広島大学学術情報リポジトリ Hiroshima University Institutional Repository

Title	Screening for yeast mutants defective in recipient ability for transkingdom conjugation with Escherichia coli revealed importance of vacuolar ATPase activity in the horizontal DNA transfer phenomenon
Author(s)	Mizuta, Mami; Satoh, Emi; Katoh, Chika; Tanaka, Katsuyuki; Moriguchi, Kazuki; Suzuki, Katsunori
Citation	Microbiological Research , 167 (5) : 311 - 316
Issue Date	2012-05-20
DOI	10.1016/j.micres.2011.10.001
Self DOI	
URL	https://ir.lib.hiroshima-u.ac.jp/00046884
Right	© 2012. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/ licenses/by-nc-nd/4.0/ This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際 には出版社版をご確認ご利用ください。
Relation	

1	Screening for yeast mutants defective in recipient ability for transkingdom
2	conjugation with <i>Eschelichia coli</i> revealed importance of vacuolar ATPase
3	activity in the horizontal DNA transfer phenomenon
4	
5	Mami Mizuta, Emi Satoh, Chika Katoh, Katsuyuki Tanaka, Kazuki Moriguchi,
6	Katsunori Suzuki*
7	
8	
9	Running title:
10	Yeast mutants defective in recipient ability for transkingdom conjugation with E. coli
11	
12	Key words: Horizontal gene transfer, Gene transfer from bacteria to eukarya,
13	Transkingdom sex, Broad host range plasmid
14	
15	*Corresponding author:
16	Prof. Katsunori Suzuki
17	Department of Biological Science, Graduate School of Science
18	Hiroshima University
19	Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
20	Phone: +81-82-424-7455, Fax: +81-82-424-0734
21	E-mail: ksuzuki@hiroshima-u.ac.jp
22	
23	
24	

1 Abstract

2	Proteobacterium Escherichia coli strains harboring wide-transfer-range conjugative
3	plasmids are able to transfer these plasmids to several yeast species. Whole plasmid
4	DNA is mobilizable in the transkingdom conjugation phenomenon. Owing to the
5	availability of various conjugative plasmids in bacteria, the horizontal DNA transfer has
6	potential to occur between various bacteria and eukaryotes. In order to know host factor
7	genes involved in such conjugation, we systematically tested the conjugability of strains
8	among a yeast library comprising single-gene-knockout mutants in this study. This
9	genome-wide screen identified 26 host chromosomal genes whose absence reduced the
10	efficiency of the transkingdom conjugation. Among the 26 genes, 20 are responsible for
11	vacuolar ATPase activity, while 5 genes (SHP1, CSG2, CCR4, NOT5, and HOF1) seem
12	to play a role in maintaining the cell surface. Lack of ZUO1 gene, which encodes a
13	component of the ribosome-associated cytoplasmic molecular chaperone, also strongly
14	affected transkingdom conjugation.
15	

Key words: Horizontal gene transfer / Conjugation / Transfomation / Saccharomyce
 cerevisiae / Interaction between bacteria and eukarya

 $\mathbf{2}$

1 Introduction

 $\mathbf{2}$

3	Bacteria are promiscuous in exchanging genetic materials even among different
4	kingdom. The Gram negative bacterium Escherichia coli harboring a wide transfer
5	range type conjugative plasmid can transfer mobile plasmid DNAs even to bacteria of a
6	different kingdom group (Bushman, 2002) —i.e. Gram positive bacteria (Gormley and
7	Davies, 1991). Recent genomic studies have revealed a number of remnants of
8	horizontal DNA transfer between bacteria and eukaryotes. It is well known that
9	pathogenic Agrobacterium species can genetically transform plants by putting a portion
10	of their pathogenic plasmid pTi and pRi into plant nuclei by the virulence gene action in
11	nature (Zupan et al., 2000; Suzuki et al., 2009). In addition, experimentally reproducible
12	examples of DNA transfer from bacteria to eukaryotes are increasing (Heinemann and
13	Sprague, 1989; Waters, 2001; Schröder et al, 2011; Fernández-González, 2011).
14	Gram-negative bacteria harboring wide-host-range conjugative plasmids can transfer
15	these plasmids to yeasts (Heinemann and Sprague, 1989; Sikorski et al., 1990;
16	Nishikawa et al., 1990 and 1992; Hayman and Bolen, 1993; Inomata et al., 1994; Bates
17	et al., 1998). Whole plasmid DNA is mobilizable in the <i>t</i> ranskingdom <i>c</i> onjugation
18	(TKC) phenomenon. Various conjugative plasmids are available in bacteria (Thomas,

1	1989). TKC is interesting from an evolutional view point and increase of its efficiency
2	is expected from a biotechnogical view point. Combination of a derivative of RK2 as
3	ahelper with incQ-type mobilizable plasmids allowed us to demonstrate the rare
4	integration of mobilized DNA into yeast chromosomes (Nishikawa et al., 1992).
5	The conjugation plasmids are essential in TKC (Heinemann and Sprague, 1989). Cell
6	density and choice of suitable yeast gene and plasmids affect the E. coli-yeast
7	conjugation (Heinemann and Sprague, 1989; Bates et al., 1998). Mechanisms for yeast
8	cells to recognize donor bacterial cells and accept plasmid DNAs are not yet reported.
9	Mutant strains defective in TKC if available would help to study the molecular
10	mechanism of TKC. In this study, we screened yeast mutants with decreased efficiency
11	as the recipients of TKC.

1	Materials	and	methods
1	Materials	and	methods

 $\mathbf{2}$

Donor and recipient strains

5	Bacterial and yeast strains used in this study are listed in Table 1. Yeast strains BY4742
6	and the complete set of $MAT\alpha$ knockout mutants (the Saccharomyces Genome Deletion
7	Project consortium) derived from BY4742 were purchased from Invitrogen (CA, USA).
8	Yeast strains BY4741, BY4743 and several knockout mutants were kindly provided by
9	Drs. T. Miyakawa and M. Mizunuma (Hiroshima University), J. Shima and S. Andoh
10	(National Food Research Institute, Tsukuba, Japan).
11	
12	E. coli -yeast mating conditions
12 13	E. coli -yeast mating conditions
12 13 14	<i>E. coli</i> -yeast mating conditions Quantitative <i>E. coli</i> -yeast mating experiment was carried out essentially as described by
12 13 14 15	<i>E. coli</i> -yeast mating conditions Quantitative <i>E. coli</i> -yeast mating experiment was carried out essentially as described by Nishikawa et al (1990) with some modification: one hr co-cultivation on YPD agar {2%
12 13 14 15 16	<i>E. coli</i> -yeast mating conditions Quantitative <i>E. coli</i> -yeast mating experiment was carried out essentially as described by Nishikawa et al (1990) with some modification: one hr co-cultivation on YPD agar {2% peptone (Daigo-Eiyo, Tokyo), 1% yeast extract (Difco), 2% glucose and 2% agar} in
12 13 14 15 16 17	<i>E. coli</i> -yeast mating conditions Quantitative <i>E. coli</i> -yeast mating experiment was carried out essentially as described by Nishikawa et al (1990) with some modification: one hr co-cultivation on YPD agar {2% peptone (Daigo-Eiyo, Tokyo), 1% yeast extract (Difco), 2% glucose and 2% agar} in place of 12 hr co-cultivation.

18 For mutant screening using the yeast deletion strains, the following co-cultivation

1	and selection was carried out. Yeast strains were streaked on YPD agar using toothpicks
2	and incubated overnight at 28°C for preculture. Five μ l of cell suspension (3x10 ⁹)
3	cells/ml) of the donor <i>E. coli</i> strain HB101(pRH210, pAY205) was spotted on TN agar
4	{TrisHCl (pH 7.5)}. A small quantity of yeast cells was taken from the overnight YPD
5	agar culture, and then mixed with the donor E. coli cell suspension on the TN agar using
6	a plastic inoculation loop. The liquid portion of the mixture was absorbed in the agar in
7	several minutes. The mixture was kept overnight at 28°C, and then transferred using a
8	plastic inoculation loop onto SC-ura agar (0.67% yeast nitrogen base w/o amino acid
9	(Difco), 2% glucose, 2% agar supplemented with lysine, leucine and histidine), which is
10	selective for the resulting yeast transconjugant cells.
11	When recipient yeast strains were prototrophic for uracil (Ura^+) and/or had an
12	additional mutation that causes auxotrophy for uracil, the donor strain was replaced with
13	HB101(pRH220, pMZ1) or HB101(pRH220, pMZ2) and leucine in the selective agar
14	was omitted in place of uracil.
15	
16	Plasmids and plasmid construction
17	
18	The plasmids used in this study are listed in Table 1. Transkingdom mobilization

17	Miscellaneous genetic and biochemical methods
16	
15	(University of Utah).
14	pUC19-stv1::HIS3. pTF63 and pCWH36 were kindly provided by Dr. J. Kaplan
13	gene released from pUC19-HIS3 by digestion with SmaI and HincII, resulting in
12	fragments (1.4 kbp in total) inside the STV1 gene were removed and replaced with HIS3
11	pUC19 harboring 4.5-kbp XbaI-KpnI fragment containing the STV1 gene. Two BanIII
10	genes were cloned in either one of pRS313, YEp351 and YEp352. pUC19-STV1 is a
9	added artificially to 5' part of the primer sequences, where necessary. Chromosomal
8	downstream from the target ORF. Recognition sequences for restriction enzymes were
7	primers designed based on the genomic sequences, 0.5-kbp upstream and 0.5-kbp
6	genes were amplified by PCR by KOD-plus DNA polymerase (Toyobo, Japan) using
5	AatII and HindIII, resulting in a 12.4-kbp plasmid pMZ2 (Table 1). Yeast chromosomal
4	plasmid pMZ1 (Table 1). The 9-kbp fragment was ligated with YEp351 cleaved with
3	was ligated with YEp351 cleaved with the same pair of enzymes, resulting in a 14.6-kbp
2	Harwood, 1993) was cleaved with SmaI and HindIII. A 9-kbp fragment of the digest
1	plasmids pMZ1 and pMZ2 were constructed as follows. Plasmid pHRP309 (Parales and

 $\mathbf{5}$

1	Growth and or drug sensitivity was tested as follows. A series of serially diluted yeast
2	cell suspension were spotted onto solid media, and then incubated at 28° C for several
3	days to check cell growth.
4	Yeast Li transformation method followed Gietz and Woods (2002). Techniques for
5	extraction and purification of genomic DNA and plasmid DNA, and construction of
6	recombinant plasmid DNA were essentially as described by Maniatis et al. (1982).
7	
8	
9	Results
10	
11	In order to identify the chromosomal genes important for TKC, we screened the series
12	of yeast mutants, each of which has a G418-resistance gene tag in place of respective
13	chromosomal ORF in the yeast nuclear genome.
14	
15	Identification of the 26 yeast chromosomal genes affecting transkingdom
16	conjugation
17	
18	The TKC condition described in "Materials and methods" enabled the wild-type

1	parental strain BY4742 to exhibit confluent growth of transconjugant yeast cells on
2	selective agar (SC-ura) after co-cultivation on TN agar with the donor E. coli
3	HB101(pRH210, pAY205). We screened the strains in the complete set of $MAT\alpha$
4	knockout strains for mutants defective in the ability to form such transconjugant cells.
5	We detected yeast mutant strains exhibiting no transconjugant growth or growth of an
6	apparently smaller number of transconjugant colonies on the selective SC-ura agar after
7	the co-cultivation. The strains were tested further twice by the same method. To
8	evaluate mutants that had an additional auxotrophic mutation, the required additional
9	nutrient for each of the mutants was supplemented to the selective agar at the repetitive
10	steps. In further screening steps and TKC test was carried out again using the selective
11	agar, the co-cultivation condition was modified because there was a possibility that the
12	overnight co-cultivation on TN agar induced serious damage, owing to starvation, cell
13	lysis and something like those, in some mutants. We therefore replaced the TN agar with
14	the rich medium YPD agar, which was used for preculture, and shortened the length of
15	co-cultivation with the donor <i>E. coli</i> down to 1 hour. In addition, not only the number of
16	transconjugant cells but also the number of viable yeast cells was counted after
17	co-cultivation to normalize the transconjugant frequency by dividing the transconjugant
18	cell number by the number of viable cells. We called the resultant normalized value

1	"TKC efficiency." As shown in Table 2 , a total of 27 strains exhibited less than about
2	15% of the wild-type efficiency and most strains exhibited only several or less percent
3	of the wild-type efficiency. Table 2 also shows the function of each gene that is
4	disrupted in each mutant strains. In total, a deletion at each of 26 genes was found to
5	affect TKC efficiency well.
6	We confirmed the linkage between each mutation and the defect in the
7	transkingdom conjugability (Table 2) as the following. Mutant strains in MATa
8	background also exhibited TKC deficiency in the TKC and introduction of a plasmid
9	containing the corresponding wild type gene recovered the TKC activity.
10	
11	vATPase mutants
12	
13	Of the 27 mutants, 21 had deletions of genes responsible for vATPase activity. Among
14	the 20 genes involved, 13 were structural genes for the subunits of the enzyme (Graham
15	et al., 2003; Davis-Kaplan et al., 2004). The strain YCL007C (<i>cwh36</i> Δ) had a deletion at
16	the overlapping gene VMA9, which encodes the smallest subunit of vATPase. In all,
17	genes for every subunit proteins except one were contained in these 13 genes, whereas
18	the subunit "a" gene did not appear in the list. The "a" subunit in the V_0 sector of

2	(Kawasaki-Nishi et al., 2001). As shown in Fig. 1 , the $stv1\Delta$ mutation (strain 149B8)
3	had a subtle effect, while the $vph1\Delta$ mutation (strain 144H12) indicated a little effect.
4	Therefore, we prepared a double-mutant strain by disrupting STV1 gene in the $vph1\Delta$
5	strain. As shown in Table 3(a) , the double mutant ($vph1\Delta$ and $stv1::HIS3$) exhibited
6	very low efficiency, comparable to those of the other subunit mutants (Table 2).
7	Therefore, it is clear that every subunit of vATPase is prerequisite for TKC.
8	Each mutant in three genes (VPH2/VMA12, VMA21 and VMA22) responsible for the
9	assembly of the vATPase subunits in ER (Graham et al., 2003) showed low TKC
10	efficiency (Table 2).
11	TKC defect was also observed in mutants in each of two genes VPS34 and FAB1 for
12	biosynthesis of phosphatidylinositol- 3,5-biphosphate, a gene (VPS15) for recruiting
13	Vps34p to Golgi, and a gene (PEP3) for traffic between endosomes and vacuoles
14	(Slessareva et al., 2006; Srivastava et al., 2000; Stack et al., 1995), as shown in Table 2.
15	It stands to reason that the vATPase and related mutants were collected in the first
16	screening with TN agar for co-cultivation condition, because the vATPase mutants are
17	sensitive to an alkaline environment and starvation (Nelson and Nelson, 1990; Sambade
18	et al., 2005). Thereby, the co-cultivation condition was replaced with YPD agar

1 vATPase is encoded by two structural genes—namely, *VPH1* and *STV1*

1	(approximately pH 6) for 1 hour to observe TKC efficiency at the final screening step in
2	this study. Since the viable cell number was included to consider the efficiency, it is
3	apparent that mutant cells kept viability but were unable to establish transconjugant
4	colonies.
5	In E. coli-yeast TKC, higher efficiency is observable when LEU2 gene is employed in
6	place of URA3 as a selection marker (Heinemann and Sprague, 1991). We applied a
7	LEU2 mobilizable plasmid pMz1 in place of pAY205. Simultaneously, in the
8	experiment, we replaced YPD with the synthetic agar containing leucine to count total
9	output yeast cells. The replacement minimizes difference with the selective agar. As a
10	result, TKC efficiency was improved in the wild type strain and in most of the mutants.
11	The resulting % wild type ratio of the mutants was as low as that obtained using URA3
12	(Table 2). Growth of the mutants on YPD agar was compared with that on the synthetic
13	agar (Fig. 1). Colony-forming-units was almost the same, although growth rate on the
14	synthetic agar was slower than that on YPD.
15	
16	Genes other than those for vacuolar function
17	
18	Besides the mutants defective in vATPase activity mentioned above, 6 mutants showed

1	much reduced TKC efficiency (Table 2). This result suggests some participation of six
2	genes (CSG2, SHP1, HOF1, CCR4, NOT5 and ZUO1) in TKC.
3	CSG2 is required for cell wall integrity. This gene is involved in the mannosylation
4	of inositol phosphorylceramid (Stock et al., 2000). Mutations in the phosphoprotein
5	phosphatase 1 gene SHP1 (Zhang et al., 1995) result in pleiotrophic changes, including
6	a slender morphology of cell shape according to the Saccharomyces genome database
7	(http://www.yeastgenome.org/). Our own analysis of the $shp1\Delta$ mutant revealed a
8	hypersensitivity to calcofluor white (CFW) and apparently increased binding of CFW to
9	the cell surface (data not shown). The hypersensitivity to CFW and enhanced binding of
10	CFW suggest increased chitin content in the cell wall. HOF1 is important for formation
11	of the contractile ring and the bud neck (Kamei et al., 1998). Mutations in CCR4 and
12	NOT5 induce a pleiotrophic effect including abnormal cell wall according to the
13	Saccharomyces genome database. Products of the two genes form a complex called the
14	Ccr4-Not complex (Chen et al., 2001).
15	Although relation of the characteristics of the mutants with TKC remains unclear,
16	the mutations in the six genes mentioned above seem commonly to cause defects in the
17	composition and shape of the cell surface, which is the initial site of interaction with the
18	donor bacteria.

1	The product of the ZUO1 gene is a component of a molecular chaperone associated
2	with cytoplasmic ribosomes. Zuo1p associates with Ssz1p as well as with either Ssb1p
3	or Ssb2p (Gautschi et al., 2002). Therefore we examined the transkingdom conjugability
4	of the $ssz1\Delta$ mutant (131G3) and the $ssb1\Delta$ mutant (136G11). As shown in Table 3(b) ,
5	the $ssz1\Delta$ mutant showed low efficiency, as did the $zuo1\Delta$ mutant. On the other hand,
6	the $ssb1\Delta$ mutant was normal, probably owing to the presence of the near identical
7	protein encoded by SSB2. The difference in conjugability between these mutants was
8	consistent with that of sensitivity to CFW (Fig. 2B). It is supposed that bacterial
9	proteins such as TraI mobilized into yeast cells along with the plasmid DNA, and then
10	yeast proteins start to associate and some attack the protein-DNA complex. Facilitated
11	recovery from such a damage by the shuffle and enhancement of the complex formation
12	between the mobilized materials and yeast proteins are a possible explanations for the
13	involvement of the chaperone activity in the conjugation.
14	
15	Relation with transformation-related mutations
16	
17	In the yeast Saccharomyces cerevisiae, transformation using purified plasmid DNA
18	is commonly used in laboratories. Kawai et al. (2004) have identified mutations that

1	cause defect in the transformation of intact yeast cells (i.e., $pde2\Delta$, $spf1\Delta$, and $pmr1\Delta$).
2	The mechanism of protoplast transformation is explained as endocytotic DNA uptake.
3	Neither the mutants found by Kawai et al. (2004) nor the endocytosis gene mutants
4	were included among the low-TKC mutants, which we found in this study. Our
5	examination of TKC in endocytosis mutants (Fig. 3) indicated no or trivial effect on
6	TKC efficiency (data not shown). These results indicate that TKC is not the same as
7	transformation with naked DNA molecules released from lysed donor bacterial cells but
8	rather a form of direct transport by the type IV secretion system from the donor
9	bacterium to yeast cells.
10	
11	
12	Discussion
13	In E. coli, a large number of mutants deficient in F-factor conjugation were isolated
14	and analysed. Despite the efforts, host-specific factor genes are limited (Frost, 2002).
15	Altered lipopolysaccharide mutants (waa) and OmpA protein mutants impair the
16	conjugation in liquid (Manoil and Rosenbush, 1982). However, conjugation on filter
17	membrane surface is not seriously affected by the same mutations.
18	This paper revealed that vATPase is very important for TKC. It still remains

1	unknown how vATPase participates in TKC mechanism. The vATPase mutants are
2	sensitive to various stresses. It is possible that the attenuated cellular environment in all
3	perturbs the interaction between donor and recipient cells. Kane (2007) and Tarsio et al
4	(2011) indicated decrease of extracellular and cytoplasmic pH in vATPase mutants. The
5	lower pH might damage the TSS structure on bacteria surface before the donor cells
6	attach to the mutant yeast, and or affect a putative bond between the donor T4SS
7	structure and recipient yeast membrane. Another explanation is that mobilized plasmid
8	DNA molecules are degraded in the mutant yeast cytoplasm by nucleases induced by
9	the elevated stresses in the mutants.
10	Recently, Silby et al. (2007) expressed a fusion protein between Gfp and TraI
11	proteins. The latter is the pilot protein of the IncP conjugation system. They observed
12	the localization of the fusion protein in yeast nuclei. The datum supports an idea of
13	facilitated transport of plasmid DNA from yeast cytoplasm to nuclei with the aid of the
14	pilot protein, as in the Agrobacterium virulence system for T-DNA transfer to plant
15	nuclei. Suppose highly sensitive detection for TraI protein is available, we can
16	distinguish the above two possibilities.
17	Most and possibly all yeast and fungal species possess the genes identified in this
18	study. The difference in the efficiency of conjugation between strains and species

1	remains unknown. Putative factors that mask some receptors on yeast cells might
2	determine this difference. The latter genes may be identified by screening mutants of an
3	enhanced efficiency type. So far, extensive studies for various cell functions have been
4	done in E. coli and separately in the yeast as model microbes. However, there has been
5	little information how the two microbes interact mutually when they encounter. In
6	natural environments such as in soil, eukaryotic and prokaryotic cells are localized
7	together. In order to extend this line of study, we should know how bacterial cells and
8	yeast cells affect mutually. In any way, this study is a good model for physiological and
9	genetic interaction between bacterial and eukaryotic microorganisms and for analysis of
10	transkingdom gene transfer.

1 Acknowledgments

The authors are grateful to M. Nanba and K. Wada for their assistance in experiments, to T. Miyakawa and M. Mizunuma (Hiroshima University), J. Shima and S. Andoh (National Food Research Institute, Tsukuba, Japan) for providing yeast strains, to J. Kaplan (University of Utah) for the gift of plasmids. This work was supported in part by Japanese Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (#20570221).

8

1 Leferences

 $\mathbf{2}$

3	Bates S, Cashmore AM, Wilkins BM. IncP plasmids are unusually effective in
4	mediating conjugation of Escherichia coli and Saccharomyces cerevisiae:
5	Involvement of the Tra2 mating system. J Bacteriol 1998; 180: 6538-6543.
6	Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. Designer
7	deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of
8	strains and plasmids for PCR-mediated gene disruption and other applications.
9	Yeast 1998; 14: 115-132.
10	Bushman F. Lateral DNA transfer : mechanisms and consequences. Cold Spring Harbor
11	Laboratory Press, NY; 2002.
12	Chen J, Rappsilber J, Chiang YC, Russell P, Mann M, Denis CL. Purification and
13	characterization of the 1.0 MDa CCR4-NOT complex identifies two novel
14	components of the complex. J Mol Biol 2001; 314: 683-694.
15	Davis-Kaplan SR, Ward DM, Shiflett SL, Kaplan J. Genome-wide analysis of
16	iron-dependent growth reveals a novel yeast gene required for vacuolar
17	acidification. J Biol Chem 2004; 279: 4322-4329.
18	Fernández-González E, de Paz HD, Alperi A, Agúndez L, Faustmann M, Sangari FJ,

1	Dehio C, Llosa M. Transfer of R388 derivatives by a pathogenesis-associated type
2	IV secretion system into both bacteria and human cells. J Bacteriol. 2011; in press.
3	Frost, SL. Conjugation, bacterial, in Encyclopedia of Microbiology, second edition,
4	edited by J. Lederberg. Academic Press; 2000. p. 847-862.
5	Gautschi M, Mun A, Ross S, Rospert S. A functional chaperone triad on the yeast
6	ribosome. Proc Natl Acad Sci USA 2002; 99: 4209-4214.
7	Gietz RD, Woods RA. Transformation of yeast by Li Acetate/single-stranded carrier
8	DNA/polyethylene glycol method. Methods Enzymol 2002; 350: 87-96.
9	Gormley EP, Davies J. Transfer of Plasmid RSF1010 by Conjugation from Escherichia
10	coli to Streptomyces lividans and Mycobacterium smegmatis. J Bacteriol 1991; 173:
11	6705-6708.
12	Graham LA, Flannery AR, Stevens TH. Structure and assembly of the yeast V-ATPase.
13	J Bioenerg Biomembr 2003; 35: 301-312.
14	Hayman GT, Bolen PL. Movement of shuttle plasmids from Escherichia coli into yeasts
15	other than Saccharomyces cerevisiae using trans-kingdom conjugation. Plasmid
16	1993; 30: 251-257.
17	Heinemann JA, Sprague GFJ. Bacterial conjugative plasmids mobilize DNA transfer
18	between bacteria and yeast. Nature 1989; 340: 205-209.

1	Inomata K, Nishikawa M, Yoshida K. The yeast Saccharomyces kluyveri as a recipient
2	eukaryote in transkingdom conjugation: behavior of transmitted plasmids in
3	transconjugants. J Bacteriol 1994; 176: 4770-4773.
4	Kamei T, Tanaka K, Hihara T, Umikawa M, Imamura H, et al. Interaction of Bnr1p with
5	a novel Src homology 3 domain-containing Hof1p. Implication in cytokinesis in
6	Saccharomyces cerevisiae. J Biol Chem 1998; 273: 28341-28345.
7	Kane PM. The long physiological reach of the yeast vacuolar H ⁺ -ATPase. J Bioenerg
8	Biomembr 2007; 39:415-421.
9	Kawai S, Pham TA, Nguyen HT, Nankai H, Utsumi T et al. Molecular insights on DNA
10	delivery into Saccharomyces cerevisiae. Biochem Biophys Res Commun 2004;
11	317: 100-107.
12	Kawasaki-Nishi S, Nishi T, Forgac M. Yeast V-ATPase complexes containing different
13	isoforms of the 100-kDa a-subunit differ in coupling efficiency and in vivo
14	dissociation. J Biol Chem 2001; 276:17941-17948.
15	Maniatis T, Fritsch EF, Sambrook J. Molecular cloning. A laboratory manual. Cold
16	Spring Harbor Laboratory Press, NY; 1982.
17	Manoil C, Rosenbusch JP. Conjugation-deficient mutants of Escherichia coli distinguish
18	classes of functions of the outer membrane OmpA protein. Mol Gen Genet 1982;

1 187:148-156.

2	Nelson H, Nelson N. Disruption of genes encoding subunits of yeast vacuolar
3	H(+)-ATPase causes conditional lethality. Proc Natl Acad Sci USA 1990; 87:
4	3503-3507.
5	Nishikawa M, Suzuki K, Yoshida K. Structural and functional stability of IncP plasmids
6	during stepwise transmission by trans-kingdom mating: promiscuous conjugation of
7	Escherichia coli and Saccharomyces cerevisiae. Jpn J Genet 1990; 65: 323-334.
8	Nishikawa M, Suzuki K, Yoshida K. DNA integration into recipient yeast chromosomes
9	by trans-kingdom conjugation between Escherichia coli and Saccharomyces
10	cerevisiae. Curr Genet 1992; 21: 101-108.
11	Parales RE, Harwood CS. Construction and use of a new broad-host-range lacZ
12	transcriptional fusion vector, pHRP309, for Gram ⁻ bacteria. Gene 1993; 133: 23-30.
13	Sambade M, Alba M, Smardon AM, West RW, Kane PM. A genomic screen for yeast
14	vacuolar membrane ATPase mutants. Genetics 2005; 170: 1539-1551.
15	Schröder G, Schuelein R, Quebatte M, Dehio C. Conjugative DNA transfer into human
16	cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen
17	Bartonella henselae. Proc Natl Acad Sci U S A. 2011;108:14643-14648.

18 Sikorski RS, Michaud W, Levin HL, Boeke JD, Hieter P. Trans-kingdom promiscuity.

2	Silby MW, Ferguson GC, Billington C, Heinemann JA. Localization of the
3	plasmid-encoded proteins TraI and MobA in eukaryotic cells. Plasmid 2007; 57:
4	118-130.
5	Slessareva JE, Routt SM, Temple B, Bankaitis VA, Dohlman HG. Activation of the
6	phosphatidylinositol 3-kinase Vps34 by a G protein alpha subunit at the endosome.
7	Cell 2006; 126: 191-203.
8	Srivastava A, Woolford CA, Jones EW. Pep3p/Pep5p complex: a putative docking factor
9	at multiple steps of vesicular transport to the vacuole of Saccharomyces cerevisiae.
10	Genetics 2000; 156: 105-122.
11	Stack JH, DeWald DB, Takegawa K, Emr SD. Vesicle-mediated protein transport:
12	regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns
13	3-kinase essential for protein sorting to the vacuole in yeast. J Cell Biol 1995; 129:
14	321-334.
15	Stock SD, Hama H, Radding JA, Young DA, Takemoto JY. Syringomycin E inhibition
16	of Saccharomyces cerevisiae: requirement for biosynthesis of sphingolipids with
17	very-long-chain fatty acids and mannose- and phosphoinositol-containing head
18	groups. Antimicrob Agents Chemother 2000; 44: 1174-80.

1	Suzuki K, Tanaka K, Yamamoto S, Kiyokawa K, Moriguchi K, Yoshida K. Ti and Ri
2	plasmids, in Microbial Megaplasmids, edited by E. Schwartz. Springer Verlag,
3	Heidelberg; 2009. p. 133-147.
4	Tarsio M, Zheng H, Smardon AM, Martínez-Muñoz GA, Kane PM. Consequences of
5	loss of Vph1 protein-containing vacuolar ATPases (V-ATPases) for overall cellular
6	pH homeostasis. J Biol Chem 2011; 286:28089-96.
7	Thomas C. Introduction. In: edited by Thomas C. Promiscuous plasmids of
8	Gram-negative bacteria, Academic Press, London; 1989. p. vii – viii.
9	Zhang S, Guha S, Volkert FC. The Saccharomyces SHP1 gene, which encodes a
10	regulator of phosphoprotein phosphatase 1 with differential effects on glycogen
11	metabolism, meiotic differentiation, and mitotic cell cycle progression. Mol Cell
12	Biol 1995; 15: 2037-50.
13	Zupan J, Muth TR, Draper O, Zambryski P. The transfer of DNA from Agrobacterium
14	tumefaciens into plants: a feast of fundamental insights. Plant J 2000; 23: 11-28.

1 Figure legends

 $\mathbf{2}$

3	Fig. 1.	Vegetative growth of low TKC mutant yeast strains. A series of 5 μ l of
4	serially dil	uted yeast cell suspension was spotted onto YPD agar and synthetic agar, and
5	then incub	ated for three days.
6	Fig. 2.	Sensitivity to CFW of the molecular chaperone mutants. A series of 10 μl
7	of serially	diluted yeast cell suspension was spotted onto YPD agar and YPD agar with
8	0.001% C	FW, and then incubated for three days.

		<i>a</i>
Strains	Genotype or relevant character	Source
E. coli		/
HB101	F-, recA13, proA2	Boyer and Rolland-Dusoix (1969)
HB101(pAY205, pRH21	0) donor strain	M. Nishikawa et al. (1992) Ref. 21
HB101(pMZ1, pRH220)	donor strain	This study
HB101(pMZ2, pRH220)	donor strain	This study
S. cerevisiae		
BY4742	MATa his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0	Brachmann et al (1998) Ref. 2
Mutants derived from E	3Y4742	the yeast genome deletion project*
BY4741	$MATa~his3\Delta 1$, $leu2\Delta 0$, $met15\Delta 0$, $ura3\Delta 0$	Brachmann et al (1998) Ref. 2
Mutants derived from E	BY4741	the yeast genome deletion project*
Plasmid	Relevant characters	Source or reference
pAY205	ARS1, TRP1, URA3, oriV-Q, oriT-Q, mob-Q, Km ^R	M. Nishikawa et al. (1992) Ref. 21
pRH210	oriV-C, oriT-P, mob-P, tra-P, Ap ^R	M. Nishikawa et al. (1992) Ref. 21
pRH220	oriV-C, oriT-P, mob-P, tra-P, Cm ^R	M. Nishikawa et al. (1992) Ref. 21
pHRP309	oriV-Q, oriT-Q, mob-Q, Gm ^R	Parales and Harwood (1993) Ref. 22
pMZ1	2µori, LEU2, oriV-Q, oriT-Q, mob-Q, Ap ^R , Gm ^R	This study
pMZ2	2µori, LEU2, oriV-Q, oriT-Q, mob-Q, Gm ^R	This study
pUC19	oriV-ColE1 Ap ^R	Yanish et al (1985)
pUC19-HIS3	HIS3 in pUC19	This lab
pUC19-STV1	STV1 in pUC19	This study
pUC19-stv1::HIS3	<i>stv1::HIS3</i> in pUC19	This study
pRS313	$URA3 \ cen6 \ arsH4 \ Ap^R$	
YEp351	<i>LEU2, 2µori,</i> Ap ^R	Hill et al (1986)
YEp352	URA3, 2µori, Ap ^R	Hill et al (1986)
pTF63	URA3, 2µori, Ap ^R	Davis-Kaplan et al (2004) Ref. 6
pVMA4	VMA4 in pRS316	This study
pVMA6	VMA6 in pRS316	This study
pSHP1	SHP1 in YEp352	This study
pCSG2	CSG2 in YEp351	This study
pCWH36	VMA9 in pTF63	Davis-Kaplan et al (2004) Ref. 6
pZUO1	ZUO1 in YEp352	This study
pYKL118W(VPH2)	<i>YKL118W(VPH2)</i> in YEp351	This study
pHOF1	HOF1 in YEp352	This study
pNOT5	NOT5 in YEp351	This study

Table 1. List of strains and plasmids used in this study.

 $`) \ http://www-sequence.stanford.edu/group/yeast_deletion_project/$

Strain	Disrupted gene	Gene function	TKC efficiency (Ura+) TKC efficiency(Leu+)	TKC phenotype in $M4T_2$	Plasmid
			%WTRatio +/- σ	%WTRatio +/- σ	strain*	rescue""
BY4742	(WT)		(100)	(100)		
139C6	TFP1/VMA1	vATPase subunit A in V1 sector	1.7 +/- 2.9	1.8 +/- 2.4	Low	nt
146A1	VMA2	vATPase subunit B in V1 sector	0.7 +/- 0.8	0.0 +/- 0.0	nt	nt
112A1	CUP5/VMA3	vATPase subunit c in V0 sector	0.1 +/- 0.2	2.2 +/- 3.9	nt	nt
107A2	VMA4	vATPase subunit E in V1 sector	1.5 +/- 2.5	1.9 +/- 2.3	nt	Yes
117A5	VMA5	vATPase subunit C in V1 sector	0.3 +/- 0.6	0.9 +/- 0.8	nt	nt
135D3	VMA6	vATPase subunit d in V0 sector	0.4 +/- 0.7	2.4 +/- 3.1	nt	Yes
123B10	VMA7	vATPase subunit F in V1 sector	0.4 +/- 0.7	0.0 +/- 0.0	nt	nt
112B10	VMA8	vATPase subunit D in V1 sector	0.4 +/- 0.7	1.6 +/- 1.0	nt	nt
115B7	VMA9, CWH36	vATPase subunit e in V0 sector	1.6 +/- 2.8	1.9 +/- 2.0	Low	Yes
130C1	VMA10	vATPase subunit G in V1 sector	0.4 +/- 0.6	1.9 +/- 1.0	nt	nt
108D8	TFP3/VMA11	vATPase subunit c' in V0 sector	1.6 +/- 2.8	0.0 +/- 0.0	nt	nt
117C8	VPH2/VMA12	vATPase assembly factor	0.3 +/- 0.5	0.6 +/- 1.1	nt	nt
133B12	VMA13	vATPase subunit H in V1 sector	1.6 +/- 1.9	6.1 +/- 6.2	nt	nt
134G5	PPA1/VMA16	vATPase subunit c'' in V0 sector	0.7 +/- 1.2	2.0 +/- 1.7	nt	nt
117C7	YKL118W, VPH2	vATPase assembly factor	0 +/- 0	0 +/- 0	Low	Yes
117C8	VPH2/VMA12	vATPase assembly factor	0.9 +/- 1.5	0.3 +/- 0.5	Low	Yes
118C7	VMA21	vATPase assembly factor	0.4 +/- 0.9	3.8 +/- 5.4	nt	nt
114C2	VMA22	vATPase assembly factor	0.9 +/- 1.2	0.6 +/- 0.3	nt	nt
171C10	VPS15	protein kinase, recruits Vps34 to Golgi	10.6 +/- 13.6	4.3 +/- 3.7	nt	nt
171A2	VPS34	phosphatidylinositol 3-kinase catalytic	18.2 +/- 8.2	6.1 +/- 10.5	nt	nt
145B9	FAB1	phosphatidylinositol ⁻ 3-phosphate 5- kinase	20.8 +/- 15.5	11.2 +/- 3.2	nt	nt
170H10	PEP3	vacuolar membrane protein, promotes endosomal vesicles to fuse to vacuole	12.4 +/- 4.2	6.1 +/- 5.7	nt	nt
101C10	CCR4	Component of CCR- NOT transcriptional comlex	0.4 +/- 0.7	4.7 +/- 8.1	Low	nt
126A3	SHP1	UBX domain- containing protein, regulates Glcp phosphatase	9.4 +/- 13.2	5.4 +/- 3.1	Low	Yes
140C4	CSG2	ER membrane protein required for mannosylation of inositolphosphorylce ramide	9.9 +/- 7.1	17.2 +/- 13.8	Low	Yes

Table 2. List of mutants exhibiting low transkingdom conjugation efficiency

Table 2. (Continued)

140C4	CSG2	ER membrane protein required for mannosylati	9.9 +/-	7.1	17.2 +/-	13.8	Low	Yes
130B7	ZUO1	cytoplasmic ribosome- associated	6.2 +/-	7.0	1.1 +/-	0.2	Low	Yes
103G6	HOF1	bud neck- localized protein, regulates	6.3 +/-	5.7	21.2 +/-	12.5	Low	Yes

*) TKC phenotype was observed in the corresponding mutant in the *MATa* background. Low, low efficiency; nt, not tested.

**) TKC phenotype was found in the mutant strain transformed with a plasmid containing the corresponding wild

Strain	Disrupted gene	TKC efficiency (Ura+)	TKC efficiency(Leu+)		
		%WTRatio +/- σ	%WTRatio +/- σ		
WT		(100)	(100)		
(a) vATPase "a" sub	ounit gene mutants				
149B8	STV1	90 +/- 34	103 +/- 41		
144H12	VPH1	60 +/- 25	47 +/- 41		
stv1 vph1	STV1 VPH1	0.0 +/- 0.0	3.5 +/- 3.7		
(b) chaperone gene	mutants				
130B7	ZUO1	3.0 +/- 3.0	6.1 +/- 8.1		
131G6	SSZ1	6.0 +/- 8.0	8.8 +/- 3.4		
136G11	SSB1	79 +/- 4.0	96 +/- 69		
(c) endocytosis mut	ants				
141F9	END3	187 +/- 36	136 +/- 70		
139A10	ENT1	115 +/- 42	116 +/- 2.2		
116C7	ENT2	114 +/- 43	84 +/- 19		
142G12	TPT53	117 +/- 35	128 +/- 77		
142H8	INP52	152 +/- 60	142 +/- 57		

Table 3. Transkingdom conjugation efficiency of vATPase "a" subunit genemutants, chaperone gene mutants and endocytosis mutants.

New Figure 1

New Figure 2