博士論文

メタルバイオ技術を用いた超硬合金 スクラップからのタングステン回収と再資源化

Tungsten Recycling from Cemented Carbide Scraps by Metel - Biotechnology

広島大学大学院工学研究科 化学工学専攻 博士課程後期

熱流体工学研究室牧野 貴彦 (D163780)

2018年9月

目次

笛	1	音	* * * *
オフ	I.	- F -	加日口

1.1	液中からの重金属回収の重要性について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
1.2	一般的な金属の回収方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
	1.2.1 化学沈殿法 ······	6
	1.2.2 イオン交換法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
	1.2.3 吸着剤による回収 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
	1.2.4 膜濾過	7
	1.2.5 凝集、フローキュレーション ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
	1.2.7 電気化学処理法 ······	7
	1.2.8 メタルバイオ法	7
1.3	タングステンの現状 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
1.4	タングステン回収法について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
	1.4.1 直接法 ······	9
	1.4.2 間接法 ······	10
1.5	微生物の各種機能(メタルバイオ技術について) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
	1.5.1 バイオソープションとは ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
	1.5.2 バイオソープションにおける既往の研究報告 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
1.6	グラム陰性桿菌 Esherichia.coli について ······	12
1.7	L-リジン塩酸塩について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
1.8	本研究の目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
1.9	参考文献 ·····	14
第	2章 微生物吸着剤(E.coli)を用いたタングステンの選択的回収、再資源化	
2.1	はじめに	16
2.2	実験方法	16
	2.2.1 E.coli (Escherichia. coli)の培養 ······	17
	2.2.2 E.coli を用いたタングステン回収の実験方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
	2.2.3 金属イオン水溶液の調製方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
	2.2.4 使用済みスクラップ廃液の調整 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
	2.2.5 単成分モデル廃液を用いた吸着実験	18
	2.2.6 多成分モデル廃液を用いた吸着実験	18
	2.2.7 使用済みスクラップ廃液を用いた吸着実験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18

2.3 実験結果と考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
2.3.1 <i>E.coli</i> の SEM 観察 ······	19
2.3.2 E.coli の表面積の分布 ····································	19
2.3.3 E.coli の表面電位 ······	20
2.3.4 モデル廃液によるタングステンの回収	
(液相 pH、細胞濃度、タングステン濃度の影響) ・・・・・・・・・・	21
2.3.5 タングステン回収前後細胞の TEM 観察、マッピング分析 ・・・・・	24
2.3.6 タングステン回収後細胞からの脱着試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
2.3.7 タングステン回収後細胞の乾燥・焼成による濃縮 ・・・・・・・・・・	26
2.3.8 モデル廃液を用いた反応機構の解析	
(吸着モデル、反応速度、熱力学解析) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
2.3.9 モデル廃液を用いた単成分系における W, Mo, V 吸着試験	
(液相 pH の影響)	31
2.3.10 モデル廃液を用いた多成分系における W, Mo, V 吸着試験	
(液相 pH、細胞濃度の影響) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
2.3.11 使用済みスクラップ廃液を用いたタングステンの回収	
(液相 pH、細胞濃度の影響) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
2.3.12 使用済みスクラップ廃液を用いたタングステン回収前後の	
E.coli の FT-IR 測定、TEM 観察 ··················	37
2.3.13 使用済みスクラップ廃液を用いたタングステン回収後 E.coli からの	
WO ₃ 粒子の合成 ······	38
2.3.14 使用済みスクラップ廃液からの超硬工具の作製 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
2.4 まとめ	41
2.5 参考文献	41

第	3章	前処理	を施l	した微生	三物吸着	昏剤(E.c	oli)の	機能向	上及び	最適	吸着剤	別の選定	<u> </u>
3.1	はじ	めに	••••	• • • • • •		• • • • • • •	• • • • • •	• • • • • •			••••	• • • •	43
3.2	実験	方法	••••	• • • • • • •	• • • • • •		••••				• • • • •	• • • •	43
		3.2.1 金	属イオ	ン水溶	液の調算	製方法	•••	• • • • • • •	•••••		• • • • •	• • • •	43
		3.2.2 <i>E</i> .	coli 細	胞懸濁	液の前外	処理方法	•	• • • • • •		• • • • • •	••••	• • • •	43
		3.2.3 各	種処理	里後 E.c	oli 細胞	懸濁液	を用い	たタンク	、ステンリ	及着実	験	• • • •	44
3.3	実験	結果と考	察	••••	• • • • • • •	•••••	••••	• • • • • • •	•••••	••••	• • • • • •	••••	44
		3.3.1 オ	ートク	レーブカ	加熱・加	王処理後	E.co	li による	回収試	験	••••	••••	44
		3.3.2 オ	ートク	レーブカ	加熱・加	王処理後	E.co	li のゼー	ータ電位	•	• • • • • •	• • • •	45

	3.3.3	オートクレーブ加熱・加圧処理後 E.coliの細胞濃縮試験	45
	3.3.4	加熱処理後 E.coli による回収試験 ······	46
	3.3.5	加熱処理後 <i>E.coli</i> の表面構造 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	47
	3.3.6	加熱処理後E.coliの表面電位 ······	47
	3.3.7	加熱処理後の細胞懸濁液の沈殿物および上澄溶液による回収試験・	48
	3.3.8	E.coli細胞破砕液による回収試験	49
	3.3.9	<i>E.coli</i> 乾燥粉末を用いた回収試験 ······	50
	3.3.10	0 加熱処理後の E.coli に含有するアミノ酸分析 ······	51
3.4	まとめ		53
3.5	参考文献		53
姪	舎 いい /	な田いたポリナキソメタレートを動きたてす効素ないがフテン同応	
	中 リンン	を用いたがりオイングタレート化酸による間効率ダンクヘノン回収	54
4.1	はしめに		54
4.2	天歌万伝	115かな使用1なないガステンの除土	55
	4.2.1	リシンを使用したタンタスノンの除去 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33 55
4.2	4.2.2 字齡公田1		55
4.3	夫駅結果と		50
	4.3.1	ダンクステン回収におけるpHの影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56
	4.3.2		56
	4.3.3	裕被温度のタンクステン回収率への影響	56
	4.3.4	<i>タングステン</i> 溶液の ESI-MS 分析 ······	57
	4.3.5	リジンを使用したタングステン回収メカニズムの提案 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	59
	4.3.6	タングステン濃縮物の調製 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	62
4.4	まとめ		64
4.5	参考文献	•••••••••••••••••••••••••••••••••••••••	64
第5	章 リジン	を用いた使用済みスクラップ廃液からのタングステンの沈殿回収と	
	タング	ステンカーバイドへの再資源化	
5.1	はじめに	••••••	67
5.2	実験方法	•••••••••••••••••••••••••••••••••••••••	68
	5.2.1	実廃液の組成	68
	5.2.2	スクラップ廃液からのタングステン回収工程 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	68
	5.2.3	リジン-タングステン沈殿物の洗浄・焼成工程 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
	5.2.4	酸化タングステンの還元炭化工程	69

- 4 -

• •

69

5.2.5 超硬合金化工程

5.3	実験	結果	と考	察		•	•••	••	• • •	•••	•••	••	••	•••	••	••	•••	••	•••	••	••	•••	•••	•••	••	••	•••	•••	•••		69
		5.3.1	y	ジン	を	用い	いた	ス	クラ	シ	プ	発 衫	夜力	зĠ	の:	タン	バ	スラ	テン	回	収		•	••	••	••	•••	•••	••		69
		5.3.2	IJ	ジン	<i>∕-</i> ₽	ン	ヴフ	テ	ン複	冘展	毁牧	カの	洗	浄	お	よて	バ焼	脉	実	験の	の新	韦	f		••	••	••	••	•••	•	71
		5.3.3	酸	化:	タン	グ	スラ	テン	\mathscr{O}	還	元旗	炭イ	匕〕	ミ駒	逐	び	超	硬合	全	化	の	結	果		•	••	••	• •	•••	•	73
		5.3.4	パ	イロ	ット	プ	ラン	~ト	こし	、る	タン	17	バス	テ、	ンリ	サ	イク	ル	と身	ミフ	°Ľ	セン	スと	の	比	較		•	••		74
5.4	まとめ	>	•••	•••	•••	•••	••	•••	•••	••	••	•••	•••	••	•••	•••	••	•••	••	••	•••	••	••	••	•••	••	••	••	••		76
5.5	参考	文献		••	•••	•••	••	•••	•••	••	••	•••	•••	••	•••	•••	••	•••	••	••	•••	••	••	••	•••	••	••	••	••		76
第	6章	結言			•••	• • •	•••	•••	•••	•••	••	• • •	•••	•••	•••	• • •	••	•••	••	•••	• • •	••	••	••	•••	• • •	•••	••	•		78
謝	锌		• • •	• • •		•••	•••	•••	•••	•••	•••	•••	••	•••	•••	•••	•••	•••	• • •	•••	•••	•••	•••	•••	•••	••	•••	• • •	•		80

第1章

緒言

1.1 液中からの重金属回収の重要性について

近年、環境汚染問題の原因物質として有機化学物質以外に、クロム、カドミウム、鉛、水銀などの有害 な重金属による環境汚染が深刻な問題となっている¹⁴。現在はこのような汚染された土壌や地下水を浄 化するために客土、封じ込め、土壌浄化、凝集沈殿、イオン交換などの方法で対処しているが、これらの 方法は高コストであるものが多く、環境負荷が大きいという問題もあるため、低コストかつ環境負荷の小さ い液体浄化および土壌浄化法の開発が求められている⁴⁵。

このように、工業廃水等に含まれる重金属による環境汚染が深刻な問題となっている一方で、レアメタルの各鉱種は、耐熱、耐食、磁性、蛍光等、それぞれの特性を活かし、様々な産業で使用されており、日本の製造業が生み出す高機能、高付加価値製品には必要不可欠の基礎素材である。さらにレアメタルは、鉄や銅など他の鉱物資源と比較して需要量こそ少ないものの、偏在性が極めて高い、代替材料の開発が困難、採掘と精錬のコストが高いなどの理由で、国際的に供給困難な状況に陥りやすい資源である。こういった状況から世界的にレアメタルの安定供給の確保が重要な課題となっている。

こうした状況下で、レアメタルを安定的に確保するために、レアメタルのリサイクルの主要事業として、 2008年に独立行政法人石油天然ガス・金属鉱物資源機構は、「希少金属等高効率回収システム開発事 業」のひとつとして、「廃超硬工具からのタングステン等の回収」のための技術開発についてのプロジェク トを提唱している。金属加工用切削工具に欠かすことのできない超硬工具は、タングステンが主原料とし て含まれており、コバルト、タンタル、ニオブ、チタン、バナジウム、モリブデンなどのレアメタルも含まれて いる。使用済みの廃超硬工具に関しては、これまでタングステンなどの回収が行われてきたが⁷、多くの工 程を要し、エネルギー消費、廃液量が多く、それに伴うコストが高いという問題を抱えている。この作業工 程を大幅に削減することで省エネ化し、より低コストで実現可能なリサイクル技術を開発することが望まれ ている。

1.2 一般的な金属の回収方法⁸

<u>1.2.1 化学沈殿法</u>

化学沈殿法は操作が比較的簡単で効率的であるため、工場のプロセスで広く一般的に使用されている。 この沈殿プロセスでは化学物質が重金属と反応し溶解しない沈殿物が形成される。形成された沈殿物は、 沈殿法やろ過によって水と分離することができる。一般的には水酸化物や硫化物が使用される。

1.2.2 イオン交換法

イオン交換法は、高い処理容量、高い除去効率、速い反応といった多くの利点から広く使用されている。

- 6 -

イオン交換樹脂は、合成樹脂または天然固体樹脂のいずれかであり、そのカチオンを廃水中の金属と交換する特定の能力を有する。イオン交換法で使用される材料の中で、合成樹脂は一般に溶液から重金属を除去するのに有効である。

1.2.3 吸着剤による回収

吸着は、重金属廃水処理のための効果的かつ経済的な方法として現在認識されている。吸着プロセスは設計および操作において柔軟であり、多くの場合、高品質の処理された流出物を生成する。さらに吸着は、時に可逆的であるため、適切な脱着プロセスによって吸着剤を再生することもできる。

1.2.4 膜濾過

異なるタイプのメンブレンを使用した膜濾過技術は、高効率、容易な操作、および省スペースのために、 重金属除去に対する大きな可能性を示している。廃水から金属を除去するために使用される膜プロセス は、限外濾過、逆浸透、ナノ濾過および電気透析である。

1.2.5 凝集、フローキュレーション

沈降および濾過による凝固、凝集は排水から重金属を除去するために使用される。アルミニウム、硫酸 第一鉄、塩化第二鉄のような従来の廃水処理工程では、多くの凝固剤が使用されており、粒子の電荷中 和や形成された非晶質金属水酸化物析出物への不純物の侵入による排水微粒子化や不純物の除去が 効果的である。

フローキュレーションとは、粒子を大きな凝集塊として結合させるポリマーの作用である。

1.2.7 電気化学処理法

電気化学的方法は、カソード表面上の金属イオンのメッキアウトを含み、元素金属状態の金属を回収す ることができる。電気化学的排水技術は、比較的大きな設備投資と莫大な電力を伴うため、広く適用さ れていない。しかし、廃水の排出に関する厳しい環境規制により、電気化学技術は過去 20 年間に世界 中で重要性を回復している。

1.2.8 メタルバイオ法

メタルバイオ技術とは、微生物の環境浄化機能を利用したプロセスである。これまでは、有機化学物質の浄化には多く利用されていたが、金属類は微生物により分解することができないとされていた。しかし、最近の研究報告では、金属類の環境浄化、修復が数多く報告されている。詳細は後述するが、基本的に微生物は、低コストかつ環境負荷が小さいため、新たな浄化手法として大変期待されている。

1.3 タングステンの現状 5,7,9

タングステンは、高温での硬度や耐熱性保持などの優れた特性から、主として炭化物(タングステンカー バイト)の形でFig. 1-1のような超硬工具に用いられる。特殊鋼分野では、高速度鋼、耐熱鋼、強靱工具鋼 等においてフェロタングステンやタングステン酸カルシウムが使用されている。金属タングステン(金属タン グステンやタングステン合金)は高融点、比較的高い電気抵抗という特性を利用し、線、棒、接点、電極 棒に加工され、照明基部、電子機器、自動車、工作機械等で利用されている。その他にも、タングステン 化合物が脱硝・高分子化学用等の触媒、顔料、ダイヤ工具の副砥粒等で用いられている。更に、石油化 学プロセスにおける水素添加用や排煙脱硝用の触媒としても使用されており、タングステンは現代産業 において欠くことのできない必須な金属基礎材料である。

2015年における鉱石生産量は87,000tであり、中国はその82%(71,000t)を占めている。2008 年の秋口 に発生した、米国のサブプライムローン問題に端を発した金融危機が、実体経済にも影響を及ぼし、それ まで急騰していた原油や金属原料等の資源価格や穀物価格の急落を招き、レアメタルにおいてもモリブ デンが \$ 34/kg から \$ 9.5/kg に、コバルトが \$ 51/lb から \$ 15/lb に、ニッケルが \$ 22/lb から \$ 5/lb に 急落した。しかし、タングステンに関しては \$ 252/10kg から \$ 220/10kgに僅か15%下落したに過ぎない。 その後、タングステンも徐々に価格を下げ \$ 185/10 kg まで下げたが、2009 年後半の景気回復とともに 値を戻しつつあり、年末には\$200/kgを伺うレベルまで回復し、2010 年ではスポットで \$ 210/kgの取引価 格も見受けられるようになり、落ち込みが小さく回復も早かった。これは、前述の様にタングステンの鉱石 資源が中国に偏在しており、中国の寡占状態にある上、この様な市況悪化の状況下においても、国策と してタングステンの輸出総量規制を継続的に実施し、鉱山の生産量を調整して価格の下落を防止しようと しているためである。更に、タングステンの輸出品を鉱石から川下製品(APT、WO3、フェロタングステン、 W粉末、WC粉末、W製品や超硬合金)へと転換する政策が進められている。今後、国際的経済危機が 収まり、再び成長軌道の戻る際には、中国、ロシア、インドなどの経済発展に伴い、タングステンの急激な 需要の増加が予測され、需給バランスにおいて近い将来、タングステンは供給不足に陥ることが懸念され る。日本貿易統計に基づくタングステン資源の輸入量推計によると、日本におけるタングステン供給に占 める鉱石の割合は年々減少し、2005 年以降はほとんど無くなっている。その背景には前述のように中国 がタングステン鉱石の輸出を禁止し、タングステンの輸出を鉱石から川下製品へと転換する政策変化が 影響していると考えられる。我が国においては、川下のフェロタングステン、 精製されたタングステン酸塩 並びにWC 粉末など、その他殆どが中国から輸入されている日本における、タングステンの消費量は超 硬工具が5220 t/年で全体の79%を占め、以下、特殊鋼が14%、金属タングステン製品が4%、その他 3%である。タングステンの消費に占める超硬工具の割合は大きい。以上の背景から、超硬工具からのタ ングステンリサイクル技術の開発は重要な課題である。

Fig. 1-1 タングステンの利用例(超硬工具)

1.4 タングステン回収法について 11,12

上記で述べた様に、本研究では市場および製造工程から収集した使用済みスクラップ廃液からのタン グステンの分離回収について検討を行うが、ここで現在実施されている廃超硬工具からのタングステン回 収方法と本研究で行うタングステン回収方法について比較、説明する。既往のタングステン回収法は大き く分けて固形のスクラップを構成成分のまま粉末に再生する直接法と、スクラップを化学的に溶解し、その 後成分ごとに分離回収する間接法の二つに大別される。

<u>1.4.1 直接法</u>

直接法の代表例は亜鉛処理法である。この方法は化学薬品や水溶液を使用せず、亜鉛も回収再利用 が可能で、エネルギー消費も少ない点で優れており、処理設備への投資額も大きくなく、小規模で工業 生産が成り立つ利点がある。しかし、直接法ではスクラップがそのままの組成、粒度で回収されるという問 題点があるため、処理前に選別をしっかりと行う必要があり、選別コストが負担となって、プロセスコストが 上がってしまう。また、生産比率が高い切削工具の被覆層成分および、切削された金属材料が同時に回 収されるため再生後の超硬工具の純度、品質が低下する問題がある。これらの理由から新粉に適量混ぜ て使用する必要がある等、適用制限があるのが大きな問題であり、適用範囲を拡大できる用途を同時に 開発することが課題となっている。

1.4.2 間接法

間接法である湿式化学処理法において、NaOH 水溶液でアルカリ抽出を行う場合には、超硬合金は WC-Coを主成分とするため、超硬スクラップを事前に酸化焙焼する必要がある。研削スラッジなどの粉状 のソフトスクラップの場合は、酸化焙焼が容易であるが、固形のハードスクラップの場合はそのまま焙焼し ても表面しか酸化されないので、酸化された部分を削り落としながら酸化焙焼を繰り返す必要がある。こ のようにハードスクラップの処理はエネルギー効率が悪く、大きいハードスクラップは実質的に処理が難し いという問題があった。この問題を解決するため、アルカリ溶融法と呼ばれる NaNO3、NaOH、Na2CO3 等 のナトリウム塩を溶融させた塩を用いてハードスクラップを酸化すると同時にアルカリ溶液に溶解する方法 が実施されている。この方法を用いることにより酸化焙焼工程を省略することができるが、激しい反応を伴 うため、粉末系のスクラップ時の処理が難しいという欠点もある。また、超硬合金表面の被膜があると、反 応は著しく低下するため、事前に破砕する必要もある。溶融後は、水を投入してタングステン酸ナトリウム (Na2WO4)水溶液を得、固液分離を行った後、CaCl2 を添加して CaWO4 の沈殿を形成し、このスラリーに HCIを加え、タングステン酸(H2WO4)の沈殿を生成する。その後、H2WO4 に NH4OH を加えることでタン グステン酸アンモニウム塩[(NH4)2WO4]の水溶液を生成し、この溶液を加熱・濃縮することにより、パラタ ングステン酸アンモニウム(APT)を晶出させる。この方法は一般的に溶媒抽出法と呼ばれ、古典的な間 接法である。

この溶媒抽出法を発展させた方法がイオン交換法である。現在は、この方法が主流となっている。イオン交換法は、上述の方法で、Na2WO4 水溶液を得、その液を塩基性陰イオン交換樹脂に通液させ、樹脂 内でタングステン成分を保持したのち、NH4OH、NH4Cl で脱離させ、(NH4)2WO4 液を得、加熱濃縮で APT を得る方法である。溶媒抽出法と比較すると、樹脂内で生成可能なため、工程数は削減できる。しか し、脱離、樹脂再生に多くの薬液を要するという課題がある¹³。

最後に、両手法で得た APT を熱分解することで酸化タングステン(WO₃)を得るという工程である。以上 で述べたように、間接法(湿式化学処理法)を用いると、直接法である亜鉛処理法とは異なり鉱石精錬と同 等の品質が得られ、リサイクルしたタングステンを利用制限なしに再使用できる利点がある(事実、鉱石か らの精錬では、この間接処理法が用いられている)。しかしその反面、工程数が多いため、薬品を大量に 使用する、それに伴い廃液量、エネルギー消費が多く、環境への負荷も大きいという課題があり、高コスト なプロセスとなってしまっている。それゆえ、鉱石からの精錬と比較し、コスト面でのメリットが乏しく、リサイ クルの普及が進まない現状である。

1.5 微生物の各種機能(メタルバイオ技術について)

上述の様な環境汚染問題およびレアメタル高効率回収システムを解決する方法として、微生物の 環境浄化機能を利用したバイオレメディエーションが注目されている。従来、バイオレメディエーショ ンは有機化学物質には多く利用されていたが、金属類は微生物により分解することができないとされ ていた。しかし、最近の研究報告では、金属類の環境浄化、修復が数多く報告されている。微生物 の環境浄化機能についての概略図を Fig. 1-2 に示すが、以下の様に様々な機能が報告されてい る。イオン交換、種々の官能基等によって液体中の金属イオンを除去する「バイオソープション」、細胞内に金属イオンを蓄積する「バイオアキュムレーション」、還元作用、メチル化作用により気化する 作用である「バイオボラタリゼーション」、直接および間接酸化作用によって固層から金属類を抽出す る「バイオリーチング」、この他にも嫌気呼吸の利用、耐性機構によって相変化、溶解度の増減・無毒 化する作用、硫化物塩、炭酸塩、リン酸塩など難溶性塩形成による沈殿除去、鉄・マンガン酸化物 形成に伴う金属類の化学的酸化・吸着など様々な機能が報告されている。基本的に微生物は、低コ ストかつ環境負荷が小さいため、これらの機能は環境浄化の新たな手法として大変期待されている。

Fig. 1-2 微生物の環境浄化機能の概略図

1.5.1 バイオソープションとは

本研究では、上記で述べた種々の微生物の環境浄化機能のうち、バイオソープションに着目す る。バイオソープションとは、微生物の生細胞あるいは死細胞の表面に金属類を吸着、錯体化する 反応のことをいう。この機能を用いることで、土壌や地下水、工場廃水に含まれる有害な重金属の除 去に利用できる。通常、微生物の細胞表層(細胞壁)には、官能基としてカルボシル基やリン酸基が 数多く存在しており、このことから細胞壁は電荷を帯びている。バイオソープションとはこの帯電した 細胞壁に重金属類のイオンが吸着する作用に基づくものである。その概略図を Fig. 1-3 に示す。細 胞壁自体でなく表面に生成された多糖などのバイオポリマーへの吸着・濃縮もバイオソープションの 一つである。本研究では pH を調整し細胞表層の電荷を変化させることで、重金属類のイオンを細 胞壁へ吸着させることに成功し、バイオソープションを用いたレアメタル回収技術の有用性を高め た。

Fig. 1-3 バイオソープションの概要

1.5.2 バイオソープションにおける既往の研究報告

これまでのバイオソープションの研究報告例を Table 1-1 に示す。これまで、様々な微生物による 金属イオンの回収例が報告されているが、微生物の種類によって培養条件、価格、安全性、また 種々の金属イオンとの親和性が異なり、使用目的、条件によって最適な微生物を選択する必要があ る。また高速培養が可能であり、安全かつ安価であるという特長を持つ E.coli を用いたタングステン のバイオソープションについての報告例がないため、本研究ではバイオソープションを活用したタン グステン回収について検討し、その回収効率を高める因子についても検討し、高効率なプロセス化 についても検討した。

Table 1-1 既往のバイオソープションによる金属回収の研究報告 14-22

微生物の種類	除去もしくは回収対象の金属
真性細菌(大腸菌, etc…)	Cr, Cd, Fe, Ni, Ag ,Cu, La
藻類	Cr, Cd, Fe, Ni, Au, Ag, Cu, Pb, Zn
菌類(酵母, カビ, etc)	Cr, Cd, Fe, Ni, Cu, Pb, Zn, Fe

1.6 グラム陰性桿菌 Esherichia.coli について

Escherichia coli(*E.coli*)はグラム陰性の桿菌であり、通性嫌気性細菌である。*E.coli*は、倍加速度が20分と速く、培地作成も比較的容易であるため、培養が容易である。また、大腸菌自体が非常に安価であり、特殊な細菌ではないので容易に入手可能なユビキタスな微生物である。本研究では、 ATCC 株の *Escherichia coli DH5A carrying recombinant plasmid*を用いた。これまでに、Ag⁺, Cd²⁺, Cu²⁺, La³⁺などを *E.coli*を用いて回収できることが報告されているが、W⁶⁺の回収については報告されていない。

<u>1.7 L-リジン塩酸塩について</u>

L-リジン塩酸塩はヒトの必須アミノ酸の一種であるリジンを水に溶解させた後に塩酸で処理することで生

成されるリジンの塩酸塩である。リジンだけに留まらないがアミノ酸には光学異性体として D 型と L 型の 2 種類あり、その内の L 型のリジン、つまり、L-リジンを基に生成されるリジン塩酸塩を L-リジン塩酸塩と言う。 本研究では味の素ヘルシーサプライ株式会社で飼料用として市販されている L-リジン塩酸塩を使用した。 多くのアミノ酸が様々な形で販売されている中、この L-リジン塩酸塩はアミノ酸屈指の安い価格(¥43/kg, Alibaba.com)で販売されている。純度は 98.5%以上の品位が保証されている。また、リジンは水溶液の pHによってその電荷を変え、その pKa の値はそれぞれ pKa₁=2.16、pKa₂=9.06、 pKa₃=10.54 であり、酸 性下では正に帯電するため、負に帯電するタングステン酸イオン(WO4²)と反応することが期待できる。本 研究ではこの L-リジン塩酸塩を直接、タングステンと反応させ、回収することを検討した。なお、このような 試みは既存の研究ではされてはいない。

<u>1.8 本研究の目的</u>

以上より本研究では、上述の環境に優しくかつ、高効率なタングステンの回収プロセス構築を主目的と する。その手段として微生物の浄化機能を利用したバイオソープションを用いる。第1段階として、バイオ ソープションによるタングステンの回収の可能性、実現性を確認し有効性を検討する。その後、第2段階 として、第1段階で得た知見を応用し、現実的な低環境負荷、高効率回収プロセスを提案、構築する (Fig.1-4)。そして、そのプロセスを既存プロセスと比較し、その優位性について検討することを目標とした。

Fig. 1-4 タングステンリサイクルフロー

a) CaCl2を用いた沈殿法 b) イオン交換法、c) メタルバイオ法(本研究提案)

<u>1.7 参考文献</u>

(1) 小西康裕、荻崇:希薄溶液からの貴金属のバイオ還元・回収、ケミカルエンジニヤリング、2008、53 [7]、29-35.

(2) 荻崇、小西康裕:微生物を用いたインジウムの回収、ケミカルエンジニヤリング、2010、55、(5)、40-45.

- (3) 藤田正憲・池道彦著、バイオ環境工学、CMC出版、2006、44-47
- (4) JOGMEC NEWS vol. 1.6 (2009. 3): 都市鉱山 ~ 廃棄物の山を資源に変えられるか?

(5) 経済産業省:超硬工具スクラップのリサイクル促進に向けた選別・保管・処分に関するガイドライン

(6) 小口朋恵、タングステンのマテリアルフロー、金属資源レポート、2014、77-82

(7) 独立行政法人石油天然ガス・金属鉱物資源機構:廃超硬工具からのタングステン等回収技術開発、 及び廃小型家電からのレアメタル回収開発

(8) Fu, F.; Wang, Q., Removal of heavy metal ions from wastewaters: a review. *Journal of environmental management* **2011**, 92, (3), 407-418.

(9) 鉱物資源マテリアルフロー 2016 11. タングステン(W)

(10) 石田 友幸、板倉 剛、森口 秀樹、池ヶ谷 明彦:超硬スクラップのリサイクル技術と超硬工具のタングステン使用量削減技術の開発、SEI TECHNICAL REVIEW, 2012, 181, 33-39

(11) 林 武彦、佐藤 史淳、笹谷 和男、池ヶ谷 明彦:超硬合金スクラップからのタングステンリサイクル 事業化、SEI TECHNICAL REVIEW, 2016, 189, 8-14

(12) Ogi, T.; Sakamoto, Y.; Nandiyanto, A. B. D.; Okuyama, K., Biosorption of Tungsten by Escherichia coli for an Environmentally Friendly Recycling System. *Industrial & Engineering Chemistry Research* 2013, 52, (40), 14441-14448.

(13) 2007 NEDO report, Study on recovery of tungsten etc. from waste cemented carbide tool, 218–316.

(14) Mack, C.; Wilhelmi, B.; Duncan, J. R.; Burgess, J. E. Biosorption of precious metals. *Biotechnol. Adv.*2007, 25 (3), 264–271.

(15) Vijayaraghavan, K.; Yun, Y. S. Bacterial biosorbents and biosorption. *Biotechnol. Adv.* **2008**, 26 (3), 266–291.

(16) Ogi, T.; Tamaoki, K.; Saito, N.; Higashi, A.; Konishi, Y.Recovery of indium from aqueous solutions by the Gram-negativebacterium Shewanella algae. *Biochem. Eng. J.* **2012**, 63 (15), 129–133.

(17) Gupta, V. K.; Sharma, S. Removal of zinc from aqueous solutions using bagasse fly ash-a low cost adsorbent. *Ind. Eng. Chem.Res.* **2003**, 42 (25), 6619–6624.

(18) Cabatingan, L. K.; Agapay, R. C.; Rakels, J. L.; Ottens, M.; van der Wielen, L. A. Potential of biosorption for the recovery of chromate in industrial wastewaters. *Ind. Eng. Chem. Res.* **2001**, 40 (10), 2302–2309.

(19) Basha, S.; Murthy, Z. V. P.; Jha, B. Isotherm Modeling for Biosorption of Cu(II) and Ni(II) from Wastewater onto Brown Seaweed, Cystoseira indica. *AIChE J.* **2008**, 54 (12), 3291–3302.

(20) Padmavathy, V. Biosorption of nickel(II) ions by baker's yeast: Kinetic, thermodynamic and desorption studies. *Bioresour. Technol.***2008**, 99 (8), 3100–3109.

(21) Niu, C. H.; Volesky, B. Modeling chromium(VI) biosorption by acid washed crab shells. *AIChE J*. **2007**, 53 (4), 1056–1059.

(22) Guibal, E.; Milot, C.; Tobin, J. M. Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. *Ind. Eng. Chem. Res.***1998**, 37 (4), 1454–1463.

第2章

微生物中着剤(E.coli)を用いたタングステンの

選択的回収、再資源化^{1,2}

2.1 はじめに

第1章で述べた様に、使用済み超硬工具からタングステンをリサイクルすることを目的とするが、使用済み超硬工具からタングステンナトリウム溶液(Na₂WO₄溶液)までの過程は既に方法が確立されている^{3,4}。

そのため、まず出発溶液をタングステン単成分系のモデル廃液(Na2WO4 溶液)として、バイオソープションによりタングステンを回収することを検討した。バイオソープションを用いたタングステンを回収における主要なパラメータとしては、初期タングステン濃度、液相 pH、細胞濃度、温度が挙げられる ⁵。そこで各パラメータによるタングステンの回収の影響について検討する。また、微生物表面へのタングステン吸着の反応機構の解析に関して、吸着等温線を用いてモデル化を行った。さらに、タングステン吸着の熱力学解析および反応速度についても検討する。

またタングステン回収後の細胞から、タングステンを回収することは本研究の実用性を確かめるには大変重要な課題である。本章では、まずモデル廃液(単成分系)においてタングステンの回収試験を行い、 回収後細胞からのタングステン回収として、*E.coli*からの脱着、および回収後細胞を焼成することによる濃 縮物の組成分析の2つの方法も検討する。

さらに本章では、実際の使用済みスクラップ廃液を用いた回収も検討した。実際の超硬工具には、タン グステン以外の異種金属としてコバルト、チタン、クロム、タンタル、ニオブ、ジルコニウム、バナジウム、モ リブデンなどが含まれる。幸い、バナジウム、モリブデン以外の金属は、アルカリ反応後の固液分離操作 にて除去されるが、バナジウムとモリブデンは、タングステン同様に水溶性金属として共存する。その中で もバナジウムは、超硬工具の性能に大きく影響を与える。一般的に、バナジウムが超硬工具に混入してい ると、合金組織内の粒子が微粒化し、超硬工具の靱性を低下させる。以上より、タングステンとバナジウム を分離回収する必要性は非常に高いが、これまでバイオソープションによってタングステン、モリブデン、 バナジウムの分離回収試験を行った報告はされていない。よって、タングステン、バナジウム、モリブデン の三成分系金属イオン溶液からタングステンとバナジウムの選択分離回収を目指し、異種金属と細胞表 面の相互作用について検討を実施する。まずは、異種金属を共存させたモデル廃液にて検討し、実際 の使用済みスクラップ廃液にて選択分離性を検討する。

最後に、使用済みスクラップ廃液からバイオソープション技術を用いて、超硬合金へ再生する検討も行った。

<u>2.2 実験方法</u>

2.2.1 E.coli (Escherichia. coli)の培養

*E.coli*の回分培養に用いた LB 培地の成分組成を Table 2-1 に示す。液体培地の調整方法としては、 250 mL の超純水に酵母(TSB)、ポリペプトン、塩化ナトリウムを下記の表に示す分量でそれぞれ溶解さ せ、1 mol/1の水酸化ナトリウムを用いて pH 7.0 に調整した。次に、調整した液体培地をオートクレーブに より加熱殺菌(121℃、15 min、0.2MPa)し、クリーンベンチ内に保管した。その後、クリーンベンチ内で *E.coli*のコロニーを入れて植菌し、好気状態で 14 h 培養した。なお、コロニーの植え継ぎには上記と同様 の方法で定期的に植え継いだ細胞を用いた。

成分名	成分量 / [g]
TSB	1.25
ポリペプトン	2.5
塩化ナトリウム	2.5

Table 2-1 液体 LB 培地成分表

2.2.2. E.coliを用いたタングステン回収の実験方法

タングステン回収実験では、2.2.1 により培養した対数増殖末期にある E.coli の静止細胞を用いた。ま ず、対数増殖末期に達した E.coli 培養液を遠心分離機(12000 rpm, 10 min, 25°C)で集菌した。集菌した 菌液の上澄みを取り除き、超純水を用いて E.coli 細胞を懸濁した。次に、再度遠心分離機(12000 rpm, 10 min, 25°C)で集菌することで、培養液成分を洗浄した。この洗浄細胞を超純水で再懸濁し所定の濃度 に調整した細胞懸濁液と、Na₂WO₄溶液を混合することでタングステン回収実験を行った。なお、pH 調整 については、1 mol/1 の塩酸(HCI)を用いた。細胞懸濁液の接種直後を実験開始時間とし、実験を開始し てから、所定の時間ごとに実験溶液をシリンジで採取し、フィルターでろ過し、サンプリングを行った。この サンプリング溶液を希釈した後、溶液中のタングステン濃度を ICP 発光分光分析法によって測定し、回収 過程における液相中のタングステン濃度の経時変化を求めた。実験条件は、好気的環境下で温度は 25°C とした。細胞濃度はヘマトメータ法により測定した。

2.2.3 金属イオン水溶液の調製方法

各種金属イオン溶液の調整は、タングステン源としてタングステン(VI)酸ナトリウム二水和物(Na2WO4・2H2O)、モリブデン源としてモリブデン酸(VI)二ナトリウム溶液(Na2MoO4・2H2O)、バナジウム源として酸 化バナジウム(V)(V2O5)をそれぞれ超純水に溶解させることで、30 mMの各種単成分および多成分の金 属イオン溶液を調製した。

2.2.4 使用済みスクラップ廃液の調整

本章で用いた使用済みスクラップ廃液の成分を、Table 2-2 に示す。分析は ICP を用いた。少量であるが、コバルトが確認された。

スクラップ廃液は、実際の使用済み又は製造工程で発生するスクラップを800℃超の大気雰囲気下で酸化し、その酸化粉末を水酸化ナトリウム(NaOH)水溶液で7時間還流した。室温まで冷却後、固液分離し、その上澄みを80℃-12h 乾燥させ粉末とした。

元素	濃度 / [wt%]
タングステン (W)	39
モリブデン (Mo)	0.3
バナジウム (V)	0.1
コバルト (Co)	0.1
ナトリウム (Na)	26
カリウム (K)	0.1

Table 2-2 スクラップ廃液の ICP 分析結果

2.2.5 単成分モデル廃液を用いた吸着実験

単成分系の試験溶液の調整として、まず超純水、細胞懸濁液および液相 pH 調整用の 1 mol/l の塩酸 (HCl)の混合溶液を調整した.この混合水溶液に対して、タングステンであれば Na₂WO₄ 水溶液、モリブ デンであれば Na₂MoO₄ 水溶液、バナジウムであれば V₂O₅ 水溶液をそれぞれ所定の濃度になるように混 合させることで 30 ml の試験溶液を調整した。金属イオンを注入した時間を実験の開始とし、実験を開始 してから、所定の時間ごとに試験溶液をシリンジで採取し、フィルターでろ過することでサンプリングを作 製した。実験条件は、好気的環境下、温度 20~53°C、液相 pH1.0~8.0、各種初期金属イオン濃度、0.1~ 340mM、細胞濃度 0.64×10⁸~2.1×10¹¹cells/ml とした。

2.2.6 多成分モデル廃液を用いた吸着実験

多成分系の試験溶液の調整として、まず超純水、細胞懸濁液および液相 pH 調整用の 1 mol/1 の塩酸 (HCl)の混合溶液を調整した.この混合水溶液に対して、Na2WO4水溶液、Na2MoO4水溶液、V2O5水溶 液の 3 種類の金属イオン水溶液をそれぞれ所定の濃度になるように混合させることで 30 ml の試験溶液 を調整した。金属イオンを注入した時間を実験の開始とし、実験を開始してから、所定の時間ごとに試験 溶液をシリンジで採取し、フィルターでろ過することでサンプリングを作製した。実験条件は、好気的環境 下、温度 25°C、液相 pH1.0~8.0、各種初期金属イオン濃度、0.8 mM、細胞濃度 0.64~82.7×10⁸ cells/ml とした。

2.2.7 使用済みスクラップ廃液を用いた吸着実験

使用済みスクラップ廃液の試験溶液の調整として、まず超純水、細胞懸濁液および液相 pH 調整用の 1 mol/l の塩酸(HCl)の混合溶液を調整した.この混合水溶液に対して、2.2.4 で調整した使用済みスクラ ップ廃液を所定の濃度になるように添加することで 30 ml の試験溶液を調整した。金属イオンを注入した 時間を実験の開始とし、実験を開始してから、所定の時間ごとに試験溶液をシリンジで採取し、フィルター でろ過することでサンプリングを作製した。実験条件は、好気的環境下、温度 25°C、液相 pH1.0~8.0、細 胞濃度 $2.0 \times 10^8 \sim 2.1 \times 10^{10}$ cells/ml とした。ビール酵母乾燥粉末については自然健康社バルク事業部 から入手した。

2.3 実験結果と考察

<u>2.3.1 E.coli の SEM 観察</u>

本研究で微生物吸着剤として用いた E.coli の表面構造観察するために SEM 観察を行った。Fig. 2-1 に観察した SEM 像を示す。SEM 写真より、E.coli は桿状細菌であることが確認でき、平均の長径および 短経はそれぞれ 2.78 µm、および 0.89 µm であることが分かった。

また、細胞の粒度分布が広い範囲に存在していることが確認できた。

Fig. 2-1 E.coliの SEM 像

<u>2.3.2 E.coli の表面積の分布</u>

微生物を用いたタングステン吸着においては、細胞の表面積がタングステンの吸着量に大きな影響を 及ぼすと考える。2.3.1 より、細胞には粒度分布があるため、長径および短径からから表面積を算出した。 *E.coli*の表面積を測定することは困難であることから、本研究では Fig. 2-2 に示す①*E.coli*の長径 (2.78μm)と、②短径(0.89 μm)より *E.coli* 細胞表面積の概算を算出した。また、上記の概算方法により算 出した *E.coli*の表面積の分布を Fig. 2-3 に示す。なお、平均表面積は 16.7 μm² であった。

Fig. 2-3 E.coli の表面積の分布

<u>2.3.3 E.coli の表面電位</u>

E.coli 細胞とタングステンの反応は、電気的な相互作用(イオン)によるため、*E.coli*の細胞表面電位を測定することが重要であると考える。そのため、ゼータ電位を用い表面電位を測定した。細胞の表面電位を液相 pH による変化について測定した結果を Fig. 2-4 に示す。細胞表面は pH1.28 ~ pH2.90 までは正に帯電しており、それより高い pH においては負に帯電していることが分かった。その中でも液相 pH が 1.90 においては細胞が最も強く正に帯電していることが確認できた。これはグラム陰性菌である *E.coli*の細胞表面には、主にカルボキシル基およびリン酸基などの負帯電の官能基が多数存在しているために、中性溶液中では負に帯電している。しかし、溶液 pH が低下することで、水素イオンが負帯電の官能基に吸着し、それにより細胞の電荷が正側にシフトしたと考えられる。さらに pH が下がっていくと、細胞表面にはアミノ基などの正帯電の官能基も存在していることから、細胞全体として表面電位が正になったと考えられる。pH が 1 付近において再度細胞の表面電位が低下した理由は明らかにはなっていないが、液相 pH が極端に強酸側にシフトしたことで細胞表面のタンパク質が変性したことや新たな官能基が発現したことが考える。

Fig. 2-4 E.coli 細胞表面のゼータ電位(液相 pH の影響)

2.3.4 モデル廃液によるタングステンの回収

(液相 pH、細胞濃度、タングステン濃度の影響)

2.2.2 に示した実験方法でバイオソープションによってタングステンを回収する実験を行った。実験条件は初期液相タングステン濃度 0.5 mM、細胞濃度 1.8×10⁹ cells/ml とした。まず、液相 pH による影響を検討した。

作製したサンプルであるタングステン酸ナトリウム溶液は、塩酸を加えない場合、液相 pH は 6.62 であった。ここに *E.coli*の細胞懸濁液を接種し、HCl を加え pH を 1.08 ~ 5.65 と変化させた。比較として、 *E.coli*を接種しない無菌対象も実施した。

回収試験結果を Fig...2-5 に示す。試験結果より、pH を下げることによってタングステンの回収量が大きく増加することが分かった。液相 pH が 4.63 ~ 6.62 および無菌対象では、ほとんどタングステンの回収は確認出来なかったが、さらに pH を下げて 2 以下にすると、ほぼ 100%のタングステンを回収することができた。また、液相 pH が 1.93 の時に、最大回収量が得られたことから液相 pH の最適値が 1.93 であることが分かった。以上の結果より、バイオソープションによるタングステン回収は液相 pH に大きく依存した。

以上の結果は、溶液中のタングステン酸イオンと細胞表面の電位との相互関係が大きく関与していると 考えられる。2.3.3 より、*E.coli*の細胞表面は、カルボキシル基およびリン酸基などの負帯電の官能基が存 在しているため、pH が 3.11 以上では、細胞表面全体として負に帯電している。また、タングステン酸イオ ンは溶液中では負帯電金属イオン(ex.WO4²)として存在していることが分かっている。このことにより、pH が 3.11 以上では、細胞表面と溶液中の負帯電金属イオンとの間に静電気斥力が働いて吸着(反応)が起 きなかったと考えられる。一方で、液相 pH の低下に伴い、水素イオンが負帯電の官能基に吸着すること で、pH が 3.1 以下の範囲においては細胞表面が正に帯電している。このことから、正に帯電した細胞表

- 21 -

面と溶液中の負帯電金属イオンとの間に静電気引力が働き、低 pH 範囲ではタングステンが吸着し、溶 液濃度が低下したと考える。このことは、Fig. 2-4 の液相 pH1.90 において細胞の表面電位が最も大きい ことと、液相 pH1.9 付近において、タングステン回収量が最大になったことからも支持される。

▲)pH 6.62, ◆)pH 4.63, ●)pH 1.93, ▼)pH 1.37, ■)pH 1.08, △)無菌対照

次に、液相中の細胞濃度が及ぼす影響について検討した。バイオソープションによる再資源化技術を 実用化する際の課題として、装置スケールの最小化がある。本研究のプロセスを実用化する際、タングス テンのリサイクル量としては、月数トンと想定する。それに伴う必要細胞量は膨大で、前述の吸着量では、 月に5tリサイクルすることを考えると、細胞保管容積は10⁶ m³オーダー(cf. 東京ドーム:1.2×10⁶ m³)であ り膨大となる。以上の理由から、細胞を濃縮した条件で検討した。実験条件は、温度:20~26°C,液相 pH:1.8~2.6,初期タングステン濃度を:7.5~340 mM とした。Fig.2-6 に縦軸にタングステンの平衡吸着 量、横軸に細胞濃度の結果を示す。また、Table 2-3 に月 5 t リサイクルするとした場合の、細胞保管容 積の概算値を示す。まず、タングステンを月に 5 t リサイクルするとした場合、実用可能な装置スケールは 124m³(約 5m 四方)と設定し、その値を本研究の目標値とした。

一般的に、大腸菌の培養は 10⁶~10⁸ cells/ml の濃度で行われるが、図表を見るとその濃度における試験結果では、目標値である 124m³ に対して、1.3×10⁵ m³ と膨大である。そこで、細胞濃度を高濃度化していくと、通常の培養濃度の 1000 倍以上である 10¹¹ cells/ml までは吸着量を維持できることが分かった。一方で、2.1×10¹¹ cells/ml になると吸着量がやや低下した。この理由としては、細胞同士の凝集や、溶液粘度増加による撹拌の不十分さが原因と考えられる。以上の結果より、最適結果を用いると、細胞保管容積

- 22 -

を197 m³(約 5.8m 四方)にまで縮小出来ることを確認した。

Fig. 2-6 タングステン平衡吸着量(細胞濃度の影響)

Table 2-3 細胞保管容積の概算結果

Biosorbent	WC [t]	Cell conc. [cells/ml]	Adsorbed amount [mol/cell]	Volume of apparatus [m³]
	5.0			124(Target)
E.coli	5.0	3.5×10 ⁸	5.7 × 10 ⁻¹⁶	1.3 × 10⁵
E.coli	5.0	1.6 × 10 ¹¹	8.1 × 10 ⁻¹⁶	197

溶液中からの金属イオン回収において、溶媒抽出法やセメンテーション法などを用いた場合、一般に 10~1000ppm の処理濃度で行われている。そこで、バイオソープションによる金属イオン回収がこの処理 濃度にでも応用できるかについて検討した。実験条件は、細胞濃度 6.0×10⁹ cells/ml、pH 1.81 ~ 1.93 で 行い、初期タングステン濃度を 0.1, 0.5, 1.0, 1.5 mM とした。比較として、各濃度における無菌対象も実施 した。

Fig. 2-7 に初期タングステン濃度を変化させた時の経時変化について示す。初期タングステン濃度が 0.1, 0.5, 1.0 mM で実験を行った場合、120 分での回収率は 98%以上に達した。また、初期タングステン 濃度が 0.1 mM の場合においては、実験開始から 3 分後の回収率がほぼ 100 %であったことから、*E.coli* を用いたバイオソープションによるタングステン回収は非常に速い吸着反応であることが示された。

以上の結果より、E.coli 細胞を用いたタングステン回収プロセスは、他の金属回収プロセスと同等の低 タングステン濃度においても有効であった。

●)0.1 mM, ■)0.5 mM, ▲)1.0 mM, ▼)1.5 mM, ○, □, △, ▽)無菌対照

2.3.5 タングステン回収前後細胞の TEM 観察、マッピング分析

タングステンが E.coli の細胞表面にどのような状態で吸着しているか確認するために、タングステン回収 前後(0, 3, 30, 420 min)の E.coli 細胞表面の TEM 観察を行った。Fig. 2-8 にタングステン回収前後にお ける E.coli 細胞表面の TEM 観察結果について示す。時間が長くなるにつれて細胞表面のコントラストが 強くなっており、細胞表面へのタングステン濃度が増加していた。また、Fig. 2-9 に吸着試験 3 min 後の E.coli 細胞表面のマッピング分析結果を示す。細胞由来のタンパク質や酵素の存在により、炭素、酸素、 リンなどのピークが検出され、3 min という短時間でタングステンが細胞表面に均一に吸着していることを 確認した。

Fig. 2-8 E.coli 細胞表面の TEM 写真(経時変化)

Fig. 2-9 E.coli 細胞表面のマッピング分析結果(吸着試験 3 min 後)

2.3.6 タングステン回収後細胞からの脱着試験

回収後細胞からタングステンを脱着することが可能であれば、工業排水からタングステンを回収した後 や使用済み超硬工具からタングステンのみの溶液にする際に、金属イオンの選択回収と組み合わせるこ とにより、タングステンの純度を高くできる可能性がある。

試験は、細胞濃度は 2.6×10^9 cells/ml とし、出発溶液を 0.4 mmol/l の Na₂WO₄ 溶液として、タングステンを 100 %回収させた後、NaOH 溶液を加えて pH を上げることにより、タングステンの脱着を検討した。 Fig.2-10 に NaOH を添加した直後からの経時変化を示す。溶液 pH を 2 から 5 に変化させてもほとんど 脱着は見られなかったが、pH を 7.8 以上にすると、ほぼ 100%の脱着を確認した。これは、pH が 2 にお いては官能基とタングステン酸イオンが静電気引力によって吸着しているが、pH を上げていくと、水酸化 物イオンによってその吸着が阻害され始め、pH を 8 まで上げると、ほぼすべての吸着が阻害されたたた めであると考える。

Fig. 2-10 タングステン回収後 E.coli からのタングステン脱着試験:
●) pH 4.92, ■)pH 7.81, ▲) pH 8.83, ○)無菌対照

2.3.7 タングステン回収後細胞の乾燥・焼成による濃縮

回収後細胞を焼成することにより酸化タングステン(WO₃)を得ることができれば、バイオソープションを 用いた廃液からの高効率で安価なタングステンリサイクル技術の可能性を見出したと言える。試験方法は、 まず出発溶液を5mmol/1のNa₂WO₄溶液として、バイオソープションによりタングステンを回収し、遠心分 離を行った後、その濃縮液を乾燥(120°C,4h)させることにより、一次濃縮物を得た。一次濃縮物のタング ステン濃度は49.2%となり、出発溶液からの濃縮倍率は535倍となった。次に、一次濃縮物について加熱 処理(1000°C,2h)を行うことにより、二次濃縮物を得た。二次濃縮物のタングステン濃度は77%となり、濃縮倍率は837倍となった。この濃度を酸化タングステン純度に換算すると97.1%となり、濃縮率の高い濃縮物が得られたことが分かった。残りの約3%は細胞に含まれるリン等の不純物の残存が考える。Fig.2-11に得られた二次濃縮物の写真およびSEM写真を示す。Fig.2-11より、酸化タングステン特有の黄緑 色の粉末が得られたことが、またSEMより粒子径はおよそ0.2~10 µmであることが分かった。Fig.2-12 に二次濃縮物のXRD結果を示す。XRD分析結果より、不純物のピークも確認できるが、焼成後粉末の ピークが斜方晶系の酸化タングステンのピークとほぼ一致していることから、回収後の細胞から酸化タン グステンとしてタングステンを回収できることを確認した。以上の結果より、Fig.1-4で示したバイオソープ ションを用いたタングステンリサイクル技術確立への可能性を見出したと言える。

Fig. 2-11 二次濃縮物の写真および、SEM 写真

Fig. 2-12 二次濃縮物の XRD 分析結果

2.3.8 モデル廃液を用いた反応機構の解析

(吸着モデル、反応速度、熱力学解析)

本章の吸着モデルを解析するために、23,32,40,53°C の4つの条件で、タングステン回収試験を行った。試験開始後7hで吸着が平衡状態になることから、7h後の吸着量を平衡吸着量とした。Table 2-4 にタングステン回収試験結果を示す。温度の上昇、および初期タングステン濃度を増加させることで、タングステンの平衡吸着量が増加した。23°C,0.8 mmol/lの時の平衡吸着量は0.859 mmol/g であり、53°C,4.0 mmol/lの時の平衡吸着量は1.496 mmol/g と1.7 倍超に吸着量が増加した。

				-				
Initial W(VI) ion concentration [mmo	l/L] W(VI) ior	n uptake capac	ity [mmol/g]	y [mmol/g]				
	23 °C	32 °C	40 °C	53 °C				
0.80	0.86	0.99	1.12	1.36				
1.00	0.86	1.00	1.17	1.47				
2.00	1.04	1.21	1.29	1.69				
3.00	1.18	1.22	1.35	1.63				
4.00	1.28	1.27	1.27	1.50				

Table 2-4 各温度、初期タングステン濃度によるタングステン平	2衡吸着量
------------------------------------	-------

次に Fig.2-13 に、23 ~ 53 °C の温度範囲における、実験値による吸着等温線と理論吸着モデルである Langmuir 吸着等温線を示し、さらに Fig.. 2-14 に Freundlich 吸着等温線を示す。また、Table 2-5 にま とめた結果を示す。これら結果より、各温度における実験値のプロットが Langmuir 吸着等温泉の結果に おいて、相関係数 r²の値が 1.0 に近く、実験結果と一致していることが分かった。以上より、*E.coli とタング* ステンの吸着反応は、細胞表面にタングステン酸イオンを吸着する吸着点(サイト)があり、吸着点が満た されればそれ以上吸着が起こらない吸着反応、つまり単層吸着反応であることを確認した。また、温度上 昇に伴い細胞の単位質量当たりの飽和吸着量や大腸菌とタングステン間の親和性を示す Langmuir 定 数が増加することも確認した。また、既往の研究の陰イオン交換樹脂のタングステン吸着量が Q = 0.7 ~ 1.9 mmol/g に対して、本研究における最大吸着量 Q_{max}=1.278 ~ 1.650mmol/g であったことから、同等以 上の性能を有しており、*E.coli* はタングステンの吸着剤として高い可能性があることも確認した。

また Table 2-6 に、他の金属元素について E.coli を用いたバイオソープションの研究報告を示す。他の 金属元素よりもタングステンの吸着量が大きいことが分かり、この結果からも E.coli を用いた場合のタング ステンの回収能力が優れた性能であると言える。

Fig. 2-14 Freundlich 吸着等温線による反応機構解析

Temperature	Langmuir constants		Freundlich constants			
T [°C]	Q _{max} [mmol/g]	b [l/mg]	r^2	K [(mmol/g)(mmol/l) ⁿ]	n	r ²
23	1.278	13.2	0.997	187.1	3.94	0.580
32	1.286	21.2	0.997	973.3	31.4	0.815
40	1.302	55.7	0.998	601.5	9.49	0.771
53	1.650	111	0.999	1067	15.3	0.983

Table 2-5 Langmuir, Freundlich モデルの計算結果

Table 2-6 E.coli による金属イオン回収結果 6.7

微生物の種類	金属イオンの種類	最大吸着量[mmol/g]	参考文献
	W(VI)	1.69	本研究の結果
Ecoborichia cali	Zn(II)	0.65	Morsy et al., (2011)
Escherichia con	Cd(II)	0.49	Morsy et al., (2011)
	As(III)	0.01	Wu et al., (2010)

*E.coli*を用いたタングステンのバイオソープションにおける吸着反応速度を解析するために、Fig. 2-15 に 示す 2 つの反応速度モデル式を用いて吸着反応速度式の検討を行った。Table 2-7 に各モデル式を用 いた場合の計算結果を示す。擬一次反応をモデル式として用いた場合、相関係数 r²の値が 1.0 に乖離 しており、平衡吸着量の計算値と実験値が大きく異なった。一方、擬二次反応をモデル式として用いた場 合では、相関係数 r²の値は 1.0 に近く、平衡吸着量の計算値と実験値が近い値となった。以上より、 *E.coli*を用いたタングステンのバイオソープションにおける吸着反応速度は擬二次反応速度式で表わす ことができた。

q_e [mmol/g]:平衡吸着量 q_t [mmol/g]:t=tにおける吸着量 k₁ [min⁻¹]:擬一次反応速度定数 k₂ [g mmol⁻¹min⁻¹]:擬二次反応速度定数

Fig. 2-15 吸着反応速度モデル式(擬一次反応、擬二次反応)

Table 2-7 バイオソープションによるタングステン吸着反応速度の計算結果

T [°C]	q _{erexp} [mmol/g]	Pseudo-first order kinetic model			Pseudo-second o			
		q _{e>cal} [mmol/g]	$k_1 \times 10^2 [min^{1}]$	r ²	q _{e,cal} [mmol/g]	k ₂ [g/mmol/min]	h [mmol/g/min]	r ²
23	0.859	0.630	0.806	0.937	0.883	0.042	0.032	0.992
32	0.986	0.482	1.745	0.753	0.999	0.158	0.158	1.000
40	1.123	0.211	0.788	0.448	1.117	0.287	0.359	0.999
53	1.359	0.202	1.227	0.631	1.360	0.441	0.816	1.000

*E.coli*を用いたタングステンのバイオソープションにおける熱力学特性値について検討した。Table 2-8 に結果を示す。また活性化エネルギーは 60.2kJ/mol の正となり、本研究の吸着反応は、吸熱反応と言える。既往の研究より、バイオソープションによる活性化エネルギーは 8.4~83.7 kJ/mol であるため、この計算値は妥当と言える。以上の結果より、温度を上げることによりタングステンの吸着を促進したと考える。

Т	K ₀ ^c	ΔG_0	ΔH_0	ΔS_0
[°C]	[l/mmol]	[kJ/mol]	[kJ/mol]	[J/(mol•K)]
22.6	13.2	-6.34	58.4	218.3
32.2	21.2	-7.75		
39.7	55.7	-10.5		
53.0	111.3	-12.8		

Table 2-8 熱力学特性値の計算結果

2.3.9 モデル廃液を用いた単成分系における W, Mo, V 吸着試験

(液相 pH の影響)

初めにタングステン、モリブデン、バナジウムの3種類の金属について、それぞれ単成分系において回 収試験を実施した。Fig. 2-15 に、各種金属とpHの回収結果を示す。また Fig. 2-16 に細胞の表面電位と 液相 pHの関係を示す。Fig. 2-15 より、タングステンとモリブデンは液相 pH が 1~3 の範囲では高い回収 率が得られており、一方で液相 pH が 3 より高い範囲ではタングステン、モリブデンともに回収率が急減し ている。これは Fig. 2-16 の高回収率が得られた液相 pH においては、細胞表面が正に帯電しており、低 回収率であった液相 pH においては細胞表面が負に帯電してことから説明できる。また、タングステン、モ リブデンは水溶液中において負帯電金属イオンで存在している(WO4²⁻, MnO4⁻)。以上の結果から、液相 pH が 1~3 の範囲では正帯電した細胞と負帯電した金属イオンとの間に静電気引力が働き吸着が起こ り、液相 pH が 3 以上の範囲では、負に帯電している細胞と負帯電金属イオンとの間に静電気斥力が働 き吸着が起こらなかったと考える。

一方、バナジウムは液相 pH が 2~3 の範囲では負帯電金属イオンで存在し、液相 pH が 0.8~2 の範囲では正帯電金属イオンで存在するために、液相 pH が 2~3 の範囲ではタングステン、モリブデンと同様に静電気引力により吸着が起こったが、液相 pH が 0.8~2 の範囲においては回収率が急減した。ただし、バナジウムの回収量が急減したものの少量の回収が見られた。ここで、Fig. 2-17 に液相 pH が 7.00 および 1.79 の時の細胞の表面電位分布を示す。Fig. 2-17 より、液相 pH が 1.79 における細胞の表面電位は平均として正の値であるが、分布として負の表面電位を持つ部分も存在する。このことから、正帯電イオンであるバナジウムの吸着がわずかに起きたと考える。

Fig. 2-15 各金属イオン溶液の回収試験結果(単成分系)

Fig. 2-16 細胞の表面電位(液相 pH の影響)

Fig. 2-17 E.coli 細胞の表面電位の分布 (a) pH7.00, (b) pH1.79

2.3.10 モデル廃液を用いた多成分系における W, Mo, V 吸着試験

<u>(液相 pH、細胞濃度の影響)</u>

2.3.9 に示した単成分系の結果より、液相 pH1.0 付近においてバナジウムの回収率が 0%に近いことか ら、タングステン、モリブデン、バナジウムの多成分系においても同 pH 域において金属イオン選択分離が 出来ると考えられる。Fig. 2-18 に、各金属イオン濃度の経時変化による選択分離回収試験結果を示す。 バナジウムとタングステンの選択分離回収を期待したが、単成分系では 3%であったバナジウムの回収率 が、多成分系では 18%に増加した。その原因として多成分系では単成分系とは異なるイオン種が発生し たことが考えられる。これまでの報告で、タングステン、モリブデン、バナジウムのオキン酸アニオンは単成 分系かつ酸性条件下で縮合して、イソポリ酸を形成することが分かっている。一方で、三成分系場合、タ ングステンとバナジウムが結合して縮合したヘテロポリ酸を形成するという報告例 ⁸ があり、三成分系の試 験では、このヘテロポリ酸が細胞表面に吸着したためにバナジウムの回収率が増加したと考えられる。以 上より、三成分系において選択分離回収を行うためには、タングステンポリ酸、バナジウムポリ酸、タングス テン・バナジウムへテロポリ酸の吸着優位性が重要となる。

Fig. 2-18 三成分系金属溶液における各金属イオンの回収結果 (pH:1.03)

前述の吸着優位性を決定する因子としては、静電気力、イオン価数、立体障害等があるが、これらの 因子は液相 pH、イオン価数、金属イオン濃度等の条件で複雑に変化する。本章では選択分離回収条件 の最適化を行うために、細胞濃度を変化させて分離効率の向上を検討した。

Fig. 2-19 に各金属イオンの回収率と細胞濃度の関係を示す。細胞濃度を低くするにつれて、タングス テンの吸着量は減少する。しかし、細胞濃度を2.58×10⁸ cells/ml 以下にすることで、タングステン、モリブ デンが吸着されているのに対して、バナジウムは、ほぼ吸着されないことが分かる。これは、タングステン ポリ酸およびモリブデンポリ酸はタングステンーバナジウム複合ポリ酸よりも吸着優位性が高く、細胞濃度 を低下させて金属イオン吸着サイトの数を減らすことで、優先的にタングステンポリ酸およびモリブデンポ リ酸が吸着され、バナジウムの回収が起こらなかったためと考える。以上の結果より、細胞濃度を調整する ことによりタングステンとバナジウムの選択分離が可能であることを確認した。今回の実験においては、タ ングステンとバナジウムの分離効率が最適となる細胞濃度は2.58×10⁸ cells/ml であった。

Fig. 2-19 細胞濃度と各種金属イオンの回収率の関係(三成分系)

2.3.11 使用済みスクラップ廃液を用いたタングステンの回収

(液相 pH、細胞濃度の影響)

本章のこれまでの結果を踏まえ、実際の使用済みスクラップ廃液を用いてバイオソープションによるタングステン回収を行った。実験条件は初期液相タングステン濃度 19.2 mmol/l、細胞濃度 2.0×10¹⁰ cells/ml とした。

タングステン酸ナトリウム溶液は、塩酸を加えない場合、液相 pH は 7.0~9.0 であり、この溶液に E.coli の細胞懸濁液を接種する同様の方法で行った。この時の液相 pH は HCl にで 1.36~3.90 に変化させ た。Fig. 2-20 に溶液中のタングステン濃度の経時変化を示す。Fig. 2-20 より pH を下げることで、タングス テンの回収量が大きく増加することが分かった。液相 pH1.84 にすると、ほぼ 100%のタングステンを回収 することができた。以上の結果より、試薬より調製したモデル廃液だけでなく、使用済みスクラップ廃液に おいてもタングステン回収は液相 pH に大きく依存することを確認した。

Fig. 2-20 溶液中タングステン濃度の経時変化(pH 依存)
) pH 1.36, ▲) pH 1.84, ■) pH 2.37, ×) pH 3.90, ○)無菌対照

次に細胞濃度の影響について検討した。タングステンを超硬合金にする際、バナジウムが混入すると超 硬合金の靱性が低下する。タングステンを回収する上ではバナジウムとの選択的分離は重要である。前 述の 2.3.10 において、細胞濃度の低い条件下ではタングステンのみを回収できることを確認した。そのた め使用済みスクラップ廃液においても細胞濃度の低い条件で回収することでタングステンの選択的回収 を試みた。Fig. 2-21 に使用済みスクラップ廃液におけるタングステンとモリブデン、バナジウムそれぞれの 回収量の細胞濃度依存性を示す。この時の初期濃度はタングステン、モリブデン、バナジウムそれぞれ 9.82 mmol/1、0.01 mmol/1、0.03 mmol/1 である。細胞濃度を 2.08×10¹⁰ cells/ml から減少させることで全て の金属の回収量が減少していることが分かった。そして、2.01×10⁸ cells/ml ではバナジウムの回収量がほ ぼ 0 mmol/1 となっていることが分かる。この要因は 2.3.10 で生じた吸着優位性が起因していると考える。

Fig. 2-21 各種金属回収量の細胞濃度依存性 (●)W, ▲)Mo, ■)V)

2.3.12 使用済みスクラップ廃液を用いたタングステン回収前後の E.coli の FT-IR 測定、TEM 観察

E.coli の細胞表面において、どの官能基がタングステン回収に関与しているかを確認するために、タン グステン回収前後の *E.coli* の FT-IR 測定を行った。その結果を Fig. 2-22 に示す。Fig. 2-22 より、回収前 の *E.coli* で確認できた-NH₂基,=NH 基,-NH₃+基のピークが回収後には減少している。このことから、-NH₂ 基,=NH 基,-NH₃+基がタングステン回収に関与していると考える。

Fig. 2-22 タングステン回収前後の E.coli の FT-IR

タングステンが具体的にどのような部分に吸着されることで回収されているのかを検討するために TEM

観察とマッピング分析を行った。その結果を Fig. 2-23 に示している。結果は、タングステンとバナジウム両 者共、広い範囲に出てしまい分かり難いが、両者のマッピングの結果で E.coli の形状が確認できることか ら表面全体に吸着していることが想定される。

Fig. 2-23 吸着後の E. coli の TEM 観察及びマッピング分析結果

2.3.13 使用済みスクラップ廃液を用いたタングステン回収後 E.coli からの WO3 粒子の合成

使用済みスクラップ廃液においても、2.3.7 同様に回収後細胞を焼成することにより、酸化タングステン (WO₃)を合成することは、バイオソープションを用いた廃液からの高効率で安価なタングステンリサイクル 技術確立のために重要である。

試験は、使用済みスクラップ廃液を26.8 mmol/l に調整し、バイオソープションによりタングステンを回収 し、12,000 rpm、10 min、2回の遠心分離を行った後、その濃縮液を80℃,12 h の乾燥操作を行うことで、 一次濃縮物を得た。続いて、一次濃縮物について800℃,4 h,10 ℃/min の焼成処理を行うことにより、二 次濃縮物を得た。二次濃縮物の写真をFig. 2-24 に示す。また Fig. 2-25 に得られた二次濃縮物の XRD を示す。XRD より、焼成後粉末のピークが斜方晶系の酸化タングステンのピークとほぼ一致していること から、2.3.7 同様、回収後の細胞を焼成することで、酸化タングステンとして回収出来た。

Fig. 2-24 二次濃縮物のデジタル写真

Fig. 2-25 二次濃縮物の XRD 分析結果

2.3.14 使用済みスクラップ廃液からの超硬工具の作製

本技術を用いたタングステンリサイクルプロセスについては、大きく分けて下記の7つの工程がある。① 使用済み超硬スクラップの酸化焙焼、②アルカリ抽出、③タングステンのバイオ吸着、④金属吸着後の微 生物の乾燥・焼成、⑤焼成後粉末の還元によるW合成、⑥還元後Wの炭化によるWCの合成、⑦超硬 合金の作製の7工程である。ここでは全ての工程において検討を実施し、超硬合金を作製した。なお作 製に当たっては、合成量の理由から E.Coli ではなく市販されているビール酵母を用いた。

ビール酵母を用いた試験を行い、*E.coli*の回収性能との比較について検討を行った. Fig. 2-26 に市販 されているビール酵母を用いた場合のタングステン回収試験結果を示す。ビール酵母を用いた場合にお いても、これまで同様タングステンは吸着出来た。また、*E.coli*のタングステン吸着量は 1.69 mmol/gdrycell であり、ビール酵母のタングステン吸着量は 1.60 mmol/g-drycell であり、吸着量にも大きな差は見られなかった。

Fig. 2-25 使用済みスクラップ廃液におけるタングステン回収試験結果(ビール酵母)

Fig. 2-26 に作製した超硬合金の写真を示す。また比較として市販のタングステンカーバイドを用いた超 硬合金も示す。また、Table 2-9 に両サンプルの XRF 組成分析結果を示す。性能試験などを行う必要は あるが、両サンプルの写真および組成分析結果は、両サンプルの大きな差異は見られなかったことから、 本技術を用いたリサイクル技術の可能性を確認できた。

Fig. 2-26 作製した超硬工具 (左:バイオソープション、右:市販 WC)

Table 2-9 両サンプルの XRF 組成分析結果(wt%)

	W	Со	С	AI	Si	Ti	Fe	Ni
Using biosorption	69.7	18.9	11.1	-	-	0.1	<0.1	0.1
Commercial	68.0	21.0	11.0	0.1	0.1	0.1	0.1	0.1

<u>2.4 まとめ</u>

E.coli を用いたバイオソープションにより、試薬によるモデル廃液、実際の使用済みスクラップ廃液においてタングステンを回収することに成功した。回収においては、液相 pH、細胞濃度、温度、タングステン 濃度が影響することを確認した。また回収した細胞を焼成することで酸化タングステンを得ることができ、さらに還元炭化することで超硬合金へ再資源化出来ることも確認した。また、バイオソープションを用いたタングステン回収は、非常に速い吸着反応であり希薄溶液からの回収が可能であることが分かった。また、吸着機構は Langmuir 単層吸着モデルであり、反応速度は擬二次反応であった。

三成分系での分離回収試験において、単成分系では存在しなかったタングステンーバナジウムヘテロ ポリ酸が発生したが、タングステンポリ酸の吸着優位性が高いことを利用してタングステン回収におけるバ ナジウムの分離に成功した。

<u>2.5 参考文献</u>

(1) T. Ogi, Y. Sakamoto, A.B.D. Nandiyanto, K. Okuyama: Biosorption of tungsten by Escherichia coli for environmentally friendly recycling system, *Industrial and Engineering Chemistry Research*, **2013**, 52 (40), 14441–14448

(2) T. Ogi, T. Makino, K. Okuyama, W.J.Stark, and F. Iskandar: Selective Biosorption and Recovery of Tungsten from an Urban Mine and Feasibility Evaluation, *Industrial and Engineering Chemistry Research*, **2016**, 55, 2903–2910

(3) 石田 友幸、板倉 剛、森口 秀樹、池ヶ谷 明彦:超硬スクラップのリサイクル技術と超硬工具のタン グステン使用量削減技術の開発、SEI TECHNICAL REVIEW, 2012, 181, 33-39

(4) 林 武彦、佐藤 史淳、笹谷 和男、池ヶ谷 明彦:超硬合金スクラップからのタングステンリサイクル
 事業化、SEI TECHNICAL REVIEW, 2016, 189, 8-14

(5) Malekzadeh, F.; Mashkani, S. G.; Ghafourian, H.; Soudi, M. R.: Biosorption of tungstate by a Bacillus sp. isolated from Anzali lagoon. *World J. Microbiol. Biotechnol.* **2007**, 23 (7), 905–910.

(6) Wu, Y. H.; Feng, S. X.; Li, B.; Mi, X. M., The characteristics of Escherichia coli adsorption of arsenic(III) from aqueous solution. *World Journal of Microbiology & Biotechnology* 2010, 26 (2), 249-256.
(7) Morsy, F. M. Hydrogen production from acid hydrolyzed molasses by the hydrogen overproducing Escherichia coli strain HD701 and subsequent use of the waste bacterial biomass for biosorption of Cd(II) and Zn(II). *Int. J. Hydrogen Energy* 2011, 36 (22), 14381–14390.

(8) Luo, L.; Miyazaki, T; Shibayama, A.; Yen, W.; Fujita, T., A novel process for recovery of tungsten and vanadium from a leach solution of tungsten ally scrap. *Menerals Engineering*, **2003**, 16, (7), 665-670

第3章 前処理を施した微生物吸着剤(E.coli)の

機能向上および最適吸着剤の選定1

<u>3.1 はじめに</u>

ここまで、微生物吸着剤として、安全かつ安価であり、高速培養が可能であることから、主に E.coli を用 いたタングステン回収について検討を行ってきた^{2,3}。しかし、タングステンリサイクルプロセスの実用化の 際には、コスト、タングステン回収能力、安全面、取扱いやすさなどの面から最適な吸着剤の選定の検討 を行うことが必要である。この他にも安定的に微生物を入手できるか、微生物の保管、培養容積がどの程 度であるか等、様々な点から考察する必要がある。本章では、まず E.coli の回収能力を最大限に引き出 すために、前処理を検討した。検討項目として、オートクレーブによる加熱・加圧処理、常圧加熱処理、超 音波破砕、E.coli 乾燥粉末を用いたタングステン回収について検討を行った。また、加熱処理した E.coli による回収量の違いから、様々な分析を行うことで、タングステン吸着のメカニズムについての検討を行っ た。

3.2 実験方法

3.2.1 金属イオン水溶液の調製方法

各種金属イオン溶液の調整は、タングステン源としてタングステン(VI)酸ナトリウムを超純水に溶解させることで、30 mM の金属イオン溶液を調製した。

3.2.2 E.coli 細胞懸濁液の前処理方法

前処理として、培養後の E.coli にオートクレーブによる加熱・加圧処理(120°C, 10 min)を行い、オート クレーブ処理後 E.coli 細胞懸濁液を調整した。オートクレーブによる加熱・加圧処理後の E.coli を用いて、 タングステン回収試験を行った。また、培養後の E.coli に加熱処理(60, 70, 80, 90, 100°C, 各 60 min)を 行った。加熱処理後の E.coli を用いて、タングステン回収試験を行った。Fig. 3-1 に加熱処理 E.coli を用 いたバイオソープション試験概要図を示す。また、培養後の E.coli に超音波破砕機で細胞破砕(5, 10, 30, 60 min)し、破砕後の細胞懸濁液を細胞破砕液とした。超音波破砕後の E.coli を用いて、タングステン回 収試験を行った。また、E.coli 細胞を乾燥させることで粉末化し、この E.coli 乾燥粉末を用いてタングステ ン回収試験を行った。

Fig. 3-1 加熱処理 E.coli を用いたバイオソープション試験概要図

3.2.3 各種処理後 E.coli 細胞懸濁液を用いたタングステン吸着実験

試験溶液の調整として、まず超純水、各種処理後 E.coli 細胞懸濁液および液相 pH 調整用の 1 mol/l の塩酸 (HCl)の混合溶液を調整した。この混合水溶液に対して、タングステン源として Na2WO4 水溶液を それぞれ所定の濃度になるように混合させることで 30 ml の試験溶液を調整した。金属イオンを注入した 時間を実験の開始とし、実験を開始してから、所定の時間ごとに試験溶液をシリンジで採取し、フィルター でろ過することでサンプリングを作製した。実験条件は、好気的環境下、温度 25℃、液相 pH1.0~8.0 とし た。

E.coli乾燥粉末を用いる場合は細胞懸濁液の代わりに粉末を試験溶液に所定の濃度添加することで回収試験を実施した。

3.3 実験結果と考察

3.3.1 オートクレーブ加熱・加圧処理後 E.coli による回収試験

Fig. 3-2 に処理前の E.coli およびオートクレーブ加熱・加圧処理後 E.coli を用いたバイオソープション によるタングステン回収試験結果を示す。処理前の E.coli では回収率が 36%であったのに対して、オート クレーブ加熱・加圧処理後 E.col では、回収率が 98%まで増加し、かつ短時間で最大回収率に到達した。 また、SEM 観察を見るとオートクレーブ加熱・加圧処理により、細胞が溶菌して小さくなっていることが確 認された。以上の結果より、加熱あるいは加圧により E.coli 細胞表面に存在するタングステン吸着官能基 が増加した、あるいはタングステンを細胞内部に取り込みやすい構造に変化したと考えらる。

Fig. 3-2 オートクレーブ処理有無の *E.coli* を用いた回収試験結果、 および *E.Coli* の SEM 写真

3.3.2 オートクレーブ加熱・加圧処理後 E.coli のゼータ電位

Fig. 3-3 にオートクレーブ処理前後の E.coli のゼータ電位測定結果を示す。Fig. 3-3 より、オートクレーブ処理をすることで、ゼータ電位が大幅に増加することが確認された。このことから、E.coli 細胞表面に存在する正帯電のアミノ酸が増加したと考えられる。タングステンは負帯電金属イオン(WO4²)として水溶液中で存在することから、吸着量増加要因は細胞表面の変化にあると判断した。

Fig. 3-3 理前およびオートクレーブ処理後 E.coli のゼータ電位

3.3.3 オートクレーブ加熱・加圧処理後 E.coli の細胞濃縮試験

Fig. 3-4 にオートクレーブ処理前後の E.coli を用いた場合の細胞濃縮試験の結果を示す。縦軸にタン グステンの平衡吸着量、横軸に細胞濃度とした。また、Table 3-1 に、タングステンを 5 t/月処理するとした 場合の、細胞保管容積の概算値を示す。オートクレーブ処理することで、回収量能力は約2倍に向上した。それにより容積の概算値が、81m³(約4.3m四方)にとなり、目標値を捉え、現実的な容積にできる可能性を確認した。

Table 3-1 細胞保管容積の概算結果

Biosorbent	WC [t]	Cell conc. [cells/ml]	Adsorbed amount [mol/cell]	Volume of apparatus [m³]
	5.0			124 (Target)
E.coli	5.0	1.6 × 10 ¹¹	8.1 × 10 ⁻¹⁶	197
Heated E.coli	5.0	1.5 × 10 ¹¹	2.1 × 10 ⁻¹⁵	81

3.3.4 加熱処理後 E.coli による回収試験

3.3.1より、E.coliにオートクレーブ処理することで、タングステンの吸着量が増加したが、この処理のうち、 加熱あるいは加圧のどちらが細胞表面に影響を与えたかが不明である。そのため、常圧において、E.coli の加熱処理を行い、回収試験を実施した。Fig. 3-5に結果を示す。この結果より、回収試験前に、E.coliに 加熱処理を行うことで、吸着性能を大幅に向上出来ることを確認した。加熱処理有無でE.coliの吸着性能 を比較すると60°C、70°Cでは1.4~1.5倍、80°Cでは2.0倍、90°C、100°Cでは2.6倍であった。また、短時 間で吸着できる点からも、3.3.1のオートクレーブ処理による性能向上は、加熱による効果であったと判断 できる。

Fig. 3-5 液相タングステン濃度の経時変化
○)100°C, □) 90°C, ◇)80°C, ▽)70°C, △) 60°C, ×)処理無, +)無菌対象

3.3.5 加熱処理後E.coliの表面構造

Fig. 3-6 (a) ~ (e)に加熱処理前後のE.coliのSEM像を示す。処理前のE.coliの細胞表面は凹凸が少なく 比較的滑らかであるが、加熱(ヒートショック)を与えることにより、E.coli表面が溶け出し、凹凸が増加してい ることが観察された。これは加熱によって細胞の表面および細胞の内部分泌液が溶出したと考えられる。

Fig. 3-6 *E, coli*細胞表面のSEM像(加熱処理前後) (a)処理無, (b) 60°C, (c) 70°C,(d) 80°C, (e) 90°C, (f) 100°C

<u>3.3.6</u> 加熱処理後E.coliの表面電位

次に、Fig. 3-7に加熱処理前後のE.coliの表面電位の測定結果を示す。加熱処理無のE.coliでは、表面電位が5mV程度であるのに対して、60℃、70℃、80℃で処理したE.coliの表面電位は10~15mVに増加し、90℃、100℃で処理したE.coliでは19~24mVにまで増加した。タングステンは水溶液中で負帯電イオンとして存在することから、E.coliに加熱処理を行うことにより、新たに細胞分泌液(主にタンパク質)が細胞表面に溶出し、その溶出物が正帯電のアミノ酸由来のアミノ基を多く持つことから表面電位が増加し、結果的としてタングステンの回収量が増加したと考えられる。

Fig. 3-7 *E,coli*細胞表面電位(加熱処理前後)
○)100°C, □) 90°C, ◇)80°C, △) 60°C, ×)処理無

3.3.7 加熱処理後の細胞懸濁液の沈殿物および上澄溶液による回収試験

加熱処理によるタングステン回収量増加要因が、細胞表面にあるのか、溶出した分泌物にあるか検証するために、加熱処理後の細胞懸濁液の沈殿物および上澄液によるタングステン回収を行った。サンプルの調整方法は、加熱処理を行った細胞懸濁液を遠心分離することで、沈殿細胞と上澄溶液に固液分離し、沈殿細胞については超純水で再懸濁液とした。

上記の方法により、作製したそれぞれのサンプルと加熱処理無および加熱処理有(90℃)の4種の細胞懸濁液によるタングステン回収試験結果をFig. 3-8 に示す。沈殿細胞で、加熱した細胞懸濁液と同様の回収量が得られたことから、加熱処理による回収量の増加要因は、細胞表面の影響であることが分かった。また、上澄溶液でもタングステンの回収が少し見られたが、これは加熱によって溶出したアミノ酸によるもと考えられる。

3.3.8 E.coli細胞破砕液による回収試験

Fig. 3-9 に E.coli 細胞懸濁液を超音波破砕(ホモジナイザー)によって破砕した細胞破砕液の経時変化 を示す。細胞破砕時間 5 min のサンプルにおいても、白濁した液が透明色に変化した。これは細胞がナ ノサイズに破砕されたことを示す。破砕時間 30 min 以降のサンプルが黒色になったのは、破砕機に付着 していた鉄粒子がコンタミとなったと考えられる。今後混入しない条件を検討する必要がある。本試験で は混入が見られない細胞破砕時間 5 min のサンプルを用いて実施した。タングステン回収試験結果を Fig. 3-10 に示す。細胞を破砕することにより、タングステンの回収量が大幅に増加した。これは細胞を破 砕したことにより、内部分泌液が溶出したことや細胞の表面積が増加したこと影響したと考える。

Fig. 3-9 細胞破砕液(破砕時間の影響)

Fig. 3-10 細胞破砕液によるタングステン回収試験結果

3.3.9 E.coli 乾燥粉末を用いた回収試験

これまでは細胞懸濁液での回収試験結果について述べたが、培養後の微生物を乾燥させた粉末状態 でタングステン化合物溶液中に添加することについても検討した。Fig. 3-11 に *E.coli* 乾燥粉末を用いた 回収試験結果を示す。微生物を粉末状態とすることにより、処理前の *E.coli* の回収量が 1.28 mmol/g に 対して、回収量が 2.32 mmol/g に増加した。 このことから、粉末化しても十分な性能が保持できることが 確認され、粉末として保管でき、結果、保管容積を小さくすることができる。

3.3.10 加熱処理後の E.coli に含有するアミノ酸分析

これまでの回収効率を向上させる因子が加熱処理後の E.coli に含有するアミノ酸にあると考え、加熱処 理後の E.coli に対して LC-MS 分析を行い、含有するアミノ酸の定量分析を行った。その結果を Fig. 3-12 に示す。Fig. 3-12の結果より加熱処理後の E.coli には多種にわたるアミノ酸が増加していることが分かり、 その中でもホスホセリンやリジンが多くの割合を占めていることが分かった。このことは、Fig. 3-13 に示すよ うに、加熱により E.coli 細胞の細胞膜が溶解し、ホスホセリンやリジンなどのアミノ酸が細胞表面に増加し たことを意味し、結果その増加したアミノ酸に多くのタングステンイオンが吸着し、性能が向上したと考える。 Fig. 3-12 の結果を踏まえ、比較的安く入手できるアミノ酸として L-リジン塩酸塩とグルタミン酸ナトリウム、 アルギニン、アルギニン酸塩酸塩の4種を選定し、ゼータ電位測定を行った。その結果を Fig. 3-14 に示 す。Fig. 3-14の結果より、全てのアミノ酸について液相 pH が 3 以上では負電荷に、液相 pH が 3 以下の 場合は正電荷に帯電することが確認された。これはアミノ酸が持つアミノ基(-NH2)とカルボキシル基(-COOH)によるものと考える。アミノ酸は液相 pH が高い場合、液相中ではプロトン(H⁺)が不足しているため、 アミノ基は変化せず、カルボキシル基からプロトンが脱離し、カルボニル基(-COO-)となり、アミノ酸全体と しては負電荷を持つと考えられる。一方、液相 pH が低い場合は溶液中の多量のプロトンが存在すること で、カルボキシル基に変化はなく、過剰なプロトンでアミノ基にプロトンがチャージされた-NH3+基となる。 結果、アミノ酸全体で正電荷を持つと考える。そして、検討した 4 種のアミノ酸において、L-リジン塩酸塩 が最も広い pH 域で正帯電していることが分かった。タングステンは溶液中ではアニオンとして存在してい ることが分かっており、吸着材が広い pH 域で正に帯電していることは好ましいと考えられる。また、L-リジ ン塩酸塩は、これらアミノ酸の中で最も安価で大量に入手できることも吸着材として好ましい。以上より、調 整面、コスト面で L-リジン塩酸塩が最適と判断し、次章より、主の吸着材として用いることとした。

Fig. 3-12 加熱処理後の E.coli の LC-MS 分析結果

Fig. 3-13 加熱処理された E.coli 細胞のタングステン吸着性能向上のメカニズム

Fig. 3-14 各アミノ酸のゼータ電位測定結果

<u>3.4 まとめ</u>

*E.coli*にオートクレーブ処理を行うことで、吸着量が大幅に増加した。その要因は、加熱により、*E.coli* 細胞表面にホスホセリンやリジンなどのアミノ酸が増加するためであることが、LC-MS 分析より示唆された。中でもリジンが操作面、コスト面について高い可能性があることも確認できた。さらに吸着性能を向上することで、*E.coli*の保管容積を現実的なレベルに縮小できる可能性も確認した。また容積を縮小する手段として*E.coli*の超音波破砕、粉末化についても可能性を見出した。

3.5 参考文献

1) Ogi, T.; Makino, T.; Iskandar, F.; Tanabe, E.; Okuyama, K., Heat-treated Escherichia coli as a high-capacity biosorbent for tungsten anions. *Bioresource Technology* **2016**, 218, 140-145.

2) T. Ogi, Y. Sakamoto, A.B.D. Nandiyanto, K. Okuyama: Biosorption of tungsten by Escherichia coli for environmentally friendly recycling system, *Industrial and Engineering Chemistry Research*, **2013**, 52 (40), 14441–14448

 T. Ogi, T. Makino, K. Okuyama, W.J.Stark, and F. Iskandar: Selective Biosorption and Recovery of Tungsten from an Urban Mine and Feasibility Evaluation, *Industrial and Engineering Chemistry Research*, 2016, 55, 2903–2910

第4章

リジンを用いたポリオキソメタレート沈殿による

高効率タングステン回収1

4.1 はじめに

近年、金属回収に関して持続可能で環境にやさしいことを目標とした微生物を使用したバイオソープションやバイオミネラリゼーションによる金属回収が研究されている²⁻¹⁸。2章の取組みにより、E.Coliをタングステン水溶液に導入することで100%タングステンを回収することに成功し¹⁹、またE.Coliにはスクラップから得た廃液からのタングステンの選択的吸着の可能性を示した²⁰。しかしながら、E.Coliによる回収は、効率面、コスト面で厳しい。そのため効率的な回収プロセスを開発するために、二次元電気泳動、液体クロマトグラフィータンデム質量分析、アミノ酸分析器を用いた詳細な分析を行い、吸着に関与する因子を調査した。その結果、種々のアミノ酸、特にリジンがタングステンの静電吸着に強く関係していることを解明した²¹。リジンの酸解離定数(pKa COOH)は2.18であり、そのためリジンの電荷は低pH下では正に帯電し、タングステンアニオンを吸着しタングステンオキソ酸の脱水縮合によるタングステンポリオキソメタレート沈殿の形成を促進することができると考えられる。よってリジンは環境負荷が最小限で費用対効果の高い沈殿剤となり得ると考える。

これに伴い、本章ではリジンをタングステン回収の沈殿剤として使用した(Fig. 4-1)。リジンはタングステ ン水溶液に溶解させ、リジンとタングステンイオンの相互作用は溶液のpH、初期リジン濃度、初期タングス テン濃度、操作温度で評価を行った。リジンは得られた沈殿物(リジン-タングステン複合物)から大気焼成 することで除去した。また、リジンの適用性を決定するために、様々な他の金属イオンを除去するために 使用した。リジンは入手しやすく安価、安全であり、焼成することで容易に消失するため、高純度の酸化タ ングステンを得られるといった利点がある。凝固剤/凝集剤/沈殿剤^{2,22-26}は金属除去に幅広く使用されて いるが、リジンを用いたタングステン回収例は、報告されていない。本章では、水溶液からの有用または 有害金属を除去するための費用対効果の高い新規かつ環境に優しい方法を検討した。

Fig. 4-1 リジンによるタングステンの回収と高純度酸化タングステンの生成

4.2 実験方法

4.2.1 リジンを使用したタングステンの除去

試験溶液は超純水、リジン塩酸塩 (Ajinomoto Healthy Supply Co., Inc., Tokyo, Japan)、 pH調整用の1 mol L⁻¹の塩酸 (Kanto Chemical Co., Inc., Tokyo, Japan)、1 mol L⁻¹のNa₂WO₄・2H₂O (Kanto Chemical Co., Inc.)水溶液を加え全体量を48 mLに調製した。実験開始後一定時間ごとにシリンジで試験溶液を捕集し、サンプルをフィルタ (Whatman filter, pore size: 0.2 µm; GE Healthcare Life Sciences)で回収した。実験は 10℃-40℃で実施し、pHは塩酸を用いて1.36-8.03に調整した。タングステン初期濃度は1.8-239 mmol L⁻¹、リジンの濃度は2.7-383 mmol L⁻¹で実験を行った。タングステン溶液にリジンを導入するとすぐに白色沈殿 が形成した。白色沈殿を遠心分離 (7840×g, 10 min)で分離し、その後80℃、12時間乾燥した。乾燥した サンプルを電気炉で600℃、4時間、大気雰囲気下で焼成した。

<u>4.2.2 分析</u>

一定時間ごとに溶液を捕集し、タングステンイオンの除去量を誘導結合プラズマ原子発光分光分析装置(ICP-AES; ICPE-9820, Shimadzu Corporation, Kyoto, Japan)で分析した。タングステンの回収率をRw とすると以下の式で計算される。

$$R_{\rm w} = \frac{C_0 - C_{\rm e}}{C_0} \times 100\%$$

ここで、Coは溶液中の初期タングステン濃度[mmol L-1]、Ceはリジン添加後のタングステン濃度[mmol L-1]

を示している。この分析の測定誤差は1.0%以下である。単成分のタングステン、単成分のリジン、タングス テン-リジン混合の水溶液中でのイオン状態はエレクトロスプレーイオン化質量分析装置(ESI-MS; LTQ Orbitrap XL, Thermo Fisher Scientific)で分析した。分析のためにタングステン濃度が100 ppmに調製し、 pHを塩酸を用いて調整した。焼成後に得た酸化タングステンの粉末の結晶構造は粉末X線回折(XRD; Bruker, D2 Phaser, Billerica, MA, USA, Cu Kα radiation)により分析を行った。酸化タングステンの粉末中 のタングステン濃度はICP-AESによる分析で決定した。

4.3 実験結果と考察

4.3.1 タングステン回収における pH の影響

Fig. 4-2(a) (b) にタングステン回収におけるpH(1.37-8.03)の影響を示す。初期タングステン濃度と初期 リジン濃度はそれぞれ177 mmolL⁻¹、92 mmolL⁻¹である。Fig. 4-2(a)からpHが2.15以下の時、1分以内にタ ングステン濃度が減少していることが分かる。特に、pHが1.37の時にリジンによるタングステン溶液からの タングステン回収率が96%となった。一方、pHが3.61以上の時はタングステン濃度が減少しなかった。Fig. 4-2(b)には実験開始5分後の外観を示しており、pH 2.15以下の時白色沈殿が形成していることが確認で きる。

4.3.2 初期タングステン川ジンの濃度比の影響

Fig. 4-2(c)に異なるタングステン初期濃度の条件下(230、17、1.8 mmolL⁻¹)でタングステンとリジンの初 期濃度の比率と回収率の関係を示した。溶液のpHと温度はそれぞれ、1.8と25℃にて実施した。いずれ のタングステン初期濃度においても、リジン/タングステンの比率が増加すると、タングステン回収率も増加 している。また、タングステン初期濃度が増加すると、回収率も増加している。タングステン初期濃度が230 mmolL⁻¹の場合、等モルのリジンで100%のタングステンを回収することに成功した。この結果はタングステ ン-リジン沈殿物の溶解度がタングステンの回収率に強く関係していることを示唆している。そこで、溶液の 温度のタングステン回収率への影響について検討を行った。

4.3.3 溶液温度のタングステン回収率への影響

Fig. 4-2(d)に溶液温度(10-40℃)のタングステン回収率の影響を示した。タングステン初期濃度とpHは それぞれ150 mmol L⁻¹、1.8とした。液温上昇に伴いタングステン回収率は減少していることがわかる。溶 液温度が15.5℃の時、タングステン回収率は96%となった。この高い回収率は、タングステン-リジン沈殿 物の溶解度の減少によるものだと考えられる。この結果は低温で回収を行うと効率よく回収出来ることを 示している。

Fig. 4-2(a) 異なるpHでリジンを使用したタングステンイオン濃度の経時変化 (W初期濃度177 mmol/L⁻¹、リジン初期濃度92 mmol L⁻¹)

(b) 回収5分後のデジタル写真

(c) 異なるW初期濃度とリジン/W初期濃度比に対する60分後のタングステン回収率(pH 1.8、液温25℃)
 (d) 液温に対する30分後のタングステン回収率(初期W濃度150 mmol/L、pH 1.8)

<u>4.3.4 タングステン溶液の ESI-MS 分析</u>

リジンを使用したタングステンの回収機構を明らかにするために、ESI-MSによる分析をpH 8.0とpH 3.0の Na₂WO₄水溶液で行った。実際の回収時のpHと異なるのは、装置上の制約のためである。Fig. 4-3 (a) に は、pH 8.0のNa₂WO₄水溶液中に存在する主なイオンはHWO₄であることを示している。塩酸を使用して pHを3.0に調整すると、様々なイオン種(W₆O₁9²⁻、W₇O₂₂²⁻、W₃O₁₀²⁻、HWO₄⁻)がHWO₄の脱水縮合によ り生成することが確認できる(Fig. 4-3 (b))。HWO₄は塩酸を加えることでプロトン化し、その後脱水縮合す ることでポリオキソメタレートとなる²⁷(6HWO₄-+4H⁺→W₆O₁9²⁻+5H₂O)。リジンは酸解離定数(pKa COOH) が2.2であるためpH 1.8では正に帯電している。これはFig. 4-3 (c)の結果からも支持される。そのためリジ ンは、pH 1.8のときリジン-タングステン混合溶液中でタングステンポリオキソメタレートの対カチオンとして 機能していると考えられる。よってHWO₄-の縮合は正に帯電したリジンと負に帯電したタングステンオキソ 酸の静電相互作用によって促進すると考えられる。Fig. 4-3の(d)と(e)にそれぞれ100 ppmに調整したタ ングステン水溶液と、リジン水溶液をESI-MSで分析した結果を示す。結果はリジン-タングステン混合溶液 中に様々なタングステン縮合物の存在を確認することができた(Table 4-1)。主な縮合物の化学式は C₆H₁₃N₂O₅W等であり、HWO₄-とリジン(C₆H₁₄N₂O₂)が脱水縮合したものと考えられる。

Structural formula	W : Lysine
$C_6H_{13}N_2O_5W$	1:1
$C_{12}H_{25}N_4O_6W$	1:2
$C_{12}H_{27}N_4O_7W$	1:2
$C_6H_{10}N_2O_7W_2$	2:1
$C_6H_{12}N_2O_8W_2$	2:1

Table 4-1. ESI-MS 分析に基づくタングステン-リジン縮合物の化学式の提案

Fig. 4-3 ESI-MSによるタングステン溶液、リジン溶液、W-リジン混合溶液の分析
(a) Na₂WO₄ 水溶液 (pH 8.0)、(b) Na₂WO₄ 水溶液 (pH 3.0)、(c)リジン水溶液 (pH 2.8)
(d)W-リジン混合溶液 (pH 8.0、360-500 m/z)、(e) W-リジン混合溶液 (pH 2.8、500-750 m/z)
(a)、(b)、(d)、(e)はポジティブモード; (c)はネガティブモード

4.3.5 リジンを使用したタングステン回収メカニズムの提案

Fig. 4-4にこれまでの結果より、リジンによるタングステン回収のメカニズムについての考察を示す。pH 8.0におけるタングステン水溶液中の主なイオン形態はHWO4である。リジンを添加することで、pHは8.0から7.0へと変化する。リジンはこのpH域では正に帯電し、負に帯電したタングステン酸イオンとイオン結合をすることによって、タングステン-リジン縮合物(タングステンポリオキソメタレート)が形成される。塩酸を用いて溶液のpHを下げると、溶液中の種々のリジンを含むタングステンポリオキソメタレートが脱水縮合によって互いに反応する。最終的にタングステンポリオキソメタレート溶液が飽和溶解度に達した際に、リジンータングステン沈殿物が析出する。これらの反応はpH 2.0で生じる。

Fig. 4-4 リジンを使用したタングステン回収メカニズムの提案

リジンに含まれる官能基の1つであるアミノ基の役割を明らかにするために、様々な種類のアミノ酸(グリ シン、グルタミン酸ナトリウム、ヒスチジン、アルギニン)をタングステン溶液に添加した。Fig. 4-5に使用した アミノ酸の特性とタングステン回収率を示す。窒素原子が増えるほどタングステン回収率が増加しているこ とがわかる。これは正に帯電したアミノ基がタングステンポリオキソメタレートの形成に重要であることを示 している。化学結合を明らかにするためにタングステン・リジン沈殿物を詳細に分析することは重要である が、タングステンイオンがリジン添加により溶液から迅速に除去されることは明らかである。そのため、リジ ンによる様々な金属イオンの回収を検討し、この回収方法が適用可能か判断した。Table 4-2に示すように タングステン、モリブデン、タンタル、ニオブの金属イオンの高効率回収を達成した。これはリジンがポリオ キソメタレートの形態を持つ金属において、同様のメカニズムで回収できることを示している。オキソ酸の 脱水縮合反応をリジンが促進していることをこの結果は示している。リジンがアシストする回収はポリオキソ メタレート形態の金属を選択的に除去する利点があることも示している。.

Amino acid	Glycine	Lysine	Histidine	Arginine	
Molecular structure		H ₂ N NH ₂ OH			
Molecular weight	75.07	146.19	155.15	174.2	
Number of N	1	2	3	4	
PI	5.97	10.54	7.59	10.76	
PK ₁	2.35	2.16	1.80	1.82	
PK ₂	9.78	9.06	9.33	8.99	
PK ₃	-	10.54	6.04	12.48	

PI: Isoelectric point, pK_1 : COOH group dissociation constant,

 pK_2 : NH₂ group dissociation constant, pK_3 : side chain group dissociation constant

Fig. 4-5 アミノ酸の特性とアミノ酸によるタングステン回収率 (pH 1.8, 26℃、初期タングステン濃度170 mmol L⁻¹、初期リジン濃度47.9 mmol L⁻¹)

Metal	Metal conc. [mmol L ⁻¹]	Lysine conc. [mmol L^{-1}]	Lysine/metal [-]	Temp. [°C]	рН [-]	Removal ratio at 5 min [%]
	170	94	0.6	26	1.8	94
W	18.0	25	1.4	24	1.8	94
	1.7	3.0	1.8	24	1.8	71
Ъ.	182	96	0.5	24	1.8	99
NIO	44	48	1.1	27	1.7	89
Ŧ	10	114	11.4	27	1.7	99
Та	2.0	11	5.7	27	1.7	19
Nb	11	57	5.2	25	1.5	96
Ni	9.2	240	26.1	27	1.9	1
Cs	3.7	240	64.9	27	1.7	5
Na	17.5	137	7.8	26	1.4-1.8	0
Al	14.9	137	9.2	26	1.4-1.8	3
Zn	7.1	137	19.3	26	1.4-1.8	0
Со	8.5	137	16.1	26	1.4-1.8	0
Si	12.5	137	11.0	26	1.4-1.8	0
Au	3.8	137	36.1	23	0.25	2
	3.4	137	40.3	26	11	5
Pt	4.0	137	34.3	26	0.5	5

Table. 4-2 リジンを使用した様々な金属イオンの回収率

4.3.6 タングステン濃縮物の調製

タングステン濃縮物は80℃、12時間でタングステン-リジン沈殿物を乾燥する。Fig. 4-6(a) にタングステ ン-リジン沈殿物から得た乾燥粉末サンプルの写真を示す。乾燥した沈殿物のタングステン濃度は51.4% (w/w)であり、初期溶液中のタングステン濃度の12倍である(239 mmol L⁻¹)。次に焼成することで酸化タ ングステン(WO₃)を合成した。合成にあたり条件を適正化するため、熱重量分析を用いた。Fig. 4-6 にリ ジンとタングステン・リジン沈殿物の昇温による重量の減少を示す。いずれも600℃以上で重量が一定となっていることが分かる。この結果をもとにタングステン・リジン沈殿物の乾燥サンプルを大気炉で600℃、4時間で処理し、WO3を合成した。焼成した粉末はFig. 4-7 (b) に示すように黄色であり、これはWO3の特有結晶を示している。ICP-AESは、生成した固体の凝縮物が99.6wt%の高純度WO3であることを示し、これは初期溶液中のタングステン濃度の21倍(239 mmol L⁻¹)である。Fig. 4-7(c) にタングステン・リジン沈殿物の焼成後のXRD測定結果を示す。参照として、リジン粉末及び、乾燥後のタングステン・リジン沈殿物のXRDも示す。後者は、20-30°に幅広いピークが確認できた。このピークは、リジンやNa2WO4とは異なるピークである。またアモルファスな構造を特有のブロードなピークであり、このことは、前述の脱水縮合で生成していること支持していると言える。600℃で焼成したタングステン・リジン粉末のXRDピークは高純度なWO3の存在を示している。

Fig. 4-6 熱重量分析による粉末試料の分析 (a)タングステン-リジン沈殿物、(b)リジン塩酸塩

<u>4.4 まとめ</u>

この章ではNa2WO4溶液からの高速かつ効率的なタングステンの回収方法としてリジンを用い検証した。 リジンをNa2WO4水溶液に添加し、pHを2.15以下に調整することで1分以内に白色沈殿が沈殿し、タング ステン水溶液から100%のタングステン回収率を確認した。この沈殿生成の機構はESI-MSにて解明され、 タングステン酸イオンが静電相互作用で脱水縮合しタングステンポリオキソメタレートを形成していくことで 沈殿が生成していることを示した。タングステン-リジン沈殿物を600℃、4時間で焼成することで酸化タング ステンの濃度が99.6%の粉末を得た。これは初期タングステン濃度の21倍の濃度である。このリジンを使 用した容易な方法はモリブデン、ニオブ、タンタルのような他の金属のポリオキソメタレートにも応用可能 であること確認した。

<u>4.5 参考文献</u>

(1) Ogi, T.; Makino, T.; Nagai, S.; Stark W. J.; Iskandar, F.; Okuyama, K., Facile and efficient removal of

tungsten anions using lysine-promoted precipitation for recycling high-purity tungsten. *ACS sustainable chemistry & engineering* **2017**, 5, (4), 3141-3147

(2) Gadd, G. M., Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. *Current Opinion in Biotechnology* **2000**, 11, (3), 271-279.

(3) Gadd, G. M., Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. *Journal of Chemical Technology and Biotechnology* **2009**, 84, (1), 13-28.

(4) Abdolali, A.; Ngo, H.; Guo, W.; Lee, D.; Tung, K.; Wang, X., Development and evaluation of a new multi-metal binding biosorbent. *Bioresource Technology* **2014**, 160, 98-106.

(5) Nguyen, T.; Ngo, H.; Guo, W.; Zhang, J.; Liang, S.; Yue, Q.; Li, Q.; Nguyen, T., Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. *Bioresource Technology* **2013**, 148, 574-585.

(6) Konishi, Y.; Ohno, K.; Saitoh, N.; Nomura, T.; Nagamine, S.; Hishida, H.; Takahashi, Y.; Uruga, T., Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. *Journal of biotechnology* **2007**, 128, (3), 648-653.

(7) Farooq, U.; Kozinski, J. A.; Khan, M. A.; Athar, M., Biosorption of heavy metal ions using wheat based biosorbents–a review of the recent literature. *Bioresource Technology* **2010**, 101, (14), 5043-5053.

(8) Reddad, Z.; Gerente, C.; Andres, Y.; Le Cloirec, P., Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. *Environmental science & technology* **2002**, 36, (9), 2067-2073.

(9) Ogi, T.; Saitoh, N.; Nomura, T.; Konishi, Y., Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. *Journal of Nanoparticle Research* 2010, 12, (7), 2531-2539.
(10) Ogi, T.; Honda, R.; Tamaoki, K.; Saitoh, N.; Konishi, Y., Direct room-temperature synthesis of a highly dispersed Pd nanoparticle catalyst and its electrical properties in a fuel cell. *Powder technology* 2011, 205, (1), 143-148.

(11) Ogi, T.; Tamaoki, K.; Saitoh, N.; Higashi, A.; Konishi, Y., Recovery of indium from aqueous solutions by the Gram-negative bacterium Shewanella algae. *Biochemical engineering journal* **2012**, 63, 129-133.

(12) Hansel, C. M.; Benner, S. G.; Fendorf, S., Competing Fe (II)-induced mineralization pathways of ferrihydrite. *Environmental science & technology* **2005**, 39, (18), 7147-7153.

(13) Hedrich, S.; Johnson, D. B., Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors. *Environmental science & technology* **2014**, 48, (20), 12206-12212.

(14) Gadd, G. M.; Pan, X., Biomineralization, Bioremediation and Biorecovery of Toxic Metals and Radionuclides. *Geomicrobiology Journal* **2016**, 33, (3-4), 175-178.

(15) Mani, D.; Kumar, C., Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. *International Journal of Environmental Science and Technology* **2014**, 11, (3), 843-872.

(16) Volesky, B.; Holan, Z., Biosorption of heavy metals. *Biotechnology progress* 1995, 11, (3), 235-250.

(17) Vijayaraghavan, K.; Yun, Y.-S., Bacterial biosorbents and biosorption. *Biotechnology advances* **2008**, 26, (3), 266-291.

(18) Wang, J.; Chen, C., Biosorbents for heavy metals removal and their future. *Biotechnology advances* **2009**, 27, (2), 195-226.

(19) Ogi, T.; Sakamoto, Y.; Nandiyanto, A. B. D.; Okuyama, K., Biosorption of Tungsten by Escherichia coli for an Environmentally Friendly Recycling System. *Industrial & Engineering Chemistry Research* 2013, 52, (40), 14441-14448.

(20) Ogi, T.; Makino, T.; Okuyama, K.; Stark, W. J.; Iskandar, F., Selective Biosorption and Recovery of Tungsten from an Urban Mine and Feasibility Evaluation. *Industrial & Engineering Chemistry Research* **2016**, 55, (10), 2903-2910.

(21) Ogi, T.; Makino, T.; Iskandar, F.; Tanabe, E.; Okuyama, K., Heat-treated Escherichia coli as a high-capacity biosorbent for tungsten anions. *Bioresource Technology* **2016**, 218, 140-145.

(22) Adeleye, A. S.; Conway, J. R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A. A., Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. *Chemical Engineering Journal* **2016**, 286, 640-662.

(23) Hankins, N. P.; Lu, N.; Hilal, N., Enhanced removal of heavy metal ions bound to humic acid by polyelectrolyte flocculation. *Separation and Purification Technology* **2006**, *5*1, (1), 48-56.

(24) Keeley, J.; Jarvis, P.; Smith, A. D.; Judd, S. J., Coagulant recovery and reuse for drinking water treatment. *Water research* **2016**, 88, 502-509.

(25) Bratskaya, S. Y.; Pestov, A.; Yatluk, Y. G.; Avramenko, V., Heavy metals removal by flocculation/precipitation using N-(2-carboxyethyl) chitosans. Colloids and Surfaces A: *Physicochemical and Engineering Aspects* **2009**, 339, (1), 140-144.

(26) Plattes, M.; Bertrand, A.; Schmitt, B.; Sinner, J.; Verstraeten, F.; Welfring, J., Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes. *Journal of hazardous materials* **2007**, 148, (3), 613-615.

(27) Long, D. L.; Tsunashima, R.; Cronin, L., Polyoxometalates: building blocks for functional nanoscale systems. *Angewandte Chemie International Edition* **2010**, 49, (10), 1736-1758.

リジンを用いた使用済みスクラップ廃液からのタングステンの

沈殿回収とタングステンカーバイドへの再資源化1

5.1 はじめに

レアメタルの一つであるタングステンは、製造業において金属加工用切削工具に欠かすことのできない 超硬工具として用いられており、持続可能かつ環境負荷が低い安定供給を目指した都市鉱山からのタン グステン回収技術の開発が求められている²⁻⁸。このような背景のもと、我々はバイオソープション技術によ る回収技術に着目し、*E.coli*による回収、選択性、回収能力の向上について検討した。さらに回収に寄与 するアミノ酸の一種、リジンに着目した回収⁹を前章で検討した。アミノ酸であるリジンを用いることで、液相 中からタングステンを5分以内に100%沈殿回収できることを明らかにし、さらにタングステン-リジン沈殿物 を焼成することで最大99.6%という高純度の酸化タングステンを合成できることを示している。この手法は 他の無機沈殿剤¹⁰と比較して、リジンが650[°]C程度の焼成で分解、消失するため、焼成するだけで他の物 質が残らず高純度の物質を得ることができる。しかしながら、このリジンを用いた手法で、実際のスクラップ へ適用した報告例はない。

そのため本章では、実際の使用済み超硬合金(炭化タングステン-コバルト)スクラップから得られるタング ステン酸ナトリウム水溶液を対象として、リジンを用いたタングステンの選択的回収とさらに、超硬合金材 料である炭化タングステンへのリサイクル、再資源化について検討した。Fig. 5-1に現行のイオン交換法を 用いたタングステン回収工程と本章で提案する回収工程を示す。イオン交換法では、(i) 超硬合金スクラ ップを加熱、アルカリと反応させ、タングステン成分を抽出してタングステン酸ナトリウム水溶液を調製、(ii) イオン交換樹脂を用いたタングステンの選択的回収、(iii) 溶離液を用いたタングステンの脱離、(iv) 脱 離液の濃縮、晶析によるAPT(Ammonuim Paratungstate)の合成、(v) APTの熱分解による酸化タングステ ンの合成、(vi) 酸化タングステンの還元、炭化による炭化タングステンの合成というプロセスで行われて いる。それに対して、我々のプロセスは、(i) 超硬合金スクラップを加熱、アルカリと反応させ、タングステ ン成分を抽出して、タングステン酸ナトリウム水溶液を調製、(ii) リジンによるタングステンの沈殿回収と水 によるナトリウム等の不純物除去、(iii) リジン-タングステン沈殿物の焼成による酸化タングステンの合成、 (iv) (v) 酸化タングステンの還元、炭化による炭化タングステンの合成から成るプロセスを提案する。これ により、工程をショートパス出来るため、大幅なエネルギーおよび薬液量の削減が期待できる。

以上より本章では、我々の提案するプロセスの実現可能性を評価するために、次のような基礎実験と パイロットスケールでの検証を行った。まず、スクラップから抽出したタングステン溶液を用いた回収実験 および酸化タングステンの高純度化に関する実験を50 mlのビーカースケールで実施、最適化し、その条 件をもとにパイロットスケールで炭化タングステンのリサイクル、再資源化を検討した。

- 67 -

Fig. 5-1 従来および提案する炭化タングステンリサイクルプロセス

<u>5.2 実験方法</u>

5.2.1 実廃液の組成

本実験では実際に超硬スクラップ(炭化タングステン-コバルト)を酸化した粉末にアルカリ抽出法を適用 して得たスクラップ廃液を使用した。Table 5-1に入手したスクラップ廃液のICP分析測定結果を示す。タン グステンとナトリウムを多く含む溶液となっている。また、少量ではあるがバナジウムも含有していることが 分かる。また、超硬スクラップに含まれていたコバルトはアルカリ浸出の段階でタングステン溶液中には溶 けず、タングステンと選択的に分離されるため、スクラップ廃液にはコバルトは存在しない。

	~ 101),		
Element	W	Na	V
Concentration [mmolL ⁻¹]	307	1236	1.72

Table 5-1 スクラップ廃液のICP分析結果

5.2.2 スクラップ廃液からのタングステン回収工程

スクラップ廃液 (pH 12)による試験溶液の調製として、まずスクラップ廃液に L-リジン塩酸塩 (Ajinomoto Healthy Supply Co., Inc., Tokyo, Japan)を加え、攪拌溶解し、続いて液相 pH 調整用の 10 molL⁻¹の塩酸 (HCl) (関東化学、東京、日本)、超純水の順に混合し、48 ml の試験溶液を調製した。pH 調整を完了した時をタングステンとリジンとの反応開始時間とした。実験を開始してから、所定の時間ごとに試験溶液をシリンジで採取し、孔径 0.2 μ m のフィルター(Whatman filter, pore size: 0.2 μ m; GE Healthcare Life Sciences)でろ過し、ICP 測定用のサンプルを作製した。実験条件は、温度 25℃、液相 pH 1.8、初期タン グステン濃度は 150-183 mmolL⁻¹、リジン塩酸塩濃度は 12.5-200 mmolL⁻¹とし、液相中のタングステン濃

度は ICP 発光分析装置 (ICP-AES; ICPE-9820, Shimadzu Corporation, Kyoto, Japan) で測定した。

5.2.3 リジン-タングステン沈殿物の洗浄・焼成工程

5.2.2によって生成したリジン-タングステン沈殿物は7840×g、5 minの遠心処理を繰り返して行い、後に 80℃、12 hの乾燥処理を行うことで白色沈殿物として回収した。その後、白色沈殿物4 gに対し超純水100 mLを加え、超音波洗浄機で5 min分散させた。洗浄したものを再び乾燥させ、それを750℃、4 h、10℃ /min、大気中で焼成操作を行うことで酸化タングステン粒子の合成を検討した。焼成温度についてはTG-MS(TG-DTA:Rigaku. TG-DTA TG8120, Chiba, Japan, MS:Anelva M-QA200TS, Kanagawa, Japan)を用 い、その測定結果より決定した。合成した粉末中の酸化タングステン粒子の純度については、以下の方 法を用いて導出した。酸化タングステン粒子10 mgを10 molL⁻¹のNaOH水溶液6.0 mLに溶解した。この液 をICP発光分光分析装置(ICP-AES; ICPE-9820, Shimadzu Corporation, Kyoto, Japan)にて定性分析し、 得られた元素を定量分析した。また、純度99.995%の試薬の酸化タングステン(Sigma Aldrich UK)も同様 に分析し、酸化タングステンの純度は、以下の式5-1にて算出した。

酸化タングステン純度=99.995%×(W_{sample}/W_{reference}) 式5-1

5.2.4 酸化タングステンの還元炭化工程

5.2.3で純度を満足した酸化タングステン粉末を出発原料とし、水素雰囲気下780~890℃、3.6 hにて還 元し、タングステン粉末とした。その後、タングステンに等量モルのカーボン粉末を投入、混合し、不活性 雰囲気下で1350℃、4 hにて反応させ炭化タングステンを合成した。

5.2.5 超硬合金化工程

5.2.4で合成した炭化タングステン粉末を出発原料とし、結合剤として10wt%のコバルト粉末を投入混合し、加圧成形し、不活性雰囲気下 1400℃、1hにて焼成し超硬合金を作製した。

5.3 実験結果と考察

5.3.1 リジンを用いたスクラップ廃液からのタングステン回収

Fig. 5-2(a) にリジン添加濃度が液相中のタングステン濃度変化に及ぼす影響を示す。リジン濃度の増加に伴い、液相中のタングステン濃度の回収率は増加し、リジン濃度が200 mmolL⁻¹の場合は、3分以内で実廃液中のタングステンを100%回収できていることがわかる。Table 5-2にスクラップ廃液中の金属イオンの回収結果を示す。リジン添加濃度が100 mmolL⁻¹の場合、30分におけるタングステン回収率は92.2%となった。また、スクラップ廃液中には、アルカリ浸出工程にて使用した多量のナトリウムが含まれており、このナトリウムは、スクラップ廃液中でタングステンポリ酸がナトリウムを含んだイオン形態として存在していることに起因する。本実験でもESI-MSの分析により、NaW₆O₁₉²⁻などのイオンが存在していることが確認された(Fig. 5-3)。すなわち、リジンの添加により、タングステンポリ酸が沈殿回収されると同時に一部のナトリウムが不純物として混入したと考えられる。ナトリウムの回収率は、7.6%であるものの、ナトリウムは初期

濃度が557 mmolL-1と高いため、多くのナトリウムがリジン-タングステン沈殿物中に残っていることになる。 バナジウムは21%回収されるが、これについては既往の研究^{5,11}にて報告されているように、タングステンと バナジウムが溶液中に存在している場合、[W₃V₃O₁₉]⁵⁻のようなタングステン-バナジウムヘテロポリ酸を形 成し、タングステンとバナジウムが同時に沈殿するためと考えられる。しかし、スクラップ廃液中に含まれる バナジウムイオンの濃度は、0.08 mmolL-1と低いため、白色沈殿物中に含まれるバナジウム濃度としては、 0.17 mmolL-1とかなり微量である。Fig. 5-2(b) に実験開始30分後の写真を示した。リジンを添加した方は、 白色沈殿が生成していることがわかる。また、リジンなしとリジンありの溶媒の色が同じ黄色であることが確 認できる。この黄色は溶液中に含まれているバナジウム由来のものであり、目視でも液相中にバナジウム が存在しており、タングステンと分離回収できていることがわかる。

Fig. 5-2(a) リジン添加濃度ごとの液相中のタングステン濃度の経時変化
(初期タングステン濃度145 mmolL⁻¹,液相pH 1.8,温度25℃,リジン濃度12.5-200 mmolL⁻¹)
(b)反応開始30分後の外観写真(左)リジン添加なし(右)リジン添加あり

Fig. 5-3 タングステン水溶液のESI-MS分析

Table 5-2 実廃液中に含まれる金属イオンの濃度の経時変化

Time [min]	W [mmolL ⁻¹]	Na [mmolL ⁻¹]	V [mmolL ⁻¹]
0	140.8	566.9	0.79
10	10.0	528.6	0.63
30	11.0	523.6	0.62
Recovery ratio [%]	92.2	7.6	21.0

(液相 pH 1.8, 温度 25℃,リジン濃度 100 mmolL⁻¹)

5.3.2 リジン-タングステン沈殿物の洗浄および焼成実験の結果

5.3.1で得られたリジン-タングステン沈殿物を酸化タングステンとして回収するために焼成を行った。まず TG-MSを用い、沈殿物を焼成することで生成するガス種ならびに生成温度を確認し、焼成温度の決定を 行った。Fig. 5-4 にTG-MSの結果を示す。重量は3段階で減少し、800℃で16.6%重量が減少した。100-200℃の1段階目では主に白色沈殿に残留していた水が蒸発したと考えられる。250-400℃の2段階目で は水とアンモニアが分解され、500-650℃の3段階目ではリジンが分解して二酸化炭素が発生したと考え られる。以上の結果より、リジン-タングステン沈殿物の焼成温度を750℃に決定した。

Fig. 5-4 リジン-タングステン沈殿物のTG-MS測定結果 (昇温速度:10℃ /min、乾燥空気下)

Fig. 5-5(a) にリジン-タングステン沈殿物を大気中で750℃で4h焼成して得た粉末のXRD測定結果を示 す。沈殿物を洗浄していない場合は、酸化タングステン以外のピークが10-20°域で確認された。これらピ ークをリートベルト解析により解析した結果、Fig. 5-5 (b) に示すように、洗浄を行っていない場合は Na₅W₁₄O₄₄¹²が多く存在していることがわかった。そこで、ナトリウムの除去のために、リジン-タングステン 沈殿物の洗浄を実施した。その結果、Fig. 5-5(b)に示すように、洗浄回数を増やすごとにナトリウム由来の 結晶が減少していることが確認できる。4回以上洗浄した粉末はXRD測定結果からは、ナトリウムを含む 化合物は検出されなかった。洗浄することで酸化タングステン中に存在するナトリウムを除去できることが 明らかとなった。Fig. 5-5(c)に白色沈殿を焼成した粉末の外観を示す。洗浄回数が増やすことで酸化タン グステン特有の黄色^{12,13}に変化している。また、洗浄回数が少ないほど緑色の粉末となっているが、これ はNa₅W₁₄O₄₄が多く存在しているためだと考えられる¹⁴。合成した酸化タングステンをICP分光分析装置を 用い、純度測定を実施した。測定したサンプルは5回水で洗浄した白色沈殿を焼成して得た酸化タングス テンを使用した。酸化タングステン純度は99.6%であり非常に高純度であり、この純度値は前章の純度と 同等であり、スクラップからの回収においても本手法は適応可能と判断できる。また、初期タングステン濃 度からの濃縮倍率としては約30倍であることが示された。

Fig. 5-5 リジン-タングステン白色沈殿を洗浄・焼成して得た粉末の結晶構造と外観
(a) XRD分析結果、(b) リートベルト解析結果、(c) 焼成後の外観、
焼成条件:大気中750℃、4h、10℃/min

5.3.3 酸化タングステンの還元炭化実験及び超硬合金化の結果

酸化タングステンを還元・炭化し得られた黒色粉末のXRD測定結果をFig. 5-6(a)に、SEM観察結果を Fig. 5-6(b)に示す。比較のために市販の炭化タングステンを酸化した酸化タングステンを還元・炭化した 粉末も分析した。Fig. 5-6 (a) より、リジンを用いてスクラップ廃液中から回収したタングステンより合成した 酸化タングステンが十分還元・炭化していることが確認できる。Fig. 5-6 (b) より、SEM写真からも形態に大きな差はないことが確認され、再資源化が可能となった。

この炭化タングステンを用い作製した超硬合金の写真をFig. 5-6 (c)、組織写真をFig. 5-6 (d)に示す。Fig. 5-6 (c) より、超硬合金として再資源化可能であることを確認した。またFig. 5-6 (d)より、得られた超硬合金の組織においても、市販の酸化タングステンから得られた炭化タングステンとの差異は認められなかった。 Fig. 5-6 (b) の炭化タングステン粉末の粒径と比較して、粒子が粗大化しているが、これは、炭化バナジウムや、炭化クロムといった粒成長抑制剤を添加しなかったことによる焼成時の粒成長が影響していると考える。

Fig. 5-6 リジンを用いて回収したタングステン由来の炭化タングステンと市販の炭化タングステンを 酸化した酸化タングステンを還元・炭化して得た炭化タングステン (a)炭化粉末のXRD測定結果、(b) SEM観察結果、(c)超硬合金の写真、(d)組織写真

5.3.4 パイロットプラントによるタングステンリサイクルと実プロセスとの比較

Fig. 5-7に本研究で提案する炭化タングステンのリサイクルをパイロットプラントで実施した結果を示す。

超硬工具からのタングステンリサイクルプロセスでは、まずスクラップを回転炉で、酸化焙焼することで焙焼粉を得る。その焙焼粉をアルカリ水溶液にて反応、抽出し、スクラップ由来の廃液を作製した。純水に てタングステン濃度を一定とし、リジン塩酸塩を投入、攪拌溶解した。その後、攪拌しながら塩酸を投入し、 pHを1.8 ~ 2.0まで調整し、白色沈殿物を得た。白色沈殿物は、フィルタープレスで白色沈殿をに固液 分離し、フィルタープレスに純水を通液することでナトリウム不純物を除去洗浄し、回収、乾燥した。得ら れた白色沈殿は焼成することで酸化タングステンとし、還元、炭化、合金化を行うことで超硬工具を得るこ とが可能となった。

Fig. 5-7 パイロットプラントによる超硬合金 (炭化タングステン-コバルト) のリサイクル

ここで、本研究で提案するリジンを用いた回収法と従来のイオン交換法を用いた回収法において、薬品 コストと廃液量について比較を行った。炭化タングステン1 tをリサイクルするために必要なリジンとイオン交 換樹脂の価格と廃液量を比較した結果をTable 5-3に示す。イオン交換樹脂は、240回(約2年使用)再利 用すると仮定して比較を行っている。その結果、リジンを用いた手法の薬品コストはイオン交換法場合の それと比較して、約1.4倍となった。しかし、イオン交換法は、目的物(NH4)2WO4を溶液として抽出し、加熱 晶析してAPT粉末にするが、本プロセスは、目的物を粉末として析出し、回収できるため、晶析に要する 加熱エネルギーが不要である。この事を考慮すると十分競争力を持ったプロセスであると言える。また廃 液量が約40%になっていることが確認できる。これは、イオン交換樹脂内で目的物(NH4)2WO4を析出させ ないように低濃度で処理する必要があることと、イオン交換樹脂を再生するために多くの薬剤を使用する ことが原因である。このことから、本プロセスは、プラントをコンパクトに収めることも可能であると言える。

以上より、本プロセスは、従来のイオン交換法と比較し、環境負荷を抑制できるプロセスとして、今後更なる展開が期待される。

adsorbent	chemicals ^{*1)}	chemical amount needed	Price of chemicals ^{*2)}	price of chemicals needed for 1 ton WC recovery	sum of price needed	displacement
	[-]	[kg]	[US\$/kg]	[US\$]	[US\$]	[L]
CAAP method (Lysine)	15% HCl	4880	0.06	283.4	494	29278
	Lysine	490	0.43	210.7		
Ion-exchange resin (SA-10A)	NH ₄ Cl	735	0.11	80.9	357	71272
	25% NH4OH	400	0.30	120.0		
	12%NaClO ₄	192	0.27	51.8		
	NaOH	24	0.21	4.9		
	SA-10A	8573	2.78	99.3* ^C)		

Table 5-3 WC 1tをリサイクルする際のリジン法(CAAP 法)とイオン交換法の比較

*1) Chemicals needed for ion exchange resin case are based on the ref⁴. *2) These values are references. The price of all materials are based on Alibaba.com Official Site. *3) ion exchange change (SA-10A) are assumed to recycle for 240 times (about 2 years).

<u>5.4 まとめ</u>

使用済み炭化タングステンのスクラップから得られたタングステン廃液にリジンを添加することで、タング ステンを92.2%回収することができた。さらに得られたリジン-タングステン沈殿物を洗浄し焼成することで、 純度99.6%の高品位な酸化タングステンの合成に成功した。さらに、得られた酸化タングステンを還元・炭 化することで炭化タングステンを合成し、超硬合金への再資源化できることに成功した。最後にパイロット プラントを用い、既存のイオン交換法と比較した結果、廃液量を約60%抑制可能なプロセスであることが 確認され、環境負荷が低いことを示した。

<u>5.5 参考文献</u>

(1) Makino, T.; Nagai, S.; Stark W. J.; Iskandar, F.; Okuyama, K., Ogi, T., ; *ACS sustainable chemistry & engineering* **2018**, *6* (3), 4246–4252

- (2) Lassner, E.; Schubert, W.-D., The element tungsten. In Tungsten, Springer: 1999; 1-59.
- (3) Chapman, A.; Arendorf, J.; Castella, T.; Thompson, P.; Willis, P.; Espinoza, L.; Klug, S.; Wichmann, E.,

Study on Critical Raw Materials at EU Level. Oakdene Hollins: Buckinghamshire, UK 2013.

(4) Ogi, T.; Sakamoto, Y.; Nandiyanto, A. B. D.; Okuyama, K., Biosorption of Tungsten by Escherichia coli for an Environmentally Friendly Recycling System. *Industrial & Engineering Chemistry Research* 2013, 52, (40), 14441-14448.

(5) Ogi, T.; Makino, T.; Okuyama, K.; Stark, W. J.; Iskandar, F., Selective Biosorption and Recovery of Tungsten from an Urban Mine and Feasibility Evaluation. *Industrial & Engineering Chemistry Research* **2016**, 55, (10), 2903-2910.

(6) Ogi, T.; Makino, T.; Iskandar, F.; Tanabe, E.; Okuyama, K., Heat-treated Escherichia coli as a high-capacity biosorbent for tungsten anions. *Bioresource Technology* **2016**, 218, 140-145.

(7) Hayashi, T.; Sato, F.; Kazuo, S.; Ikegaya A., Industrialization of Tungsten Recovering from Used Cemented Carbide Tools. *SEI TECHNICAL REVIEW*, 82, 33-28, **2016**.

(8) 石田友幸, 板倉剛, 森口秀樹, 池ヶ谷明彦., 超硬スクラップのリサイクル技術と超硬工具のタングス テン使用量削減技術の開発. SEI TECHNICAL REVIEW, 2012, 181

(9) Ogi, T.; Makino, T.; Nagai, S.; Stark W. J.; Iskandar, F.; Okuyama, K., Facile and efficient removal of tungsten anions using lysine-promoted precipitation for recycling high-purity tungsten. *ACS sustainable chemistry & engineering* **2017**, *5* (4), 3141–3147

(10) Plattes, M.; Bertrand, A.; Schmitt, B.; Sinner, J.; Verstraeten, F.; Welfring, J., Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes. *Journal of hazardous materials* **2007**, 148, (3), 613-615.

(11) Long, D. L.; Tsunashima, R.; Cronin, L., Polyoxometalates: building blocks for functional nanoscale systems. *Angewandte Chemie International Edition* **2010**, 49, (10), 1736-1758.

(12) Mann M.; Shter G. E.; Reisner G. M.; Grander G. S., Synthesis of tungsten bronze powder and determination of its composition **2007**, 42, 1010-1018

(13) Weil, M.; Schubert, W.-D., The Beautiful Colours of Tungsten Oxides. Newsletter 2013.

6章 結言

本論文では、メタルバイオテクノロジーの一つであるバイオソープションを用いて超硬工具に用いられ るタングステンの回収に注目し、*E.coli*やリジンを用いて、タングステンの高効率再資源化プロセスの開発 について検討を行った。様々な条件を検討した結果、以下のような結果が得られた。

- (1) E.coliを用いたバイオソープションにより、試薬によるタングステン溶液からタングステンを回収することに成功し、焼成することで酸化タングステンを得ることにも成功した。また、バイオソープションを用いたタングステン回収は、非常に速い吸着反応であり希薄溶液からの回収が可能であることが分かった。
- (2) 吸着機構を解析するために Langmuir 吸着モデルを用いて反応のモデル化を行ったところ、E.coli によるタングステンのバイオソープションは Langmuir 吸着モデルであることが分かった。また、本研究の反応速度は擬二次反応速度式で表すことができると分かり、吸熱反応であることが分かった。
- (3) 三成分系(タングステン、モリブデン、バナジウム)での分離回収試験において、単成分系では存在 しなかったタングステンーバナジウムヘテロポリ酸の発生が起こったが、タングステンポリ酸の吸着優 位性が高いことを利用し、タングステンとバナジウムの分離回収に成功した。
- (4) スクラップ廃液からのタングステン回収においても試薬溶液と同様の回収試験結果が得られ、再生 超硬合金の作製に成功した。
- (5) E.coli にオートクレーブ処理または加熱処理を行うことで、吸着量が大幅に増加することが分かった。 加熱により溶菌が起こり、アミノ酸(リジンなど)が増加したことが吸着量の増加要因であった。
- (6) アミノ酸の 1 種であるリジンを用い、液相中からのタングステンの回収が可能であることを示し、その タングステン回収率は 100%であり、かつ、これまでの *E.coli* と比べ短時間で回収出来た。
- (7) リジンを用いることによるタングステン回収メカニズムは ESI-MS によって明らかとなった。タングステンは水溶液中で HWO4 というイオン形態をとっていることが確認でき、低 pH 下では W6O19²のようなポリオキソメタレートの構造になることが確認できた。低 pH(3 以下)で負に帯電しているタングステンポリオキソメタレートと正に帯電しているリジンの静電相互作用によって、沈殿が促進していると考えられた。

- (8) 得られたリジン-タングステン沈殿物の構造を XRD で分析を行ったが、アモルファスな構造であった。その得られたリジン-タングステン沈殿物を 600℃で焼成することで高純度(99.6%)の酸化タングステンを得ることができた。
- (9) リジンを用い、タングステン以外の金属で回収を検討したところ、ポリオキソメタレートの構造を形成 するモリブデン、タンタル、ニオブで回収できることを確認した。
- (10) 使用済みスクラップ廃液においても、高いタングステン回収率(92.2%)を実現した。スクラップ廃液 中に含まれているナトリウムは 7.6%と低い回収率であったが、初期濃度が高いため、沈殿物に多くの ナトリウムが含有されていることがわかった。ナトリウムに関しては、後の水洗浄操作によって除去でき ることを確認した。
- (11)使用済みスクラップ廃液から得たリジン-タングステン沈殿物を超純水で洗浄し、700℃で焼成を行うと、試薬溶液と同様の黄色の酸化タングステンを得ることに成功した。また、その純度は99.6%と高純度であることが確認できた。
- (12) 本研究で提案した手法により得た酸化タングステンから超硬工具の原料である炭化タングステンを 作製し、超硬合金を作製した。
- (13) パイロットスケールへの適応について検討し、本研究が提案するプロセス(CAAP 法)は従来のタング ステンの回収方法(イオン交換法)よりも廃液量が少なく、環境考慮型のプロセスであることが示され た。

謝辞

本研究の機会を与え頂き、かつ本研究に終始ご丁寧な御指導ご支援を頂きました、広島大学大学院工 学科 荻准教授、奥山喜久夫名誉教授に心より感謝申し上げます。また、試験検証に関する議論におい て数多きご助言を頂きました熱流体材料工学研究室 岩木元研究員ならびに同研究に携わった、坂本裕 馬様(現 不二製油㈱)、近藤孝則様(現 日本化薬㈱)、長井覚史様(現 信越化学工業㈱)、堀内隼人様 (現 MHPS エンジニアリング㈱)、谷口愁斗様に対しても深く感謝申し上げます。

さらに、本研究に多大なご支援とご配慮をいただきました京セラ株式会社 機械工具事業本部本部長 石井健をはじめ、技術開発事業部長 永戸栄男、技術開発副事業部長 大畑浩志 及び、同事業本部の 皆様に深く感謝いたします。

本研究は、以上の方々の暖かいご支援により成し得たことをここに記し、今一度、心から厚くお礼申し 上げます。

2018年9月

京セラ㈱、広島大学大学院

牧野貴彦

<以上>