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ABSTRACT 

The objective of this work is to obtain an enhanced understanding of the effect of 

split injection on mixture formation and combustion processes of diesel spray and 2-D 

cavity impinging spray. Three kinds of injection amounts (0.27 mg, 0.89 mg, 2.97 mg) 

were adopted to investigate the effect of small injection amount on the mixture formation 

and combustion processes of free spray. For the split injection, the injection process 

comprised a pre-injection followed by the main injection. The main injection was carried 

out either as a single injection of injection pressure 100 MPa (Pre + S100), 160 MPa (Pre 

+ S160) or split injection of injection pressure 160 MPa itself was either of two types 

defined by mass fraction ratios 50 : 50 and 75 : 25 (Pre + D160_50-50, Pre + D160_75-

25). S100 and D160_75-25 strategies were also compared with Pre + S100 and Pre + 

D160_75-25 to check the effect of pre-injection on the combustion process under 2-D 

cavity impinging spray. Low oxygen concentration (15% O2) was investigated in the 2-

D cavity under split injection. 

Mie scattering method and laser absorption-scattering (LAS) technique were 

employed to qualitatively and quantitatively characterize the spray development. Tracer 

LAS fuel with 97.5 vol% of n-tridecane and 2.5 vol% of 1-methylnaphthalene (α-MN) 

was employed. The characteristics of the combustion process of Diesel spray were 

investigated by adopting a color camera which directly perceived the flame natural 

luminosity, OH* chemiluminescence recording system, and two-color perometry 

techniques.  

The experimental results revealed that the vapor distribution of split injection was 

significantly more homogeneous than that of single injection. Pre-injection could improve 

the main injection combustion. The split injection can reduce the soot emissions under 

free spray flame. Increase the split injection interval should be a positive way to reduce 

the soot emissions in the 2-D impinging spray flame. 
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CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND AND MOTIVATIONS 

The diesel engine (also known as a compression-ignition or CI engine), named after 

Rudolf Diesel in 1892. Diesel engines were popular in larger cars earlier, as the weight 

and cost penalties were less noticeable [1]. Diesel engines tend to be more economical at 

regular driving speeds and are much better at city speeds. However, the reduction of oil 

reserves and the more and more stringent exhaust diesel emission regulations are the 

challenges.  

The oil is the nonrenewable resources, while the oil demand had been expanding 

rapidly with the global developing of industrialization. Figure 1.1 shows the Primary 

energy consumption by fuel from past to future [2], it reveals that the global oil 

consumption is increasing until 2040. For the oil part, the traditional vehicle is one of the 

most common consumption sources, is facing the situation of little fuel useable in the 

future. Therefore, as the most widely used commercial vehicle, diesel engine should 

enhance fuel economy performance, which can effectively relieve the pressure caused by 

the shortage of the resources. 

Nowadays, more and more attentions are paid to environmental protection, 

emission regulations gradually become stringent. Figure 1.2 shows the EPA and EU on-

road technology pathways for HD diesel vehicles [3]. Thanks to the new techniques such 

as high pressure and high flexibility injection system, multiple injections, VGT 

(Variable Geometry Turbo), advanced combustion, engine calibration, sub-system 

integration, cooled EGR (Exhaust Gas Recirculation), DOC (Diesel Oxidation Catalyst) 

+ DPF (Diesel Particulate Filter) and SCR (Selective Catalytic Reduction) et al., the 

modern diesel engine can satisfy the present stringent emission laws. But diesel engine 

still has high NOx and soot emissions compared with gasoline engine. Therefore, the 



clean diesel engine is pursued persistently by engine researchers. 

 
Figure 1.1 Primary energy consumption by fuel  

 
Figure 1.2 EPA and EU on-road technology pathways for HD diesel vehicles 

In order to realize the clean diesel engine, the advanced combustion concepts which 

are thought possible to reduce NOx and PM emission simultaneously are proposed such 

as HCCI (Homogeneous Charge Compression Ignition), RCCI (Reactivity Controlled 
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Compression Ignition), PCCI (Premixed Charge Compression Ignition), HCPC 

(Homogenous Charge Progressive Combustion), LTC (Low Temperature Combustion) et 

al. These advanced combustion concepts can achieve satisfied performance, reduce NOx 

and PM emission and control the engine cost same time.  

HCCI (Homogeneous Charge Compression Ignition) using diesel fumigation in 

the intake port was first described in 1958 [4]. HCCI is an internal combustion that well-

mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. It has 

the advantages of high efficiencies, clean combustion and low emissions. 

RCCI (Reactivity Controlled Compression Ignition) is a dual fuel engine 

combustion technology that was developed at the University of Wisconsin-Madison 

Engine Research Center laboratories [5]. RCCI is a variant of Homogeneous Charge 

Compression Ignition (HCCI) that provides more control over the combustion process 

and has the potential to dramatically lower fuel use and emissions. This concept 

combustion has the advantage of lower NOx and PM emissions, reduce heat transfer 

losses, increase fuel efficiency and eliminates need for costly after-treatment systems 

PCCI (Premixed Charge Compression Ignition) is a compromise offering the 

control of CIDI combustion with the reduced exhaust gas emissions of HCCI, specifically 

lower soot [6]. The heat release rate is controlled by preparing the combustible mixture in 

such a way that combustion occurs over a longer time duration making it less prone to 

knocking. 

HCPC (Homogenous Charge Progressive Combustion) is based on a split cycle 

concept, with the intake and compression phases performed outside the cylinder [7]. 

Highest efficiency can be obtained for a given maximum admissible pressure, as well as 

noiseless and smooth engine operation mechanical efficiency is improved due both to the 

absence of pressure peaks and to the consequent reduction of reciprocating masses. 

LTC (Low Temperature Combustion) is designed to reduce or eliminate the two 

most problematic pollutants, particulate matter (PM) and nitrogen oxides (NOx) which 

are emitted by diesel engines. PM is composed of black soot particles, which are often 



soaked with unburned or partially burned fuel components. NOx emissions are toxic and 

combine with other pollutants in the atmosphere to create ground-level ozone, or smog 
[8]. 

Figure 1.3 shows the ф–T map for the formation of NOx and soot emissions [9]. The 

typical combustion regions of conventional diesel combustion (CDC), HCCI, and PCCI 

were marked on the diagram [10, 11]. The ultimate goal is to avoid the combustion region 

falling on the soot and NOx contours, thereby reducing these two emissions 

simultaneously. 

 
Figure 1.3 Illustration on the regions of CDC, HCCI, and PCCI on a ф–T map with 

soot–NOx contour 

One of the effective way to satisfy the performance is to improve the mixture 

formation, which can realize clean diesel combustion. Numerous investigations which 

focused on the diesel spray mixture formation, such as increase the injection pressure [1, 



12, 13, 14] or adopt small nozzle diameter [15, 16], can improve the mixture formation process. 

The small-bore diesel engine is widely used in the passenger car, as for this, the spray/wall 

interaction cannot be avoided. The spray/wall impingement has a significant influence on 

mixture formation [17-19], combustion and emissions in engines [20-24]. The flat wall was 

always selected to form impinging spray for simplicity during the past decades by plenty 

of researchers. However, the structure of impinging wall in a practical engine is 

complicated, wherein the impinging spray is formed on the piston crown. The mixture 

formation and combustion process are dissimilar to that of flat wall impinging spray. 

Therefore, it is worthwhile to investigate the spray mixture formation and combustion 

process by employing a 2-D piston cavity. Moreover, small injection amount is also one 

important factor to investigate the mixture formation as the small-bore diesel engine is 

widely used. What’s more, multiple injection strategy incorporating pre-injection or pilot 

injection of a marginal quantity of fuel to reduce combustion noise and NOx emissions 

and post injection of another marginal fuel mass to enhance soot oxidation rate has been 

widely employed [25]. In addition, multiple injection strategy decreases each stage 

injection amount, which is also an effective way to investigate the small injection amount 

condition. 

To realize homogeneous combustion, decreasing compression ratio is thought as one 

effective way for diesel engine. By decreasing compression ratio, it can improve 

combustion efficiency and make the combustion clean, then excellent emission 

performance without using expensive NOx aftertreatment device can be achieved. It 

means the diesel-powered cars can be offered at an affordable price range. A low 

compression ratio can also reduce the weight of parts, which enables the engine to lightly 

rev up to high rev range. In the Mazda Skyactiv-D engine, the focus was on reduction of 

NOx [26, 27]; an “egg-shaped” engine was designed. According to this Skyactiv-D engine, 

the world lowest compression ratio can be obtained.  



1.2 OBJECTIVES AND APPROACHES 

The target of this study is to investigate the D. I. Diesel spray mixture formation and 

the combustion characteristics in a high pressure high temperature constant volume test 

rig, the specific objectives of this research are shown as follows: 

1. Investigating the effect of small injection amount on the free spray and flame 

characteristics. 

2. Analyzing the effect of split injection on mixture formation and combustion 

processes of diesel free spray.  

3. Analyzing the effect of split injection on mixture formation and combustion 

processes of 2-D cavity impingement diesel spray. 

4. Comparing the mixture formation and combustion characteristics of free spray 

and 2-D cavity under split injection. 

5. Observing the effects of pre-injection on the combustion processes. 

6. Clarifying the influence of low oxygen concentration on the diesel combustion 

characteristics. 

In this study, the Mie Scattering technique was applied to obtain the qualitative 

information of Diesel spray. And the Laser Absorption-Scattering (LAS) technique was 

adopted to qualitatively and quantitatively analyze the mixture formation process of 

Diesel spray. The flame features which were estimated from natural luminosity and OH* 

chemiluminescence were concentrated on by employing a high-speed video color camera 

and a high-speed black/white video camera coupled with an image intensifier system 

respectively. In addition, Two-Color Pyrometry was used to quantitatively measure the 

soot concentration and flame temperature. 

1.3 OUTLINES 

To present this work, the dissertation is organized as follows: a review of previous 



work such as the small injection amount, multiple injection strategy, impinging spray on 

the mixture formation characteristics and combustion concepts of D. I. Diesel spray. The 

optical diagnostic techniques for spray and combustion is given in Chapter 1. Chapter 2 

describes the experimental apparatus such as fuel injection system and constant volume 

vessel, and the observation techniques adopted in this work such as Mie scattering method, 

Laser Absorption Scattering technique, Natural luminosity recording system, Two-Color 

method and OH* chemiluminescence technique. The KL factor and temperature images, 

which are calculated by applying the two-color method, are shown in black background. 

In the OH* images, the background is colored blue, and the OH* chemiluminescence was 

displayed in the default jet colormap from Matlab. Chapter 3 illuminates the effect of 

small injection amount on Diesel spray mixture formation and combustion characteristics. 

Chapter 4 analyzes the effect of split injection on mixture formation and combustion 

processes of diesel free spray. Chapter 5 analyzes the effect of split injection on mixture 

formation and combustion processes of 2-D cavity impingement diesel spray. Chapter 6 

compares the free spray and 2-D cavity impinging spray under same split injection 

strategies. Chapter 7 clarifies the influence of low oxygen concentration on the diesel 

combustion characteristics and investigates the effects of pre-injection on the combustion 

processes. Finally, general conclusions on mixture formation and combustion processes 

of diesel free spray and 2-D cavity impinging spray with split injection are summarized 

in Chapter 8. In this paper, the integrated KL factor and OH* chemiluminescence was 

calculated by integrating the pixel values over the two images. The average temperature 

is defined as the result that the sum of the temperatures inside the valid pixels divides the 

valid pixels number. These results were averaged over three different runs at the same 

experiment condition. 



1.4 REVIEW OF PREVIOUS WORKS 

1.4.1 Characterization of Diesel Spray 

Characteristics of fuel has been identified that has significant influence on the 

combustion. The characteristics such as spatial and temporal fuel distributions have been 

investigated by numerous researchers [28-34]. The empirical equations for break-up length, 

spray angle, spray tip penetration and drop size distribution of the diesel sprays are 

introduced to discuss the internal structure of the spray. Injection characteristics such as 

injection rate, injection timing and injection duration play the most important role in 

determining engine performance, especially in pollutant emissions. Raeie et al. [35] 

investigate the effects of injection timing on the propulsion and power in a diesel engine. 

It has been concluded that the use of early injection provides lower soot and higher NOx 

emissions than the late injection. Sayin et al. [36] also investigate the effects of injections 

no the engine performance and exhaust emissions of a dual-fuel diesel engine. With the 

advanced injection timings, decreasing HC and CO emissions diminished. Borz et al. [37] 

studied the effects of injection timing and duration on jet penetration and mixing in 

multiple-injection schedules. It was found that the jet spreading angles between the first 

and second injections differed, with the first injection having a higher average angle 

during the quasi-steady portion of the injection. Vaporizing characteristics such as the 

temperature distribution, liquid fuel concentration and vapor fuel concentration have also 

been investigated to check the fuel-air mixing which is an important phenomenon on the 

ignition. Diwakar et al. [38] shows the experimental and computational study on the liquid 

and vapor fuel distributions. The results reveal that highly stratified fuel-air distributions 

with steep vapor-concentration gradients are found for injection and ignition timings 

typical of light-load operation of a direct-injection two-stroke-cycle engine. Suzuki et al. 
[39] adopted a new technique which can get the simultaneous concentration measurement 

of vapor and liquid in an evaporating diesel spray. And from the ignition to combustion, 



the partially pre-mixed combustion and partially diffusion combustion have been focused 

by many researchers. The earliest systematic description of the D.I. Diesel engine 

combustion concept was summarized by Dec [40] and Flynn et al. [41], which is shown in 

Figure 1.4. They observed the auto-ignition by Planar Laser-Induced Fluorescence (PLIF) 

technique, and used the Laser Induced Incandescence (LII) method soot concentration. 

The results reveal that a sheath of fuel vapor and hot air is formed around the spray and 

also at the leading edge of the spray after the fuel injected into the chamber; auto-ignition 

is occurring at multi points nearly simultaneously at the downstream region, the premixed 

burn mainly occurs volumetrically throughout the cross section of the leading portion of 

the jet. The injected fuel is heated to 825 K by mixing with entrained hot gas during the 

mixing-controlled combustion. A thin diffusion flame is formed surrounding the burning 

plume and the rich combustion products (CO, UHC and particles) are completely burnt 

in this region, the high temperature and high oxygen concentrations at the diffusion flame 

interface provide an ideal environment for NOx formation reactions [42]. It is impossible 

to reduce the soot and NOx at the same time, this phenomenon is called as soot -NOx 

trade off [43]. The rate of heat release is also calculated during the combustion process. 

Marc [44] provides a comprehensive set of equations and guidelines to determine the rate 

of heat release in full-scale fire tests based on the O2 consumption principle. Miguel et 

al. [45] focused on the study of heat release rate (HRR) and in-cylinder pressure on the 

homogeneous charge compression ignition (HCCI) process in a modified diesel engine. 

The HCCI combustion mode shows a HRR clearly different from the HRR correspondent 

to conventional diesel combustion as it is approached in Wiebe’s function of two modes.  



 
Figure 1.4 Schematic of conceptual model of Diesel spray combustion described by 

Dec [106] and Flynn et al. [107]. 

1.4.2 Impinging spray 

Bruneaux [46] investigated the wall impingement mixing process using Laser Induced 

Exciplex Fluorescence (LIEF) and compared it with free jet. It is determined that wall 

impingement has a more significant effect on the mixing rate compared to free jet. Zhang 

et al. [47] studied the effect of impingement on mixture formation by applying LAS 

technique. The study demonstrated that the spray tip penetration length decreases with 

flat wall impingement; however, it has a marginal influence on gas entrainment.  

Bruneaux et al. [48] studied the air entrainment of an impinging spray and determined that 

spray–wall interaction also plays a role in air entrainment before impingent occurs. 

Mohammadi et al. [49] investigated ambient air entrained processes in detail by applying 

Laser Sheet Imaging method. It is concluded that higher injection pressure, larger orifice 

diameter or shorter impinging distance can enhance gas entrainment under impinging 

condition. Li et al. [50] studied the effect of impinging distance on diesel spray and 

combustion behaviors. It was determined that the combustion process of impinging spray 

was highly complicated. López and Pickett [51] investigated the effect of spray–wall 

interaction on soot formation processes and demonstrated that soot emissions of 



impingement flame were lower compared to that of free jet. Pickett and López [52] 

investigated OH* chemiluminescence and soot emissions of impinging flame, and also 

determined that combustion was enhanced and soot emission was reduced. However, a 

fuel film was formed after impingement, which caused inadequate combustion and 

undesirable emissions. Wang et al. [53] determined that flat wall impingement increases 

soot formation significantly. Dec and Tree [54] also concluded that that spray–wall 

interaction is likely to increase particulate matter and unburned hydrocarbon emissions 

and reduce thermal efficiency. Moreover, the structure of the impinging wall in a practical 

engine is complicated, wherein the impinging spray is formed on the piston crown. 

Therefore, it is worthwhile to investigate the spray mixture formation and combustion 

process by employing a 2-D piston cavity. 

1.4.3 Multiple Injection 

Recently, multiple injection strategy incorporating pre-injection or pilot injection of 

a marginal quantity of fuel to reduce combustion noise and NOx emissions and post 

injection of another marginal fuel mass to enhance soot oxidation rate has been widely 

employed [55]. Cheng et al. [56] studied the effect of multiple injection strategies on diesel 

fuel combustion process. With the advancement of pilot injection timing, NOx and soot 

emissions are reduced; however, HC and CO emissions are increased. By retarding the 

post injection timing, the NOx emission reduced, whereas soot emission first increased 

and then decreased. The pre-injection strategy is considered to be one of the most 

important methods to improve diesel engine performance, emission, and combustion [57]. 

Farrell et al. [58] determined that diesel spray with pre-injection is effective to enhance 

fuel/gas mixing and decrease the Sauter mean diameter (SMD). However, it is common 

recognition that pre-injection deteriorates soot emission because of the shorter ignition 

delay of main injection. Ricaud and Lavoisier [55] indicated that the effect of pre-injection 

depends on the pre-injected mass fraction, injection interval and pre-injection frequency. 



The term split injection is occasionally used to refer to multiple injection strategies where 

the main injection is split into two smaller injections of approximately equal size or into 

a smaller pre-injection followed by a main injection [59]. Bianchi et al. [60] investigated the 

effect of split injection in reducing NOx and soot emissions of HSDI Diesel engines by 

CFD code KIVA-III. The results indicate that split injection is highly effective in reducing 

NOx, while soot reduction is related to a more effective use of the oxygen available in the 

combustion chamber. With split injection, nitrogen oxide emissions and smoke emissions 

were reduced because of the moderated combustion speed and enhanced local 

homogeneity [61]. Skeen et al. [62] investigated the mixing, penetration, and ignition 

characteristics of high-pressure n-dodecane sprays with a split injection schedule. These 

studies significantly increased the amount of data available on split injections and 

improve understanding of split injections. Blomberg et al. [63] investigated n-dodecane 

split injections of “Spray A” from the ECN using two different turbulence treatments 

(RANS and LES). It demonstrates that the simulations did not predict the generation of 

soot at the lower temperature, which is in agreement with experimental observations. Cha 

et al. [64] investigated the high-pressure and split injection strategies in a single cylinder 

DI diesel engine. The experimental data demonstrates the enhancement of fuel 

consumption of the split main injection events, remarkable at around 100 MPa of fuel 

pressure. It also reveals the complex effect of the fuel pressure and split main injection 

events on gaseous emissions. Nehmer and Reitz [65] investigated the effect of split 

injection ratio (double injections) on particulate and NOx emissions of diesel engine and 

determined that split injection tends to reduce NOx without increasing particulate 

emissions rapidly. Tow et al. [66] also determined that double and triple injections can 

reduce particulate and NOx emissions in the same engine. On the other hand, Nishida et 

al. [67] observed that the spray tip of the second injection pulse catches up and also passes 

the first one when the fuel quantity injected in the second pulse is significantly high and 

the dwell between the two injection pulses is highly marginal. Seo et al. [68] that a split 

injection can increase thermal efficiency and fuel consumption rate; however, without 



optimization, it can result in poor combustion characteristics such as knocking, 

incomplete combustion and soot emissions. Nishioka et al. [69] compared the effect of 

single injection and split injection on a free spray and 2-D impinging spray of diesel. It is 

determined that the soot emission with split injection is lower than that with single 

injection of free spray. However, soot emission with 2-D impinging spray has a trend 

opposite to that with free spray. Therefore, it is necessary to investigate the spray mixture 

formation and combustion process by adopting split injection in a 2-D piston cavity. 

1.4.4 Optical Diagnostic Technique for Diesel Spray and Process 

Zhao and Ladommatos [70] have summarized the optical diagnostic techniques in 

Table 1.1 which are widely applied to investigate the diesel sprays characteristics. Here, 

those optical diagnostic techniques will be briefly introduced.  

Mie scattering is applied to measure the liquid fuel distribution such as liquid phase 

penetration [71] and the spray structure [72]. However, the results of the droplet diameter 

and droplets concentration analyzed from Mie scattering intensity are not very accurate 

especially compared with other recently developed optical diagnostic techniques. Mie 

scattering has no upper size limitation and converges to the limit of geometric optics for 

large particles [73].  

As Mie scattering is applied to non-evaporating diesel spray, much fewer 

measurements of evaporating diesel sprays were reported due to the complexity of the 

vapor diagnostics in diesel engines. The vapor diagnostics in diesel sprays include 

schlieren photography, holography, laser induced fluorescence (LIF), laser induced 

exciplex fluorescence (LIEF), laser Rayleigh scattering (LRS), spontaneous Raman 

scattering (SRS), laser absorption scattering (LAS). 

Schlieren and shadowgraphy can simultaneously observe the spray vapor phase 

and liquid phase, but mainly used to measure the structure of spray as the limitation of 

quantitative analysis, which is same as the Mie scattering. However, the advantage of 



Schlieren and shadowgraphy compare with Mie scattering is that they can not only detect 

liquid phase but also observe vapor phase. Schlieren photography was applied to assess 

the vapor amount generated within a diesel spray in the earlier of last decade [Huber, 

1971. However, vapor concentration could not be obtained by this method. Optical 

arrangement, principle of operation, and data analysis are discussed detail by Panigrahi 

and Muralidhar [74]. Figure 1.5 and Figure 1.6 show the schematic diagram of a Z-type 

laser schlieren setup and Schematic drawing of the shadowgraph technique, respectively 
[74].  

 

Figure 1.5 Schematic diagram of a Z-type laser schlieren setup 



 
Figure 1.6 Schematic drawing of the shadowgraph technique 

Holography is applied to the vapor probe in diesel sprays by utilizing the 

interference of laser light to record spray information. Nishida et al. [75] used the pulsed 

laser holography technique to observe a diesel spray injected into a high-pressure bomb. 

The fuel droplets and vapor around the spray could be observed by single-pulsed laser 

holography. Schnars et al. [76] shows the hologram recording and hologram reconstruction 

detail in Figure 1.7 and Figure 1.8. An observer sees a virtual image, which is optically 

indistinguishable from the original object. The reconstructed image exhibits all effects of 

perspective, parallax and depth-of-field. 

 
Figure 1.7 Hologram recording 



 
Figure 1.8 Hologram reconstruction 

Laser Induced Fluorescence (LIF) or planar laser induced fluorescence (PLIF) is 

a very sensitive laser imaging technique for species concentration, mixture fraction and 

temperature measurements in fluid mechanical processes, sprays and combustion systems. 

For fluorescence, the molecule is excited not by chemical reaction but by absorption of 

light photon (s), typically from a laser source (laser-induced fluorescence, LIF) [77]. It has 

the advantage of strong red shifted signal but it is quenching at high pressures and difficult 

to calibrate. The fluorescence intensity can be used to estimate concentration because it 

is proportional to the molecular density [78]. LIF has been applied to perform mass 

distribution measurements in patternation applications [79, 80]. Seitzman and Hanson [81] 

reviews the theoretical basis of planar laser-induced fluorescence imaging and describes 

strategies for making instantaneous two-dimensional measurements of species 

concentration (or mole fraction), temperature and velocity in combustion gases. Figure 

1.9 shows the experimental arrangement for a typical PLIF measurement [81].  

Laser induced exciplex fluorescence (LIEF) which was developed [82-84] 

quantitatively measure vapor phase and liquid phase of spray simultaneously. This 

advanced LIF-technique allowed a simultaneous spectrally separated 2-D measurement 

of liquid and vapor phase in spray and combustion systems, which gained widely attention 



by other researchers [85]. Senda et al. [86-88] used LIEF to investigate the vapor 

concentration of impinging spray and gave some fundamental principles of imping spray 

evolution. More recently, Bruneaux [89] measured the structures of concentrations of liquid 

phase and vapor phase by applying LIEF. Bruneaux [90] used LIEF to investigate the 

mixing process in high pressure diesel free jets and show the experimental setup for LIEF 

in Figure 1.10. The results show that a constant air entrainment rate when injection 

pressure is increased and the nozzle hole diameter has a significant effect on the global 

mixing rate. Bruneaux [91] also used LIEF to investigate the combustion structure of free 

and wall-impingement diesel jets. One of the advantages with LIEF as compared with 

LIF is that it enables imaging of the vapor phase without interference from the liquid 

phase [92]. However, the LIEF technique has the limitation of quenching by oxygen, 

careful considerations of used fuel type and ambient conditions is necessary.  

 
Figure 1.9 Experimental arrangement for a typical PLIF measurement 

Laser Rayleigh Scattering (LRS) is applied to analyze vapor phase concentration 

as the scattered light intensity is proportional to the number density of gas molecules, and 



also it can be applied to measure vapor concentration under low gas density because the 

lager scattering cross section. However, it is difficult to eliminate noise which comes from 

Mie scattering for LRS technique. It is meaningless if Mie scattering occurs when 

applying LRS technique because the energy of Mie scattering is ten to twenty orders of 

magnitude stronger than that of Rayleigh scattering. Thus the LRS technique must be 

applied in the environment of virtually free of particles. Espey et al. [93] used planar LRS 

technique successfully to obtain the quantitative images of fuel vapor concentration, the 

experimental setup is shown in Figure 1.11. 

 
Figure 1.10 Experimental setup for LIEF visualizations  

 
Figure 1.11 Schematic of the optical setup for LRS measurements  



Spontaneous Raman Scattering (SRS) is a technique to calculate air/fuel ratio and 

measure gaseous species concentrations. Johnston [94] investigated the pre-combustion 

fuel/air distribution in a stratified charge engine, and the results reveal that the air/fuel 

ratio distribution changes hugely after fuel injection. Sawersyn et al. [95] investigated 

spatial distributions of different species by adopting SRS. And then Miles and Hinze [96] 

carried out an investigation of molar fraction of gaseous species. Reising [97] also used 

SRS to measure the thermal non-equilibrium in high-speed mixing and combustion. 

Figure 1.12 shows the schematic of the Raman set up from Reising [97]. 

 
Figure 1.12 Schematic of the Raman set up 

Laser Absorption-Scattering (LAS) technique will be used to investigate the fuel 

spray evaporation characteristics in this dissertation and will be introduced detail in 



Chapter 2. Chraplyvy [98] firstly proposed the LAS technique in 1981, 3.39 μm and 0.6328 

μm were applied to measure vapor and liquid scattering respectively. Suzuki et al. [99] 

applied 280 nm (absorption) and 560 nm (scattering) beams pass through an evaporative 

α-methylnaphthalene (α-MN) spray which developed LAS technique and simultaneously 

measured vapor concentration and liquid droplets. Zhang [100] and Gao et al. [101] continued 

improving the LAS technique, they selected Dimethylnaphthalene (DMN) as the test fuel 

and systematically described the analyzing methods of symmetric and non-symmetric 

sprays. The most comprehensive applications of LAS technique were carried out by 

Matsuo et al. [102] and Itamochi et al. [103], the tracer fuel (2.5 vol% of α-MN and 97.5 vol% 

of n-tridecane) was adopted.  

There are also several techniques which are available for the measurements of 

ambient gas flowing velocity, spray droplet size and spray flow velocity, such as Laser 

Doppler Anemometer (LDA), Phase Doppler Anemometry (PDA), Phase Doppler 

Particle Analysis (PDPA), Particle Image Velocimetry (PIV), Particle Image Analysis 

(PIA) and so on. LDA is usually used to measure the flow velocity or turbulent scale. 

There are some researchers adopted LDA to engine measurement [104, 105]. PDA or PDPA 

can receive the size and velocity date, number density, volume flux and time resolved 

information. PIV is a measurement technique for obtaining the instantaneous whole field 

velocities. PIA Series provides size measuring based on the shape of the measured 

particles or crystals. PIA probes work in real time and under insitu conditions and detect 

size and shape of the particles [106]. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Table 1.1 Summary of optical techniques for in-cylinder mixture formation measurement 

Technique Applications Advantages Limitations 
Mie Scattering Liquid fuel 

distribution 
Simple setup Sensitive to large 

droplets 
Schlieren and 
Shadowgraph 

Observation of 
overall spray 

Simple setup Sensitive to both 
liquid and vapor 

phases 
LRS Density 

measurement 
Vapor 

concentration 

Strong signal 
Simple setup 
2-D imaging 

Interference from 
Mie and spurious 

scattering 
Limited to gaseous 

fuel 
SRS A/F ratio 

Residual gas 
fraction 

Multi-species 
detection 

Multi-point 
detection 

Most accurate A/F 
readings 

Unaffected by 
windows fouling 

Weak signal 

LIF Fuel concentration Strong red shifted 
signal 

2-D image of fuel 

Quenching at high 
pressures 

Difficult to 
calibrate 

FARLIF A/F ratio Direct A/F 
measurements 
2-D imaging 

Careful calibration 
required 

High pressure 
operation 

LIEF Fuel vaporization 2-D imaging Quenching by 



& atomization Simultaneous 
detection of vapor 

and liquid 

oxygen 

LAS Fuel vaporization 
& atomization 

Quantitative 
concentration 
measurements 
Droplet size 
information 

Poor spatial 
resolution 

CHAPTER 2 EXPERIMENTAL APPERATUS AND 

MEASURING METHODS 

2.1 MIE SCATTERING METHOD FOR NON-EVAPORATION 

CONDITION 

The spray development was initially observed by applying the Mie scattering 

method. Mie scattering refers primarily to the elastic scattering of light from atomic and 

molecular particles whose diameter is larger than about the wavelength of the incident 

light [107]. As shown in Figure 2.1, a high-speed video camera (Photron Co., ultima APX 

RS) was used to record the reflected light from the spray droplets. The frame rate was 

10000 fps and the resolution was 512 × 512 pixels, with the exposure time of 1/200,000 

s. The visible Nikkor 105 mm f/4.5 lens was mounted in front of the camera. A Xenon 

lamp (Ushio Inc., SX-UID 510XAMQ) and two reflect mirrors were used to form the 

incident light. 



 
Figure 2.1 Experimental setup for Mie scattering method 

2.2 TRACER LAS TECHNIQUE FOR EVAPORATION 

OBSERVATION 

The principles of the LAS technique have been discussed in detail in our previous 

papers [100, 108, 109]. The vapor mass and liquid mass concentration can be achieved by 

using Bouguer-Lambert-Beer’s law, and then the equivalence ratio can be calculated. The 

vapor mass and liquid mass calculation process will show as bellow. At first, 

measurement accuracy of vapor mass was evaluated by analyzing the completely 

evaporating spray in our previous paper [102, 103]. The comparison between analyzed mass 

of vapor of completely evaporating spray and injected mass was shown. To estimate errors 

under various evaporation condition, another injector and higher injection pressure were 

used. 

2.2.1 Principles of tracer LAS Technique 

In the ultraviolet and visible LAS technique, laser beam comprising two wavelengths 

(ultraviolet light and visible light) are applied. The ultraviolet (UV) light (wavelength=λA) 



and visible (Vis) light (wavelength=λT) function as the absorption wavelength and 

scattering wavelength, respectively. The intensities of the two lights are attenuated by 

passing them through the fuel spray, as illustrated in Figure 2.2. The intensity attenuation 

of Vis and UV light can be expressed as log (I0 / It)λT and log(I0 / It)λA, where I0 and It 

represent incident light intensity and transmitted light intensity, respectively. 

 
Figure 2.2 Principle of LAS technique 

Figure 2.3 shows the flow diagram of axisymmetric analyzing process, the main 

analyzing process will be introduced briefly here. 

Vis light is attenuated only by droplet scattering; UV light is attenuated by droplet 

scattering as well as liquid and vapor phase absorption. These phenomena can be 

expressed as Eq. (2.1) and Eq. (2.2), respectively: 

                                                          

= + +                         (2.1) 

=                                                  (2.2) 

Where log (I0 / It)Lsca, log (I0 / It)Labs and log (I0 / It)Vabs represent the attenuation by liquid 

scattering, liquid absorption and vapor absorption, respectively. As discussed in previous 

researches [110-112], liquid absorption log (I0 / It)λT in Eq. (2.1) is negligible. Therefore, vapor 

absorbance log (I0 / It)Vabs can be calculated by subtracting the scattering light attenuation 

from the absorption light attenuation as illustrated in Eq. (2.3): 

= −                                       (2.3)               



The vapor absorbance is obtained by the Lambert - Beer’s law as expressed by Eq. 

(2.4): 

= ∙ × 10 ∙                                              (2.4)               

Where ε [l/(mol cm)] is the molar absorption coefficient, CV [kg/m3] is the mass 

concentration of vapor per unit volume, and l [m] is the optical path length. The onion - 

pealing model (for estimating l) which is used to approximate ε (Tmix) in the spray is 

applied. The details are described in our previous paper [100].   
The scattering transmittance by droplets can be calculated based on Bauguer – 

Lambert -Beer’s law as expressed in Eq. (2.5): 

= = − ∙ ∫ ∫ ∙ ∙ ( ) ∙                 (2.5)               

Where R is a correctional factor, Qext is the extinction coefficient, D is the droplet 

diameter, N is the number densify of droplets and f (D) is the droplet size distribution 

function. 

The droplets concentration Cd [kg/m3] is defined as  
= ∫ ∫ ∙ ∙ ∙ ( ) ∙                                      (2.6)               

Here ρf [kg/m3] is the density of the injected fuel. 
Then Eq. (2.7) can be obtained by combining Eq. (2.5) and Eq. (2.6): 

= ∙ ∙ ∙                                                    (2.7)               
Here D32 is the Sauter mean diameter [m] defined by Eq. (2.8): 

= ∑ ∙∑ ∙                                                           (2.8)                

Then Eq. (2.9) can be obtained by applying the measured attenuation of Vis light [58]. 



= . ∙ ∙ ∙∙∑ ∙∆                                                          (2.9)                 

where Mf [mg] is the mass of injected fuel and ∆S [m2] is the unit projection area. 

Finally, mass concentration of droplet and vapor is obtained by applying Eq. (2.10) 

and Eq. (2.11). 

= 0.42 ∙ ∙∙ ∙∑ ∙∆                                                (2.10)                 

= ∙  ∙ ×                                                   (2.11)        

The spray in a Diesel engine is non-axisymmetric. The onion-peeling model is 

unavailable to analyze the non-axisymmetric spray when LAS technique is applied. 

Therefore, Zhang and Nishida [73] modified the LAS technique, which rendered it capable 

of analyzing the concentrations of non-axisymmetric sprays (Figure 2.4). 



    
Figure 2.3 Flow diagram of axisymmetric analyzing process 



       

Figure 2.4 Flow diagram of non-axisymmetric analyzing process 

2.2.2 Experiment Setup 

In Figure 2.5, UV (ultraviolet, fourth harmonic, 266 nm) and Vis (visible, second 

harmonic, 512 nm) beams were generated using a pulsed YAG laser (Continuum NY 

61-10). Firstly, the two beams were separated by a dichroic mirror and expanded. Then 

the two beams were combined and passed through the diffuser (Shinetsu film, 

polypropylene film) to homogenize the light intensity distribution prior to entering the 



chamber. Subsequently, the two beams pass through the spray. Then, the two beams 

were separated and recorded by two CCD cameras (C4880, Hamamatsu Photonics). 

 
Figure 2.5 Experimental setup of LAS system 

In developing the Mazda Skyactiv-D engine [27], Mazda’s stated objectives in 

selecting a low rc were decreased peak firing pressure and lower engine-out emissions 

through improved premixing. Nevertheless, this engine provides an impressive 59 

KW/L and a peak BMEP of over 25 bar, while meeting Euro 6 NOx emissions 

regulations without after-treatment. In the Mazda design, the focus was on reduction of 

NOx [26, 27]. It is difficult to realize ideal combustion timing and duration due to NOx 

and PM restrictions (Diesel knocking noise is included in this problem.) for Japan 

domestic diesel passenger cars. Cost increase due to use of NOx after treatments to 

conform to strict emissions regulations 

To solve these problems, the Mazda focused on the realization of the SKYACTIV-

D technical concept shown in Figure 2.6 [113], in which an ultra-low compression ratio of 

14.0 (the previous model for European market had 16.3) and high-efficiency boosting 

were combined. 

In this concept, the outer “egg-shaped” vortex transports hot combustion products 



to the cylinder center where they mix rapidly with cooler surrounding charge, thereby 

quenching thermal NOx production. The thermal efficiency is also increased due to a 

shortening of the combustion duration [26]. This egg-shaped two-dimensional (2-D) 

piston cavity was employed to form impinging spray. The impinging distance between 

the nozzle tip and impingement point is 30 mm. The specifications of the 2-D cavity are 

presented in Figure 2.7 and the EGG shape combustion chamber concept are presented 

in Figure 2.8 [113]. 

a) At the early stage, by contriving the curvature of the collision part of the spray 

and the side wall of the combustion chamber, a strong flow is formed toward the bottom 

surface of the combustion chamber where the rich air-fuel mixture is most likely to stay 

stagnant and suppresses the rich air-fuel mixture locally stagnation. 

b) At the middle stage, the bottom and the slope of the chamber sustains a strong 

flow created at the initial stage, guides burned gas to the center of the cylinder, 

promotes mixing with fuel gas. Here, oxygen is led into burned gas and oxidation of 

soot by oxygen introduction into burned gas and suppresses thermal NO by cooling the 

burned gas. 

c) At the latter stage, by directing the flow from the center of the cylinder towards 

the squish area and connect with the reverse squish flow during the expansion stroke, 

and the surplus air in the squish area during the expansion stroke is effectively used. 

 

Figure 2.6 SKYACTIV-D Technology Concept 



 

 
Figure 2.7 Specification of 2-D cavity 

 

Figure 2.8 EGG Shape Combustion Chamber Concept 

2.2.3 Fuel for LAS Technique 

A blend fuel of 2.5 vol% of α-MN and 97.5 vol% of n-tridecane was adopted.  

To image diesel fuel sprays by means of LAS technique, the test fuel must have 



following properties: 

(1) Similar physical properties with Diesel fuel; 

(2) Strongly absorbs UV light but not absorbs Vis light; 

(3) UV absorption satisfies Lambert-beer’s law and molar absorptivity has less 

temperature dependences. 

The physical properties of candidate test fuels and diesel fuel (Japanese Industrial 

Standard No.2 (JIS#2) diesel fuel) are shown in Table 2.1. Candidate fuels are selected 

based on first requirement (1). 

The fuel n-Pentadecane seems to be the most suitable to replace diesel fuel. 

However, depression of freezing point of this fuel is occurred under high pressure 

condition such as diesel injection pressure [114, 115]. And for n-Tetradecane, n-

Pentadecane and n-Hexadecane, these three fuels freeze under room temperature. 

Because of this, these four fuels are not suitable for the test fuel.  

Compare the physical properties of the remanent fuels n-Tridecane and α-

Methylnaphthalene, density of n-Tridecane is closer to diesel fuel. Therefore, n-

Tridecane was provisionally selected as the test fuel. 

As shown in Figure 2.9, n-Tridecane satisfies the requirement (2) which mentioned 

above, absorbs UV light but not absorbs Vis light. However, the absorbance of UV light 

at 266 nm is little weaker than that of 1, 3-DMN.  

Accordingly, α-Methylnaphthalene (α-MN) which has strong absorbance of UV 

light is added to the test fuel, which works as “tracer’’ to get strong absorption at UV 

light. 

For n-Tridecane and α-MN, these two fuels have superior compatibility and similar 

vapor-pressure curve function with temperature [116]. Thus, α-MN is suitable for the 

tracer added to n-Tridecane. 

In this investigation, the tracer LAS fuel contains 2.5 volume percent of α-MN and 

97.5 volume percent of n-Tridecane. Based on this, the calculated physical properties 

and measured absorbance spectrum of the tracer fuel are also shown in Table 2.1 and 



Figure 2.9. Third Requirement (3) will be discussed in next chapter. 
Table 2.1 Properties of candidate test fuels 

 

 

Figure 2.9 Absorption spectrum of liquid fuels 

Substance Formula
Boiling
point
[ ]

Density
[kg/m3]

Kinetic
viscosity
[mm2/s]

α-Methyl-
naphthalene

C11H10 244.7 1016 2.58

1,3-Dimethyl
naphthalene

C12H12 262.5 1018 3.95

n-Tridecane C13H28 235.0 756 2.47

n-Tetradecane C14H30 253.7 760 3.04

n-Pentadecane C15H32 270.6 770 3.73
n-Hexadecane

[cetane]
C16H34 287.0 780 4.52

Tracer fuel
[α-MN 2.5%

+ n-Tridecane
97.5%]

- 235.8 767 2.48

Diesel
JIS#2 - ~273 ~830 ~3.86



2.2.4 Molar Absorption Coefficient of Tracer Fuel 

Molar absorption coefficient measuring system is shown in Figure 2.10. 

The system is composed of a high Pressure/temperature cell (optical path length is 

100mm), a fiber optic spectrometer (Ocean Optics, S2000) and a deuterium lamp (Ocean 

Optics, D1000). The UV beam is provided by the deuterium lamp and spectrum is 

measured by the fiber optic spectrometer. The fuel vapor is filled in the cell after adjusting 

measurement temperature and pressure inside the cell. 

Figure 2.10 Experimental apparatus for vapor phase absorption measurement 

The absorbance is calculated by applying Eq. (2.12). =                                         (2.12) 

Where DK is the dark intensity measured without light source. 

Strength of the absorption is represented by molar absorption coefficient ε in Eq. 

(2.5). 

The measured absorbance of the tracer fuel (2.5% a-MN + 97.5% n-Tridecane) is 

shown in Figure 2.11. 

Figure 2.11 shows good linear relationship between the molar concentration and 

absorbance which coincides with Lambert-beer’s law and also satisfy the third 



requirement (3). The experimental data adopted here comes from our lab previous paper 
[52]. 

Figure 2.11 Vapor absorbance dependences on vapor concentration of the tracer fuel  
(Pa =3.6 MPa, Tmix=620, 720 and 770 K) 

The molar absorption coefficient ε is calculated by the Lambert-Beer’s law as shown 

in Eq. (2.13) (the same meaning as Eq. (2.5)) 

= ∙ × ∙  (2.13)

The molar absorption coefficients of the tracer fuel under various temperatures are 

shown in Figure 2.12. It is found that molar absorptivity has less temperature dependences 

and meets the third requirement (3). 

In analyzing procedure, the mixture temperature in the spray is calculated by bulk 

temperature [100]. Thus, the molar absorption coefficient is expressed as a function of 

temperature which is shown in Eq. (2.14). ( ) = 10( . ∙ . )    (2.14) 

As mentioned at the part of principle, liquid absorption log(I0/It)λT in Eq. (2.1) is 

ignored. In this section, it is confirmed by the non-evaporation spray.  

Figure 2.13 shows UV and Vis spray images under non-evaporation ambient 

condition (Ta=300 K, Pa=1.4 MPa). Figure 2.14, 2.15 and 2.16 give the optical thickness 



distributions along the lines which are shown in Fig 2.13. If liquid phase absorption can 

be ignored, the attenuation of Vis and UV light in Eq. (2.1) and Eq. (2.2) should have the 

same value because of no existence of fuel vapor under non-evaporating condition. 

As a result, the optical thickness of UV and Vis light extremely correspond with each 

other which indicates liquid phase absorbance in Eq. (2.1) is very small compared with 

scattering extinction and can be neglected. 

According to the above discussions, the tracer fuel satisfies all the requirements of 

LAS technique. 

Figure 2.12 Molar absorption coefficient dependence on temperature (Pa=3.6 MPa) 

Figure 2.13 Spray images of non-evaporating spray 



Figure 2.14 Optical thickness distribution along nozzle hole axis 

Figure 2.15 Optical thickness distribution along horizontal axis of 40mm downstream 

Figure 2.16 Optical thickness distribution along horizontal axis of 50mm downstream 



2.3 TWO-COLOR PYROMETRY FOR COMBUSTION  

Figure 2.17 illustrates the experimental apparatus for the two-color pyrometry 

observation of combustion.  

The combustion images were captured by the high-speed camera, which was same 

as that used in the Mie scattering experiment. The frame rate was 10000 fps and the 

resolution was 512 × 512 pixels, with an exposure time of 1/10000 s. The temperature 

and soot concentration (represented by KL factor) were calculated by the two-color 

pyrometry method. Red, Green and Blue channels were got from the natural flame color 

images. Red and Green channels were adopted because these two channels have spectral 

responses with insignificant overlap. 

2.3.1 Principle of Two-color Pyrometry 

According to the Wien’s equation, the monochromatic emissive power of a black 

body N(λ ,T) depends on the temperature and the specific wavelength, which can be 

expressed as: (  , ) = (− / )                                     (2.15) 

Where 1 and 2 are the first Planck’s constant and the second Planck’s constant 

respectively; λ is the wavelength and  is the temperature of the black body. 

Under non-blackbody emission condition, the mission power is expressed as: (  , ) = (− / )                                   (2.16) 

Where T is the temperature of the non-black body;   is the monochromatic 

emissivity of a non-black body. 

In practice,   is estimated for soot particles based on the empirical correlation 

developed by Hottel and Broughton [117], = 1 − ( / )                                                (2.17) 

Combining Eq (2.15), Eq (2.16) and Eq (2.17) gives, 



= − 1 − exp − / ∙ −                             (2.18) 

If there are two specific wavelengths  and  that are measured simultaneously, 

the value KL which is proportional to the integrated soot concentration can be eliminated: 

1 − exp − / ∙ − = 1 − exp − / ∙ −      (2.19) 

Provided the black body temperatures 1 and 2 at two specific wavelength and 

 can be obtained according to the calibration data, the actual temperature and the KL 

value calculated. 

2.3.2 Calibration Method 

According to the Eq. (2.16), the power of monochromatic emissive after passed 

through the neutral filter with transmittance of  can be expressed as, (  , ) = (− / )                                 (2.20) 

Combining Eq. (2.15) and Eq. (2.20) gives: 1⁄ − 1⁄ = ⁄ ∙ ( )                                     (2.21) 

When the transmittance is 1, the temperature T will be received by using a 

thermodetector and then   will be calculated through equation 1. The empirical 

correlation of = + + +  is used in this calculation. 

The luminous intensity I perceived by camera sensor could be defined as: I = a (− ⁄ ) +                                      (2.22) 

Where a and b are constants which depend on the camera sensor. Taking the 

logarithm at both sides of Eq. (2.22) gives, (1 − ) = − ⁄ + ( )                               (2.23) 

According to this equation, the relationship between (1 − )  and 1/T follow 

linearity when the illuminant happens. The slope equals to − 2/ , in reverse, the effective 

wavelength of this system could be defined as follows: 



= − /                                             (2.24) 

 

Figure 2.17 Experimental setup for natural luminosity and two-color pyrometry 

In this investigation, a high-speed video color camera is used and the intensity of 

Red, Green and Blue channels could be obtained. Three effective wavelengths of color 

camera (GX-8, Nac Image Technology Inc.) could be acquired: = 577.38 , = 541.12 , = 517.82  

Only the red and blue channels are selected for our two-color calculation because 

these two channels have spectral responses with insignificant overlap [118]. 

When the source of the light is a standard illuminant as shown in the right top part 

of Figure 2.17, the  in will becomes the value of 1, and the T will be replaced by . 

After the camera recorded eight kinds of luminous intensity which are attenuated by eight 

kinds of neutral filters and calculate those data by using the Eq. (2.24) then the calibration 

line like Figure 2.18 will be obtained. 

From Figure 2.18 the temperatures of black body at two effective wavelengths are 

received. And the actual temperature could be calculated by applying Eq. (2.19). 

In this study, in fact, some natural luminosity, as a result, the two color experiments 



were carried out by applying another high speed color camera (Nac Image Technology 

Inc. GX-1). In this system, the actual temperature was calculated by two apparent 

temperatures at two specific wavelengths. The calibration method was different with that 

of GX-8 camera as introduced above which was implemented employing standard 

illuminant. The calibration process of GX-1 camera used a tungsten lamp to play a role 

as standard illuminant. The correlation of the voltage and the apparent temperature at the 

wavelength of 662 nm of the tungsten lamp was identified in advance, then the apparent 

temperature at the effective wavelength can be calculated by Eq. (2.25): 

 
Figure 2.18 Calibration graph sample. The vertical axis represents the black body’s 

temperature; the horizontal axis represents the actual intensity ln(1 − ) which is 

received by camera sensor, b is a constant of the camera. 

Table 2.2 Larabee empirical equations 

 
The effective wavelengths were calculated by Eq. (2.24), and the result revealed that 

the effective wavelength of red channel and green channel of GX-1 camera are 754 nm 



and 596 nm respectively. The emissivity ε is a function of wavelength and the tungsten 

temperature, it can be calculated by the Larabee empirical equations as shown in Table 

2.2. 

2.4 OH* CHEMILUMINESCENCE METHOD 

OH* chemiluminescence is widely considered as the indicator of high temperature 

reaction in a flame. The OH* chemiluminescence was evident in the spectral analysis of 

premixed diesel combustion when implementing the HCCI mode [119]. The energetic 

reactions and high temperatures in a diesel flame that occur during the stoichiometric 

combustion of typical hydrocarbon fuels form excited state species that include excited 

state OH (OH*) [112]. The primary kinetic path for forming OH* is the exothermic reaction 

CH + O2 → CO + OH* [112]. Once formed, OH* returns rapidly to its ground state, a 

portion through chemiluminescent emission and a portion through collisional quenching. 

For the typical mixing-controlled diesel flame, a distinct OH peak was observed at 310 

nm, and a strong gray-body emission dominated the spectrum at wavelengths longer than 

340 nm [120].  

 
Figure 2.19 Experimental setup for OH* chemiluminescence 



Figure 2.19 shows the experimental setup for the OH* chemiluminescence method. 

A high-speed camera (Photron Co., ultima FASTCAM-APX RS) with a Nikkor lens 

(Nikon, 105 mm, f/4.5) was used to capture the images. A band-pass filter (310 nm 

centered, 10 nm FWHW) was used to isolate the OH* chemiluminescence. The soot gray-

body emission is considered to be separated from the OH* chemiluminescence. An image 

intensifier system (LaVision Inc., HS-IRO) was employed because the OH* intensity is 

too weak to detect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 MIXTURE AND COMBUSTION 

CHARACTERISTICS OF SMALL INJECTION AMOUNT 

FUEL SPRAY  

3.1 INTRODUCTION 

Homogeneous charge compression ignition (HCCI) is a form of internal 

combustion in which well-mixed fuel and oxidizer (typically air) are compressed to the 

point of auto-ignition. HCCI engines achieve extremely low levels of oxides of nitrogen 

emissions (NOx) without a catalytic converter. Decreasing compression ratio is an 

effective way realize HCCI combustion mode in a diesel engine [121]. But there is a strict 

problem that the combustion under cold start process and idle mode are unstable in a 

low compression ratio diesel engine. Multi-polit injection strategy is an effective way to 

solve this problem [122]. HC and CO emissions are sufficiently low when a small 

quantity of fuel is injected [13]. Therefore, the spray behaviors of small injection mass is 

worthwhile to be concentrated on.  

3.2 EXPERIMENTAL CONDITIONS 

Table 3.1 shows the experimental conditions. In order to measure the spray mixture 

formation and the combustion characteristics, high-temperature, high-pressure conditions 

were adopted. For the evaporation conditions, the ambient gas was nitrogen which can 

prevent self-ignition. The test fuel used was tracer LAS fuel (Tridecane 97.5% / α-MN 

2.5%). The ambient gas was air in the combustion conditions (O2: 21%, N2: 79%).  

Single-hole piezo actuator was used for the meet of high injection pressure. The 

injection pressure was selected as 100, 150, 170 MPa for the evaporation conditions and 

100 MPa for the combustion conditions. But the injection mass was kept at 2.97 mg for 

two conditions. 



For the evaporation conditions, the ambient temperature and pressure were selected 

as 760 K and 3.6 MPa respectively.  The ambient and pressure for the combustion 

conditions were 900 K and 4.1 MPa respectively in order to achieve the same ambient 

density 16 kg/m3. 

Table 3.1 Experimental conditions 

 

3.3 SPRAY MIXTURE CONCENTRATION DISTRIBUTIONS 

This part discusses the results of the vapor/liquid distributions of the various 

conditions, such as varying of the injection amount and the injection pressure. The Figures 

show the different results of the vapor/liquid equivalence distributions, the evaporation 

ratio and the ratio of entrained gas to total fuel as time elapses under various injection 

amounts and injection pressures. 

3.3.1 Effect of Injection Amount 

Figure 3.1 shows the vapor/liquid equivalence distributions as time elapses under 

various injection amounts, the liquid phase evaporates and the vapor phase becomes lean 

as time elapses. It is necessary to explain that in this paper the midpoint of the top edge 

of every image is defined as the position of nozzle tip of the injector. The injection 

 Evaporating Combustion 

Ambient Gas N2 Air 

Temperature: Ta [K] 760 900 

Pressure: Pa [MPa] 3.6 4.1 

Density:  [kg/m3] 16 

Fuel Tracer LAS Fuel JS#2 Diesel Fuel 

Injection Amount: Mf [mg] 0.27, 0.89, 2.97 

Injection Pressure: Pinj [MPa] 100, 150, 170 100 

Injector Type Single Hole Piezo Actuator 

Nozzle Hole Diameter [mm] 0.133 



amounts differed from 0.27, 0.89 and 2.97 mg but the injection pressure always fixed at 

100 MPa. In each plot of the figure, left half is the liquid phase, while the right half shows 

the vapor phase. The values in the plot mean the equivalence ratio value. The values 

become bigger as the image color on the left bottom plot becomes richer.  

At 0.2 ms ASOI, there is no great difference for the spray penetration. The liquid 

equivalence ratio is rich, but vapor equivalence ratio is lean under the three injection 

amounts conditions. When the injection amount increases, the liquid equivalence ratio 

becomes richer. For the results of 0.89 and 2.97 mg, the liquid equivalence ratios are 

almost same. But it can be seen that the vapor equivalence ratio of the 2.97 mg is richer 

than that of 0.89 mg.  

At 0.3 ms ASOI, there is also no significance difference of the spray tip penetration 

for three injection amounts. It can be seen that the vapor phase is around stoichiometric 

at this time when the injection amount is 0.27 mg.  

At 0.5 ms ASOI, it shows that larger injection amount gives the longer spray tip 

penetration. The vapor phase is around stoichiometric at the injection amount of 0.89 mg. 

It still shows rich liquid equivalence ratio of 2.97 mg at this time.  

At 1.0 ms ASOI, the spray tip penetration difference of the three injection amounts 

is significant. The larger injection amount gives the longer spray tip penetration. The rich 

vapor concentration phase (equivalence ratio around 1.6) is formed at the injection 

amount of 2.97 mg.  

At 1.5 ms ASOI, the spray tip penetration difference of the three injection amounts 

is also significant. The larger injection amount gives the longer spray tip penetration. 

Compare with the result of 1.0 ms, it can be seen that the vapor equivalence ratio 

distribution becomes lean. 

According to Figure 3.1, the liquid equivalence ratio decreases but the vapor 

equivalence ratio increases at first and then decreases as time elapses. The larger the 

injection amount is, the later the time of stoichiometric vapor phase is. Moreover, the 

larger injection amount gives the higher vapor equivalence ratio. 



 
(a) Q=0.27 mg   (b) Q=0.89 mg    (c) Q=2.97 mg 

Figure 3.1 Vapor/liquid equivalence ratio distributions 
Injection durations of three injection amounts are shown in Figure 3.2 and Figure 

3.3. The larger the injection amount is, the longer injection duration will be. The temporal 

variations of ratio of vapor to total fuel under different injection amounts are shown in 

Figure 3.2. The evaporation ratio signifies the ratio of fuel evaporation, which equals the 
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vapor mass at a particular time divided by the injected fuel mass at this time. The results 

obtained show that the evaporation ratio becomes higher as the injection amount is smaller. 

When the injection amount is 0.27 mg, the fuel is full evaporates at time 0.5 ms ASOI. At 

the injection amount of 0.89 mg and 2.97 mg, the fuel full evaporates time is 0.9 ms and 

1.3 ms ASOI respectively. The smaller the injection amount is, the faster the fuel full 

evaporates. The gradient of evaporation ratio of small injection amount is bigger than that 

of big injection amount. It implies that the small injection amount can improve the fuel 

evaporation process. The EOI of 0.27 mg is 0.19 ms ASOI, 0.32 ms ASOI for 0.89 mg 

and 0.75 ms ASOI for 2.97 mg. It can be calculated that it continues 0.31 ms from EOI to 

the fuel full evaporates timing for 0.27 mg, 0.58 ms for 0.89 mg and 0.55 ms for 2.97 mg. 

It can be seen that it takes shorter time for small injection amount to finish the evaporation 

process. 

 

Figure 3.2 Evaporation ratio 

The spray is considered to be many parts of symmetrical column. The space volume 

of spray considered to be the sum of these spray column. The spray mass can be calculated 

by space mass minus the temporary spray mass. Then the ratio can be calculated. The 

calculate process will be briefly introduced here. Figure 3.3 shows the definition of spray 
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volume. 

 

Figure 3.3 Definition of Spray Volume V = ∑ ℎ 
Where V [mm3] is the spray volume, r [mm] is the radius and h [mm] is the spray 

column height. 

Then the spray mass can be calculated by: 

= − ∙
 

Where  [mg] is entrainment ambient gas mass,  [kg/m3] is the ambient gas 

density,  [kg/m3] is the fuel density,  [mg/s] is fuel mass injection rate and t [s] is 

the timing. 

In Figure 3.4, it shows the ratio of entrained gas to total fuel under different injection 

amounts. Figure 3.4 shows that the ratio of entrained gas to total fuel is bigger when the 

injection amount is smaller. The ratio of entrained gas to total fuel increases as the time 

elapses under three injection amounts. Nevertheless, the smaller injection amount gives 

the bigger entrained gas and accelerates the fuel evaporation. The results contribute to the 

rich air-fuel mixture formation. The ratio gap between 0.89 mg and 2.97 mg is smaller 



than that of between 0.27 mg and 0.89 mg. The gradient of ratio increases as the injection 

amount decreases. It implies that the small injection amount can obtain much more 

relative entrained gas, which can make the fuel evaporates quickly and improve the fuel 

evaporation process. 

 

Figure 3.4 Ratio of entrained gas to total fuel 

After the comparison of Figure 3.1, 3.2 and 3.4, it can be concluded that a larger 

injection amount gives a longer spray tip penetration. Small injection amount can obtain 

much more relative entrained ambient gas. Small injection amount can improve the fuel 

evaporation process. After the comparison of Figure 3.2 and 3.4, it can be seen that the 

fuel evaporation is not greatly enhanced by the longer injection duration but greatly 

enhanced by the shorter injection duration. 

Figure 3.5 shows the relationship between the mass frequency to total fuel and 

equivalence ratio to total fuel (Фall) under different injection amounts, which can 

investigate the fuel vapor homogeneous extent.  

In Figure 3.5 (a), it shows the relationship between the mass frequency to total fuel 

and Фall under 0.27 mg. It shows that small Фall becomes rich as time elapses. And the 

peak of mass frequency to total fuel moves to the lean Фall area as time elapses. It can be 
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seen that the rich Фall achieves 1.26 when time goes to 0.2 ms ASOI. When time goes to 

1.5 ms ASOI, the mass frequency to total fuel achieves 0.55 when the Фall is 0.2. And the 

Фall is smaller than 0.36 at 1.5 ms ASOI. 

In Figure 3.5 (b), it shows the relationship between the mass frequency to total fuel 

and Фall under 0.89 mg. It also shows that small Фall becomes rich as time elapses. And 

the peak of mass frequency to total fuel also moves to the lean Фall area as time elapses.  

It can be seen that the rich Фall achieves 2.26 when time goes to 0.2 ms ASOI. When time 

goes to 1.5 ms ASOI, the mass frequency to total fuel achieves 0.37 when the Фall is 0.26. 

And the Фall is smaller than 0.46 at 1.5 ms ASOI.  

In Figure 3.5 (c), it shows the relationship between the mass frequency to total fuel 

and Фall under 2.97 mg. It also shows that small Фall becomes rich as time elapses. And 

the peak of mass frequency to total fuel also moves to the lean Фall area as time elapses.  

It can be seen that the rich Фall achieves 3.0 when time goes to 0.2 ms ASOI. When time 

goes to 1.5 ms ASOI, the mass frequency to total fuel is smaller than 0.2. And the Фall is 

smaller than 1.26 at 1.5 ms ASOI. 

Compares with the three injection amount results of Figure 3.5, it can be seen that 

the Фall becomes smaller when the injection amount decreases. The peak of mass 

frequency to total fuel moves to the lean Фall area as time elapses. The maximum 

frequency to total fuel increases as the injection amount decreases. Based on these, the 

air-fuel mixture becomes rich when the injection amount decreases. Especially for the 

time 1.5 ms, the difference of the mixture formation is significant between three injection 

amounts. This tendency is same with the results in Figure 3.4. Figure 3.5 also shows the 

smaller injection amount gives the bigger entrained gas. And the results contribute to the 

rich air-fuel mixture formation. 

 

 



 
(a) Mf=0.27 mg 

 
(b) Mf=0.89 mg 

 
(c) Mf=2.97 mg 

Figure 3.5 Mass frequency to total fuel versus Фall 
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3.3.2 Effect of Injection Pressure  

Not only the injection amount but also the injection pressure has the effect on the 

spray characteristics. It is necessary to discuss about the effect of injection pressure on 

the spray characteristics.  

Figure 3.6 shows the vapor/liquid equivalence ratio distributions as time elapses 

under various injection pressures with the injection amount of 0.27 mg. Figure 3.7 shows 

the results of the equivalence ratio distributions of 2.97 mg. The varied injection pressures 

were 100, 150 and 170 MPa, the injection amount was 0.27 mg in the Figure 3.6 and 2.97 

mg in the Figure 3.7. 

Both the 0.27 mg and 2.97 mg show that the higher injection pressure gives the 

leaner vapor phase equivalence ratio. This is because the higher the injection pressure is, 

the higher injection velocity it achieves. It contributes for the atomization of the fuel 

droplets which makes the fuel evaporates quickly and lower equivalence ratio. 

In Figure 3.6, it can be seen that the higher injection pressure gives the shorter spray 

tip penetration at the injection amount of 0.27 mg. On the other hand, from the images of 

Figure 3.7, the tendency is opposite. The higher injection pressure gives the longer spray 

tip penetration at the injection amount of 2.97 mg.  

According to Figure 3.2, the smaller injection amount gives the higher evaporation 

ratio than the bigger injection amount. And it can be seen from Figure 3.6 that the smaller 

injection amount gives the bigger entrained gas than the higher injection amount and 

accelerates the fuel evaporation.  

Furthermore, a higher injection pressure has a higher injection velocity which 

promotes fuel atomization and enhances the fuel evaporation. Based on these, the fuel 

evaporates quickly under small injection amount and high injection pressure. As for this, 

it results in leaner air-fuel mixture formation which has a little momentum makes the 

spray tip penetration of 170 MPa becomes shorter than that of 100 MPa. On the contrary, 

the higher injection pressure gives the higher injection velocity which has a significant 



effect on the spray tip penetration than the fuel evaporation velocity under a big injection 

amount. The spray tip penetration of the higher injection pressure is longer than that of 

the lower injection pressure under a bigger injection amount. 

 
Figure 3.6 Vapor/liquid equivalence ratio distributions under various injection pressures 

 

Figure 3.7 Vapor/liquid equivalence ratio distributions under various injection pressures 
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(a) Mf=0.27 mg 

 
(b) Mf=0.89 mg 

 
(c) Mf=2.97 mg 

Figure 3.8 Entrained gas ratio versus spray tip penetration 
Figure 3.8 shows the tendency between ratio of entrained gas to total fuel and spray 

 

 

 



tip penetration under different injection pressures and different injection amounts. 

Entrained gas ratio and spray tip penetration are two important factors on the fuel-air 

mixture formation. It is necessary to discuss about the relationship between these two. 

In Figure 3.8 (a), the entrained gas ratio of 100 MPa is bigger than that of 150 MPa 

and 170 MPa at the late period of the spray mixture formation. And the spray tip 

penetration of 100 MPa is also longer than that of 150 MPa and 170 MPa. 

In Figure 3.8 (b), the entrained gas ratio of 150 MPa is bigger than that of 100 MPa 

and 170 MPa at the late period of the spray mixture formation. And the spray tip 

penetration of 150 MPa is also longer than that of 100 MPa and 170 MPa. 

In Figure 3.8 (c), the entrained gas ratio of 150 MPa is bigger than that of 100 MPa 

and 170 MPa at the late period of the spray mixture formation. But the spray tip 

penetration of 170 MPa is longer than that of 100 MPa and 150 MPa. 

It can be seen from the Figure 3.8, the spray tip penetration of 2.97 mg is longer than 

that of 0.27 mg and 0.89 mg at late period of spray mixture formation. But the ratio of 

entrained gas to total fuel is too small. The spray tip penetration of 0.89 mg under 150 

MPa is longer than other conditions of 0.27 mg and 0.89 mg at late period of spray mixture 

formation. And the ratio of entrained gas to total fuel is also enough. 

Figure 3.9 shows the tendency between evaporation ratio and spray tip penetration 

with various injection amounts 0.27 mg, 0.89 mg and 2.97 mg under various injection 

pressures 100, 150 and 170 MPa. 

In Figure 3.9 (a), the spray tip penetration of 170 MPa (24 mm) is too short when 

the fuel all evaporates. But for the 100 MPa, it achieves 37 mm when the fuel all 

evaporates. The difference of three injection pressures at injection amount 0.27 mg is 

significant.  

In Figure 3.9 (b), the difference of the spray tip penetration when the fuel all 

evaporates under three injection pressures at 0.89 mg decreases than that of 0.27 mg. 

In Figure 3.9 (c), the spray tip penetration when the fuel all evaporates under three 

injection pressures are almost same. 



 
(a) Mf=0.27 mg 

 
(b) Mf=0.89 mg 

 
(c) Mf=2.97 mg 

Figure 3.9 Evaporation ratio versus spray tip penetration 

It can be seen that the spray tip penetration becomes longer when the fuel all 

 

 

 



evaporates as the injection amount increases. It means the bigger injection amount gives 

the longer spray tip penetration at the time that fuel all evaporates. The difference of the 

spray tip penetration when the fuel all evaporates under three injection pressures 

decreases when the injection amount increases. For the small injection amount, the effect 

of injection pressure on the spray tip penetration when the fuel all evaporates is significant. 

At the condition of same injection amount, the spray tip penetration becomes shorter 

when the fuel all evaporates as the injection pressure increases. It means the bigger 

injection pressure promotes the evaporation process. 

3.4 COMBUSTION PROCESS 

This part shows the results of combustion process under the conditions of the 

constant injection pressure 100 MPa and different injection amounts (0.27 mg, 0.89 mg 

and 2.97 mg).  

Figure 3.10 shows the distributions of KL factor and flame temperature obtained by 

analyzing the images captured from the high-speed video camera using the two-color 

pyrometry method. The upper row images of each injection amount are the KL factor and 

the bottom row images of each injection amount are the flame temperature. The timing 

of the images from left to right is ignition, combustion medium, combustion peak ending 

time.  

According to Figure 3.10, it can be seen that some regions where the KL factor is 

high but the flame temperature is low. But there are still some regions that the KL factor 

is high but the flame temperature is also high. The high KL factor locates in the flame tip 

region. The volume of the flame and the KL factor intensity increase as the time elapses. 

And the volume of the flame and the KL factor intensity also increase when the injection 

amount increases. The soot emissions can decrease as the injection amount decreases. 

And compare with the results of Figure 3.1, it can be seen that the spray tip vapor 

equivalence ratio around the ignition timing increases when the injection amount 



increases. Because of this, the KL factor intensity around the ignition timing increases 

when the injection amount increases. The high KL factor region can be observed at the 

center of flame at 1.44 ms ASOI under the injection amount of 2.97 mg. The ignition time 

of three injection amounts 0.27 mg, 0.89 mg and 2.97 mg is 0.84 ms, 0.94 ms and 0.94 

ms ASOI respectively.  

According to Figure 3.1, it can be concluded that the high vapor concentration will 

occur in the spray center at 1.5 ms of 2.97 mg. And according to Figure 3.5, the bigger 

injection amount gives the smaller entrained gas. And the results contribute to the rich 

air-fuel mixture formation. Even the ambient temperature of spray mixture formation and 

combustion process is different, but the tendency is same. Based on this, the high KL 

factor region will occur when the time going to 1.5 ms.  

It can be observed that the time from ignition to combustion peak increases when 

the injection amount increases and the ignition time of 0.27 mg is a little ahead than 2.97 

mg. This is because the evaporation ratio of small injection amount is higher than the 

evaporation ratio of big injection amount at the same time. It makes the air-fuel mixture 

ignitable concentration appears early and the ignition delay becomes shorter. 

Figure 3.11 shows the integrated KL factor under various injection amounts and the 

Figure 3.12 shows the integrated KL factor per unit injection amount. As it can be seen in 

the Figure 3.11 and 3.12, 2.97 mg is shown with the main y-ordinates (left), 0.89 mg and 

0.27 mg are shown with the auxiliary y-ordinates (right).  

The integrated KL factor and the integrated KL factor per unit injection amount 

reduce very significantly when the injection amount decreases. This reflects that the small 

injection amount can reduce the soot concentration. According to Figure 3.4, it can be 

seen that the ratio of entrained gas to total fuel becomes bigger when the injection amount 

becomes smaller. Because of this, the lean homogenous fuel-air mixture is formed which 

makes the combustion more sufficient result in lower soot concentration.  



 
Figure 3.10 Distributions of KL Factor and Flame Temperature 

 

(a) Mf=0.27mg

(b) Mf=0.89mg

(c) Mf=2.97mg



 
Figure 3.11 Integrated KL factor under various injection amounts 

 
Figure 3.12 Integrated KL factor per unit injection amount 

Figure 3.13 shows the mean flame temperature under various injection amounts 

versus the time after start of injection. The mean flame temperature also decreases very 

significantly when the injection amount decreases from 2.97 mg to 0.27 mg. This is the 

same tendency with the change of integrated KL factor. But compare the results of 0.89 

mg and 0.27 mg, the difference between the mean flame temperatures is not very 

significant. Contact Figure 3.11 and 3.13, the high integrated KL factor shows the high 

mean flame temperature at the same time.  
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Figure 3.14 shows integrated KL factor per unit injection amount versus ratio of 

entrained gas to total fuel under 100 MPa injection pressure with various injection 

amounts. The time chosen is 0.93 ms, 1.04 ms, 1.24 ms, 1.54 ms and 1.84 ms ASOI, 

which is after end of injection.  It can be seen that the entrained gas ratio becomes 

smaller when the injection amount increases. It means the air-fuel ratio is low for the big 

injection amount. As for this, the combustion of big injection amount is not sufficient. 

 
Figure 3.13 Mean flame temperature under various injection amounts 

 
Figure 3.14 Integrated KL factor per unit injection amount versus ratio of entrained gas 

to total fuel (0.93 ms, 1.04 ms, 1.24 ms, 1.54 ms and 1.84 ms ASOI) 
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3.5 SUMMARY 

The experiments were carried out in a constant volume vessel. The spray mixture 

formation processes were analyzed by the tracer LAS technique under various injection 

parameters and same ambient conditions. The combustion processes were analyzed by 

the two-color pyrometry method with various injection amounts but fixed injection 

pressure (100 MPa) and same ambient conditions. The main conclusions are summarized 

as follows: 

Spray Mixture Formation Process 

1. The smaller injection amount gives the shorter time to achieve stoichiometric 

vapor phase, the leaner air-fuel mixture and the shorter spray tip penetration 

under same injection pressure and same ambient conditions.  

2. The performance of fuel-air mixture formation under the condition of 0.89 mg 

injection amount and 150 MPa injection pressure is higher than other conditions. 

3. The effect of injection pressure shows that the spray tip penetration becomes 

longer when the injection pressure decreases at the small injection amount (0.27 

mg). The tendency is opposite at the injection amount of 2.97 mg. 

Therefore, the injection amount and the injection pressure have a significant effect 

on spray tip penetration and equivalence ratio which have an effect on the soot, nitrogen 

oxides.  

Combustion Process  

1. The volume of the flame and the KL factor intensity increase when the injection 

amount increases. It’s a significant way to reduce soot formation with increasing 

the injection amount. 

2. The high KL factor region occurs at the time when high vapor concentration 

appears. The lower vapor concentration gives lower KL factor intensity.  

3. The time from ignition to combustion peak is shorter under the smaller injection 

amount condition.  



4. The integrated KL factor and the integrated KL factor per unit injection amount 

decrease very greatly when the injection amount decreases from 2.97 mg to 0.89 

mg. And the mean flame temperature also decreases as the injection amount 

decreases.  

5. The integrated KL factor (represents the soot concentration) becomes higher 

when the injection amount increases. The combustion of big injection amount is 

not sufficient. 

Consequently, it’s an efficient way to reduce the soot formation by adopting small 

injection amount. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4 CHARACTERISTICS OF FREE SPRAY 

DEVELOPMENT, MIXTURE FORMATION AND 

COMBUSTION UNDER HIGH-PRESSURE SPLIT 

INJECTION 

4.1 INTRODUCTION 

Numerous attempts [123-128] have been made to understand the mechanism of diesel 

spray. However, it is not likely that the determinants described in the above studies can 

individually explain the spray atomization. In this section, the effect of split injection on 

the spray development, the evaporation process phenomena of split injection and the 

effect of split injection on the soot evaluation (formation and oxidation domain) process 

were investigated. 

4.2 EXPERIMENTAL CONDITIONS 

Table 4.1 summarizes the experimental conditions. The fuel for non-evaporation 

conditions was JIS#2 diesel, that for the evaporation conditions was the tracer LAS fuel 

(n-tridecane 97.5%, α-MN 2.5%), and that for the combustion conditions was JIS#2 diesel. 

To compare the results of the spray mixture formation processes and the combustion 

processes, temperature and pressure were selected as 870 K and 4.2 MPa, respectively. 

According to this, ambient gas density is 16.8 kg/m3. This ambient condition reproduces 

the thermodynamic environment near top dead center (TDC) in the combustion chamber 

of a low compression ratio diesel engine, which can realize homogeneous combustion 

effectively. Moreover, the ambient temperature and pressure were selected as 300 K and 

1.5 MPa, respectively, which made the ambient density of non-evaporation, evaporation 

and combustion the same. The ambient gas for the non-evaporation and evaporation 



conditions was nitrogen. The ambient gas for the combustion conditions was air (O2: 21%, 

N2: 79%).  

The injection process comprises two parts: pre-injection and main injection. The 

main injection processes in this study are of two types, based on the two injection 

pressures of 100 MPa and 160 MPa. For split main injection, the main injection was 

achieved as two pluses of 160 MPa. The single main injection process is represented as 

Pre + S100 and Pre + S160 for short, where “S” denotes the single pulse main injection. 

The split main injection process was based on the mass fraction ratio of the two pulses of 

the main injection of 75:25. Accordingly, the split main injection process is represented 

as Pre + D160_75-25, where “D” denotes the double pulse (split-) main injection. The 

injection mass of the pre-injection was 0.9 mm3 and the injection mass of the main 

injection was 5 mm3 under three injection strategies. 

Table 4.1 Experimental conditions 

 Non-Evaporation/ 
Evaporation Conditions Combustion Conditions 

Ambient Gas N2 Air 
Temperature: Ta [K] 300/870 870 
Pressure: Pa [MPa] 1.5/4.2 4.2 

Density: ρ  [kg/m3] 16.8 

Fuel JIS#2 Diesel Fuel/ 
Tracer LAS Fuel JIS#2 Diesel Fuel 

Injection amount [mm3] 0.9 (Pre-injection)+5.0 (Main injection) 
Injection Pressure: Pinj 

[MPa] 
100 (Pre+Single injection) 160 (Pre+Split injection) 

Injector Type Single Hole Piezo Actuator 
Nozzle Hole Diameter 

[mm] 0.111 

Nozzle Hole Number 1 

4.3 INJECTION RATE 

Figure 4.1 illustrates the results of the injection rate measurement of the single main 

injection and split main injection processes. As illustrated in Figure 4.1, considering Pre 

+ S100 injection strategy as the base condition, the end of injection (EOI) of the high-



pressure split main injection strategy (Pre + D160_75-25) was similar to that of Pre + 

S100 injection strategy. Furthermore, for the high injection case, single main injection of 

160 MPa (Pre + S160) was also adopted. The EOI of Pre + S100 and Pre + D160_75-25 

was approximately 2.8 ms after the start of injection (ASOI), and the EOI of Pre + S160 

was approximately 2.5 ms ASOI, and the end of pre-injection of the three injection 

strategies was approximately 0.6 ms ASOI. As mentioned above, the injection volume of 

pre-injection was 0.9 mm3 and that of main injection was 5.0 mm3. The total volumes of 

the tracer LAS fuel and diesel were identical.  

 

Figure 4.1 Injection Rates of Pre + S100, Pre + S160 and Pre + D160_75-25 

4.4 NON-EVAPORATION CHARACTERISTICS 

The spray developments of the three injection strategies are presented in Figure 4.2. 

The timings chosen for Pre + S100 and Pre + S160 are 0.4 ms ASOI (around the end of 

pre-injection), 1.2 ms ASOI (start of main injection, SOMI for short), 1.4 ms ASOI (0.2 

ms after SOMI), 2.5 ms ASOI (1.3 ms after SOMI for Pre + S100, EOI for Pre + S160), 

and 2.8 ms ASOI (EOI for Pre + S100, 0.3 ms, AEOI for Pre + S160). The timings chosen 

for Pre + D160_75-25 are 0.4 ms ASOI (around the end of pre-injection), 1.2 ms ASOI 

(start of 1st main injection, SO1MI for short), 1.4 ms ASOI (0.2 ms after SO1MI), 2.5 

ms ASOI (0.3 ms after start of 2nd main injection, SO2MI for short), and 2.8 ms ASOI 



(EOI).  

The spray tip penetration of pre-injection at 0.4 ms ASOI for high injection pressure 

is significantly longer than that of low injection pressure. It implies that higher injection 

pressure provides larger momentum. It can be observed that the main injection of the 

three injection strategies appears at 1.2 ms ASOI. The injected fuel of the main injection 

of Pre + S160 and Pre + D160_75-25 is larger than that of Pre + S100 at 1.2 ms ASOI 

because of the high injection pressure. The main injection fuel can be observed at 1.4 

ms ASOI under three injection strategies. The injection has already finished at 2.5 ms 

ASOI under Pre + S160, while the second main injection of Pre + D160_75-25 can be 

observed. According to the spray images, the spray tip penetration of Pre + S100 is 

shorter than that of Pre + S160 and Pre + D160_75-25, which is due to the low injection 

pressure of Pre + S100. The effect of main injection fuel on the spray tip penetration will 

be discussed in the next Figure. 

Figure 4.3 presents the spray tip penetration of the three injection strategies. The 

spray tip penetration of the high injection pressure strategies is longer than that of the 

low injection pressure strategy, as the higher injection pressure provides larger 

momentum that makes the spray penetrate longer.  

The main injection fuel will catch up with the tip of the pre-injection at 2.1 ms 

ASOI for Pre + S160 and Pre + D160_75-25 but 2.2 ms ASOI for Pre + S100. It implies 

that higher injection pressure provides larger momentum. The spray tip penetration 

gradient becomes bigger after the main injection fuel catches up with the tip of the pre-

injection. It means the split injection gives the fuel more momentum to penetrate quickly. 

The spray tip penetration of Pre + S160 is almost same with that of Pre + D160_75-25 

till 1.2 ms ASOI as the same injection pressure. However, the spray tip penetration of 

Pre + S160 is a little longer than that of Pre + D160_75-25 from 1.2 ms ASOI to 1.9 ms 

ASOI as the injection mass of Pre + S160 is larger than that of Pre + D160_75-25 during 

this period. It implies that split injection can suppress the spray tip penetration which 

can void the effect of spray and cylinder head interaction. Suppresses the spray tip 

penetration can decrease the soot formation.  

The main injection fuel will catch up with the tip of the pre-injection fuel at 2.1 ms 

ASOI, which makes the spray tip penetration of Pre + D160_75-25 to catch up with that 

of Pre + S160. The second main injection fuel of Pre + D160_75-25 will reach the tip of 



the first main injection fuel at 3.9 ms ASOI. The spray tip penetration of Pre + D160_75-

25 becomes shorter than that of Pre + S160 from 2.9 ms ASOI to 3.9 ms ASOI, because 

the effect of the first main injection on the spray tip penetration has already finished, and 

the second main injection fuel still does not have an effect on the spray tip penetration.  

 

Figure 4.2 The spray developments of three injection strategies 



 

Figure 4.3 Spray tip penetrations 

Figure 4.4 shows the equivalence ratio of the overall fuel versus time under the 

three injection strategies. The equivalence ratio is defined as the ratio of the actual 

fuel/nitrogen ratio to the stoichiometric fuel/air ratio.  

The equivalence ratio of low injection pressure is higher than that of high injection 

pressure during the interval between the pre- and main injection. As the injected fuel 

mass is the same during this interval, it is safe to say that the ambient air entrainment of 

the low injection pressure is smaller than that of the high injection pressure when the 

injection mass is very small.  

The equivalence ratio of the three injection strategies decrease first and then 

increase during the whole injection phase. Moreover, the maximum ratio of Pre + S100 

during the pre-injection phase is 0.3, which is larger than that of Pre + S160 and Pre + 

D160_75-25. However, for the Pre + S160 and Pre + D160_75-25, the equivalence ratio 

is almost the same and the data of Pre + S160 is just slightly higher than that of Pre + 

D160_75-25. The equivalence ratio of the overall fuel for the three injection strategies 

is almost the same during the start of the main injection phase. Then, the equivalence 

ratio of the overall fuel of the high injection pressure is higher than that of the low 

injection pressure. The equivalence ratio of Pre + D160_75-25 at 2.8 ms ASOI (EOI of 

Pre + D160_75-25) is smaller than that of Pre + S160 at 2.5 ms ASOI (EOI of Pre + 

S160). It implies that split main injection provides much more ambient gas amount, 



which improves the spray breakup and atomization process as the injected mass is same 

at these two timings.   

 
Figure 4.4 Equivalence ratio of overall fuel 

4.5 EVAPORATION CHARACTERISTICS 

Figure 4.5 shows the liquid/vapor equivalence ratio of the three injection strategies. 

The left and right columns of each graph are the liquid and vapor phase equivalence ratios, 

respectively. The timings chosen for Pre + S100 are 1.14 ms ASOI (start of the main 

injection), 1.8 ms ASOI (during the main injection), and 2.8 ms ASOI (EOI) from left to 

right. The timings chosen for Pre + S160 are 1.2 ms ASOI (start of the main injection), 

1.7 ms ASOI (during the main injection), and 2.8 ms ASOI. The timings chosen for Pre + 

D160_75-25 are 1.14 ms ASOI (start of the first main injection), 1.8 ms (during the first 

main injection), 2.19 ms ASOI (start of the second main injection), 2.39 ms ASOI (0.2 

ms after the start of the second main injection), and 2.8 ms ASOI (EOI).  

The liquid phase equivalence ratio of Pre + D160_75-25 is leaner than that of Pre + 

S160 around 1.8 ms ASOI. The split main injection decreases the first main injection mass, 

which makes the fuel to evaporate easier than that in single main injection. The split main 

injection fuel can be observed obviously at 2.19 ms and 2.39 ms ASOI under Pre + 



D160_75-25. The vapor-phase equivalence ratio of Pre + D160_75-25 is more 

homogeneous than that of Pre + S160 at 2.8 ms ASOI. It implies that the split injection 

can improve the fuel evaporation process. Comparing the liquid phase equivalence ratio 

of Pre + D160_75-25 and Pre + S100 at 2.8 ms ASOI, the high injection pressure can 

improve the fuel evaporation process. The spray tip penetration increases as the time 

elapses under the three injection strategies. Moreover, the spray tip penetration of Pre + 

S160 and Pre + D160_75-25 is longer than that of Pre +S100 because higher injection 

pressure provides higher momentum. The spray tip penetration of Pre + S160 at 2.8 ms 

ASOI is longer than that of Pre + D160_75-25 because the vapor expansion of Pre + S160 

is stronger than that of Pre + D160_75-25 as the EOI of Pre + S160 is 2.5 ms ASOI. 

Figure 4.6 shows the spray tip penetration of non-evaporation and evaporation 

conditions under the three injection strategies. The dashed lines represent the spray tip 

penetration of the non-evaporation condition, while the others are the spray tip penetration 

of the evaporation conditions.  

The spray tip penetration of evaporation condition is shorter than that of non-

evaporation condition. The fuel vapor expansion which causes larger flower resistance by 

ambient for evaporation condition. The spray tip penetration gap between non-

evaporation and evaporation conditions under high injection pressure is smaller than that 

of low injection pressure. It implies that high injection pressure can decrease the effect of 

flower resistance by ambient. The spray tip penetration increases as time elapses under 

three injection strategies. The spray tip penetration of Pre + S160 and Pre + D160_75-25 

under evaporation condition are longer than that of Pre + S100, as the higher injection 

pressure provides a larger spray momentum. The split main injection does not make the 

spray tip penetration longer than the single main injection, which is same with the results 

of evaporation condition.  



 
Figure 4.5 Liquid and vapor phase equivalence ratio distributions 

 
Figure 4.6 Comparison of Spray tip penetration under non and evaporation conditions 



Figure 4.7 shows the equivalence ratio of the overall fuel under non-evaporation and 

evaporation conditions with the three injection strategies. According to the previous 

dissertation paper [100], the vapor mass and liquid mass concentration can be achieved by 

using Bouguer-Lambert-Beer’s law, and then the overall fuel equivalence ratio can be 

calculated. The dashed lines represent the results of non-evaporation, while the others are 

the results of the evaporation conditions. The equivalence ratio of the overall fuel of the 

three injection strategies is almost the same during the start of the main injection phase 

under non-evaporation conditions. Furthermore, the differences among the equivalence 

ratio of the overall fuel from the three injection strategies during this phase are also small 

under evaporation conditions. From the evaporation condition results, the equivalence 

ratio of the overall fuel of Pre + S100 at 2.8 ms ASOI is higher than that of Pre + D160_75-

25. As the injected mass is the same under these two injection strategies, the ambient gas 

mass of Pre + S100 is bigger than that of Pre + D160_75-25. It implies that the higher 

injection pressure can obtain richer entrained ambient gas under evaporation condition. 

The equivalence ratio of the overall fuel increases from 2.19 ms ASOI to 2.39 ms ASOI 

under Pre + D160_75-25. The tendency of the equivalence ratio of the overall fuel 

increases under Pre + S100 and Pre + D160_75-25. However, the equivalence ratio of the 

overall fuel of Pre + S160 at 2.8 ms ASOI is definitely smaller than that of 1.7 ms ASOI. 

Because the fuel injection of Pre + S160 has already finished at 2.5 ms ASOI and fuel 

continues to evaporate as time elapses. This contributes more ambient gas entrained into 

the spray, which causes low equivalence ratio. 

Figure 4.8 presents the relationship between the mass frequency of the vapor fuel 

and the equivalence ratio of vapor at EOI under the three injection strategies. The mass 

frequency of vapor fuel of Pre + S100 is smaller than that of Pre + S160 and Pre + 

D160_75-25. It means that the high injection pressure causes the fuel to evaporate more 

quickly than that of the low injection pressure. The equivalence ratio width of Pre + S100 

is longer than that of Pre + D160_75-25 and the equivalence ratio width of Pre + 

D160_75-25 is shorter than that of Pre + S160. It means that the vapor phase of Pre + 



D160_75-25 is significantly more homogeneous than that of Pre + S160 and the vapor 

phase of Pre + S160 is considerably more homogeneous than that of Pre + S100. This is 

similar to the results in Figure 4.5. The split main injection and high injection pressure 

can make the vapor distribution more homogeneous, which is consistent with the results 

of a previous paper [67]. 

 
Figure 4.7 Comparisons of equivalence ratio of overall fuel under non and evaporation 

conditions 

 
Figure 4.8 Mass frequency of vapor fuel at EOI 



4.6 COMBUSTION CHARACTERISTICS 

This section presents the results of the combustion process under the three injection 

strategies. Figure 4.9 presents the distributions of the KL factor and the soot temperature 

obtained by analyzing the images captured from the high-speed video camera using the 

two-color pyrometry method.  

The upper row images for each injection strategy present the temperature, while the 

bottom row images present the KL factor. The timings chosen for Pre + S100 from the 

left to the right are 1.6 ms ASOI (main ignition, short for MIG), 2.0 ms ASOI (0.4 ms 

after MIG), 2.7 ms ASOI (the integrated KL peak timing, short for tpeak), and 3.1 ms 

ASOI (0.4 ms after tpeak). The timings chosen for Pre + S160 from the left to the right 

are 1.6 ms ASOI (MIG), 2.0 ms ASOI (0.4 ms after MIG), 2.3 ms ASOI (tpeak), and 2.7 

ms ASOI (0.4 ms after tpeak).  

Furthermore, the timings chosen for Pre + D160_75-25 from the left to the right are 

1.6 ms ASOI (MI), 2.0 ms ASOI (0.4 ms after MIG), 2.2 ms ASOI (tpeak for the first 

main injection flame, short for tpeak1), 2.4 ms ASOI (0.2 ms after tpeak1), 2.6 ms ASOI 

(the valley for the integrated KL, short for tvalley), 2.9 ms ASOI (tpeak for the second 

main injection flame, short for tpeak2), and 3.3 ms ASOI (0.4 ms after tpeak2). These 

timings correspond to that of Figure 4.10. 

The line was used to describe the area of KL factor and temperature at 1.6 ms ASOI 

as the ignition timing is too weak to observe it clearly. The auto-ignition occurs near the 

spray tip, which is the same as the results of Zhang et al. [109]. The large KL factor region 

is near the tip region because of the large momentum.  

Moreover, the low temperature is shown in this region. The second main injection 

flame is evident at 2.6 ms ASOI and 2.9 ms ASOI for Pre + D160_75-25. The first main 

injection flame is finished at 0.4 ms Atpeak2 (3.3 ms ASOI), and the KL factor of Pre + 

D160_75-25 is lower than that of Pre + S160 and Pre + S100 at 0.4 ms Atpeak2.  

The high KL factors are observed around the flame tip region. The KL factors of 

Pre + S100 are significantly higher than that of the high injection pressure strategies. 

This means that high injection pressure can decrease the soot. The KL factor of the single 

main injection pressure strategies first increases, and then decreases. However, for the 



split main injection strategy, the KL factor first increases from the MIG to the tpeak1; 

then, it decreases as the time elapses until the tvalley; then, it increases to the tpeak2; 

and finally, it decreases as the time elapses until 0.4 ms after tpeak2. It is evident that 

the split injection has an effect on the soot formation.  

In the temperature images, a relatively high temperature appears in the midstream 

region of the sooting flame at 0.4 ms after tpeak for the three injection strategies because 

of the oxidation of the soot in this region [130], which is an exothermic process. Moreover, 

the relative high temperature also appears in the midstream region from tpeak1 to tvalley 

under Pre + D160_75-25, also resulting in soot oxidation in this region during the period 

from 2.2 ms ASOI to 2.5 ms ASOI.  

In this chapter, the integrated KL factor was calculated by integrating the pixel 

values over the images, and the mean temperature was calculated by the average of 

pixel values over the images, which represents the soot temperature. These results were 

averaged over three different runs at the same experiment condition.  

Figure 4.10 illustrates the integrated KL factor ASOI under the three injection 

strategies. The integrated KL factor of the high injection pressure strategies is obviously 

smaller than that of the low injection pressure strategy. The higher injection pressure is 

the main reason behind this. The integrated KL factor of the single main injection 

strategies increases first and then decreases, but the trend of the split main injection 

strategy is to increase, decrease, increase, and then decrease. This is due to the ignition 

of the second main injection fuel, which increases the KL factor after 2.6 ms ASOI. The 

KL factor of Pre + D160_75-25 is smaller than that of Pre + S160 from the ignition 

timing to 2.8 ms ASOI. This happens because the injection amount of the first main 

injection of Pre + D160_75-25 is smaller than that of Pre + S160. Then, the KL factor of 

Pre + D160_75-25 becomes larger than that of Pre + S160 because of the second main 

injection combustion of the split main injection. The KL factor of Pre + D160_75-25 at 

2.8 ms ASOI (EOI of Pre + D160_75-25) is smaller than that of Pre + S160 at 2.5 ms 

ASOI (EOI of Pre + S160). According to the discussions above, it can be concluded that 

the split main injection can decrease the soot, which agrees with the studies of Nishioka 

et al., [131]; Nehmer and Reitz [132]. Further, the gradient of the KL factor of Pre + 

D160_75-25 from 2.9 ms to 4.0 ms ASOI is bigger than that of Pre + S160 from 2.2 ms 

to 3.3 ms ASOI. It implies that the split injection decreases the soot quickly. 



 

Figure 4.9 KL factor and temperature distributions under three injection strategies 



 

Figure 4.10 Integrated KL factor under three injection strategies 

Figure 4.11 shows the plot of each pixel’s KL value versus temperature at EOI + 

0.2 ms under the three injection strategies. Figure 4.11 (a) shows the KL factor 

distribution at EOI + 0.2 ms under the three injection strategies (3.0 ms for Pre + S100 

and Pre + D160_75-25, 2.7 ms for Pre + S160). The KL factor images are divided into 

three regions, flame tip, middle and flame tail, as the dashed lines shown in the images. 

Figure 4.11 (b) presents the KL factor versus temperature in these three regions, with a 

large amount of scatter pixels of the KL values between 0 to 3.0 for Pre + S100, 0 to 2.0 

for Pre + S160, and 0 to 1.5 for Pre + D160_75-25 from the whole flame region. The KL 

factor of Pre + S100 is much denser than that of Pre + S160 and Pre + D160_75-25. This 

implies that the high injection pressure could decrease the soot. Furthermore, the KL 

factor of Pre + S160 is much denser than that of Pre + D160_75-25. It implies that the 

split main injection can obtain more entrainment which decreases the soot. It means that 

the split injection could decrease the soot. The small KL factor is located in the flame 

tail region and the high KL factor is located in the flame tip region with the three 

injection strategies. The high KL factor in the flame tip region of the high injection 

pressure is smaller than that of the low injection pressure, and the high KL factor of the 

split main injection pressure is smaller than that of the single main injection pressure. It 

indicates that the high injection pressure and split injection could decrease the maximum 

soot. It has overlap among the three regions. The overlap ratio of the split main injection 



strategy is higher than that of other two injection strategies. The split injection makes 

the soot distribution more homogeneous. The high KL factor is located in the low 

temperature region. The maximum KL factor becomes small as the temperature 

increases. The exponential trendlines are represented in the graphs by yellow lines. The 

exponentially trend increases from the spray tail to the flame tip region. The 

exponentially trend of the high injection pressure is higher than that of the low injection 

pressure strategy. It means that the degree of homogeneity of KL versus temperature of 

the high injection pressure is higher than that of low injection pressure. The 

exponentially trend of Pre + D160_75-25 in the flame tip region is lower than that of Pre 

+ S160. However, the exponentially trend of Pre + D160_75-25 in the flame tail and 

middle regions is higher than that of Pre + S160. The split injection has a positive effect 

on the degree of homogeneity of KL versus temperature in the whole flame region. 

Figure 4.12 presents the integrated KL factor versus the mean temperature under 

the three injection strategies. It also presents the soot evaluation under the three injection 

strategies. It can be seen in the figure that the soot evaluates in a clockwise direction, as 

shown by the arrows.  

The soot evaluation includes three phases under Pre + S100. In the first phase, the 

integrated KL factor and the mean temperature increase because of the initial combustion, 

dominated by the soot formation process. The KL factor decreases but the mean 

temperature increases in the second phase because the combustion is dominated by the 

soot oxidation process. Both the integrated KL factor and mean temperature decrease in 

the third phase because of the end of combustion.  

The soot evaluation under Pre + S160 is similar to that of Pre + S100. The first 

phase is the soot-formation domain process, the second phase is the soot-oxidation 

domain phase, and the last phase is the late combustion phase. The start timing of the 

first phase of Pre + S100 and Pre + S160 is the same, but the end of the first phase is 

different. The duration of the first phase of Pre + S160 is shorter than that of Pre + S100, 

which is due to the high injection pressure. The high injection pressure decreases the 

soot formation domain process. However, the second phase duration of the two single 

main injections are the same, implying that the high injection pressure does not decrease 

the soot oxidation domain process. Finally, the late combustion phase finished quickly 

under Pre + S160 because of the high injection pressure. The high injection pressure 



decreases the combustion duration.  

 

(a) KL factor distribution at EOI + 0.2 ms 

 

(b) KL factor versus temperature in three regions 

Figure 4.11 KL factor versus temperature at EOI + 0.2ms 

The soot evaluation under Pre + D160_75-25 is divided into six phases. The first 



phase is the soot-formation domain process, which is the same as that of Pre + S100 and 

Pre + S160. The second phase is the soot-oxidation domain process, which is the same 

as that of Pre + S100 and Pre + S160. However, the duration of Pre + D160_75-25 is 

shorter than that of Pre + S100 and Pre + S160 because of the split main injection. Then, 

the KL factor and mean temperature decrease because of the end of the first main 

injection combustion. This phase is also the same as the third phase of Pre + S100 and 

Pre + S160. The KL factor increases but the mean temperature decreases during the 

fourth phase, which is the soot formation phase. Then, the KL factor decreases but the 

mean temperature increases during the fifth phase, which is the soot oxidation phase. 

Finally, the sixth phase is the end of the main injection combustion, which is the same 

as that of the single main injection strategies. The split main injection soot evaluation 

circles two times, with 1, 2, and 3 being one circle and 4, 5, and 6 being the other one. 

This happens as the split main injection is divided into two parts.  

 

Figure 4.12 The integrated KL factor versus the mean temperature 

4.7 SUMMARY 

In this section free spray experiments were carried out to observe the fuel non-

evaporation, evaporation, and combustion characteristics. The non-evaporation processes 

applied the Mie scattering method under three injection strategies (Pre + S100, Pre + S160, 

and Pre + D160_75-25). The evaporation processes were analyzed by the tracer LAS 

technique and the combustion processes were analyzed by the two-color pyrometry 

method. The main conclusions are presented as follows:  

The split injection can be distinctly observed during the injection phase. Split 

injection provides much more ambient gas amount, which improves the spray breakup 



and atomization process under the non-evaporation condition. Split injection gives the 

fuel more momentum to penetrate quickly. High injection pressure can improve the fuel 

evaporation process and obtain rich entrained ambient gas. Split injection can make the 

vapor phase more homogeneous and make the soot distribution more homogeneous. 

Dense soot is generated in the flame tip region. The combustion can be enhanced, and the 

soot emissions can be improved by using the split injection. High injection pressure and 

split injection could decrease the maximum soot. Split injection has a positive effect on 

the degree of homogeneity of KL versus temperature in the whole flame region. The soot 

evaluation process finishes at the same time when the injection strategies have the same 

SOI and EOI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 CHARACTERISTICS OF FUEL 

EVAPORATION, MIXTURE FORMATION AND 

COMBUSTION OF 2-D CAVITY IMPINGING SPRAY 

UNDER HIGH-PRESSURE SPLIT INJECTION 

5.1 INTRODUCTION 

Numerous researchers [46-49] studied the air entrainment of an impinging spray and 

determined that spray/wall interaction also plays a role in air entrainment before 

impingent occurs. However, the structure of the impinging wall in a practical engine is 

complicated, the real impinging spray is not like the simplified flat wall impinging spray. 

Therefore, it is worthwhile to investigate the spray mixture formation and combustion 

process by employing a 2-D piston cavity which was designed based on the Mazda 

Skyactiv-D engine. 

5.2 EXPERIMENTAL CONDITIONS 

Table 5.1 summarizes the experimental conditions. Expect the injection strategies, 

other experimental conditions are same with that of free spray in Chapter 4. The injection 

process comprises two parts: pre-injection and main injection. The single main injection 

process is represented as Pre + S100 for short, where “S” denotes single pulse main 

injection and “100” denotes 100 MPa injection pressure. The split main injection process 

was based on the mass fraction ratio of the two pulses of the main injection, 50:50 and 

75:25. Accordingly, the split main injection process is represented as Pre + D160_50-50 

and Pre + D160_75-25, where, “D” denotes double pulse (split-) main injection, “160” 

denotes 160 MPa injection pressure. The injection mass of the pre-injection was 0.9 mm3, 

and the injection mass of the main injection was 5 mm3 under the three injection strategies. 



This corresponds to the injection amount per injection hole in the multi-nozzle of medium 

/ high load diffusion type combustion region of the actual engine. The interval between 

the pre-injection and the main injection used in the actual engine was also set as 0.6 ms. 

5.3 INJECTION RATE  

Figure 5.1 illustrates the result of the injection rate measurement of the single main 

injection and split main injection processes, which was obtained using the single cylinder 

multiple injection rate measurement system. The Zuech type rate of injection meter was 

adopted to measure the injection rate, and the methodology is illustrated in the paper [64].  

As illustrated in Figure 5.1, considering Pre + S100 injection strategy as the base 

condition, the end of injection (EOI) of the high pressure split main injection strategies 

(Pre + D160_50-50 and Pre + D160_75-25) were similar with that of the Pre + S100 

injection strategy. The timing of the EOI was approximately 2.8 ms after start of injection 

(ASOI), and the end of the pre-injection was approximately 0.5 ms ASOI under the three 

injection strategies. As mentioned above, the injection volume of the pre-injection is 0.9 

mm3 and that of the main injection is 5.0 mm3. The total volume of the tracer LAS fuel 

and diesel were identical. 

 
Figure 5.1 Injection rates of Pre + S100, Pre + D160_50-50 and Pre + D160_75-25 



5.4 EVAPORATION CHARACTERISTICS  

Figure 5.2 presents the spatial distribution of the liquid phase optical thickness and 

vapor mass per unit projected area of spray impingement in the 2-D piston cavity under 

the three injection strategies.  

The times selected for Pre + S100 are 1.14 ms ASOI (start of main injection), 1.8 ms 

ASOI (KL first observed timing), and 2.8 ms ASOI (end of injection) from left to right. 

The times selected for Pre + D160_50-50 are 1.16 ms ASOI (start of first main injection), 

1.9 ms ASOI (KL first observed timing), 1.96 ms ASOI (start of second main injection), 

2.16 ms ASOI (0.2 ms after the start of second main injection) and 2.8 ms ASOI (end of 

injection). The times selected for Pre + D160_75-25 are 1.14 ms ASOI, 1.8 ms ASOI, 

2.19 ms ASOI, 2.39 ms ASOI and 2.8 ms ASOI (end of injection). The meaning of times 

for Pre + D160_75-25 are same with that of Pre + D160_50-50 from start to end.  

From Figure 5.2, it is observed that the spray penetrates not only along the wall 

surface but also along the lip after the impingement. A relatively high droplet density is 

located in the proximity of the impingement point region and at the deep groove region 

of the cavity. This is because of the spray–wall interaction, large momentum loss after 

impingement, and droplet stagnation at those regions. The vapor distribution of the split 

main injection is significantly more homogeneous than that of the single main injection.  

The spray momentum divides into two parts after the impingement point. That is 

why the rich vapor mass locates not only in the cavity groove but also near the lip area 

near 1.8 ms ASOI. The droplet densities of Pre + S100 in the proximity of the 

impingement point region and at the deep groove region of cavity are smaller than those 

of Pre + D160_50-50 and Pre + D160_75-25. The velocity of Pre + S100 is smaller than 

that of high injection pressure strategies, which results in the weaker spray–wall 

interaction of Pre + S100, causes weaker stagnant strength. The vapor mass of Pre + 

D160_50-50 is leaner than that of Pre + D160_75-25 near 1.8 ms ASOI, which is because 

the injected mass for Pre + D160_50-50 is smaller than that of Pre +D160_75-25 near 1.8 



ms ASOI. Accordingly, the injection mass and spray–wall interaction have the effect on 

fuel evaporation. The vapor mass distribution of Pre + D160_50-50 and Pre + D160_75-

25 are significantly more homogeneous than that of Pre + S100 owing to the higher 

injection pressure. Moreover, the vapor mass distribution of Pre + D160_50-50 is 

significantly more homogeneous than that of Pre + D160_75-25 due to smaller injected 

mass of Pre + D160_50-50. 

According to the 1.96 ms ASOI and 2.16 ms ASOI of Pre + D160_50-50, 2.19 ms 

ASOI and 2.39 ms ASOI of Pre + D160_75-25, the second main injection is evident from 

the comparison of the third and fourth columns in the liquid images. The vapor fuel is 

mainly distributed at the impingement point and cavity wall. It is evident that the vapor 

mass distributions of high injection pressure strategies are richer than those of Pre + S100 

at 2.8 ms ASOI.  

The vapor fuel around the impingement point of Pre + D160_50-50 at 2.8 ms ASOI 

is richer than that of Pre + D160_75-25 because of the bigger injection mass of second 

main injection of Pre + D160_50-50. Oppositely, the vapor fuel around the spray tip of 

Pre + D160_50-50 at 2.8 ms ASOI is leaner than that of Pre + D160_75-25 because of 

the leaner injection mass of first main injection of Pre + D160_50-50. The injection mass 

ratio of split main injection has a significant effect on the vapor distribution.  

For Pre + S100; moreover, the spray–wall interaction becomes strong at the EOI 

because of the big injection mass and low injection pressure, which results in a higher 

droplet density at the deep groove region of the cavity at the EOI than that at other times. 

The vapor fuel is mainly distributed around the impingement point of the cavity wall. And 

compare with 2.16 ms ASOI and 2.8 ms ASOI of Pre + D160_50-50, the droplets become 

dense in the cavity groove and the vapor of spray tip becomes rich. It implies that the 

second main injection fuel catches up with the previous spray from 2.16 ms ASOI to 2.8 

ms ASOI. And the same tendency can be observed from 2.39 ms ASOI to 2.8 ms ASOI 

of Pre + D160_75-25. 



 

Figure 5.2 Spatial distributions of liquid phase optical thickness and vapor mass per 

unit projection area 

Figure 5.3 presents the evaporation ratio under the three injection strategies as time 

elapses. The evaporation ratio of Pre + S100 at 1.14 ms ASOI is smaller than that of Pre 
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+ D160_50-50 and Pre + D160_75-25. It implies that a high injection pressure promotes 

the fuel evaporation process.  

The evaporation ratio of Pre + S100 decreases under these three timings. A probable 

reason is that the increase in the velocity of the injected fuel mass is higher than the 

evaporation rate when the injection amount is substantially larger. Another reason is that 

the wall heat loss happens, which reduces the temperature inside the cavity.  

The evaporation ratio of Pre + D160_50-50 also decreases from 1.16 ms ASOI to 

1.9 ms ASOI. But the evaporation ratio of 1.96 ms ASOI is bigger than that of 1.9 ms 

ASOI. The timing 1.96 ms ASOI is during the interval which means the fuel can evaporate 

without new injected fuel, causes the evaporation ratio increases compared with that of 

1.9 ms ASOI. It means the split injection can improve the fuel evaporation process. And 

then the evaporation ratio decreases from 1.96 ms ASOI to 2.16 ms ASOI because of the 

second main injection. The evaporation ratio of Pre + D160_75-25 also decreases except 

at 2.39 ms ASOI.  

For Pre + D160_75-25, it can be observed that the evaporation ratio at 2.39 ms ASOI 

is marginally higher than that at 2.19 ms ASOI. A probable reason for this is that the 

marginal injection amount of the second main injection results in an increase in velocity 

of injected fuel mass which is lower than the evaporation rate. It indicates the split 

injection can promotes the fuel evaporation process. 

Figure 5.4 illustrates the definition of spray tip penetration of 2-D piston cavity 

impinging spray. The spray tip penetration of 2-D piston cavity impinging spray is 

calculated by adding the axial penetration and arc length along the cavity wall. The SAxial 

is constant, equal to 30 mm. 

 



 
Figure 5.3 Evaporation ratio of impinging spray under three injection strategies 

 
Figure 5.4 Definition of spray tip penetration of 2-D piston cavity impinging spray 

Figure 5.5 presents the spray tip penetration of 2-D cavity spray versus time under 

the three injection strategies. As the injection pressure of Pre + D160_50-50 and Pre + 

D160_75-25 are higher than that of Pre + S100, the fuel in Pre + D160_50-50 and Pre + 

D160_75-25 attain a significantly higher momentum. Consequently, the spray tip 

penetration of Pre + D160_50-50 and Pre + D160_75-25 are longer than that of Pre + 

S100. The spray tip penetration of Pre + D160_75-25 during the first main injection is 

longer than that of Pre + D160_50-50 because of the bigger injected mass of Pre + 

D160_75-25. The second main injection catches up with the previous fuel gives the spray 

more momentum which makes the spray tip penetration of Pre + D160_50-50 and Pre + 

D160_75-25 are almost same after 2.0 ms ASOI. Moreover, the gradient from 1.9 ms 



ASOI to 1.96 ms ASOI of Pre + D160_50-50 is larger than that of the other stages. The 

gradient from 2.19 ms ASOI to 2.39 ms ASOI of Pre + D160_75-25 is larger than that of 

the other stages. It implies that a split injection attains high momentum and induces the 

spray to penetrate faster. 

 
Figure 5.5 Spray tip penetration of impinging spray 

5.5 COMBUSTION CHARACTERISTICS  

Figure 5.6 shows the KL factor, temperature and OH* chemiluminescence spatial 

distribution of 2-D cavity impinging flames.  

The area where OH* images exhibit strong signal display a small KL factor. High 

KL factor values are observed near the cavity wall region. However, high temperature 

does not have a fixed area. The pre-injection ignition timing (0.9 ms ASOI of Pre + S100, 

0.8 ms ASOI of Pre + D160_50-50 and 0.8 ms ASOI of Pre + D160_75-25) of the 2-D 

piston cavity impinging flame is illustrated using OH* chemiluminescence images. It 

implies that a high injection pressure can promote the combustion. The first main 

injection ignition from OH* chemiluminescence can be detected at the time of 1.6 ms 

ASOI under the three injection strategies. The pre-injection combustion renders the 



ambient more favorable for ignition, which results in almost equal first main injection 

ignition timing under the three injection strategies.  

OH* chemiluminescence also appears prior to soot formation and temperature 

distribution, which is also consistent with the results wherein soot formation begins after 

ignition during the pre-mixed burn phase [65]. Moreover, that the KL factor and 

temperature at early timing are too weak to be observed is also a probable reason. The 

OH* chemiluminescence near the cavity wall is weak, which implies a low temperature 

around this area. This phenomenon can be proved from the temperature distribution 

images. The effect of wall heat loss causes this, which also establishes the results of 

Figure 5.4. From the KL and temperature distribution images of Pre + D160_50-50 and 

Pre + D160_75-25, the second main injection flame is evident at 2.8 ms ASOI (EOI). The 

local maximum OH* chemiluminescence of Pre + D160_50-50 and Pre + D160_75-25 

are weaker than that of Pre + S100 at 2.8 ms ASOI. It implies the local mean temperature 

of Pre + D160_50-50 and Pre + D160_75-25 are lower than that of Pre + S100 at 2.8 ms 

ASOI; this can be also observed from the temperature distribution images. According to 

the shape of OH*, KL factor and temperature distribution, the projected areas of OH* 

chemiluminescence is larger than that of the KL factor and temperature distribution. In 

the near-cylinder head region of the flame, there is an apparent part which exhibits OH* 

chemiluminescence albeit no KL factor and no temperature. As time elapses and the fuel 

injection ends, the flame jet begins to move toward the cylinder head at the time of 4.0 

ms ASOI of the three injection strategies. The OH* chemiluminescence stays strong at 

this moment, while the KL factor is highly marginal and the temperature is very low, 

which may indicate that the soot oxidation process involves the participation of OH and 

the high temperature reactions.  



 

Figure 5.6 KL factor, temperature and OH* chemiluminescence of impinging spray 

under three injection strategies 

Figure 5.7 presents the ignition delay of the pre-ignition and first main ignition under 

the three injection strategies. The ignition delay is defined as the time from the start of 

the injection to the ignition timing. The ignition timing is defined as the time the ignition 

happens through the OH* image. The higher injection pressure can decrease the ignition 

delay from the results of the pre-injection ignition delay. Pre-injection combustion can 

(c) Pre+D160_75-25

(b) Pre+D160_50-50

(a) Pre+S100



significantly decrease the main injection ignition delay and then improve the main 

injection combustion. Pre-injection combustion makes the ambient environment more 

favorable for the main injection combustion. Compared with the previous paper’s results 
[129], the OH* chemiluminescence enables a more precise observation of the ignition delay. 

 

Figure 5.7 Ignition delay of pre and main ignition under three injection strategies 

Figure 5.8 illustrates the integrated KL factor versus the integrated OH* intensity 

under the three injection strategies. The integrated OH* intensity is an indicator of heat 

release in the premixed combustion [133, 134], and the peak of the OH* chemiluminescence 

intensity corresponds significantly to the peaks of heat release and combustion pressure 

[135]. The first peak is at approximately 1.0 ms ASOI from the combustion of the pre-

injection spray for Pre + S100, but 0.9 ms ASOI for Pre + D160_50-50 and Pre + 

D160_75-25. Moreover, the peak value of Pre + S100 is smaller than that of Pre + 

D160_50-50 and Pre + D160_75-25 during the pre-injection combustion. It implies that 

high injection pressure exhibits higher heat release and higher combustion pressure. The 

integrated OH* intensity tendency is same with the integrated KL factor, but time lag. 

For Figure 5.8 (a), the maximum KL factor appears at 2.6 ms ASOI, but the main 

injection OH* intensity peak timing is 3.1 ms ASOI, 0.5 ms time lag. For Figure 5.8 (b), 

0.9

0.467

0.8

0.457

0.8

0.467

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ig
ni

tio
n 

De
lay

 (m
s)

Pre-ignition                               First main ignition

Pre+S100
Pre+D160_50-50
Pre+D160_75-25



the first main injection maximum KL factor appears at 2.3 ms ASOI and the second main 

injection maximum KL factor appears at 3.0 ms ASOI, but the first main injection OH* 

intensity peak timing is 2.7 ms ASOI and the second main injection OH* intensity peak 

timing is 3.4 ms ASOI. The time lag of the maximum KL factor and peak OH* intensity 

is 0.4 ms. For Figure 5.8 (c), the first main injection maximum KL factor appears at 2.3 

ms ASOI and the second main injection maximum KL factor appears at 3.0 ms ASOI, but 

the first main injection OH* intensity peak timing is 2.7 ms ASOI and the second main 

injection OH* intensity peak timing is 3.1 ms ASOI. The time lag of the maximum KL 

factor and peak OH* intensity under two main injection is 0.4 ms. And 0.1 ms, 

respectively. The split injection decreases the time lag, and the split injection mass ratio 

also has the effect on the time lag. 

The integrated KL factor of Pre + D160_50-50 and Pre + D160_75-25 are smaller 

than that of Pre + S100 from 1.8 ms ASOI to 2.4 ms ASOI. It implies that a high injection 

pressure decreases the soot formation at the initial combustion process. The integrated 

KL factor of Pre + D160_75-25 is also smaller than that of Pre + S100 from 2.4 ms ASOI 

to 2.8 ms ASOI. Moreover, the integrated KL factor decreases during this period. It 

implies that the interval of the split injection has a positive effect on the decrease of soot. 

The second main injection increases the integrated KL factor after 2.8 ms ASOI. The 

integrated KL factor of the second main injection combustion is smaller than that of the 

first main injection combustion, which is because the injection mass of the second main 

injection is smaller than that of the first main injection. However, the integrated KL factor 

of Pre + D160_50-50 is bigger than that of Pre + S100 after 2.8 ms ASOI. This is owing 

to the following two reasons: the second main injection combustion continues the effect 

on the soot formation after 2.8 ms ASOI; the fuel of the second main injection fuel catches 

up with the previous flame after 2.8 ms ASOI and deteriorates the combustion. If the 

interval is increased adequately, the second main injection fuel cannot catch up with the 

previous flame, which can decrease the soot. The split injection mass ratio has a 

significant effect on the soot evaluation. Moreover, the gradient of the integrated KL 



factor of Pre + D160_50-50 and Pre + D160_75-25 are larger than that of Pre + S100 after 

3.0 ms ASOI. It implies that the soot oxidation rate of the split injection is higher than 

that of the single injection.  

Figure 5.9 indicates the spatial distributions of KL factor and temperature along the 

solid line at EOI. The line can be divided into two parts: the first part is the impinging 

spray flame (in the proximity of the wall region, around 0 to 4 mm) and the second part 

is the free spray flame (after 4 mm). As presented above, the sectional line selected is the 

region where the fuel of second main injection has already caught up with the previous 

flame in the case of Pre + D160_75-25 and has just caught up marginally with the previous 

flame in the case of Pre + D160_50-50. Consequently, the three injection strategies in the 

decreasing order of KL factor in the proximity of the wall region along this sectional line 

are Pre + D160_50-50, Pre + S100, and Pre + D160_75-25. It is evident that the fuel of 

second main injection infiltrates to the combustion region, which deteriorates the previous 

flame and generates more soot. However, the tendency of temperature (very near the wall 

region) among the three injection strategies is opposite to that the KL factor. From the 

enlarged images c, d and e, the three lines pass through a high soot region. Consequently, 

the KL factor has a peak value in the impinging spray flame region in each of the injection 

strategies. The KL factor of Pre + D160_50-50 is beyond the instrument’s calibration, 

which resulted in the data being similar to that near the wall region. The tendency of KL 

factor of Pre + S100 and Pre + D160_75-25 is to decrease first, then increase and last 

decrease from 0 to 1.6 mm. The tendency of temperature for Pre + S100 and Pre + 

D160_75-25 is to increase from 0 to 1.6 mm. This is because high temperature soot 

gathers in this region (from 0 to 1.6 mm). The fluctuation of KL factor and temperature 

of Pre + S100 and Pre + D160_75-25 in the spray flame region is smaller than that of Pre 

+ D160_50-50. This is because there is a single flame in the case of Pre + S100, and the 

split flame has already mixed in the case of Pre + D160_75-25; however, the split flame 

does not mix in the case of Pre + D160_50-50. 



(a) Pre+S100 

(b) Pre+D160_50-50 

(c) Pre+D160_75-25 
Figure 5.8 The integrated KL factor versus the integrated OH* intensity 
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Figure 5.9 Spatial distributions of KL factor and temperature along the sectional line at 

EOI 

In order to investigate the effect of the second main injection and previous flame, the 

spatial distributions of KL factor under Pre + D160_75-25 along the sectional line are 

illustrated in Figure 5.10. The KL factor in the impinging spray flame of 2.8 ms is higher 

than that of 2.6 ms, but smaller than that of 3.0 ms. This implies that the fuel of the second 



main injection had already caught up with the previous flame in the flame tip region, 

causing the deterioration of the combustion and a KL factor at 3.0 ms, higher than at 2.8 

ms. In the free spray flame region, the KL factor of the three strategies are approximately 

equal.  

 

Figure 5.10 Spatial distribution of KL under Pre+D160_75-25 along the sectional line  

According to the paper of Kamimoto [136], the KL factor equation can be obtained 

using the Rayleigh–Debye–Gans model.                                                                            = ( )                                                            (5.1) 
 E(m) is expressed as                                                                           ( ) = Im                                                           (5.2) 
where   (1.68 g/cm3) is the density of the primary particles, L is the geometric 

thickness of the flame along the optical detection axis,  is the soot mass concentration, 

and m is the complex refractive index of the soot particles expressed by m = n – ik= (1.9

0.1) – i(0.55 0.10). Here we decided n=2.0 and k=0.55. 

The soot mass ( ) can be obtained by 
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= ∆ ( ) ∑                                                       (5.3) 
where ∆  is the area of each pixel under the cross-section. 

Figure 5.11 shows the ratio of the soot mass to the injected mass as time elapses. The 

ratio can be divided into two parts: one is from the SOI to the EOI as the injected mass is 

changing with time; the other is after EOI as the injected mass is constant. According to 

equation (3), the soot mass is related to the integrated KL factor. When the injected mass 

is similar, the ratio of the soot mass to the injected mass should have a shape identical to 

that of the integrated KL factor. This phenomenon can be compared with that of Figure 

5.8. The timing of the maximum ratio for Pre + D160_75-25 is 2.3 ms ASOI, which is 

marginally earlier than that of the timing of the maximum integrated KL factor for Pre + 

D160_75-25 (2.4 ms ASOI) from Figure 5.8. The timing of the maximum ratio for Pre + 

S100 is 2.2 ms ASOI, which is apparently earlier than that of the timing of the maximum 

integrated KL factor for Pre + S100 (2.6 ms ASOI) from Figure 5.8. It implies that a lower 

injection pressure more straightforwardly produces a large soot mass. The timing of the 

maximum ratio for Pre + S100 and Pre + D160_75-25 are during the first part as we 

defined before. However, the timing of the maximum ratio for Pre + D160_50-50 is 3.0 

ms ASOI (during the second part), which is same with that of maximum integrated KL 

factor. The split injection mass ratio has a significant effect on the maximum ratio timing. 

If the first main injection fuel mass is bigger than that of the second main injection, the 

maximum ratio timing is during the first part. If not, the maximum ratio timing is during 

the second part. Moreover, the gradient of the ratio for Pre + D160_50-50 from 2.2 ms 

ASOI to 2.5 ms ASOI and for Pre + D160_75-25 from 2.3 ms ASOI to 2.8 ms ASOI are 

larger than that of Pre + S100. It implies that the interval expedites the soot oxidation. 

The gradient of the ratio for Pre + D160_50-50 and Pre + D160_75-25 from 3.0 ms ASOI 

to 4.0 ms ASOI are larger than that of Pre + S100. It implies that the soot oxidation ratio 

of the split injection is higher than that of the single injection. 



 

Figure 5.11 The ratio of soot mass to fuel mass 

Figure 5.12 presents a soot index for combustion. The plots in the figure represent the 

soot mass gradient at this time. It is defined by the gradient of the two adjacent time points. 

The plots larger than zero imply “during the soot formation dominated process”, while 

those smaller than zero imply “during the soot oxidation dominated process.”  

Pre + S100 is mainly divided into two parts: 1.8 ms ASOI to 2.6 ms ASOI and 2.6 ms 

ASOI to 4.0 ms ASOI; Pre + D160_50-50 is mainly divided into four parts: 1.8 ms to 2.3 

ms ASOI, 2.3 ms to 2.5 ms ASOI, 2.5 ms to 3.0 ms ASOI and 3.0 ms to 4.0 ms ASOI; Pre 

+ D160_75-25 is mainly divided into four parts: 1.8 ms to 2.4 ms ASOI, 2.4 ms ASOI to 

2.8 ms ASOI, 2.8 ms ASOI to 3.0 ms ASOI, and 3.0 ms ASOI to 4.0 ms ASOI. Pre + S100 

has soot formation and oxidation dominated processes. However, Pre + D160_50-50 and 

Pre + D160_75-25 exhibit soot formation, oxidation, formation and oxidation processes. 

The split injection combustion changes the soot evaluation. Due to the different split 

injection mass ratio, the soot evaluation period shows different duration. The ratio for Pre 

+ S100 is larger than that for Pre + D160_50-50 and Pre + D160_75-25 during the initial 

period. A high injection pressure can decrease the soot formation process at the initial 

combustion. Moreover, the gradient of the ratio for Pre + S100 is smaller than that for Pre 
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+ D160_50-50 and Pre + D160_75-25 at the post combustion period which is same with 

the results of Figure 5.8. It implies that the split main injection accelerates the soot 

oxidation process at the post combustion period.  

 
Figure 5.12 The soot index for combustion 

5.6 SUMMARY 

In this section, the comparison of the evaporation and combustion characteristics of 

2-D cavity impinging spray were investigated. The evaporation processes were analyzed 

by the tracer LAS technique under the three injection strategies (Pre + S100, Pre + 

D160_50-50 and Pre + D160_75-25). The combustion processes were analyzed by the 

two-color pyrometry method and OH* chemiluminescence. The main conclusions are 

summarized as follows:  

Evaporation Process - The vapor distribution of the split main injection is 

significantly more homogeneous than that of the single main injection at the EOI. It is 

observed that the fuel of the second main injection of the split main injection has already 

caught up with the previous fuel at the EOI in the case of Pre + D160_50-50. A higher 

injection pressure provides a larger momentum, which induces the spray to penetrate 

further. Because of the spray–wall interaction, the relative high droplet density is located 
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near the impingement point region and at the deep grove region of the cavity. A probable 

feature is that the air entrainment of the 2-D cavity is low, which deteriorates the 

evaporation process. 

Combustion Process - The second main injection fuel of the split main injection 

almost catches up with the previous fuel, which causes the high KL factor distribution in 

the flame tip region in the case of Pre + D160_50-50. The higher injection pressure can 

decrease the ignition delay. The pre-injection combustion can significantly decrease the 

main injection ignition delay and then improve the main injection combustion. The split 

injection decreases the time lag, and the split injection mass ratio also has the effect on 

the time lag of the maximum integrated KL factor and the integrated peak OH* intensity. 

The soot oxidation rate of the split injection is higher than that of the single injection.  

This study indicates that spray–wall interaction occurs in the 2-D cavity impinging 

spray, which causes shorter spray tip penetration and lower evaporation ratio. Pre-

injection combustion has a positive effect on the main injection combustion. The split 

injection can reduce the soot formation and accelerate the soot oxidation process. 

Increases the split injection interval has a positive effective method to reduce the soot.  

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 6 COMPARISON OF FREE SPRAY AND 2-D 

CAVITY IMPINGING SPRAY EVAPORATION AND 

COMBUSTION CHARACTERISTICS 

6.1 INTRODUCTION 

Yeom et al. [137] indicates that in order to study the diesel spray behavior, it is needed 

to analyze the impinging spray and free spray, simultaneously as an injected spray 

development process consists of impinging and free spray in the diesel engine. Liu et al. 
[138] investigated the characteristics of diesel spray impingement based on droplet impact 

phenomenon and found that the spray height changes from spray contact with the wall. 

Mao et al. [139, 140] studied the characteristics of diesel spray wall collision by quantitative 

analysis. As we discussed above, not only the free spray evaporation and combustion 

characteristics need investigate, but also the 2-D cavity impinging spray evaporation and 

combustion characteristics need investigate. Thus, it is necessary to make a comparison 

of free spray and 2-D cavity impinging spray evaporation and combustion characteristics.  

6.2 EXPERIMENTAL CONDITIONS 

The experimental conditions are same with the above sections, expect the injection 

strategies. Two injection strategies are chosen, Pre + S100 and Pre + D160_75-25, to 

investigate the effect of pre-injection on the diesel free spray and 2-D cavity impingement 

evaporation and combustion characteristics. Figure 6.1 illustrates the result of the 

injection rate measurement with and without pre-injection. The Zuech type rate of 

injection meter was adopted to measure the injection rate.  

It can be seen that the main injection part of two injection types is same. Considering 

Pre + S100 injection strategy as the base condition, the EOI of the high pressure split 

injection strategy (Pre + D160_75-25) was similar with that of the base one. The EOI 



timing of with and without pre-injection were approximately 2.8 ms and 1.66 ms ASOI 

respectively. The end of pre-injection was approximately 0.5 ms ASOI. The total volume 

of tracer LAS fuel and diesel was identical. 

 
Figure 6.1 Injection rates of Pre + S100 and Pre + D160_75-25 

6.3 COMPARISON OF EVAPORATION CHARACTERISTICS 

OF FREE SPRAY AND 2-D CAVITY IMPINGING SPRAY 

The injection process with pre-injection, Pre + S100 and Pre + D160_75-25, was 

adopted to investigate the evaporation characteristics of free spray.   

Figure 6.2 shows the spatial distributions of equivalence ratio of liquid and vapor 

phases (left and right column respectively). The timing chosen for Pre + S100 and Pre 

+D160_75-25 are the same, 1.14 ms ASOI (start of main injection), 1.8 ms ASOI (during 

the main injection) and 2.8 ms ASOI (end of injection) from left to right. The timing 2.19 

ms ASOI of Pre + D160_75-25 indicates the start of second main injection.  

The liquid phase equivalence ratio of Pre + D160_75-25 is leaner than that of Pre + 

S100 at 1.14, 1.8, and 2.8 ms ASOI. The vapor phase equivalence ratio of Pre + D160_75-

25 is richer than that of Pre + S100 at 1.14 and 1.8 ms ASOI. It means a high injection 



pressure accelerates the evaporation process. Moreover, the vapor distribution of Pre + 

D160_75-25 is much more homogeneous than that of Pre + S100 at 2.8 ms ASOI. Because 

of the split injection process, the fuel was injected in two steps, which makes the vapor 

distribution much more homogeneous, which is also a result of the high injection pressure. 

It can be seen obviously that the second main injection fuel was injected from 2.19 

ms ASOI and 2.39 ms ASOI under Pre + D160_75-25 condition. The spray tip penetration 

increases as the time elapses under the two injection strategies. The spray tip penetration 

of Pre + D160_75-25 is longer than that of Pre +S100 because of the high injection 

pressure. 

The liquid phase optical thickness and the spatial distributions of the vapor mass per 

unit projected area of spray impingement on the 2-D piston cavity under the two injection 

strategies are presented in Figure 6.3. In order to compare with the results of free spray, 

the timings chosen here are the same. 

The first column shows that the droplet of Pre + D160_75-25 is leaner than that of 

Pre + S100. The vapor mass distribution of Pre + D160_75-25 is richer than that of Pre + 

S100. The high injection pressure accelerates the fuel evaporation process. Higher 

injection pressure leads to greater fuel atomization, which would increase the rate of 

evaporation, and therefore, enhance the air–fuel mixing. This in turn, would help decrease 

the soot formation.  

The second column shows the results during the main injection. It demonstrates that 

the droplet densities of Pre + S100 in the proximity of the impingement point region and 

at the deep groove region of cavity are smaller than that of Pre + D160_75-25. The fuel 

in the proximity of the impingement point is the fuel during the start of main injection, 

which implies that these injected fuel mass of Pre + S100 is smaller than that of Pre + 

D160_75-25. Moreover, the velocity of Pre + S100 is smaller than that of Pre + D160_75-

25, which results in the weaker spray/wall interaction of Pre + S100. Moreover, the higher 

injection pressure accelerates the evaporation process. Accordingly, the effect of injection 

mass and spray/wall interaction on fuel evaporation is more significant than that of 



injection pressure. The vapor mass distribution of Pre + D160_75-25 is significantly more 

homogeneous than that of Pre + S100 owing to the higher injection pressure.  

 

Figure 6.2 Spatial Distributions of equivalence ratio of liquid and vapor phases  

The third and fourth columns of Pre + D160_75-25 are the images at the time of the 

start of second main injection and 0.2 ms after that. The second main injection is evident 

from the comparison of the third and fourth columns in the liquid images. The vapor fuel 

is mainly distributed at the impingement point and cavity wall. 

The last column of the two injection strategies contains the images at EOI. It is 



evident that the vapor mass distributions of Pre + D160_75-25 are richer than that of Pre 

+ S100. For Pre + S100, the spray/wall interaction becomes strong at the EOI because of 

the big injection mass and low injection pressure, which results in high droplet density at 

the deep groove region of the cavity at the EOI. The vapor fuel is mainly distributed 

around the impingement point of the cavity wall.  

 

Figure 6.3 Spatial distributions of liquid phase optical thickness and vapor mass per 

unit projection area for 2-D cavity impinging sprays 

Figure 6.4 presents the evaporation ratio of Pre + S100 under free spray and 2-D 

cavity impinging spray. The evaporation ratio signifies the ratio of fuel evaporation, 

which equals the vapor mass at a particular time divided by the injected fuel mass at that 

time. The evaporation ratio of Pre + S100 decreases from 1.14 ms to 1.8 ms ASOI, and 

then increases gently from 1.8 ms to 2.8 ms ASOI under free spray. However, the 

evaporation ratio decreases from 1.14 ms to 1.8 ms ASOI, and then decreases from 1.8 

ms to 2.8 ms ASOI. The evaporation ratio of 2-D cavity impinging spray at 1.14 ms and 

1.8 ms ASOI is slightly higher than that of free spray, but lower than that of free spray at 

2.8 ms ASOI. This implies that the increase in the velocity of injected fuel mass is higher 
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than the evaporation rate when the injection amount is substantially large from 1.14 ms 

to 1.8 ms ASOI. And the entrainment gas of 2-D cavity is leaner than that of free spray, 

which causes the evaporation ratio decreases from 1.8 ms to 2.8 ASOI. 

 
Figure 6.4 Evaporation ratio of Pre + S100 

 
Figure 6.5 Evaporation ratio of Pre + D160_75-25 

Figure 6.5 shows the evaporation ratio of Pre + D160_75-25 under free spray and 2-

D cavity impinging spray. The whole tendency for Pre + D160_75-25 is same with that 

of Pre + S100 not only free spray but also 2-D cavity impinging spray. But during the 



split interval, the evaporation ratio has a different tendency. For free spray, the 

evaporation ratio of 2.19 ms ASOI is higher than that of 1.8 ms and 2.39 ms ASOI. There 

is dense fuel at 2.39 ms ASOI because of the second main injection, which makes the 

evaporation ratio lower. The split injection interval improves the fuel evaporation process. 

However, the evaporation ratio of 2-D cavity at 2.39 ms ASOI is higher than that of 2.19 

ms ASOI. The effect of split injection interval on the evaporation process has a delay 

compare with free spray. A probable reason for this is that the marginal injection amount 

of the second main injection results in an increase in the velocity of the injected fuel mass 

that is lower than the evaporation rate. Another probable reason is that the spray/wall 

interaction has a negative effect on the evaporation process. Compare Pre + S100 and Pre 

+ D160_75-25, higher injection pressure and split injection improve the evaporation 

process. 

6.4 COMPARISON OF COMBUSTION CHARACTERISTICS 

OF FREE SPRAY AND 2-D CAVITY IMPINGING SPRAY 

Figure 6.6 presents the distributions for the KL factor and temperature obtained by 

analyzing the images captured from the high-speed video camera using the two-color 

pyrometry method. The temperature obtained here is for the soot temperature. 

Measurements for each injection strategy were performed three times. As the three sets 

of results for each injection strategy tend to be similar, a single set of results for each 

injection strategy are presented. The upper and bottom row of images for each injection 

strategy present the temperature and the KL factor respectively. Except the ignition timing 

of two injection strategies, other timings are the same with the timing of spray mixture 

formation process. The impinging spray flame exhibits a high KL factor and low 

temperature under two injection strategies.  

The relative high KL factor locates in the flame tip region, while the relative high 

temperature does not have a fixed region. The KL factor and temperature at 1.6 ms ASOI 



under two injection strategies are very small because of the ignition timing. The 

temperature of two injection strategies at 1.8 ms ASOI is almost the same. From the 

images for Pre + D160_75-25, the second main injection flame is evident at 2.8 ms ASOI 

(EOI). The high KL factors are observed around the flame tip region. The KL factors of 

Pre + S100 are significantly higher than that of Pre + D160_75-25. It means a high 

injection pressure can decrease the soot. The KL factor of single-injection strategies first 

increases and then decreases. However, for split injection strategies, the KL factor first 

increases from 1.6 ms ASOI to 2.19 ms ASOI. Thereafter, it decreases till the ignition of 

second main injection and 0.2 ms ASOI after that. It is evident that the split injection has 

effect on the soot formation. 

Figure 6.7 presents the KL factor and OH* chemiluminescence distribution under 

two injection strategies. In the OH* images, background was represented by the blue color, 

and OH* chemiluminescence was shown in default jet colormap from Matlab.  

The area where the KL factor is rich, while in the same area of OH* images, not 

much signal is observed. This agrees with the findings from Ref. [141]. The OH* 

chemiluminescence is observed at the time of 0.8 ms ASOI of Pre + D160_75-25 and 0.9 

ms ASOI of Pre + S100, but no KL factor at this timing. The OH* chemiluminescence 

appears prior to soot formation in free spray flames soot formation begins after ignition 

during the pre-mixed burn phase [142]. The pre-injection combustion duration of Pre + 

S100 is from 0.9 ms ASOI to 1.6 ms ASOI, which is shorter than that of Pre + D160_75-

25 from 0.8 ms ASOI to 1.8 ms ASOI. And the pre-ignition timing (0.8 ms ASOI) of Pre 

+ D160_75-25 is a little advance than that of Pre + S100 (0.9 ms ASOI). It implies that 

high injection pressure can promote the combustion.  

By the time of 1.5 ms ASOI, the OH* chemiluminescence appears prior to soot 

formation, which due to the KL factor is too small to detect. The OH* chemiluminescence 

of Pre + D160_75-25 is stronger than that of Pre + S100. By the time of 1.6 ms ASOI of 

Pre + S100 and 1.7 ms ASOI of Pre + D160_75-25, the KL factor can be detected.  

It is interesting to notice that the KL factor appears a little farther downstream than 



the OH* signal from 1.8 ms ASOI to 3.5 ms ASOI of Pre + S100, which may imply that 

the tip where form soot particle, while the high temperature reaction occurs at the mid-

stream area at this moment [141]. And also the KL factor appears farther downstream than 

the OH* signal from 1.8 ms ASOI to 2.8 ms ASOI of Pre + D160_75-25. The first main 

injection combustion flame of Pre +D160_75-25 catches up with the pre-injection flame 

at 2.19 ms ASOI. And by the time of 2.19 ms ASOI, the second main injection of Pre + 

D160_75-25 has just injected. The second main injection flame can be detected by the 

time of 2.8 ms ASOI through the KL factor of Pre + D160_75-25. And by the time of 2.8 

ms ASOI, the injection has just finished. It implies that there is no interaction between 

the second main injection fuel and the first main injection combustion.  

As time continues and the fuel injection ends, the flame jet begins to move 

downstream at the time of 4.0 ms ASOI of two injection strategies. The OH* 

chemiluminescence stays strong at this moment, especially in the downstream, which 

may indicate that the soot oxidation process involves the participation of OH and the high 

temperature reactions. This agrees with the findings from Ref. [143]. 

Figure 6.8 shows the liquid length (LL) and lift off length (LOL) under two injection 

strategies versus time. Here the liquid length equals the length along the spray axis which 

starts from nozzle tip to the point where the liquid phase equivalence ratio equals 0.5. 

Lift-off length defined as the distance between the injector and the upstream most location 

of the 310 nm light in the images [13]. The LOL of main injection combustion will be stable 

during the injection. The LL of Pre + S100 at 1.8 ms ASOI and 2.8 ms ASOI is longer 

than that of LOL. For the split main injection, the LL of Pre + D160_75-25 is longer than 

that of LOL at 1.8 ms ASOI but shorter than that of LOL at 2.8ms ASOI. As we know, it 

will generate large soot when LL is longer than LOL, but small soot when LL is shorter 

than LOL. The gap between LL and LOL of Pre + D160_75-25 at 1.8 ms ASOI is shorter 

than that of Pre + S100, which means the soot of Pre + D160_75-25 is smaller than that 

of Pre + S100. The LL of Pre + D160_75-25 is shorter than that of LOL at 2.8ms ASOI, 

but the LL of Pre + S100 is longer than that of LOL at 2.8 ms ASOI, which leads to small 



soot of Pre + D160_75-25.  

 
Figure 6.6 Mean temperature and KL factor distribution of free spray 
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Figure 6.7 KL factor and OH* chemiluminescence distribution 
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Figure 6.8 The liquid length (LL) and lift off length (LOL) of two injection strategies 

 
Figure 6.9 Mean temperature and KL factor distribution of impinging spray  

Figure 6.9 presents the distributions for the KL factor and temperature obtained by 
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analyzing the images captured from the high-speed video camera using the two-color 

pyrometry method. The upper and lower row of images for each injection strategy present 

the temperature and the KL factor respectively. The timings chosen are the same with that 

of evaporation condition.  

The KL factor for the flame tip region near the cavity wall first increases from 1.8 

ms ASOI to EOI, and then decreases from EOI to 0.2 ms AEOI for Pre+S100. From the 

images of Pre+D160_75-25, the second main injection flame is evident at 2.8 ms ASOI 

(EOI). The KL factor in that region first increases from 1.8 ms ASOI to 2.39 ms ASOI, 

then decreases until EOI, and finally increases until 0.2 ms AEOI for Pre + D160_75-25. 

In the case of Pre+D160_75-25, as time elapses until 0.2 ms AEOI (3.0 ms), the 

second main injection fuel almost catches up with the previous fuel, which causes the 

high KL factor distribution in the flame tip region. 

 
Figure 6.10 KL factor and OH* chemiluminescence distributions 

The KL factor and OH* chemiluminescence spatial distribution of 2-D cavity 

impinging flames under two injection strategies are shown in Figure 6.10. In each figure, 

the KL factor images which are calculated by applying the two-color method are shown 
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(b) Pre+D160_75-25



in the top row; the OH* chemiluminescence images are shown at the bottom. The area 

where OH* images have strong signal has small KL factor. The high KL factor are 

observed near the cavity wall region, which means the soot formation happens near the 

cavity wall region.  

The pre-injection ignition timing (0.9 ms ASOI of Pre + S100, 0.8 ms ASOI of Pre 

+ D160_75-25) of 2-D piston cavity impinging flame from OH* chemiluminescence are 

same with that of free spray. Whereas, the first main injection ignition timing (1.6 ms 

ASOI of two injection strategies) is a little later than that of free spray (1.5 ms ASOI). 

The first main injection ignition from OH* chemiluminescence can be detected at the 

time of 1.6 ms ASOI under two injection strategies, but the first observed KL factor 

appears at 1.8 ms ASOI. It implies that high injection pressure can promote the 

combustion. And the pre-injection combustion makes the ambient more comfortable for 

ignition, which makes the first main injection ignition timing is same both in free spray 

and 2-D cavity impinging spray for two injection strategies.  

The OH* chemiluminescence also appear prior to soot formation in 2-D piston 

cavity flames, which also agree with the results that soot formation begins after ignition 

during the pre-mixed burn phase [142]. The local maximum OH* chemiluminescence of 

Pre + D160_75-25 is weaker than that of Pre + S100 after 2.8 ms ASOI. And the OH* 

chemiluminescence near the cavity wall is weak, which means low temperature around 

this area.  From the images of Pre + D160_75-25, the second main injection flame is 

evident at 2.8 ms ASOI (EOI). The KL factor of the flame tip region near the cavity wall 

first increases from 1.8 ms ASOI to EOI, and then decreases from EOI to 0.2 ms AEOI 

for Pre + S100. For Pre + D160_75-25, the KL factor in that region, first increases from 

1.8 ms to 2.39 ms; then, it decreases as time elapses till EOI, and finally increases as time 

elapses till 0.2 ms AEOI. For Pre + D160_75-25, as time elapses until 0.2 ms AEOI (3.0 

ms), the second main injection fuel almost catches up with the previous fuel, which causes 

the high KL factor distribution in the flame tip region. According to the shape of OH* 

and KL factor, the OH* chemiluminescence projected area is larger than that of the KL 



factor. In the near TDC region of the flame, there is an obvious part which has OH* 

chemiluminescence but no KL factor. As time continues and the fuel injection ends, the 

flame jet begins to move TDC at the time of 4.0 ms ASOI of two injection strategies. The 

OH* chemiluminescence stays strong at this moment but very small KL factor, which 

may indicate that the soot oxidation process involves the participation of OH and the high 

temperature reactions. 

Figure 6.11 shows the comparison of integrated KL factor of free and 2-D impinging 

sprays under Pre + S100. The integrated KL factor of impinging sprays is smaller than 

that of free spray before 3.1 ms ASOI. It means 2-D cavity has a positive effect to decrease 

the soot amount for single main injection during this phase. But the integrated KL factor 

of impinging sprays is higher than that of free after 3.1 ms ASOI. A probable reason is 

the entrained gas amount in the 2-D cavity is smaller than that of free spray, which makes 

the soot increases. The evaporation ratio of Pre + S100 under 2-D cavity condition at 2.8 

ms ASOI is smaller than that of free spray should also be the reason.  

 
Figure 6.11 Integrated KL factor of Pre + S100 under two injection strategies 



 
Figure 6.12 Integrated KL factor of Pre + D160_75-25 under two injection strategies 

Figure 6.12 shows the comparison of integrated KL factor of free and 2-D impinging 

sprays under Pre + D160_75-25. The integrated KL factor of impinging sprays is smaller 

than that of free spray before 2.2ms ASOI. This is because the injected amount of Pre + 

D160_75-25 is smaller than that of Pre + S100 and the injection pressure of Pre + 

D160_75-25 is bigger than that of Pre + S100. But the integrated KL factor of Pre + 

D160_75-25 is bigger than that of Pre + S100 after 2.2 ms ASOI. Because of the 

spray/wall interaction, large momentum loss after impingement, which makes the second 

main injection fuel catches up with the previous flame and deteriorates the combustion. 

6.5 SUMMARY 

This chapter compared the free spray and 2-D cavity impinging spray evaporation 

and combustion characteristics. A high injection pressure accelerates the evaporation 

process, would help decrease the soot formation. The effect of injection mass and 

spray/wall interaction on fuel evaporation is more significant than that of injection 

pressure. The vapor fuel is mainly distributed at the impingement point and cavity wall. 

The spray/wall interaction has a negative effect on the evaporation process. KL factor 



appears farther downstream than the OH* signal. There is no interaction between the 

second main injection fuel and the first main injection combustion under free spray.  

The LOL of main injection combustion will be stable during the injection. The 

second main injection fuel almost catches up with the previous fuel, which causes the 

high KL factor distribution in the flame tip region. The area where OH* images have 

strong signal has small KL factor. The high KL factor are observed near the cavity wall 

region, which means the soot formation happens near the cavity wall region. The pre-

injection ignition timing of 2-D piston cavity impinging flame from OH* 

chemiluminescence are same with that of free spray. Whereas, the first main injection 

ignition timing is a little later than that of free spray. The OH* chemiluminescence 

projected area is larger than that of the KL factor. In the near TDC region of the flame, 

there is an obvious part which has OH* chemiluminescence but no KL factor. The 2-D 

cavity has a positive effect to decrease the soot amount for single main injection, but 

negative effect to decrease the soot amount for split main injection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 7 EFFECTS OF PRE-INJECTION AND LOW 

OXYGEN CONCENTRATION ON THE DIESEL 

EVAPORATION AND COMBUSTION 

CHARACTERISTICS 

7.1 INTRODUCTION 

Recently, owing to the consensus regarding improvement in the trade-offs between 

PM and NOx emissions, multiple injection strategies have been explored [144-147]. Cheng 

et al. [148] studied the effect of multiple injection strategies on the diesel fuel combustion 

process. With the advancement of pilot injection timing, NOx and soot emissions have 

reduced. However, HC and CO emissions have increased. By retarding post injection 

timing, the NOx emissions are reduced, whereas soot emission at first increases and then 

decreases. Nishida et al. [149] and Yang et al. [129] observed that the spray tip of the second 

injection pulse catches up and passes the first one when the fuel quantity injected by the 

second pulse is significantly high and the dwell between the two injection pulses is highly 

marginal. Seo et al. [150] determined that a split injection can increase the thermal 

efficiency and the rate of fuel consumption without optimization. However, it can result 

in poor combustion characteristics such as knocking, incomplete combustion, and soot 

emissions. In this section, the effect of pre-injection on the diesel evaporation and 

combustion characteristics will be discussed.  

Jing et al. [151] investigated the effects of ambient temperature and oxygen 

concentration on diesel spray combustion and found that more mixing is required to 

achieve complete combustion for low ambient oxygen concentration conditions. Zhang 

et al. [152] have a research on the effect of the ambient temperature and oxygen 

concentration in droplet combustion. The results reveal that ambient temperature and 

oxygen concentration have a great influence on burning rates and ignition delay times. 



Zhang et al. [153] studied the effects of ambient oxygen concentration on biodiesel and 

diesel spray combustion under simulated engine conditions. The 18% ambient O2 

condition works better for biodiesel than diesel in reducing soot luminosity. With 12% O2, 

diesel combustion is significantly degraded. Azetsu et al. [154] investigated the effects of 

ambient O2 concentration and pressure on the combustion characteristics of diesel spray. 

It is confirmed that O2 concentration is the dominant factor affecting both the ignition 

delay and combustion period. The volumetric fraction of O2 in ambient air has a 

significant effect on flame temperature and NOx emission. Kuribayashi et al. [155] studied 

the effects of ambient oxygen concentration on soot processes in diesel spray flame. 

Comparing 21% and 15% ambient O2 concentration, a consistent general trend showed 

that the soot is formed earlier in the upstream region and disappears earlier due to faster 

oxidation for higher O2 concentration. 

7.2 EXPERIMENTAL CONDITIONS 

In this chapter, new injection strategies were adopted. The injection strategies of Pre 

+ S100, S100, Pre + D160_75-25 and D160_75-25 were chosen to investigate the effect 

of pre-injection on the combustion characteristics. The 15% oxygen concentration was 

chosen to compare with that of 21% oxygen concentration.  

 
Figure 7.1 Injection rates of S100 and D160_75-25 



Figure 7.1 shows the injection rate of S100 and D160_75-25. Considering S100 

injection strategy as the base condition, the EOI of the high pressure split injection 

strategy (D160_75-25) was similar with that of the base one. The EOI timing of two 

injection strategies were approximately 1.62 ms ASOI. The total volume of main injection 

is same with that of Pre + S100 and Pre +D160_75-25. 

7.3 COMBUSTION CHARACTERISTICS (21% O2 WITHOUT 

PRE-INJECTION) 

Figure 7.2 shows the mean temperature and KL factor distributions of impinging 

spray without pre-injection (S100 and D160_75-25). The O2 concentration in the ambient 

gas is 21%. The timing chosen for S100 is 1.2 ms ASOI (ignition timing), 1.66 ms ASOI 

(EOI) and 1.86 ms ASOI (0.2 ms ASOI) from left to right. The timing chosen for 

D160_75-25 is 0.7 ms ASOI (ignition timing), 1.0 ms ASOI (start of second main 

injection), 1.2 ms ASOI (0.2 ms after start of second main injection), 1.66 ms ASOI (EOI) 

and 1.86 ms ASOI (0.2 ms ASOI) from left to right.  

The relatively high KL factor and high temperature appear in the proximity of the 

impingement point region and at the deep groove region of the cavity rather than in the 

proximity of the spray tip region. This is because of the spray/wall interaction, the large 

momentum loss after impingement and droplet stagnation at those regions. Thereafter, 

high dense droplets generate high soot on those regions, which is in accordance with the 

results of with pre-injection strategies. 

The ignition delay of D160_75-25 is shorter than that of S100. Comparing with the 

results of pre-injection strategies, the pre-injection can decrease the ignition delay, and 

weaken the effect of injection pressure. The KL factor of two injection strategies increases 

from ignition timing to 0.2 ms AEOI. It implies that the combustion process of main 

injection without pre-injection is longer than that with pre-injection. 

Figure 7.3 illustrates the integrated KL factor ASOI of impinging spray under the 



two injection strategies. The integrated KL factor of D160_75-25 is bigger than that of 

S100 before 1.5 ms ASOI. The D160_75-25 ignited advance than that of S100 which 

cause the integrated KL factor increases first. The KL factor of D160_75-25 decreases 

from 1.3 ms ASOI to 1.5 ms ASOI. This is because this period is the late combustion of 

first main injection. Then the integrated KL factor of D160_75-25 is smaller than that of 

S100 from 1.5 ms to 1.9 ms ASOI. This implies that the split injection interval can reduce 

the soot formation. Then the integrated KL factor of D160_75-25 is bigger than that of 

S100 after 1.9 ms ASOI. The second main injection flame causes more soot this period 

for the split injection. The late combustion of S100 and D160_75-25 is after 2.0 ms ASOI 

and 2.1 ms ASOI, respectively. The gradient of soot oxidation domain process of 

D160_75-25 is higher than that of S100. It implies that the split injection can accelerate 

the soot oxidation process. 

The mean temperature ASOI of the two injection strategies is presented in Figure 

7.4. The mean temperature of D160_75-25 is higher than that of Pre+S100 at first, and 

then becomes lower. The mean temperature of S100 increases first and then decreases. 

However, for D160_75-25, the mean temperature decreases during the combustion 

process, which is because of the late combustion of first main injection flame. 

Figure 7.5 presents the integrated KL factor of S100 and Pre + S100 to investigate 

the effect of pre-injection on the single main injection. The ignition delay of main 

injection of S100 is 1.167 ms, but just 0.46 ms for Pre + S100. The pre-injection decreases 

the ignition delay. The pre-injection combustion increases the ambient temperature and 

pressure and makes the main combustion more easily. The integrated KL factor of S100 

is bigger than that of Pre + S100 before 2.0 ms ASOI. The S100 ignited advance than that 

of Pre + S100 which cause the integrated KL factor increases first. Then the KL factor of 

Pre + S100 is higher than that of S100, which is because of the pre-injection combustion.  



 
Figure 7.2 Mean temperature and KL factor distributions under two injection strategies 

 
Figure 7.3 Integrated KL factor under without pre-injection condition 
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Figure 7.4 Mean temperature under without pre-injection condition 

 
Figure 7.5 Comparison of S100 and Pre + S100 on the integrated KL factor  

Figure 7.6 presents the integrated KL factor of D160_75-25 and Pre + D160_75-25 

to investigate the effect of pre-injection on the split main injection. It shows the tendency 

that the pre-injection decreases the ignition delay of the main injection combustion. The 

integrated KL factor of D160_75-25 is bigger than that of Pre + D160_75-25 before 2.2 

ms ASOI. The timing when the integrated KL factor of S100 becomes smaller than that 

of Pre + S100 and the timing when the integrated KL factor of D160_75-25 becomes 



smaller than that of Pre + D160_75-25 are the maximum integrated KL factor timing. 

And the split injection interval also has an effect on the integrated KL factor from 1.3 ms 

to 1.5 ms ASOI under D160_75-25. However, the effect degree on the D160_75-25 is not 

huge than that of Pre + D160_75-25. 

 
Figure 7.6 Comparison of D160_75-25 and Pre + D160_75-25 on the integrated KL 

factor  

7.4 COMBUSTION CHARACTERISTICS (15% O2 WITH PRE-

INJECTION) 

This part will show the effect of low oxygen concentration on the combustion 

characteristics. Figure 7.7 shows the mean temperature and KL factor distributions of 

impinging spray (Pre + S100 and Pre + D160_75-25) conditions. The O2 concentration in 

the ambient gas is 15%. The timing chosen for Pre + S100 is 1.9 ms ASOI (ignition 

timing), 2.8 ms ASOI (EOI), 3.0 ms ASOI (0.2 ms AEOI) and 4.0 ms ASOI (1.2 ms AEOI) 

from left to right. For D160_75-25, the ignition timing is also 1.9 ms ASOI, 2.19 ms ASOI 

(around the start of second main injection) and the rest are the same. 

For Pre + D160_75-25, the relatively high KL factor and high temperature appear at 



the deep groove region of the cavity rather than in the proximity of the spray tip region. 

However, for Pre + S100, the relatively high KL factor appears not only at the deep groove 

region of the cavity but also at the spray tip region. The ignition delay for both two 

injection strategies are 1.9 ms ASOI. The pre-injection combustion has a positive effect 

on the main injection ignition.  

The KL factor distribution of Pre + D160_75-25 is leaner than that of Pre + S100 at 

EOI and 0.2 ms AEOI. But the KL factor distribution of Pre + D160_75-25 is richer than 

that of Pre + S100 at 4.0 ms ASOI. The soot evaluation process of Pre + D160_75-25 is 

longer than that of Pre + S100. Low oxygen concentration has a complex effect on the 

soot evaluation of single main injection and split main injection. 

 

Figure 7.7 Mean temperature and KL factor distributions under two injection strategies 

Figure 7.8 illustrates the integrated KL factor ASOI of impinging spray under the 

two injection strategies. The integrated KL factor of Pre + D160_75-25 is almost bigger 

than that of Pre + S100 during the soot evaluation process. Low oxygen concentration has 
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a negative effect on the soot. As the oxygen concentration is low, there is no enough air 

entrainment for the split injection. But the split injection also can decrease the soot 

formation during the split injection interval. Figure 7.9 shows the mean temperature of 

impinging spray under two injection strategies. It can be seen that the mean temperature 

of two injection strategies are almost same. Expect the mean temperature of Pre + 

D160_75-25 is lower than that of Pre + S100 as the split injection interval influence. 

 
Figure 7.8 Integrated KL under two injection strategies 

 
Figure 7.9 Mean temperature under two injection strategies 



 
Figure 7.10 Comparison of S100 and Pre + S100 on the integrated KL factor 

 
Figure 7.11 Comparison of D160_75-25 and Pre + D160_75-25 on the integrated KL 

factor  

Figure 7.10 presents the integrated KL factor of Pre + S100 under 21% O2 and 15% 

O2 two oxygen concentrations to investigate the effect of low oxygen concentration on 

the single main injection. The low oxygen concentration delays the ignition delay. And 

the low oxygen concentration will delay the whole combustion process. But the integrated 

KL factor is almost at the same level.  



Figure 7.11 presents the integrated KL factor of Pre + D160_75-25 under 21% O2 

and 15% O2 two oxygen concentrations to investigate the effect of low oxygen 

concentration on the split main injection. The low oxygen concentration delays the 

ignition delay. And the low oxygen concentration will delay the whole combustion 

process. But the integrated KL factor of 15% O2 is bigger than that of 21% O2 after 2.6 

ms ASOI. The low oxygen concentration worsens the combustion process.  

7.5 COMBUSTION CHARACTERISTICS (15% O2 WITHOUT 

PRE-INJECTION) 

Figure 7.12 shows the mean temperature and KL factor distributions of impinging 

spray without pre-injection (S100 and D160_75-25) conditions. The O2 concentration in 

the ambient gas is 15%. The timing chosen for S100 is 1.2 ms ASOI (ignition timing), 

1.66 ms ASOI (EOI) and 1.86 ms ASOI (0.2 ms AEOI) from left to right. For D160_75-

25, the ignition timing is 1.3 ms ASOI, while the rest are the same.  

The ignition delays of S100 are the same under two O2 concentration conditions. 

However, for D160_75-25, it is longer for low O2 concentration. The air entrainment 

space of D160_75-25 is smaller than that of S100, and the O2 concentration decreases, 

which makes the ignition delay longer.  

Moreover, the KL factor and temperature also become bigger and higher from the 

ignition timing to the 0.2 ms ASOI, which is same with the results of Figure 7.2. It can be 

seen that the KL factor of D160_75-25 is obviously smaller than that of S100 during this 

period. Furthermore, the mean temperature of D160_75-25 is lower than that of S100 

during this period.  

Figure 7.13 illustrates the integrated KL factor ASOI of impinging spray under the 

two injection strategies. The KL factor of D160_75-25 is smaller than that of S100 before 

2.4 ms ASOI. Thereafter, the second main injection fuel catches up with the first main 

injection flame and deteriorates the combustion. The timing that the second main injection 



fuel deteriorates the combustion of 15% O2 is late than that of 21% O2. The combustion 

duration of 15% O2 is longer than that of 21% O2 because of the low O2 concentration. 

The KL factor of 15% O2 is bigger than that of 21% O2. It implies that the low O2 

concentration worsen the combustion. 

Figure 7.14 illustrates the mean temperature of impinging spray flame under two 

injection strategies. The tendency of S100 and D160_75-25 increases first and then 

decreases, which is similar to the results of 21% O2. The timing for the late combustion 

of first main injection is 1.7 ms ASOI, which is almost the same with that of 21% O2 (1.6 

ms ASOI). Even the ignition delay of 21% O2 is shorter than that of 15% O2, but it does 

not have significant effect on the late combustion timing of first main injection. 

Comparing the results, there is a 100 K drop in the mean temperature due to lower oxygen 

concentration. 

 
Figure 7.12 Mean temperature and KL factor distributions of impinging spray 
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Figure 7.13 Integrated KL factor of impinging spray flame under two injection 

strategies 

 
Figure 7.14 Mean temperature of impinging spray flame under two injection strategies 

Figure 7.15 presents the integrated KL factor of S100 and Pre + S100 to investigate 

the effect of pre-injection on the single main injection. The ignition delay of main 

injection of S100 is 1.2 ms, but just 0.67 ms for Pre + S100. The pre-injection decreases 

the ignition delay. The pre-injection combustion increases the ambient temperature and 

pressure and makes the main combustion more easily. The integrated KL factor of S100 



is bigger than that of Pre + S100 before 2.5 ms ASOI. The S100 ignited advance than that 

of Pre + S100 which cause the integrated KL factor increases first. Then the KL factor of 

Pre + S100 is higher than that of S100, which is because of the pre-injection.  

 
Figure 7.15 Comparison of S100 and Pre + S100 on the integrated KL factor 

 
Figure 7.16 Comparison of D160_75-25 and Pre + D160_75-25 on the integrated KL 

factor 

Figure 7.16 presents the integrated KL factor of D160_75-25 and Pre + D160_75-

25 to investigate the effect of pre-injection on the split main injection. It shows same 



tendency with Figure 7.15 that the pre-injection decreases the ignition delay of the main 

injection combustion. The integrated KL factor of D160_75-25 is bigger than that of Pre 

+ D160_75-25 before 2.7 ms ASOI. The timing when the integrated KL factor of S100 

becomes smaller than that of Pre + S100 and the timing when the integrated KL factor of 

D160_75-25 becomes smaller than that of Pre + D160_75-25 are 0.1 ms after the 

maximum integrated KL factor timing. The low oxygen concentration delays this timing. 

The split injection interval has a significant effect to decrease the integrated KL factor 

from 3.1 ms to 3.4 ms ASOI under Pre + D160_75-25. However, there is no effect to 

decrease the integrated KL factor under Pre + D160_75-25. 

7.6 IGNITION DELAY 

Figure 7.17 shows the ignition delay of all the conditions. The red and green columns 

indicate the main injection of S100 and D160_75-25 respectively. The ignition delay 

defined in this part is the timing when KL factor can be observed.  

Comparing the results of free spray and 2-D cavity impinging spray, it can be seen 

that the ignition delay becomes longer in the 2-D cavity due to the lean air in it. Moreover, 

the pre-injection can decrease the ignition delay of main injection. Because the pre-

injection combustion increases the air temperature, thereby making it easier to be ignited 

for the main injection. For ignition delay of without pre-injection conditions, low O2 

concentration has a significant effect on the D160_75-25, which is owing to two factors: 

(1) the ambient air mass in the 2-D cavity is small; (2) the ambient air entrainment space 

of D160_75-25 is narrow than that of S100 through the KL factor images. The pre-

injection also has a significant effect on the ignition delay not only for the single main 

injection but also split main injection under low oxygen concentration.  



 

Figure 7.17 Ignition delay of all the conditions 

7.7 SUMMARY 

This chapter investigated the effect of pre-injection and low oxygen concentration 

on the combustion characteristics. The combustion process of main injection without pre-

injection is longer than that with pre-injection. The split injection can accelerate the soot 

oxidation process. The pre-injection combustion increases the ambient temperature and 

pressure and makes the main combustion more easily. The pre-injection combustion has 

a positive effect on the main injection ignition. The pre-injection combustion increases 

the ambient temperature and pressure and makes the main combustion more easily. 

Low oxygen concentration has a complex effect on the soot evaluation of single main 

injection and split main injection. Low oxygen concentration has a negative effect on the 

combustion. But the split injection also can decrease the soot formation during the split 

injection interval. The low oxygen concentration delays the ignition delay. And the low 
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oxygen concentration will delay the whole combustion process. The timing that the 

second main injection fuel deteriorates the combustion of 15% O2 is late than that of 21% 

O2. The combustion duration of 15% O2 is longer than that of 21% O2 because of the low 

O2 concentration. There is a 100 K drop in the mean temperature due to lower oxygen 

concentration. For ignition delay of without pre-injection conditions, low O2 

concentration has a significant effect on the D160_75-25. The pre-injection also has a 

significant effect on the ignition delay not only for the single main injection but also split 

main injection under low oxygen concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 8 CONCLUSIONS 

This dissertation work is aimed at the clarifying the effects of impingement and 

multiple injection on mixture formation process, combustion and soot emission 

characteristics of D.I. Diesel spray. The spray mixture formation process was investigated 

using the Mie scattering technique and LAS technique to acquire the qualitative and 

quantitative information on the characteristics of free spray and 2-D cavity impinging 

spray. The combustion behaviors were investigated by applying the two-color method and 

the OH* chemiluminescence recording system. In this investigation, firstly three kinds of 

injection amounts (0.27, 0.89 and 2.97 mg) and three kinds of injection pressures (100, 

150 and 170 MPa) were selected to investigate the effect of small injection amount on the 

evaporation and combustion characteristics of free spray; secondly three kinds of split 

injection strategies (Pre + S100, Pre + D160_50-50 and Pre + D160_75-25) were adopted 

to check the effect of split injection on the evaporation and combustion characteristics of 

free spray and 2-D cavity impinging spray; thirdly the effect of pre-injection (S100, 

D160_50-50 and D160_75-25) and low oxygen (15% O2) on the combustion 

characteristics of 2-D cavity impinging spray were also investigated. The general 

conclusions will be introduced gradually in this chapter. 

8.1 MAIN FINDINGS OF THIS STUDY 

In Chapter 1, the significance of this search subject was firstly introduced and a 

review on characterization of diesel spray flame evolution under free and 2-D impinging 

condition, multiple injection spray and its combustion in diesel engines, and optical 

diagnostics for measurements of spray characteristics and flame behaviors was made. 

In Chapter 2, the experimental apparatus such as Mie scattering, LAS technique, two 

color method and OH* chemiluminescence system. And the Specification of 2-D cavity 

and the Egg-shaped Mazda Skyactiv-D cavity were introduced briefly. The principle of 



LAS technique and the calibration of two color method were introduced. 

The tracer LAS technique for diesel spray was different with the traditional one, in 

this study, it is modified. The blend fuel with 2.5 volumetric percentage of α-MN and 97.5 

volumetric percentage of n-tridecane was adopted. 

In Chapter 3, the evaporation and combustion characteristics of small injection 

amount were investigated. The evaporation characteristics were investigated by the tracer 

LAS technique and the combustion characteristics were analyzed by the two-color 

method. The investigation was aimed to clarify the effect of small injection amount (0.27 

mg) on the fuel evaporation and combustion processes. It has been found that, firstly, the 

smaller injection amount gives the shorter time to achieve stoichiometric vapor phase, the 

leaner air-fuel mixture and the shorter spray tip penetration under same injection pressure 

and same ambient conditions. The effect of injection pressure shows that the spray tip 

penetration becomes longer when the injection pressure decreases at the small injection 

amount (0.27 mg). The volume of the flame and the KL factor intensity increase when 

the injection amount increases. It’s a significant way to reduce soot formation with 

increasing the injection amount. The time from ignition to combustion peak is shorter 

under the smaller injection amount condition. And the mean flame temperature also 

decreases as the injection amount decreases. Consequently, it’s an efficient way to reduce 

the soot formation by adopting small injection amount. It implies that it is an efficient 

way to reduce the soot formation by adopting the multiple injection strategy. 

In Chapter 4, the free spray experiments were carried out to observe the fuel non-

evaporation, evaporation, and combustion characteristics. The non-evaporation processes 

applied the Mie scattering method under three injection strategies (Pre + S100, Pre + S160, 

and Pre + D160_75-25). The results reveal that the split injection provides much more 

ambient gas amount, which improves the spray breakup and atomization process under 

the non-evaporation condition. Split injection gives the fuel more momentum to penetrate 

quickly. Split injection can make the vapor phase more homogeneous and make the soot 

distribution more homogeneous. Split injection can enhance the combustion and decrease 



the soot emissions. Split injection has a positive effect on the degree of homogeneity of 

KL versus temperature in the whole flame region. The soot evaluation process finishes at 

the same time when the injection strategies have the same SOI and EOI. 

In Chapter 5, the comparison of the evaporation and combustion characteristics of 

2-D cavity impinging spray were investigated under three injection strategies (Pre + S100, 

Pre + D160_50-50 and Pre + D160_75-25). For evaporation process, the vapor 

distribution of the split main injection is significantly more homogeneous than that of the 

single main injection at the EOI. It is observed that the fuel of the second main injection 

of the split main injection has already caught up with the previous fuel at the EOI in the 

case of Pre + D160_50-50. The spray–wall interaction has a significant effect on the high 

density droplet location. For combustion process, the second main injection fuel of the 

split main injection almost catches up with the previous fuel, which causes the high KL 

factor distribution in the flame tip region in the case of Pre + D160_50-50. The pre-

injection combustion can significantly decrease the main injection ignition delay and then 

improve the main injection combustion. The split injection can reduce the soot formation 

and accelerate the soot oxidation process. Increases the split injection interval has a 

positive effective method to reduce the soot. 

In Chapter 6, the free spray and 2-D cavity impinging spray evaporation and 

combustion characteristics under two injection strategies (Pre + S100, Pre + D160_75-

25) were compared. There is no interaction between the second main injection fuel and 

the first main injection combustion under free spray. The LOL of main injection 

combustion will be stable during the injection. The second main injection fuel almost 

catches up with the previous fuel, which causes the high KL factor distribution in the 

flame tip region under 2-D cavity impinging spray. The pre-injection ignition timing of 

2-D piston cavity impinging flame from OH* chemiluminescence are same with that of 

free spray. In the near TDC region of the flame, there is an obvious part which has OH* 

chemiluminescence but no KL factor. The 2-D cavity has a positive effect to decrease the 

soot amount for single main injection, but negative effect to decrease the soot amount for 



split main injection.  

In Chapter 7, the effect of pre-injection and low oxygen concentration on the 

combustion characteristics were investigated. The injection strategies adopted here are 

S100, D160_75-25, Pre + S100 and Pre + D160_75-25. The combustion process of main 

injection without pre-injection is longer than that with pre-injection. The split injection 

can accelerate the soot oxidation process. The pre-injection combustion has a positive 

effect on the main injection ignition. Low oxygen concentration has a complex effect on 

the soot evaluation of single main injection and split main injection. Low oxygen 

concentration has a negative effect on the combustion. But the split injection also can 

decrease the soot formation during the split injection interval. The low oxygen 

concentration delays the ignition delay. And the low oxygen concentration will delay the 

whole combustion process. There is a 100 K drop in the mean temperature due to lower 

oxygen concentration. For ignition delay of without pre-injection conditions, low O2 

concentration has a significant effect on the D160_75-25.  

8.2 RECOMMENDATIONS FOR FUTURE WORKS  

Several recommendations can be made for future work in this field.  

The detail mechanism of the effect of liquid/wall interaction on spray evolution 

and combustion need to be further investigated. Until now, the LAS technique cannot 

deal with the liquid film on the wall surface, to resolve, the precision of LAS technique 

on the liquid phase should be improved. Other injection strategies such as different split 

main injection mass ratio, different split main injection interval should be further 

investigated to find a better injection strategy which can avoid the second main injection 

catching up with first injection flame. Different oxygen concentrations should also be 

investigated to find an ideal oxygen concentration which can decrease the soot 

emissions significantly. Besides, the computational fluid dynamics should be applied to 

simulate the spray evolution and to further investigate the liquid film behaviors.  



Current results reveal that the split injection has a positive effect to reduce the soot 

emissions. Pre-injection combustion can improve the main injection combustion. 

Increases the split injection interval should have a positive effect to decrease the soot 

emissions under 2-D cavity impinging spray. Therefore, more fundamental experiments 

with different injection strategies under 2-D cavity are recommended.  

The ultimate purpose of this research is to improve the performance in a real 

engine. Although the physical ambient conditions in a real engine are similar with this 

work, the turbulent flow may play a role in mixture formation and combustion process. 

Therefore, it is recommended to investigate the mixture and combustion characteristics 

in an optical engine by applying different chamber shapes, injection pressures, injection 

amount and multiple injection strategies. 
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