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SUMMARY 

Retinoic acid (RA) has been shown to have a role in vascular formation, but how 

it affects is not fully understood. Previously, we reported that RA and its nuclear 

receptor (RAR) is required for transcription of ahr1 encoding an aryl hydrocarbon 

receptor (AHR), and that pharmacological modulation of RA, RAR, and AHR 

impairs the formation of common cardinal veins (CCVs) on the yolk of 

medakafish embryos. Here, to delineate a role for ahr1 in the vascular formation, 

we used an antisense-ahr1 mRNA to suppress ahr1. Following the development 

of vegfr1-expressing angioblast cells, we show that the antisense-ahr1 greatly 

inhibited the accumulation of angioblasts at the prospective branchial arch (PBA) 

where CCVs begin to develop on the yolk and the following CCV formation, 

demonstrating for the first time the essential role of ahr1 in the embryonic 

vascular formation of vertebrates. We also show that rarα and ahr1 mRNAs are 

co-expressed at PBA, suggesting a possible role of the specific expression. 
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INTRODUCTION 

Vitamin A (retinol) is essential for embryonic development and tissue 

differentiation in adult organisms (Clagett-Dame & Knutson, 2011; Rhinn & Dollé, 

2012). It is not synthesized de novo by vertebrates and is acquired from the diet. 

Retinoids are deposited in eggs during oogenesis (Levi et al., 2012). Retinal, a 

metabolite of retinol by alcohol/retinol dehydrogenases, is the predominant 
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retinoid storage in eggs and oocytes of lower vertebrates (fish, amphibians, and 

reptiles), in contrast to higher vertebrates (birds and mammals), where retinol is 

the major retinoid used by embryos. Retinal is further metabolized during early 

embryonic development by retinal aldehyde dehydrogenase (RALDH) to retinoic 

acid (RA), which enters the nucleus and activates nuclear retinoid receptors 

(RARs). They regulate transcription of many key target genes for cardiovascular, 

ocular, and central nervous systems, limb, and trunk (Duester, 2008). Previously, 

we reported in medakafish (Hayashida et al., 2004) that RA and RAR are 

required for embryonic development of common cardinal veins (CCVs) which 

collect all the blood from the embryo and transport it back to the heart (Fujita et 

al., 2006) and for transcription of aryl hydrocarbon receptor (AHR) gene (ahr1) 

(Kawamura & Yamashita, 2002). 

   AHR is also conserved among vertebrates and is expressed during 

embryonic development and in a variety of adult tissues (Barouki, et al., 2007). 

Although it is a well-known ligand-activated transcription factor mediating not 

only most of the toxic and carcinogenic effects of a wide variety of environmental 

contaminants such as dioxin but also xenobiotic-detoxifying function by 

activating transcription of a battery of cytochrome P450 genes such as cyp1a 

(Hankinson, 1995; Carney et al., 2006), those could be late-acquired property 

that might have been added to original physiological functions. Phenotypic 

alterations found in mice lacking ahr expression have provided strong support 

for the involvement of the AHR in cell physiology such as hepatic, hematopoietic, 

cardiovascular and immune systems (Fernandez-Salguero et al., 1995). Recent 

investigations are discovering new insights dealing with cell differentiation and 

pluripotency, chromatin dynamics, activation of mobile genetic elements, 

proliferation, epidermal barrier function and immune regulation (Mulero-Navarro 

& Fernandez-Salguero, 2016). Moreover, the genetic characterization of AHR in 

invertebrates such as the fly Drosophila melanogaster (Céspedes et al., 2010) 

and the worm Caenorhabditis elegans (Qin & Powell-Coffman, 2004; Qin et al., 

2006) has provided evidence for its developmental roles. 

   Previously, we proposed a feedback mechanism regulating in vivo RA levels, 

in which excessive synthesis of RA activates ahr1 mRNA expression, then, 

increased activity of AHR in turn stimulates conversion of RA to inactive 

metabolites (Hayashida et al., 2004). We also reported the physiological 

significance of the RAR-mediated expression of ahr1 in the CCV formation of 

medaka embryos by exploring pharmacological studies with antagonists specific 
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to RAR and AHR. Our model suggests two routes through which hyperactivation 

of AHR by binding to dioxin abrogates vascular formation: one giving rise to 

RA-deficiency that is generally accepted in mammals (Andreola et al., 1997) and 

another excessively activating the proper way to vascular formation. However, 

this model is not genetically verified. 

   Here we show that antisense-ahr1 greatly inhibited the formation of CCVs, 

demonstrating for the first time the essential role of ahr1 in the embryonic 

vascular formation of vertebrates. In situ hybridization experiments revealed that 

rarα and ahr1 mRNAs are co-expressed at the prospective branchial arch (PBA) 

where CCVs begin to develop on the yolk. Furthermore, RA-sensitive period for 

the expression of both mRNAs was the same as that for CCV formation in the 

time-lapse experiments, suggesting the possible role of the co-expression at 

PBA in the CCV formation. 

 

MATERIALS AND METHODS 

Fish, embryo, and exposure to reagent.  

We used the d-rR strain of medaka fish, O. latipes (Kawahara and Yamashita, 

2000). The fish were maintained at 25 – 26oC under artificial photo-period of 

14L:10D, and fed by powdered Tetramin (Tetra). Fertilized eggs were collected 

before 10 hpf, rinsed and immersed in Yamamoto’s salt solution (Yamamoto, 

1969) containing NaCl (7.5 g/l), KCl (0.2 g/l), CaCl2.2H2O (0.265 g/l), and 

NaHCO3 (0.02 g/l), and exposed to test reagents from 10 hpf. All reagents were 

purchased from Sigma except for the antagonist of RAR, Ro41-5253, kindly 

provided by E.-M. Gutknecht (F. Hoffmann-La Roche Ltd, Basel). Reagents 

were dissolved in dimethyl sulfoxide or ethanol, and stored at –80oC. Stock 

solutions were diluted over 1,000-fold with Yamamoto’s solution before use. The 

solvents were added to the mock-treated eggs as controls. Eggs were incubated 

at 25 – 26oC under shading with alminum foil and inspected for vascular 

development under a dissecting microscope at 3 dpf as described (Hayashida et 

al., 2004). Experiments were done at least 3 times in which unit samples 

contained more than 30 or approximately 50 eggs for observation of vascular 

development or extraction of total RNA, respectively. Percent embryos with 

vascular damages were presented as mean±SEM. Statistical significance 

between values of control and experiment was assessed by Student’s t-test. 
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RT-PCR.  

Total RNA was extracted using NucleoSpin kit (Macherey-Nagel) after 

homogenization of embryos with pellet mixers. RT-PCR analysis was done using 

Ready-To-Go RT-PCR beads (GE Healthcare) or by two-step reactions, first 

with reverse transcriptase (ReverTra Ace, Toyobo) using oligo-dT as a primer 

and then with DNA polymerase (Ex Taq, Takara). PCR was done at least 5 times 

for each RNA sample at optimal and suboptimal cycle numbers with 

gene-specific primers as follows: ahr1, forward primer (F) 

5’-CCAGCAGGAGTTCAGGAGGA-3’, reverse primer (R) 

5’-ATTTTACCCTTTGCGTCACA-3’. Annealing at 60oC for 30 sec, extension at 

72oC for 1 min, 431-bp amplified DNA. raldh2, F 

5’-ATCCCCGGAGCGGTGAAG-3’, R 5’-TCCTTGGAGGTCAACAAACA-3’. 

Annealing at 55oC for 30 sec, extension at 72oC for 1 min, 405-bp amplified DNA. 

rarα, F 5’-AAGCAGGAGTGCACG-3’, R 5’-GGTCAATGTCCAAGGAA-3’. 

Annealing at 60oC for 30 sec, extension at 72oC for 1 min, 160-bp amplified DNA.   

β-actin, F 5’-GGTATCGTCATGGACTCT-3’, R 

5’-GGTGATGACCTGTCCGTCAG-3’. Annealing at 55oC for 30 sec, extension at 

72oC for 1 min, 300-bp amplified DNA. cyp1a, F 5’-GCACAGACCAAGCAG-3’, 

R 5’-ACTGGAAGCGGTTGT-3’. Annealing at 50oC for 30 sec, extension at 72oC 

for 1 min.    

After electrophoresis in agarose gel, amplified DNAs were stained with 

ethidium bromide and photographed. DNA bands were scanned with GT-9700F 

scanner (Epson), adjusted using software (Adobe Photoshop Elements 3.0), and 

analyzed for intensity with Scion Image software. Statistical significance was 

assessed by Student’s t-test. 

 

Whole-mount in situ hybridization.  

Whole-mount in situ hybridization was performed essentially as described 

(Inohaya, 1997). Embryos were treated with cycloheximide (50 or 100 mg/l) to 

stabilize ahr1 and raldh2 mRNAs for 5 h before fixation. The cDNAs used as a 

template for preparation of probes were cloned in the following plasmids: ahr1 

(pOL97 or pOL100 for antisense, pOL102 for sense); hoxa3a (pOL145); krox20 

(pOL150); raldh2 (pOL155); rarα (pOL151); rarγ1 (pOL167); and vegfr1 

(pOL121 for sense, pOL122 for antisense). 
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Electroporation.  

The procedure was schematically presented in Fig. S1. Less than 20 embryos 

(1- to 4-cell stage) were immersed in a drop (40 μl) on Petri dish of the 10-fold 

concentration of Yamamoto’s solution containing each or combination of the 

plasmid DNAs (pOL21, pYO4, and pYO5) in the concentration of 0.5 μg/μl each. 

The plasmid pOL21 (Kawamura et al., 2002) was used for expression of green 

fluorescent protein (GFP-S65T). The plasmid pYO4 was used for expression of 

AHR1. The plasmid pYO5 was used for expression of antisense-ahr1 RNA from 

the entire sequence of the ahr1 cDNA (Kawamura & Yamashita, 2002). Every 

expression is driven by the medaka β-actin promoter (Hamada et al., 1998). The 

egg envelope was perforated with a sewing needle, resulting in the penetration 

of the plasmid DNA into the fluid between the egg envelope and the embryo by 

osmotic pressure. Then, 20 ml of Yamamoto’s solution was poured onto the 

Petri dish, a portion (approximately 400 μl) of which, together with the eggs, was 

transferred into a cuvette for electroporation. Electroporation was carried out 

using ElectroSquarePorator T820 (BTX) under the following condition: voltage, 

12 - 15 V; burst duration, 10 ms; burst interval, 1.0 sec; number of burst, 3. After 

putting back to the Petri dish, eggs were incubated with or without addition of 

reagents (β-naphthoflavone and DEAB) at 10 hpf. GFP-expressing embryos 

(approximately 20% of the treated embryos) were collected at 35 hpf for 

extraction of total RNA, at 2 dpf for in situ hybridization of vegfr1+ angioblasts, 

and at 3 dpf for observation of vascular damages. Statistical significance was 

assessed by Chi-square test. 

 

RESULTS 

Development of CCV revealed by vegfr1 expression 

To explore the development of CCVs, we visualized angioblasts by in situ 

hybridization using as a probe the medaka cDNA (vegfr1) (Hayashida et al., 

2004) encoding vascular endothelial growth factor receptor (VEGFR) (Fig. 1A). 

We observed that angioblasts first appeared at 28 hpf, arranged at periphery of 

embryonic body in two parallel stripes. By 36 hpf, the anterior haemangioblasts 

accumulated at the prospective branchial arch (PBA) at the level of rhombomere 

7 (r7) (closed arrowhead), where CCVs begin to develop on the yolk. CCVs 

began to form on most embryos by 40 hpf (Fig. 1B) and reached to head by 48 

hpf before start of circulation at 53-55 hpf. Primordial hindbrain channels (open 
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arrowhead) formed by 36 hpf. Intersomite vessels also appeared at 46 hpf 

(bracket).  

 

RA controls CCV formation 

To explore whether RA controls the development of vegfr1-expressing (vegfr1+) 

angioblast cells, we first treated the 10-hpf embryos with diethyl 

aminobenzaldehyde (DEAB), a specific inhibitor of RALDH (Hayashida et al., 

2004) (Fig. 2A). There was no effect on the development of angioblasts at 30 hpf. 

However, the drug specifically inhibited the accumulation of angioblasts at PBA 

at 36 hpf and the formation of CCV by 48 hpf, while there was no effect on the 

vessel formation in the brain and somites (open arrowhead). The treatment also 

caused anterior shift of somites up to the position marked by arrows, indicating 

that embryos developed in the RA-deficient condition (Dubrulle & Pourquié, 

2004). These results indicate that RA is specifically required for the formation of 

angioblast clusters at PBA and the following CCV formation. We also examined 

the effect of excess RA by treating the 10-hpf embryos with 10 nM RA (Fig. 2A). 

It reduced the level of vegfr1 signals at the anterior brain where morphogenesis 

was appreciably affected (open arrowhead), and also inhibited the formation of 

CCV, while excess angioblasts were present at PBA (closed arrowhead). These 

results indicate that precise control of RA concentration is critical for the CCV 

formation. 

   To analyze when RA is required for CCV formation, staged embryos were 

treated with DEAB and examined at 48 hpf for vegfr1-expressing CCV. Half of 

the embryos became insensitive to DEAB around 24 hpf (Fig. 2B), indicating that 

RA is required for CCV formation during the mid- to late-gastrula stage 

(Iwamatsu, 2004).   

     

RA controls ahr1 mRNA expression directly 

We first examined transcript levels of ahr1, RA-related genes raldh2 (retinal 

aldehyde dehydrogenase) and rarα (RA receptor α), and β-actin gene as a 

control by RT-PCR of RNAs extracted from blastula- to somite-stage embryos 

(Fig. 3A). The ahr1 mRNA was detected during all the stages examined and its 

level increased after 19 hpf. The raldh2 and rarα mRNAs were rarely detected by 

16 hpf but increased sharply after 19 hpf. These results are consistent with the 

previous observation that RA and its receptor RAR control transcription of ahr1 

(Hayashida et al., 2004) and suggest that in vivo levels of RA increase at the 
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mid-gastrula stage in medakafish embryos as in other vertebrates (Duester, 

2008; Lloret-Vilaspasa et al., 2010).  

We next investigated whether RA activates transcription of ahr1 directly. To 

test this, the 22-hpf embryos were first treated with cycloheximide (CHX) for 1 h, 

then added with RA. After 5-h incubation, RNA was extracted and analyzed for 

ahr1 mRNA by RT-PCR. Addition of RA enhanced transcript levels of ahr1 in the 

presence and absence of the protein synthesis inhibitor (Fig. 3B), indicating that 

RA activates transcription of ahr1 directly. 

 

RA controls ahr1 mRNA expression at PBA 

We analyzed ahr1 mRNA expression by in situ hybridization (Fig. 4A). Signals 

for ahr1 mRNA first appeared at 42 hpf on the surface of anterior brain and eye 

and at PBA which ranges from r7 to r8 (bracket). The expression at PBA became 

increasing by 48 hpf. Expressions in otic vesicles, rhombomere, and somite are 

not constant. There was no specific signal using a sense probe.   

   To investigate whether the ahr1 mRNA expression at PBA is related to CCV 

formation, we examined correlation between the ahr1 expression levels and the 

in vivo RA levels that affect CCV formation (Fig. 4B). By treatment with a lower 

concentration of DEAB (2 μM) that inflicts only minor vascular damages 

(Hayashida et al., 2004), ahr1 signal at PBA was decreased but significant 

amounts of the signal remained at the periphery of posterior hindbrain (bracket). 

However, no signal was detectable by treatments with higher concentrations of 

DEAB (5 and 10 μM) that abolish CCV formation. 

   We next examined the developmental period during which RA is required for 

ahr1 expression at PBA (Figs. 4C, D). Staged embryos were treated with 10 μM 

DEAB and analyzed at 48 hpf for ahr1 expression at PBA. The 10- to 20-hpf 

embryos did not express ahr1 signal at PBA but the later ones expressed 

significant amounts of ahr1 signal at PBA (bracket). These results indicate that 

RA is required for ahr1 expression at PBA before 25 hpf (late gastrula stage), the 

same period as for vegfr1-expressing CCV formation (Fig. 2B).  

   Together, these results suggest that RA controls CCV formation through ahr1 

expression at PBA. 

 

RA may control ahr1 expression through RARα at PBA 

We first analyzed by in situ hybridization mRNA expression of krox20, raldh2, 

and hoxa3a as controls. krox20 was expressed at r3 and r5 in the hindbrain 
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(Schilling & Kinght, 2001), and raldh2 in the somite (Dobbs-McAuliffe, 2004) (Fig. 

5A). hoxa3a was expressed at r5 and from r7 to r8 (r7-r8) (Fig. 5B). It’s 

expression at r7-r8 was activated by RA and decreased by DEAB (Fig. 5B), 

indicating positive control of hoxa3a by RA as expected (Schilling & Kinght, 

2001). Expression of raldh2 was increased by the treatments with DEAB and an 

RARα antagonist (Ro41-5253) (Fig. 5C), indicating negative control of raldh2 by 

RA (Dobbs-McAuliffe et al., 2004). As expected, we also noted body axis 

malformation such as anterior and posterior shift of hindbrain by the treatments 

with RA and DEAB, respectively (Schilling & Kinght, 2001), and anterior shift of 

somite by DEAB and the antagonist (Duester, 2007).  

Next, we examined expressions of rarα and rarγ1 to explore what kinds of 

RAR activate transcription of ahr1. rarα was expressed at r7-r8 and 

co-expressed weakly with ahr1 at the periphery of the hindbrain (Fig. 5A). rarγ1 

was expressed at PBA at the level of r5 (Fig. 5D). To investigate whether RA 

controls expression of rarα and rarγ1, 10-hpf embryos were treated with DEAB 

and examined at 36 hpf. The drug completely abolished rarα expression at the 

posterior hindbrain and its periphery, however, did not affect expression of rarγ1 

(Fig. 5D). Increasing concentrations of DEAB caused posterior shift of krox20 

and reduced expression of rarα more severely, which were recovered by 

addition of RA (Fig. 5E). In reciprocal experiments by adding excess RA, we 

observed anterior shift of krox20 and enhanced expression of rarα (Fig. 5F). 

These results indicate that RA activates rarα expression.  

   We next examined the RA-sensitive period for rarα expression. Staged 

embryos were treated with 10 μM DEAB and analyzed at 36 hpf. The 10- to 

18-hpf embryos did not express rarα but those from 26 hpf on expressed it, 

indicating that RA is required for rarα expression before 26 hpf (late gastrula 

stage) (Fig. 5G), the same period as for ahr1 expression at PBA (Fig. 4C) and for 

vegfr1-expressing CCV formation (Fig. 2B).  

   Collectively, these results suggest that RA may directly control ahr1 

expression at PBA through RARα. 

 

ahr1 is required for CCV formation 

We set up genetic systems for investigating functional roles of ahr1. We first 

identified cyp1a as a target of AHR by the observation that increasing 

concentrations of β-naphthoflavone (β-NF), an agonist of AHR (Hayashida et al., 

2004), activated cyp1a expression more strongly (Fig. 6A). Next, we constructed 
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three plasmids pYO4, pYO5, and pOL21, expressing under the control of β-actin 

promoter full-length ahr1 mRNA, antisense ahr1 RNA, and as a control green 

fluorescent protein (GFP-S65T). Finally, we developed an efficient method for 

introducing DNA into medakafish embryos by electroporation (Fig. S1). 

Introduction of pYO4 enhanced cyp1a expression (Fig. 6B), revealing the 

authentic activity of the ahr1. We also observed that introduction of pYO5 

reduced the expression level of cyp1a (Fig. 6C), demonstrating the inhibitory 

activity of the antisense DNA.  

   To investigate whether ahr1 is required for vascular formation, we introduced 

sense and antisense ahr1 into embryos, and examined vascular damages such 

as malformation of CCV and blood clotting. We observed only minor effects of 

antisense ahr1 but no effect of sense ahr1 (Fig. 6D). We also investigated the 

synergistic action of antisense ahr1 with DEAB since previous studies indicated 

that co-treatments of AHR antagonist with DEAB enhanced vascular damages 

(Hayashida et al., 2004). We observed that the antisense ahr1 clearly damaged 

vascular formation in the presence of DEAB (2 μM) that alone did not show any 

effect (Fig. 6D). 

   We also observed that antisense ahr1 caused a loss of vegfr1-expressing 

CCV in the presence of DEAB (2 μM), which was recovered by co-introduction of 

sense ahr1 (Figs. 6E, F). These results confirm that ahr1 is required for CCV 

formation. We further investigated whether RA acts only through ahr1 

expression in the CCV formation. If it would do so, expression of ahr1 by β-actin 

promoter would cancel the defect caused by higher concentration of DEAB (10 

μM). However, the forced expression of ahr1 did not rescue the defect in CCV 

formation (Fig. 6G), suggesting the possibility that RA acts not only through ahr1 

but in multiple pathways or that proper activation of ahr1 at PBA is necessary for 

CCV formation.        

    

DISCUSSION 

We have analyzed the CCV formation of vegfr1-expressing angioblast cells. We 

noticed that the angioblast cells accumulated at PBA before development of 

CCV formation. RA was specifically required for the accumulation of angioblasts 

at PBA, where rarα and ahr1 mRNAs were co-expressed in RA-dependent 

manner. We also verified by using antisense ahr1 that ahr1 is required for the 

accumulation of angioblasts at PBA and subsequent CCV formation. We 

propose a model for RA action in CCV formation that RA activates transcription 
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of rarα which directly activates ahr1 expression at PBA (Fig. 7). Currently we do 

not know how AHR acts at PBA for CCV formation. However, recent reports 

suggest an interesting speculation. Mathew et al. (2008) reported that toxic 

effect of TCDD in zebrafish fin regeneration is mediated through hyperactivation 

of Wnt signaling, proposing a novel crosstalk between AHR and Wnt signaling. 

Kazanskaya et al. (2008) reported that Wnt signaling promotes angioblast and 

vascular development in vertebrates by activating expression of VEGF. This 

growth factor binds to and activates VEGFR in angioblasts, and stimulates their 

proliferation, migration, and survival during vasculogenesis (the formation of 

blood vessels from de novo generation of endothelial cells) and angiogenesis 

(the process of new blood vessel formation from the pre-existing vessels) (Apte, 

2019). Accordingly, we assume that AHR at PBA stimulates production of VEGF 

which accumulates angioblasts by activating proliferation of angioblasts or their 

migration to PBA (Fig. 7). The accumulation of angioblasts at PBA, which occurs 

also in zebrafish embryos before starting CCV formation (Helker et al., 2013), 

may be the first step for the following development of CCV formation. However, it 

was reported recently that triple AHR mutant zebrafish (ahr1a, ahr1b, and ahr2) 

are viable with no obvious abnormalities in vascular patterning during embryonic 

development (Sugden et al., 2017). 
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Figure 1. Development of CCV revealed by vegfr1 expression 

(A) Development of angioblasts expressing vegfr1 was analyzed by in situ 

hybridization. Accumulation of angioblasts at PBA was marked by closed 

arrowheads. Primordial hindbrain channels (open arrowhead) and intersomite 

vessels (bracket) were also shown. (B) Percentage of embryos forming CCV.  

 

Figure 2. RA controls CCV formation 

(A) Embryos were treated with DEAB (10 μM) and RA (10 nM) at 10 hpf and 

examined at the indicated times for vegfr1+ angioblasts. The angioblasts 

accumulated at PBA (closed arrowhead) and primordial hindbrain channels 

(open arrowhead) were shown. Arrows indicate the position to which somites 

shift anteriorly. (B) Staged embryos were treated with DEAB (10 μM) and 

examined at 48 hpf for vegfr1+ angioblasts. Percentage of embryos showing no 

CCV was shown. * p<0.005, ** p<0.00001, n.s. not significant.      

 

Figure 3. RA controls ahr1 mRNA expression directly 

(A) RNA was extracted from staged embryos from blastula to somite, and 

analyzed by RT-PCR for expression of the indicated genes. rRNA was used as a 

normalizing marker for the total RNA used. (B) The 22-hpf embryos were treated 

with cycloheximide (CHX) for 1 h, then with RA (10 nM) for 5 h before extraction 

of RNA. ahr1 expression was analyzed by RT-PCR.    

 

Figure 4. RA controls ahr1 mRNA expression at PBA 

(A) Staged embryos were analyzed for ahr1 mRNA expression by in situ 

hybridization with sense and antisense probes. Expression at PBA was marked 

by bracket. (B) 10-hpf embryos were treated with the increasing concentrations 

of DEAB as indicated, and analyzed at 48 hpf. (C, D) Staged embryos were 

treated with DEAB (10μM) and analyzed at 48 hpf. ahr1 expression (C). 

Percentage of embryos expressing no ahr1 signal at PBA (D).  
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Figure 5. RA may control ahr1 expression through RARα at PBA 

In situ hybridization analysis of the indicated genes in 36-hpf embryos. (A) 

Specific expression of krox20 at r3 and r5, rarα at r7 – r8 and its periphery in the 

hindbrain, and raldh2 in the somite. (B) Effects of RA and DEAB on expression 

of hoxa3a. Anterior and posterior shifts of hindbrain are indicated by arrows. (C) 

Effects of DEAB and Ro41-5253 on expression of raldh2. Anterior shift of somite 

is indicated by arrow. (D) Effects of DEAB on expression of rarα and rarγ1. (E) 

Effects of DEAB on expression of krox20 and rarα. Posterior shift of hindbrain is 

indicated by arrow. Addition of RA recovered rarα expression and hindbrain axis. 

(F) Effects of RA on expression of krox20 and rarα. Anterior shift of hindbrain is 

indicated by arrow. (G) Staged embryos were treated with DEAB and analyzed 

for rarα expression.             

 

Figure 6. ahr1 is required for CCV formation 

(A) Activation of cyp1a expression by treatment with β-NF at the indicated 

concentration during 10- to 36-hpf. (B) Activation of cyp1a expression by sense 

ahr1 at 36 hpf. Transcript levels of cyp1a were normalized by β-actin controls. *, 

p<0.01. (C) Inhibition of cyp1a expression by antisense ahr1 at 36 hpf. 

Normalized cyp1a transcript levels were also shown. *, p<0.05. (D) Percentage 

of embryos showing vascular damages at 3 dpf after the treatments indicated. 

(E) Percentage of embryos showing no vegfr1+ CCV at 48 hpf after the 

treatments indicated. (F) Inhibition of vegfr1+ CCV formation by cotreatment with 

2 μM DEAB and antisense ahr1, which was rescued by sense ahr1. (G) 

Inhibition of CCV formation by treatment with 10 μM DEAB, which was not 

recovered by sense ahr1. Arrowhead, CCV.        

 

Figure 7. A model for RA action in CCV formation 

RA is required for rarα expression at posterior hindbrain (r7 - r8) and its 

periphery where ahr1 expression is directly activated by RARα. ahr1-expressing 

cells enhance the secretion of VEGF around them, which stimulates proliferation 

and migration of vegfr1-expressing angioblasts to accumulate angioblasts at 

PBA before the formation of CCV. krox20 expression at r3 and r5, and rarγ1 at 

the level of r5.  
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Figure S1. Introduction of DNA into embryos by electroporation 

Schematic presentation of how to introduce DNA into medaka embryos by 

electroporation. The method consists of 4 steps as indicated. See text for detail. 
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Figure 1. Development of CCV revealed by vegfr1 expression 
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Figure 2. RA controls CCV formation 
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Figure 3. RA controls ahr1 mRNA expression directly 
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Figure 4. RA controls ahr1 mRNA expression at PBA 
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Figure 5. RA may control ahr1 expression through RARα at PBA 
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Figure 6. ahr1 is required for CCV formation 
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Figure 6. continued 
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Figure 7. A model for RA action in CCV formation 
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Figure S1. Introduction of DNA into embryos by electroporation 

 

 

 


