on-chip learning and classification, which has core area of 7.89 mm2, 

can handle at maximum 4096-dimensional vectors. In the classification mode, except for 8 

clock cycles (106 ns at 75 MHz) of the pipeline latency, each d-dimensional (d≤4096) vector 

can be processed in every d/8 -1 clock cycles. Consequently, a large number of different 

applications can be handled due to the high flexibility in vector dimensionality and the 

reference-vector number. In principle, the designed LVQ on-chip learning and recognition 

hardware can accommodate any application with feature vectors of up to 4096 dimensions. For 

example, in the case of 3780-dimensional feature vectors (Histogram of Gradient (HOG) 

feature [29] used in pedestrian detection), the partial storage parameter m (= d/p ) is defined 

as 473, where the unused 4 words in the last partial group of components are simply filled up 

with zeros. In this way, each test 3780-d feature vector can be classified in 473×R clock cycles 

where R, usually below 100, is the reference number (6.3R μs at 75 MHz). Furthermore, the 

on-chip learning with very high learning speed enables the application in online machine 

learning. 

 

 
Fig. 4-29. Micrograph of the fabricated chip in 180 nm CMOS technology with 8-word 
parallelism for the PPPI architecture. 
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4.5.3 Architecture and Algorithmic Optimization Results 
A comparison with previous state-of-the-art works is illustrated in Table 4-II. To make a fair 

comparison, we normalized the area and power consumption to the 65 nm CMOS technology 

by using the “constant field scaling theory” [54]. The developed MRPA not only ensures high 

Table 4-III Comparison Results between previous works and our work 

 [46] [38] [39] [40] [41] [42] [43] Our work 

CMOS technology 180 nm 
90 nm 90 nm 220 nm 220 nm 90 nm - 

65 nm (FPGA) (FPGA) (FPGA) (FPGA) (FPGA) FPGA 

Algorithm Leanring 
:LVQ LVQ LVQ LVQ LVQ LVQ LVQ LVQ 

Architectural 
features 

Neurons parallel sequentially parallel parallel parallel parallel parallel sequentially 
Vector 

component parallel sequentially sequentially sequentially sequentially parallel sequentially partially-
parallel 

Normalized areaa, b, c 5.84 
mm2 - - - - - - 2.14 mm2 

SRAM  (k-bit)a 256 576 58.23 49 
35.93 

(weight 
vectors) 

56.47 34 609 

Matrix 
sizea 

Vector size 
(Dimension) 

1-64(12 
bit) 23 (16 bit) 21 (14 bit) 23 (8 bit) 23 (8 bit) 23 (8 

bit) 64 (16 bit) 1-4096 (16 
bit) 

Weight-vector 
number 256 350 12 49 25 25 32 1-1024 

Memory utilization 
efficiencye 75% 21.8% 5.9% 18.0% 12.5% 8.0% 94.1% 84% 

Normalized power (mW)b, 

d 

82.15 (50 
MHz 

@1.8 V) 

88.67 (50 
MHz) 

597.76 (50 
MHz) 

1233.63 
(100 MHz) - - - 

9.4 (100 
MHz 

@0.8V) 
21.5 (150 

MHz @1V) 

Processor reconfigurabilty 

Between 
PE array 
processor 

and 
SOM 

network 

No No No No No No 

Between 
learning 

and 
recognition 

mode 
aNormalized area, SRAM, and Matrix size comprise a comprehensive parameter-set to evaluate density efficiency. 
bWe normalized the area and power consumption to the 65-nm technology according to the constant field scaling theory [54]. For 
the area, we also considered the influences of numerical precision because the precision directly affects the area. The power 
consumption is known to reduce less than predicted by the scaling theory, when the gate length becomes shorter than 100 nm [55]. 
Therefore, the predictions for previous works are best-case values for these designs. The actual performances are far worse than 
the predictions. In addition to the gate length, the working frequency, voltage, and the embedded SRAM influence the power 
consumption significantly. 
cNormalized area (NArea) is the core area normalized to the 65-nm technology and 16-bit precision given by eq. (4-11). The SRAM 
volume also greatly affects the normalized area. 
                                       (4-11)  
dNormalized power (NPw) is the power consumption normalized to the 65-nm technology given by eq. (4-12). 

                                                                   (4-12) 
eMemory utilization efficiency (MUE) refers to the maximum number of weight-vector with the maximum dimensionality that the 
SRAM can handle.    

     (4-13) 
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performance and flexibility, but also efficiently improves the area and power efficiency. The 

MRPA offers more flexibility than the non-reconfigurable ASIC because of its module reuse 

and partial processing. No dedicated learning or recognition circuits are needed in MRPA, 

while a non-reconfigurable ASIC requires specific hardware for each sub-function. Because of 

the module reuse, the prototype requires less circuit area. The ALUs, such as multipliers, 

adders, and subtractors, which occupy large Si-area, serve in multiple sub-functions. In 

particular, not only do the learning and recognition modes share the same hardware, but the 

nearest-neighbor-search phase also uses these same modules in common with the adapting 

phase. The partial processing provides flexible vector size and weight-vector number as shown 

in Table 4-II with good memory utilization efficiency. The MRPA can process a range of scales 

from 1 to 4096-dimensional weight-vectors. The unfixed memory-space for each weight-vector 

contributes to the large vector capacity and high memory utilization efficiency.  

Table 4-III compares the MCPS and MCUPS performances, and the connection energy 

achieved in this work with the results of well-known previous research.  With respect to 

performance, the MRPA outperforms the non-reconfigurable ASIC in [45] and FPGA 

implementations [37-42], while the GPU performs the best, consuming considerable 

connection energy. We applied two circuit-level techniques to the MRPA for the purpose of 

improving the implementation efficiency. The first one is the hardware sharing which reduces 

the hardware consumption for computation, and the second one is the pipeline architecture 

which accelerates the computing speed. The P N-dimensional partial-vectors share the N 

weight modules and elementary-adder-modules instead of having P*N independent weight 

modules and elementary-adder-modules. The analysis of hardware consumption for 

computation consists of two parts: the distance calculation during the nearest-neighbor-search 

phase, and the winner adaption during the adaption phase. The multiplication is the most 

complex computation in the LVQ algorithms. No matter which distance metric is used to 

calculate the distances, the multiplication is necessary because of the winner adaption. A 

straightforward realization of either the distance calculation or the winner adaption tends to 

increase a large hardware overhead, which will obviously prevent the achievement of high 

throughput with reasonable silicon area and power consumption.  For example, for the fully-

parallel SIMD-implementation with a capacity of NN M-dimensional vectors, the Manhattan 

distance (MD) needs NN*M subtractors and NN*(M-1) adders, and the winner adaption 

requires NN*M subtractors, NN*M adders and NN*M multipliers. In total, the fully-parallel 

SIMD-methods need NN*M subtractors, NN*M adders and NN*M multipliers. The non-fully-

parallel SIMD implementation reduces the hardware consumption for computation to either 
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NN or M for effective processing [56]. Furthermore, the node parallelism (weight-vector or 

neuron parallelism) is the most used and maybe the most natural mapping for SIMD computers 

[57]. The normal case is that a non-fully-parallel SIMD processes NN parallel weight vectors. 

The MRPA decreases the hardware consumption for computation from NN*M to N by 

following the multiple-instruction-multiple-data (MIMD) processing manner, which is 

partially parallel and pipelined. The M-dimensional vector is divided into P N-dimensional 

vectors, which are processed in the pipeline. As a result, both the squared Euclidean distance 

calculation and the winner adaption require N subtractors, N adders, and N multipliers. The 

MRPA reuses the ALUs for NNS and adaption phases. Altogether the MRPA consumes N 

subtractors, N adders, and N multipliers. Therefore, the hardware consumption for computation 

of MRPA is increasing linearly with N for the LVQ algorithm. In addition, the MRPA reduces 

the computational complexity, while providing appropriate results for learning and recognition, 

by selecting the squared Euclidean distance rather than the Euclidean distance or the Manhattan 

distance. In real-world applications, the squared Euclidean distance and the Euclidean distance 

often provide higher accuracy in distance comparisons than the Manhattan distance [58]. 

Because we only need to compare the distances values, the squared Euclidean distance without 

root operation is the most efficient option. Although the hardware sharing strategy greatly 

Table 4-V PERFORMANCE COMPARISONS FOR LEARNING AND RECOGNITION 

 Distance 
metrics 

Hardware 
consumption NN M F 

(MHz) MCUPS MCPS CELa CERa 

[34] ED2 - 3755 160 2530 54731.3 - 14769.5 - 
[46] MD NN*M 256 32 50 - 258 - 318.41 

[38] ED2 1 350 23 50 - 23.95 - 3702 

[39] ED2 NN 12 21 50 11.29 136.95 52940 5360 
[40] ED2 NN 49 23 100 1115.84 1543.83 1105.56 799.07 
[41] MD NN 25 23 25 - 625 - - 
[42] ED NN*M 25 23 25 6.25 - - - 

[43] MD NN 32 64 25 - 6.9 - - 
Our 
work ED2 N 256 128 150 4730.703 4753.578 4.54 4.52 

MD: Manhattan distance. ED2: Squared Euclidean distance. ED: Euclidean distance. 
aConnection energy (CE) is the energy per connection, which can reflect the fundamental efficiency of the 
circuit and is invariant to performance changes [47, 49]. The CE for learning (CEL) and recognition (CER) 
are shown in eq. (4-11) and eq. (4-12).   

   (4-11)  

                                      (4-12)  
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facilitates complexity reduction, it still leaves room for improvements. A possible method is to 

replace the ripple-carry adder in elementary-adder-module with a carry-look-ahead adder, in 

order to reduce the computation time and to increase the clock frequency for the pipeline.  

The power dissipation can be defined as (connection/second) (energy/connection). The 

connection energy, which reflects the energy per connection, represents the efficiency of the 

LVQ hardware [47, 59]. Our work has very good performance in terms of the connection 

energy for learning and recognition, as verified in Table 4-III. Unfortunately, the comparison 

remains incomplete because not all FPGA implementations provide detailed results for the 

power consumption.  

In summary, no single architecture performs best in terms of performance and energy 

efficiency for the complete application space. The neuron parallel approach can effectively 

handle the applications with a high number of neurons and lower dimensionality. The 

applications with high-dimensional vectors can benefit from the MRPA.  

Fig. 4-16 shows that, given the same working frequency and 32 weight-vectors, our design can 

achieve a performance improvement of approximately 3x for MCPS and 4x for MCUPS in 

comparison to the neuron (weight vector) parallelism solution in [40].  

As for the accuracy loss of the hardware implementation, it mainly resulted from the truncation 

operation of the fixed-point operation. We carried out a comparison of fixed-point with 

floating-point operations to benchmark the impact of the round-off errors. For this purpose the 

SOM-based image compression was used, which is a lossy data compression method [47] and 

covers the learning process for generating the codebook of an image encoder and the 

recognition process for encoded images. Here, the peak signal-to-noise ratio (PSNR) is an 

 

 
Fig. 4-31. Performance comparisons between our work and the neuron parallelism solution 
[40] in learning and recognition modes, when working frequency and weight-vector number 
are same.  
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appropriate metric for the evaluation of the round-off errors. We have simulated the round-off 

error using various learning rates (from 0.07 to 0.9) and vector dimensionalities (non-

overlapped pixel-block sizes for image compression) regarding PSNR. The used number of 

learning iterations and weight vectors was 256 and 30, respectively. The round-off error of 

MRPA mainly resulted from the truncation operation before writing the adapted winner data 

into the parameterizable-storage modules. As shown in Fig. 4-17, where the x axis specifies 

the learning rate and the y axis denotes the PSNR, the fixed-point number with 16-bit precision 

leads only to a very small PSNR loss of 0.128 dB, because the MRPA preserves the precision 

as much as possible and no overflow instances occur in the internal signals. These findings 

justify the choice of fixed-point operators, which are much more hardware-friendly than the 

floating-point operators.  

4.6 Summary  
In this chapter, a hardware architecture called MRPA (a Modular and Reconfigurable Pipeline 

Architecture), realizing learning vector quantization (LVQ) and taking advantage of pipeline 

reconfiguration and modularity, was developed and verified by a prototype chip in 65-nm 

CMOS technology. The pipeline reconfiguration leads to a reduction in computation time and 

high efficiency of integration density. The modularity contributes to easy scalability in both 

upward- and downward-compatible fashion. Additionally, the shared memory-pool increases 

the flexibility for both the dimensionality and the number of weight vectors. Further, the 

implemented parameterization adds flexibility to the choice of adaption strategies. 

Consequently, the designed VLSI prototype implementation in this study attains high 

performance regarding MCPS and MCUPS, optimum Si-area efficiency, and verifies an 

enhancement of the usability for embedded artificial-intelligence applications. Before 
 

 
Fig. 4-33. PSNR comparison of float-point operators with fixed-point operators.  
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developing the MRPA, a memory-based VLSI realization for LVQ neural networks using the 

R-PPPI architecture was designed for on-chip learning and classification and fabricated in 180 

nm CMOS technology. The short learning time and high flexibility improves the applicability 

for a large number of practical applications. The R-PPPI architecture is verified to execute the 

dual modes of learning and recognition with very low power dissipation and small Si-area 

consumption. Moreover, the nearest neighbor search, the part with the highest computational 

demand, is the critical computational complexity solved by this reconfigurable R-PPPI 

architecture as well. The fabricated chip has furthermore demonstrated the high learning and 

classification speed.    
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5 CHAPTER 5: Conclusions and Future Directions 

5.1 Summary of Contributions 

5.1.1 Hardware-Oriented Algorithm Design 
In this study, the original HOG algorithm is implemented in an improved hardware-oriented 

way, applying a cell-based scan manner. Different from the state-of-the-art hardware 

implementations, without block-based normalization, the cell-based HOG descriptor extraction 

units apply a pixel-based pipelined architecture that can synchronize to the working frequency 

of the image sensor, thus enabling the flexibility of input-image sizes and detection in scaled 

images. Subsequent partial recognition for all overlapped windows to which each cell belongs 

uses the same processing manner for the pixels from the image sensor as in the cell-based 

sliding window paradigm for recognition.  

In addition, my developed modular and reconfigurable pipeline-architecture (MRPA) for LVQ 

neural networks has the following advantages. First, the MRPA accelerates the computational 

speed and provides high integration density by the implementation of pipeline reconfiguration. 

All the weight-vectors share the same arithmetic and logic units (ALUs), rather than having 

individual ALUs. Meanwhile, the MRPA improves the memory-utilization efficiency by 

segregating the weight-memory blocks from the processing elements (PEs) as a shared memory 

pool. The memory sharing scheme also increases the flexibility of the weight-vector, in contrast 

to the SIMD methods, which directly map neurons to PEs. The size of an individual weight-

memory block and the number of weight-memory blocks limit the range of manageable 

dimensionality and number of weight-vectors. The MRPA overcomes this limitation. Both the 

dimensionality and number of weight-vectors are adaptable to a wide range of applications. 

Moreover, the modularity of the design in the MRPA leads to easy scalability for future soft- 

and hard- IP design. 

5.1.2 Exploiting Data Statistics 
For the HOG-based pedestrian detection co-processor, the truncation of the bit precision and 

non-normalization lead an average loss of 0.05% and 7.5% in true positive per window (TPPW) 

and true negative per window (TNPW) for INRIA dataset and an average loss of 1.5% and 8.2% 

for NICTA dataset with individual HOG features. The complementary dual-feature space is 

found to achieve an average of 95.3% in TPPW and 99.4% in TNPW for INRIA dataset. At 

the same time, NICTA dataset achieves an average accuracy of 96% in TPPW and 99.2% in 

TNPW. 
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5.1.3 Test Chips 
A proof-of-concept prototype chip fabricated in 65 nm SOI CMOS, having thin gate oxide and 

BOX (Buried Oxide) layers (SOTB CMOS), with 1.96 mm2 core area achieves an energy 

efficiency of 906 PJ/pixel and a processing speed of 30 fps for 1024 × 768-pixel image frames 

at 200 MHz recognition working frequency and 1 V supply voltage. Furthermore, multiple 

chips can implement image scaling since the designed chip has image-size flexibility due to 

the pixel-based architecture. Detection accuracy can be improved using complementary 

features in addition to the HOG feature, at the cost of an extra 40% power consumption, 64% 

area requirement, and 53% memory size. 

The designed reconfigurable pipeline with parallel p-word input (R-PPPI) architecture for LVQ 

was taped-out using 180 nm CMOS technology with parallel 8-word inputs and 102 K-bit on-

chip memory. The prototype achieves low power consumption of 66.38 mW (at 75 MHz and 

1.8 V) in an area of 7.89 mm2. In addition, I upgraded the 1st generation by a new modular and 

reconfigurable pipeline architecture (MRPA). The MRPA removes the dedicated learning 

circuits and expands the word-parallelism to 32 with 609 K-bit SRAM. Prototype fabrication 

in 65-nm CMOS technology achieves high-density efficiency and memory utilization 

efficiency with a core area of 2.14 mm2, and average power consumption of 9.4 mW at 100 

MHz and 0.8 V supply voltage.  

5.2 Future Directions   
I hope after several decades, the generation takes the computer vision for granted. With the 

futuristic mobile device, if they see some bug or a little crab on the beach, they will just assume 

that it has always been the case that they can just snap a photo and that system will tell them 

what it is and everything they could want to know about it.  

5.2.1 Enhancing Pedestrian Detection Accuracy 
Our group has tried to include complementary feature descriptor (Haar-like) for HOG to 

improve the accuracy. One future direction would be integrate more sliding-window based 

feature descriptors in one chip and vote on the basis of the detection results from all the 

descriptors. Besides, the current version has fixed primitive-size (cell, window, sliding step). 

So another direction is parametrize the primitive-size and the image size. In addition, enabling 

the learning function into the detection circuits can also improve the accuracy.              

5.2.2 Embedding with Lane Detection 
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Lane detection has a great contribution on traffic-safety, as it is the major contributor to a lane 

departure warning (LDW) system, which is a basic and necessary part for an Advanced Driver 

Assistant System (ADAS). LDW is a system that uses the information from lane detection to 

warn the driver of lane departure. Then, the driver can correct the route to avoid that potential 

accidents happen. Due to its significance, many researchers pay attention and work on the study 

of LDW system for the advances in self-driving technologies. Accordingly, a real-time, robust 

and accurate lane-detection method is necessary for vehicle navigation. Combing the 

pedestrian detection and lane detection will result in a comprehensive result.   
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Appendix 1: TAOYAKA Onsite Team Project: Development of a lane 

detection system to improve the safety of visiting drivers  

 

Project Title 

Enhancing Tourism Development at Mitarai on Osakishimojima Island: 
Focusing on Inbound Tourism 

 
 

Individual Report Title 

Development of a lane detection system to improve the safety of visiting drivers 
 
 

 (Team 5) 
Xiangyu ZHANG (D161378) 
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Overview of Research Area 
Almost all the areas, which benefit from the rapid tourism growth, will experience an enormous 

increase in traffic accidents1. Before we go any further, we need to make as much preparation 

for the potential challenges as possible.  

From several field trips, I found out that the Mitarai lacked in public transport. Only two bus 

routes2 are available. One is from Okito Tenman-gu Shrine ( ) to Hiroshima Bus 

Center ( ) (Fig. 1), and the other is from Okito Tenman-nan ( ) 

to Chugoku Rosai Hospital ( ) (Fig. 2). Besides, the number of operating bus is 

very small. As a result, the promising tourists in the future will need to handle their 

transportation. The most likely transportation that will be chosen is a private car. With the boom 

                                                

1 Contemporary Perspectives on China Tourism by Honggen Xiao  
2 https://www.navitime.co.jp/poi?node=00164483  

 

Fig. 2. The route map and timetable of the bus route from Okito Tenman-nan ( ) to 
Chugoku Rosai Hospital ( ).  

 

Fig. 1. The route map and timetable of the bus route from Okito Tenman-gu Shrine ( ) 
to Hiroshima Bus Center ( ).  
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of tourism, the lack of public transport will add burden to traffic. We compare the car crash 

statistics of Kure city with that of Japan in Fig. 33. We use the data of Kure city rather than 

Mitarai area because the overall traffic does influence the tourists who visit Mitarai by cars. 

The tourists need to drive through Kure city to reach Mitarai. Especially, there is only one main 

road from Akinadao Bridge to Mitarai (Fig. 4). We focus on the lane-violation because my 

research is about lane-detection that aims to avoid the violation. Fig. 3 shows that with the 

tourism development, the traffic safety will become more severe.  

Another phenomenon (Fig. 5) that 

requires more consideration is the 

high ratios of senior citizen 

fatalities in car accidents. More 

than 50% deaths in car accidents 

occur in aged people. The figures 

are higher than in Europe and the 

United States.  

In addition, foreigner tourists are 

more likely to cause traffic 

because of the differences of 

                                                

3 Hiroshima prefectural police: http://www.pref.hiroshima.lg.jp/site/police16/  

Fig. 3. The lane-violation accident is likely 
to increase 15% in Kure city with the 
tourism growth.  

Fig. 4. The transportation map of Mitarai. 
The red star indicates the Mitarai. The 
blue lines represent the highway.  

Mi

 
Fig. 5. Deaths among aged people exceeds 50% in 

car accidents.  
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driver's license systems, traffic rules, etc.4. Studies show that more than a half of the foreign 

visitors to Japan are “repeat visitors,” and one-quarter of them have been to Japan more than 

four times. These “repeat visitors” powerfully tend to drive cars by themselves and explore 

new destinations. Considering the local conditions of Mitarai, we expect that Mitarai will 

become a destination for the “repeat visitors.” The number of cars rented out to foreigners in 

Hokkaido and Okinawa of 2015 is 1.7 times higher than that of 2014. According to National 

Police Agency (NPA), there are approximately 800,000 foreigners who hold Japanese driver's 

licenses by 2015. 

While much progress has occurred in the area of road safety, little attention has been paid to 

the safety of tourist drivers in Japan. The future of Mitarai’s tourism should be a path for 

sustainable growth. In order to ensure inbound tourism can grow sustainably, we need more 

robust infrastructure, capabilities, outreach, and internal collaboration. The traffic challenges 

not only affecting those going to work or school but also the development of industry and 

tourism.  

Therefore, it is essential to devise effective and efficient measures to reduce traffic accidents 

causing by the tourism growth.  

1.1.1 Traffic Safety along Tourist Routes 
Previous research has investigated whether traffic safety is an issue for tourist drivers who 

visited the destinations with a number of tourism attractions and roadways to reach them. Wang 

et al.5 concluded that when all other factors were equal, the tourism boom accounted for 15.8% 

more crashes on their research areas than that without tourism. Page et al.6 found that in terms 

of rental car crashes, foreign drivers are the main sources of rental car crashes in New Zealand. 

                                                

4 Yoh K, Okamoto T, Inoi H, et al. Comparative study on foreign drivers' characteristics using traffic 

violation and accident statistics in Japan[J]. IATSS research, 2017, 41(2): 94-105. 

http://www.sciencedirect.com/science/article/pii/S0386111217300468  
5  Wang Y, Veneziano D, Russell S, et al. Traffic Safety Along Tourist Routes in Rural Areas[J]. 

Transportation Research Record: Journal of the Transportation Research Board, 2016 (2568): 55-63. 

http://www.montana.edu/ce/instructors_professors/faculty/Traffic_Safety.pdf  
6 Page S J, Meyer D. Tourist accidents: an exploratory analysis[J]. Annals of Tourism Research, 1996, 

23(3): 666-690. http://www.sciencedirect.com/science/article/pii/0160738396000047  
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Petridou et al.7 discovered that among the rental car crashes, the drivers from left-side driving 

country were more likely to encounter an accident. Petridou et al.8 noticed that traffic crashes 

accounted for 40% of all accidents among foreign tourists on the island of Kerkyra in Greece. 

Leviäkangas9 unearthed that crash rates of foreign drivers were much higher than that of local 

drivers. 

1.1.2 Lane Detection 
Lane detection has a great contribution on traffic-safety, as it is the major contributor to lane 

departure warning (LDW) system, which is a basic and necessary part for Advanced Driver 

Assistant System (ADAS)10. LDW is a system that uses the information from lane detection to 

warn the driver for lane departure. Then, the driver can correct the route to avoid potential 

accident happens. Due to its significance, many researchers pay attention and work on the study 

of LDW system with the advances in self -driving technologies. Accordingly, a real-time, 

robust and accurate lane-detection method is necessary for vehicle navigation.  

The lane detection approaches can be mainly divided into two categories, sensors based 

approaches and image processing based approaches11 . The sensors based approaches12  use 

devices such as radar, laser sensors, and even global positioning systems (GPS) to mark the 

location of lane and vehicle by analyzing the captured information, and then estimate the lane 

departure occurs or not. These approaches are provided with high reliability in some bad 

                                                

7 Petridou E, Askitopoulou H, Vourvahakis D, et al. Epidemiology of road traffic accidents during pleasure 

travelling: the evidence from the island of Crete[J]. Accident Analysis & Prevention, 1997, 29(5): 

687-693. http://www.sciencedirect.com/science/article/pii/S0001457597000389  
8 Petridou E, Dessypris N, Skalkidou A, et al. Are traffic injuries disproportionally more common among 

tourists in Greece? Struggling with incomplete data[J]. Accident Analysis & Prevention, 1999, 31(6): 

611-615. http://www.sciencedirect.com/science/article/pii/S0001457599000172  
9 Leviäkangs P. Accident risk of foreign drivers—the case of Russian drivers in South-Eastern Finland[J]. 

Accident Analysis & Prevention, 1998, 30(2): 245-254. 

http://www.sciencedirect.com/science/article/pii/S0001457597000778  
10 Jung H, Min J, Kim J. An efficient lane detection algorithm for lane departure detection[C]//Intelligent 

Vehicles Symposium (IV), 2013 IEEE. IEEE, 2013: 976-981. 
11 Hoang T M, Hong H G, Vokhidov H, et al. Road lane detection by discriminating dashed and solid road 

lanes using a visible light camera sensor[J]. Sensors, 2016, 16(8): 1313. 
12 Yoo, Hunjae, Ukil Yang, and Kwanghoon Sohn. "Gradient-enhancing conversion for illumination-

robust lane detection." IEEE Transactions on Intelligent Transportation Systems 14.3 (2013): 1083-

1094. 



 

103 

 

weather conditions, but as their accuracy is not unreliable for detecting the lane positions, 

researchers usually combine sensors with some eigenvalue algorithms to increase the accuracy.  

The image processing based approaches use the features of captured images such as gradient13, 

color 14 , histogram 15 , or texture (edge) for lane detection. Yoo et al.16 propose a linear 

discriminant analysis (LDA)-based gradient-enhancing conversion method for lane detection 

aim at solving the problem that gradient values between lanes and roads vary with illumination 

change, which degrades the performance of lane detection systems. This method requires 

approximately 50 ms in each frame. Chiu et al.17 propose another method based on color 

information. They used color-based segmentation with the quadratic function to find out and 

approach the lane boundary on a selected region of interest. As color segmentation is sensitive 

to ambient light and requires additional processing to avoid undesirable effects, it is not suitable 

for a road with the complex-light environment. Munajat et al.18 combine RGB histogram 

filtration and boundary classification to describe a new approach for road detection. The RGB 

histogram filtration is used to process the input from camera by the color segmentation for 

determining the road area. Meanwhile, the boundary classification is used to map roads and its 

environments based on the RGB information. Finally, using Canny edge detection and Hough 

Transform (HT) to look for line boundaries.  

The HT, one of the most robust image processing based approaches, has high reliability against 

line gaps or noise in real-world applications. Generally, to reduce computational cost of the HT 

based lane detection, the input image captured by camera is often down sampled by choosing 

a Region of Interest (ROI)16. The ROI contains the road lines in the original input image. Then, 

edge detection is implemented to prepare edge pixels for HT within the ROI. The number of 

edge pixels determines the computation amount of the HT. A suitable edge-detection algorithm 

                                                

13 Yoo H, Yang U, Sohn K. Gradient-enhancing conversion for illumination-robust lane detection[J]. IEEE 

Transactions on Intelligent Transportation Systems, 2013, 14(3): 1083-1094. 
14 Chiu, K.Y.; Lin, S.F., Lane detection using color-based segmentation, IEEE Proceedings. Intelligent 

Vehicles Symposium, 2005. IEEE, 2005: 706-711. 
15 Munajat M D E, Widyantoro D H, Munir R. Road detection system based on RGB histogram filterization 

and boundary classifier[C]//2015 International Conference on Advanced Computer Science and 

Information Systems (ICACSIS). IEEE, 2015: 195-200. 
16 Li, X., Wu, Q., Kou, Y., Hou, L., & Yang, H. (2015, October). Lane detection based on spiking neural 

network and hough transform. In Image and Signal Processing (CISP), 2015 8th International 

Congress on (pp. 626-630). IEEE. 
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often lead to a better result of lane detection. Sobel17 , Canny18  and Morphology19  are the 

popular operator for edge detection. The function of HT is to confirm the polar coordinates 

corrected to a straight line. 

The concept of the HT can be considered as a mathematical approach for gathering evidences 

in an accumulator array followed with a voting process for each events. Based on some 

mathematical rules, it defines a mapping process from Cartesian coordinate space to Polar 

coordinate (Hough space). Therefore, HT needs huge computing quantity and large memory 

usage. Due to these limitations, a software implementation for the HT based on general purpose 

CPUs is not suitable to real-time applications. 

Focus on the operational process and the voting procedure of the HT, many improvements or 

optimization algorithms were proposed to improve the HT towards better suitability for real-

time applications. Probabilistic Hough Transform (PHT) is one of the efficient improvements. 

PHT aims at increasing the operation speed of HT by the way of randomly selecting certain 

portions (choosing a subset) of the object points (edge pixels) to approximate the complete HT 

with a small as possible error for extraction of straight lines more quickly. It is observed that 

PHT can decrease the computational burden. However, although PHT can reduce resource 

consumption and processing time, it does not consider the location errors (errors between the 

actual line coordinates and digital image coordinates) so that the accuracy and the capability 

for anti-noise are worse than the original HT. Whereas, the lane detection has strict 

requirements on accuracy and noise. 

1.1 Objective Hardware Architecture for Lane Detection based on Hough 

Transform (HT)  
This study seeks to contribute to the safe travel for tourists who have the most possibility to 

visit Mitarai, the repeat visitors. Lane-violation is a major cause of car accidents. Considering 

that Hough Transform (HT) is an efficient way for lane detection as its high accuracy of 

                                                

17  Kortli Y, Marzougui M, Bouallegue B, et al. A novel illumination-invariant lane detection 

system[C]//Anti-Cyber Crimes (ICACC), 2017 2nd International Conference on. IEEE, 2017: 166-

171. 
18 Rong W, Li Z, Zhang W, et al. An improved CANNY edge detection algorithm[C]//Mechatronics and 

Automation (ICMA), 2014 IEEE International Conference on. IEEE, 2014: 577-582. 
19 Li Q, Chen L, Li M, et al. A sensor-fusion drivable-region and lane-detection system for autonomous 

vehicle navigation in challenging road scenarios[J]. IEEE Transactions on Vehicular Technology, 

2014, 63(2): 540-555. 
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straight-line detection. We develop a hardware architecture of HT with paralleled voting 

procedure and local maximum algorithm for lane detection on an FPGA.  

The lane detection system consists of four major modules: edge detection unit with Gaussian 

filter for removing noise, the computation unit of characteristic values (ρ,θ) for edge pixels, 

voting unit for each pair of (ρ,θ) with local maximum (ρ,θ) searching and the output of detected 

straight lines. The designed prototype system has been implemented on a DE1-SoC platform 

with a Cyclone V FPGA device. In the application of lane detection, the average processing 

speed of this HT implementation is 7.4 ms per VGA (640x480)-frame at 50 MHz working 

frequency.   

1.1.1 Pipelined Computation and Parallelized Voting-Procedure 
In the literature, the Coordinate Rotational Digital Computer (CORDIC) algorithm20 is often 

used to calculate trigonometric functions for avoiding the multipliers. Given that the current 

FPGA device can provide sufficient multipliers, we use the look-up-table (LUT) solution for 

computation of sinθ and cosθ. The sinθ or cosθ fractional value, which are scaled by a certain 

factor in two’s complement notation, are separately stored in n memory blocks. Meanwhile, n 

parallel units compute ρ as shown in the Fig. 6, where n is the divisor of the chosen number of 

discrete θ-values in Hough space. Each parallel part is composed of two multipliers, two LUTs 

(implemented as RAM) for sinθ and cosθ, one adder, and pipeline registers between the part-

                                                

20  Andraka, R., A survey of CORDIC algorithms for FPGA based computers. 6th ACM/SIGDA 

International Symposium on FPGA 1998, 191-200. 

 

 
Fig. 6 Hardware implementation for Polar coordinates computation and voting procedure with n-

fold parallelism. 
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internal computing units. In this paper, we adapt a factor of 8192 (213) and the computing unit 

is divided into 9 parallel parts.  

1.1.2 Combination Method with Threshold Value Method and Local 

Maximum Searching  
In the voting procedure, bins, each location (ρ,θ) in the Hough space are incremented for all 

lines that could pass through this location when an edge point is transformed to the polar space. 

The resolution of the Hough space determines the precision with which lines can be detected. 

The tradeoff between the memory usage of the Hough space and resolution parameters affects 

the system implementation for lane detection in hardware. Threshold value method (TVM) is 

the most popular way to find the polar coordinates in the Hough space for determining lines.  

All values above the threshold represent as lines. Due to the quantization error caused by 

resolution parameters ∆ρ and ∆θ, the votes are usually distributed in a small area around the 

desired peak point as shown in Fig. 7. The static threshold cannot perfectly reproduce the 

original lines since many interfering straight lines around the real line. 

The local maximum searching module is implemented by one dual-port RAM for storing the 

addresses of the centers, two counters, a state machine, and a few of logic elements as 

illustrated in Fig. 8. A global control signal “start” enables the state machine and the reading of 

the dual-port RAM. Each pair of (ρ,θ) (“sel_thetarho” in Fig. 8) and its vote value 

(“sel_outvalue” in Fig. 8) are the inputs to the Local maximum searching module. The local 

max estimation unit with three comparators triggers center updating according to the vote value 

(sel_outvalue). These states control the write enable of the dual-port RAM and the address 

 

Fig. 7 Distribution of vote value in Hough space with  and . 
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counter. Particularly, the input “sel_outvalue” is 

write in the dual-port RAM when a new center is 

updated. When the vote value of the center is larger 

than that of a new input (ρ,θ), the address counter 

is triggered for the comparison of a next address. 

The bit length of each word in the dual port RAM 

for storing the potential lines in Hough space is 28-

bit. The MSB 10 bits (from 19th to 28th) are used to 

store the vote value of the centers; the next 8 bits 

(from 11th to 18th) are used for the corresponding θ 

and the LSB 10 bits are used to store the 

corresponding ρ. As we use paralleled structure to 

implement voting procedure, the Hough space is 

divided into n parts based on the range of θ. 

Therefore, the maximum number of the detected 

straight lines is n×W where W is the word number of each dual-port RAM. 

1.2 Implementation Results 

1.2.1 FPGA-based Prototype System for Lane Detection 
A prototype system for lane detection implemented on a DE1-SoC board includes a D8M-

GPIO camera module with 640×480 resolution at 60 fps, a Cyclone V (5CSEMA5F31C6) 

Altera FPGA device, and a LCD display as shown in Fig. 9. Besides the raw camera data 

capturing module, a pre-processing unit with a 3×3 Gaussian filter is designed for removing 

noise.  

Fig. 10 Analysis of local maximum 
algorithm with different 

 

Fig. 8 Hardware architecture of local maximum searching algorithm for finding the potential 
i h li
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Before the implementation of lane 

detection on the FPGA board, we firstly 

have to define the discretization 

parameters (∆ρ and ∆θ) and the window 

size for local maximum searching. The 

resolution of the discretization parameters 

directly affects the memory usage of the 

Hough space. Furthermore, the 

incremental quantity for ∆θ also 

determines the iteration number for each 

edge pixel. As shown in Fig. 10, after the 

edge detection (a2) by Morphology operator and binarization (a3),  

different ∆θ shows different the results of the straight-line detection where the threshold is set 

as (ρ_max/2). The results from (b1) to (b3) in Fig. 10 are attained by the threshold value method 

for finding the peak points as the outputs of the lines. The larger ∆θ (from c1 to d1) causes 

many interfering lines so that the detection results become worse. Whereas, the local maximum 

algorithm can decrease the number of interfering lines effectively specially for the a large ∆θ 

as shown in Fig. 10 (c2, c3, d2, and d3). In particular, the result with ∆θ=2 and 5×5 sub-window 

for local maximum searching is better than that with ∆θ=1 and thresholding method. 

Meanwhile, the memory usage in the case of ∆θ=2 is only half comparing the case of ∆θ=1. In 

general, the bigger size of sub-window for local maximum algorithm corresponds to the larger 

∆θ. However, this is also a tradeoff since the detection resolution for potential lines will become 

worse. Eventually, the incremental quantity ∆θ is defined as 2 degrees and the sub-window size 

is set as 5×5. 

The hardware resource usages of each function modules on DE1-SoC board with Altera 

Cyclone V FPGA device are listed in Table 1. The embedded system totally consumes 9033 

Fig. 9 Prototype system for HT-based lane 
d t ti

Table 1 Hardware resource usage for every module in the prototype system for line detection. 
 

 Video 
capture 

Pre-processing HT Display 

Combinational 
ALUTs 

2351 2113 3798 771 

Registers 1371 2669 1476 192 
Memory (Kb) 35 102 1775 26 

DSP block 2 12 18 18 
Max freq.   54.39  
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combinational adaptive look-up tables (ALUT) that is a logical construct of the Cyclone FPGA 

device. The HT module occupies 42% logic utilization and 91.6% of the total memory usage 

with 1938Kb of the whole design. Finally, the maximum synthesized frequency is 54.39 MHz 

while an average processing speed of developed prototype system for HT-based lane detection 

is 7.4 ms per frame at 50 MHz. 

We tested the system in a car around the HU campus.  

1) The system can realize near real-time detection by offline processing.  

2) The system is portable and can be fixed to a vehicle easily.  

3) The lane detection result is of high accuracy, ensuring accurate reaction for the LDWS. 

1.2.2 Analysis and Discussion 
The speed performance and detect accuracy shown in Table 2 is compared to the state-of-the-

art works 21 , which are implemented on FPGA platform. A modified Canny-Hough lane 

detection algorithm is proposed in [1] for achieving real-time implementation. In order to 

reduce the complexity of algorithm, they simplified the gray conversion and Canny edge 

detection, separately. For the gray conversion, they used one-third of the sum of RGB to instead 

                                                

21 [1] Hwang, S., & Lee, Y. (2016, October). FPGA-based real-time lane detection for advanced driver 

assistance systems. In Circuits and Systems (APCCAS), 2016 IEEE Asia Pacific Conference on (pp. 

218-219). IEEE. 

  [2] El Hajjouji I, El Mourabit A, Asrih Z, et al. FPGA based real-time lane detection and tracking 

implementation[C]//Electrical and Information Technologies (ICEIT), 2016 International 

Conference on. IEEE, 2016: 186-190. 

Table 2 Comparison to the state-of-the-art works 
 

 [1] [2] This work 
Hardware platform DE1-Soc DE2 DE1-Soc 
FPGA specification Altera Cyclone V Altera Cyclone II Altera Cyclone V 
working frequency 50 MHz 50 MHz 50 MHz 
Image resolution 640 480 720×480 640×480 

Processing speed (ms/frame) 41 40 7.4 
Logic utilization 4694 - 5460 

Combinational ALUTs 
usage 

8600 14945 9033 

Total memory bits (Kbit) - 1555 1985 
Embedded 18x18 

multipliers 
- 15 18 

Total PLLs - 2 2 
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of the multiple floating point operation. For the edge detection, they introduced three stages 

(Gaussian smoothing, Sobel edge tracking and sharpening) to simplify Canny edge detection. 

A super-resolution reconstruction algorithm was invited for selecting a ROI to decrease the 

time complexity of HT. As a result, the FPGA-based system achieves the processing speed of 

41 ms/frame. Especially, they used an external SDRAM to store the converted gray-scaled 

image and the corresponding edge detection result so that this design requires a mountain of 

memory usage.  

The robust lane detection and tracking system was presented in [2] which contains two main 

parts. One part is the Sobel operator with HT for lane detection through an adaptation, another 

part is the Kalman filter for dealing with lane tracking. They used Coordinate Rotation Digital 

Computer (CORDIC) algorithm to obtain sinθ and cosθ for the HT implementation. CORDIC 

is a simple and efficient algorithm to calculate trigonometric functions, which can avoid the 

memory of the sine and cosine initialization comparing with LUT method. However, the 

accuracy losses of CORDIC depends on the number of fractional bits and the number of 

iterations. Since the discretization parameters ∆ρ and ∆θ are more coarse  than that of this work 

due to the CORDIC computing, they used less memory than that of this work.  

1.3 Conclusion 
The inspiration from Mitarai and the onsite-team-project drove me to develop an embedded 

system for straight-line detection by Hough transform. The system is the major contributor to 

alane departure warning (LDW) system, which is a basic and necessary part for an Advanced 

Driver Assistant System (ADAS). LDW is a system that uses the information from lane 

detection to warn the driver of lane departure. With LDW, the driver can correct the route to 

avoid potential accidents. A combinational method of the thresholding and the local-maximum 

algorithm was presented for finding accurate lines with low resolution of the discretization 

parameters ∆ρ and ∆θ, leading to high computing speed and low memory requirement. A 

prototype system was designed on a low-cost Altera Cyclone V FPGA device to demonstrate 

the speed performance and the hardware efficiency.  
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