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Secretory and membrane proteins are synthesized in ribosomes, then mature in the endoplasmic re-
ticulum (ER), but if ER function is impaired, immature defective proteins accumulate in the ER. This situ-
ation is called ER stress: in response, a defensive mechanism called the unfolded protein response (UPR) is 
activated in cells to reduce the defective proteins. During the UPR, the ER transmembrane sensor molecules 
inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), and RNA-dependent protein 
kinase (PKR)-like ER kinase (PERK) are activated, stress signals are transduced to the outside of the ER, 
and various cell responses, including gene induction, occur. In ER-associated degradation (ERAD), one type 
of UPR, defective proteins are eventually expelled from the ER and degraded in the cytoplasm through the 
ubiquitin proteasome system. Since ER stress has been reported to have relationships with neurodegenerative 
diseases, diabetes, metabolic syndromes, and cancer, it is the focus of increased attention from the perspec-
tives of elucidating pathogenic mechanisms, and in the development of therapeutics.
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1. INTRODUCTION

Secretory and membrane proteins, such as hormones and 
transporters, respectively, account for as many as one-third of 
synthesized proteins. After these have been synthesized in the 
ribosomes, they are incorporated into the endoplasmic reticu-
lum (ER) and then mature by receiving folding and various 
other modifications: proteolytic processing, N-linked glycosyl-
ation, disulfide bond formation, etc. Only the completed items 
are sent to the Golgi apparatus, which is the next modification 
organelle. Thus, the ER functions as a production factory for 
proteins via rigid product quality controls to maintain cell 
homeostasis.

When a stressor blocks ER function (for example, hypoxia 
and glucose deprivation during ischemia, or protein overload 
from a virus),  the ER overflows with  immature defective pro-
teins. This situation is called ER stress. If it continues over 
a sustained period, apoptosis signals are initiated from the 
ER, resulting in apoptotic cell death. To respond to ER stress, 
cells activate three defensive mechanisms, collectively called 
the unfolded protein response (UPR), aimed at reducing the 
defective  proteins.  The  first  defense  mechanism  is  the  arrest 
of further protein synthesis in the ribosomes. Second is the 
repair of defective proteins by ER-resident molecular chaper-
one mobilization. Third is the elimination and degradation of 
defective proteins from the ER1) (Fig. 1). The final mechanism 
is called ER-associated degradation (ERAD).2)

Initially, the UPR was analyzed for the molecular yeast 
mechanisms of inositol-requiring enzyme 1 (Ire1), which acts 
as an ER stress sensor and transduces information by transfer 
outside the ER. After mammalian Ire1 homologs (IRE1) were 
identified  in  1998,3,4) considerable attention was then focused 
on the mammalian UPR. Later, two ER stress sensors that do 

not  exist  in  yeast were  identified,5,6) and at the same time the 
relationships of ER stress to various diseases were reported.7) 
ER stress and the UPR suddenly began to be highlighted. 
Beginning with a report in 1999 on the relationship between 
ER stress and Alzheimer’s disease (AD),8) relationships were 
subsequently found between ER stress and Parkinson’s disease 
(PD),9) polyglutamine disease,10) and other neurodegenerative 
diseases. Further relationships are indicated for many other 
diseases, including diabetes,11) metabolic syndrome,12) and 
cancer.13) Research related to ER stress-induced cellular dys-
function and disease pathogenesis has continued to expand 
explosively (Table 1). This review is a simple summary of the 
roles of ER stress in basic UPR and pathogenic mechanisms 
reported to date.

2. ER STRESS SENSORS

The primary mammalian ER stress sensors, in addition to 
IRE1, include activating transcription factor 6 (ATF6) and 
double-stranded RNA-dependent protein kinase (PKR)-like 
ER kinase (PERK) (Fig. 2). Only IRE1 are conserved from 
yeast, whereas ATF6 and PERK are newly added during the 
evolutionary process.

IRE1 has a serine/threonine kinase region and a ribo-
nuclease (RNase) region on the cytoplasmic side (C-terminus). 
When ER stress is sensed, IRE1 forms dimers or oligomers, 
and is activated by autophosphorylation, which expresses 
RNase activity to process mRNA.3,4) The X-box binding pro-
tein 1 (XBP1) is a molecule in which IRE1 RNase activity 
mediates splicing to promote proper translation. The splic-
ing by IRE1 differs from conventional splicing via spliceo-
somes; it is a non-conventional splicing for cutting matured 
mRNA.14,15) XBP1 is a transcription factor with a basic leucine 
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zipper (bZIP) domain, and it binds to the promoter region of 
genes related to ER chaperones, ERAD, ER membrane syn-
thesis, and protein secretion to promote their transcription.16,17)

ATF6 is a transcription factor of the cAMP response 
element-binding protein (CREB)/ATF family. In response to 
ER stress, ATF6 becomes free from the ER chaperone binding 
immunoglobulin protein (BiP), which is bound to the ATF6 
ER luminal side (C-terminus).5,18) Furthermore, at steady 
state, ATF6  forms a disulfide bond  in  the ER  lumen, whereas 
under ER stress conditions, it becomes a reduced form, into 
monomers that translocate to the Golgi apparatus.19) ATF6 un-
dergoes two-step processing (called regulated intramembrane 
proteolysis, or RIP) by the site-1 protease (S1P) and site-2 
protease (S2P) present in the Golgi, resulting in the release of 
the cytoplasm side (N-terminus) from the membrane.20) The 
separated ATF6 cytoplasmic side, including a bZIP domain, 
is translocated inside the nucleus and bound to the ER stress-
response element (ERSE) to induce expression of the ER 

chaperone and other genes.5)

PERK is a kinase; it forms oligomers and is activated by 
autophosphorylation in response to ER stress, such as IRE1. 
The activated PERK phosphorylates the eukaryotic initiation 
factor 2α (eIF2α),  which  configures  the  ribosome  to  suppress 
protein translation.6) The PERK−eIF2α pathway acts, prior 
to improvement of ER stress conditions via the ATF6 and 
IRE1 pathways, to reduce the unfolded protein load on the 
ER by temporarily inhibiting protein synthesis. The eIF2α 
phosphorylation selectively promotes the translation of genes 
harboring an upstream open reading frame (uORF). The 
uORF is a reading frame that begins translation from 5′-up-
stream of the original mRNA coding region.21,22) There are 
a number of genes in which the original ORF or uORF is 
selected in response to cell differentiation, metabolism, and 
stress. Downstream of eIF2α, the activating transcription fac-
tor 4 (ATF4) is induced.23) During ER stress, ATF4, whose 
translation is promoted by uORF, performs the transcriptional 

Fig. 1. Endoplasmic Reticulum (ER) Stress and Unfolded Protein Response (UPR)
Modified from Journal of Clinical and Experimental Medicine (IGAKU NO AYUMI), 254, 391–396 (2015) with permission.
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induction of genes, CCAAT/enhancer binding protein (C/EBP) 
homologous protein (CHOP), a transcription factor implicated 
in apoptosis23) and is related to amino acid metabolism24) and 
oxidation/reduction.25)

3. ER-ASSOCIATED DEGRADATION (ERAD)

ERAD is a system for the degradation of proteins in the ER 

lumen and ER membrane through the ubiquitin−proteasome 
system in the cytoplasm; it is one of the defense mechanisms 
for ER stress that is conserved from yeast2) (Fig. 3). The 
eventual defective proteins, recognized by molecular chaper-
ones, are discharged to the cytoplasm from the ER through 
a protein channel called the dislocon. The defective proteins 
undergo ubiquitination in the cytoplasm by the cooperative ac-
tion of ubiquitin activating enzyme (E1), ubiquitin binding en-

Table 1. ER Stress and Diseases

Disease/Disorder Cause Literature

Alzheimer’s disease •Mutant presenilin inhibits the UPR sensors 8
•Aβ induces ER stress 29
•HRD1 ubiquitinates and degrades APP 30
•Increase in S-nitrosylated PDI in patient brains 30

Parkinson’s disease •Parkin mutation causes Pael-R accumulation in the ER 9
•MPTP induces ER stress 31
•Increase in S-nitrosylated PDI in patient brains 32

ALS •Mutant SOD1 inhibits Derlin-1 33

Diabetes •Dysfunctional PERK and eIF2α induce β cell apoptosis 11, 35, 36, 37
•Insulin mutation induces ER stress in Akita mouse 38
•WFS1 mutation activates ATF6 by HRD1 destabilization 41

Metabolic syndrome •ER stress induces steatosis 42, 43
•Chemical chaperone improves type 2 diabetes 12, 44
•Chemical chaperone suppresses adipocytic inflammation 45

Cancer •Inhibition of ER stress sensors reduces tumorigenesis 13, 47, 48, 49

Modified from Journal of Clinical and Experimental Medicine (IGAKU NO AYUMI), 254, 391–396 (2015) with permission.

Fig. 2. Activation of ER Stress Sensors and Transcription Factors
Modified from Journal of Clinical and Experimental Medicine (IGAKU NO AYUMI), 254, 391–396 (2015) with permission.
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zyme (E2), and ubiquitin ligase (E3). These poly-ubiquitinated 
proteins are quickly drawn from the ER membrane, and then 
recognized and degraded by proteasome.26) Of the enzymes 
involved in ubiquitination, the ubiquitin ligase plays the most 
important role in determining the recognition and degrada-
tion speed of a substrate protein. The classic HRD1 is an ER 
5-transmembrane type ubiquitin ligase conserved from yeast, 
and its expression is induced by the UPR to regulate ERAD 
activity.27)

4. NEURODEGENERATIVE DISEASE

AD, PD, and amyotrophic lateral sclerosis (ALS) are well-
known neurodegenerative diseases. Their pathogenic mecha-
nisms remain unclear, and their fundamental therapeutic 
methods have not yet been established. A commonly observed 
pathological finding of  neurodegenerative  disease  is  the  accu-
mulation of denatured proteins. A relationship with ER stress 
has been reported in many neurodegenerative diseases.28)

In 1999, it was reported that mutations of presenilin, one 
of the genes causing familial AD, suppresses the activation 
of IRE1 and other ER stress sensors, resulting in attenuated 
UPR, and making neurons more vulnerable to ER stress.8) 
Subsequently, it was also determined that amyloid β (Aβ) 
deposited on the AD brain causes ER stress, thus contribut-
ing to cell toxicity.29) In addition, in another interesting re-
port in understanding the pathology of AD, it was suggested 
that the ubiquitin ligase HRD1 involved in ERAD promotes 
ubiquitination and degradation of the amyloid precursor pro-
tein (APP), raising the possibility of reducing the Aβ level. 
Furthermore,  the  protein  levels  of  HRD1  were  significantly 
reduced in the cerebral cortex of AD patients.30)

Parkin (PARK2), one of the known genes that causes fa-
milial PD, is a ubiquitin ligase involved in ERAD. There is a 
hypothesis that parkin mutation causes the accumulation of a 
substrate, such as parkin-associated endothelin receptor-like 
receptor (Pael-R), in the ER, leading to ER stress, and result-
ing in ER stress-induced cell death of dopaminergic neurons 
in the substantia nigra.9) In addition, drugs which induce PD, 

such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 
cause ER stress, and the involvement of ATF6 activation in 
this process has been reported.31)

While nitric oxide (NO) is known to induce ER stress, pro-
tein-disulfide  isomerase  (PDI)  that works  on  protein  disulfide 
bond  formation  in  the ER has been  identified  as  a NO  target. 
When cysteine residues in the PDI enzyme active sites are S-
nitrosylated by NO, the enzyme activity declines, resulting in 
the accumulation of defective proteins in the ER. Interestingly, 
PDI S-nitrosylation increases in the post-mortem brain of AD 
and PD patients.32)

ALS is a neurodegenerative disease that damages the 
motor neurons. Cu/Zn-superoxide dismutase (SOD1), a caus-
ative gene for ALS, is localized in the cytoplasm. If its gene 
mutations cause changes in protein structure, it binds with 
Derlin-1, an ERAD-related molecule. As a consequence, the 
ERAD system is impaired, and ER stress is elicited.33)

In addition, since polyglutamine protein found in Hunting-
ton’s disease10) and prion proteins that cause Creutzfeldt-Jakob 
disease34) also induce ER stress, it would appear that many 
of the mutation proteins found in neurodegenerative diseases 
either directly or indirectly impair the ER function.

5. DIABETES

Diabetes has been indicated to have a relationship with ER 
stress as well. Insulin, a peptide hormone, undergoes disulfide 
bond formation and processing in the ER to exert ligand activ-
ity. In pancreatic β-cells that produce insulin, the ER is devel-
oped to respond to insulin production increased by as much as 
approximately 100-fold during secretion.

Knockout (KO) mice for the ER stress sensor PERK exhib-
ited apoptosis in β-cells from around 15 d after birth, causing 
the  onset  of  insulin-deficient  Type  1  diabetes.11) Furthermore, 
even with PERK target eIF2α mutation (S51A)35) and PERK 
negative feedback factor P58IPK, which is induced downstream 
of PERK, KO mice36) exhibited a diabetic phenotype, sug-
gesting that the PERK pathway plays an important role in 
the pathogenesis of diabetes. In Wolcott–Rallison syndrome, 

Fig. 3. ER-Associated Degradation (ERAD)
Modified from Nihon Yakurigaku Zasshi, 133, 252–256 (2009) with permission.
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concomitantly presented with juvenile Type 1 diabetes and 
osteogenesis imperfecta, PERK gene mutation has also been 
found to be a cause.37)

In the Akita mouse presented with early-onset diabetes, 
a mutation in cysteine residue (C96Y) that is necessary for 
the  formation  of  disulfide  bonds  has  also  been  found  to  be 
a cause. This insulin mutation appears to form an unfolded 
structure that accumulates in the ER and induces apoptosis. 
When CHOP that induces apoptosis downstream of PERK 
was knocked out in the Akita mouse, the onset of diabetes 
was delayed.38) This therefore supports the idea that ER stress 
contributes to β-cell death in diabetes.

Pancreatic β-cell-specific  Xbp1 conditional KO mice dis-
played impairment of proinsulin production and processing 
leading to decreased insulin secretion.39) Atf6α KO mice fed 
with a high fat diet also exhibited impaired proinsulin produc-
tion. Pancreatic β-cells suffered from ER stress in the Atf6α-
deficient  mice.40)  These  findings  suggest  that  the  three  major 
UPR pathways are involved in ER stress of pancreatic β-cells.

Wolfram syndrome is an autosomal recessive genetic dis-
ease that initially presents alongside juvenile diabetes mel-
litus, followed by complications of optic atrophy and diabetes 
insipidus.  WFS1  has  been  identified  as  a  causal  gene.  Wild-
type WFS1 stabilizes HRD1 to promote the degradation of 
ATF6 and to negatively regulate the ATF6 signal. In Wolfram 
syndrome, the mutation of WFS1 appears to reduce the HRD1 
function, and to induce excessive activation of the ATF6 path-
way.41)

6. METABOLIC SYNDROME

While various environmental factors are involved in the 
pathogenesis of metabolic syndromes, recent attention has 
focused  on  ER  stress.  ER  stress  activates  inflammation  and 
various stress signals, and induces glucose and lipid metabolic 
disorders in β-cells, hepatocytes, and adipocytes. Thus, ER 
stress appears to induce obesity, insulin resistance, steatosis, 
dyslipidemia, and other metabolic syndromes.

ER stress promotes lipid synthesis and induces decreased 
lipoproteins, resulting in the development of steatosis. The 
overexpression of BiP in the liver of obese mice improves 
steatosis and promotes glucose utilization.42) In addition, if ER 
stress conditions continue, CHOP induction causes the sup-
pression of the C/EBP α, which is an important transcription 
factor in lipid metabolism. As a result, this inhibits the oxida-
tion of fatty acids, the secretion of lipoproteins, and gluconeo-
genesis, and promotes the development of steatosis.43)

Low molecular weight compound chemical chaperones 
are known to be ER stress inhibitors. Chemical chaperones 
prevent the aggregation of defective proteins in the ER, and 
promote protein transport from the ER to the target location. 
In the ob/ob mouse with Type 2 diabetes, application of the 
chemical chaperone 4-phenyl butyric acid (4-PBA) and tau-
roursodeoxycholic acid (TUDCA) improved insulin resistance 
and glycemic control.44)

High  fat  diet-fed  mice  exhibit  chronic  inflammation  in 
adipose  tissue.  This  inflammation  response  implicates  ER 
stress mediated  by  reactive  oxygen  species  and  inflammatory 
cytokines due to free fatty acids. In mice fed a high fat diet, 
the administration of 4-PBA or TUDCA attenuates the UPR 
activation  and  inflammation  response  in  liver  and  adipose 

tissue, suppresses weight gain, and improves insulin signal-
ing.45) In other words, ER stress plays an important role in the 
dysfunction of adipose tissue associated with obesity. Indeed, 
subcutaneous adipose tissue of obese human subjects showed 
upregulation of several UPR stress-related proteins and activa-
tion of c-jun N-terminal kinase (JNK), which inhibits insulin 
action and activates proinflammatory pathways.46)

7. CANCER

The UPR is a mechanism activated to prevent apoptosis 
due to ER stress, whereas cancer abuses the UPR’s ability to 
acquire stress resistance and thus promotes cell proliferation. 
In solid cancers, angiogenesis cannot keep up with this rapid 
proliferation, leading to hypoxia and glucose deprivation in 
the internal microenvironment, and resulting in the generation 
of persistent ER stress. To overcome these ER stress condi-
tions and to adapt to the poor environment for proliferation, 
cancer cells constitutively activate the UPR while suppress-
ing apoptosis. In Perk-deficient  mice,  tumorigenicity  and  the 
expression of angiogenesis genes are attenuated.47) Meanwhile, 
since CHOP is expressed downstream of constitutively ac-
tivated PERK by way of the transcription factor ATF4, this 
should induce apoptosis. However, cancers ingeniously escape 
from apoptosis because they suppress CHOP expression by 
inducing  the  expression  of  P58IPK that inhibits PERK activa-
tion.48) The IRE-XBP1 pathway is also important for cancer 
proliferation under hypoxic conditions. Xbp1-deficient  mice 
exhibit increased cancer cell death as a result of hypoxia and 
decreased proliferation.13) ATF6 also appears to contribute to 
the survival and resistance of cancers in dormancy through 
mammalian target of rapamycin (mTOR) signaling.49) In con-
clusion, while cancer uses the UPR to survive and proliferate, 
suppressing the UPR in cancer patients may be an effective 
novel treatment method.

8.  CONCLUSION

To date, attention has focused on ER stress as a cause of 
disease that results in damage to an organism, based on a lit-
eral “stress.” In recent years, however, functional analyses of 
ER stress sensors and their downstream genes have revealed 
that ER stress is positively involved in tissue differentiation 
and maturation. The UPR conserved from yeast was diversi-
fied  in  the  process  of  evolution  in  multicellular  organisms, 
and has developed as a variety of signaling pathways that 
affect cell differentiation and fate.50) In the future, if we are 
able to understand the complete picture of signaling pathways 
and physiological functions of UPR-related molecules, we can 
expect the elucidation of pathogenic mechanisms in diseases 
of unclear pathology, as well as the development of novel 
therapeutics.
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