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ABSTRACT

We perform a three-dimensional multi-probe analysis of the rich galaxy cluster A1689, one of the most powerful
known lenses on the sky, by combining improved weak-lensing data from new wide-field BVR i zC ¢ ¢ Subaru/
Suprime-Cam observations with strong-lensing, X-ray, and Sunyaev–Zel’dovich effect (SZE) data sets. We
reconstruct the projected matter distribution from a joint weak-lensing analysis of two-dimensional shear and
azimuthally integrated magnification constraints, the combination of which allows us to break the mass-sheet
degeneracy. The resulting mass distribution reveals elongation with an axis ratio of ∼0.7 in projection, aligned well
with the distributions of cluster galaxies and intracluster gas. When assuming a spherical halo, our full weak-
lensing analysis yields a projected halo concentration of c 8.9 1.1200c

2D =  (c 11vir
2D ~ ), consistent with and

improved from earlier weak-lensing work. We find excellent consistency between independent weak and strong
lensing in the region of overlap. In a parametric triaxial framework, we constrain the intrinsic structure
and geometry of the matter and gas distributions, by combining weak/strong lensing and X-ray/SZE data
with minimal geometric assumptions. We show that the data favor a triaxial geometry with minor–major axis ratio
0.39±0.15 and major axis closely aligned with the line of sight (22°±10°). We obtain a halo mass
M M h(1.2 0.2) 10200c

15 1=  ´ -
 and a halo concentration c 8.4 1.3200c =  , which overlaps with the 1 s tail

of the predicted distribution. The shape of the gas is rounder than the underlying matter but quite elongated with
minor–major axis ratio 0.60 ± 0.14. The gas mass fraction within 0.9 Mpc is 10 %2

3
-
+ , a typical value for high-mass

clusters. The thermal gas pressure contributes to ∼60% of the equilibrium pressure, indicating a significant level of
non-thermal pressure support. When compared to Planckʼs hydrostatic mass estimate, our lensing measurements
yield a spherical mass ratio of M M 0.70 0.15Planck GL =  and 0.58 ± 0.10 with and without corrections for
lensing projection effects, respectively.

Key words: cosmology: observations – dark matter – galaxies: clusters: individual (A1689) –
gravitational lensing: strong – gravitational lensing: weak

1. INTRODUCTION

The evolution of the abundance of galaxy clusters with
cosmic epoch is sensitive to the amplitude and growth rate of
primordial density fluctuations as well as to the cosmic volume-
redshift relation because massive clusters lie in the high-mass
exponential tail of the halo mass function (Haiman et al. 2001;
Watson et al. 2014). Therefore, large cluster samples defined
from cosmological surveys can provide an independent means
of examining any viable cosmological model, including the
current concordance Λ cold dark matter (ΛCDM) model
defined in the framework of general relativity, complementing
cosmic microwave background (CMB), large-scale galaxy
clustering, and supernova observations.

Clusters provide various probes of the role and nature of
“dark matter” (DM) that dominates the material universe

(Clowe et al. 2006), or modified gravity theories as an
alternative to DM (Rapetti et al. 2010), physics governing the
final state of self-gravitating collisionless systems in an
expanding universe (Navarro et al. 1996, 1997; Taylor &
Navarro 2001; Hjorth & Williams 2010), and screening
mechanisms in long-range modified models of gravity whereby
general relativity is restored (Narikawa et al. 2013).
Substantial progress has been made in recent years in

constructing statistical samples of clusters thanks to dedicated
surveys (e.g., Planck Collaboration et al. 2014, 2015c; Bleem
et al. 2015). Cluster samples are often defined by X-ray or
Sunyaev–Zel’dovich effect (SZE) observables, so that the
masses are indirectly inferred from scaling relations, which are
often based on the assumption of hydrostatic equilibrium
(HSE) and then statistically calibrated using weak lensing or
internal dynamics using a subset of massive clusters at lower
redshifts (Rines et al. 2013; Gruen et al. 2014). Since the level
of mass bias from indirect observations assuming HSE is likely
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mass dependent (Sereno et al. 2014a) and sensitive to
calibration systematics of the instruments (Donahue
et al. 2014; Israel et al. 2015), a systematic effort is needed
to enable a self-consistent calibration of mass–observable
relations using robust, direct cluster mass measurements (Ford
et al. 2014; Jimeno et al. 2014; Merten et al. 2014; Umetsu
et al. 2014; von der Linden et al. 2014; Hoekstra et al. 2015;
Simet et al. 2015) and well-defined selection functions (e.g.,
Benitez et al. 2014).

The great attraction of gravitational lensing in the cluster
regime is its ability to map the mass distribution on an
individual cluster basis, independent of and free from
assumptions about the physical and dynamical state of the
cluster system (Miyazaki et al. 2007; Okabe & Umetsu 2008;
Hamana et al. 2009). Clusters act as efficient gravitational
lenses, producing various observable effects, including deflec-
tion, distortion, and magnification of the images of background
sources (Bartelmann & Schneider 2001). In the weak regime,
the lensing signals are approximately linearly related to the
gravitational potential, so that one can determine the distribu-
tion of lensing matter at large scales in a model-independent
manner (e.g., Umetsu et al. 1999, 2011b). In the strong regime,
several sets of multiply lensed images with known redshifts can
be used to constrain the mass distribution in the cluster cores
(e.g., Jauzac et al. 2014; Zitrin et al. 2014).

A practical difficulty of obtaining precise mass measure-
ments from cluster lensing, however, is significant scatter
present in the projected lensing signals due to inherent
variations (at a fixed halo mass) in halo concentration,
asphericity, orientation, and the presence of correlated
large-scale structure (Rasia et al. 2012). The projection effects
due to such intrinsic profile variations alone can produce a
20% uncertainty in lensing mass estimates for M1015~ 
clusters (Becker & Kravtsov 2011; Gruen et al. 2015).

A possible way to overcome this problem is to simulta-
neously determine the mass, concentration, shape, and orienta-
tion of a given cluster by combining lensing data with
independent probes or information about its line of sight
elongation (Sereno 2007; Corless et al. 2009; Limousin
et al. 2013). Gravitational lensing probes the structure and
morphology of the matter distribution in projection. X-ray
observations constrain the characteristic size and orientation of
the intracluster medium (ICM) in the sky plane. The elongation
of the ICM along the line of sight can be constrained from
the combination of X-ray and thermal SZE observations (De
Filippis et al. 2005; Sereno et al. 2012). Recently, Sereno et al.
(2013) developed a parametric triaxial framework to combine
and couple independent morphological constraints from lensing
and X-ray/SZE data, using minimal geometric assumptions
about the matter and gas distributions but without assum-
ing HSE.

The first critical step in a three-dimensional (3D) cluster
analysis is an unbiased, direct recovery of the projected cluster
mass distribution from weak lensing. A fundamental limitation
of measuring shear only is the mass-sheet degeneracy
(Schneider & Seitz 1995). This degeneracy can be broken by
using the complementary combination of shear and magnifica-
tion (Schneider et al. 2000; Umetsu et al. 2011b; Umetsu 2013).
Umetsu et al. (2011b) have shown that the magnification effect
can significantly enhance the accuracy and precision of lensing-
derived cluster mass profiles when added to weak-lensing shear
measurements.

Our aim in this paper is to develop and apply a
comprehensive set of techniques and methods for 3D analysis
of galaxy clusters based on the multi-probe framework of
Sereno et al. (2013). To this end, we first generalize the one-
dimensional (1D) weak-lensing inversion method of Umetsu
et al. (2011b) to a two-dimensional (2D) description of the
mass distribution without assuming particular functional forms,
i.e., in a free-form fashion. In this approach, we combine the
spatial shear pattern with azimuthally averaged magnification
information, imposing integrated constraints on the mass
distribution.
Taking advantage of new BVR i zC ¢ ¢ imaging obtained with

Suprime-Cam on the 8.3 m Subaru Telescope, we perform a
new weak-lensing analysis of the rich cluster A1689 at
z = 0.183 and then apply our methods to weak-lensing,
strong-lensing, X-ray, and SZE data sets we have obtained for
the cluster. The cluster is among the best studied clusters
(Tyson & Fischer 1995; Taylor et al. 1998; Andersson &
Madejski 2004; Broadhurst et al. 2005b; Halkola et al. 2006;
Limousin et al. 2007; Umetsu & Broadhurst 2008; Peng
et al. 2009; Coe et al. 2010; Kawaharada et al. 2010; Sereno
et al. 2012, 2013; Nieuwenhuizen & Morandi 2013) and one of
the most powerful known lenses on the sky, characterized by a
large Einstein radius of 47. 0 1. 2Einq =    for a fiducial source
at z 2s = (see Table 1; Coe et al. 2010); this indicates a high
degree of mass concentration in projection (Broadhurst &
Barkana 2008). To date, 61 candidate systems of 165 multiply
lensed images have been identified (Broadhurst et al. 2005b;
Coe et al. 2010; Diego et al. 2015) from Advanced Camera
for Surveys (ACS) observations with the Hubble Space
Telescope (HST). Despite significant efforts, the degree of
concentration inferred from different lensing analyses is
somewhat controversial (see Coe et al. 2010; Sereno et al.
2013), and it is still unclear if and to what degree this cluster is
over-concentrated.
The paper is organized as follows. After summarizing the

basic theory of cluster weak lensing, we present in Section 2
the formalism that we use for our weak-lensing analysis. In
Section 3, we describe our Subaru observations and data
processing. In Section 4, we present our Subaru weak-lensing
analysis. Section 5 presents our HST strong-lensing analysis. In
Section 6 we outline the triaxial modeling and describe the
statistical framework for the 3D cluster analysis. In Section 7
we present the multi-probe analysis of lensing and X-ray/SZE
data. In Section 8 we discuss the results and their implications
for the intrinsic properties of A1689. Finally, a summary of our
work is given in Section 9.
Throughout this paper, we use the AB magnitude system and

adopt a concordance ΛCDM cosmology with 0.3mW = ,
0.7W =L , and h h0.7 0.770º = where H h0 = ´

100 km s Mpc1 1- - . In this cosmology, 1¢ corresponds to
129 kpc h 1851-  kpc h70

1- for this cluster. The reference sky
position is the center of the brightest cluster galaxy (BCG): R.
A.(J2000.0) = 13 : 11 : 29.52, decl.(J2000.0) = −01 : 20 :
27.59 (Table 1). We use the standard notation rD to denote the
spherical overdensity radius within which the mean interior
density is Δ times the critical density cr of the universe at the
cluster redshift. For its ellipsoidal counterpart RD, see
Section 6.1. All quoted errors are 68.3% (1σ) confidence
limits (CL) unless otherwise stated.

2

The Astrophysical Journal, 806:207 (27pp), 2015 June 20 Umetsu et al.



2. WEAK-LENSING METHODOLOGY

2.1. Weak Lensing Basics

In the cluster regime, the lensing convergence, ck = S S , is
the projected mass density ( )qS in units of the critical surface
density for lensing, c D GD D c GD( ) (4 ) (4 )c

2
s l ls

2
lp p bS = º

with Dl, Ds, and Dls the lens, source, and lens-source angular
diameter distances, respectively; z D z D z( ) ( ) ( )ls sb = repre-
sents the geometric lensing strength for a source at redshift z,
where z( ) 0b = for z zl⩽ .

The gravitational shear i1 2g g g= + can be directly
observed from ellipticities of background galaxies in the weak
regime, 1k  . The shear and convergence are related by

d D( ) ( ) ( ) (1)2òq q q qg q k= ¢ - ¢ ¢

with D i( ) ( 2 ) ( )2
2

1
2

1 2
4q qq q q q p= - - ∣ ∣ (Kaiser & Squires

1993). The observable quantity for quadrupole weak lensing in
general is not γ but the complex reduced shear,

g ( )
( )

1 ( )
. (2)q q

q
g
k

=
-

The g field is invariant under ( ) ( ) 1q qk lk l + - and
( ) ( )q qg lg with an arbitrary constant 0l ¹ , known as the

mass-sheet degeneracy (Schneider & Seitz 1995). This
degeneracy can be broken, for example, by measuring the
magnification ( )qm in the subcritical regime,

[ ]
( )

1

1 ( ) ( )

1

( )
, (3)

2 2
q

q q q
m

k g
=

- -
º

D

which transforms as ( ) ( )2q qm l m .

Let us consider a population of source galaxies described by
their redshift distribution function, N z( ). In general, we apply
different size, magnitude, and color cuts in background
selection for measuring shear and magnification, which results
in different N z( ). In contrast to the former effect, the latter does
not require source galaxies to be spatially resolved, but it
requires a stringent flux limit against incompleteness effects.
The mean lensing depth for a given population (X g, m= ) is

dz w z N z z dz w z N z( ) ( ) ( ) ( ) ( ) , (4)X
0

X
0

X

1

ò òb b=
é
ë
ê
ê

ù
û
ú
ú
é
ë
ê
ê

ù
û
ú
ú

¥ ¥ -

where w z( ) is a weight factor (see Section 3.3).
We introduce the relative lensing strength of a given source

population relative to a fiducial source in the far background as
W X Xb bá ñ = á ñ ¥ (Bartelmann & Schneider 2001) with

z z( ; )lb bº  ¥¥ . The associated critical density is
z c GD( ) (4 )c, l

2
lp bS =¥ ¥ . Hereafter, we use the far-back-

ground fields ( )qk¥ and ( )qg¥ to describe the projected cluster
mass distribution.

2.2. Discretized Mass Distribution

We discretize the convergence field ( ) ( )c,
1q qk = S S¥ ¥

- into
a regular grid of pixels and approximate ( )qk¥ by a linear
combination of basis functions B ( )q q- ¢ as

( )B( ) , (5)
m

N

m mc,
1

1

pix

åq q qk = S - S¥ ¥
-

=

where our model (signal) { }s m m

N

1

pix= S
=

is a vector of
parameters containing mass coefficients. To avoid the loss of
information due to oversmoothing, we take the basis function
to be the Dirac delta function B ( ) ( ) ( )m m

2
D
2q q q qq d- = D -

with Δθ a constant spacing, so that s represents the cell-
averaged projected mass density. The ( )qg¥ field can be
expressed as

( )( ) (6)
m

N

m mc,
1

1

pix

åq q qg = S - S¥ ¥
-

=



with D Bº Ä an effective kernel (Equation (1)). Hence,
both k¥ and g¥ can be written as linear combinations of s.
Because of the choice of the basis function, an unbiased

extraction of mass coefficients { }m m
N

1
pixS = (or certain linear

combinations of mS ) can be done by performing a spatial
integral of Equation (5) over a certain area. In practical
applications, such operations include smoothing (Figure 1),
azimuthal averaging for a mass profile reconstruction (Sec-
tion 5.3), and profile fitting with smooth functions (Section 7).

2.3. Weak-lensing Observables

2.3.1. Reduced Shear

The quadrupole image distortion due to lensing is described
by the reduced shear, g g ig1 2= + . We calculate the weighted
average g g ( )m mqº of individual shear estimates on a regular
cartesian grid (m N1, 2, , pix= ¼ ) as

( ) ( )g S w g S w, , (7)m
k

k m k k
k

k m k( ) ( ) ( ) ( ) ( )

1

å åq q q q=
é

ë
ê
ê

ù

û
ú
ú
é

ë
ê
ê

ù

û
ú
ú

-

Table 1
Properties of the Galaxy Cluster A1689

Parameter Value

ID A1689
Optical center position (J2000.0)
R.A. 13:11:29.52
Decl. −01:20:27.59
X-ray center position (J2000.0)
R.A. 13:11.29.50
Decl. −01:20:29.92
SZE center position (J2000.0)
R.A. 13:11.29.57
Decl. −01:20:29.87
Redshift 0.183
X-ray temperature (keV) 10.4
Einstein radius () 47.0 ± 1.2 at z 2s =

Notes. The optical cluster center is defined as the center of the BCG from
Reference [2]. Units of right ascension are hours, minutes, and seconds, and
units of declination are degrees, arcminutes, and arcseconds. The X-ray
properties were taken from Reference [3]. The X-ray center is defined as the
X-ray emission centroid derived from XMM-Newton observations. See also
Reference [1]. The SZE center is determined from the joint analysis of
interferometric BIMA/OVRO/SZA observations described in Section 7.2. The
BCG is located within 2″. 3 (;5 kpc h 1- ) of the X-ray center. The X-ray and
SZE centroid positions agree to within 1″. The Einstein radius is constrained by
detailed strong lens modeling by Reference [4].
References. [1] Andersson & Madejski (2004); [2] Limousin et al. (2007), [3]
Kawaharada et al. (2010), [4] Coe et al. (2010).
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where S ( , )k m( )q q is a spatial window function, g k( ) is an
estimate of g ( )q for the kth object at k( )q , and w k( ) is its
statistical weight given by w 1 ( )k g k g( ) ( )

2 2s a= + with g k( )
2s the

error variance of g k( ) and g
2a the softening constant variance.

We choose 0.4ga = , a typical value of the mean rms g
2s

found in Subaru observations (e.g., Umetsu et al. 2009).
The source-averaged theoretical expectation for the estimator

(7) is approximated by (see Appendix A.1)

( )
( )

( )
g

W

f W
ˆ

1
, (8)m

g m

W g g m,

q
q

q

g

k
=

-

¥

¥

where W gá ñ is the source-averaged relative lensing strength

(Section 2.1), and f W WW g g g,
2 2= á ñ á ñ is a dimensionless

quantity of the order unity. The variance ( )g m g m,
2 2 qs sº for

g g igm m m1, 2,= + is expressed as

( ) ( )S w S w, , . (9)g m
k

k m k g k
k

k m k,
2 2

( ) ( )
2

( )
2 2

( ) ( )

2

å åq q q qs s=
é

ë
ê
ê

ù

û
ú
ú
é

ë
ê
ê

ù

û
ú
ú

-

In this work, we adopt the top-hat window of radius fq (Merten
et al. 2009), S H( , ) ( )fq q q qq¢ = - - ¢∣ ∣ , with H(x)
the Heaviside function defined such that H(x) = 1 if x 0⩾

and H(x) = 0 otherwise. The covariance matrix for gm is

( ) ( ) ( )
(10)

g g CCov ,
2

,m n g
mn

g m g n H m n, , , , q qd
d

s s xº = -a b ab
ab

where x( ; )H fx q is the autocorrelation of a pillbox of radius fq
(White et al. 1999; Park et al. 2003), given by

x
x x x

( )
2

cos
2 2

1
2

(11)H
1

f f f

2

x
p q q q

=
é

ë

ê
ê
ê
ê

æ

è
çççç

ö

ø
÷÷÷÷
-

æ

è
çççç

ö

ø
÷÷÷÷

-
æ

è
çççç

ö

ø
÷÷÷÷

ù

û

ú
ú
ú
ú

-

for x 2 fq∣ ∣ ⩽ and x( ) 0Hx = for x 2 fq>∣ ∣ .

2.3.2. Magnification Bias

Deep multi-band photometry allows us to explore the faint
end of the luminosity function of red quiescent galaxies at z ∼ 1
(Ilbert et al. 2010), for which the effect of magnification bias is
dominated by the geometric area distortion, and thus is not
sensitive to the exact form of the source luminosity function. In
this work, we perform magnification measurements using a
flux-limited sample of red background galaxies.
If the magnitude shift m 2.5 log10d m= due to magnification

is small compared to that on which the logarithmic slope of the
luminosity function varies, their number counts can be locally
approximated by a power law at the limiting flux (Broadhurst

Figure 1. Subaru BVR i zC ¢ ¢ composite color image centered on the galaxy cluster A1689 (z 0.183= ), overlaid with mass contours from our joint shear-and-
magnification weak-lensing analysis of Subaru data. The image is 30 30¢ ´ ¢ in size. The mass map is smoothed with a Gaussian of FWHM 1.5= ¢ . The horizontal bar
represents 1 Mpc h 1- at the cluster redshift. The lowest contour level and the contour interval are 0.06kD = . The cyan contours show the smoothed projected
distribution of cluster red-sequence galaxies. North is up and east is to the left.
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et al. 1995). The expectation value for the source counts
N ( )mqm on a grid of equal-area cells (m 1, 2,= ¼) is modified
by lensing magnification as (see Appendix A.2)

( ) ( )E N N

W W

,

( ) 1 ( ) ( ) , (12)

m m
1

2 2 2

q q

q q qk g

é
ë

ù
û = D

D = é
ë - ù

û -

m m
a

m m

-

¥ ¥

where Nm is the unlensed mean source counts per cell, α is the
unlensed count slope evaluated at the flux limit F,

d N F d Flog ( ) loga = - >m ,13 and Wá ñm is the source-
averaged relative lensing strength (Section 2.1).

The net magnification effect on the source counts vanishes
when α = 1. In the regime where 1a  , the bias is dominated
by the expansion of the sky area, producing a net count
depletion. For a population with 1a > , the bias is positive and
a net density enhancement results (e.g., Hildebrandt et al. 2011;
Ford et al. 2012, 2014). The faint blue population lying at z ∼ 2
(e.g., Lilly et al. 2007; Medezinski et al. 2010, 2013) tends to
have a steep intrinsic slope close to the lensing-invariant
one, α = 1.

The covariance matrix of N ( )qm includes both sample
covariance and Poisson variance (Hu & Kravtsov 2003):

( )( ) ( ) ( )
( )

N N C N

N

Cov ,

, (13)

m n N mn mn

mn m

2
q q

q

w

d

é
ë

ù
û º =

+

m m m

m

where mnw is the cell-averaged angular correlation function

d d S S
1

( ) ( ) ( ) (14)mn m n
cell
2

2 2ò q q q qw q q w=
W

¢ ¢ - ¢

with ( )qw the angular two-point correlation function of the
source galaxies, S ( )m q the boxcar window function of the mth

cell, and d S ( )mcell
2ò qqW = . For deep lensing observations,

the angular correlation length of background galaxies can be
small (e.g., Connolly et al. 1998) compared to the typical
resolution 1~ ¢ of reconstructed mass maps. Therefore, the
correlation between different cells can be generally ignored,
whereas the unresolved correlation on small angular scales
accounts for increase of the variance of N ( )qm (Van Waerbeke
et al. 2000). We thus approximate CN by

( ) ( ) ( )C N N , (15)N mn m m mn
2 q qd d» é

ëê
+ ù

ûúm m

with N ( )m
2 qdá ñm the variance of the mth counts.

To enhance the signal-to-noise ratio (S/N), we azimuthally
average N ( )qm in contiguous, concentric annuli and calculate

the surface number density n{ }i i
N

, 1
bin

m = of background galaxies as
a function of clustercentric radius:

( )n N (16)i
i

m
im m,

cell
å q

h
=

W
m m

with A A( )im m mi mi
1å= - the radial projection matrix normal-

ized as 1m imå = . Here Ami represents the fraction of the
area of the mth cell lying within the ith annular bin
( A0 1mi⩽ ⩽ ), and ( 1)ih ⩾ is the mask correction factor for

the ith annular bin, f A A(1 )i m m mi m mi
1

å åh = é
ëê - ù

ûú
-

, with fm
the fraction of the mask area in the mth cell, due to bad pixels,
saturated objects, foreground and cluster member galaxies (see
Section 3.2 of Umetsu et al. 2014).
The theoretical expectation for the estimator (16) is

( )n nˆ (17)i
m

im m,
1å q= Dm m

a-

with n N cell= Wm m . The bin-to-bin covariance matrix for the
estimator (16) is obtained as

( ) ( )n n C CCov( , ) . (18)i j
ij

i j

m n
im jn N mn, ,

cell
2

,
å

h h
º =

W
m m m  

Note that since CN is diagonal, Cm is also diagonal:

( )C . (19)
ij i ij,

2s dºm m

2.4. Mass Reconstruction

Given a model m and observed (fixed) data d, the posterior
probability m dP ( )∣ is proportional to the product of the
likelihood m d mP( ) ( )º ∣ and the prior probability mP ( ). In
our 2D inversion problem, m is a vector containing the signal
parameters s (Section 2.2) and calibration parameters c
(Section 2.4.3), m s c( , )º .
The total likelihood function  for combined weak-lensing

data d is given as a product of the two separate likelihoods,
g= m   , where g and m are the likelihood functions for

shear and magnification, respectively. We assume that the
errors on the data follow a Gaussian distribution, so that

exp( 2)2cµ - , with 2c the standard misfit statistic.

2.4.1. Shear Log-likelihood Function

The log-likelihood function l lng gº -  for 2D shear data
can be written in the general form (ignoring constant terms) as
(Oguri et al. 2010; Umetsu et al. 2012)

( )m ml g g g g
1

2
ˆ ( ) ˆ ( )

(20)

g
m n

N

m m g
mn n n

, 1 1

2

, , , ,

pix

å å= é
ëê - ù

ûú
é
ëê - ù

ûú
a

a a a a
= =



where mĝ ( )m,a is the theoretical expectation for g g ( )m m, q=a a ,
and ( )g mn is the shear weight matrix,

( )( ) M M C , (21)g
mn

m n g mn

1= -
with C( )g mn

1- the inverse covariance matrix for the 2D shear
data and Mm a mask weight, defined such that M 0m = if the
mth cell is masked out and M 1m = otherwise.

2.4.2. Magnification Log-likelihood Function

Similarly, the log-likelihood function for magnification-bias
data l lnº -m m can be written as

( )m ml n n n n
1

2
ˆ ( ) ˆ ( ) , (22)

i

N

i i
ij

j j
1

, , , ,

bin

å= é
ë - ù

û
é
ë - ù

ûm m m m m m
=



where mn̂ ( )i,m is the theoretical prediction for the observed
counts n i,m (see Equations (16) and (17)), and ( )ijm is the

13 In the weak-lensing literature, s d N m dmlog ( ) 0.410 aº < = in terms of
the limiting magnitude m is often used instead of α (e.g., Umetsu et al. 2011b,
2014; Medezinski et al. 2013).
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magnification weight matrix,

( )( ) C (23)
ij ij

ij

i

1

,
2

d

s
= =m m

m

-

(Equations (18) and (19)). We use Monte Carlo integration to
calculate the radial projection matrix im (Equation (16)) of

size N Nbin pix´ , which is needed to predict mn{ ˆ ( )}i i
N

, 1
bin

m = for a
given m s c( , )= .

The lm function imposes a set of azimuthally integrated
constraints on the underlying projected mass distribution. Since
magnification is locally related to κ, this will essentially
provide the otherwise unconstrained normalization of ( )qS
over a set of concentric rings where count measurements are
available. We note that no assumption is made of azimuthal
symmetry or isotropy of the 2D mass distribution ( )qS .

2.4.3. Calibration Parameters

We account for the calibration uncertainty in the observa-
tional nuisance parameters,

( )c W f W n, , , , . (24)g W g, a= m m

To do this, we include in our analysis Gaussian priors on c
given by means of quadratic penalty terms with mean values
and errors directly estimated from data.

2.4.4. Best-fit Solution and Covariance Matrix

The log posterior m m dF P( ) ln ( )= - ∣ is expressed as a
linear sum of the log-likelihood and prior terms. The
maximum-likelihood (ML) solution, m̂, is obtained by
minimizing mF ( ) with respect to m. In our implementation,
we use the conjugate-gradient method (Press et al. 1992) to
find the solution. Here we employ an analytic expression for
the gradient function mF ( ) obtained in the nonlinear,
subcritical regime. To be able to quantify the errors on the
reconstruction, we evaluate the Fisher matrix at m m̂= as

mF

m m

( )
(25)

m m

pp
p p

2

ˆ

=
¶
¶ ¶

¢
¢

=



where the angular brackets represent an ensemble average, and
the indices p p( , )¢ run over all model parameters m s c( , )= .
We estimate the error covariance matrix as

( )m m CCov( , ) . (26)p p pp
pp

1º =¢ ¢
-

¢


3. SUBARU OBSERVATIONS

Here we present a description of our data analysis of A1689
based on deep Subaru BVR i zC ¢ ¢ images. In this study, we
analyze the data using the same methods and procedures as in
Umetsu et al. (2014), who performed a weak-lensing analysis
of 20 high-mass clusters selected from the CLASH survey
(Postman et al. 2012). For details of our reduction and analysis
pipelines, we refer to Section 4 of Umetsu et al. (2014).

3.1. Data and Photometry

We analyze deep BVR i zC ¢ ¢ images of A1689 observed with
the wide-field camera Suprime-Cam (34 27¢ ´ ¢; Miyazaki

et al. 2002) at the prime focus of the 8.3 m Subaru Telescope.
We combine both existing archival data taken from SMOKA14

with observations acquired by the team on the nights of 2010
March 17–18 (S10A-019). The observation details of A1689
are summarized in Table 2. Figure 1 shows a BVR i zC ¢ ¢
composite color image of the cluster field, produced using the
publicly available TRILOGY software (Coe et al. 2012). The
image is overlaid by mass contours determined from our weak-
lensing analysis (see Section 4.2).
Our imaging reduction pipeline derives from Nonino et al.

(2009) and has been optimized separately for accurate
photometry and shape measurements. For multi-band photo-
metry, standard reduction steps include bias subtraction, super-
flat-field correction, and point-spread function (PSF, hereafter)
matching between exposures in the same band. An accurate
astrometric solution is derived with the SCAMP software
(Bertin 2006), using the the Sloan Digital Sky Survey
(Adelman-McCarthy et al. 2008) as an external reference
catalog.15 The SWARP software (Bertin et al. 2002) is used to
stack individual exposures on a common World Coordinate
System (WCS) grid with pixel scale of 0. 2 .
The photometric zero-points for the co-added images were

derived using HST/ACS magnitudes of cluster elliptical-type
galaxies. These zero points were further refined by fitting
spectral energy distribution (SED) templates with the BPZ
code (Bayesian photometric redshift estimation; Benítez 2000;
Benítez et al. 2004) to 1445 galaxies having spectroscopic
redshifts.16 This leads to a final photometric accuracy of
∼0.01 mag in all passbands. The magnitudes were corrected for
Galactic extinction according to Schlegel et al. (1998). The
multi-band photometry was measured using SExtractor (Bertin
& Arnouts 1996) in dual-image mode on PSF-matched images
created by ColorPro (Coe et al. 2006).

3.2. Shape Measurement

We use our shear analysis pipeline based on the IMCAT
package (Kaiser et al. 1995, KSB) incorporating improvements
developed by Umetsu et al. (2010). On the basis of simulated

Table 2
Subaru/Suprime-Cam Data

Filter Exposure timea Seeingb mlim
c

(ks) (arcsec) (AB mag)

B 2.40 0.91 27.1
V 4.08 0.84 27.0
RC 6.42 0.70 (0.60) 27.0
i′ 4.08 0.84 26.4
z′ 8.02 0.81 26.2

Note. The RC band is used as the filter to measure object shapes for the weak-
lensing analysis, where we separately stack data from different epochs. The RC-
band seeing in parentheses is the average of values derived from separate
stacks.
a Total exposure time.
b Seeing FWHM in the full stack of images.
c Limiting magnitude for a 3σ detection within a 2″ aperture.

14 http://smoka.nao.ac.jp
15 This research has made use of the VizieR catalog access tool, CDS,
Strasbourg, France.
16 The data used here are part of an extensive multi-object spectroscopy survey
carried out with the VIMOS spectrograph on the VLT (Czoske 2004). For
details, see Lemze et al. (2009).

6

The Astrophysical Journal, 806:207 (27pp), 2015 June 20 Umetsu et al.

http://smoka.nao.ac.jp


Subaru/Suprime-Cam images (Massey et al. 2007; Oguri et al.
2012), Umetsu et al. (2010) showed that the lensing signal can
be recovered with m 5%~∣ ∣ of the multiplicative shear
calibration bias (as defined by Heymans et al. 2006; Massey
et al. 2007), and c 10 3~ - of the residual shear offset, which is
about one order of magnitude smaller than the typical shear
signal in cluster outskirts. Accordingly, we include for each
galaxy a shear calibration factor of 1/0.95 (g g 0.95 ) to
account for residual calibration.

In this work, we perform weak-lensing shape analysis using
the same procedures adopted in the CLASH weak-lensing
analysis of Umetsu et al. (2014). Here, we only highlight key
aspects of our analysis pipeline.

1. Object detection. Objects are detected using the IMCAT
peak finder, hfindpeaks, using a set of Gaussian kernels of
varying sizes. This algorithm produces object parameters
such as the peak position, the best-matched Gaussian
scale length, rg, and an estimate of the significance of the
peak detection, ν.

2. Crowding effects. Objects having any detectable neigh-
bors within r3 g are identified. All such close pairs of
objects are rejected to avoid possible shape measurement
errors due to crowding. The detection threshold is set to
ν = 7 for close-pair identification. After this close-pair
rejection, objects with low detection significance 10n <
are excluded from our analysis.

3. Shear calibration. We calibrate KSBʼs isotropic correc-
tion factor Pg as a function of object size (rg) and
magnitude, using galaxies detected with high significance

30n > (Umetsu et al. 2010). This is to minimize the
inherent shear calibration bias in the presence of noise.
We correct for the isotropic smearing effect caused by
seeing as well as by the window function used in the
shape estimate as g e Pg=a a with ea the anisotropy-
corrected object ellipticity.

To measure the shapes of background galaxies, we use the
RC-band data, which have the best image quality in our data
sets (Table 2). Two separate co-added RC-band images are
created, one from 2009 (observed by Matsuda et al.) and
another from 2010 (observed by Umetsu et al.). We separately
stack data obtained at different epochs. We do not smear
individual exposures before stacking, so as not to degrade the
weak-lensing signal. After PSF anisotropy correction, the mean
residual stellar ellipticity is consistent with zero, and the rms
residual stellar ellipticity in each stack is e( ) 2.5 10* 3s d ~ ´a

-

per component. A shape catalog is created for each epoch
separately. These subcatalogs are then combined by properly
weighting and stacking the calibrated shear estimates for
galaxies in the overlapping region (see Section 4.3 of Umetsu
et al. 2014).

3.3. Background Galaxy Selection

A careful background selection is critical for a cluster weak-
lensing analysis, so that unlensed objects do not dilute the true
lensing signal of the background (Medezinski et al. 2007;
Umetsu & Broadhurst 2008; Okabe et al. 2013; Hwang
et al. 2014). In particular, dilution due to contamination by
cluster members can lead to a substantial underestimation of
the true signal at small cluster radii, r r2500c (Medezinski
et al. 2010; Okabe et al. 2010). The relative importance of the

dilution effect indicates that, the impact of background purity
and depth is more important than that of shot noise ( ng

1 2µ - ).
We use the color–color (CC) selection method of Mede-

zinski et al. (2010) to define uncontaminated samples of
background galaxies from which to measure the shear and
magnification effects. Here we refer the reader to Medezinski
et al. (2010) for further details. Our multi-color approach and
its variants have been successfully applied to a large number of
clusters (Medezinski et al. 2010, 2011, 2013; Umetsu et al.
2010, 2011b, 2012, 2014; Coe et al. 2012; Oguri et al. 2012;
Covone et al. 2014; Sereno et al. 2014b).
We use the Subaru BR zC ¢ photometry, which spans the full

optical wavelength range, to perform CC selection of back-
ground samples. In Figure 2, we show the B RC- versus
R zC - ¢ distribution of all galaxies to our limiting magnitudes
(cyan). We select two distinct populations that encompass the
red and blue branches of background galaxies in CC space,
each with typical redshift distributions peaked around z 1~
and ∼2, respectively (see Figures 5 and 6 of Lilly et al. 2007;
Medezinski et al. 2011). The color boundaries of our “blue”
and “red” background samples are shown in Figure 2.
As a cross-check we calculate the tangential (g+) and cross

(ǵ ) reduced-shear components in clustercentric radial bins,
which we show in Figure 3. In the absence of higher-order
effects, weak lensing produces only curl-free tangential
distortions, g+. The presence of × modes can thus be used to
check for systematic errors. Using the weak-lensing-matched
blue and red samples, we find a consistent, rising distortion
signal all the way to the cluster center. For all cases, the
×-component is consistent with a null signal detection well
within 2σ at all radii.
For the number counts to measure magnification, we define

flux-limited photometry samples of background galaxies. Here
we limit the data to z′ = 25.6 mag in the reddest band

Figure 2. “Blue” and “red” background galaxy samples selected for the weak-
lensing analysis (lower-left blue and lower-right red regions, respectively) on
the basis of Subaru BR zC ¢ color–color–magnitude selection. All galaxies
(cyan) are shown in the diagram. At small clustercentric radius ( 4< ¢), an
overdensity of cluster galaxies is identified as our “green” sample (green),
comprising mostly the red sequence of cluster ellipticals and some blue trail of
later-type cluster members. The background samples are well isolated from the
green region and satisfy other criteria as discussed in Section 3.3. The black
dots represent a dynamically selected spectroscopic sample of 377 cluster
galaxies found within a projected distance of 12¢ ( r200c~ ) from the cluster
center. Our background selection successfully excludes all except 2 spectro-
scopically confirmed cluster members (see Section 3.3).
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(Table 4), corresponding to the 5σ limiting magnitude within
2″ diameter aperture. We plot in Figure 4 the coverage- and
mask-corrected surface number density as a function of
clustercentric radius, for the blue and red samples. No
clustering is observed toward the center, demonstrating that
there is no detectable contamination by cluster members in the
background samples. The red sample reveals a systematic
decrease in their counts toward the cluster center, caused by
magnfication of the sky area (Section 3.3). The faint blue
counts, on the other hand, are nearly constant with cluster
radius, as expected by their steep count slope (Table 4). A
more quantitative magnification analysis is given in
Section 4.1.

For validation purposes, we compare in Figure 2 our
background samples with a dynamically selected spectroscopic
sample of 377 cluster galaxies (black) found within a projected
distance of12¢ ( r200c~ ) from the cluster center. We find that our
background selection procedure successfully excludes all
except 2 spectroscopically confirmed cluster members (see
also Coe et al. 2012; Umetsu et al. 2012), corresponding to a
negligible contamination fraction of ∼0.5%. We note that, in
the blue background region, there are 4 cluster members, of
which two are excluded by the magnitude cuts used to reject
bright foreground/cluster galaxies.

We estimate the mean depths ( , 2b bá ñ á ñ) of the background
samples (Tables 3 and 4), which are necessary when
converting the observed lensing signal into physical mass
units. For this, we follow the prescription outlined in Section
4.4 of Umetsu et al. (2014). We utilize BPZ to measure photo-
zs using our PSF-corrected Subaru BVR i zC ¢ ¢ photometry.
Following Umetsu et al. (2012), we employ BPZʼs ODDS
parameter as the weight factor w z( ) in Equation (4). The
resulting depth estimates are summarized in Tables 3 and 4.

4. SUBARU WEAK-LENSING ANALYSIS

We use our z′-band limited sample of red background
galaxies (Table 4) for magnifciation measurements and a full
composite sample of blue+red galaxies (Table 3) for shear
measurements. In Section 4.1, we perform a 1D weak-lensing
analysis of A1689 to derive azimuthally averaged lensing

profiles from our new Subaru data (Section 3), and examine the
consistency of complementary shear and magnification mea-
surements. In Section 4.2, we apply the 2D inversion method
developed in Section 2 and reconstruct the projected 2D mass
distribution from joint shear+magnification measurements.

4.1. Weak-lensing Profiles of A1689

A1689 exhibits a small offset d 5off  kpc h 1- ( 2. 3 )
between the BCG and X-ray centroids (Table 1), ensuring a
well-defined center. The X-ray and SZE centroids agree to
within 1″ (Table 1). Here we will adopt the BCG position as
the cluster center for a radial profile analysis.
We derive azimuthally averaged radial profiles of tangential

reduced shear (g+) and magnification bias (nm) from Subaru data.
We calculate the lensing profiles in N 13bin = discrete radial
bins, spanning the range [ , ] [1 , 18 ]min maxq q = ¢ ¢ with a constant
logarithmic spacing, Nln ln( )max min binq q qD = 0.22. The
inner radial limit r D min 129min lqº  kpc h 1- is sufficiently
greater than the Einstein radius 47. 0 1. 2Einq =    (z 2s = ;
Table 1), and it also satisfies r d2 10min off>  kpc h 1- , so that
the miscentering effects on mass profile reconstructions are
negligible (Johnston et al. 2007; Umetsu et al. 2011a; Du &
Fan 2014). The outer boundary 18maxq = ¢, or

Figure 3. Azimuthally averaged radial profiles of the tangential lens distortion
g+ (upper panel) and the 45° rotated (×) component ǵ (lower panel) for our
red (triangles), blue (circles), and blue+red (squares) galaxy samples derived
from Subaru multi-color photometry (Table 3).

Figure 4. Coverage- and mask-corrected surface number density profiles of
Subaru BR zC ¢-selected galaxy samples (Table 4). The results are shown for our
red (triangles) and blue (circles) background samples. The error bars include
contributions from Poisson counting uncertainties and contamination due to
intrinsic clustering of each source population. For the red sample, a systematic
radial depletion of the source counts is seen toward the cluster center owing to
magnification of the sky area, while the faint blue counts are nearly constant
with the distance from the cluster center. See also Figure 5.

Table 3
Background Galaxy Samples For Weak-lensing Shape Measurements

Sample Ng ng
a zeff

b D Dls sá ñ fW
(arcmin−2)

Red 12674 12.0 1.10 0.79 ± 0.04 1.00
Blue 9238 8.7 1.62 0.84 ± 0.04 1.01
Blue+red 21912 20.7 1.22 0.80 ± 0.04 1.01

Notes.
a Mean surface number density of source background galaxies.
b Effective source redshift corresponding to the mean lensing depth

D Dls sbá ñ = á ñ, defined as z( )effb b= á ñ.
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r D 2.3max l maxqº  Mpc h 1- , is large enough to encompass the
entire virial region with r 2vir  Mpc h 1- (Umetsu & Broadhurst
2008), but sufficiently small compared to the size of the Suprime-
Cam field of view so as to ensure accurate PSF anisotropy
correction. The number of bins N 13bin = is chosen such that the
detection S/N is of the order of unity per bin, which is optimal for
an inversion problem.

In this work, we follow the prescription outlined in Section
3.2.2 of Umetsu et al. (2014) to perform magnification
measurements using the Subaru BR zC ¢-selected red galaxy
sample (Table 4), which exhibits a clear depletion signal
(Figure 4). We have properly accounted and corrected for
masking of background galaxies due to cluster galaxies,
foreground objects, and saturated pixels (see also Sec-
tion 2.3.2). Unlike the nonlocal distortion signal, the
magnification signal falls off sharply with increasing cluster
radius. We thus estimate the count normalization and slope
(n , am ) from the source counts in cluster outskirts (Umetsu
et al. 2011b, 2012, 2014; Medezinski et al. 2013), specifically
at 12¢ ( r )200c maxq q~ < < .

Figure 5 shows the radial profiles of (g n, m+ ). A clear
depletion of red galaxies is seen toward the center owing to
geometric magnification of the sky area. The statistical
significance of the detection of the tangential distortion is
22σ. The detection significance of the magnification signal is
9σ, which is ∼40% of that of distortion.

Here we construct the radial mass profile of A1689 from a
joint likelihood analysis of shear and magnification measure-
ments (Figure 5), using the method of Umetsu et al. (2011b).
We have 26 constraints g n{ , }i i i

N
, , 1

bin
m+ = in 13 log-spaced

clustercentric radial bins. The model is described by
N 1 14bin + = parameters, { , }i i

N
min 1

binS S = , where minS º S
( )minq< is the average surface mass density interior to minq ,
and iS is the surface mass density averaged in the ith radial bin.
To perform a reconstruction, we express the lensing obser-
vables (g , 1m+

- ) in terms of Σ using the relations given in
Appendix B. Additionally, we account for the calibration
uncertainty in the observational parameters c W f( , ,g W g,= á ñ
W n, , )aá ñm m as given in Tables 3 and 4. Following Umetsu
et al. (2014), we fix fW g, to the observed value (Table 3).

The results are shown in Figures 5 and 6. The ML solution
has a reduced 2c of 11.5 for 12 degrees of freedom (dof),
indicating good consistency between the shear and magnifica-
tion measurements having different potential systematics. This
is demonstrated in Figure 5, which compares the observed
lensing profiles with the respective joint reconstructions

(68% CL). The resulting mass profile ( )qS is shown in the
upper panel of Figure 6. The error bars represent the 1σ errors
from the diagonal part of the total covariance matrix C (Umetsu
et al. 2014). The corresponding cumulative mass profile is
shown in the lower panel of Figure 6.

4.2. Weak-lensing Mapmaking of A1689

We apply our 2D inversion method (Section 2) to our new
Subaru observations (Sections 3) for obtaining an unbiased
recovery of the projected matter distribution ( )qS in A1689. In
this approach, we combine the observed spatial shear pattern
g g( ( ), ( ))1 2q q with the azimuthally averaged magnification

measurements n{ }i i
N

, 1
bin

m = (Section 4.1), which impose a set of
azimuthally integrated constraints on the underlying ( )qS field,
thus effectively breaking the mass-sheet degeneracy. The

Table 4
Background Galaxy Samples for Magnification-bias Measurements

Sample zcut¢
a Nm nm

b αc zá ñd zeff
e D Dls sá ñ

(AB mag) (arcmin−2)

Red 25.6 26136 19.0 ± 0.5 0.39 ± 0.08 1.13 1.05 0.73 ± 0.04
Blue 25.6 12143 8.8 ± 0.3 0.82 ± 0.12 1.81 1.39 0.82 ± 0.04

Notes.
a Fainter magnitude cut of the background sample. Apparent magnitude cuts are applied in the reddest CC-selection band available (z′) to avoid incompleteness near
the detection limit.
b Coverage- and mask-corrected normalization of unlensed background source counts.
c Logarithmic slope of the unlensed source counts d N z dz2.5 log ( )

z z10
cut

a = é
ëê < ¢ ¢ùûúm ¢= ¢

.
d Mean photometric redshift of the sample obtained with the BPZ code, defined similarly to Equation (4).
e Effective source redshift corresponding to the mean lensing depth D Dls sbá ñ = á ñ, defined as z( )effb b= á ñ.

Figure 5. Azimuthally averaged cluster weak-lensing profiles obtained from
Subaru multi-color observations of A1689. The upper panel shows the
tangential reduced shear profile g+ (black squares) based on the full
background sample. The lower panel shows the magnification-bias profile nm

(red circles) of a z′-band limited sample of red background galaxies. For each
observed profile, the shaded area represents the joint reconstruction (68% CL)
from the combined shear+magnification measurements. The horizontal bar
(cyan shaded region) shows the constraints on the unlensed count normal-
ization estimated from the source counts in cluster outskirts.
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algorithm takes into account the nonlinear subcritical regime of
the lensing properties.

For mapmaking, we pixelize the lensing fields into a 56 × 56
grid with 0.5qD = ¢ spacing, covering the central 28 28¢ ´ ¢
field. The model m s c( , )= is specified by N 56pix

2=
parameters, s { ( )}m m

N
1

pixq= S = , and a set of calibration para-
meters c to marginalize over. We utilize the FFTW imple-
mentation of fast Fourier transforms to calculate ( )qg¥ from

( )qk¥ using Equation (6). To minimize spurious aliasing
effects from the periodic boundary condition, the maps are zero
padded to twice the original length in each spatial dimension
(e.g., Seljak 1998; Umetsu & Broadhurst 2008).

We use a top-hat window of 0.4fq = ¢ (Section 2.3.1) to
average over a local ensemble of galaxy ellipticities
(N n 10g f

2p q= ~ ; Merten et al. 2014) at each grid point,
accounting for the intrinsic ellipticity distribution of back-
ground sources. The filter size corresponds to an effective
resolution of D2 100l fq  kpc h 1- at the cluster redshift. To
avoid potential systematic errors, we exclude from our analysis
(Section 2.4.1) those pixels lying within central 1cutq = ¢ where

( )qS can be close to or greater than the critical value cS ,
as well as those containing no background galaxies with
usable shape measurements. For distortion measurements
(g g( ), ( )1 2q q ) from the full background sample (Table 3), this
leaves us with a total of 3093 usable measurement pixels (blue
points in Figure 7), corresponding to 6186 constraints. For
magnification measurements, we have 13 azimuthally averaged
constraints n{ }i i

N
, 1

bin
m = in log-spaced clustercentric annuli (Fig-

ure 7). The total number of constraints is thus N 6199data = ,
yielding N N 3063data pix- = dof.

In Figure 8, we show the resulting ( )qS field reconstructed
from a joint analysis of the 2D shear and azimuthally averaged
magnification data. The 2c value for the ML solution is

m( ˆ ) 40462c = for 3063 dof. Here, for visualization purposes,
the ( )qS field is smoothed with a Gaussian of FWHM = 1′.
The main mass peak coincides well with the cluster center.

Figure 6. Surface mass density profile ( )qS (upper panel, red squares) derived
from a Subaru 1D weak-lensing analysis of the combination of shear and
magnification measurements shown in Figure 5. The lower panel shows the
corresponding cumulative mass profile M ( )2D q< (red squares). The gray area
in each panel represents the best-fit projected Navarro–Frenk–White profile
(68% CL) for the mass profile solution ( )qS .

Figure 7. Spatial distribution of weak-lensing constraints averaged onto a grid
of 56 × 56 pixels, covering a field of 28′ × 28′ centered on the BCG. Each point
represents a single pixel with two-component reduced shear constraints (g g,1 2)
averaged within a top-hat region with radius 0.4fq = ¢ . We exclude from our
analysis those pixels lying within the inner 1cutq = ¢ region (red circle) and
those having no background galaxies with usable shape measurements (see
Figure 1). There are 3093 pixels with reduced-shear constraints, yielding 6186
constraints from 2D shear measurements. Azimuthally averaged magnification
constraints are obtained in 13 logarithmically spaced, clustercentric annuli
spanning the range [ , ] [1 , 18 ]min maxq q = ¢ ¢ .

Figure 8. Projected mass distribution ( )qS of A1689 reconstructed from a
Subaru weak-lensing analysis of 2D gravitational shear and azimuthally
averaged magnification data. The mass maps is 28′ × 28′ in size (3.6 Mpc h 1-

on a side) and centered on the BCG. The color bar indicates the
lensing convergence c

1k = áS ñS- , scaled to the mean depth of weak-lensing
observations, h M1 4.66 10c

1 15áS ñ = ´-
 Mpc−2. For visualization purposes,

the mass map is smoothed with a 1′ FWHM Gaussian. North is to the
top, east to the left. The horizontal bar represents 1 Mpc h 1- at the cluster
redshift.
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The projected mass distribution is elongated in the north–south
direction (Figure 1; see also Section 7.1) and very similar to the
distribution of cluster members (Figure 1).

In Figure 9, we compare the projected mass profiles ( )qS
obtained from our 1D and 2D analyses of the shear+
magnification data. Here we have used the method described
in Appendix C to construct an optimally weighted radial
projection of theS map. Our 1D- and 2D-based Σ profiles are
consistent within 1s at all cluster radii, and both are in good
agreement with the 1D results of Umetsu et al. (2011b) from
the joint shear+magnification analysis of the Subaru Vi′ data.
Similarly, our 1D and 2D weak-lensing results are in excellent
agreement with each other in terms of the cumulative mass
M ( )2D q< as shown in Figure 10.

5. HST STRONG-LENSING ANALYSIS

5.1. Image Systems

A1689 has been a subject of detailed strong-lensing studies
by numerous authors (e.g., Broadhurst et al. 2005b; Halkola
et al. 2006; Limousin et al. 2007; Coe et al. 2010; Diego
et al. 2015). Thus far, a total of 61 multiple-image candidate
systems of 165 images were identified from extremely deep
optical and near-infrared data from HST and Subaru (Diego
et al. 2015).

To study global structural properties of the cluster, we focus
our strong-lensing analysis on the principal modes of the
cluster mass distribution, responsible for the massive, smooth
halo component (see Section 7.1.2). To this end, we
conservatively select a subset of systems based on the
following criteria: (i) we use only spectroscopically confirmed
systems. (ii) We consider only systems whose members were
consistently identified in different studies. (iii) We limit our

analysis to those lying within 80″ from the BCG, so that
multiple images spread fairly evenly over the analysis region.
(iv) We discard systems of very close pairs. They are primarily
sensitive to substructures rather than the principal modes of the
mass distribution, which we are interested in.
These criteria leave us with 12 systems (ID 1, 2, 4, 5, 6, 7,

11, 15, 18, 22, 24, 29, according to the original notation in
Broadhurst et al. 2005b), for a total of 44 multiple images
spanning the range 1″. 4–72″. 3 in cluster radius.

5.2. PIXELENS Free-form Mass Reconstruction

Free-form models describe the lens on a grid of pixels or a
set of basis functions, allowing for a wide range of solutions
(Coles 2008). We have performed a free-form strong-lensing
analysis of the central region using the PIXELENS software
(Saha & Williams 2004), which produces pixelated maps of the
surface mass density. Each map is constrained to exactly
reproduce the positions and parities of all given multiple
images. PIXELENS generates a statistical ensemble of models
through which uncertainties and degeneracies in solutions can
be explored (Coles 2008).
Our PIXELENS analysis procedure largely follows Sereno &

Zitrin (2012) and Sereno et al. (2013). To determine robust
sampling strategies optimized to recover the smooth cluster
signal, we tested the PIXELENS algorithm using simulated sets of
multiple images in analytic lenses. The results suggest that the
best strategy is to limit each analysis to three image systems,
for a total of a dozen of images, and to reconstruct maps with
∼10 pixels in the radial direction, avoiding oversampling
(Lubini & Coles 2012). We thus divide the strongly lensed
images in four groups of three systems each and analyze each
group separately. We end up with four triples consisting of
systems 1, 5, and 11 (11 images), systems 2, 6, and 22 (11
images), systems 4, 15, and 29 (12 images), and systems 7, 18,
and 24 (10 images). Image systems with similar configurations
are divided into different groups.
For each group, we compute 500 κ maps within 80″ from the

BCG on a circular grid of 349 pixels (10 pixels along the radial

Figure 9. Comparison of projected mass density profiles r( )S derived from our
Subaru 1D weak-lensing analysis (squares; Section 4.1), Subaru 2D weak-
lensing analysis (circles; Section 4.2), and free-form strong-lensing analysis of
HST data (triangles; Section 5). The cyan shaded area represents the mass
profile with 1σ uncertainty from a strong-lensing analysis of Broadhurst et al.
(2005b) based on the light-traces-mass (LTM) assumption. The gray shaded
area shows the strong-lensing results (68% CL) from Diego et al. (2015) using
a hybrid scheme combining both free-form grid and LTM substructure
components. The diamonds with error bars show the results from our earlier 1D
weak-lensing analysis (Umetsu et al. 2011b) based on Subaru Vi′ data. Good
agreement between the strong and weak lensing results is seen in the region of
overlap. There is also good agreement between the different lensing methods
and data sets.

Figure 10. Comparison of projected cumulative mass profiles M r( )2D < of
A1689 derived from our Subaru 1D weak-lensing analsyis (squares;
Section 4.1), Subaru 2D weak-lensing analysis (circles; Section 4.2), and
HST strong-lensing analysis (triangles; Section 5).
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direction) with a pixel size of 8″ ( 17.2 kpc h 1- ). These
optimal settings allow us to avoid the known problem of too
flat density profiles recovered with PIXELENS modeling (see
Grillo et al. 2010; Umetsu et al. 2012), which otherwise could
bias cluster mass estimates. As discussed by Grillo et al. (2010,
see their appendix), this bias can arise from a combination of
the mass-sheet degeneracy (Schneider & Seitz 1995) and the
assumed prior on the positive definiteness of every pixel of the
surface mass density map.

In the following, we restrict our analysis to the region where
the cluster mass distribution is accurately recovered by
PIXELENS. We exclude the central 20 kpc h 1- region to
minimize the effects of miscentering and baryonic physics
(Umetsu et al. 2012, 2014). For each group of reconstruction,
we determine the outer cutoff radius beyond which the
logarithmic density slope is steeper than −2, the asymptotic
minimum slope for the projected Navarro–Frenk–White
density profile (NFW, Navarro et al. 1997). The maximum
radius is 63. 7 (188 mass pixels) in three cases and 54″. 9 (140
mass pixels) for the group with the triple 4–15–29.

5.3. Comparison of Weak and Strong Lensing Results

We show in Figure 9 the radial mass distribution of A1689
from our HST strong-lensing analysis. The results are shown
along with the previous strong-lensing results by Broadhurst
et al. (2005b) and Diego et al. (2015), as well as with
independent weak-lensing results from shear and magnification
information (Sections 4.1 and 4.2). The strong-lensing model
of Broadhurst et al. (2005b) is based on the light-traces-mass
(LTM) assumption, so that the HST photometry of cluster red-
sequence galaxies was used as an initial guess for their lens
solution. Diego et al. (2015) used a hybrid (free-form + LTM)
approach combining Gaussian pixel grid and cluster member
components for describing large- and small-scale contributions
to the deflection field, respectively. They constrained the range
of solutions with sufficient accuracy to allow the detection of
new counter images for further improving the lensing solution
of A1689. This comparison shows clear consistency among a
wide variety of lensing methods with different assumptions and
potential systematics, demonstrating the robustness of our
results (see also Figure 10). Excellent agreement is also found
between our strong-lensing mass profile and that of Limousin
et al. (2007).

6. TRIAXIAL MODELING OF THE CLUSTER
MATTER DISTRIBUTION

Since we can only observe clusters in projection, determin-
ing the intrinsic 3D shape and orientation of an aspherical
cluster is an intrinsically underconstrained problem (Ser-
eno 2007). In this section, we describe the modeling of the
3D cluster matter distribution as an ellipsoidal halo following
Sereno et al. (2013). In this approach, we exploit the
combination of X-ray and SZE observations to constrain the
elongation of the ICM along the line of sight. We use minimal
geometric assumptions about the matter and gas distributions to
couple the constraints from lensing and SZE/X-ray data. The
parameter space is explored in a Bayesian inference frame-
work. This multi-probe method allows us to improve
constraints on the intrinsic shape and orientation of the cluster
mass distribution without assuming HSE.

6.1. Matter Distribution

We model the cluster mass distribution with a triaxial NFW
density profile as motivated by cosmological N-body simula-
tions (Jing & Suto 2002; Kasun & Evrard 2005). The radial
dependence of the spherical NFW density profile is given by
(Navarro et al. 1996, 1997)
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+

with sr the characteristic density and rs the inner characteristic
radius at which the logarithmic slope of the density profile is
−2. We generalize the spherical NFW model to obtain a triaxial
density profile by replacing r and rs with the respective
ellipsoidal radii R and Rs, defined such that
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where q a ca = and q b cb = (a b c⩽ ⩽ ) are the minor–major
and intermediate–major axis ratios, respectively.17 The corre-

sponding eccentricities are e q1a a
2= - and e q1b b

2= - .

The degree of triaxiality is defined as e eb a
2 2= (Sereno

et al. 2013).
We define an ellipsoidal overdensity radius RD (e.g., Corless

et al. 2009; Sereno & Umetsu 2011; Buote &
Humphrey 2012b) such that the mean interior density
contained within an ellipsoidal volume of semimajor axis RD is

crD ´ . The total mass enclosed within RD is

M q q R(4 3) a b c
3p r= DD D. We use Δ = 200 to define the halo

mass, M200c. The triaxial concentration parameter is defined by
c R R200c 200c s= . The characteristic density is then expressed as

M q q R c c c c(4 ) [ln(1 ) (1 )]a bs
3 3r p= ´ + - +D D D D D D

(Buote & Humphrey 2012b).
A triaxial halo is projected on to the sky plane as elliptical

isodensity contours (Stark 1977), which can be expressed as a
function of the intrinsic halo axis ratios (a/c, b/c) and
orientation angles ( , ,J f y) with respect to the observerʼs line
of sight. Here we adopt the z–x–z convention of Euler angles to
be consistent with Stark (1977; see, e.g., Sereno et al. 2012).
The angle ϑ describes the inclination of the major (Z) axis with
respect to the line of sight.
For a given projection, the elliptical projected mass

distribution can be described as a function of the elliptical
radius ζ defined in terms of the observerʼs coordinates (X′,Y′)
in the plane of the sky:
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17 The intrinsic axis ratios q q( , )a b here correspond to ( , )a bDM, DM,h h of
Limousin et al. (2013) in their notation.
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Here we have chosen the new coordinate system (X Y,¢¢ ¢¢)
such that the X″ axis is aligned with the major axis of the
projected ellipse.

The minor–major axis ratio q q qY Xº^ ^ ^ of the elliptical
density contours is given by18
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The principal axes of the isodensities are rotated by an angle ψ
with respect to the projection on to the sky of the intrinsic
major axis Z, where k j l2 arctan[2 ( )]y = - (Sereno 2007).
As observable parameters to describe the projected mass
distribution, we use the ellipticity

q1 (33)= - ^

and the position angle y of the projected major axis.
The projected surface mass density ( )zS as a function of the

elliptical radius ζ is related to the triaxial density profile R( )r
by (Stark 1977)
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where q X Y qX
2 2 2x zº = ¢¢ + ¢¢^ ^ is the observable ellip-

tical radius, and q RXs sx = ^ is the observable scale length
(semi-major axis) in the sky plane (Sereno 2007). The quantity
l R fs= represents the line of sight half length of the
ellipsoid of radius R Rs= (Sereno 2007). It is useful to
introduce the dimensionless scale factor e that quantifies the
extent of the cluster along the line of sight (Sereno 2007),
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The larger e, the larger the elongation along the line of sight.
The quantity e corresponds to the inverse of the elongation
parameter eD of Sereno (2007): e e1= D .

For a self-similar model R f R R( ) ( )s 3D sr r= , the projected
mass density profile is expressed as
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where we have defined the scale surface mass density

R f e f q2 2 2 (37)s s s s s geo s sr r x r xS º = = ^

with f e qgeo º ^ (Sereno et al. 2010). Since r qs,2D sxº ^

is the geometric-mean scale radius in projection, the geome-
trical factor fgeo represents the degree of correction due to the
line of sight elongation of the cluster. The halo mass, M200c, can

then be expressed as M c r f(4 3)200 ( )200c c 200c s, 2D
3

geop r= . In
this work, we employ the radial dependence of the projected
NFW profile f x( )2D as given by Wright & Brainerd (2000). For
f 1geo = , this reduces to a projected (circular or elliptical) mass
model. An elliptical mass density model can be described by
(M c, , ,200c 200c y  ) (Oguri et al. 2010; Umetsu et al. 2012).

6.2. Intracluster Gas

Both observations and theory indicate that the ICM density
is nearly constant on a family of concentric, coaxial ellipsoids
(Kawahara 2010; Buote & Humphrey 2012a, 2012b).
Although modeling both the gas and matter distributions as
ellipsoids with constant axis ratios is not strictly valid for halos
in HSE (Sereno et al. 2013), an ellipsoidal approximation for
the ICM is suitable when systems with modest eccentricities
are considered (Lee & Suto 2003).
Following Sereno et al. (2013), we make a few simplifying

but non-informative working hypotheses to relate the matter
and gas distributions. First, we assume that the matter and gas
distributions in the cluster are ellipsoidal with constant but
different axis ratios and co-aligned with each other. Second, the
two distributions are assumed to have the same degree of
triaxiality, that is, q q q q( , ) ( , )a b a b

ICM ICM ICM=  with

e e q q( ) [1 ( ) ] [1 ( ) ]b a b a
ICM ICM ICM 2 ICM 2 ICM 2º = - - and

q qa b
ICM ICM⩽ . If two ellipsoids have the same degree of

triaxiality, then the misalignment angle between their major
axes in the plane of the sky is zero (Romanowsky &
Kochanek 1998), which is consistent with what has been
observed in A1689 (Sereno & Umetsu 2011; Sereno et al.
2012). If ICM=  , we have the following relation for the ratio
of eccentricities between ICM and matter (Sereno et al. 2013):

e e e e e e. (38)a a b b
ICM ICM ICM= º

The intracluster gas in HSE is rounder than the underlying
matter distribution: e e 0.7ICM  (Lee & Suto 2003).
With these assumptions, the number of independent axis

ratios is reduced to three. Here we use qa, qb, and qa
ICM as free

parameters. Hence, the intermediate–major axis ratio qb
ICM of

the ICM is determined by q q( , )a b and qa
ICM:

( )
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q
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1
. (39)b

aICM
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2
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-

18 Note the projected axis ratio q^ is equivalent to e1 P of Sereno (2007).
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Finally, as supported by both theory and observations, we
assume that the gas distribution is rounder than the matter
distribution: q qa a

ICM⩽ .
Under these hypotheses, the projected matter and gas

distributions of the cluster have different ellipticities
( ICM¹  ) and elongations (e e ICM¹  ) but share the same

orientation of the projected major axis, ICMy y=  . There are a
total of six parameters (q q q, , , , ,a b a

ICM J f y) needed to
describe the intrinsic shape and orientation of the cluster
system, compared to four observable geometric constraints,
( e, , ,ICM ICM ICMy y=     ).

6.3. Bayesian 3D Inversion

In our analysis, the cluster model p is defined by seven
fundamental parameters describing the total matter ellipsoid
and one parameter determining the shape of the ICM halo:

( )p M c q q q, , , , , , , . (40)a b a200c 200c
ICMJ f y=

Hence, the overall ellipsoidal model has eight free parameters.
On the other hand, 2D lensing constraints reduce to four
parameters (Sereno & Umetsu 2011), ( , , ,s sk x y  ). A joint
X-ray and SZE analysis of the ICM yields two additional
constraints (Sereno et al. 2013), namely the ellipticity ICM of
the ICM in projection and the elongation e ICM

 of the ICM
along the line of sight. Accordingly, combined lensing and
X-ray/SZE data sets effectively provide six observationally
accessible parameters,

( )o e, , , , , . (41)s s
ICM ICMk x y=  

That is, the problem is underconstrained.
To make robust inference on the intrinsic properties of the

cluster, we use a forward modeling approach with Bayesian
inference for this underconstrained inversion problem (Sereno
et al. 2013). The observational parameters o o p( )= can be
uniquely specified by the intrinsic parameters p. The total
likelihood function of combined lensing and X-ray/SZE
observations can be formally written as (Sereno et al. 2013)

o p[ ( )] (42)GL ICM= ´  
with GL the likelihood function of lensing observables and

ICM that of X-ray/SZE observables.

6.4. Priors

For our base model, we use uninformative priors for the
intrinsic parameters p. We adopt flat priors of q q 1amin ⩽ ⩽
and q q 1a b⩽ ⩽ for the intrinsic axis ratios of the matter
distribution, where qmin is introduced to exclude models with
extremely small axis ratios because such configurations would
be dynamically unstable and not expected for cluster halos. The
probability functions can then be expressed as P q( ) 1a =

q(1 )min- for q q 1amin ⩽ ⩽ and P q q q( ) 1 (1 )b a a
1= - -∣ for

q qb a⩾ . In what follows, we fix q 0.1min = (Oguri et al. 2005;
Sereno et al. 2013). Alternatively, we may consider the axis-
ratio priors that follow distributions obtained from ΛCDM
N-body simulations (Jing & Suto 2002).

For the minor–major axis ratio of the ICM, we use a uniform
distribution in the interval q q 1a a

ICM⩽ ⩽ (see Section 6.2).
The prior of qa

ICM, P q q( )a a
ICM ∣ can then be defined in a similar

way to that of qb. For the orientation angles, we consider a
population of randomly oriented halos with P (cos ) 1J = for
0 cos 1J⩽ ⩽ and P ( ) 1f p= for 2 2p f f- ⩽ ⩽ . Finally,
we employ uniform priors for the remaining parameters.

7. MULTI-PROBE ANALYSIS OF A1689

Here we apply the Bayesian inversion method outlined in
Section 6 to our multiwavelength observations of A1689. The
results are discussed in Section 8.

7.1. Weak and Strong Lensing

A full 2D lensing analysis is crucial for comparison with
predictions of the properties of aspherical clusters (Oguri
et al. 2005). In this work, we have employed free-form
methods for both weak- and strong-lensing mass reconstruc-
tions (Sections 4 and 5), which provide a pixelated Σ map and
its covariance matrix in each regime.
In this subsection, we derive constraints on the projected

halo properties (Section 6.1) from lensing data. We model the
observed Σ field with a projected ellipsoidal NFW profile
(Section 6.1), specified by ( , , , )s sk x y  . Additionally, we
include the halo centroid cq as parameters to conservatively
account for the degree of miscentering.

7.1.1. Weak-lensing Data

The 2c function for the Subaru weak-lensing observations is
expressed as (Oguri et al. 2005)

( )( ) ( ) ( ) ( )Cˆ ˆ ,

(43)
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where { ( )}m m
N

1
pixqS = S = is the mass map from the 2D weak-

lensing analysis (Section 4.2), C 1- is the inverse of the error
covariance matrix, and the hat symbol denotes a modeled
quantity. The corresponding likelihood is ( , , , ,WL s sk x y  

) exp( 2)c WL
2q cµ - .

Figure 11 shows the results in terms of the marginalized
posterior distribution for the scale convergence, s s ck = S S ,
and the scale radius, Ds s lq x= . Table 5 summarizes margin-
alized constraints on the individual parameters. In the present
study, we employ the robust biweight estimators of Beers et al.
(1990) for the central location (mean) and scale (standard
deviation) of the marginalized posterior distributions (e.g.,
Sereno & Umetsu 2011; Umetsu et al. 2014).

7.1.2. Strong-lensing Data

Mass maps derived from strong lensing exhibit a high degree
of correlation between adjacent regions. The problem is
exacerbated for parametric methods, which model the total
mass distribution by a superposition of lens components
assuming parametric density profiles. This also persists in free-
form modeling (Lubini et al. 2014), albeit to a lesser degree.
The degree of correlation can be examined by an eigenvalue

analysis. Let us decompose the C matrix as C U U 1= L - , with
Λ the diagonal matrix of eigenvalues and U the unitary matrix
of eigenvectors. The first few eigenvalues describe the principal
modes of variation of the mass model (Lubini et al. 2014;
Mohammed et al. 2014). Large eigenvalues correspond to
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massive pixels, namely, those composing the inner part of the
mass distribution that is best constrained by strong lensing. The
ordered list of eigenvalues progressively decreases with
increasing rank and drops abruptly near the maximum rank,
indicating a high degree of correlation (Figure 12).

Here, we employ a regularization approach to conservatively
account for the high degree of correlation of the covariance
matrix. This was first proposed by Umetsu et al. (2012) for the
1D analysis of strong-lensing mass profiles. If the covariance
matrix C is not degenerate, we can construct a 2c function for
each group of multiple images as

( )
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where mS is the observed Σ value of the mth pixel,
U( )U m l ml låS = S is the projection onto the eigenbasis, α

runs over the four groups of images (Section 5), and the hat
symbol is used to denote a modeled quantity. Each group has
its ownS, C, U, and Λ. Here we drop the index α on the right
hand side to simplify the notation.

In this approach, we limit ourselves to the principal modes
and truncate the summation at Nmax largest eigenvalues as
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. (45)
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A natural choice for Nmax is the number of observational
constraints. We thus set N N2max im= with Nim the number of

multiple images used. The total 2c is given by

. (46)SL
2

SL,
2åc c=

a
a

We find that the eigenvalues before the drop range
approximately between the minimum 2k value in the
ensemble-averaged pixelated model and that found from the
whole ensemble of models generated by PIXELENS (Section 5.2).
This is demonstrated in Figure 12. The N2 imth eigenvalue lies
approximately in the middle of this range and sets a
conservative scale. We checked the reliability and performance
of this regularization method using analytical models.
Some multiple image systems share very similar configura-

tions (e.g., systems 1 and 2). Such a redundancy is valuable for
determining cosmological parameters (Lubini et al. 2014), or
for improving the sensitivity to local substructures. Assigning a
full weight to systems having similar configurations would
inflate the relative contribution of strong lensing with respect to
weak lensing. To avoid this, we multiply SL

2c by a weighting
factor wSL, defined as the inverse of the geometrical average of
the number of such redundant image systems. We find
w 2 3SL = for our analysis. The likelihood is then defined as

w( , , , , ) exp( 2)SL s s c SL SL
2qk x y cµ -   .

The results are summarized in Table 5 and Figure 11.

7.1.3. Combining Weak and Strong Lensing

We now combine the weak- and strong-lensing likelihoods
constructed in Sections 7.1.1 and 7.1.2, respectively, to jointly
constrain the projected NFW parameters. The likelihood
function GL for the combined weak plus strong lensing data
can be written as (Sereno & Umetsu 2011)

( )wexp 2 , (47)GL WL SL WL
2

SL SL
2c c= ´ µ é

ëê
- + ù

ûú
  

where WL
2c and SL

2c are defined by Equations (43) and (46),
respectively.
Figure 11 shows that the scale radius ( sq ) and the scale

convergence ( sk ) are highly degenerate and anti-correlated. In
particular, the scale radius is poorly constrained by strong
lensing alone because of the limited coverage of multiple
images, 1.1q ¢ (Section 5.2). The allowed range of sq lies well
outside the region where the multiple images are observed.
Thus, the inference of parameters by strong lensing requires an
extrapolation well beyond the observed region. For this reason,
in the present study, we do not consider strong-lensing-only
triaxial modeling (see Table 7). On the other hand, since the
posterior distributions from the independent weak-lensing and
strong-lensing analyses are compatible, combining weak
lensing with strong lensing provides improved parameter
constraints (Table 5).

7.2. Combined X-Ray Plus SZE Analysis

With a known halo geometry (e.g., sphericity) and under the
ideal gas assumption, the thermodynamic quantities of the ICM
are overconstrained by X-ray and SZE data. This is because the
thermal pressure can be independently determined from
thermal SZE data and X-ray spectroscopy/imaging data. We
can therefore relax the assumption of spherical symmetry to
solve for the elongation of the ICM distribution (Sereno et al.
2012). Combining gravitational lensing and X-ray/SZE
observations with minimal geometric assumptions (Section 6.2)
allows us to break the degeneracy between mass and elongation

Figure 11. Marginalized posterior distribution for the projected NFW
parameters ( ,s sk q ) obtained from three different lensing data sets (see Table 5),
namely weak-lensing-only (black; WL), strong-lensing-only (blue; SL), and
combined weak and strong lensing (red shaded; WL+SL). For each case, the
contour levels are at exp( 2.3 2)- and exp( 11.8 2)- of the maximum,
corresponding to the 1s and 3σ confidence levels, respectively, for a Gaussian
distribution. The scale convergence s s ck = S S is normalized to a fiducial
source redshift of z 2s = .
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for the total matter distribution (Sereno et al. 2013). Such a
multi-probe approach based on lensing and X-ray/SZE data is
free from the assumption of HSE, compared to the lensing plus
X-ray analysis, which relies on equilibrium assumptions
between the gravitational potential and pressure components
(see Limousin et al. 2013).

In our multi-probe approach, the ICM distribution is
modeled with an ellipsoidal parametric profile which can fit
X-ray surface-brightness (SX) and temperature (TX) distribu-
tions. Comparison with the SZE amplitude then determines the
elongation e ICM

 For example, for an isothermal plasma (De
Filippis et al. 2005), we have

e D
S

T

T
1 (48)ICM

l
X

SZE
2

X
2

X
µ

D L

with TSZED the SZE temperature decrement and XL the X-ray
cooling function of the ICM. In this work, we rely on the X-ray
data to constrain the ICM morphology in projection space; we
use aperture-integrated constraints on the SZE signal (Table 6)
to determine the line of sight elongation e ICM

 .
Our X-ray data are taken from Sereno et al. (2012), who

performed an X-ray analysis on Chandra and XMM-Newton
observations. Here we briefly summarize essential results

needed for this study. For details, we refer to Sereno et al.
(2012). Sereno et al. (2012) showed that exposure corrected
and point-source removed Chandra X-ray images in the
0.7–2.0 keV band are well described by concentric ellipses
with ellipticity 0.15 0.03X =  and orientation angle

(12 3)Xy =  degrees measured east of north. Following
Sereno et al. (2012) and Sereno et al. (2013), we model the 3D
electron density in the intrinsic coordinate system with the
following parametric form (Vikhlinin et al. 2006; Ettori
et al. 2009):
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where n0 is the central electron density, rc is the ellipsoidal
coreradius, r r( )t c> is the ellipsoidal truncation radius, β is the
slope in the intermediate density regions, and γ is the outer
slope. The 3D gas density is parametrized as (Sereno et al.
2013)

( )
T

T

R r1
, (50)0

T
2 0.45

=
é
ëê

+ ù
ûú

where T0 is the central gas temperature, and rT describes a
temperature decline at large cluster radii. The parametrizations
of Equations (49) and (50) were motivated by the absence of
cool-core features in our data. For further justification, see
Section 5 of Sereno et al. (2012).
The thermal SZE provides a complementary measure of the

thermal energy content in a cluster. In this study, we perform a
self-consistent multi-scale analysis of high-significance 30 GHz
interferometric SZE observations of A1689 obtained with the

Table 5
Parameters of the Projected NFW Model Constrained From Lensing Observations

Dataa sk b
sx
c ϵd y e cq f

(¢) (deg) ()

WL 0.97 ± 0.16 1.74 ± 0.27 0.29 ± 0.07 14.2 ± 8.4 −1.2 ± 3.0, 4.9 ± 4.1
SL 0.73 ± 0.14 3.00 ± 0.90 0.27 ± 0.09 13.0 ± 9.8 −0.8±1.9, −4.8 ± 2.3
GL 1.03 ± 0.11 1.70 ± 0.20 0.29 ± 0.05 11.4 ± 4.9 0.0 ± 1.3, −1.9 ± 1.4

Note.
a WL: weak lensing shear and magnification; SL: strong lensing; GL: combined strong lensing, weak-lensing shear and magnification.
b Scale convergence, s s ck = S S , normalized to a reference source redshift of z 2s = .
c Projected scale radius of the elliptical NFW model measured along the major axis.
d Projected mass ellipticity, q1= - ^ , with q^ the projected minor–major axis ratio.
e Position angle of the major axis measured east of north.
f Halo centroid position relative to the BCG position.

Figure 12. Ordered eigenvalues L of the covariance matrix for the PIXELENS

mass reconstruction. The vertical red line indicates the maximum rank
considered for our analysis, N N2max im= , i.e., the number of observational
constraints on the image position. The blue horizontal line shows the minimum

2k value found in the ensemble-averaged pixelated model. The green horizontal
line shows the minimum 2k value from the entire statistical ensemble of models
generated by PIXELENS. The results are shown for the covariance matrix as
constrained by the systems 1, 5, and 11.

Table 6
Integrated Comptonization Y Parameter Measured

Interior to a Cylinder of Radius r

Instrument r Y r( )<
(¢) (10 10- sr)

BIMA/OVRO 1.5 1.00 ± 0.28
BIMA/OVRO 3.0 2.64 ± 0.97
SZA 1.5 1.11 ± 0.10
SZA 3.0 2.83 ± 0.42
SZA 4.5 4.33 ± 0.81
SZA 6.0 5.50 ± 1.18
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Berkeley-Illinois-Maryland Array (BIMA), the Owens Valley
Radio Observatory (OVRO), and the SZA. The BIMA and
OVRO observations of A1689 are presented in LaRoque et al.
(2006), while the SZA observations of A1689 are presented in
Gralla et al. (2011). Owing to the different scales probed by the
instruments, we fit the OVRO/BIMA and SZA data separately
using the spherical Arnaud et al. (2010) pressure profile. This
profile is an adaptation of the generalized NFW pressure profile
first proposed by Nagai et al. (2007), and first fitted to SZE
observations in Mroczkowski et al. (2009). A joint fit to the
OVRO, BIMA, and SZA data was also performed to determine
the best-fit SZE centroid reported in Table 1.

As in Mroczkowski et al. (2009), a model for the cluster and
contaminating radio sources is computed in the image plane,
then Fourier transformed for comparison to the interferometric
data. The best-fit model and 1σ confidence intervals are
determined using a Markov chain Monte Carlo (MCMC)
procedure. The OVRO and BIMA data measure radial scales
from 0 ′. 5–4′, while the SZA data probe radial scales from 1′–6′.
Bonamente et al. (2012) showed that the adoption of the
Arnaud et al. (2010) profile versus other non-isothermal
pressure profiles accurate out to r500c does not significantly
impact the parameters derived from the fits when the radii for
which the results are computed are at scales accessible to the
instruments.

A summary of the SZE data used is given in Table 6. The
integrated Comptonization parameter Y r( )< interior to a
cylinder of radius r is written in terms of the electron density
and temperature profiles (Equations (49) and (50)) as

Y
k

m c
d dl n T (51)T B

e
2 e

r
ò ò

s
= W

W

with Ts the Thomson cross section, kB the Boltzmann constant,
me the electron mass, and c the speed of light in vacuum; rW is
the solid angle of the integration aperture.

The model profiles given by Equations (49)–(51) are then
compared with combined X-ray surface brightness (SX), X-ray
spectroscopic temperature (TX), and thermal SZE decrement
(Y) observations. Briefly summarizing, the X-ray surface
brightness profile S{ }i i

N
X, 1

S
= observed by Chandra was extracted

from N 68S = elliptical annuli out to an elliptical radius of
ξ = 900 kpc h70

1- ( 5~ ¢), and the XMM-Newton temperature
profile T{ }i i

N
X, 1

T
= was measured in N 5T = elliptical annual bins

out to ξ = 900 kpc h70
1- (Sereno et al. 2012). Thanks to the

improved SZE analysis, the Y parameter is measured at several
apertures from BIMA/OVRO and SZA data as summarized in
Table 6. We find good consistency between the BIMA/OVRO
and SZA results at r = 1 ′. 5 and 3′ where these independent data
overlap. At an integration radius of r = 3′, our results are also
in excellent agreement with Y ( 3 ) (2.5 0.6) 10 10< ¢ =  ´ - sr
from 94 GHz interferometric observations with the 7-element
AMiBA (Umetsu et al. 2009, their Table 5).

The X-ray part of the 2c function can be written as (Sereno
et al. 2012)

S S T Tˆ ˆ
(52)

i

N
i i

i i

N
i i

i
X
2

1

X, X,

S,

2

1

X, X,

T,

2
S T

å åc
s s

=
æ

è
çççç

- ö

ø

÷÷÷÷÷
+

æ

è
çççç

- ö

ø

÷÷÷÷÷= =

with (S Tˆ , ˆX X) model predictions for the corresponding X-ray
observables and ( ,S Ts s ) their corresponding errors.

The 2c function for the SZE observations is written as

Y Ŷ
, (53)
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where YjiD is the differential Y parameter for the jth instrument
(BIMA/OVRO or SZA) in the ith annular ring,

Y Y r Y r( ) ( )ji j i j i1D º < - <+ , and ji,sD is its 1s uncertainty.
The Y values are sampled at every 1.5¢ (Table 6), which is
sufficiently larger than the synthesized beam. Hence, differ-
ential Y measurementsD in adjacent annuli are approximately
uncorrelated given the annulus size considered.
A combined analysis of the X-ray and SZE data is performed

using the combined function 2
X
2

SZE
2c c c= + . The parameter

space is explored using an MCMC approach as described in
Sereno et al. (2013). Since parameter constraints on the ne and
T models are dominated by the Chandra surface brightness and
XMM-Newton temperature data, respectively, we find our
results are fully consistent with those of Sereno et al. (2012)
based on the same X-ray data. The best-fit central temperature
(T 9.8 0.20 =  keV, Sereno et al. 2012) is in good agreement
with the Suzaku X-ray results of Kawaharada et al. (2010). On
the other hand, using the improved SZE data, we obtain tighter
constraints on the elongation e ICM

 . The resulting posterior

distribution of e ICM
 is shown in Figure 13. The posterior mean

and standard deviation are e 1.70 0.29ICM =  .

7.3. Multi-probe Deprojection

Here we perform joint likelihood analyses of combined
lensing and X-ray/SZE data, using different combinations of
lensing data sets (Section 7.1).
The likelihood ICM of the X-ray/SZE data is written in

terms of two observable ICM parameters (Section 6.3),
namely, the ellipticity ICM and line of sight elongation e ICM


of the ICM. Following Sereno et al. (2012, 2013), we include a
nuisance parameter e sysD  that quantifies the additional
uncertainty on e ICM

 , accounting for potential calibration
systematics in the X-ray/SZE measurements. It is assumed to
follow a normal distribution with zero mean and standard
deviation 0.07syss = . Since the systematic uncertainty is quite
small compared to the width of the marginalized posterior

Figure 13. Marginalized posterior probability distribution of the elongation
e ICM
 as derived from the combined X-ray plus SZE analysis (Section 7.2).
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distribution P e( )ICM
 (Figure 13), the impact on the final results

is minor.
The X-ray/SZE part of the likelihood

e e( , ; )ICM
ICM ICM sysD   is written as (Sereno et al. 2013)
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where X and ,Xs are the measured value of the ICM ellipticity
and its uncertainty, respectively (Section 7.2).

To perform a joint analysis with the X-ray/SZE data, we
consider three different likelihood functions for the lensing
part, namely, WL , SL , and GL WL SL=   , which are all
functions of the projected NFW parameters , , ,s sk x y  , and

cq . Following Sereno et al. (2013), we exploit constraints from
the X-ray analysis about the gas centroid X

cq and position angle
Xy (Section 7.2), which are used as priors for the centroid cq

and position angle y of the underlying halo (see Section 4 of
Sereno et al. 2013). These priors are consistent with the
geometric assumptions we have made in Section 6.2.

For our base model, we use flat priors for the intrinsic axis
ratios of the underlying halo (Section 6.4). We also consider an
alternative prior distribution predicted by cosmological N-body
simulations of Jing & Suto (2002). For details, we refer to
Sereno & Umetsu (2011) and Sereno et al. (2013).

8. RESULTS AND DISCUSSIONS

The resulting constraints on the intrinsic parameters for the
underlying halo (M c q q, , , , cosa b200c 200c J) are given in
Table 7, for different combinations of data sets and three
different priors on the axis-ratio distribution: (1) spherical prior
(q q 1a b= = ); (2) flat distribution of axis ratios and random
distribution of halo orientations (Section 6.4); (3) N-body

ΛCDM predictions (Jing & Suto 2002). The baseline results
for the combined weak/strong-lensing and X-ray/SZE analysis
obtained with flat priors are shown in Figure 14. Table 8 gives
a summary of our baseline constraints on the intrinsic axis
ratios of the ICM halo, (q q,a b

ICM ICM), and on the ICM-to-

matter ratio of halo eccentricities, e eICM . Table 9 lists the
published (M c,200c 200c) measurements for A1689 based on the
combination of both weak and strong lensing. For previous
compilations, see Comerford & Natarajan (2007, their Table
A1) Limousin et al. (2007, their Table 4), Umetsu &
Broadhurst (2008, their Table 5), Corless et al. (2009, their
Table 4), and Coe et al. (2010, their Table 2).

8.1. Mass and Concentration

8.1.1. Spherical Modeling

The degree of concentration of A1689 has been a subject of
controversy. Here we first compare the results obtained
assuming a spherical NFW halo (Table 7) to those of previous
work. Our full 2D weak-lensing analysis based on Subaru
BVR i zC ¢ ¢ data yields a projected concentration of
c 8.9 1.1200c =  (c 11.2 1.4vir =  ) at M (1.31200c = 

M h0.11) 1015 1´ -
 . This is in excellent agreement with,

and improved from, our earlier weak-lensing work:
c 10.7200c 2.7

4.5= -
+ (Umetsu & Broadhurst 2008) and

c 10.2200c 2.0
2.5= -

+ (Umetsu et al. 2011b), both of which are
based on the joint analysis of shear and magnification data from
Subaru Vi′ imaging.19 This accurate agreement comes in spite
of using different data reduction procedures and mass
reconstruction methods (Sections 2–4).
Combining weak and strong lensing reduces the uncertain-

ties on the concentration. The HST strong-lensing data alone
also favor a high degree of projected concentration,
c 8.69 1.26200c =  , but with a somewhat higher halo mass,
M M h(1.79 0.31) 10200c

15 1=  ´ -
 . The combined weak

Table 7
Intrinsic Parameters of the Total Matter Distribution Obtained Using Different Data Sets and Different Priors

Dataa Prior M200c c200c qa qb cos Jb

( M h1015 1-
 )

WL Spherical 1.31 ± 0.11 8.87 ± 1.11 1 1 L
WL Flat 1.28 ± 0.26 10.70 ± 2.85 0.39 ± 0.18 0.77 ± 0.15 0.54 ± 0.29
WL N-body 1.22 ± 0.23 9.15 ± 1.77 0.47 ± 0.08 0.66 ± 0.12 0.60 ± 0.30
SL Spherical 1.79 ± 0.31 8.69 ± 1.26 1 1 L
GL Spherical 1.32 ± 0.09 10.10 ± 0.82 1 1 L
GL Flat 1.49 ± 0.25 10.30 ± 2.52 0.45 ± 0.20 0.77 ± 0.14 0.47 ± 0.29
GL N-body 1.41 ± 0.19 9.65 ± 1.54 0.47 ± 0.08 0.66 ± 0.12 0.60 ± 0.29
WL + X/SZ Flat 1.21 ± 0.19 7.91 ± 1.41 0.39 ± 0.16 0.56 ± 0.20 0.93 ± 0.06
WL + X/SZ N-body 1.16 ± 0.17 7.42 ± 1.21 0.40 ± 0.08 0.52 ± 0.12 0.94 ± 0.05
GL + X/SZ Flat 1.24 ± 0.16 8.36 ± 1.27 0.39 ± 0.15 0.57 ± 0.19 0.93 ± 0.06
GL + X/SZ N-body 1.20 ± 0.13 7.89 ± 0.96 0.40 ± 0.08 0.52 ± 0.12 0.94 ± 0.05

Note. Intrinsic parameters of the total matter distribution of A1689 derived from a triaxial analysis of multiwavelength data sets, using spherical, flat, and N-body
priors on the distribution of axis ratios (q q,a b).
a WL: weak-lensing shear and magnification; SL: strong lensing; GL: combined strong lensing, weak-lensing shear and magnification; X/SZ: combined X-ray and
SZE measurements.
b Cosine of the angle between the major axis and the line of sight.

19 Umetsu & Broadhurst (2008) derived a ( )qk map for the cluster using an
entropy-regularized maximum-likelihood combination of 2D shear and
magnification maps. Umetsu et al. (2011b) derived a ( )k q profile from a
joint likelihood analysis of azimuthally averaged shear and magnification
measurements.
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and strong lensing data yield c 10.10 0.82200c =  at
M M h(1.32 0.09) 10200c

15 1=  ´ -
 , corresponding to the

Einstein radius of 52Ein 7
6q = -

+ at z 2s = . Our analysis thus
reproduces the correct size of the observed Einstein radius
(Table 1). These results are in good agreement with those of
Umetsu & Broadhurst (2008) and Coe et al. (2010; Table 9), in
spite of using completely independent approaches to strong
lens modeling (Section 5). Most recent weak-and-strong
lensing studies of A1689 appear to converge toward
c 9200c ~ –10 with a typical measurement uncertainty of 10%

Figure 14. Marginalized posterior distributions for the intrinsic parameters of the triaxial cluster model obtained from a joint analysis of the weak/strong-lensing and
X-ray/SZE data. In each panel, the contours levels are shown at exp( 2.3 2)- , exp( 6.17 2)- , and exp( 11.8 2)- of the maximum, corresponding to the 1σ, 2σ, and 3σ
confidence levels, respectively, for a Gaussian distribution. In the qb vs. qa plane, the green solid (diagonal) and dashed (horizontal) lines represent prolate (q qa b= )
and oblate (q 1b = ) configurations, respectively, and the thick red line shows the 1s contour for the axis-ratio distribution in ΛCDM N-body simulations of Jing &
Suto (2002).

Table 8
Intrinsic Shapes of the ICM Distribution

Priors qa
ICM qb

ICM
e eICM

Flat 0.60 ± 0.14 0.70 ± 0.16 0.87 ± 0.07
N-body 0.58 ± 0.10 0.65 ± 0.11 0.89 ± 0.06

Note. Constraints on the intrinsic axis ratios (q q,a b
ICM ICM) of the ICM

distribution and the relation with the total matter distribution (e eICM ), obtained
from the full triaxial analysis of combined weak/strong-lensing and X-ray/SZE

data sets (Section 7). qb
ICM and e eICM are derived parameters.
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(Table 9; with the spherical prior), thanks to the advanced
analysis methods and greatly improved quality of data.

8.1.2. Triaxial Modeling

Including triaxiality weakens parameter constraints from
lensing data (Oguri et al. 2005; Corless et al. 2009), compared
to those derived assuming spherical symmetry. The parameter
constraints become more degenerate and less restrictive
because of the lack of information of the halo elongation
along the line of sight (Table 7). These trends are also found in
the posterior distributions from our data (Tables 7 and 9).

Now we consider the results from full triaxial analyses
combining lensing with X-ray/SZE data. Table 7 shows that our
posterior inference of the intrinsic parameters is insensitive to the
assumed choice of priors (“Flat” or “N-body”) when the line of
sight information from X-ray/SZE data is combined with lensing,
suggesting that the posterior constraints are dominated by the
likelihood (i.e., information from data) rather than the prior
(Sereno et al. 2013). Whatever the assumptions regarding the
axis ratios, we find the posteriors (Table 7) to be statistically
compatible with the predicted distribution c(M) for the full
population of halos in ΛCDM cosmological simulations
(Bhattacharya et al. 2013; Meneghetti et al. 2014; Diemer &
Kravtsov 2015).20 This is demonstrated in Figure 15 for the
weak-lensing plus X-ray/SZE analysis and for the weak/strong-
lensing plus X-ray/SZE analysis, both based on the uninformative

priors. Here we adopt the median c–M relation obtained by
Diemer & Kravtsov (2015) as a reference model for comparison.
A1689 appears to be a high mass cluster of

M M h10200c
15 1~ -

 in the high-concentration tail of the
predicted c(M) distribution (Figure 15). The posterior tail at
lower concentrations of A1689 is only 1 s away from the
predicted median concentration ( clog 0.58 0.1610 200c  ;
Figure 15). Our results are also in agreement with those obtained
by a multi-probe analysis of Sereno et al. (2013; see Table 9),
who developed the triaxial inversion algorithm used in this work.
The halo concentration and orientation are strongly corre-

lated (Sereno & Umetsu 2011; Sereno et al. 2013). For the
posterior range 0 5J ⩽ ⩽ assuming a nearly perfect
alignment between the halo major axis and the line of sight,
we find c 7.4 1.0200c =  (6.7±1.1) from weak/strong lensing
(weak lensing) combined with the X-ray/SZE data.

8.2. Intrinsic Shape and Orientation of A1689

We have obtained evidence for a triaxial mass distribution of
A1689. The projected mass distribution derived from weak-
lensing shear and magnification reveals a north–south elonga-
tion ( 14 . 2 8 . 4y = ◦ ◦

 east of north, see Table 5 and
Figure 1). We have determined the ellipticity of the projected
mass distribution to be 0.29 0.07=  (Table 5), which is
typical for the population of collisionless CDM halos (Jing &
Suto 2002) but slightly rounder than the standard CDM
prediction for the mean halo ellipticity, 0.4á ñ ~ (Oguri
et al. 2010). The matter ellipticity is detected at the 4σ level
from weak lensing alone, thanks to the greatly improved
quality of Subaru data. Our free-form reconstruction from HST
strong lensing gives a consistent estimate of 0.27 0.09=  .

Table 9
Published Mass and Concentration Measurements of A1689 From Combined Weak and Strong Lensing

Author M200c c200c Priora External datab

( M h1015 1-
 )

Spherical modeling
Broadhurst et al. (2005a) 1.20 ± 0.13 10.9 0.9

1.1
-
+ Spherical L

Halkola et al. (2006) 1.58 ± 0.14 7.6 ± 0.5 Spherical L
Umetsu & Broadhurst (2008) c 1.30 ± 0.11 10.1 2.20.7

0.8 -
+ Spherical L

Coe et al. (2010) 1.3 0.2
0.3

-
+ 9.2 ± 1.2 Spherical L

This work 1.32 ± 0.09 10.10 ± 0.82 Spherical L

Triaxial modeling
Oguri et al. (2005) d 1.14 0.51

0.26
-
+ 13.6 10.5

1,8
-
+ Flat L

Sereno & Umetsu (2011) 1.07 ± 0.23 9.3 ± 2.0 Flat L
This work 1.49 ± 0.25 10.30 ± 2.52 Flat L

With line of sight information
Corless et al. (2009) 0.83 ± 0.16 12.2 ± 6.7 Flat + cos J L
Sereno & Umetsu (2011) 0.99 ± 0.17 7.7 ± 1.1 Flat + cos J L
Morandi et al. (2011) 1.81 ± 0.06 5.71 ± 0.47 Flat X-ray
Sereno et al. (2013) 0.93 ± 0.12 7.8 ± 0.7 Flat X-ray/SZE
This work 1.24 ± 0.16 8.36 ± 1.27 Flat X-ray/SZE

Notes. The results based on the combination of both weak and strong lensing are summarized (converted from quoted values assuming an NFW density profile if
necessary).
a Spherical: spherical prior on the intrinsic axis-ratios; Flat: flat prior on the intrinsic axis ratios; cos J: ΛCDM-like prior on the biased orientation of strong-lensing
cluster halos (Corless et al. 2009).
b External data sets used in combination with lensing for constraining the line of sight elongation.
c The weak-lensing mass map of Umetsu & Broadhurst (2008) was used in the triaxial analyses by Oguri et al. (2005), Sereno & Umetsu (2011), Morandi et al.
(2011), and Sereno et al. (2013).
d NFW-equivalent of triaxial model parameters from Oguri et al. (2005).

20 The theoretical predictions from Bhattacharya et al. (2013) and Diemer &
Kravtsov (2015) are based on DM-only simulations, and those from
Meneghetti et al. (2014) are based on nonradiative simulations of DM and
baryons.
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The ICM and matter distributions are co-aligned in projection
( 12 3Xy =    ) but with different ellipticities ( 0.15X = 
0.03), which is consistent with the geometric assumptions
made (Section 6.2).

When combined with X-ray/SZE observations, our lensing
data favor a triaxial geometry of the matter distribution with
minor–major axis ratio q 0.4a ~ and major axis closely aligned
with the line of sight ( 22 10J =   , Table 7). These results
are robust against the choice of priors and combinations of
lensing data sets. Despite that the intermediate–major axis ratio
qb is less constrained, the data prefer prolate (q qa b= ) over
oblate (q 1b = ) configurations. A spherical configuration for
A1689 is strongly ruled out. Overall, triaxial configurations fit
the combined lensing and X-ray/SZE data much better than
axially symmetric halos do (Sereno et al. 2013).

Our analysis shows that A1689 is elongated along the line of
sight, as found by previous studies (Sereno et al. 2012, 2013;
Limousin et al. 2013). From the posterior samples, we find
e 1.19 0.37=  (1.20 ± 0.34) and e 1.22 0.24ICM = 
(1.24 ± 0.25), as constrained by the combined weak/strong-
lensing (weak lensing) and X-ray/SZE data sets. Such biased
orientations are favored, although the intrinsic orientations are
a priori assumed to be random. The a priori probability of a
randomly oriented halo to have 45J <  is ∼29% (Sereno et al.
2013). The a posteriori probability of such a configuration is
found to be 96% (99%) assuming a flat (N-body-like)
distribution of axis ratios. We emphasize that the use of
X-ray plus SZE data is essential for obtaining data-driven
constraints on the line of sight elongation. To break parameter
degeneracies in a lensing-only triaxial analysis, one would have
to assume informative priors on the halo shape and orientation
(Corless et al. 2009; Sereno & Umetsu 2011).

We find that the ICM is mildly triaxial with q 0.6a
ICM ~ and

q 0.7b
ICM ~ (Table 8). The ratio of ICM to matter eccentricities

is e e 0.87 0.07ICM =  (Table 8), supporting the theoretical
assumption we have made that the shape of the gas distribution
is rounder than the underlying matter (Section 6.2). On the
other hand, we find that the gas distribution is more elongated
than the gravitational potential (e e 0.7ICM  , Lee &
Suto 2003), suggesting a deviation from HSE. These results
are again insensitive to the choice of the priors. The inferred
values of qa

ICM and qb
ICM are somewhat lower (more elongated)

than, but consistent within errors with, the results of Sereno
et al. (2012, 2013) based on the same X-ray data. The
difference is mainly due to the improved, self-consistent SZE
analysis.

8.3. Gas Mass Fraction

We compute the ratio of spherically enclosed gas mass
M r( )sph,gas < to total mass M r( )sph,tot < using the posterior
samples of the ellipsoidal cluster model:

f r
M r

M r
( )

( )

( )
, (55)gas

sph,gas

sph,tot
< º

<

<

where M r( )sph < denotes the total mass enclosed within a

sphere of radius r, rM r d dr r( ) ( )
r

sph
4 0

2ò ò r< = W ¢ ¢ ¢
p

with

dΩ the solid angle. In Table 10, we list the values of ellipsoidal
and spherical overdensity mass of the cluster evaluated at
Δ = 200 and 500.
The resulting fgas profile is shown in Figure 16 as a function of

integration radius r. The gas mass fraction within
r0.9Mpc 1.2 2500c~ is estimated as f ( 0.9Mpc)gas < =

0.100 0.016
0.031

-
+ . When the gas mass measurements are extrapolated

to r500c (Table 10), we find f r( ) 0.112gas 500c 0.020
0.039< = -

+ . When
compared to the cosmic baryon fraction fb inferred from Planck
Collaboration et al. (2015b), f r f( ) 0.71bgas 500c 0.12

0.25< = -
+ . These

are consistent with typical values observed for high-mass clusters
(Allen et al. 2008; Umetsu et al. 2012; Okabe et al. 2014).
Previous studies based on X-ray and lensing data found

relatively low fgas values for A1689 using lensing total
mass estimates, but assuming spherical symmetry21: fgas

r h( 0.25 ) (0.0557 0.0039)200c 70
3 2< =  - (Lemze et al. 2008);

f r( ) 0.0552gas 2500c 0.0062
0.0056< = -

+ , f r( ) 0.0812gas 500c 0.0157
0.0145< = -

+ ,

and f r( ) 0.1053gas 200c 0.0246
0.0227< = -

+ (Okabe et al. 2014, see also
Kawaharada et al. 2010).

Figure 15. Marginalized constraints on the ellipsoidal NFW model parameters
(M c,200c 200c) for A1689 compared to the c–M relations predicted for the full
population of halos in ΛCDM cosmological simulations (Bhattacharya
et al. 2013; Meneghetti et al. 2014; Diemer & Kravtsov 2015). The yellow
shaded regions show the results from weak lensing combined with X-ray/SZE
data. The red contours are from the full analysis of weak/strong-lensing and
X-ray/SZE data. For each case, the contours show the 68.3% and 95.4%
confidence levels in the c–M plane. The light blue areas show the 1σ and 2σ
ranges of intrinsic halo concentrations (with a 68% scatter of 0.16 dex),
respectively, as obtained by Diemer & Kravtsov (2015). All model predictions
are evaluated at the cluster redshift z 0.183l = . Overall, the inferred range of
c200c is high but overlaps with the ∼2σ tail of the predicted distribution for
high-mass cluster halos.

Table 10
Ellipsoidal and Spherically Enclosed Mass Estimates For A1689

Overdensitya Ellipsoidalb Spherically Enclosedc

Δ RD M R( )< D rD M r( )sph < D

500 1.89 ± 0.46 0.97 ± 0.13 1.08 ± 0.06 0.88 ± 0.13
200 2.79 ± 0.69 1.24 ± 0.16 1.60 ± 0.16 1.15 ± 0.16

Notes. The overdensity radii are given in units of Mpc h 1- . The enclosed

masses are in units of M h1015 1-
 .

a Mean interior overdensity with respect to the critical density cr for closure of
the universe at z 0.183= .
b Ellipsoidal overdensity radius RD and total mass enclosed within RD.
c Spherical overdensity radius rD and spherically enclosed total mass within rD.

21 Lemze et al. (2008) found r 1.71200c = Mpc h 1- from their analysis.
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Umetsu et al. (2009) measured gas fractions for a sample of
four high-mass clusters including A1689 from a joint analysis of
AMiBA SZE and Subaru weak-lensing observations, combined
with published X-ray temperature measurements. Assuming
spherical symmetry, they found for A1689 f r( )gas 2500c< =

0.098 0.026
0.025

-
+ and f r( ) 0.115 0.029gas 500c< =  , in excellent

agreement with our results. Their gas fraction measurements
are expected to be less sensitive to triaxiality because their fgas
estimator depends on the ratio of the SZE and lensing signals,
which are subject to similar projection effects albeit with
somewhat different degrees of impact.

8.4. Degree of HSE

A quantitative assessment of the degree of equilibrium in the
ICM is a critical issue for cluster cosmology based on
hydrostatic mass estimates (e.g., Planck Collaboration et al.
2014; Sereno & Ettori 2014). A significant advantage of our
method is the ability to determine the intrinsic structure, shape,
and orientation of the cluster system without a priori assuming
HSE (Sereno et al. 2013). This allows us to compare the ICM
properties directly to the gravitating mass corrected for
projection effects, and thus to quantify the contribution of the
thermal gas pressure Pth to the total equilibrium pressure Ptot

(Kawaharada et al. 2010; Molnar et al. 2010). Here Ptot is
determined by the gravitational potential Φ through Ptot =

gasr - F with gasr the gas mass density. A consequence of the
pressure equilibrium is the X-ray shape theorem (Buote &
Canizares 1994), namely, that the gas in strict HSE is expected
to follow iso-potential surfaces of the underlying matter
distribution. For A1689, we find that the gas is more elongated
than the gravitational potential (see Section 8.2), which points
to a deviation from equilibrium.

In Figure 17, we show the ratio of thermal to equilibrium gas
pressure, P Pth tot, as a function of ellipsoidal radius R of the
ICM distribution. To this end, we have recomputed the
posterior probability distributions for the cluster parameters,
by imposing a sharp prior of e e 0.7ICM = (see Sereno et al.
2013), corresponding to the assumption that the gas shape

follows the gravitational potential. We find P P 0.6th tot ~ out to
∼0.9Mpc ( r0.4 200c~ ), indicating a significant level (∼40%) of
non-thermal pressure support. The results here are consistent
with Sereno et al. (2013), although our analysis favors a
slightly higher level of non-thermal pressure support. We find
no significant radial trend in the P Pth tot ratio profile.
Our results are in agreement with Molnar et al. (2010), who

analyzed a simulated sample of massive regular clusters of
M h(1 2) 1015 1- ´ -
 having a smooth density profile, drawn

from high-resolution cosmological simulations. Their simula-
tions are therefore highly relevant to interpreting the observa-
tions of A1689. They found a significant non-thermal
contribution due to subsonic gas motions in the core region
(20%–45%), a minimum contribution (5%–30%) at about

r0.1 vir (Lau et al. 2009), growing outward to about 30%–45%
at the virial radius rvir (Nelson et al. 2014).
Molnar et al. (2010) also tested the validity of HSE in

A1689 using gravitational lensing (see Umetsu & Broadhurst
2008; Kawaharada et al. 2010) and Chandra X-ray observa-
tions under the assumption of spherical geometry, finding a
non-thermal contribution of 40%. As discussed by Sereno
et al. (2013), this however indicates that this test is highly
sensitive to biases in the X-ray temperature measurements
(Donahue et al. 2014). For the cluster, we find the Chandra
temperatures are about 10% higher than the XMM-Newton
results used here (Sereno et al. 2012), so that the thermal
contribution P P 0.6th tot  obtained by Molnar et al. (2010)
could be correspondingly overestimated relative to our results
based on the XMM-Newton temperatures.
By combining Suzaku X-ray observations with the same

lensing data as used in Molnar et al. (2010), Kawaharada et al.
(2010) showed, assuming spherical symmetry, that the thermal
gas pressure within r500c is at most 40%–60% of the
equilibrium pressure and 30%–40% around the virial radius.
Intriguingly, their Suzaku observations reveal anisotropic
distributions of gas temperature and entropy in cluster outskirts
at r500c , correlated with large-scale structure of galaxies
surrounding the cluster. The outskirt regions in contact with
low-density void environments have low gas temperatures and

Figure 16. Ratio of spherically enclosed gas mass (Mgas) to total mass (Mtot) as
a function of spherical radius r, derived from the full triaxial analysis of weak/
strong-lensing and X-ray/SZE data. The middle line tracks the median. The
gray shaded regions represent the 68.3% and 95.4% quantiles of the
distribution. Portions of these lines are dashed to indicate extrapolations to
larger cluster radii. The horizontal bar shows the cosmic baryon fraction
fb b m= W W determined by Planck Collaboration et al. (2015b).

Figure 17. Ratio of the thermal gas pressure (Pth) to the total equilibrium
pressure (Ptot) in A1689 as a function of the ellipsoidal radius R measured
along the major axis of the ICM halo. The middle line tracks the median. The
gray shaded regions show the 68.3%, 99.4%, and 99.7% quantiles of the
distribution, respectively. Portions of these lines are dashed to indicate
extrapolations to larger cluster radii.
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entropies, indicating that the outskirts of A1689 are in the
process of being thermalized (Kawaharada et al. 2010). Their
Suzaku temperature measurements are in agreement with the
XMM-Newton results (Sereno et al. 2012).

Morandi et al. (2011, see also Limousin et al. 2013) obtained
M M h(1.81 0.06) 10200c

15 1=  ´ -
 , c 5.71 0.47200c =  ,

and q 0.5a ~ for A1689 from a joint analysis of Chandra
X-ray, weak-lensing, and strong-lensing data (see Table 9).
The inferred level of triaxiality is similar to what we have
found (Table 7), whereas the concentration is somewhat
smaller and the mass is significantly higher than our results.
They found that about 20% of the total ICM pressure is in non-
thermal form, by assuming that P Pth tot is constant with radius
and the gas shape follows the form expected for HSE. We note
again that the P Pth tot results are also sensitive to calibration
biases in the X-ray temperature measurements.

The mass discrepancy between the present results and those
by Morandi et al. (2011) can be explained by the difference in
their relative weights assigned to the weak- and strong-lensing
data sets. As we have seen in Section 8.1.1, the HST strong-
lensing data favor higher values of M r( )200c< (Table 7),
although this represents a significant extrapolation beyond the
radial range covered by the multiple images. Hence, if the
parameter constraints are highly dominated by strong lensing,
this could lead to an overestimate of M200c.

8.5. Comparison With Planck Data

We compare the SZE measurements from the interferometric
data presented in Section 7.2 with a total power estimate based
on the recent Planck data (Planck Collaboration et al. 2015a).
A1689 is detected by Planck with high significance (S N 15> ,
Planck Collaboration et al. 2015d). We construct Planck SZE
maps in two different ways with different assumptions, using
the data in the 143, 217, and 353 GHz channels. The 217 and
353 GHz bands are used primarily to remove the CMB and
Galactic foregrounds. The difference between the two maps
accounts for different assumptions about the Galactic compo-
nents: one is based on local estimates of the dust properties, and
the other is on global properties. The resulting SZE maps are
obtained at an effective resolution of 8′ FWHM. The SZE
signal is integrated as a function of clustercentric radius. We
obtain a direct estimate for the total Compton Y parameter of
Y (3.8 0.8) 10Planck

10=  ´ - sr integrated out to a sufficiently
large radius 13′ ( r200c~ ), beyond which the integrated SZE
signal converges. Here the error is estimated from aperture
photometry in the background regions

This direct Planck measurement of the total SZE signal
can be compared to the results inferred from the interfero-
metric SZA observations (Section 7.2). Taking Y ( 6 )SZA < ¢
(Table 6) as a lower limit on the total SZE flux, we find
Y Y( 6 ) 1.45 0.44SZA Planck< ¢ =  . Hence, the results from two
independent SZE instruments operating at different angular
scales are compatible with each other at 1σ. The relatively
low Y value derived from the Planck data could be
understood in light of the low gas temperature and entropy at

r500c observed by the Suzaku X-ray satellite (Section 8.4).
The Suzaku X-ray observations are in agreement with the
thermal pressure profile of A1689 obtained from Planck data
out to r2 500c~ .

When compared to Planckʼs hydrostatic mass estimate,
M M h(8.77 0.34) 10500c

14
70

1=  ´ -
 , our lensing mass mea-

surements (Table 10) give a spherical mass ratio of

M M 0.70 0.15Planck GL =  and 0.58 ± 0.10 with and without
corrections for lensing projection effects, respectively.

9. SUMMARY

We have carried out a 3D multi-probe analysis of the rich
cluster A1689, one of the most powerful known lenses on the
sky ( 47. 0 1. 2Einq =    at z 2s = , Table 1), by combining
improved weak-lensing data from new wide-field BVR i zC ¢ ¢
Subaru/Suprime-Cam observations (Sections 3 and 4) with
complementary strong-lensing (Section 5), X-ray and SZE
(Section 7.2) data sets.
We have generalized the 1D weak-lensing inversion method

of Umetsu et al. (2011b) to a 2D description of the mass
distribution without assuming particular functional forms
(Section 2). This free-form method combines the spatial shear
pattern with azimuthally averaged magnification information,
the combination of which breaks the mass-sheet degeneracy.
We have reconstructed the projected matter distribution from

a joint weak-lensing analysis of 2D shear and azimuthally
integrated magnification constraints (Section 4). The resulting
mass distribution reveals elongation with an axis ratio of
q 0.7~^ in projection (Figures 1 and 8), aligned well with the
distributions of cluster galaxies and ICM (see Kawaharada
et al. 2010). When assuming a spherical NFW halo, our full
weak-lensing analysis yields a projected halo concentration of
c 8.9 1.1200c

2D =  (c 11vir
2D ~ ), which is consistent with and

improved from earlier weak-lensing work based on Subaru Vi′
imaging (Umetsu & Broadhurst 2008; Umetsu et al. 2011b).
We obtain excellent consistency between weak and strong

lensing in the region where these independent data overlap,
200 kpc (Figures 6 and 10). We also find an improved
agreement between weak and strong lensing in terms of
constraints on projected NFW parameters (Figure 11) relative
to previous work (Sereno & Umetsu 2011). This is largely due
to improved techniques for strong-lensing reconstruction and to
careful regularization of the covariance matrix (Section 7.1.2).
In a parametric triaxial framework, we have determined the

intrinsic structure, shape, and orientation of the matter and gas
distributions of the cluster, by combining weak/strong lensing
with X-ray/SZE data under minimal geometric assumptions
(Section 7). We have shown that the data favor a triaxial
geometry with minor–major axis ratio q 0.39 0.15a =  and
major axis closely aligned with the line of sight
( 22 10J =   ). A spherical configuration for A1689 has
been strongly ruled out. We obtain a halo mass
M M h(1.24 0.16) 10200c

15 1=  ´ -
 and a halo concentra-

tion c 8.36 1.27200c =  , which is higher than typical
concentrations found for high-mass clusters ( c3 6200c  ;
e.g., Okabe et al. 2013; Merten et al. 2014; Umetsu et al. 2014),
but overlaps well with the 1σ tail of the predicted distribution
(Figure 15; Bhattacharya et al. 2013; Meneghetti et al. 2014;
Diemer & Kravtsov 2015).
We find that the ICM is mildly triaxial with qa

ICM =
0.60 0.14 and q 0.70 0.16b

ICM =  (Table 8). The gas
distribution is rounder than the underlying matter,
e e 0.87 0.07ICM =  , but more elongated than the gravita-
tional potential (e e 0.7ICM  ), suggesting a deviation
from equilibrium. The gas mass fraction enclosed within
a sphere of radius r r0.9 Mpc 1.2 2500c= ~ is found to be
f 10.0 %gas 1.6

3.1= -
+ . When the gas mass measurements are

extrapolated to r500c, f r( ) 11.2 %gas 500c 2.0
3.9< = -

+ . When
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compared to the cosmic baryon fraction fb (Planck Collabora-
tion et al. 2015b), we find f r f( ) 0.71bgas 500c 0.12

0.25< = -
+ (Fig-

ure 16). These are consistent with typical values observed
for high-mass clusters. The thermal gas pressure contributes
to ∼60% of the total pressure out to ∼0.9 Mpc (Figure 17),
indicating a significant level of non-thermal pressure support.
The results are, however, sensitive to calibration biases in
the X-ray temperature measurements (Donahue et al. 2014).
When compared to Planckʼs hydrostatic mass estimate,
our lensing mass measurements yield a spherical mass
ratio of M M 0.70 0.15Planck GL =  and 0.58 ± 0.10 with
and without corrections for lensing projection effects,
respectively.

Extending this work to larger samples of clusters will enable
us to recover intrinsic distributions of cluster structural
properties (e.g., M c,200c 200c) and axis ratios (q q,a b), for a
direct statistical comparison with the standard ΛCDM para-
digm and for a wider examination of alternative DM scenarios
(e.g., Schive et al. 2014). The CLASH survey (Postman
et al. 2012) provides such ideal multiwavelength data sets of
high quality (Czakon et al. 2014; Donahue et al. 2014; Rosati
et al. 2014; Umetsu et al. 2014; Zitrin et al. 2014), for a sizable
sample of 25 high-mass clusters.
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APPENDIX A
NONLINEAR EFFECT ON THE SOURCE-AVERAGED

LENSING FIELDS

A.1 Reduced Gravitational Shear

The reduced shear, g (1 )g k= - , is nonlinear with κ, so
that the averaging operator with respect to the source redshift
acts nonlinearly on κ. In general, a spread of the source redshift
distribution, in combination with the single source-plane
approximation, may lead to an overestimation of the gravita-
tional shear in the nonlinear regime.
Let us expand the reduced shear g g z( )= with respect to
z W z( ) ( )k k= ¥ and z W z( ) ( )g g= ¥ as

( ) ( )g W W W W(1 ) 1 .

(56)

k

k1

0
åg k g k g k= - = - =¥ ¥

-
¥

=

¥

¥

The reduced shear averaged over the source redshift distribu-
tion is expressed as

g W , (57)
k

k

g

k

0

1åg k= ¥
=

¥
+

¥

where the angular brackets represent an ensemble average over
the redshift distribution of background sources. In the weak-
lensing limit where 1k¥  , g W gg gá ñ » á ñ º á ñ¥ . The next
order of approximation is

g W W
W

W W1
.

(58)

g
g

g

g
g

2
2

g k
g

k
»

æ
è
ççç +

ö
ø
÷÷÷ »

-
¥ ¥

¥

¥

Seitz & Schneider (1997) showed that Equation (58) yields an
excellent approximation in the mildly nonlinear regime with

0.6k¥ . Defining f W WW g g g,
2 2º á ñ á ñ , we have the follow-

ing expression for the source-averaged reduced shear valid in
the mildly nonlinear regime:

g
f1

, (59)
W g,

g
k

»
-

with W gk ká ñ = á ñ ¥. For a lens at relatively low redshift,

W Wg g
2 2á ñ » á ñ and f 1W g, » , leading to the single source-plane

approximation: g (1 )g ká ñ » á ñ - á ñ . The level of bias intro-
duced by this approximation is g g f( 1)W g, kD » - á ñ. In

typical ground-based deep observations of z 0.5l  clusters,
f f 1W WD º - is found to be of the order of several percent

(Umetsu et al. 2014), so that the relative error is negligibly
small in the mildly nonlinear regime.

A.2 Magnification Bias

Let us consider a maximally depleted sample of background
sources with d N F dFlog ( ) 0a = - > =m , for which the

effect of magnification bias is purely geometric, b 1m=m
- ,

and insensitive to the intrinsic source luminosity function. In
the nonlinear subcritical regime, the source-averaged
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magnification bias is expressed as (Umetsu 2013; Umetsu et al.
2014)

( )( )
( )

( )f

1

1 1 ,

(60)
W

1 2 2

,
2 2 2 2

m k g

k g k g

= - -

+ - - » - -m

-

where f W WW ,
2 2º á ñ á ñm m m is of the order of unity,

Wk ká ñ = á ñm ¥, and Wg gá ñ = á ñm ¥. Hence, the error asso-
ciated with the single source-plane approximation is

f f( 1)( ) ( )W W
1

,
2 2

,
2 2m k g k gáD ñ = - á ñ - á ñ º D á ñ - á ñm m

- ,
which is much smaller than unity for background populations
of our concern ( f O (10 )W ,

2D ~m
- ) in the mildly nonlinear

subcritical regime where O (10 )1k gá ñ ~ á ñ ~ -∣ ∣ . It is therefore
reasonable to use the single source-plane approximation for
calculating the magnification bias of depleted source popula-
tions with 1a  .

APPENDIX B
DISCRETIZED EXPRESSIONS FOR
CLUSTER LENSING PROFILES

First, we derive a discrete expression for the mean interior
convergence ( )k q<¥ as a function of clustercentric radius θ
using the azimuthally averaged convergence ( )k q¥ . In the
continuous limit, the mean convergence ( )k q<¥ interior to
radius θ can be expressed in terms of ( )k q¥ as

( )d( )
2

ln . (61)
2 0

2òk q
q

q q k q< = ¢ ¢ ¢
q

¥ ¥

For a given set of N( 1)bin + concentric radii iq
i N( 1, , 1)bin= ¼ + , defining Nbin radial bands in the range

Nmin 1 1 maxbinq q q q qº º+⩽ ⩽ , a discretized estimator for
( )k q<¥ can be written in the following way:
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with ln ( )i i i i1q q q qD º -+ and iq the area-weighted center of
the ith annular bin defined by [ , ]i i 1q q + . In the continuous limit,
we have
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Next, we derive discretized expressions for the tangential
reduced shear g ( )q+ and the inverse magnification ( )1m q- in
terms of the binned convergence ( )ik q¥ , using the following
relations:
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where both the quantities depend on the mean convergence
interior to the radius iq , ( )ik q<¥ . By assuming a constant
density in each radial band, we find the following expression
for ( )ik q<¥ :
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where ( )ik q<¥ and ( )i 1k q<¥ + can be computed using
Equation (62).
Accordingly, all relevant cluster lensing observables, g ( )q+

and n ( )qm , can be uniquely specified by the binned conver-

gence profile{ , }i i
N

,min , 1
bink k¥ ¥ = with ( ),min mink k qº <¥ ¥ and

( )i i,k k qº¥ ¥ .

APPENDIX C
TWO-DIMENSIONAL TO ONE-DIMENSIONAL

PROJECTION

To make a direct comparison between the results from 1D
and 2D weak-lensing analyses, we construct a projected mass
profile ( )qS from an optimally weighted radial projection of the

( )qS field as (Morandi et al. 2011)

A C A A C (66)t t
(1) (2)

1 1
(2)

1
(2)S S= é

ëê
ù
ûú

- - -

where { ( )}m m
N

(2) 1
pixqS = S = is a pixelated mass map, C(2) is the

pixel–pixel covariance matrix of (2)S , (1)S is a vector of
radially binned Σvalues, and A is a mapping matrix whose
elements Ami represent the fraction of the area of the mth pixel
lying within the ith clustercentric radial bin (Section 2.3.2).
The covariance matrix for (1)S is given by

C A C A . (67)t
(1) (2)

1 1
= é

ëê
ù
ûú

- -
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