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Chapter 1 

Introduction 

1.1 Background and objective  

Production scheduling is a decision making for allocating resources to 

operations of jobs over time with one or more objectives to be optimized. In recent 

smart manufacturing environments, scheduling plays an important role to achieve 

efficient production and to survive in competitive global marketplaces. Vast amount of 

literature about production scheduling has been published so far. They are classified 

based on the machine configuration and the production flow on shop floor as follows 

(Pinedo (2008)): 

Single machine - The case of a single machine is the simplest of all possible 

machine environments and is a special case of all other more complicated machine 

environments. 
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Parallel machines - There are some machines in parallel. A job requires a single 

operation and may be processed on any one of the machines or on any one that belongs 

to a given subset. If all the machines have the same speeds to process an operation, it 

is referred to as identical parallel machines. If the speeds of the machines are different 

depending on jobs, then it is referred to as unrelated parallel machines.   

Flow shop - There are some machines in series. Each job has to be processed 

on each machine. All jobs have to follow the same route, i.e., they have to be processed 

first on machine 1, then on machine 2, and so on. After completion on one machine a 

job joins the queue at the next machine.  

Job shop - In a job shop with some machines, each job has to be processed on 

some machines but the route of machines to follow depends on the job. Each job has 

its own predetermined route to follow.  

Open shop – In a job shop, each job has a fixed route that is predetermined. 

When the routes of the jobs are not determined but open, this model is referred to as an 

open shop.  

In addition to the basic model described above, some combinations of these 

models or more realistic models are as follows: 

Flexible flow shop - A flexible flow shop is a generalization of the flow shop 

and the parallel machine environments. Instead of some machines in series there are 
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some stages in series with at each stage a number of identical machines in parallel. 

Each job has to be processed first at stage 1, then at stage 2, and so on. A stage functions 

as a bank of parallel machines; at each stage a job requires processing on only one 

machine and any machine can do. The queues between the various stages may or may 

not operate according to the First Come First Served (FCFS) discipline. Flexible flow 

shops have also been referred to as hybrid flow shops or as multi-processor flow shops

in the literature. 

Flexible job shop - A flexible job shop is a generalization of the job shop and 

the parallel machine environments. Instead of some machines in series there are some 

work centers with at each work center a number of machines in parallel. Each job has 

its own route to follow through the shop; job requires processing at each work center 

on only one machine and any machine can do.  

The performance measure for the production scheduling is the key for 

evaluating the effectiveness of the scheduling system and can take many different 

forms. One of the most used objective functions in the literature has been Makespan.

The makespan is equivalent to the completion time of the last job to leave the system. 

A minimum makespan usually implies a good utilization of the machine(s). Other 

important objective functions are due date related performance measures such as mean 

tardiness, number of tardy jobs, weighted tardiness and so on. Among them, the mean 

tardiness of jobs has been widely adopted as a basic measure for the due date related 

performance measure.  Meeting due dates are one of the most important measures for 
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scheduling as the variety of products increases and meeting customer’s satisfaction is 

the key to survive in competitive markets.  

In this study, we deal with flexible flow shop and flexible job shop scheduling 

problems with mean tardiness as the objective function. Flexible flow shops and job 

shops are seen in a number of real-world environments and various approaches have 

been applied for the problems. The scheduling approaches can be classified into the 

following three categories: 

(1) Exact methods 

(2) Meta-heuristics  

(3) Heuristics  

Most scheduling problems belong to NP-hard. Even a single machine 

scheduling problem with the tardiness objective has been proved to be NP-hard (Du 

and Leung，1990). Therefore, exact methods such as branch and bound or dynamic 

programming are only suitable for small-scale scheduling problems. When the 

scheduling problem is getting larger, the exact method will fail because of the large 

memory requirements and long computational time (Singh and Mahapatra, 2016).  

For practical scale of problems, the scheduling that has acceptable performance 

with a reasonable amount of time is needed. The possible methods that can be applied 

to the scheduling problems that are NP-Hard in a reasonable time are heuristics and 

meta-heuristics. Many variations of heuristics and meta-heuristics algorithms have 
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been proposed to solve scheduling problems. Dispatching or priority rules are the most 

typical heuristics in scheduling. For example, EDD (the earliest due date) rule selects 

the jobs that has the earliest due dates among the candidate jobs to be processed when 

a job should be assigned to a machine. Although this approach has strong advantage 

with regard to calculation time, the performance of scheduling is limited and there is 

room for improvement. 

 In these situations, the most prominent approach can be meta-heuristics such 

as Genetic Algorithm (GA), Simulated Annealing (SA), Taboo Search (TS), and so on. 

Those methods basically utilize probabilistic search and have no guarantee to obtain 

optimal solutions in finite calculation time. However, it can obtain better solutions for 

the practical scale scheduling problems when compared to other approaches. In 

particular, genetic algorithm is one of the most popular meta-heuristics used for various 

scheduling problems. 

Genetic algorithms are meta-heuristics inspired by Charles Darwin’s theory of 

natural evolution. This algorithm reflects the process of natural selection where the 

fittest individuals are selected for reproduction in order to produce offspring of the next 

generation. GA has first proposed by John Holland (Holland, 1975) as a means to find 

good solutions for problems that were otherwise computationally intractable. Holland's 

Schema Theorem and the related building block hypothesis (Goldberg, 1989) provided 

a theoretical and conceptual basis for the design of efficient GAs. The field grew 
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quickly and the technique was successfully applied to a wide range of practical 

problems in science, engineering and industry. 

Although meta-heuristics like genetic algorithms are one of the most effective 

methods, there is also room for improvement. First, genetic algorithms have weakness 

for fine tuning after finding good solutions. Second, because meta-heuristics does not 

utilize problem-specific knowledge, the quality of the solutions is not high in general.  

As for the first problem, memetic algorithms that incorporate local search in genetic 

algorithms have been proposed to compensate the weakness. The aim of this method is 

to enhance the search by utilizing effective local structure of the problem. The effective 

definition of local structure depends on the problem.  For the second problem, genetic 

algorithms incorporating problem-specific knowledge have been proposed for 

searching out high-quality solutions in a reasonable amount of time. Eguchi et al. 

(2005) proposed a genetic algorithm incorporating priority rules and showed that the 

method can generate better schedules than using a genetic algorithm alone for larger 

scale problems. However, this approach considered only job selection and has not been 

applied to machine selection in flexible job shop scheduling.

The main objective of this thesis is to study effective production scheduling for 

flexible flow shop and job shop when using genetic algorithm incorporating problem-

specific knowledge. The mean job tardiness is the performance measure of scheduling 

problem in this study. 
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1.2 Literature Review 

Various types of scheduling methods for flexible flow shop scheduling and 

flexible job shop scheduling are proposed in the literature (Wang, 2005) (Ruben, et al., 

2009).  

Flexible flow shop is also called hybrid flow shop. The two-stage flexible flow 

shop scheduling is important to study because the two-stage is basic to consider 

multistage flexible flow shop scheduling problems. The two-stage flexible flow shop 

scheduling problem with one stage having at least two machines is proved to be NP 

hard (Hoogeveen et al., 1996).  Gupta and Tunc (1991) and Gupta et al. (1997) studied 

a two-stage flexible flow shop with single machine and parallel machines on each stage. 

Chang et al. (2004) presented a two-stage flexible scheduling problem with separated 

setup and removal times and machine breakdown condition. The two-stage no-wait 

hybrid flow shop scheduling problem is the process that occurs when the operations of 

a job have to be processed from start to end without interruptions on or between 

machines (Liu and Xie, 2003). The no-wait scheduling problems have attracted the 

attention of many researchers both in practical application area and in theoretical area; 

see Aldowaisan (2001), Aldowaisan and Allahverdi (1998, 2001, 2002), Allahverdi 

(1997), Gupta et al. (1997). The no-wait hybrid flow shop that ignores the setup and 

removal times has been studied by Salvador (1973), Sriskandarajah (1993) and Liu and 

Xie, (2003).  Salvador has developed a branch and bound algorithm to find minimum 

finish time for a no-wait flow shop with parallel machines model that arise in an actual 
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application in the synthetic fiber industry. The worst case and average case analysis of 

some heuristic algorithms of this problem has been carried out in Sriskandarajah (1993) 

and Liu and Xie (2003). 

In recent years, a plenty of researchers focused on flexible or hybrid flow shop 

scheduling problems using meta-heuristics. Engin (2011) and Oguz et al. (2001) 

proposed an efficient genetic algorithm to solving the problems. Engin and Döyen 

(2004) proposed a new approach using artificial immune system to solve the problem. 

Syam and Al-Harkan (2010) presented the comparison of three meta-heuristics; genetic 

algorithm, simulated annealing and tabu search algorithm to solve problems with 

regard to minimize makespan.  Choong et al. (2011) presented two hybrid heuristic 

algorithms that combine particle swarm optimization (PSO) with simulated annealing 

(SA) and tabu search (TS), respectively. The new metaheuristic, called memetic 

algorithm has presented to solve this problem with regard to makespan by Moghaddam 

et al. (2009) and Akhshabi (2011). The results show that the memetic algorithm has a 

competitive performance as compared to genetic algorithm. Akhshabi et al. (2012) 

showed the flexible flow shop scheduling problem with sequence dependent setup with 

preventive maintenance. Abyaneh and Zandieh (2012) presented genetic algorithms for 

a flexible flow shop scheduling problem with sequence dependent setup and limited 

buffers. 

As for flexible job shop scheduling, many optimization approaches have been 

proposed, such as exact solution algorithms, meta-heuristic algorithms, and heuristic 
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algorithms using priority rules. Exact algorithms such as branch-and-bound methods 

(Iwata et al, 1978) cannot optimally solve larger scale problems. In general, flexible 

job shop problems are intractable; even the task of scheduling two identical, parallel 

machines to minimize the maximum completion time is NP-hard (Lenstra et al., 1977). 

Flexible or multipurpose-machine job shop scheduling with more than three jobs and 

two machines is also NP-hard (Brucker et al., 1997). Among the metaheuristic 

algorithms, many researchers have applied genetic algorithms (GAs) to scheduling 

with alternative machines (Candido et al., 1998; Jawahar et al., 1998; Norman and 

Bean, 1999; Morad et al., 1999; Lee and Kim, 2001; Moon et al., 2008; Pezzella et al., 

2008; Shao et al., 2009; Li et al., 2010; Phanden et al., 2013). Although such algorithms 

can solve larger scale problems in reasonable time, the performance of the solutions 

deteriorates as the scale of problem grows. Among heuristic algorithms, priority rules 

have been developed and found to be effective in certain environments (Eguchi et al, 

2006; Doh et al, 2013).  

This study investigates the efficient production scheduling with alternative 

machines with regard to mean tardiness using genetic algorithms incorporating 

effective knowledge. There have been a few research studies dealing with flexible flow 

shop scheduling with regard to mean tardiness. Although lots of research have been 

carried out for flexible job shop scheduling including mean tardiness objectives, few 

research papers have examined performance improvement by incorporating heuristic 

rules. 
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1.3 Outline 

The rest of this thesis is presented as follow: 

The chapter 2 demonstrates the efficiency of genetic algorithm incorporating 

local search using effective local structure. This section deals with flexible flow shop 

scheduling problem also called hybrid flow shop scheduling problem. Three meta-

heuristics: genetic algorithm (GA), memetic algorithm (MA) and random key genetic 

algorithm (RKGA) are examined.   

The chapter 3 focuses on flexible job shop scheduling problem using genetic 

algorithm incorporating heuristic rules. Incorporating various heuristic rules for job 

and machine selection are investigated.   

Subsequently, chapter 4 investigates the effectiveness of due-date related 

information for machine selection rules in the flexible job shop problem. 

Finally, the chapter 5 mentions the overall conclusions from this study.  



11 

Chapter 2 

Flexible Flow Shop Scheduling using Genetic Algorithm 

Incorporating Local Search 

2.1 Introduction 

This chapter demonstrates the efficient scheduling method using genetic 

algorithm incorporating local search for flexible flow shop scheduling problem. The 

genetic algorithm incorporating local search is also called memetic algorithm. For 

genetic algorithm, two kinds of coding methods, namely job sequencing coding and 

random key coding, are tested. Therefore, this chapter examines the performances of 

genetic algorithm (GA), random key genetic algorithm (RKGA), and memetic 

algorithm (MA).  
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2.2 Framework and formulation 

In the flexible flow shop considered in this study, I jobs �� (i = 1, 2, …, I ) must 

be sequentially processed on a set of N-stage flow shops. Each stage has the same 

number of machines whose processing rates are the same; each stage has the same 

number of identical parallel machines. Each job is processed first at stage one, then at 

stage two, and finally at stage N. The processing time of job �� on stage j is ��� . All jobs 

are available at time zero. Each job �� has its own due-date ��. The job sequence to 

release to the first stage is determined by the genetic algorithms used in this chapter. 

Jobs in each stage can be processed by any machine that idle.  After finishing the 

operation of a job at a stage, the job waits at the intermediate buffer in the first come 

first served order. Whenever a machine in the next stage became idle, the job is 

processed on the machine.  

Fig.2.1 The flexible flow shop with identical parallel machine 

Stage Stage 

BUFFER BUFFER 

Jobs Jobs 
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Each machine cannot process multiple jobs at a time. Preemption is not 

allowed, namely, processing an operation cannot be interrupted until the processing the 

operation finishes. 

The objective is to minimize the mean job tardiness �� , which is defined as 

follows: 

�� =
�

�
∑ ���(0,�� − ��)
�
���                             (2.1) 

where �� is the completion time of job �� at the stage N. 

2.3 Algorithm procedure  

We next describe the GA used in this chapter. GAs search the optimal solutions 

with holding multiple solutions called a population. A population consists of multiple 

individuals or chromosomes each of which corresponds to a solution. One of the 

important design problems in GA is coding of the chromosome. We examine two kinds 

of coding methods.  

2.3.1 Job sequence coding-based GA 

Job sequence coding is the most straightforward coding method in GA for 

scheduling. In this coding, integer numbers which represent job number are used as 

genes in a chromosome.  The sequence of jobs can be readout from the chromosome. 

For illustration, the list of genes [4 1 3 2 5] represents a chromosome of five jobs being 
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processed in the first stage. The sequence of jobs is J4→J1→ J3→J2→J5. This coding 

can generate infeasible solutions when crossover operation is applied. To avoid this, 

partially matched Crossover (PMX) (Goldberg and Lingle, 1989) is used in this study. 

As for mutation, the swapping is adopted. This mutation randomly selects two genes 

in a chromosome and exchanges their positions with probability  pm%.  

Job sequence coding-based GAs are used for two meta-heuristics in this 

research:  Genetic algorithm (GA) and Memetic algorithm (MA). 

2.3.2 Random key based GAs (RKGA)  

Bean (1994) proposed the random key coding. In this method, a random value 

between 0 and 1 is assigned to each locus in a chromosome. The random values are 

treated as priority values for job sequencing. For illustration, the list of [0.21 0.75 0.37 

0.82 0.55] represents a chromosome of five jobs being processed in the first stage. The 

sequence of jobs is J4→J2→ J5→J3→J1 when the larger value corresponds to the higher 

priority. This coding method has strong advantage; infeasible solutions cannot be 

generated by crossover operation. A biased uniform crossover is applied in this study 

for this coding. First, a random real number is generated using a uniform distribution 

between [0, 1]. If this value is greater than pc, the gene for the operation is taken from 

an individual and copied to the offspring. Otherwise, the gene is taken from the other 

individual. The value pc is a constant which determines bias when applying crossover 

operation. Mutation is applied by regenerating a gene randomly with probability pm%.  
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2.3.3 Generational transition of GA 

Figure 2 provides the overview of the generational transition. An individual 

with lower mean tardiness is defined as having higher fitness. The best r% individuals 

in the current population are copied to the next generation, that is, an elitist strategy is 

adopted. The other (100- r) % individuals in the next generation are newly generated 

by applying a crossover operation in which two individuals are selected randomly from 

the current population. However, mutation is not applied to the genes of the fittest 

individual. Therefore, the mean tardiness of the fittest individual either decreases or 

remains the same with generational transitions. 

Fig. 2.2 Generational transition in the GA. 
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2.3.4 Incorporating local search 

To improve the performance of GA, a search method incorporating local search 

is examined in this chapter. This method is also well known as memetic algorithm 

(MA) in which the hill climbing is embedded in GA. In this method, when a new 

individual is generated, better individuals are searched in the local neighborhood of it. 

Thus, the local neighborhood of an individual must be defined and the performance of 

search depends on the definition of this local structure. In this study, the individuals 

whose positions of two genes are swapped from an individual are defined as ones in 

the local neighborhood. Swapping is known as an effective local structure for a single 

machine scheduling (Yagiura and Ibaraki, 2001). In MA, every time a new individual 

is generated, the performance of swapping randomly selected two genes is evaluated 

by decoding and they are swapped if it is improved. Swapping is applied continuously 

while the performance improves.  

2.4 Numerical experiments 

The computational experiments are used to evaluate the efficiency of three 

meta-heuristics: GA, MA and RKGA. The details of the experiment are described as 

follows. 
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2.4.1 Numerical conditions 

For the experiment, the number of operations per job is equal to the number of 

stages N. Each stage consists of two identical machines. The due date di of job Ji is set 

as follows: 

�� = �� ∑ ���
�
���                                                                                       (2.2) 

This is based on the TWK method (Baker, 1984). The symbol �� represents the due- 

date tightness factor. Processing times of jobs are generated using uniform distribution 

between 5 and 100 ([5,100]). Thirty problems are generated for evaluation.  The 

numerical conditions of the experiment are shown in Table 2.1 

Table 2.1 The numerical conditions of the experiment  

Number of machines Number of jobs I Due date tightness factor ��

4 machines (2stages, each stage 

has 2 identical machines) 

20 uniform distribution 

[2.0,4.0] 

8 machines (4stages, each stage 

has2 identical machines) 

50 uniform distribution 

[3.0,5.5] 

16 machines (8stages, each stage 

has 2 identical machines) 

100 uniform distribution 

[3.0,6.5]  



18 

For GA procedures, the elite r% is 20. Uniform crossover with ��=0.7 is used 

for the RKGA. The mutation rate �� is set as 1%.  The number of individuals for GA 

and RKGA are 400. The population size (the number of individuals) of MA is set to a 

half (200 individuals) because MA takes twice as much calculation time when using 

the same number of population size. The number of generations is 1000.  

2.4.2 Experimental results 

Randomly generated 30 problem instances are used for evaluation. Figures 2.3-

2.4 show the experimental results for the two-stage flow shop as a small size problem. 

Figure 2.3 shows the mean tardiness of jobs for the three methods. The mean tardiness 

is evaluated based on the mean value meanmethod and the standard deviation diff.s.d.method

of the 30 problem instances as follows: 

���������� =
�

��
∑ ��������,�
��
���                      (2.3) 

����.���������� =
�

��
∑ ���������,� −������_������,��
��
���                                (2.4) 

����. �.�.������ = �∑
����������,��������_������,�������.�����������

�

��
��
��� .              (2.5) 

where MTmethod,l represents the mean tardiness of the lth problem of method. 

MTbest_method,l represents the mean tardiness of the lth problem with the smallest value 

of meanmethod in each figure. Here diff.s.d.heuristic denotes the standard deviation of the 

difference between a particular method and the best method. In the figures, the colored 
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bars show the mean values, and the error bars show the standard deviations. The value 

on each bar represents meanmethod. The length of the error-bar lines corresponds to twice 

the value of diff.s.d method.

Figure 2.4 shows the generational transition of mean tardiness of jobs of the 

best individual. Each curve shows the mean value of the 30 problem instances. 

From the results of small size problem, memetic algorithm (MA) performs the 

best. The second is the random key genetic algorithm (RKGA) which has slightly worse 

performance. Genetic algorithm is the worst for this problem. 

Figures 2.5-2.6 show the results for the medium size problem (four stages - 

eight machines). The experimental results of medium size problem indicate that MA 

and RKGA are better than GA. The performances of MA and RKGA are similar but 

RKGA performs slightly better for this problem. 

Figures 2.7-2.8 show the experimental results for large size problem (eight 

stages - 16 machines). RKGA performs best especially at the earlier stage of 

generational transition.  The performances of RKGA and MA are better than that of 

GA.  

These results suggest that MA improves the performance of GA. However, 

RKGA performs the best especially when the problem size is large.
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Fig. 2.3 Mean tardiness for small size problem 

Fig. 2.4 Generational transition for small size problem 
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Fig. 2.5 Mean tardiness for medium size problem 

Fig. 2.6 Generational transition for medium size problem 
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Fig. 2.7 Mean tardiness for large size problem 

Fig. 2.8 Generational transition for large size problem 
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2.5 Conclusion 

This chapter has considered genetic algorithm for flexible flow shop in which 

each stage has identical parallel machines. The objective is to minimized the mean 

tardiness of jobs. Genetic algorhitm has room for improvement because of its weakness 

for fine tuning after finding good solutions. Incorpoarting hill climbing using effective 

local strucutre in GA, which is also called memetic algorihtm (MA), is desinged to 

improve the perforemance. Experimental resutls showed that MA actually improves 

GA but the random key coding GA (RKGA) performs better expecially for the large 

size problem. As described in the next chapter, the random key coding is also sutable 

for the incorporation of heuristic rules for scheduling. Therefore, the RKGA is adopted 

as the GA used in the following chapters. 
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Chapter 3 

Flexible Job Shop Scheduling Using Genetic Algorithm 

Incorporating Heuristic Rules  

3.1 Introduction 

This chapter deals with the flexible job shop scheduling problem. In flexible 

jobs shops, the sequence of jobs must be determined on each machine. In addition, 

there are alternative machines with different processing speed in general, a machine 

must also be selected to process each operation of a job. This problem is more difficult 

than flexible flow shop in which decision making is need only for the determination of 

job sequence at the first stage.  

In the last chapter, the random key coding GA was found to be effective. This 

coding method is suitable for the incorporation of heuristic rules that are proposed in 

the research of job shop scheduling.  This chapter proposes an efficient approach to 

flexible job shop scheduling using GA that incorporates heuristic rules. For the 
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purpose, various combinations of job and machine selection rules are evaluated under 

different scheduling conditions, and the best rule combination is determined. In flexible 

job shop scheduling, the relative importance of job and machine selection varies 

depending on scheduling conditions. In the proposed method, the GA can be applied 

only to one of the two selections, and the other selection is carried out using a heuristic 

rule alone. It is further shown that applying genetic algorithm only for either job 

selection or machine selection can generate good schedules, depending on scheduling 

conditions. 

3.2 Framework and formulation 

This chapter considers two types of job shop with alternative machines, as 

shown in Figure 3.1. The work center base shop consists of N work centers. Each center 

�� (� ∈ {1, 2, …, N}) has �� machines. Each job �� requires a set of ni operations ���

which are processed in order of increasing operation number j. Operation ���  is 

processed by the center ����  (��� ∈ {1, 2, …, N}). The routing of the operations 

through the work centers is flexible, but we assume that ���� ≠ ���,��� for j = 1, 2, 

… , ni-1, namely, that no two successive operations of a job are processed in the same 

center. An operation to be processed in center ��  is performed on one of its ��

machines. The machine that processes the operation ��� is denoted���� .  
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Fig. 3.1 Work center job shop with alternative machines 
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operation varies depending on the nature of the operation. The machine that processes 

operation ���   is denoted����. (� ∈ {1, 2, …, R}), and the processing time is ����.  

Fig. 3.2 Random job shop with alternative machines 

In both scenarios, each machine can process only one job at a time, and each 

job can be processed only on one machine at a time. Operations cannot be interrupted 

(non-preemption). Transportation times are not considered. The objective of the 
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�� =
�

�
∑ ���(0,�� − ��).�
���                                                                          (3.1) 

where �� is the completion time and �� is the due date of job �� , respectively. 

3.3 Algorithm procedure  

3.3.1 Heuristic rules for job and machine selection 

This section describes the procedure for generating schedules and the heuristic 

rules used in the procedure. We assume that each machine is equipped with an input 

buffer in which jobs wait to be processed. When a new job arrives on the shop floor, a 

machine is selected to process the first operation, and the job is transferred to its input 

buffer. When the job operation is finished, the machine to process the next operation is 

selected and the job is transferred to the input buffer of the selected machine. When a 

machine has become idle and there are jobs waiting to be processed in its input buffer, 

one of the jobs is selected for immediate processing. If there is only one waiting job, it 

is automatically started. This paper considers non-delay scheduling. 

There are two types of decision to be made in this approach to scheduling: job 

selection and machine selection. When a machine has become idle and it has jobs 

waiting to be processed, one has to be selected for the next round of processing. When 

a new job arrives on the shop floor or a machine has finished processing a job operation, 

one of the machines that can process the next operation has to be selected. Heuristic 
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rules are applied to these choices, and the overall scheduling performance depends on 

their effectiveness. 

3.3.1.1 Rules for job selection 

Various priority or dispatching rules have been proposed in the literature for 

the task of job selection. Because the objective here is to minimize mean job tardiness, 

five rules have been chosen for further examination. In each case, a priority index (PI) 

is calculated, and the job with the highest value is selected to be processed next. 

1. ATC 

The ATC rule (Vepsalainen and Morton, 1987) assigns a priority index ����� to 

each waiting job operation oij as follows: 

����� =
�

����
��� �−

��������������������������,��

��̅
�                                                (3.2) 

where t is the current time,  �̅  is the average processing time of operations of jobs 

waiting to be processed on a particular machine, and rpti denotes the time remaining 

for the processing of the job. In this paper, when calculating rpti, the processing time 

of the succeeding operation is taken to be the average of the processing times on the 

candidate machines for the operation. Here κ and b are adjustable parameters. 
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2. CR+SPT 

The CR+SPT rule (Anderson and Nyirenda, 1990) calculates PIijk for each 

waiting operation ���  as 

����� =
�

����
���� �

����

����
, 1��

��

                                                                             (3.3) 

3. (SL/RPN)+SPT 

The (SL/RPN)+SPT rule (Yoda et al., 2014) assigns a priority value for each 

waiting operation Oij using 

����� =
�

����
���� �

���������

����
, 0� + 1�

��

                                                              (3.4) 

where rpni is the number of operations remaining to be completed for job Ji

4. SLACK 

The SLACK rule assigns a priority value for each waiting job operation Oij as 

����� = ���� �
���������

��
��
��

                                                                               (3.5) 

where ks is a constant. When used alone, this rule simply selects the job with the 

smallest value of (di - t - rpti). The exponential function is introduced for incorporation 

of this rule into the GA dealt with in this paper. 
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5. EDD  

The EDD rule’s priority index for each waiting operation ���  is 

����� =
�

��
                                                                                                           (3.6) 

This rule selects the job with the earliest due date. 

3.3.1.2 Rules for machine selection 

In contrast to the rules for job selection, not many heuristics for machine 

selection have been developed in the literature. Here we examine five candidate rules 

for machine selection. Priority indexes are again assigned, and the machine with the 

highest priority value is selected. 

1. PT 

The PT rule selects the machine with the lowest processing time among the 

candidates. When a machine to process the next operation Oij of a job has to be selected, 

the priority index is calculated for each candidate ���� using 

����� =
�

����
                                                                                                         (3.7) 
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2. NINQ 

The NINQ rule selects the machine with the fewest jobs in its input buffer. 

When a machine is needed to process the next operation ��� of a job, the priority index 

for each candidate ���� is calculated as  

����� =
�

����
                                                                                                        (3.8) 

where �� represents the number of jobs waiting in the input buffer of a machine ����

that can process ��� . 

3. WINQ 

The WINQ rule selects the machine with the smallest total processing time for 

all of the jobs waiting in its input buffer. When a machine to process the next operation 

���  of a job has to be selected, the index value for each candidate machine ���� is 

calculated as 

����� =
�

�����
                                                                                                        (3.9) 

where ����� represents the total of the imminent processing times of all jobs 

waiting in the input buffer of a machine ����  that can process the next operation. 
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4. WINQ+RPT+PT 

The WINQ+RPT+PT rule selects the machine with the smallest total value of 

(1) processing times for all waiting jobs in its input buffer, (2) the remaining processing 

time ����� of the operation currently being processed, and (3) the processing time of 

the next operation if the operation is processed on the machine. The priority index is 

given by  

����� =
�

����������������
                                                                                   (3.10) 

5. (WINQ+RPT+PT)×PT 

The (WINQ+RPT+PT)×PT rule (Eguchi et al., 2006) combines the 

WINQ+RPT+PT and PT rules. This rule selects the machine with the smallest value of 

the times {(1) + (2) + (3)} × (3) described in Section 3.2.4. The priority index is 

calculated as 

����� =
�

����������������������
                                                                             (3.11) 

The PT rule is effective at reducing total workload by selecting machines that 

can process operations with smaller processing times. NINQ and WINQ are the basic 

rules for workload balancing. The WINQ+RPT+PT rule is effective for more detailed 

workload balancing. The combined (WINQ+RPT+PT)×PT rule aims to both balance 

workload and reduce total workload (Eguchi et al., 2006).  
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3.3.2 Scheduling using a genetic algorithm 

Our goal is to find an efficient scheduling method for job shops with alternative 

machines using a GA that incorporates heuristic rules. The GA used in this chapter is 

random key based GAs (RKGA) that described in the previous chapter. The random 

keys can be considered as priority values for job selection.  

3.3.2.1 Random key based genetic algorithm 

The random keys can be considered as priority values for job selection and 

machine selection. As for job selection, the gene j_geneij is assigned to each operation 

oij. The value of j_geneij takes the real number between 0 and 1. When an operation of 

a job has to be selected as the operation to be processed next, the operation which has 

the largest value of j_geneij is selected. 

For machine selection, Norman and Bean (1999) proposed a machine number 

coding approach. In the approach, the genes using the number [1, k] were used for 

machine selection; the gene values directly correspond to the machines to process the 

next operation. However, this study adopts real numbers for coding also for machine 

selection because of the convenience for incorporating heuristic rules. The gene 

m_geneijk is assigned for each candidate machine of an operation oij. The value of 

m_geneijk takes the real number between 0 and 1. When a machine among candidate 

machines has to be selected as the machine to process the next operation of a job, the 

machine which has the largest value of m_geneijk is selected. 
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 A chromosome consists of the genes, j_geneij and m_geneijk, for all the 

operations of jobs. The generational transition and genetic operators are designed as 

described in the previous chapter. The genes in the chromosomes or individuals in the 

first generation are generated randomly using the uniform distribution between 0 and 

1. The fitness value of an individual is calculated by carrying out scheduling simulation 

using the genes as priority values for job selection and machine selection. The 

individual which has the smaller mean tardiness is defined to have the higher fitness. 

The parameters r%, pc , and pm% are also used in this chapter. 

3.3.2.2 Genetic algorithm incorporating with heuristic rules 

The performance of the GA can be improved by incorporating problem-specific 

knowledge. Embedding heuristic rules found to be effective for scheduling into the GA 

can facilitate the search for optimal schedules, and these can be incorporated when 

evaluating the fitness of an individual. When selecting an operation to be processed 

next, the operation with the highest priority value is selected. If the rules are used alone, 

the priority values are calculated using their heuristic targets. If the GA is used alone 

as described in Section 4.1, the priority values are given by genes. With a heuristic rule 

for job selection incorporated into the GA, the priority values are given by the 

combination of genes and a job selection rule; the priority value j_priorityijk for each 

waiting job operation Oij is calculated following Eguchi et al. (2005): 

�_����������� = �_������ × �����                                                                  (3.12) 
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A heuristic rule for machine selection can be similarly incorporated into the GA; the 

priority value for each candidate machine Mijk is calculated as follows: 

�_����������� = �_������� × �����                                                              (3.13) 

When incorporating heuristic rules into the GA, an individual in which all the 

genes have the same value is included in the initial population. This value is set to 0.5 

in this paper. The scheduling performance corresponding to this individual is the same 

as that generated using the heuristic rules alone, because the large/small relation of 

priority values of Eq. (3.12) and (3.13) are determined only by PIijk. The best individual 

is copied to the next generation, and the mutation step is not applied to it. Therefore, 

the mean tardiness of a schedule obtained using this method is guaranteed to be smaller 

than or at least equal to that of a schedule generated using the heuristic rules alone. 

3.4 Numerical experiments 

3.4.1 Experimental conditions 

Two types of scheduling problems are generated for performance evaluation: a 

job shop that consists of work centers and a random job shop. For the work-center shop, 

performance is examined under three different scheduling conditions: moderate load, 

a state of low machine utilization, and the imposition of tight job due dates. As a result, 

we examine scheduling performance using four conditions: the work-center shop with 

three conditions and the random job shop. Detailed conditions for each problem are 

described below. 
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In the work-center model, the shop floor consists of eight work centers (N = 8), 

and each center has two machines (Lq= 2). Any operation assigned to a work center can 

be processed on either of its machines. The total number of machines is thus 16. There 

are 100 jobs assigned. The number of operations ni for each job is set randomly to lie 

between 4 and 8. The order of work stations to be visited is determined randomly. The 

processing times for an operation on the two candidate machines are taken to be 

different. We assume that the processing time on the first machine is shorter than that 

on the second for all operations. The processing time on the first machine is sampled 

from a uniform distribution between 5 and 100. The processing time on the second 

machine is determined by multiplying the processing time on the first machine by a 

speed factor, which is uniformly distributed between 1.0 and 2.0. 

The due date di of job Ji is as follows: 

�� = �� + �� ∑ ∑
����

�
�
���

��
���                                                                                   (3.14) 

This is based on the TWK method. Namely, the interval between the release time ri and 

the due date di is set to be proportional to the total processing time of all the operations 

for the job. Here we estimate the processing time of an operation by averaging the 

processing times on the two candidate machines. The parameter ki is the due date 

tightness factor. For problems with moderate load, the tightness factor for each Ji is 

taken from a uniform distribution between 1.5 and 3.0. Approximately 10%–15% of 

the jobs are tardy at this tightness when using the GA with heuristic rules. For problems 
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with tight due dates, ki is set by using a uniform distribution between 1.0 and 2.0. 

Approximately 25%–30% of the jobs are tardy at this tightness.

Twice as many jobs as the number of machines in the shop are released to the 

floor at time zero. Additional jobs arrive on the shop floor at exponentially distributed 

random intervals. For conditions of moderate load, the arrival rate is set so that the 

average machine utilization reaches 80%–90%. For low machine utilization, the arrival 

rate is set so that the average machine utilization becomes about 60%–70%. 

For random job shop problems, there are simply 16 machines and 100 jobs. The 

number of operations ni for each job is randomly chosen to lie between 4 and 8. Each 

operation can be processed on the first and the second (alternative) machine. The order 

of the first machine to process each operation is randomly determined under the 

condition that no successive operations are processed on the same machine. The 

processing time of an operation on the first machine is taken from the uniform 

distribution between 5 and 100. The second machine is selected randomly, and its 

processing time is chosen randomly between the range of the processing time on the 

first machine and twice the processing time on the first machine. The job due dates and 

arrival rates are set in the same way as for the work-center problems with moderate 

load; there are about 10%–15% tardy jobs, and the machine utilization is about 80%–

90% when using the GA with heuristic rules.  

Thirty scheduling problems are generated for each scheduling condition. 
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3.4.2 Results using heuristic rules alone 

First, the scheduling performance using heuristic rules alone is examined for 

the four scheduling conditions. Figures 3.3–3.6 show the results. Twenty-five 

combinations using five job selection rules and five machine selection rules are tested. 

In this chapter, the parameters for the heuristic rules are set by using preliminary 

experiments as follows: κ = 1.5 and b = 1 for the ATC rule, and ks = 100 for SLACK. 

In each figure, the mean tardiness of jobs when using each combination of job selection 

and machine selection rule is evaluated based on the mean value meanrules and the 

standard deviation diff.s.d.rules of the 30 problems as show in previous chapter (see 

Eq.2.3-Eq.2.5). 

Figures 3.3–3.5 show that the results using the PT rule for machine selection 

are very bad. This is natural, because the second machine in each work center is never 

used when using the PT rule. Figure 3.6, by contrast, shows that using the PT rule in a 

random job shop is not very bad. This is because the first machine for each job 

operation is randomly selected from all the machines in the shop. 
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Fig. 3.3 Mean tardiness using heuristic rules alone for work-center problems under 

moderate load. 
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Fig. 3.4 Mean tardiness using heuristic rules alone for work-center problems under 

low machine utilization. 
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Fig. 3.5 Mean tardiness using heuristic rules alone for work-center problems under 

tight due dates 
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Fig. 3.6 Mean tardiness using heuristic rules alone for a random job shop. 
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3.4.3 Effectiveness of random key based coding for machine selection 

In this chapter, we adopt a GA using random key based coding not only for job 

selection but also for machine selection. To examine the effectiveness of this coding 

method for machine selection, the method is compared with the coding method based 

on machine numbers proposed by Norman and Bean (1999). In this experiment, the 

parameters in the GA are set as follows: r = 20, pc = 0.7, pm = 1. These values were 

determined based on preliminary experiments. The number of individuals and 

generations are 400 and 1000, respectively. The work-center problems with moderate 

load are solved using the two types of GAs described in Section 3.1. Figure 3.7 shows 

the generational transition of the GAs using the two coding methods for machine 

selection. Each curve in the figure is the average generational transition of the best 

individuals for 30 problems. This illustrates that the proposed random key based coding 

outperforms machine number based coding. 
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Fig. 3.7 Generational transition of the GAs using random key based coding 

and machine number based coding for machine selection 
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selection is carried out using an independent rule. Each method is evaluated for each 

of the four problems types. The parameters of the GA are set as in the previous session. 

3.4.4.1 Work-center job shops under moderate load 

Figures 3.8–3.10 show the mean job tardiness obtained by using the GA 

incorporating heuristic rules for the work-center type problems with moderate load. 

For all three GA methods, the best results were obtained when using the 

(SL/RPN)+SPT rule for job selection and the (WINQ+RPT+PT)×PT rule for machine 

selection. For most combinations of heuristic rules, good performance was obtained 

when applying the GA only to machine selection in this condition. The overall best 

result was 7.7 in Fig. 3.10 when using the (SL/RPN)+SPT rule alone for job selection 

and applying the GA incorporating the (WINQ+RPT+PT)×PT rule to machine 

selection. 
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Fig. 3.8 Mean tardiness when the GA is applied to both job and machine selection in 

work-center job shops under moderate load. 
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Fig. 3.9 Mean tardiness when the GA is applied only to job selection 

in work-center job shops under moderate load. 
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Fig. 3.10 Mean tardiness when the GA is applied only to machine selection in work-

center job shops under moderate load. 

3.4.4.2 Work-center job shop with low machine utilization 
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obtained when applying the GA only to machine selection in this condition. However, 

applying the GA only to job selection performs best when using the ATC rule or 

SLACK for job selection and the (WINQ+RPT+PT)×PT rule for machine selection. 

The overall best result was 6.2 in Fig. 3.13 when using the (SL/RPN)+SPT rule alone 

for job selection and applying the GA with the (WINQ+RPT+PT)×PT rule for machine 

selection. 

Fig. 3.11 Mean tardiness when the GA is applied to both job and machine selection in 

work-center job shops with low machine utilization. 
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Fig. 3.12 Mean tardiness when the GA is applied only to job selection in work-center 

job shops with low machine utilization. 
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Fig. 3.13 Mean tardiness when the GA is applied only to machine selection in    

work-center job shops with low machine utilization. 
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for job selection and (WINQ+RPT+PT)×PT for machine selection. For most 

combinations of the heuristic rules aside from using the (WINQ+RPT+PT)×PT rule for 

machine selection, good performance was also obtained by applying the GA only to 

machine selection in this condition. However, the overall best result was 22.7 in Fig. 

3.15 when using the GA incorporating the (SL/RPN)+SPT rule for job selection and 

applying the (WINQ+RPT+PT)×PT rule alone to machine selection. 

Fig. 3.14 Mean tardiness when the GA is applied to both job and machine selection  

in work-center job shops with tight due dates. 
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Fig. 3.15 Mean tardiness when the GA is applied only to job selection in work-center 

job shops with tight due dates. 
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Fig. 3.16 Mean tardiness when the GA is applied only to machine selection in     

work-center job shops with tight due dates. 
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and applying the GA incorporating the (WINQ+RPT+PT)×PT rule for machine 

selection. 

Fig. 3.17 Mean tardiness when the GA is applied to both job and machine selection in 

the random job shop problem. 
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Fig. 3.18 Mean tardiness when the GA is applied only to job selection in the random 

job shop problem. 
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Fig. 3.19 Mean tardiness when the GA is applied only to machine selection in the 

random job shop problem. 
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We generated the small-scale problems by decreasing the size of the work-center 

problem with moderate load by setting the number of work centers to N = 2 and the 

randomly distributing the number of operations ni for each job between 2 and 4. The 

other parameters are for the problems described in Section 3.4.4.1. Thirty problems 

were randomly generated. 

Figure 3.20 shows the generational transitions of the best individuals using the 

three GA types. The results show the mean values of the 30 problems. In this 

experiment, the (SL/RPN)+SPT rule is used for job selection and the 

(WINQ+RPT+PT)×PT rule is used for machine selection. Figure 3.20 indicates that 

applying the GA to machine selection is more effective than applying it to job selection 

in this condition. Applying the GA both to job selection and machine selection 

performed best in this case. This result suggests the reason why applying the GA both 

to job selection and machine selection did not perform best for the large-scale 

problems. When the scale of problem increases, the number of decisions for job 

selection and machine selection also increases. Therefore, the solution space becomes 

large. It is difficult to search for an optimal schedule in the large solution space within 

a limited amount of time. Fixing one of the selections by using an effective heuristic 

rule alone can restrict the search space and can lead to better schedules as a result. 
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Fig. 3.20 Generational transition of the GAs incorporating heuristic rules for small-

scale problems 

As a case in which the impact of searching job selections becomes relatively 

large, we generated problems with imbalanced workloads by modifying the work-

center problem with the moderate load. The processing times in two work centers 

among eight are determined using a uniform distribution between 5 and 200. Those 

two work centers become bottlenecks in the shop. Other conditions such as the number 

of machines are set as the same as those for the work center type jobs shop with 

moderate condition. Thirty problems are generated randomly. 
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Figure 3.21 shows the generational transition of the best individuals using the 

three GA types. The results are shown by the mean values of the 30 problems. The 

(SL/RPN)+SPT rule is used for job selection and the (WINQ+RPT+PT)×PT rule is 

used for machine selection. Figure 3.21 shows that applying the GA only to job 

selection outperforms applying the GA only to machine selection in contrast to the 

results in Figs. 3.8–3.10. In this condition, the lengths of waiting queues in the buffers 

of certain machines become long and the job selection on the machines becomes more 

dominant on scheduling performance. In other words, the importance of job selection 

is relatively low when workload is balanced at the shop floor (Shimoyashiro et al., 

1984). In this case, applying the GA both to job selection and machine selection 

performed best. However, the best method can vary depending on the balance of the 

impact of job selection and machine selection in the problem to be solved. 
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Fig. 3.21 Generational transition of the GAs incorporating heuristic rules for 

imbalanced workloads. 

3.5 Conclusion 

This chapter has considered job shop scheduling with the availability of 

multiple machines to complete an operation. An efficient scheduling method using a 
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selection rules and five machine selection rules were examined as heuristics for 

incorporation into the GA. Numerical experiments show that the combination of the 

(SL/RPN)+SPT rule for job selection and the (WINQ+RPT+PT)×PT rule for machine 

selection performs best for minimizing the mean tardiness of jobs in various conditions. 

Numerical experiments also show that applying the GA only to job selection or 

machine selection performs better than applying the GA both to job and machine 

selection. These experiments revealed that one of the reasons for this phenomenon is 

the complexity of searching job and machine selections simultaneously when the scale 

of the problem is large. The other reason is that the importance of job selection and 

machine selection varies depending on conditions. In general, if there are sufficient 

alternative machines available, the effect of job selection diminishes. Therefore, better 

schedules can be obtained by not applying the GA to job selection in most conditions. 

However, applying the GA to job selection is also effective under conditions in which 

job selection is important, such as when bottleneck machines exist. 
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Chapter 4 

Effectiveness of Due-date Related Information for Machine 

Selection 

4.1 Introduction 

In the previous chapter, an efficient scheduling method using genetic algorithm 

incorporating heuristic rules has been proposed.  In the method, heuristic rules for job 

sequencing and machine selection are embedded in the search of genetic algorithm. We 

have examined various heuristic rules for incorporation when the objective of 

scheduling is to minimize mean tardiness. As a result,  (SL/RPN)+SPT rule performed 

best for job sequencing.  (WINQ+RPT+PT)×PT rule performed best for machine 

selection. Although the objective of scheduling is to minimize mean tardiness, the 

machine selection rule does not include due-date related information. Because the 

objective of scheduling is related to due dates, machine selection using due-date related 

information seems to be effective. In this chapter, we examine the effectiveness of 
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considering due-date related information for machine selection rules. Numerical 

experiments are carried out to show the effectiveness of including the information. 

4.2 Framework and formulation 

The flexible job shop scheduling problem described in the previous chapter is 

considered in this chapter. The objective is to minimize the mean job tardiness as same 

as the previous chapter. In this chapter, we focus on the effectiveness of due date related 

information that included into machine selection rules. 

4.3 Algorithm Procedure 

4.3.1. Job selection rules  

From our previous chapter, the best priority rule for job selection is 

(SL/RPN)+SPT rule. Therefore, this chapter used this rule for job selection. 

4.3.2 Machine selection rules  

Also from the previous chapter, five machine selection rules:  

(WINQ+RPT+PT)×PT,  WINQ＋RPT＋PT, WINQ, RPT and PT are used in this 

chapter. The rules as above are not using due-date related information.  In this chapter 

we also examine new machine selection rules using due-date related information as 

follows. 
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 MAX MIN SLACK: The rule calculates slack value (= due-date – current time – 

sum of remaining processing time) for each waiting job in the input buffer of 

machine. Then the minimum slack value is selected for each machine. Finally, the 

machine which has the largest value of the minimum slack value is selected as the 

machine to process the next operation. The objective of this rule is to select the 

machine which has larger slack in terms of minimum value.  

 MAX TOTAL SLACK: The rule calculates the sum of slack values for all the 

waiting jobs in the input buffer of machine. Then the machine which has the largest 

value of the sum of slack values is selected as the machine to process the next 

operation. The objective of this rule is to select the machine which has larger slack 

in terms of total value. 

 MIN MAX (SL/RPN)+SPT: The rule calculates the value of equation (3.4) for 

each waiting job in the input buffer of machine. Then the maximum value of it is 

selected for each machine. Finally, the machine which has the smallest value of 

the maximum value is selected as the machine to process the next operation. The 

smaller value of equation (3.4) corresponds to larger slack value. Therefore, the 

machine with smaller value of the maximum value of equation (3.4) is selected. 

 MIN TOTAL (SL/RPN)+SPT: This rule calculates the sum of the values of 

equation (3.4) for all the waiting job in the input buffer of machine. Then the 



67 

machine which has the smallest value of the sum of the values is selected as the 

machine to process the next operation. 

 MIN MAX CR+SPT: This rule uses CR+SPT rule (Eq.3.3) instead of 

(SL/RPN)+SPT in MIN MAX (SL/RPN)+SPT. 

 MIN TOTAL CR+SPT: This rule uses CR+SPT rule (Eq.3.3) instead of 

(SL/RPN)+SPT in MIN TOTAL (SL/RPN)+SPT. 

 MIN MAX ATC: This rule uses ATC rule (Eq.3.2) instead of (SL/RPN)+SPT in 

MIN MAX (SL/RPN)+SPT. 

 MIN TOTAL ATC: This rule uses ATC rule (Eq.3.2) instead of (SL/RPN)+SPT 

in MIN TOTAL (SL/RPN)+SPT. 

 MAX MIN EDD: This rule selects the earliest due-date in the input buffer of 

machine. Then the machine with the maximum value of it is selected as the next 

machine to process the next operation. 

 MAX TOTAL EDD:  This rule calculates the sum of the due-date for all waiting 

job in the input buffer of machine. Then the machine which has the largest value 

of it is selected as the machine to process the next operation. 
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4.4 Numerical experiments 

4.4.1 Numerical conditions 

Numerical experiments are carried out to examine the effectiveness of the 

method in this chapter. The number of jobs is 100. There are eight work centers (N=8) 

in the shop floor. Each work center has two machines (Lq=2). Any operation assigned 

to work center can be processed on both machines in the work center. The number of 

operations ni for each job is randomly determined between 4 and 8. The order of work 

centers to process each operation of a job is determined randomly. It is assumed that 

one of the machines in a work center can process the operations faster than the other 

machine. The processing time of an operation on the most efficient machine is 

determined by the uniform distribution between 5 and 100. The processing time on the 

other machine in the same work center is determined by multiplying a speed factor by 

the processing time on the most efficient machine. The speed factor is randomly 

determined by the uniform distribution between 1 and 2. The due dates of jobs are 

determined based on TWK method. The problems with two different levels of due-date 

tightness are generated. When the due-dates of jobs are loose, the number of tardy jobs 

is set to about 10%-15% by tuning the due-date factor in TWK method. When the due-

dates of jobs are tight, the number of tardy jobs is set to about 25%-30%. The thirty 

problems are randomly generated. The scheduling performance is evaluated by the 

mean value of equation (3.1) for the thirty problems and the standard deviation from 
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the best rules. For all the conditions, (SL/RPN)+SPT rule is used for the job selection 

rule. 

4.4.2 Experimental results 

Table 4.1 and Table 4.2 show the experimental results when using heuristic 

rules alone. These are the results obtained not using the genetic algorithm. For both 

due-date tightness levels, (WINQ+RPT+PT)×PT rule for machine selection performed 

best. The best rule using due-date related information was MAX MIN SLACK.  

Table 4.3 and Table 4.4 show the experimental results when using the genetic 

algorithm incorporating heuristic rules. MAX MIN SLACK rule is used as a machine 

selection rule which includes due-date related information. When incorporating MAX 

MIN SLACK rule, the minimum slack value can be negative. Therefore, when the 

value of minimum slack is s, the value s+=exp(s) is calculated and the maximum value 

of the multiplication of s+ and the value of gene is used for machine selection in the 

genetic algorithm. The results in Table 4.3 and Table 4.4 indicate that 

(WINQ+RPT+PT)×PT rule performed best for incorporation for both due-date 

tightness levels. 
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Table 4.1 Mean tardiness using heuristic rules alone in the loose due-date 

condition 

Machine selection rules Mean tardiness S.D. from the 

best 

PT 755.8 102.5 

NINQ 56.9 16.5 

WINQ 59.7 18.4 

WINQ+RPT+PT 34.9 11.8 

(WINQ+RPT+PT)×PT 24.0 0.0 

MAX MIN SLACK 60.3 19.9 

MAX TOTAL SLACK 70.6 23.2 

MIN MAX (SL/RPN)+SPT 68.1 21.9 

MIN TOTAL (SL/RPN)+SPT 66.0 20.2 

MIN MAX CR+SPT 85.8 27.8 

MIN TOTAL CR+SPT 72.7 21.9 

MIN MAX ATC 73.2 24.2 

MIN TOTAL ATC 66.1 19.8 

MAX MIN EDD  61.7 18.6 

MAX TOTAL EDD 82.0 29.6 
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Table 4.2 Mean tardiness using heuristic rules alone in the tight due-date 

condition 

Machine selection rules Mean tardiness S.D. from the 

best 

PT 837.6 92.2 

NINQ 97.9 17.1 

WINQ 99.6 17.6 

WINQ+RPT+PT 65.5 9.1 

(WINQ+RPT+PT)×PT 45.2 0.0 

MAX MIN SLACK 96.4 19.4 

MAX TOTAL SLACK 103.2 18.6 

MIN MAX (SL/RPN)+SPT 107.8 25.1 

MIN TOTAL (SL/RPN)+SPT 101.2 21.5 

MIN MAX CR+SPT 126.1 23.4 

MIN TOTAL CR+SPT 110.2 22.1 

MIN MAX ATC 114.3 25.3 

MIN TOTAL ATC 108.5 22.5 

MAX MIN EDD  99.4 19.4 

MAX TOTAL EDD 123.2 28.5 
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Table 4.3 Mean tardiness using the genetic algorithm incorporating heuristic rules 

in the loose due-date condition 

Machine selection rules Mean tardiness S.D. from the 

best 

GA+PT 22.4 8.5 

GA+NINQ 16.9 5.3 

GA+WINQ 17.4 5.4 

GA+WINQ+RPT+PT 12.0 2.4 

GA+ (WINQ+RPT+PT)×PT 9.9 0.0 

GA+MAX MIN SLACK 20.4 8.0 



73 

Table 4.4 Mean tardiness using the genetic algorithm incorporating heuristic rules 

in the tight due-date condition 

Machine selection rules Mean tardiness S.D. from the 

best 

GA+PT 46.4 10.2 

GA+NINQ 38.6 5.4 

GA+WINQ 39.0 5.2 

GA+WINQ+RPT+PT 31.1 3.0 

GA+ (WINQ+RPT+PT)×PT 26.7 0.0 

GA+MAX MIN SLACK 45.5 9.8 

4.5 Conclusion 

In this chapter, various machine selection rules were examined in the genetic 

algorithm incorporating heuristic rules for flexible job shop scheduling. Because the 

objective function for scheduling is mean tardiness, due-date related information seems 

to be important not only for job selection also for machine selection. However, the 

experimental results show that the best machine selection rule is 

(WINQ+RPT+PT)×PT rule both when using heuristic rules alone and when applying 

the genetic algorithm incorporating the heuristic rules. (WINQ+RPT+PT)×PT rule 
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works for load balancing. Numerical results suggest that it is not necessary to include 

due-date related information in machine selection if the due-date related information is 

considered in job selection and load balancing is considered in machine selection 

appropriately. 
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Chapter 5 

Conclusions 

5.1 Conclusions 

This study aims to develop the efficient scheduling method for production 

systems with alternative machines using genetic algorithm.  Genetic algorithm is one 

of the most popular meta-heuristics applied to production scheduling. Although genetic 

algorithm is effective for scheduling, it has also weakness for fine tuning after finding 

good solutions. In addition, genetic algorithm itself does not utilize problem-specific 

knowledge, there is room for performance improvement. This study has investigated 

incorporating effective knowledge to improve the efficiency of scheduling using 

genetic algorithm.  

 This research consists of two approaches for production systems with 

alternative machines. First, the multi-stage flexible flow shop scheduling problem with 

regard to minimize the mean tardiness was discussed. The genetic algorithm 

incorporating hill climbing using effective local structure, also called memetic 

algorithm, was examined. In the experiment, three meta-heuristics: genetic algorithm 
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(GA), memetic algorithm (MA) and random key based genetic algorithm (RKGA) 

were compared. The numerical experiments showed that MA was better than GA. GA 

can be improved by incorporating the local search using effective local structure. 

However, the performances of MA and RKGA are similar, and the RKGA performs 

better when problem size is getting larger.  

Second, flexible job shop scheduling problem with regard to minimize the mean 

tardiness was discussed. Genetic algorithm incorporating heuristic rules was 

investigated. For this problem, RKGA was applied with incorporating various heuristic 

rules for job selection and machine selection. Numerical experiments showed that the 

combination of the (SL/RPN)+SPT rule for job selection and the 

(WINQ+RPT+PT)×PT rule for machine selection performed best for minimizing the 

mean tardiness of jobs in various conditions. Numerical experiments also showed that 

applying the GA only to job selection or machine selection performed better than 

applying the GA both to job and machine selection. This suggest that it is very difficult 

to search optimal schedules for large scale problems with alternative machines; 

restricting search space by effective knowledge can improve the performance of 

scheduling. 

Furthermore, the effective of due-date related information of machine selection 

rules was examined. Numerical results suggest that it is not necessary to include due-

date related information in machine selection if the due-date related information is 
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considered in job selection and load balancing is considered in machine selection 

appropriately.  
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