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General Introduction 

 

In the past, electronic materials have mainly been dependent on inorganic materials 

due to their high performance and high durability.  In the last four decades, however, 

many studies have been extensively conducted to utilize organic compounds that are 

lighter, rich in diversity, and less environmental burden than inorganic compounds to 

realize light weight and/or flexible electronic devices.  Among them, organic 

semiconductors for thin film transistors (OTFT), organic luminescent materials for light 

emitting diodes (OLED) and flat panel displays and smart phones, and photoelectric 

material for image sensors or photovoltaics have attracted much attention.  There are 

several organic materials with sufficient performance and durability that can be used for 

these devices, however, further material studies based on new ideas are required to realize 

enough performance same as inorganic materials.  Under such circumstances, 

development of organic materials taking advantage of the characteristics of elements is 

of much attention.  This concept is an unprecedented molecular design that based on 

electronic or structural features of elements for building entirely new skeletal organic 

materials.   

Silicon is a positive element with a larger atomic radius and lower electronegativity 

compared to carbon, and its chemical properties are different though it is Group 14 

element closest to carbon.  Silicon-silicon σ bond has higher energy level than carbon-

carbon σ bond because silicon has valence electrons in the outer shell than carbon, which 

is comparable to carbon-carbon π bond.  Therefore, the silicon-silicon σ bond has high 

reactivity and is easily cleaved by reacting with halogen such as bromine.  Synthesis and 

functionalities of compounds in which the π electron system is crosslinked or substituted 

by silicon atom(s) are well studied.  In addition to physical effects such as increased 

solubility by silicon substitution, orbital interaction (σ - π conjugation) between silicon σ 
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orbital and π electron system has been shown to have unique electronic effects such as 

extension of conjugation length, improvement of fluorescence emission efficiency. 

  Figure 1 shows the HOMO - LUMO levels of cyclopentadiene, 

silacyclepentadiene (silole), cyclopentadithiophene, dithienosilole, and 

disilanobithiophene.  Comparing HOMO and LUMO energy levels of cyclopentadiene 

and silole, the HOMO energy level of silole is close to cyclopentadiene.  On the other 

hand, the LUMO energy level of silole is overwhelmingly lower than that of 

cyclopentadiene.  This is due to the interaction (σ*-π* interaction, σ*-π* conjugation) 

between the σ* orbital of the silicon-containing bond and the π* orbital of butadiene.  A 

system condensed with thiophene shows the same effect. The HOMO energy level of 

dithienosilole is almost the same as that of cyclopentadithiophene.  On the other hand, a 

large difference appears in the LUMO energy level due to the effect of σ*-π* conjugation.  

Comparing dithienosilole and disilanobithiophene, the band gap is comparable, whereas 

disilanobithiophene has lower energy level for both HOMO and LUMO.  This result is 

considered to be a complex factor such as stereoscopic effect and orbit-orbit interaction.  

The characteristic red-shifted UV absorptions of silole derivatives would arise from their 

low-lying LUMO [2, 3].  The low-lying LUMO provides the chance to use silole 

derivatives as the functionality materials, such as semi-conductors and electron-

transporting materials, and many papers concerning the synthesis and functionalities of 

monomeric silole derivatives as well as silole-containing polymers have been published 

to date [4-9]. 
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Corriu et al. have previously reported the formation of polymers having Fe(CO)3-

coordinated silole-1,1-diyl units [10]. They showed that silole derivatives may be 

potential ligands to transition metal centers.  However, no other studies about the 

incorporation of metal-coordination to the silole ring in polymeric systems had appeared, 

until our laboratory reported the synthesis of Fe(CO)3-coordinated poly(disilanylene-3,4-

diethynylenesiloles) (Chart 1) [11]. 

 

   

 

As expected, the coordination of Fe(CO)3 to the 3,4-diethynylsilole unit leads to 

significant changes in the polymer electronic states and the UV absorptions move to 

longer wave length from those of the parent non-coordinated polymers, indicating the 
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Figure 1  Relative energy levels of HOMO and LUMO base on molecular 
simulation at the RHF/6-31G level [1]. 

Chart 1  Fe(CO)3-coordinated poly(disilanylene-3,4-diethynylenesiloles. 
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enhancement of π-conjugation by the Fe(CO)3-coordination.  This is probably due to the 

increase of the bond order between silole C3-C4 atoms, through which the two ethynyl 

groups may be conjugated more effectively. 

Organic electronics have received increasing attention.  In these devices, surface 

modification of inorganic materials (e.g, oxides) with organic modifiers is an important 

process in areas of surface and interface engineering.  This is because electronic 

properties, photonic properties, durability, etc., are greatly affected by the state of the 

interface between substances.  Organosilicon compounds having reactivity such as 

chlorosilanes and hexamethyldisilazane have been studied as surface modifiers [12-15].  

The performance improvements have been reported by treating inorganic oxides with 

these compounds [16-21].   However, by-products produced during the reaction may 

degrade the device performance.  Therefore, new surface modifier that has sufficient 

reactivity, easy to handle in air and does not produce reactive by-products, such as 

hydrogen chloride and ammonia is desired. 

As mentioned above, the silicon-silicon σ bond has high reactivity.  It is readily 

cleaved photochemically, but stable enough to handle under ambient conditions without 

UV irradiation.  Recently, our laboratory has reported that treatment of TiO2 surface 

with polymers composed of alternating Si-Si and π-conjugated units under UV irradiation 

resulted in attachment of the polymers on the surface through the formation of Ti-O-Si 

linkages.  More recently, disilanobithiophene polymers reacted with TiO2 surface even 

in the dark (Scheme 1), likely due to the ring strain [22-27]. 
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Hydrolysable Si-N bond(s) also have moderately high reactivity and allows the 

smooth transformation into Si-O bond(s).  Aminosilanes containing Si-N bond(s) 

readily interact with alcohols (ROH) to form R-O-Si linkages under mild and neutral 

conditions, unless they are sterically congested.  In addition, aminosileanes are 

sufficiently stable towards hydrolysis by atomospheric moisture to permit the use of them 

without special care [28-30].  However, aminosilanes are less used than chlorosilanes 

because of limited commercial sources. 

In this thesis, the author describes how the regional change affects the electron states 

of Fe(CO)3-coordinated diethynylsilole-containing polymers. Furthermore, focusing on 

the interface state of substances affecting the performance of electronic devices, the 

author also describes the development of new surface modifiers having reactive Si-Si 

bond or Si-N bond without producing reactive by-product. 

In Chapter 1, the preparation and properties of Fe(CO)3-coordinated poly(organo-

silanylene-2,5-diethynylenesiloles) are described in comparison with those of the 3,4-

diethynylsilole polymers, reported previously. The hole-transporting properties of 

poly(organosilanylene-2,5-diethynylenesiloles) were evaluated by the performance of EL 

devices containing the polymer layer as the hole-transport. The results indicated that the 

coordination of the Fe(CO)3-unit to diethynylsilole system seems to provide an 

opportunity to modify the electronic states of the π-electron system. In addition, the 

Scheme 1  Modification of TiO2 surface with disilanobithiophene-
polymers. 
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present silole-containing 2,5-diethynylenesiloles polymers may be used as the hole-

transport for OLEDs. 

 

 

In Chapter 2, the hydrophobic modification of SiO2 surface using 

tetramethyldisilanobiphenyl (DSBP) and tetramethyldisilanobithiophene (DSBT) as new 

modifiers are described. The modification performance of DSBP was evaluated by the 

performance of the top-contact p-type organic thin film transistor (OTFT) with a 

pentacene vapor-deposited film as the active layer. The results suggested that the 

modification method with DSBP can efficiently control the SiO2 surface. DSBP and 

DSBT are stable and clean modifiers that can be stored without any special care and 

produce no byproducts. 
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In Chapter 3, the preparations and surface modification performance of new 

aminosilanes with hydrolysable Si-N bond(s) were described. The modification 

performance was evaluated by the performance of the top-contact p-type OTFT with a 

pentacene active layer. The transistor with the aminosilane-modified SiO2 showed two- 

to threefold higher hole mobility than the device with bare SiO2. The higher stability of 

presented aminosilanes towards moisture leads to easier-handling than the chlorosilane 

congeners.  Surface modification by those aminosilanes liberates alkylamines as by-

products.  However, they are much less reactive than ammonia that is produced when 

inorganic surface is modified by hexamethyldisilazane that is known as a typical 

hydrophobic modifier with a Si-N bonds as the reactive sites. 
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Chapter 1 

 

Preparation of polymers containing Fe(0)-coordinated 2,5-
diethynylsilole units 

 

 
Introduction 

 

Current interest has been focused on the chemistry of a silole ring system, because 

of their unique electronic states.  The characteristic red-shifted UV absorptions of silole 

derivatives would arise from their low-lying LUMO due to the σ*-π* interaction between 

the silicon σ-orbital and the butadiene π-orbital [1,2].  The low-lying LUMO provides 

the chance to use silole derivatives as the functionality materials, such as semi-conductors 

and electron-transporting materials, and many papers concerning the synthesis and 

functionalities of monomeric silole derivatives as well as silole-containing polymers have 

been published to date.  In addition, it is noted that silole derivatives may be potential 

ligands to transition-metal-center [3].  Corriu et al. have previously reported the 

formation of polymers having Fe(CO)3-coordinated silole-1,1-diyl units [4].  However, 

no other studies about the incorporation of metal-coordination to the silole ring in 

polymeric systems have appeared until we have reported the synthesis of Fe(CO)3-

coordinated poly(disilanylene-3,4-diethynylenesiloles) (1b in Chart 1) [5].  As expected, 

the coordination of Fe(CO)3 to the 3,4-diethynylsilole unit leads to significant changes in 

the polymer electronic states and the UV absorptions move to longer wave length from 

those of the parent non-coordinated polymers (1a), indicating the enhancement of π-

conjugation by the Fe(CO)3-coordination.  This is probably due to the increase of the 

bond order between silole C3-C4 atoms, through which the two ethynyl groups may be 

conjugated more effectively.   
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To know how the regional change affects the electronic states of Fe(CO)3-

coordinated diethynylsilole-containing polymers, we synthesized Fe(CO)3-coordinated 

2,5-diethynylsilole polymers by the reactions of poly(organosilanylene-2,5-diethynyl-

enesiloles) and Fe(CO)5, and studied their properties in comparison with those of the 3,4-

diethynylsilole polymers [5,6].  The preparation of poly(organosilanylene-2,5-

diethynylenesiloles) has been previously reported. 

Polymers having an alternate arrangement of organosilanylene and π-conjugated 

units have been studied as novel functionality materials [8,9].  In order to elucidate the 

present organosilanylene-2,5-diethynylenesilole alternating polymers as the hole-

transport, we fabricated double-layer EL devices with the structure of ITO/polymer 

film/Alq3/Mg-Ag (ITO = indium tin oxide, Alq3 = (tris(8-quinolinolato)aluminum (III)) 

Chart 1 synthesis of Fe(CO)3-coordinated poly(disilanylene-3,4-
diethynylene¬siloles. 
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and examined their performance.   
 

 
Results and discussion 

 

2.1. Preparation of a model compound 

 

First, we examined a model reaction of 2,5-bis[(dimethylphenylsilyl)ethynyl]-1-

methyl-1,3,4-triphenylsilole (2a) with Fe(CO)5 (Chart 3).  Thus, heating a xylene 

solution of compound 2a at 150°C for 20 h with an excess of Fe(CO)5 gave Fe(CO)3-

coordinated diethynylsiole (2b) in 66% yield.  Compound 2b was isolated as the single 

stereoisomer probably with the exo-configuration with respect to the Fe-coordinated 

silole unit (Chart 2).  Although the 1H and 13C NMR spectra of the reaction mixture 

indicated the existence of the endo-isomer, that was removed by recrystallization.  The 

ratio of isomers in the reaction mixture was determined approximately to be exo/endo = 

3/1 by the NMR spectra. 
 

 
Chart 2  Endo- and exo-configuration of Fe-coordinated silole unit. 

 

The structure of 2b was verified by spectroscopic and elemental analysis.  The 13C 

NMR spectrum of 2b showed a carbonyl signal at 209.2 ppm and signals at 42.9 ppm and 

91.8 ppm, which are characteristics of a metal-coordinated butadiene unit [10].  On the 

other hand, the signals of sp carbons of 2b appeared at 108.0 ppm and 110.6 ppm, in 

essentially the same region as those of the starting 2a, indicating that no significant 
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interaction takes place between the ethynyl units and Fe-complex center in 2b, similar to 

polymer 1b [5]. 
 

 

 

UV spectral data for 2a and 2b are summarized in Table 1, together with those of 

Fe(CO)3-corrdinated and noncoordinated 3,4-diethynylsilole derivatives reported 

previously (3a and 3b, in Chart 4) [5].  Compound 2a exhibited red-shifted absorptions 

relative to 3a.  Fe(CO)3-coordination to 2,5-diethynylsilole system in 2b led to blue-

shifts of the absorption maxima, in marked contrast to 3,4-diethynylsilole 3a, whose 

absorption maxima are red-shifted by Fe(CO)3-coordination.  Presumably, the 

coordination in 2b decreases the π-bond order of C2-C3 and C4-C5, relative to those in 

2a, to suppress the conjugation in the 2,5-diethynylsilole unit. 

 

Chart 3  Model reaction of 2,5-bis[(dimethylphenylsilyl)ethynyl]-
1-methyl-1,3,4-triphenylsilole (2a) with Fe(CO)5. 
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Table 1  UV spectral data for Fe-coordinated and non-coordinated diethynylsiloles 

in THF 

compound λmax/nm λedge/nm 

2a 210, 283, 398 460 

2b 210, 259 (sha), 307 (sha) 450 

3a 210, 268, 301 390 

3b 210, 237, 320 430 

a Shoulder. 

 

Chart 5 Fe(CO)3-coordinated and noncoordinated 3,4-
diethynylsilole derivatives 
Chart 4  Fe(CO)3-coordinated and noncoordinated 3,4-
diethynylsilole derivatives. 
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2.2. Preparation of Fe(CO)3-coordinated 2,5-diethynylsilole polymers 

 

To obtain polymers with Fe(CO)3-coordinated 2,5-diethynylsilole units, we first 

carried out the reaction of poly[tetraethyldisilanylene-(2,5-diethynylene-1-methyl-1,3,4-

triphenylsilole)] (4a) with Fe(CO)5 under the same conditions as those for the preparation 

of 2b.  However, when 4a was heated at 150°C for 20 h in the presence of a 4-fold excess 

of Fe(CO)5 in benzene, only insoluble dark-brown solids were formed and no soluble 

products were isolated from the reaction mixture.  Although the IR spectrum of the 

insoluble products showed absorptions at 1984 and 2050 cm-1, due to the stretching 

frequencies of the carbonyl ligands, no further information to characterize the products 

could be obtained. 
  

Scheme 1  Preparation of Fe(CO)3-coordinated 2,5-
diethynylsilole polymers under photochemical conditions. 
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Next, we examined the reaction of 4a with Fe(CO)5 under photochemical conditions 

(Scheme 1).  Thus, irradiation of a benzene solution of 4a with 8 equiv. of Fe(CO)5 with 

a high-pressure mercury lamp bearing a Pyrex filter for 2 h, gave a dark brown mixture 

containing insoluble precipitates.  After filtration of the precipitates, the soluble 

products were reprecipitated from benzene-methanol to give an Fe(CO)3-coordinated 

polymer (4b) in 79% yield.  The 1H NMR spectrum of 4b revealed two MeSi signals of 

Fe(CO)3-coordinated silole ring at 0.39 and 1.31 ppm, in an integral ratio of 3/1, probably 

due to exo- and endo-silole units, respectively (Chart 2).  Its 13C NMR spectrum also 

showed two sets of signals due to Fe(CO)3-coordinated exo- and endo-1-methyl-1,3,4-

triphenylsilole units in the same region as those of the model compound 2b.  The degree 

of the introduction of Fe(CO)3-coordination to the polymer was calculated to be x/y = 

10/90, by the integration of the 1H NMR signals.   

Table 2 summarizes the properties of polymers 4a and 4b.  The molecular weight 

of polymer 4b was smaller than that calculated on the basis of the molecular weight of 

the starting 4a.  Probably, the higher molecular weight fraction of polymer 4a was 

removed as the insoluble precipitates from the reaction mixture.  Photochemical 

cleavage of the Si-Si bond may be also involved in this reaction [8].  UV spectrum of 

4b clearly indicated the decrease of the absorbancy of the band at about 415 nm, which 

may be due to a blue shift in the absorption maximum of Fe-coordinated segments in the 

polymer chain.  The IR band due to the C≡C stretching moved to higher energy from 

2109 to 2120 cm-1 by Fe-coordination, again indicating the suppressed conjugation 

between the Fe-coordinated silole and ethynylene units in 4b. 
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Table 2  Properties of Fe-coordinated and Non-Coordinated 2,5-Diethynylsilole-

Polymers 
 

polymer Mw (Mw/Mn) a λmax/nm (ε) b Td5/°Cc wt 

loss/%d 

4a 21 000 (2.4) 415 (6800) 418 45 

4b 11 000 (2.5) 413 (2000) 214 47 

5a 31 000 (3.2) 406 (5900) 421 40 

5b 7 100 (2.7) 405 (1700) 220 55 

a Determined by GPC, relative to polystyrene standards.   

b In THF.   

c Temperature resulting in 5% weight loss noted by thermogravimetric analysis of the 

polymer at the rate of 10°C/min in a nitrogen atmosphere.   

d Weight loss at 1000°C based on the initial weight. 

 

Similar to 4b, Fe(CO)3-coordinated monosilanylene polymer 5b was prepared from 

5a in 57% yield, whose properties are also summarized in Table 2.  Although polymer 

5b was barely soluble in organic solvents and we could not carry out the NMR 

spectroscopy, the IR and UV spectra closely resemble those of 4b (Figure 1).  The IR 

spectrum revealed an absorption due to the C≡C stretching at slightly higher energy from 

that of 5a, together with the C=O stretching bands.  Furthermore, the carbon and 

hydrogen contents determined by combustion elemental analysis are in good agreement 

with the calculated values of polymer 5b whose silole units are wholly coordinated with 

an Fe(CO)3-unit.  Polymer 6a (see Chart 4) [6] having two phenyl groups on the silole 

silicon atom did not react with Fe(CO)5 under both thermal and photochemical conditions.  

In these reactions, polymer 6a was recovered unchanged. 
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The temperatures resulting in 5% weight loss of the initial weight (Td
5) were noted 

by thermogravimetric analysis (TGA) of the polymers in a nitrogen atmosphere.  As 

listed in Table 2, the Fe(CO)3-coordination resulted in a significant decrease in the Td
5 

value, indicating that thermal liberation of the Fe(CO)3-units occurred during the analysis.  

Similar decrease in the Td
5 value by Fe(CO)3-coordination was also observed for 

polymers 1b when compared with 1a [5].  However, there can be seen no significant 

increase in the weight loss at 1000°C for polymers 4b and 5b relative to 4a and 5a. 

 
  

Figure 1  UV spectra of polymers 5a and 5b. 
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2.3. Applications of poly(organosilanylene-2,5-diethynylenesilole)s to 

hole-transports in EL devices 

 

Double layer EL devices having a spin-coated film of polymer 4a and 5a as the hole-

transport and vapor-deposited layer of Alq3 as the electron-transporting emitter were 

fabricated.  Figure 2 represents the current density-voltage (I-V) and luminance-voltage 

(L-V) plots of the devices.  As scan be seen in Fig. 2, the device with polymer 5a showed 

lower turn-on voltage than that with 4a, and always afforded higher current density and 

luminance in the applied voltage of 6-16 V with the maximum luminance of 300 cd/m2.  

This is in contrast to that polymer 4a exhibited the UV λmax at lower energy than 5a, and 

may be due to the higher concentration of π-conjugated unit in the film of monosilanylene 

polymer 5a.  Similar tendency was observed other organosilanylene-π-electron system 

alternating polymers [8,11]. 
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Figure 2  Current density-voltage (top) and 
Luminescence-voltage plots (bottom) for EL devices 
having a polymer film of (□) 4a and (○) 5a, as the hole-
transport. 
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Conclusions 
 

On the basis of the results described above, we demonstrated that 2,5-diethynylsilole 

unit may be used as the potential ligands to transition metal center, unless they have two 

sterically bulky substituents at the silole silicon atom.  The coordination of the Fe(CO)3-

unit to diethynylsilole system seems to provide an opportunity to modify the electronic 

states of the π-electron system.  Thus, by Fe(CO)3-coordination to 2,5-diethynylsilole 

unit led to suppressed conjugation in this system, in contrast to 3,4-diethynylsilole system 

whose coordination with Fe(CO)3 enhances the conjugation between the ethynyl groups 

through the silole π-system.  In addition, we found that the present silole-containing 

polymers 4a and 5a may be used as the hole-transport for EL devices.  

 

 
Experimental 

 

 4.1. General procedures 

All reactions were carried out under an atmosphere of dry nitrogen.  Benzene and 

xylene were dried over sodium-potassium alloy and sodium, respectively, and distilled 

just before use.  Triethylamine was distilled from potassium hydroxide and stored over 

activated molecular sieves 4A before use.  The starting compounds, 2,5-dibromo-1-

methyl-1,3,4-triphenylsilole [12], ethynyldimethylphenylsilane [13], and 1,1,2,2-

tetraethyldiethynyldisilane [14] were prepared as reported in the literature. 

 

4.2. Preparation of 2a 

A mixture of 0.50 g (1.04 mmol) of 2,5-dibromo-1-methyl-1,3,4-triphenylsilole, 40 

mg of PdCl2(PPh3)2, 6 mg of CuI, and 25 mL of triethylamine was stirred at room 

temperature for 30 min.  To this was added 0.66 g (4.15 mmol) of ethynyldimethyl-

phenylsilane and the mixture was heated under reflux for 15 h.  The resulting salts were 
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filtered and the solvent was evaporated.  The residue was subjected to silica gel column 

chromatography eluting with hexane to give a crude product.  Recrystallization of the 

crude product from hexane gave 0.25 g (37% yield) of 2a in pure form as the yellow 

solids.  Mp: 93-95°C.  1H NMR (CDCl3): δ 0.34 (s, 12H), 0.75 (s, 3H), 7.11-7.25 (m, 

25H).  13C{1H} NMR (CDCl3): δ 5.9, 0.7, 103.4, 106.7, 116.9, 122.6, 127.2, 127.6, 

127.7, 128.2, 129.1, 129.3, 130.3, 133.7, 134.6, 137.2, 163.7 (one carbon is overlapping).  

Anal. Calc. for C43H40Si3: C, 80.56; H, 6.29.  Found: C, 80.46; H, 6.02%.   

 

4.3. Preparation of 2b 

A mixture of 89 mg (0.24 mmol) of 2a and 0.109 g (0.555 mmol) of Fe(CO)5 in 1.3 

mL of xylene was heated at 150°C for 20 h, in a sealed glass tube.  The resulting 

insoluble materials were filtered and the solvent was evaporated.  The residue was 

subjected to preparative GPC eluting with benzene to give a crude product.  

Recrystallization of the crude product from ethanol gave 30 mg (66% yield) of compound 

2b in pure form as the pale brown solids. Mp: 126-128°C. 1H NMR (CDCl3): δ 0.36 (s, 

12H), 1.26 (s, 3H), 7.25-7.52 (m, 25H).  13C{1H} NMR (CDCl3): δ –5.2, –0.7, 42.9, 91.8, 

108.0, 110.6, 127.4, 127.6, 128.1, 129.0, 129.8, 131.8, 132.6, 133.4, 133.6, 135.2, 137.5, 

139.7, 209.2.  Anal. Calc. for C46H40FeO3Si3: C, 70.75; H, 5.16.  Found: C, 70.52; H, 

5.13%.   

The NMR spectra of the reaction mixture indicated the formation of the other isomer 

of 2b, which was removed by recrystallization.  1H NMR (CDCl3): δ 0.06 (s, 3H), 0.38 

(s, 12H), 7.11-7.57 (m, 25H, overlapping with the signals of 2b).  13C{1H} NMR 

(CDCl3): δ 1.0, 6.1, 41.4, 91.6, 108.7, 127.7, 128.0, 128.2, 129.1, 130.3, 133.6, 133.7, 

133.8, 134.1, 137.5, 208.4, signals of other carbons may overlap with those of 2b. 

 

4.4. Preparation of dibutyldiethynylsilane 

A solution of 0.40 mol of ethylmagnesium bromide in 350 mL of THF was added 
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slowly to 400 mL of THF saturated with acetylene over a period of 4 h, to prepare 

ethynylmagnesium bromide.  To the resulting solution of ethynylmagnesium bromide 

which may contain a small amount of ethynylenedimagnesium dibromide, was added 

10.64 g (0.05 mol) of dibutyldichlorosilane and the mixture was stirred at room 

temperature for 20 h.  After hydrolysis with water, organic layer was separated and the 

aqueous layer was extracted with ether.  The organic layer and the extracts were 

combined and dried over anhydrous magnesium sulfate.  Evaporation of the solvent and 

distillation of the residue under reduced pressure gave 8.82 g (92% yield) of 

dibutyldiethynylsilane.  Bp: 105-106°C (23 mmHg).  IR: 3290, 2027 cm-1.  1H NMR 

(CDCl3): δ 0.71-0.77 (m, 4H), 0.89 (t, 6H, J = 6.9 Hz), 1.31-1.50 (m, 8H), 2.46 (s, 2H).  
13C{1H} NMR (CDCl3): δ 13.6, 13.8, 25.5, 25.9, 84.7, 95.0.  MS m/z 192 (M+).  Anal. 

Calc. for C12H20Si: C, 74.92; H, 10.48.  Found: C, 75.22; H, 10.17%.   

 

4.5. Preparation of 4a and 5a 

   A mixture of 0.48 g (1.00 mmol) of 2,5-dibromo-1-methyl-1,3,4-triphenylsilole, 34 

mg of PdCl2(PPh3)2, 6 mg of CuI, and 12 mL of triethylamine was stirred at room 

temperature for 30 min.  To this was added 0.22 g (1.00 mmol) of tetraethyl-1,2-

diethynyldisilane and the mixture was stirred at 50°C for 48 h.  The resulting salts were 

filtered and the solvent was evaporated.  Reprecipitation of the residue from 

benzene/methanol gave 0.397 g (73% yield) of 4a.  Mp: 79-86°C.  IR: 2109 cm-1.  1H 

NMR (CDCl3): δ 0.58-1.16 (23H, Et and Me), 7.08-7.81 (15H).  13C{1H} NMR 

(CDCl3): δ –5.9, 5.0, 8.3, 102.8, 108.3, 122.6, 127.1, 127.4, 128.0, 129.2, 130.2, 132.1, 

134.5, 137.2, 162.7 (silole C2 and C5).  Anal. Calc. for (C35H38Si3)n: C, 77.42; H, 7.05.  

Found: C, 76.23; H, 7.00%.   

   Polymer 5a was obtained in the same fashion as above using tetraethyl-1,2-

diethynyldisilane in place of dibutyldiethynylsilane in 69% yield.  Mp: 85-91°C.  IR: 

2116 cm-1.  1H NMR (C6D6): δ 0.69-1.31 (m, 21H, Bu and Me), 7.08-7.81 (m, 15H, Ph).  
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13C{1H} NMR (C6D6): δ –5.7, 13.8, 14.9, 25.9, 26.0, 101.5, 106.0, 122.5, 127.1, 127.6, 

128.1, 129.3, 130.3, 131.9, 134.6, 137.1, 163.6 (silole C2 and C5).  Anal. Calc. for 

(C35H36Si2)n: C, 81.97; H, 7.08.  Found: C, 80.38; H, 6.99%.   

 

4.6. Preparation of 4b and 5b 

A mixture of 150 mg (0.28 mmol) of 4a and 0.433 g (2.20 mmol) of Fe(CO)5 in 30 

mL of benzene was irradiated with a high pressure mercury lamp (100 W) bearing a Pyrex 

filter with water-cooling for 2 h. The resulting insoluble materials were filtered the solvent 

was evaporated.  Reprecipitation of the residue from benzene/methanol gave 0.149g 

(79% yield) of 4b as the dark brown solids.  IR: 2120, 2049, 1983 cm-1.  1H NMR 

(C6D6): δ 0.39 (br s, 0.7H, exo-Me), 0.80-1.11 (m, 20.3 H, Et, overlapping with the Et 

and Me signals of Fe-noncoordinated units), 1.31 (br s, 2H, endo-Me), 7.00-7.65 (m, 15H, 

Ph, overlapping with the signals of Fe-noncoordinated units).  13C{1H} NMR (C6D6): δ 

–4.9, -6.2, 5.4, 8.7, 42.7, 44.4, 91.1, 91.6, 103.1, 110.8, 127.8, 128.9, 129.1, 129.5, 129.7, 

130.2, 130.8, 131.0, 132.1, 132.7, 133.9, 134.1, 134.6, 135.0, 135.8, 137.8 (Signals due 

to Fe-noncoordinated units were also observed).  Anal. Calc. for 

(C38H38FeO3Si3)0.9n(C35H38Si3)0.1n: C, 67.77; H, 5.73.  Found: C, 66.79; H, 5.68%.   

Polymer 5b was obtained from 5a in the same fashion as above in 57% yield 

(calculated as a wholly substituted polymer).  IR: 2121, 2051, 1986 cm-1.  Anal. Calc. 

for (C36H38FeO3Si2)n: C, 69.93; H, 5.56.  Found: C, 69.88; H, 5.90%.   

 

4.7. Preparation of EL devices 

A thin film (ca 70 nm) of polymer 4a or 5a was prepared by spin coating from the 

chloroform solution on an anode, indium-tin-oxide (ITO) coated on a glass substrate 

(Nippon Sheet Glass Co.).  An electron-transporting-emitting layer was then prepared 

by vacuum deposition of Alq3 at 1 × 10-5 torr with a thickness of 60-70 nm on the polymer 

film.  Finally, a layer of magnesium-silver alloy with an atomic ratio of 10:1 was 



28 
 

deposited on the Alq layer surface as the top electrode at 1  × 10-5 torr. 
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Chapter 2 

 

Hydrophobic modification of SiO2 surface with 
disilanobiphenyl and disilanobithiophene and the application 
to pentacene-based organic transistors 

 

 
Introduction 

 

Surface modification of inorganic oxide with organic modifiers is an important 

process in areas of surface and interface engineering.  Several silane coupling agents, 

such as chloro- and aminosilanes are widely used as the modifiers [1-4].  They react 

readily with hydroxyl groups on the surface (M-OH) to form M-O-SiR linkages covering 

the surface with organic groups (R).  By this process, the hydrophobicity of the surface 

is readily increased, making it possible to control the organic layer structure prepared on 

the surface.  Surface modification of the SiO2 gate electrode is of importance in organic 

thin film transistor (OTFT), which enhances the performance of the device [5-9].  This 

is ascribable to diminishing the carrier traps and changes of the interface properties.  For 

example, modification of SiO2 surface with trichlorosilanes, such as OTS 

(octadecyltrichlorosilane) results in the improved alignment of the organic molecules on 

the surface to enhance the semi-conducting properties of the organic layers.  However, 

the reactions of these coupling agents with M-OH groups on the surface produce HCl as 

the by-product that may damage the SiO2 surface and/or contaminate in the modified SiO2.  

In addition, trichlorosilanes usually possess high tendency to undergo hydrolysis even 

with atmospheric moisture, making their handling difficult.  Hydrolysis of 

trichlorosilanes must be avoided not only for storing, but also during the modification 

process, as their hydrolysis provides polysilsesquioxane polymers or oligomers that may 
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stack on the surface to disturb the formation of smooth single-molecular-modified surface, 

introducing defects of the active layer.  More stable aminosilanes including 

hexamethyldisilazane (HMDS) have been also used as hydrophobic modifiers.  

However, HMDS has only methyl groups, thereby difficult to realize highly hydrophobic 

surface.  Although aminosilanes with longer alkyl chains have been also studied, they 

are still limited [10]. 

Recently, we demonstrated that treatment of TiO2 surface with polymers composed 

of alternating Si-Si and π-conjugated units under UV irradiation resulted in attachment of 

the polymers on the surface through the formation of Ti-O-Si linkages (Scheme 1) [11-

15].  Interestingly, the modified TiO2 could be used as photo-electrodes of dye sensitized 

solar cells.  More recently, disilanobithiophene polymers were introduced as more 

efficient modifiers, which reacted with TiO2 surface even in the dark [16].  In this paper, 

we report the hydrophobic modification of SiO2 surface using 

tetramethyldisilanobiphenyl (DSBP, in Chart 1) as a new modifier.  They are stable 

under ambient conditions and can be stored for several months under room light in air 

without noticeable decomposition.  DSBP would have larger ring strain arising from the 

ortho-H repulsion than DSBT, thus being expected to be more reactive towards inorganic 

oxide surface.  A disilanobithiophene monomer (DSBT) was also investigated as a 

modifier in comparison with DSBP. 

 

 
Scheme 1  Modification of TiO2 surface with disilanobithiophene-
polymers. 
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Results and Discussion 

 

2.1. Modification of glass surface with disilanes 

 

To evaluate DSBP as a hydrophobic SiO2 modifier, we measured water contact 

angles of glass plates after treating with DSBP in dry argon.  When glass plates that had 

been ozone-cleaned were irradiated in toluene solutions of DSBP with different 

concentrations by a low-pressure mercury lamp (254 nm) for 3 h at 20-40 °C, the contact 

angles increased from 2° to approximately 60°, indicating the hydrophobic modification 

of the glass surface by DSBP (Table 1, run 1, 2, 4, and 5).  A control experiment in pure 

toluene under the same conditions provided the contact angle of 11°.  The slight increase 

of the contact angle in this process would be due to some contamination of organic 

substances.  Changes of the contact angles along increasing the irradiation time were 

monitored using a 3.5 M DSBP solution in toluene as shown in Figure 1.  The contact 

angles increased rapidly and was almost saturated after only 1 h irradiation.  Similar 

treatment with tetramethyldiphenyldisilane also provided hydrophobic surface with a 

contact angle of 70° (Table 1, run 6).  DSBP reacted with glass surface also under 

thermal conditions.  Thus, heating a glass plate in a DSBP toluene solution at 80 °C in 

the dark increased the contact angles.  However, the progress of the reaction was much 

Chart 1  Structures of DSBP and DSBT. 
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slower and the maximal contact angle obtained under the thermal conditions was 44°, 

smaller than that modified under similar conditions with irradiation (Table 1, run 3).  

Attempted modification of a glass plate with tetramethyldiphenyldisilane in the dark at 

80 °C was unsuccessful and the water contact angle of the resulting glass plate was only 

28° (Table 1, run 7).  This indicates that the ring strain in DSBP is essential to promote 

the surface modification by disilanes in the dark.   

DSBT was also applied as a hydrophobic modifier (Table 1, run 8 and 9).  Similarly 

to the experiments using DSBP, the glass surface was more efficiently modified under 

irradiation, increasing the water contact angles more rapidly than in the dark.  When 

compared to DSBP, the DSBT-modified glass plates had smaller contact angles.  The 

increase of the contact angles in the dark was unstable and the plots were scattered to an 

extent, as shown in Figure 1 (bottom, square plots), likely due to the rather ineffective 

modification of the surface. 
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Figure 1  Plots of water contact angles versus irradiation times of glass plates 
in DSBP (top) and DSBT (bottom) solutions (3.5 M). The presented error bar 
means two-side 95% confidence interval (± 2σ) based on measurements of 
twenty independent points of the glass surface. 
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Table 1 Water contact angles of glass plates after modification with disilanes in 
toluene for 3 h 

run disilane conc/M conditionsa contact angle/° 

1 DSBP 1.9 P 58 

2  3.5 P 63 

3   T 44 

4  5.9 P 63 

5  13.2 P 65 

6 (PhMe2Si)2 5.3 P 70 

7   T 28 

8 DSBT 3.5 P 50 

9   T 48 

10 nonb  P 11 

a P: under irradiation (254 nm); T: in the dark at 80 °C. b In pure toluene without disilane. 
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2.2. Applications of modified SiO2 to OTFTs 

 

As hydrophobic modification of SiO2 surface is of important process for the 

fabrication of organic thin film transistors, we examined DSBP as a modifiers of SiO2 

surface.  Although modification under irradiation resulted in higher hydrophobicity of 

the glass surface, SEM images of the surfaces revealed the existence of small particles (< 

1 μm).  These particles were not soluble in organic solvents and could not be removed 

by washing with toluene.  The EDX analysis of those formed from DSBT under 

irradiation showed that they contained sulfur, indicating that the particles had arisen from 

photochemical reactions of DSBT, leading oligomers and/or polymers that aggregated to 

form insoluble substances.  On contrary, much less particles were found to be formed on 

the thermally modified-surface.  On the basis of those observations, we concluded that 

thermally modified SiO2 would be more suitable for organic device fabrication.   

When an ozone-cleaned gate electrode of SiO2/Si was dipped in a 3.5 M DSBP 

solution in toluene at room temperature for 1 h, the contact angle of the SiO2 surface was 

increased from 14° to 56° (Figure 2).  Pentacene was vapor-deposited on the modified 

surface as the active layer then gate and source electrodes were deposited on the 

pentacene surface to complete a top-contact OTFT.  We also prepared a similar device 

without surface modification for comparison.  As summarized in Table 2, the 

modification did not show drastic changes of the OTFT performance parameters.  The 

AFM surface images and XRD patterns of the pentacene layers on modified and non-

modified SiO2 are shown in Figure 3a and 3b.  In contrast to our expectation, the grain 

size was decreased by using the modified SiO2.  This may be due to that the SiO2 surface 

was not sufficiently covered by DSBP.  When a DSBP solution with a higher 

concentration (6.0 M) was employed for the modification, the grain size was increased 

and the crystallinity was enhanced, as presented in Figure 3c.  Similar effects of 

hydrophobic modification affecting the pentacene morphologies on the surface have been 
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often reported [5-9,21,22].  This is ascribable to the changes of interaction between the 

surface and pentacene, which affect the formation seed crystals and diffusion of pentacene 

molecules.  Although the OTFT parameters were not significantly changed (Figure 4), 

an enhanced mobility was obtained by this modification.  Increased crystalline size is 

known to improve the carrier mobility mainly by reducing boundaries.  Capping the 

carrier trapping hydroxyl units with the modifier may also be a reason for the improved 

mobility of the device [5-9]. 

DSBT was also examined for OTFT preparation.  As shown in Table 2, however, 

modification by DSBT (3.5M) led to inferior device performance to that prepared using 

DSBP as the modifier at the same concentration, although the water contact angles were 

similar regardless of the modifiers (DSBT or DSBP).  The AFM and XRD analysis of 

the pentacene surface showed smaller grain size and lower crystallinity as compared with 

those of the DSBP-based OTFT, as shown in Figure 5. 
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Table 2 OTFT parameters with pentacene as active material, using SiO2/Si gate 
electrode with and without thermal modification by disilane 

disilane (conc/Ma) water contactb μFET
c Vth

c Ion/Ioff
c XRDd 

  angle /° /cm2V-1s-1 /V  d-space/Å 

DSBP (3.5)  56 0.14 -18 104 15.4 

(6.0)  47 0.21 -17 105 15.1 

DSBT (3.5)  55 0.11 -11 104 15.2 

non  14 0.16 -20 105 15.3 
a In toluene.  b Measured for the SiO2 surface.  c OTFT performance parameter.  d 
Measured for the pantacene layer. 
 
 

 

 

 

Figure 2  Water contact angle measurements of bear SiO2 (a), and SiO2 modified 
by 3.5 M DSBT (b), 3.5 M DSBP (c), and 6.0 M DSBP (d).  

(a) (b) 

(c) (d) 
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(a) 

(b) 

(c) 

Figure 3  AFM surface images and XRD patterns of the pentacene 
layers prepared on non-modified SiO2 (a), and that modified with 3.5 
M DSBP (b) and 6.0 M DSBP solutions (c). 

0.4 μm 

0.4 μm 

0.4 μm 
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Figure 4  Characteristics of the OTFT using bare SiO2 (a) and that modified 
with 3.5 M DSBP (b) and 6.0 M DSBP solutions (c). 
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Figure 5  AFM surface image and XRD pattern of the pentacene 
layer prepared on SiO2 modified with a 3.5 M DSBT solution, and 
Characteristics of the OTFT based on the DSBT-modified SiO2. 
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2.3. XRF and XAFS measurements of modified SiO2 

 

To confirm the modification of SiO2 surface by the disilanes, we carried out XRF 

and XAFS measurements of the DSBT-modified glass plate.  XRF and XAFS analyses 

of DSBT and a bare glass plate were also carried out for comparison.  As shown in 

Figure 6 (a), the XRF spectrum of DSBT-glass indicated the sulfur signal.  Although the 

bare glass also contained sulfur, significant amount of sulfur was deposited onto the SiO2 

surface. XAFS spectra of the DSBT-glass and the reference were shown in Figure 6 (b), 

and the similarities of the spectra confirmed that the framework of DSBT was maintained 

on the SiO2 surface after the modification. 

 

Figure 6  XRF (a) and XAFS (b) spectra of DSBT-modified glass 
plate (DSBT 4h) and bare glass plate. Reference XAFS spectrum 
obtained from a powder of DSBT was imposed in Figure 4(b). 

(a) 

(b) 



43 
 

Conclusions 
 

In summary, we demonstrated that DSBP and DSBT were efficient hydrophobic 

modifiers for SiO2 surface.  Thermal modification of SiO2 with DSBP was applied for 

the fabrication of OTFTs and the modification was found to affect the pentacene grain 

size and crystallinity, indicating the effective control of the SiO2 surface.  They are stable 

and clean modifiers that can be stored without any special care and produce no byproducts 

on reacting with the surface, and thus are useful for device technology.  It should be also 

noted that the modification leads to the formation of the surface attached almost directly 

by aromatic units.  This may exert influence on the formation of active layers composed 

of accumulated π-conjugated molecules, in contrast to conventional modifiers like OTS 

and HMDS that introduce aliphatic groups on the surface.  Recently, it has been 

demonstrated that phenyl- and phenethyltrichlorosilane are efficient surface modifiers of 

SiO2/Si to improve the OTFT performance [23,24].  It should be mentioned that 

hydrophobic modification of inorganic surface is of important process not only for OTFT 

but also for other organic electronic devices like organic photovoltaic cells.  Studies on 

applications of DSBP and DSBT to organic devices other than pentacene-based OTFTs 

are in progress. 

 

 
Experimental 

 

 4.1. Materials 

DSBP was prepared as reported in the literature [17,18].  Toluene used for 

modification of glass plates was distilled from CaH2 and stored over activated molecular 

sieves until use. 
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4.2. Preparation of DSBT 
DSBT was prepared in a fashion similar to that of 2,7-bis(trimethylsilyl)-4,4,5,5- 

tetramethyl-4,5-disilanobithiophene [19].  To a solution of 1.23 g (3.78 mmol) of 3,3’-

dibromo-2,2’-bithiophene in 125 mL of dry ether (distilled from CaH2 under argon) was 

added 4.88 mL (7.56 mmol) of a 1.60 M nBuLi in n-hexane at -80 °C over a period of 1 

h.  After the resulting mixture was stirred for 3 h at this temperature, 0.71 g (3.78 mmol) 

of a 20 mL ethereal solution of 1,2-dichlorotetramethyldisilane was added to the mixture.  

The mixture was stirred at room temperature overnight then hydrolyzed with water.  The 

organic layer was separated and the aqueous layer was extracted two times with 

chloroform.  The organic layer and the extracts were combined and dried over 

anhydrous MgSO4.  After evaporation of the solvent, the residue was subjected to silica 

gel column chromatography, followed by preparative GPC (gel-permeation 

chromatography) eluting with toluene to give 0.32 g (30 %) of DSBT as a light yellow 

solid: MS m/z 268 (M+); 1H NMR (δ in CDCl3) 0.32 (s, 12H, Me3Si), 7.10 (d, 2H, J = 5.0 

Hz, thiophene), 7.15 (d, 2H, J = 5.0 Hz, thiophene).   

 

4.3. Glass surface modification 

A glass plate (2.5 × 2.5 cm2) was washed with acetone under ultrasonic irradiation, 

then ozone-cleaned for 15 min using a PL16-110 photo surface processor (SEN LIGHTS 

Corp).  The plate was then dipped in a disilane solution in toluene in a dry argon 

atmosphere and irradiated with a 6 w low-pressure mercury lamp bearing a Vycor filter 

with a distance from the glass plate of approximately 10 cm.  The solution temperature 

was controlled to approximately 20-40 °C during irradiation.  After irradiation, the plate 

was thoroughly washed with toluene and dried in air.  The water contact angle was 

measured on a DM-300 contact angle meter (Kyowa Interface Science Co., Ltd.). 
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4.4. Top contact OTFT fabrication [20] 

A thermally oxidized and heavily doped silicon substrate SiO2/Si where 200 nm-

thick gate oxides had been grown on n-type CZ Si(100) (~0.1 Ωcm) in pyrogenic H2O 

atmosphere at 1000 °C for 33 min was dipped in a DSBP toluene solution at room 

temperature.  Pentacene was vapor deposited on the resulting disilane-modified SiO2 

gate insulator (deposition rate = 0.1 nm/s, operation pressure = 2 × 10-3 Pa, ambient 

temperature) to provide an active layer (80 nm thick).  Finally, gold source and drain 

electrodes were deposited on the pentacene layer through a shadow mask with the channel 

width and length of 50 μm and 1.5 mm, respectively.  The p-type transistor activity was 

measured at room temperature in vacuum with an Agilent 4155C semiconductor 

parameter analyzer. 

 

4.5. XRF and XAFS measurements 

   X-ray fluorescence (XRF) and X-ray absorption fine structure (XAFS) 

measurements were carried out on the BL11 of Hiroshima synchrotron light source 

(HiSOR). Samples were placed in the He chamber, and a commercial silicon drift detector 

(Amptek, Super SDD) was utilized for detecting S Kα lines from the sample. 

Monochromatized 2.490 keV X-rays were used for XRF measurements, and incident X-

ray energy was scanned from 2.460 keV to 2.469 keV for S K-edge XAFS measurements. 

The S K-edge XAFS spectra of DSBT-modified glass plate were obtained with X-ray 

fluorescence yield (XFY) method.   
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Chapter 3 

 

Hydrophobic modification of SiO2 surface by aminosilane 
derivatives 

 

 
Introduction 

 

Aminosilanes with hydrolysable Si-N bond(s) are useful reagents for the silylation 

of hydroxyl groups because they readily interact with alcohols (ROH) to form R-O-Si 

linkages under mild and neutral conditions, unless they are sterically congested.  It is 

also known that aminosilanes react with inorganic oxide surface for hydrophobic 

modification [1].  The moderately high reactivity of the Si-N bond allows the smooth 

transformation into a Si-O bond.  In addition, aminosilanes are sufficiently stable 

towards hydrolysis by atmospheric moisture to permit the use of them without special 

care.  However, aminosilanes are less used than chlorosilanes, which are widely 

employed as silylating reagents of hydroxyl groups [2,3], because of limited commercial 

sources. 

Organic electronics have received increasing attention because they are lightweight 

and flexible and can be fabricated easily at a low cost.  Organic thin-film transistors 

(OTFTs) have been intensively studied as organic integrated circuits for flexible displays, 

radiofrequency tags, and biological sensors.  A typical OTFT is composed of an organic 

semiconductor, a gate dielectric, and three electrodes (source, drain, and gate).  When 

voltage is applied between the source and drain electrodes, current flows through the 

organic semiconductor layer associated with charge carrier transport.  Although OTFTs 

have many advantages as mentioned above, they have significantly lower carrier mobility 

than silicon-based ones because of the hopping conduction mechanism and the defects 
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present at the interface between the organic semiconductor layer and the gate insulator.  

Improving the field-effect characteristics of OTFTs is required so that they can be used 

to replace silicon-based thin-film transistors.  For the improvement of carrier mobility, 

controlling the interface between the organic semiconductor layer and the gate dielectric 

layer is crucial because the interface is a critical part of field-effect devices.  

Alkyltrichlorosilanes, such as octadecyltrichlorosilane (OTS), are widely used as 

modifiers of inorganic oxide surface [4-8].  It has been proposed using the OTS and 

other trichlorosilane modifiers between the SiO2 gate dielectric and the semiconducting 

layer to improve field-effect characteristics [9-12].  The proposed method is effective 

because the active molecules, such as pentacene, on an alkyltrichlorosilane self-

assembled monolayer formed on the SiO2 gate dielectric are easily oriented.  However, 

making an ordered surface of the interface is marred by difficulty because chlorosilanes 

are easily hydrolyzed.  In addition, HCl generated as a by-product may react with the 

SiO2 surface to negatively influence OTFT characteristics.  Hexamethyldisilazane 

(HMDS), which is less prone to hydrolysis than chlorosilanes, is also used to make an 

ordered surface of the interface.  However, it is difficult to achieve sufficient 

hydrophobicity because HMDS has only short methyl chains.  Therefore, a surface 

modifier that is easy to handle in air and does not produce reactive by-products, such as 

HCl, is needed.  

In this paper, we report the synthesis of new stable aminosilane compounds that have 

long alkyl chains and liberate only amines that are much less reactive than HCl.  To 

confirm the effects of treatment with the new aminosilane compounds, we investigated 

the field-effect characteristics of OTFTs consisting of the SiO2 gate insulator treated with 

aminosilane modifiers.  Carrier mobility was improved considerably by more than 

twofold by utilizing an aminosilane-modified SiO2.  Recently, Roh et al. reported the 

application of similar silazanes (RMe2SiNHSiMe2R, R = methyl, propyl, butyl, octyl) as 

hydrophobic modifiers of the SiO2 surface for OTFT fabrication [13].  However, the 
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silazanes were used in the vapor form in a vacuum oven under careful temperature control.  

Our aminosilanes are easy-handled and can be used as a modifier in the solution form in 

air under ambient conditions, thereby presenting the advantage of high processability. 

 

 
Results and Discussion 

 

2.1. Synthesis of aminosilanes 

 

In general, bulky amino substituents are desired to improve the stability of 

aminosilanes towards atmospheric hydrolysis.  However, bulky substituents lead to less 

reactivity of the aminosilanes with the SiO2 surface and thus, careful choice of the amino 

substituents is essential.  The new aminosilanes for the present study were prepared, as 

shown in Scheme 1.  The reaction of trichlorooctylsilane with diethylamine at room 

temperature gave chlorobis(diethylamino)(n-octyl)silane (1).  The attempted preparation 

of tris(diethylamino)(n-octyl)silane in the presence of a large excess of diethylamine 

without solvent was unsuccessful.  Elevating the reaction temperature did not change the 

results and compound 1 was always obtained as the sole volatile product.  To prepare 

triamino(n-octyl)silane, we carried out a similar reaction with less hindered primary n-

propylamine and obtained tri(n-propylamino)(n-octyl)silane (2).  Monoamino(n-

octyl)silanes were also prepared in a fashion similar to 1 and 2.  Thus, with 

chlorodimethyl(n-octyl)silane, (diethylamino)dimethyl(n-octyl)silane (3) and (n-

butylamino)dimethyl(n-octyl)silane (4) were readily obtained, as shown in Scheme 1.  

These aminosilanes were readily purified by distillation from the reaction mixtures.  

They were sufficiently stable to allow handling in air.  For example, aminosilanes left to 

stand in air under ambient conditions for several minutes showed no detectable 

decomposition.  Although exposure to air for a long period resulted in gradual 

decomposition into the corresponding silanols and siloxanes, as illustrated in Figure 1 for 
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compound 3, ca. 80% of starting 3 remained unchanged even after standing in air for 2 h 

(Figure 1 (left)).  No decomposition products other than the corresponding silanol and 

siloxane were detected by GC-MS analysis of the reaction mixture.  We also compared 

the rate of hydrolysis of 3 with that of the corresponding chlorosilane.  As presented in 

Figure 1 (right), compound 3 was hydrolyzed more slowly than chlorodimethyl(n-

octyl)silane.  However, 3 suddenly disappeared after 2 h, likely due to the accelerated 

hydrolysis by diethylamine liberated by hydrolysis of 3 acting as a base catalyst. 

 

 

Scheme 1  Synthesis of aminosilanes. 
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Figure 1  Stability test of compound 3 and the corresponding chlorosilane in air at 
20-22 °C and 55-60% humidity.  Standing the neat sample (3 0.2 mL) (left) and 
stirring solutions of 3 and chlorodimethyl(n-octyl)silane (0.3 mL in 1 mL of THF, 
100 rpm) (right) in open vessels (45 mm high, 18 mmϕ bottom, and 10 mmϕ mouth) 
led to hydrolytic decomposition of the Si-N and Si-Cl bonds.  The composition was 
determined by GLC. 
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2.2. Application of modified SiO2 to OTFTs 

 

As the hydrophobic modification of SiO2 surface plays a key role in the high 

performance of OTFTs, we examined compounds 1-4 as the surface modifiers of SiO2.  

To know how the concentration of modifiers affect the surface properties, we carried out 

modification of glass surface using compound 3 as an example.  Glass plates pre-treated 

by an ozone-cleaner were immersed in a 0.1 M or 0.01 M toluene solution of 3 in dry 

argon and the changes of the surface hydrophobicity were monitored by water contact 

angle measurements.  As shown in Figure 2, the contact angles increased along the 

immersion time with a higher rate for the 0.1 M solution.  However, the maximal contact 

angles were essentially the same, regardless of the modifier concentration.  We therefore 

employed 0.1 M solutions of the modifiers for the following experiments, to achieve the 

saturated modification easily.  It should be also advised that 0.01 M solutions appeared 

to be too diluted to store them without non-neglisible hydrolytic decomposition under 

ambient conditions. 
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Figure 2  Changes of water contact angles of glass plates treated with 
0.1 M and 0.01 M toluene solutions of compound 3 in dry argon. 
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SiO2 was treated with toluene solutions of the presently prepared aminosilanes in air 

at room temperature for 24 h (method A) or at 60 °C for 20 min (method B) and the 

resulting modified SiO2 was washed with dry toluene.  The performance of top-contact 

OTFTs using the modified SiO2 as the gate insulator and vapor-deposited pentacene film 

as the active layer is summarized in Table 1, together with that of OTFTs bearing bare 

SiO2 and HMDS-modified SiO2 as the gate insulators for comparison.  As listed in Table 

1, all the devices fabricated in the present study exhibited good p-type activity.  When 

the SiO2 gate insulator was modified by HMDS at room temperature in toluene, a mobility 

of µFET = 0.44 cm2V-1s-1 was obtained, which was slightly higher than that based on bare 

SiO2 by 10%.  A sufficiently high Ion/Ioff ratio was retained (105), suggesting that the 

silylamine modification improved the device performance.  However, the mobility was 

nearly the same as that previously reported for an OTFT with SiO2 modified by HMDS 

vapor (µFET = 0.46 cm2V-1s-1) [13].  Using compound 1 as the modifier further improved 

the device performance and modification at a higher temperature led to an even higher 

performance with µFET = 1.02 cm2V-1s-1.  Similar effects of the alkyl chain lengths of 

silazane [13] and chlorosilane modifiers [14] on OTFT performance have been reported.  

In contrast, compound 2 exhibited negative effects as the modifier.  The device 

performance was suppressed with lowered mobility regardless of treatment temperature.  

With compounds 3 and 4, we again observed improved device performance with mobility 

as high as 1 cm2V-1s-1.  It is noteworthy that modification of the SiO2 gate electrode 

proceeded nicely with compound 3 even at room temperature; the mobility is slightly 

higher than that reported for the OTFT with SiO2 modified by silazane 

OctMe2SiNHSiMe2Oct vapor (µFET = 0.84 cm2V-1s-1) [13].  The Ion/Ioff ratios were also 

improved to 106 with 3 and 4, although direct comparison of the performance was difficult 

for devices prepared by different research groups due to differences in the detailed 

fabrication conditions.  The deposition of the pentacene layer on SiO2 heated at 60 °C 

did not significantly affect the results but slightly suppressed the performance, although 
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this procedure is often employed to enhance the ordered aggregation of pentacene 

molecules. 

 
Table 1  OTFT parameters based on modified and non-modified SiO2 gate 
insulators 
Modifier Method µFET/cm2V-1s-1 Vth/V Ion/Ioff 

Non  0.40 -15 105 
HMDS A 0.44 -4 105 
1 A 0.53 -10 105 

 B 1.02 -12 106 
2 A 0.12 -10 105 

 B 0.28 -22 105 
3 A 0.98 -13 106 

 B 0.40 -11 106 

4 B 1.10 -13 106 

aA: at room temperature for 24 h; B: at 60 °C for 20 min. 

 

 

An optical microscope image of SiO2 surface modified by compound 2 is presented 

in Figure 3, showing the formation of aggregates as small dots.  Presumably, hydrolytic 

polymerization forming insoluble solids occurred during the surface modification process.  

As shown in Scheme 2, it is speculated that tri-functional compound 2 undergoes 

hydrolysis/condensation polymerization to yield network polymers that are insoluble in 

toluene (B), competing with the expected single-layer modification of the SiO2 surface 

(A).  This seems to be responsible for the lowered performance of the device with SiO2 

modified by compound 2.  Polymerization on the surface may also be involved (C).  In 

contrast, compounds 3 and 4 formed flat surfaces and no formation of insoluble 

aggregates was observed in the microscope images.  These mono-functional compounds 

should lead to only silanols or dimeric siloxanes as the by-products that are soluble in 

toluene and can be easily removed by washing the modified SiO2 with toluene, even 
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though hydrolysis/condensation takes place during the modification process.  This is 

similar to dichloro- and trichloroalkylsilanes whose reactions with SiO2 surface competed 

with the self-oligomerization depending on the conditions [15].  Compound 1 also 

provided a flat surface despite its tri-functionality.  It is likely that only the Si-Cl bond 

is reactive in compound 1 under the conditions, because of the steric bulkiness of the 

bis(diethylamino) substitution, leading to the formation of silanol and siloxane only with 

two diethylamino groups on the silicon atom remaining unchanged.  It is also likely that 

the formation of aggregates from 2 can be avoided by carrying out the modification under 

an inert atmosphere, e.g. in dry argon.  However, this makes the process complicated 

and difficult to perform. 

 

 

 

 

 

 

 

 

Figure 3  Optical microscope image of SiO2 surface 
modified by compound 2. 
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Scheme 2  Reactions of compound 2. 

Scheme 3  Reactions of compounds 1, 3, and 4. 
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The hydrophobic modification of the SiO2 surface was confirmed by water contact 

angle measurements.  The contact angle increased from 13.7° for bare SiO2 to 102.5° 

for that modified by compound 4 at 60 °C (Figure 4).  We conducted AFM analysis of 

the pentacene layer, as presented in Figure 5, to clarify the influence of modifiers and 

modification conditions (A or B in Table 1) on the morphology.  In general, larger grain 

size leads to fewer boundaries to enhance the mobility.  AFM measurements of the 

pentacene layer prepared on compound 2-modified SiO2 were difficult to perform, 

because of the large gaps due to the insoluble aggregates.  Images of rather flat areas 

were obtained, as presented in Figures 5b and 5c, showing the formation of small grains 

for both conditions A and B.  When modified by compound 3, condition A provided 

larger grains than condition B, as shown in Figures 5d and 5e.  This matches the fact 

that condition A gave a higher mobility than condition B for the modification by 

compound 3, although we have no explanation as to why condition A resulted in a larger 

grain size than condition B.  Even larger grains are seen when compound 4 was used as 

the modifier (Figure 5f), in accordance with the fact that compound 4 yielded the highest 

OTFT mobility.  Pentacene formed a rather heterogeneous surface consisting of small 

and large grains when deposited on bare SiO2 (Figure 5a).  In contrast, the AFM images 

of pentacene layers that provided high mobility (Figures 5d-5f) revealed the formation of 

large grains with narrower size distribution.  Figure 6 depicts the response curves of the 

OTFT based on SiO2 modified by the present aminosilanes.  XRD patterns of the 

pentacene layers prepared on bare SiO2 and that modified by 4 are presented in Figure 7, 

which indicates higher crystallinity for the layer on bare SiO2.  It is known that enhanced 

crystallinity usually leads to higher carrier transporting properties.  In the present case, 

however, narrower grain size distribution seems to play a more important role on the 

device performance. 
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Figure 4  Water contact angle measurements for bare SiO2 (a) and that 
modified by compound 4 at 60 °C. 

(b) (a) 

(a) (c) (b) 

(d) (e) (f) 

Figure 5  AFM surface images of pentacene layers prepared on bare SiO2 (a) 
and modified SiO2 by compound 2 under conditions A (b) and B (c), by compound 
3 under conditions A (d) and B (e), and by compound 4 under conditions B (f). 
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Figure 6  Characteristics of OTFT using SiO2 modified by compounds 1-4 (a-d). 
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Conclusions 

 

In summary, we demonstrated that aminosilanes with long alkyl chains were 

efficient hydrophobic modifiers of the SiO2 surface.  To explore the application of the 

modified SiO2, we fabricated OTFTs using the modified SiO2 as the gate insulator and a 

vapor-deposited pentacene film as the active layer and evaluated the activity of the 

resulting OTFT in comparison with that based on bare SiO2 as the reference device.  

OTFT with SiO2 modified by triaminosilane 2 showed suppressed OTFT activity 

compared with the reference device.  Aminosilanes 1, 3, and 4 exhibited excellent ability 

as modifiers for OTFT applications and the device performance was remarkably 

improved to provide 2.4- to 2.8-fold higher mobility.  This is likely due to the longer 

alkyl chains of 1, 3, and 4, in contrast to HMDS, a typical aminosilane surface modifier, 

which improved the mobility by only 10%.  The present aminosilane modifiers do not 

emit HCl as the by-product and the modification can be carried out in air, in contrast to 

well-established chlorosilane modifiers, which give them distinct advantage for use as 

electronic device materials.  The higher stability of aminosilanes towards moisture leads 
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Figure 7  XRD patterns for pentacene layer prepared on bare SiO2 (a) and that 
modified by compound 4. 
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to easier-handling of aminosilanes than the chlorosilane congeners.   

In particular, compound 3 reacts with SiO2 even at room temperature to provide a 

sufficiently modified surface, proving the high potential of this compound as an efficient 

modifier.  Mono-functional aminosilanes with a long alkyl chain can be a better 

structure-design, which generate only the corresponding silanols and disiloxanes that are 

readily removed by washing with organic solvents, giving rise to a certain advantage as 

compared to multi-functional compounds, like 2, that form cross-linked insoluble 

aggregates, unless it is used under carefully controlled dry conditions. 

 
 

Experimental 
 

 4.1. General procedures 

All synthetic reactions for new amionosilanes 1-4 were carried out under an 

atmosphere of dry nitrogen.  Diethyl ether and toluene were distilled from calcium 

hydride and stored over activated molecular sieves until use.  Starting reagents, n-

butylamine, diethylamine, and n-propylamine, were distilled from potassium hydroxide 

and stored over activated molecular sieves 4A until use.  NMR spectra were measured 

on Varian 400-MR and Varian System 500 spectrometers at ambient temperature.  EI-

MS spectra were obtained on a Shimadzu QP5050A spectrometer.  AFM images were 

obtained in the “tapping mode” with Digital Instruments NanoScope IIIa.  Water contact 

angles on the modified glass plates were measured on a Kyowa DM300 contact angle 

meter. 
  

4.2. Preparation chlorobis(diethylamino)(n-octyl)silane (Compound 1) 

To a solution of 21.0 g (84.8 mmol) of trichloro(n-octyl)silane in 250 mL of 

Et2O/THF = 1/4 was added slowly 60.0 mL (0.575 mol) of diethylamine at 0 ºC and the 

mixture was stirred at room temperature for 10 h.  To the resulting mixture was added 60 
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mL of hexane to complete precipitation of the resulting by-product diethylammonium 

chloride (Et2H2NCl).  After filtration, the solvent was evaporated and the residue was 

distilled under reduced pressure to provide 8.10 g (30% yield) of compound 1: bp 94 ºC 

(0.4 mmHg). GC-MS m/z 320 (M+ for 35Cl). 1H NMR (δ in CDCl3) 0.80-0.83 (m, 2H, -

CH2Si), 0.88 (t, 3H, CH3-octyl, J = 5.6 Hz), 1.01 (t, 12H, CH3CH2N, J = 5.6 Hz), 1.12-

1.42 (m, 12H, CH2-octyl), 2.89 (q, 8H CH2N, J = 5.6 Hz). 13C NMR (δ in CDCl3) 14.8, 

15.5, 17.6, 23.4, 23.7, 29.91, 29.93, 32.6, 33.9, 39.4.    

 

4.3. Preparation of tri(n-propylamino)(n-octyl)silane (Compound 2) 

To a solution of 8.0 mL (35 mmol) of trichloro(n-octyl)silane in 80 mL of THF was 

added slowly 21.0 mL (0.256 mol) of n-propylamine at 0 ºC and the mixture was stirred 

at room temperature for 10 h. To the resulting mixture was added 30 mL of hexane to 

induce the complete precipitation of the resulting by-product n-propylammonium 

chloride (n-PrNH3Cl). After filtration, the solvent was evaporated and the residue was 

distilled under reduced pressure to provide 7.89 g (72% yield) of compound 2: bp 116-

119 ºC (1 mmHg). GC-MS m/z 315 (M+). 1H NMR (δ in CDCl3) 0.46 (t, 2H, CH2Si, J = 

8.0 Hz), 0.57 (br s, 3H, CH3-octyl), 0.84-0.91 (m, 12H, CH2-octyl), 1.25-1.31 (m, 12H, 

NH and CH3-Pr), 1.37 (sept, 6H, CH2-Pr, J = 6.8 Hz), 2.68 (t, CH2N, J = 6.8 Hz). 13C 

NMR (δ in CDCl3) 11.4, 14.10, 14.13, 22.7, 23.9, 27.9, 29.29, 29.35, 32.0, 33.7, 43.4. 

 

4.4. Preparation of diethylamino-1,1-dimethyl(n-octyl)silane (Compound 

3) 

To a solution of 10.0 mL (42.3 mmol) of chlorodimethyl(n-octyl)silane in 80 mL of 

THF was added slowly 10.5 mL (0.101 mol) of diethylamine at room temperature and the 

mixture was stirred for 10 h.  To the resulting mixture was added 30 mL of hexane to 

induce the complete precipitation of the resulting by-product diethylammonium chloride 

(Et2H2NCl).  After filtration, the solvent was evaporated and the residue was distilled 
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under reduced pressure to provide 7.80 g (76% yield) of compound 3: bp 65-69 ºC (1 

mmHg). GC-MS m/z 243 (M+). 1H NMR (δ in CDCl3) 0.03 (s, 6H, CH3Si), 0.51-0.55 (m, 

2H, CH2Si), 0.90 (br t, 3H, CH3-octyl), 0.98 (t, 6H, CH3-ethyl, J = 7.2 Hz), 1.23 (br s, 

12H, octyl), 2.80 (t, CH2N, J = 7.2 Hz). 13C NMR (δ in CDCl3) -1.8, 14.2, 15.9, 17.0, 

22.8, 24.0, 29.4, 29.5, 32.1, 33.9, 40.0. 

 

4.5. Preparation of (n-butylamino)-1,1-dimethyl(n-octyl)silane 

(Compound 4) 

Into a three-necked flask fitted with a dropping funnel were added 3.38 g (46.2 

mmol) of n-butylamine and 20 mL of diethyl ether.  To this was added 4.25 g (15.2 

mmol) of dimethyloctylchlorosilane at 0 °C.  After the resulting mixture was stirred at 

0 °C for 2 h, it was warmed to room temperature and stirred overnight.  After the mixture 

was filtered to remove the by-product n-butylammonium chloride (n-BuH3NCl) and the 

solvent evaporated, the residue was distilled under reduced pressure to give 2.45 g (49% 

yield) of compound 4 as a colorless liquid: bp 124 °C (7.4 mmHg). EI-MS m/z 243 (M+). 
1H NMR (δ in CDCl3) 0.00 (s, 6H, Si-Me), 0.48 (s, 1H, N-H), 0.50 (t, 2H, J = 7.2 Hz), 

0.86-0.91 (m, 7H, Pr, J = 7.2Hz), 1.26-1.28 (m, 15H, hep, J = 7.2 Hz), 2.68 (q, 2H, NH-

CH2, J = 7.2 Hz). 13C NMR (δ in CDCl3) 1.78, 13.95, 14.12, 16.79, 19.98, 22.69, 23.69, 

29.29, 29.37, 31.96, 33.65, 37.00, 41.62.   

 

4.6. Top-contact OTFT fabrication 

A thermally oxidized and heavily doped silicon substrate SiO2/Si where 200 nm-

thick gate oxides had been grown on n-type CZ Si(100) (~0.1 Ωcm) in pyrogenic H2O 

atmosphere at 1000 ℃ for 33 min was dipped into a dry toluene solution of a surface 

modifier (0.1 M) in a covered Petri dish in air at room temperature for 1 day (method A) 

or at 60 °C for 20 min (method B).  Onto the surface-modified SiO2 gate insulator (210 

nm thick) was vapor-deposited a pentacene layer (80 nm thick) at the deposition rate of 
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0.1 nm/s under the reduced pressure of 2 × 10-3 Pa at ambient temperature.  Finally, gold 

source and drain electrodes were deposited on the pentacene layer through a shadow mask 

with the channel width and length of 50 μm and 1.5 mm, respectively. p-Type transistor 

activity was measured at room temperature in vacuum with an Agilent 6155C 

semiconductor parameter analyzer. 
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Summary 
 

In the thesis, the author described the synthesis and reactivity of silicon-containing 

compounds, optical and electrical properties, and applicability to electronic devices. 

The author prepared polymers containing Fe(0)-coordinated 2,5-diethynylsilole 

units and discussed them compared to their properties of the 3,4-diethynylsilole 

polymers.  The 2,5-diethynylsilole unit can form complex with Fe(CO)5 and the bond 

order of C2-C3 and C4-C5 of silole changes and affects the conjugation length.  The 

2,5-diethynylsilole unit may be used as the potential ligands to transition metal center.  

The author indicated that the coordination of the Fe(CO)3-unit to diethynylsilole system 

seems to provide an opportunity to modify the electronic states of the π-electron system. 

The author described the hydrophobic modification of SiO2 surface using 

tetramethyldisilanobiphenyl (DSBP), tetramethyldisilanobithiophene (DSBT), and 

n-octylaminosilane derivtives as new modifiers. 

DSBP and DSBT can react with inorganic oxide surface by UV irradiation.  

Hydrophobic modification of the gate insulator (SiO2) with DSBP affects the crystal 

grain size and crystallinity of pentacene and the carrier mobility.  The author showed 

that DSBP and DSBT are stable and clean modifiers that can be stored without any 

special care and produce no byproducts on reacting with the surface, and thus are useful 

for device technology. 

Aminosilanes were found to be also effective hydrophobic modifiers that do not 

emit HCl as the by-product.  The modification can be carried out in air, in contrast to 

well-established chlorosilane modifiers, which give them distinct advantage for use as 

electronic device materials.  The higher stability of aminosilanes towards moisture 

leads to easier-handling of aminosilanes than the chlorosilane congeners. 

The silicon-containing compounds are promising materials for the improvement of 

organic electronic devices and will contribute greatly to these developments. 
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