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RATIONAL CURVES ON A SMOOTH
HERMITIAN SURFACE

NORIFUMI OJIRO

ABSTRACT. We study the set R of nonplanar rational curves of degree
d < ¢+ 2 on a smooth Hermitian surface X of degree ¢+ 1 defined over
an algebraically closed field of characteristic p > 0, where ¢ is a power
of p. We prove that R is the empty set when d < ¢ + 1. In the case
where d = ¢+ 1, we count the number of elements of R by showing that
the group of projective automorphisms of X acts transitively on R and
by determining the stabilizer subgroup. In the special case where X is
the Fermat surface, we present an element of R explicitly.

1. INTRODUCTION

Let ¢ be a power of a prime p, and k an algebraic closure of the finite field
F,. For a matrix m with entries in k£, we denote by m(? the matrix whose
entries are the ¢-th power of those of m. We denote by a column vector
x = Y20, 71,22, 23) a point in the k-projective space P3. Let A be a nonzero
4-by-4 matrix with entries in k. A k-Hermitian surface X 4 is defined by

X4 :={z eP®| 'zAz? = 0}.

If Ais a Hermitian matrix, namely A has the entries in Fg2 and 4= Al
the surface X4 is called a Hermitian surface. It is easily shown that X 4 is
smooth if and only if A is invertible.

The geometry of Hermitian varieties was systematically investigated by
B. Segre in [8]. Especially, the number of linear spaces lying on a Hermitian
variety and their configuration were considered. It was shown that the
numbers of points and lines on a smooth Hermitian surface in P3 (Fg2) are
equal to (¢® + 1)(¢*> + 1) and (¢3 + 1)(¢ + 1) respectively, and no plane
is contained. Further, the set of points and lines on a smooth Hermitian
surface forms a block design, see also [3]. In recent years, the number of
rational normal curves totally tangent to a smooth Hermitian variety X
has been determined in [10] by considering the action of the automorphism
group of X on the set of the curves. In [11], non-singular conics totally
tangent to the smooth Hermitian curve of degree 6 in characteristic 5 were
utilized for a geometric construction of strongly regular graphs. On the other
hand, projective isomorphism classes of degenerate Hermitian varieties of
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corank 1 and the automorphism group of each isomorphism class have been
determined in [7].

Let A be an invertible 4-by-4 matrix with entries in k. We will be con-
cerned with rational curves of degree > 1 on a smooth k-Hermitian surface
X 4. Let d be a positive integer and F' a 4-by-(d 4+ 1) matrix of rank(F') > 2
with entries in k. A rational curve Cr of degree d in P2 is the image of a
rational map

(1) P! 5 (s, t) — F Y(s¢, 577, ..., st t0) € P,

We call rank(F') the rank of the curve Cp. If rank(F') = 2, then Cr degen-
erates to a line. If rank(F') = 3, then Cp degenerates to a plane curve of
degree > 2. When rank(F) = 4, the curve Cr is nondegenerate and is a
space curve of degree > 3. Then C' is said to be nonplanar, namely Cr is
not contained in any plane. Thus the study of rational curves of rank 2 on
X 4 is reduced to that of lines on X 4. Further, an algebraic curve of rank
3 on X4 is a smooth k-Hermitian curve of degree ¢ + 1, which is of genus
q(g —1)/2 > 0. Hence we may restrict ourselves to the case of rank 4.
Our results are as follows:

Theorem 1.1. There is no nonplanar rational curve of degree < q on a
smooth k-Hermitian surface.

Let R be the set of nonplanar rational curves of degree ¢+ 1 on a smooth
k-Hermitian surface X 4. As will be seen later, the set R is nonempty and
each element is projectively isomorphic over k to the smooth curve

Co = {t(3q+1,sqt,stq,tQ+1) cPpP3 | t(s,t) € Pl}.

We denote by Aut(X4) the group of projective automorphisms of X 4.
Let n be a positive integer. We deal with the group PGU,,(F2) defined by

{Q € CL(Fp) | 'QQ = I} /pyin I,

where ft,41 denotes the group of (¢ + 1)-th roots of unity and I denotes
the unit matrix. As is well-known, the group Aut(X,4) is isomorphic to
PGUy(F2). Then we shall prove the following theorem.

Theorem 1.2. The group Aut(X4) acts transitively on the set R, and the
stabilizer subgroup is isomorphic to PGUa(F,4).

By Theorem 1.2, the cardinality of R is equal to [PGU4(F2)|/[PGU2(F 4)|.
We know by [6, pp.64-65] that

[PGU4(F,2)| = ¢°(¢" = 1)(¢° + 1)(¢° — 1) and [PGU2(Fy)| = ¢°(¢" — 1).
Thus we have the following.
Corollary 1.3. |R| = ¢*(¢* + 1)(¢® — 1).

The number |R| is 432, 18144, 249600, 1890000, 39645312, 383162400, . . .
asq=2,3,4,5,7,9,....
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In the special case where A = I, that is, where the surface X 4 is the
Fermat surface, we can explicitly give an element CF, of R such as

{t(n_ngsqﬂ _ 77—qtq—|—l7 s7t, st wn_1§8q+1 + wn—ltq—H) e ]P’3| t(s,t) c Pl} 7

where w, &, and 7 are elements of F 2 satisfying witt = —1, £¢971 = 1 with
€2 £ —1, and n9tt = €9 + ¢, Note that n # 0 because €2 # 0, —1. The
curve CF, is smooth since it is projectively isomorphic to the smooth curve
Cp. On the other hand, a complete set of representatives for Aut(X;) can
be taken from GL4(F2) (see Lemma 4.1). Therefore we have the following.

Corollary 1.4. All nonplanar rational curves of degree ¢ + 1 on Xy are
projectively isomorphic over Fp2 to the smooth curve Cr,.

In the case where ¢ = 2, we have |X7(F,2)| = 45 where X(FF2) denotes
the set of F2-rational points of X7, and Aut(X7y) is of order 25920. Then
|Cr(Fg2)| = 5 for each nonplanar cubic Cr on X;. We can actually obtain
by computation 432 nonplanar cubics on X7 and the stabilizer subgroup of
Aut(X7y) fixing CF, of order 60. By restricting X7 to X7(IF,2), we can verify
that each cubic intersects 150 other cubics at a single point, 40 other cubics
at two points and another cubic at five points. Here, when we say two cubics
Cr, Cpr intersect at n points we mean |Cp(F 2 )NCp(F2)| = n. We can also
verify that Aut(X7) acts transitively on X;(F,2) and the stabilizer subgroup
is of order 576, and furthermore, there are 48 cubics passing through each
point of X;(FF,2). These computational data files obtained by using GAP [4]
are available upon request addressed to the author.

We give a brief outline of our paper. In the next section, we prove The-
orem 1.1. By the same argument, we show directly that each irreducible
conic, which is a rational curve of rank 3, is not contained in X 4. In section
3, we give a bijection between the set R and the quotient of certain sets con-
sisting of invertible 4-by-4 matrices, by showing basic lemmas. In section
4, we first prove two lemmas which are necessary for our proof of Theorem
1.2. We prove Theorem 1.2 in the last of the section.

The author is grateful to Professor Ichiro Shimada for his encouragement
during the course of the work and helpful suggestions on drafts.

2. PROOF OF THEOREM 1.1

Proof of Theorem 1.1. Suppose that a nonplanar rational curve Cr defined
by (1) is contained in a smooth k-Hermitian surface X 4. Denoting by b; ;
the entries of the (d 4 1)-by-(d + 1) matrix 'FAF(@, one has the identity

(2) zd: bi7j5d_i+Q(d_j)ti+Qj =0.

i,j=0
Therefore if d < g, all the coefficients b; ; must vanish because the exponents
(i + qj)’s are all different. This implies that ‘FAF @ = O, but it is a
contradiction. In fact, since rank(F) = 4 by definition, we can take an
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invertible matrix F™* consisting of linearly independent 4 column vectors of
F. Then, however, tF*AF*@ must be O. If d = q, the coefficients b; ;
must vanish except for b,;—1 = —bp; with 1 < [ < ¢. This implies that
rank(*FAF(@) < 2, but it is a contradiction by the argument above. Hence
we conclude that Cp ¢ X 4.

O

Remark 2.1. We can similarly give a proof for the case of irreducible conics.
In fact, since an irreducible conic C'r is of rank 3, we can make an invertible
matrix F* consisting of linearly independent 3 column vectors of F' and a
vector linearly independent to those vectors. Suppose that Cr C X 4. Since
d =2 < ¢, one has rank(*FAF(@) < 2 in the same argument as the above
proof. Therefore the 4-by-4 matrix tF* AF*(@ must be of rank 3 at the most,
but *F* AF*@ is of rank 4 by definition. This is a contradiction. As we have
seen, this proof is valid for rational curves which are of rank > 3 and degree
<q

3. BASIC LEMMAS

In this section, we will prove some basic lemmas to prepare for our proof of
Theorem 1.2. The following lemma gives a necessary and sufficient condition
for a nonplanar rational curve of degree ¢+ 1 to be on a smooth k-Hermitian
surface.

Lemma 3.1. Let Cr be a nonplanar rational curve of degree q + 1 defined
by (1). The curve CF is contained in a smooth k-Hermitian surface X 4 if
and only if the (q + 2)-by-(q + 2) matriz *FAF9 is of the form

0 boy 0,...,0 0  bogi
0 b1y 0,...,0 0 brg
0O 0 0,....,0 0 0
0O 0 0,....,0 0 0

—bo1 0 0,...,0 —bogi1 O
b1y 0 0,...,0 —bigy O

If the above condition is satisfied, the matriz F is of the form

(fovflaow "aov.fqv.qurl)-

Proof. As was seen above, the curve CF is contained in X 4 if and only if
one has (2). In the present case where d = ¢ + 1, if Cr C X4 then the
coefficients b; ; must vanish except for b,;—1 = —bo, bgt1,-1 = —b1,; with
1 <1< g+1. Since rank(F') = 4, there are 4 column vectors f, fy, fz, fu of
Fwith0 <z <y <z <w < ¢g+1 such that the matrix F* := (f,, fy, -, fu)
is invertible. Then none of x,y, z, w is from 2 to ¢ — 1 because S AR (@) g
also invertible, and thus x = 0,y = 1,z = ¢,w = ¢+ 1. Let f; be the i-th
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column vector with 2 < i < q — 1 of F. Then one has
b AR @ — (3,0, 03,1, bi g, big+1) = (0,0,0,0),

and thus f; = 0. Hence F and *FAF(@ are of the form described above.
The converse is obvious since (2) holds automatically.
O

A rational curve Cr defined by (1) is also obtained by replacing F' by
AFp(g), where X is an element of the multiplicative group £* and ¢ is a
homomorphism from GLa(k) to GLgy1(k) defined by the following: for each
Y(s,t) € k* with (s, t) # %0,0) and g € GLa(k), put (u,v) := g (s, t), then

@ GLa (k) — GLat1(k)
w w
(9:%s,t) = (u,0) — (e(g) : (s, s, .o ) = Tt udto, o).

Indeed, it is obvious by definition that ¢(I) = I. Putting Y(x,y) := h (u,v)
for each h € GLa(k), one has

p(hg) (%, s, .11 = Yt 2y, YY)
= () o)
= @(h)p(g) (s% s, 1.

Hence ¢(hg) = ¢(h)p(g), and thus ¢(g) € GLat1(k).
Conversely if there is a matrix F’ such that Cr = Cpv, then one has

FYs® s, ostd7 ) = F Y ud e, uwe® T o) e PR

This implies that there are homogeneous polynomials f, f’ of degree d such
that f(s,t) = f'(u,v). Therefore there is an element g of GLa(k) such
that (s, t) = g'(u,v) € P!, and thus I’ = AF¢(g) for some A € kX. Hence,
denoting by Im() the image of ¢, we see that the set £* FIm(p) corresponds
one-to-one with Cp.

Let S be the set of matrices F' such that 'F AF(@ satisfies the condition of
Lemma 3.1. Then by Lemma 3.1, for each F' € S the set kX FIm(y) corre-
sponds one-to-one with the nonplanar rational curve C'r on X 4. Therefore
one has the following bijection

(3) E*\S/Im(p) 2 k* FIm(p) — Cr € R.
By Lemma 3.1, we define the map
8 >F = (f07f1707"'707fQ7fq+1) — P = (f07.f17fQ7fq+1) € S*u

where S* is written as
§* = {F* € GLy(k) | 'F*AF*@ = Dy, B € GLy(k)},
and Dpg is a matrix defined by

— 0 bl 0 b2 B
Dp := <—b1 0 —by 0) € GL4(k) for B = (by,bs) € GLay(k).
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Further, we define the map . from Im(¢) C GL412(k) to Im(yp), C GL4(k)
as follows:

for every g = <?; g) € GLa(k),

adtl adp ..., ap? 5q+1
aly oty ..., 1 651 altlt i apt pItl
T al~y  als qa 584
: : : : . g Bt OB
elg)=] : : : : = @(g)-= q T 081 BS4
ay? Py a0t p
ay? py? o, wd? Bl AR S BV U B R
R o' 7, U B

where Im(yp), is written as
q q
Im(p), = { (?;qg §q§> € GLy(k) ‘ ge GLg(k)} .

Indeed, it is easy to see that det(p(g).) = det(g)??*2 for every g € GLa(k),
and thus ¢(g). € GL4(k).

We denote by ¢, the composition of ¢ and ., namely p.(g) = ¢(g)s for
every g € GLa(k).

Lemma 3.2. The map ¢, is a homomorphism from GLa(k) to GL4(k).
There is the following natural bijection

E\S/Im(p) — k*\S™/Im(p),.

=38 e (2 u) o

_ (ax+ Bz ay+ Pw
S\ 46z yy+ow)/)’

Proof. For each

one has

Therefore
ar + ,Bz (ay + Pw)igh
(yx + 2)? (yy + ow)igh ) *

On the other hand,

0=
e = (S 50 (G )
(

alzigh + Bi29gh  alylgh + Blwigh
~vizigh 4 §929gh  ~lyigh + §%wigh
(%274 Bi29)gh (ady?+ Blw?)gh
B (vqwq + 3929 gh  (y7y? + 6%w)gh
Since the ¢g-th power is an automorphism of k, one has . (gh) = p«(g)p«(h)
and thus ¢, is a homomorphism from GLa(k) to GLy(k).

)
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For each F' € S, g € GLa(k), denoting by a;; the entries of ¢(g), we can
write the j-th column vector g; with j € {0,1,q,q9 + 1} of Fy(g) as

gj = Z ai;fi,
i€{0,1,¢,q+1}
since f; = 0 for 2 < i < ¢ — 1. Then it is immediate from definition that

F.(9) = (90,91, 9¢ 9g+1),
and thus (Fp(g))" = F*¢«(g). This implies that there is the natural map
from E*\S/Im(y) to k*\S*/Im(y),. The bijectivity is obvious since by
definition the map S — S* is bijective.
(Il

By (3) and Lemma 3.2, one has the bijection
4) E*\S*/Im(p), > k™ F*Im(p), — Cp € R.

The following well-known proposition is useful. The readers may find a
proof for example in [2] and [9, Proposition 2.5.].

Proposition 3.3. For each element A of GL,(k), there is an element B of
GL, (k) such that A ="'BB9. If A is a Hermitian matriz, then the matriz
B can be taken from GL,(Fg2).

By Proposition 3.3, it follows immediately that a smooth k-Hermitian
(resp. Hermitian) surface is projectively isomorphic over k (resp. Fp2) to
the Fermat surface X;.

We define the set

0 by 0 b
M = {DB - <_b1 no 0) e GL4(k)‘B (b by e GLQ(k:)}.
Then the following map is surjective:

(5) S* 5 F* s F*AF*@ ¢ ).

In fact, by Proposition 3.3 there is an element D of GL4(k) such that D =
DD for each Dp € M. Similarly there is an element A’ of GL4(k) such
that A = tA’A’(@D. Hence putting F* := A’~'D, one has ‘F*AF*@ = Dp.
and thus F* € S*.

Lemma 3.4. The set R is nonempty, and each element of R is projectively
isomorphic over k to the smooth curve

Cp := {t(sq“,sqt,stq,tqﬂ) eP? | Ys,t) € IP’I}.
Proof. The set S* is nonempty by the surjectivity of the map (5). Hence

by (4) the set R is nonempty. For each element Cr of R, it is obvious by
definition that

F*_lF - (61762707' : '70763764) with (61762763764) =1

This implies that Cg is projectively isomorphic over k& to Cy. Then by
definition, the curve Cp is smooth clearly.
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]

Remark 3.5. It is known that each nonplanar nonreflexive curve of degree
g + 1 is projectively isomorphic to the curve Cy (cf. [1, Theorem 2]). For
nonreflexive curves, see also [5]. Hence by Lemma 3.4, each element of R is
projectively isomorphic to each nonplanar nonreflexive curve of degree ¢+ 1.

Remark 3.6. In the case where A = I, we can find an element of R. We

put
0 —1
(0.

Then the matrix Dj is a Hermitian matrix. Hence by Proposition 3.3, there
is an element F;* of GL4(F,2) such that 'F;*F *@ = D). Actually taking
F;* such as
nTUET 0 0 —n 4
0 10 0
0 0 1 0

wn e 0 0 wyt

for w, £ and 1 as mentioned in Introduction, one has by (4) the corresponding
curve Cr, lying on Xj.

4. PROOF OF THEOREM 1.2

The group Aut(X4) of projective automorphisms of X 4 is equal to
{Q € GL4(k) | 'QAQD = XA, X € k*}/k*1.

By Proposition 3.3, the group Aut(X 4) is conjugate to Aut(X;) in PGL4(k).
We prove the following lemma on matrix groups of arbitrary rank because
we need the lemma to our proof of Theorem 1.2.

Lemma 4.1. Let n be a positive integer. The group PGU,(F2) is isomor-
phic to
G:={Q e GL,(k) | 'QQ@ = XI, X\ € k*}/k*1I.

Proof. We consider the map
G> Qk‘x — f,\Qp,qul € PGUn(qu),

where X is the element of k% satisfying 'QQ@ = AI and &, is an clement
of k* satisfying £,97! = A~'. Then the map is well-defined. In fact, it is
obvious that {&,Q)(£,Q)@ = I, and the matrix £,Q has the entries in Fge
because I is a Hermitian matrix. Hence {,Qpq+1 belongs to PGU,(F ).

Further, putting P := aQ for each o € k¥, one has ‘PP = o9 \I. Tt is
easily shown by definition that

5aq+1AMq+1 = faqﬂf)\ﬂqﬂ and Oéfaﬁlﬂqul = Mg+1-

Therefore we conclude that

faq+1,\Pl$q+1 = fAQ.UqH-
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Thus the map is independent of the choice of representatives for G.
Let Q'k* be an element of G with {Q'Q"'? = nI for some n € k*. Then

one has

(gnQ/N'q—H)(g)\Qll'q—i-l) = gnAQ/QHq+17

since §,6agr1 = {atgr1- Hence the map is a homomorphism from G
to PGU,(F,2). The injectivity and the surjectivity are immediate from

definition.

By Lemma 4.1, the group Aut(X4) isomorphic to PGUy(F ).
The following lemma is a key ingredient in our proof of Theorem 1.2.

Lemma 4.2. For every g, B € GLa(k), one has

t@* (g)DBQO* (g)(q) = det(g)thng(QQ) .

Proof. The proof is due to straightforward computation. We put

- (0
o\

Then one has

Y. (9)Dpp.(g)?

_ [altg A1t 0 b
— \Bl% &%) \-b1 O

_ [—7%b; altghy —A7°
T\ —01%by B1%b; —07°

Putting

%0, (9)Dpe+(9)

(9) .

]

0
—by

gba
gba

o)l

a4 ‘gby
B9 tgby

5) , B = (b, by).

ad’ gl Be* (@
~7 g §9° g(a)

)

CcC1 C
C5 Cp

ad’ta
2

ol 7‘27

fqu +q

C3 C4
C7 Cg

ad’ Ba
ot 5
2
5q7q2
594

)

adB4
187"
i’
~157°

O

BI*+a
§184°
Basa’
5a°+a
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one has
1 = —aTty b 1 a0 b — alyT AT tgby + AT H0T b,
= 0,
cz = —a’ F9" 'ghy + a7 6% fgby — B19T 47 'gby + 6777 o gby
det(g)?(a” ‘gb1 +~7 'gbs)
det(g)? 'g(b1. bz) (o 7"),
c; = —alBT~1 b, + 4187 ad tgby — 16T A1 tgby + 7159l tgby
= 0,
ci = —BUHIy b 1 5187 01 tgby — BI5T AT by 1 6T 10T tyby

= det(g)"(87 ‘gby + 67 'gby)
= det(g)? g(b1,bo) (57, 07),
c; = —aT 957 tgh + T ~187 tghy — a9y? §9 tgby + 4T TIB7 tgb,
= —det(g)?(a? gby +7 ‘gbs)
= —det(g)? ‘(b1 bs) (a? 47,
ce = —a¥ B15% tgby + a? 5989 tgby — BIyT 69 tgby + 6947 B9 tgby
= 0,
cr = a8 \gby + 9157 59 \gby — a?67 5 'gby + 157 5 'gby
= —det(g)1(87 'gb1 + 67 tgby)
= —det(g)? 'g(br, by) (87, 57),
cs = —BTFIEgby + 0957 3 Tgby — B167 57 by + 67 BT gby
0.
Hence one has
(2, 1) = det(g)? 'gBg'T) = —(c5,¢7), €1 =c3=cs=cs=0.
This completes the proof.
O

Proof of Theorem 1.2. We define an equivalence relation ~ on the set M as
follows: Dp ~ Dps for Dp, D € M if there is an element g € GLa(k) such

that D = %.(g)Dpps( g)(Q). We denote by Dp¥* an equivalence class con-
taining Dp. On the other hand, the group Aut(X4) acts on k*\S*/Im(¢p),
by multiplication from the left. Then the following map is bijective:

Aut(X4)E*\S*/Im(p), — E*\M/ ~
w w
Aut(X )k F*Im(p), +— kX(F*AF*@)es,
Indeed, the surjectivity is obvious since the map (5) is surjective. If we
assume that kX(tF*AF*(q))S"* = kX(tFl*AFl*(q))‘P* for some I}* € S*, then
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we have

(R a9 P HAE ()P = a4
for some g € GLy(k) and X\ € k*. Therefore k* Fi*¢.(g)F*~! belongs to
Aut(X4). This implies the injectivity, and thus bijectivity. By Proposition
3.3, there is an element B’ of GLg(k) such that B = t8'B'@) for each
Dp € M. Then by Lemma 4.2, one has

. (B ) Dpp. (B = det(B')'D;.
This implies that k*Dp% = k*D;%*. Hence |[k*\M/ ~ | = 1 and thus
|[Aut(X4)E*\S*/Im(p),| = 1, and by (4) one has |Aut(X4)\R| = 1. This
proves half of our theorem.
Let I'/k*I be the stabilizer subgroup of Aut(X4) fixing the element

kX Fr*Im(g), of k*\S*/Im(y), such that F;* AF;*@ = D;. Then it fol-
lows immediately that

I'=Fr*Im(¢), Fr* ' n{Q € GLy(k) | 'QAQ@ = XA, X € k*}.

*

Hence each element of I" can be written as Fy*o, (¢)Fr* ™" for some element
g of GLa(k) satisfying

t(FI*SO*(Q)Fl*il)A(FI*CP*(Q)FI*il)(q) = A\A for A € k¥,
or equivalently,
%.(9)Drps(9)@ = AD; for A € k.

By Lemma 4.2, this equality is equivalent to tgg(qQ) = M for XA € k*. Con-
sequently, one has the following isomorphism:

{g € GLy(k) | tggl@®) = XI, X € kX}/k*T — /X1
W W
gk™ — FI*cp*(g)FI*flkX.

By Lemma 4.1, we conclude that PGUg(F ) ~ I'/k*1.
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