Actin dynamics control ploidy-dependent size scaling in Schizosaccharomyces pombe

Ichiro Yamashita

Center for Gene Science, Hiroshima University, Kagamiyama 1-4-2, Higashihiroshima 739-8527, Japan.

Abstract

It has long been known that eukaryotic cells with more DNA content are larger in cell size. However, no molecular mechanisms for this universal rule have been given. Here I identify cell division genes that dose-dependently control cell growth or cell extension rate (CER) of diploid cells of the fission yeast Schizosaccharomyces pombe. Genetic analysis revealed a negative role of Cdc 2 , a conserved master regulator of eukaryotic cell cycle. Surprisingly, half dosage of $c d c 25^{+}$or $\operatorname{nim1} 1^{+}(c d c 254 /+$ or nim14/+), both activator for Cdc2, decreased CER. I discovered that these genes constitute three overlapping regulatory mechanisms for Cdc2: positive and negative feedback loops and a feedforward network. In the negative feedback loop, Cdc2-activating Cdc25 is required for nuclear accumulation of GFP-Wee1 that inhibits Cdc2. Actin monomers are associated with nuclear localization of GFP-Wee1 and accelerate CER, while actin polymers are related to nuclear accumulation of Cdc25-GFP. In the positive feedback loop, actin monomers are relevant to inhibition of Nim1 and subsequent activation of Cdc2 independently of Wee1, resulting in decrease in CER. Nim1 also plays a key role in the feedforward network for supplying sufficient amount of nuclear GFP-Wee1 and closely cooperates with Cdc25 in order to adjust CER to ploidy. Remarkably, doubling cell division genes in haploids reproduced CER of diploids. These findings establish that yeast cells control CER dependently upon dosage of cell division genes during G2 period in the cell division cycle, and provide a solid foundation for understanding the cell-size scaling with DNA content in other eukaryotes.

KEYWORDS

actin, $c d c 25$, nim1, ploidy, scaling, weel

1 | INTRODUCTION

The general association between DNA content and cell size has long been recognized in unicellular eukaryotes, plants, and animals (Cavalier-Smith, 2005; Gregory, 2005; Kondorosi, Roudier, \& Gendreau, 2000). Polyploid cells with multiple copies of chromosome sets occur frequently in the development and differentiation of plants and animals, and large polyploid cells are crucial to morphology, metabolism, and tissuespecific function (Hyun, Jean, \& Robert, 2009; Orr-Weaver, 2015). However, no mechanisms explaining this universal rule for cell size determination have been demonstrated. Here I used the fission yeast and explored the possibility for the involvement of cell division genes that control cyclin-dependent protein kinase, Cdc2 (Wood \& Nurse, 2015): cdc13+ (cyclin) (Booher \& Beach, 1988), weel ${ }^{+}$(an inhibitory protein kinase) (Russell \& Nurse, 1987a), $c d c 25^{+}$(an activating protein phosphatase with antagonistic action to Wee1) (Russell \& Nurse, 1986), $n i m I^{+} / c d r 1^{+}$kinase (inducer of mitosis by inhibiting Wee1) (Feilotter, Nurse, \& Young, 1991; Russell \& Nurse, 1987b), and its upstream inhibitory effectors, poml ${ }^{+}$(Bähler \& Pringle, 1998) and nif1 ${ }^{+}$(Wu \& Russell, 1997). I also examined whether actl ${ }^{+}$(actin) (Ishiguro \& Kobayashi, 1996) is involved in cell-size control because actin cables are thought to serve as tracks for secretory vesicle transport to the tip (Bendezú \& Martin, 2011; Hammer \& Sellers, 2012; Kovar, Sirotkin, \& Lord, 2011), and in addition, actin dynamics control nuclear transport (Vartiainen, Guettler, Larijani, et al., 2007).

Cdc2 is a conserved key regulator for entry into mitosis and its activity is thought to be critical to cell-size determination (Kellogg, 2003). Loss of Wee1 activity induces premature activation of Cdc 2 and therefor causes cells to enter mitosis before sufficient growth has occurred, producing two abnormally small daughter cells. Similarly, mutants with lower Cdc2 activity (such as $c d c 2^{-}, c d c 13^{\circ}$, and $c d c 25^{-}$) undergo delayed entry into mitosis, producing abnormally large cells. However, these genetic analyses overlook the possibility that Cdc 2 controls growth rate during G2 period. Throughout this work, I measured growth rate as a major determinant of cell-size scaling with ploidy because diploid cells grow faster than haploid cells during the same doubling time in fission yeast (Sveiczer, Novak, \& Mitchison, 1996) as well as in budding yeast (Adams \& Hansche, 1974). By using diploid and tetraploid cultivars of ryegrass, Sugiyama demonstrated that polyploidy increases leaf size mainly by increasing the cell elongation rate without significant differences in cell division parameters (Sugiyama, 2005). Zhou et al. also reported that tetraploid crucian carp cells grow bigger than diploid cells without affecting proliferation (or cell division) (Zhou, Wang, Jiang, et al., 2016). Collectively, these results
may lead to a generalization that polyploid cells scale their size or volume by controlling growth rate during G2.

The aim of my investigation was to search for mechanisms that control Cdc2 during G2 and for mechanisms that turn on a switch from G2 to mitosis. This work revealed unprecedentedly that Cdc25 and Nim1 are required for lowering Cdc2 activity which enhance growth rate of diploid cells. I also found that actin dynamics associated with modulation of Cdc2 activity control nuclear content of Cdc25 and Wee1, forming negative feedback loops for Cdc2. Surprisingly, I observed that actin monomers are associated with both nuclear accumulation of Wee1-GFP and inhibition of Nim1, resulting in opposite effects, promotion and inhibition of cell extension, respectively. The latter novel pathway in which Nim1 is involved in negative control of Cdc2 independently of Wee1 may constitute a key module in a positive feedback loop for Cdc2. This pathway works in cooperation with Cdc 25 to keep lower Cdc2 activity in diploids, thus increases CER. Furthermore, during the course of this work, I observed that mutant cells with higher Cdc2 activity such as weel4/+ show prolonged cycle time concomitantly with reduced content of nuclear Cdc25-GFP. Forced expression of Cdc25 in the nuclei of wee14/+ cells by using Cdc25-NLS-GFP (Cdc25-GFP tagged with a nuclear localization signal, NLS) allowed to restore normal cycling time and at the same time accelerated CER. This result verifies my proposal that Cdc25 has a positive role for cell extension and is consistent with the previous conclusion that Cdc25 is a key molecule in the auto-regulatory loop for acute activation of Cdc2 at the G2/M boundary (Lu, Domingo-Sananes, Huzarska, et al., 2012). Collectively, the present study establishes systems level control of Cdc2 as a critical regulator of growth rate and finally cell-size scaling with ploidy, origin of which is copy number of cell division genes.

2 |MATERIALS AND METHODS

2.1 | Strains

The S. pombe strains used in the experiment are listed in Table S1. The strains bearing mutant alleles ($c d c 2-L 7, c d c 2-3 w, c d c 25-22, c d c 13-117$, and wee1-50) or deletions (cdc254::ura 4^{+}, wee14::ura4 4^{+}, and nim14::LEU2) were gifts from P. Russell and P. Nurse (Gould \& Nurse, 1989; Russell \& Nurse, 1986; Russell \& Nurse, 1987a; Russell \& Nurse, 1987b). A strain bearing pom14::ura4 ${ }^{+}$was from J. Bähler and J. R. Pringle (Bähler \& Pringle, 1998). A strain bearing $c p s 8-188$ and a plasmid carrying actl ${ }^{+}$were from J. Ishiguro (Ishiguro \& Kobayashi, 1996). Strains bearing $c d c 254:: u r a 4^{+}:: c d c 25-$ GFP::leu1 ${ }^{+}$and $c d c 254:: u r a 4^{+}:: c d c 25-N L S-G F P:: l e u 1^{+}$were from P. G. Young (Chua,

Lingner, Frazer, et al., 2002). Strains bearing wee14::ura4 ${ }^{+}$and each of lys $1^{+}:: G F P$-weel or lys $1^{+}:$GFP-NESx2-weel were from H. Masuda (Masuda, Fong, Ohtsuki, et al., 2011). Strains bearing deletions of act14::ura4 ${ }^{+}$(Ishiguro \& Kobayashi, 1996), cdc134::ura4 ${ }^{+}$ (Booher \& Beach, 1988), and nif14::ura4+ (Wu \& Russell, 1997) were constructed as described previously by the one-step gene disruption method (Rothstein, 1983). Strains bearing two copies of act1+ (2xactl $\left.1^{+}:: u r a 4^{+}\right), c d c 13^{+}\left(2 x c d c 13^{+}:: u r a 4^{+}\right), c d c 25^{+}$ (2xcdc25+::ura4 4^{+}, niml 1^{+}(2xniml $l^{+}::$ura4 $\left.^{+}\right)$, and poml ${ }^{+}$(2xpoml $\left.{ }^{+}:: u r a 4^{+}\right)$were constructed by insertion into native loci of pBR322-based plasmids carrying ura4 ${ }^{+}$and the respective genes ($6.5-\mathrm{kb}$ EcoRI-HindIII fragment of actl ${ }^{+}$, $4.6-\mathrm{kb}$ PvuII-BamHI fragment of $c d c 13^{+}$, 5.2-kb SphI-PvuII fragment of $c d c 25^{+}$, 3.3-kb BamHI-EcoRI fragment of niml ${ }^{+}$, and $6.5-\mathrm{kb}$ NheI-SphI fragment of poml ${ }^{+}$) after linearization by digestion within coding regions with BamHI, XhoI, BamHI, XhoI, and BglII, respectively. Plasmids carrying $c d c l 3^{+}, c d c 25^{+}$, nifl 1^{+}, niml l^{+}, and $p o m l^{+}$and an adfl-1 strain were provided by the National Bio-Resource Project (NBRP), Japan.

Standard procedures were used for cell culture and genetic manipulations (Sabatinos \& Forsburg, 2010). Diploid cells were constructed by isolation of prototrophic cells after crossing haploid cells with opposite mating type (h^{+}or h^{-}), each bearing ade 6 M210 or ade6-M216. Diploid cells were also selected after cultivation of haploid cells on YES plates containing phloxin-B. Diploid cells homozygous for mating type ($\mathrm{h}^{+/+}$and h^{-} ${ }^{-}$) were isolated by manipulator after repeated (usually 2 or 3 times) cultivation of $\mathrm{h}^{+/-}$ diploid on EMM2 plates at $28^{\circ} \mathrm{C}$ for 2 days. Diploid cells heterozygous for two or three deletions (marked with $\mathrm{rra4}^{+}$) were selected after tetrad dissection of asci from tetraploid cells made by mating between h^{++}and $\mathrm{h}^{-/-}$diploids, each heterozygous for one or two deletions. Diploids heterozygous for two or three deletions were verified by tetrad analysis after crossing with tester diploids bearing ura4-D18/ura4-D18, in which Ura ${ }^{+}$ segregants appear in a manner of PD : NPD : $\mathrm{T}=1: 1: 4$ from the cross with the diploid heterozygous for two deletions or in a manner of (2 Ura ${ }^{+}: 2 \mathrm{Ura}^{-}$) : (3 $\mathrm{Ura}^{+}: 1 \mathrm{Ura}^{-}$) : (4 $\left.\mathrm{Ura}^{+}: 0 \mathrm{Ura}^{-}\right)=1: 16: 19$ from the cross with the diploid heterozygous for three deletions. Haploids bearing two or three loci of two copies of genes (marked with ura $^{+}$) were also verified by tetrad analysis after crossing with tester haploids bearing ura4-D18, in which Ura^{+}segregants appear as above. Haploids bearing four or five loci of two copies of genes were verified by tetrad analysis after back-crossing with haploids bearing three or four loci of two copies of genes, respectively, in which tetrads were segregated as 2 (longer cells) : 2 (shorter cells).

2.2 | Measurement of CER

Cells were grown exponentially in EMM2 for 24 h to a maximum density of 5×10^{6} cells $/ \mathrm{ml}$ before the initiation of all experiments. Temperature-sensitive cells were cultured at $28^{\circ} \mathrm{C}$, and other cells were grown at $28^{\circ} \mathrm{C}$ or $36.5^{\circ} \mathrm{C}$ as indicated. Before measurement of CER, more than three strains with the same genotype were measured for length of long axes of more than 100 cells with septum. Strains having the closest match to average cell length of genotype were chosen for measurement of CER. Aliquot of culture was collected by centrifugation for 30 sec , resuspended and spread on thin EMM2 agar plates. A block ($15 \times 15 \mathrm{~mm}$) was cut and set upside down on a glass-base dish (diameter, 35 mm ; code 3970-035, Iwaki, Japan). The dish was sealed by parafilm and set on a thermo plate (MATS-55RAF20, Tokai Hit, Japan) on inverted microscope (Nikon Eclipse TE2000-U). The dish was fastened with cellotape on the thermo plate, and finally covered by a plastic petri dish (diameter, 85 mm) for temperature control. The temperature on the agar was checked with a contact thermistor in trial experiments, and kept at $28^{\circ} \mathrm{C}$ or $36.5^{\circ} \mathrm{C}$ as indicated. Room temperature was controlled by air conditioner more than $10^{\circ} \mathrm{C}$ lower than the temperature of the agar. Cells were visualized under x40 magnification, and photographed every 30 min for 6 to 10 h depending on doubling time of strains. Images were acquired with a digital CCD camera (C4742-95-12ERG, Hamamatsu Photonics) and processed using HCImage Live U11158-01 software (Hamamatsu Photonics). Long axes of cells were measured during the first and the second divisions. The average cell-length values for 50 to 70 individual cells were plotted against time axis, and CER was calculated in every 30 min . CER of temperature-sensitive cells was determined after $30-\mathrm{min}$ preincubation of agar film at $36.5^{\circ} \mathrm{C}$ as follows: for $c d c 25-22$, $c d c 2-L 7$, or $c d c 13-117$ cells, average cell length of individual cells in the same field was calculated. A minor population of cells that divided within 3 h after the temperature shift was omitted. The average cell length was plotted against incubation time, from which CER was calculated; and for actl-ts or adfl-1 cells, cell length of individual cells was measured until cell lysis and plotted against incubation time, and maximum growth rate of individual cells was used as estimate of growth rate against initial cell length at the temperature shift.

Cell length and CER are presented by average with standard deviation (SD). Statistical significance was tested by student's two-sided t-test. P values are presented as follows: *, <0.05; **, <0.001; ***, <0.0001; and n.s., not significant.

2.3 | Fluorescence microscopy

Cells were grown exponentially at $28^{\circ} \mathrm{C}$. In most experiments, exponential cells grown at $28^{\circ} \mathrm{C}$ were shifted to $36.5^{\circ} \mathrm{C}$ for further incubation as indicated. Cells were visualized under x 40 or x 100 oil magnification using the same microscopy set as above with a GFP filter. Number of cells with nuclear localization (not uniform distribution in both nucleus and cytoplasm) of GFP signal was scored. Nuclear localization for each genotype was estimated as an average of more than three independent strains with SD. Total content and intensity of GFP signal in the nuclei were measured by manually surrounding the nuclei and processing using the same software as above. Values are presented by average (arbitrary unit) with SD. Statistical significance was as described above.

3 |RESULTS AND DISCUSSION

3.1 Diploid cells grow faster than haploid cells

The previous study reported, by measuring cell length of individual cells at birth and septation from time-lapse films, that diploid cells grow faster than haploid cells during the same cycle time (Sveiczer, Novak, \& Mitchison, 1996). I began my inquiry by measuring CER of haploid and diploid cells throughout the cell cycle. For this purpose, cells were pre-cultured exponentially in EMM2 at $28^{\circ} \mathrm{C}$, spread on EMM2 agar film, and incubated at the same temperature. Cell growth was monitored by taking photos of cells on the agar film every 30 min between one division and the next (Figure 1a) and by measuring long axis of S. pombe cells, because they grow only by tip extension. CER was calculated in every 30 min from average cell length of 65 cells (Figure 1b). This analysis clearly indicated that diploid cells grow faster than haploid cells at about 1.5 -fold rate until arrest of extension near the septation stage in the cell division cycle.

3.2 Cell division genes control cell growth

To explore whether cell division genes are involved in growth control, temperaturesensitive mutations that affect Cdc2 activity were examined. For this purpose, cells were pre-cultured exponentially at a permissive temperature $\left(28^{\circ} \mathrm{C}\right)$, spread on EMM2 agar film, and incubated at a restrictive temperature $\left(36.5^{\circ} \mathrm{C}\right)$. Mutations that abolish Cdc2 activity such as $c d c 25-22, c d c 2-L 7$, and $c d c 13-117$ caused longer cells than wild-type (Figures 2a-d) and increased CER in both haploid and diploid ($p<0.0001$, maximum CER compared between wild and mutant) (Figure 2e). On the contrary, weel-50 giving higher Cdc2 activity decreased CER of both haploid and diploid ($p<0.0001$) (Figures 2a, e). These results indicate that Cdc2 activity controls CER negatively. In addition, when
compared between mutant haploid and diploid, I found a remarkable acceleration of CER immediately after the temperature shift exclusively in $c d c 25-22 / c d c 25-22$ diploid, which may be suggestive of a special role of Cdc25 in diploid (Figure 2f).

3.3 | Haplo-insufficient roles of cell division genes

If cell division genes were involved in ploidy-dependent growth control, deletion of one of two copies of them in diploid would affect CER. To explore this idea, heterozygotes (cdc254/+, wee14/+, or act14/+) were examined for growth kinetics and CER. All heterozygotes grew more slowly than parental diploid, indicating haplo-insufficient positive roles of $c d c 25^{+}$, weel 1^{+}, and $a c t 1^{+}$(Figure 3). The $c d c 254 /+$ cells extended cycle time and were finally longer at septation stage than wild-type cells. The weeld/+ cells showed an equivalent CER to haploid control, but grew for a longer time as well as the weeld/weeld cells used as a reference. The act1 $\Delta /+$ cells, in which actin polymers were considerably reduced (Figure S1), slowed down CER appreciably later in the cycle and delayed cell separation after septation.

To investigate genetic epistatic relationship, heterozygotes with combinations of deletion were also examined (Figure 3). The double heterozygotes harboring weeld/+ (wee1 $\Delta /+c d c 254 /+$ or wee1 $1 /+$ act1 $4 /+$) showed clear reduction in CER compared with the $c d c 25 \Delta /+$ or act14/+ single heterozygote, respectively. Conversely, compared with the wee14/+ single heterozygote, the double heterozygotes showed no reduction or indeed slight elevation of CER, respectively. This result indicates that weeld/+ is epistatic to $c d c 254 /+$ or $a c t 1 \Delta /+$ and suggests that positive roles of Cdc25 and Act1 work under the presence of sufficient amount of Wee1. Next, to investigate relationship between $c d c 254 /+$ and act14/+, the $c d c 254 /+$ act14/+ double heterozygote was examined. The double heterozygote showed similar CER compared with the cdc254/+ or act14/+ single heterozygote, suggesting a functional link between positive roles of Cdc25 and Act1 (actin). I also examined the triple heterozygote (wee14/+ cdc254/+ act14/+), which elevated CER compared with the wee14/+ cdc254/+ or weel4/+ act14/+ double heterozygotes, confirming negative roles of Act1 and Cdc25. Together, I conclude that Cdc25 has two opposite roles; it executes a positive role through actin and Wee1, while, if actin or Wee1 were insufficient in quantity, it appears to behave negatively by activating Cdc2. Similarly, actin is also likely to serve a dual role as a positive and a negative regulator dependently on the amount of Wee1.

3.4 Cdc2 and actin dynamics control nuclear localization of GFP-Wee1

Since the genetic analysis predicted that Cdc 25 and Actl stimulate CER under the presence of sufficient amount of Wee1, together with my observation that longer cells have more contents of nuclear GFP-Wee1 (Figure S2) and Cdc25-GFP (Figure S3), I supposed that Cdc2 activity and actin dynamics would control Wee1 activity, the inhibitory kinase against Cdc2. For this purpose, I examined whether several mutations affecting Cdc2 activity or actin dynamics as follows could affect intracellular behavior of GFP-Wee1: cdc2-3w (giving higher Cdc2 activity), cdc2-L7, cdc25-22, cdc13-117 (severe reduction of Cdc2 activity), and two counteracting temperature-sensitive mutations affecting actin dynamics: cps8-188 (Ishiguro \& Kobayashi, 1996), wild type of which encodes actin itself, makes the mutant actin filament collapse to a significant extent at restrictive temperature (hereafter called act1-ts); and adfl-1 (Nakano \& Mabuchi, 2006), wild type of which encodes actin-depolymerizing factor/cofilin that promotes dissociation of monomers from the filament, disrupts actin dynamics and makes mutant cells depleted of monomers.

I observed elevated nuclear content of GFP-Wee1 in both haploid and diploid $c d c 2$ $3 w$ cells ($1 \mathrm{n} c d c 2-3 w$ or $2 \mathrm{n} c d c 2-3 w / c d c 2-3 w$, respectively) (Figure $4 \mathrm{a}, \mathrm{b}$) and, in contrast, reduced nuclear localization of GFP-Wee1 in $c d c 2-L 7, c d c 25-22$, and $c d c 13-117$ cells, regardless of ploidy (Figure 4a). Furthermore, heterozygotes for either $c d c 254$ or $c d c 134$ also showed reduced nuclear localization (Figures 4a, c). These results suggest that Cdc2 activity controls nuclear localization of GFP-Wee1 in both haploid and diploid, and that two copies of $c d c 25^{+}$or $c d c 13^{+}$are required to keep GFP-Wee1 in the nuclei of diploid cells. Next, I observed that an increased dosage of actl ${ }^{+}$(2xactl ${ }^{+}$in haploid, which increased actin polymers substantially [Figure S1] or 3xact1+ in diploid) (not shown) and actl-ts (Figure 4d) elevated nuclear content of GFP-Wee1, suggesting that increased amounts of actin monomers account for nuclear accumulation of GFP-Wee1. In favor with this result, the adf1-1/adf1-1 diploid cells decreased nuclear content of GFP-Wee1 (Figure 4d), which was suppressed by actl-ts/actl-ts (Figure 4a). I also found that act14/+ heterozygote showed reduced nuclear content of GFP-Wee1 (Figures 4c), indicating that one copy of actl^{+}in diploid is not enough to accumulate GFP-Wee1 in the nucleus. Furthermore, the $3 x a c t 1^{+}$and actl-ts/act1-ts suppressed the reduced nuclear content of GFP-Wee1 in the $c d c 254 /+$ or $c d c 134 /+$ heterozygote and the $c d c 13-$ 117/cdc13-117 diploid, respectively (Figure 4a). Conversely, the adf1-1/adf1-1 suppressed the increased nuclear accumulation of GFP-Wee1 in the $c d c 2-3 w / c d c 2-3 w$ cells (Figure 4a). Together, these results reveal a specific role of actin monomer (or short actin oligomer) in nuclear accumulation of GFP-Wee1 in diploid and suggest that Cdc2
controls nuclear localization of GFP-Wee1 through modulation of actin dynamics. However, actin dynamics play no or limited role in haploid because no apparent effect was found in the adfl-1 haploid (Figure 4a).

3.5 Positive roles of Cdc25 and actin depend upon nuclear content of GFP-Wee1

If Cdc25 and actin would control CER through nuclear localization of Wee1, previous manipulation of Weel content would likely affect their regulatory activity. To test this idea, I constructed a series of diploid strains harboring different amount of GFP-Wee1 in the nuclei: GFP-weel/GFP-weel (control), GFP-weel/lysl (half a dose), 3xnim1 ${ }^{+}$GFPweel/lys1 (half a dose with reduced Wee1 activity by excess Nim1), and GFP-NESx2-weel/GFP-NESx2-wee1, a version of GFP-Wee1 tagged with two copies of nuclear export signal (Masuda, Fong, Ohtsuki, et al., 2011), which was mostly localized around the nuclear periphery with some in the nucleus and the cytoplasm regardless of temperature, ploidy, mutations or deletions of cell division genes, or 3xactl ${ }^{+}$(Figure 4b and data not shown).

Using these backgrounds, I examined growth kinetics and CER of wild-type and act14/+ or cdc254/+ heterozygotes (Figure 5a). I observed that act14/+ decreased CER in GFP-weel/GFP-weel background while did not in GFP-weel/lysl, 3xniml ${ }^{+}$GFPweel/lys1, or GFP-NESx2-wee1/GFP-NESx2-weel background, confirming that the positive role of $a c t l^{+}$depends on nuclear content of Wee1. Contrary to expectations, I observed that $c d c 254 /+$ increased CER in GFP-weel/GFP-weel background, suggesting that Cdc 25 executes a weak positive activity in GFP-weel background relative to wildtype, therefore, acts more negatively. In support of this assumption, cells harboring $G F P$ weel are longer at septation than wild-type ($28.9 \mu \mathrm{~m} \pm 3.6$ for 2 n GFP-weel/GFP-weel cells vs $22.7 \mu \mathrm{~m} \pm 2.2$ for 2 n wild-type at $28^{\circ} \mathrm{C}$ in EMM2) and considered to have lower Cdc2 activity. The $c d c 254 /+$ did not affect CER in the cells with half dosage of GFPwee 1 (GFP-weel/lysl), while it again increased CER in the cells with more reduced Wee1 activity (3xnim1 ${ }^{+}$GFP-weel/lysl) and with the nuclearly excluded version of GFP-Wee1 (GFP-NESx2-wee1). These results suggest that no effect of $c d c 254 /+$ on CER of the GFPweel/lysl cells may account for summation of positive and negative effects of Cdc25, and that Cdc 25 acts positively depending upon nuclear content of Wee1.

I also examined the effect of $c d c 2-3 w / c d c 2-3 w$ that increases Cdc2 activity, resulting in elevated nuclear content of GFP-Wee1 but not GFP-NESx2-Wee1 (Figure 4b). I expected that the $c d c 2-3 w$ mutation would reduce CER of cells harboring GFP-weel or GFP-NESx2-wee1, while the former cells may increase CER just as much as they have increased nuclear content of GFP-Wee1. As expected, I observed that the $c d c 2-3 w$
mutation reduced CER more severely in the GFP-NESx2-wee1 background than in the $G F P$-weel one (Figure 5b). This result confirms a negative feedback loop in which Cdc2 activity increases nuclear content of Wee1, resulting in feedback inhibition of Cdc 2 and increase in CER.

3.6 | Cell-size scaling in cells harboring Cdc25-GFP

To further explore the positive role of Cdc25, I constructed haploid and diploid cells harboring $c d c 25-G F P$ and series of heterozygotes (single for $c d c 254$, $c d c 134$, act14, and wee14, and their double or triple combinations), and examined growth kinetics and CER. Surprisingly, single heterozygotes (cdc254/+, cdc134/+, act14/+, or wee14/+) showed severe reduction in CER (Figures 6a, b) compared with the wild-type background (Figure 3). I assume that Cdc25-GFP activates Cdc2 more strongly and expresses a stronger positive activity because cells harboring $c d c 25-G F P$ are shorter in cell length at septation than wild-type ($19.5 \mu \mathrm{~m} \pm 1.8$ for 2 n cdc25-GFP/cdc25-GFP cells vs $22.7 \mu \mathrm{~m} \pm 2.2$ for 2 n wild-type at $28^{\circ} \mathrm{C}$ in EMM2). Although CER was reduced more intensely, genetic relationship between these genes were preserved because these genes served as positive regulators dependently on Weel dosage (weel $1 /+$ or $+/+$), and could also act negatively. The most surprising was the triple heterozygote harboring $c d c 25-G F P / \Delta$, actl $1 / /+$, and weel4/+ showing almost the same growth kinetics as haploid. This result strongly supports my proposal that a regulatory circuit comprising cell division genes is central to ploidy-dependent size scaling.

Using $c d c 25-G F P$ background, I further examined the dependency of positive role of Cdc25-GFP upon Wee1 dosage. The $c d c 25-G F P / c d c 25-22$ reduced CER intensely compared with $c d c 25-G F P / c d c 25-G F P$, however, increased CER in the absence of Wee1 (weel-50/wee1-50) (Figure 6c), confirming Wee1-dependent positive role of Cdc25-GFP. I also examined the effect of $c d c 25-G F P / c d c 25-22$ under the condition where increased dosage of $a c t 1^{+}\left(4 \mathrm{xact1}{ }^{+}\right)$retains Wee1 in the nuclei. The $c d c 25-G F P / c d c 25-22$ did not reduce CER, whereas, as expected, weel-50/weel-50 reduced CER because of the most downstream hierarchy of Wee1 (Figure 6d). Collectively, these results indicate that positive role of Cdc25 does not work in the absence of Wee1 or in the presence of excess Wee1, and again support the conclusion that Cdc25 activates Cdc2, which induces nuclear accumulation of Wee 1, inhibition of Cdc2, then acceleration of CER.

3.7 | Cdc2 and actin dynamics control nuclear localization of Cdc25-GFP

Next I searched for possible relation of nuclear localization of Cdc25-GFP to Cdc2 activity and actin dynamics, because Cdc2 is known to be involved in actin dynamics:
actin filaments develop well or poorly in cells with lower or higher Cdc2 activity, respectively (Kamasaki, Arai, Osumi, et al., 2005; Kovar, Sirotkin, \& Lord, 2011; Verde, Mata, \& Nurse, 1995; Verde, Wiley, \& Nurse, 1998) (Figure S1), and because nuclear content of Cdc25-GFP increases with cell size (Figure S3). I first examined whether mutational modulation of Cdc2 activity could affect nuclear localization of Cdc25-GFP by using mutant cells with higher (weel-50) or severely reduced (cdcl3-117) Cdc2 activity. I observed, after the shift to restrictive temperature $\left(36.5^{\circ} \mathrm{C}\right)$, exclusion from the nuclei and uniform cellular distribution of Cdc25-GFP in weel-50 haploid and weel-50/wee1-50 diploid, respectively (Figure 7a, b). I found constant nuclear localization of Cdc25-NLS-GFP (a version of Cdc25-GFP fused with a nuclear localization signal) in both wee1-50 haploid and wee1-50/wee1-50 diploid cells (Figure 7a), suggesting a specific role in nuclear localization. Conversely, cdc13-117 cells accumulated nuclear Cdc25-GFP more abundantly irrespective of ploidy (Figure 7a, b). I also examined the effect of weel $\Delta /+$, resulting in clear reduction of nuclear content of Cdc25-GFP but constant nuclear localization of Cdc25-NLS-GFP (Figure 7a, c). These results indicate that nuclear localization of Cdc25-GFP is associated with Cdc2 activity and suggest a possible relation to actin dynamics: polymer but not monomer form of actin is favorable to nuclear localization of Cdc25-GFP.

Next I searched for control of nuclear localization of Cdc25-GFP through actin dynamics. To test this, I first used latrunculin A, a chemical reagent that destabilizes actin filament (Rupeš, Webb, Mak, et al., 2001). I found uniform cellular distribution of Cdc25GFP but constant nuclear localization of Cdc25-NLS-GFP (not shown), suggesting a specific role of actin dynamics in nuclear localization of Cdc25-GFP. I next used two counteracting temperature-sensitive mutations for actin dynamics, act1-ts and adf1-1. I observed that both actl-ts and adfl-1 mutations greatly decreased nuclear accumulation of Cdc25-GFP irrespective of ploidy, but did not affect nuclear localization of Cdc25-NLS-GFP (Figure 7a, d). The adfl-1 mutation was also effective in both cdc13-117 haploid and $c d c 13-117 / c d c 13-117$ diploid (Figure 7a), in which otherwise Cdc25-GFP accumulates in the nuclei more abundantly than in wild-type cells (Figure 7b), revealing an active role of actin filament in the nuclear localization of Cdc25-GFP. However, I observed that act1-ts decreased nuclear localization of Cdc25-GFP in cdc13-117/cdc13117 diploid but did not in cdc13-117 haploid (Figure 7a), suggesting more active roles of actin in diploid than in haploid. This result is reminiscent of the observation that the $c d c 25-22 / c d c 25-22$ diploid cells elevated CER most drastically after the temperature shift compared with other mutant cells with reduced Cdc2 activity including haploid $c d c 25-22$ cells (Figure 2f), and is consistent with speculation that Cdc 25 activates Cdc2 more
strongly in diploid than in haploid. I also examined the effect of actl4/+, resulting in only a slight reduction of nuclear content of Cdc25-GFP (Figure 7a). The act14/+ did not worsen or ameliorate the effect of wee14/+ (Figure 7a).

To examine whether Cdc2 and actin cooperatively control nuclear localization of Cdc25-GFP, I constructed double mutants bearing weel-50 and act1-ts or adf1-1. I found synthetic decrease of nuclear content of Cdc25-GFP in diploid homozygous for weel-50 and adfl-1 (but not actl-ts) at permissive temperature (Figure 7a), suggesting a functional link between Cdc2 and actin dynamics.

3.8 Positive roles of Cdc25 both in CER and division timing

I postulated that the reduced nuclear content of Cdc25-GFP accounts for both the decrease in CER and longer cycle time in the heterozygote harboring wee14/+. To test this, I constructed wee14/+ diploids harboring cdc25-NLS-GFP/cdc25-NLS-GFP for forced expression of Cdc25 in the nucleus as well as haploid and diploid controls (1n cdc25-NLS-GFP and 2n $c d c 25-N L S$-GFP/cdc25-NLS-GFP, respectively). I observed that both controls show ploidy-dependent growth kinetics and CER as the $c d c 25-G F P$ background (Figure 8). However, the wee14/+ diploids harboring $c d c 25-N L S-G F P / c d c 25-N L S-G F P$ elevated CER sharply compared with the wee14/+ diploids harboring $c d c 25-G F P / c d c 25-$ GFP and simultaneously recovered the delayed cycle time (Figure 8). These results again confirm my proposal that Cdc 25 acts as a positive regulator for cell extension during G2, and are consistent with the previous conclusion that Cdc 25 as a key molecule constitutes the auto-regulatory loop for acute activation of Cdc2 at the G2/M boundary (Lu, Domingo-Sananes, Huzarska, et al., 2012).

3.9 | Feedforward network

Because Weel plays a critical role in ploidy-dependent growth control, I asked whether Nim1, known as an inhibitory kinase against Wee 1, would control CER dose-dependently I also examined dose-dependent abilities of Pom1 and Nif1, both acting as negative regulators of Nim1. I assumed that nim14/+ heterozygote would activate Wee1 then increase CER whereas pom14/+ and nif14/+ heterozygotes would activate Nim1 and slow down CER. I observed that both heterozygotes ($4 /+$) and homozygotes ($4 / \Delta$) for each of pom14 or nif1 Δ decreased CER (Figures 9a), indicating haplo-insufficient positive roles of these genes. Unexpectedly, I observed that nim14/+ heterozygote also decreased CER to an equivalent level to the haploid control (Figure 9a), indicating a positive role of Nim1. This was confirmed by the observation that double heterozygote nim14/+ pom14/+, in which Nim1 activity is higher than in the nim14/+ heterozygote, grew faster than the
nim14/+ heterozygote (Figure 9b). The nim14/+ cells vastly extended cycle time and were finally longer at septation than wild-type cells. As expected, nimld/nim14 homozygote grew faster than wild-type diploid (Figure 9a), indicating a negative role of Nim1. The nim14/nim14 homozygote also extended cycle time. Together, these results revealed a feedforward network comprised of Nim1, Pom1, and Nif1 acting as a dosagedependent positive or negative regulator for CER.

3.10 | Feedforward network controls nuclear localization of GFP-Wee1

Since genetic analysis uncovered positive or negative activity of the feedforward pathway for CER, I supposed that the nim14/+ could increase Cdc2 activity indirectly through removal of Wee1 from the nuclei as observed in the $c d c 254 /+$ heterozygote (Figure 4c). To investigate this, I examined whether the nim14/+ could affect nuclear localization of GFP-Wee1. I observed reduced nuclear localization of GFP-Wee1 (Figures 10a, b). The pom14/+ suppressed the defect of nim14/+ in nuclear localization (Figure 10a) as observed in CER (Figure 9b). These results suggest that a partial decrease in Nim1 activity indirectly leads to reduction in nuclear content of Weel and concomitant increase in Cdc 2 activity.

I also examined the effect of the nim14/nim1 1 on nuclear content of GFP-Wee1. I observed increased content of nuclear GFP-Wee1 (Figure 10b) despite the expectation that low Cdc2 activity caused by nim14/nim14 removes GFP-Wee1 from the nuclei. To further investigate the activity of Nim1, I examined the effect of increased dosage of niml ${ }^{+}$(4xnim1 ${ }^{+}$). I observed severe reduction of nuclear localization of GFP-Wee1 at $36.5^{\circ} \mathrm{C}$ but no apparent effect at $28^{\circ} \mathrm{C}$ (Figures 10 a). The different results may occur by lower sensitivity of GFP-Wee1 to $4 \times n i m l^{+}$at $28^{\circ} \mathrm{C}$ than at $36^{\circ} \mathrm{C}$, which coincides with both observations that diploid cells bearing GFP-weel become shorter in length at septation after the temperature shift from $28^{\circ} \mathrm{C}$ to $36^{\circ} \mathrm{C}$ (approximately 10% reduction for 4 h) and that nuclear content of GFP-Wee1 is concordantly lower at $36.5^{\circ} \mathrm{C}$ than at $28^{\circ} \mathrm{C}$ (Figure 4d, 10c). Together, these results suggest that phosphorylated forms of Wee1 by Nim1 kinase tend to remove from the nuclei.

Next, I examined the effects of pom14 and an increased dosage of poml ${ }^{+}$on nuclear localization of GFP-Wee1. I observed that GFP-Wee1 was excluded from the nuclei particularly at $36.5^{\circ} \mathrm{C}$ in both the pom $14 /+$ heterozygote and pom14/pom14 homozygote (Figure 10a, c). As expected, in the nim14/nimld background, the pom14/+ did not affect the nim14-induced nuclear accumulation of GFP-Wee1 (Figure 10a). The increased dosage of poml+ $\left(4 \times\right.$ poml $\left.{ }^{+}\right)$also reduced nuclear GFP-Weel content (Figure 10a) possibly through partial inhibition of Nim1 as observed in the nim14/+ heterozygote.

I also examined the effect of nifl Δ on nuclear localization of GFP-Wee1. I observed relatively uniform distribution of GFP-Weel in both the niflu/+ heterozygote and nifl 1 /nif1 Δ homozygote (Figure 10a, c), suggesting a reduction in nuclear localization. I also observed an unexpected effect that the nif14/nifld was so effective as to reduce the nuclear content of GFP-Wee1 in the nim14/nim14 background (Figure 10a), suggesting a Nim1-independent role.

I asked whether the feedforward network would control nuclear localization of GFPWee1 in haploid cells. I observed no clear effect in haploid of pom14, nim14, or nif14 (Figure 10a), indicating no or limited role of Pom1, Nim1, and Nif1 in haploid.

Since actin dynamics modulate nuclear content of GFP-Wee1 in response to Cdc2 activity, I asked whether the control of nuclear GFP-Wee1 content by the feedforward network would be associated with actin dynamics. To explore this, I examined the effects of actl-ts or $3 \mathrm{xactl}{ }^{+}$on the reduced nuclear content of GFP-Wee1 in cells harboring pom14/+, nim14/+, nif14/+, nif14/nif1 1 , 4xpoml ${ }^{+}$, or 4xnim1 ${ }^{+}$, and the effect of adf1-1 on the increased nuclear content of GFP-Wee1 in the nim1U/nim14 cells (Figure 10a). I observed clear suppression by actl-ts, 3xact1+, and adfl-1 (Figures 10a). These results indicate that actin dynamics control nuclear content of GFP-Wee1 in concert with the feedforward network.

3.11 | Feedforward network controls CER both in Wee1-dependent and independent pathways

Since the feedforward pathway controls CER in association with alteration of nuclear GFP-Wee1 content, I asked whether modulation of Wee1 dosage would affect CER of nim14/+ or pom14/+ cells. For this purpose, I constructed two types of strains, each harboring weel $4 /+$ for half dosage of weel ${ }^{+}$or $3 \mathrm{xactl} 1^{+}$for increased content of nuclear Wee1, both harboring nim14/+ or pom14/+. I observed that nim14/+ did not decrease CER in wee14/+ cells (Figure 9c). Likewise, pom14/+ did not decrease CER in wee14/+ cells (Figure 9d). These results are consistent with a proposal that Nim1 and Pom1 play a positive role while maintaining nuclear content of Wee1. I also observed that pom14/+ elevated CER in wee14/+ cells with the $c d c 25-G F P$ background (Figure 9e), inspiring me with a possible presence of a Wee1-independent positive route in which Nim1 inhibits Cdc2 and stimulate CER. Furthermore, I observed that the 3xactl ${ }^{+}$-induced preservation of nuclear Weel cancelled the defect in CER of nim14/+ and pom14/+ cells (Figure 9f), suggesting that the defects are mainly caused by the removal of Wee1 from the nuclei. As expected, nim14/nim14 elevated CER significantly (Figure 9f), which may occur through activation of Wee1 by relief from the Nim1 inhibitory kinase.

To investigate whether Pom1 and Nif1 control CER through inhibition of Nim1, I examined genetic hierarchy between nim14 and pom14 or nif14. The pom1 $1 /+$ did not affect CER of the nim14/nim14 homozygote, as expected, while the pom1d/pom14 clearly decreased CER in the nim14/nim14 homozygote (Figure 9g). The latter result may occur by monopolar extension specific to pom14/pom14 (Bhatia, Hachet, Hersch, et al., 2014). Next, I observed that the nifld/nifld decreased CER in the nim14/nim14 homozygote (Figure 9h), suggesting a niml ${ }^{+}$-independent positive role of Nif1. This is consistent with my observation that Nif1 is required for increased accumulation of nuclear GFP-Wee1 in the nim14/nim14 homozygote (Figure 10a).

To verify the presence of Wee1-independent positive route for CER, I constructed strains harboring weel4/weeld in combination with nifl4/nifld and/or nim14/nim14. I observed that weeld/weeld homozygotes bearing nif14/nif14, nim14/nim14, or nifl 1 /nifld nim1 1 /nim1 1Δ grew more slowly and were smaller in cell length at division than the weel4/weeld homozygote (Figure 9i), revealing weel ${ }^{+}$-independent role of Nim1 and Nif1. Furthermore, I gave a clear evidence for the positive role of Nim1 in the absence of both $c d c 25^{+}$and weel ${ }^{+}$(Figure 9j). The nim14/nim14 cells bearing both $c d c 25-22 / c d c 25-22$ and weel $\Delta /$ weel 1Δ grew more slowly with shorter cell length at septation than the control cells harboring $c d c 25-22 / c d c 25-22$ and weel $\Delta /$ weel Δ. Collectively, these results revealed that Nim1 increases CER independently of both Wee1 and Cdc25 possibly playing an inhibitory role against Cdc2. In the present study, Nif1 controls CER in a more complicated manner such that it increases CER through inhibition of Nim1 in the authentic pathway, retention of nuclear Wee1 antagonistically against Nim1, and Nim1- and Wee1-independent pathway.

3.12 A close cooperation between Cdc25 and Nim1

Since Cdc25 activates CER by accumulating Wee1 in the nuclei, I asked whether Nim1 would support Cdc25 by keeping Cdc2 activity low through retention of nuclear Wee1 or through inhibition of Cdc2 in the Wee1-independent pathway. For this purpose, I constructed double heterozygotes harboring cdc254/+ and nim1 $1 /+$, and examined growth kinetics and CER. I observed that $c d c 254 /+$ did not decrease CER in the nim14/+ heterozygote, while nim14/+ decreased CER in the $c d c 254 /+$ heterozygote (Figure 11a). These results indicate that Nim1 acts downstream of Cdc25 and suggest that Cdc25 serves as a positive regulator in cooperation with Nim1 or that Nim1 increases CER independently of Cdc25 possibly through the novel pathway in which Nim1 inhibits Cdc2.

I also asked how Pom1 regulates CER through nuclear localization of Wee1 together with the negative feedback circuit involving Cdc 25 . To explore this, I combined pom14/+
with $c d c 25 \Delta /+$ and examined the effect of their combination on CER. I observed that pom14/+ did not decrease CER of the $c d c 254 /+$ heterozygote (Figure 11b). The reverse showed the same effect: cdc254/+ did not decrease, in fact, increased CER of the pom14/+ heterozygote (Figure 11b). These results revealed interdependency between pom 1^{+}and $c d c 25^{+}$, and suggest that Pom1 and Cdc25 increases CER when cells have enough Wee1 in the nuclei. Furthermore, I again observed, using $c d c 25-G F P$ background, the interdependency between pom14/+ and $c d c 254 /+$, in addition, between pom1 $1 /+$ and cdc134/+ (Figure 11c), confirming that Cdc2 activity is controlled coordinately both through the negative feedback loop and the Pom1-Nim1 route in order to adjust CER to dosage of cell division genes or ploidy.

3.13 | Actin monomers control CER both in positive and negative manners

The present study suggests that Cdc2 controls CER positively through nuclear localization of Weel possibly with the aid of actin monomer. I wondered how actin monomers and polymers (or actin cables) work for cell extension at the same time since actin cables and exocytic machineries play parallel roles for polarized growth in fission yeast (Bendezú \& Martin, 2011; Hammer \& Sellers, 2012). To clarify this, I first examined the effects of actl-ts. Cells pre-grown exponentially at $28^{\circ} \mathrm{C}$ were shifted to $36.5^{\circ} \mathrm{C}$, and inspected for cell growth. I observed three growth patterns regardless of ploidy (Figures 12a, b for haploid; Figures 12d, e for diploid): smaller cells at the temperature shift did not grow for about 2 h and thereafter initiated extension (late induction) or a minor fraction of cells did not grow at all during the experiment (no growth), while longer cells grew immediately (early induction) at moderate CER (Figure 12h). These results are consistent with the previous report that actin cables are not essential for polarized growth (Bendezú \& Martin, 2011) and suggest a specific role of actin filament in the initiation of growth during early G2 phase, or alternatively, that actin monomers inhibit cell extension.

I also examined the effect of act1-ts in cells with higher or lower Cdc2 activity (induced by weel-50 or $c d c 25-22$, respectively), because the modulation of Cdc2 activity is effective for gathering early or late G 2 cells and for change in actin dynamics: higher or lower Cdc2 activity is expected to strengthen or weaken the effect of actl-ts, respectively. As expected, weel-50/wee1-50 greatly increased population with no growth in actl-ts/act1-ts diploid (Figures 12f, g), and conversely, $c d c 25-22 / c d c 25-22$ attenuated the defective growth in act1-ts/act1-ts or act1-ts/act1-ts weel-50/wee1-50 diploid (Figure 12 g). Haploid actl-ts cells responded weakly to the modulation of Cdc 2 activity (Figures $12 \mathrm{c}, \mathrm{g})$. In these experiments, cells with early induction grew at moderate CER
irrespective of ploidy (Figure 12h). These results further underline a critical role of actin dynamics in the initiation of growth during early G2 phase.

To clarify the ambiguous implication for the role of actin dynamics, either positive role of polymers or negative of monomers, I used the diploid strain harboring triple mutation (act1-ts/act1-ts, cdc25-22/cdc25-22, and wee1-50/wee1-50) as a control. Half of the population arrested growth after the shift to $36.5^{\circ} \mathrm{C}$. However, pom $14 /+$ completely abolished the negative effect of actl-ts/actl-ts, which was returned by addition of nim14/nim14 (Figure 12i). This should be considered as that reactivation of Nim1 (caused by pom14/+) specifically cancelled the negative effect of actin monomers on Nim1 rather than that it recovered the activity of actin cables in actl-ts/actl-ts cells. Collectively, I propose that actin monomer inhibits Nim1 directly or indirectly through activation of Pom1, forming a novel positive feedback loop, in which Cdc2 stimulates actin monomer formation, resulting in inhibition of Nim1 and simultaneous activation of Cdc2 in the absence of both Cdc25 and Wee1.

Next, I asked whether the positive feedback loop would explain the negative effect of act14/+ in wee14/+ cells (Figure 3), because the half dosage of act1 ${ }^{+}$is expected to decrease actin monomers, resulting in activation of Nim1, inhibition of Cdc2, and elevation of CER, and because act14/+ showed no effect on nuclear content of Cdc25GFP in wee14/+ cells (Figure 7a). For this purpose, I examined the effect of act14/+ in double heterozygote harboring wee14/+ and nim14/+ in the hope that the half niml ${ }^{+}$ dosage would reduce active Nim1. As expected, I observed that the act14/+ did not elevate but decreased CER of the weeld/+ nim14/+ heterozygote (Figure 12j). The decrease in CER can be explained by reduction of the positive pathway in which actin monomers stimulate CER by increasing nuclear content of Wee1. Together, these results confirm the active role of the positive feedback loop.

On the other hand, to verify the positive role of actin monomers, I used the GFP-NESx2-weel background because different kinds of treatment that disrupt normal actin dynamics such as increased dosage of $a c t l^{+}$, actl-ts, and adfl-l did not apparently affect the nuclear exclusion of GFP-NESx2-Wee1 (not shown). As controls, I examined the effects of actl-ts, adfl-1, and their combination actl-ts adfl-1 on CER of diploid cells harboring GFP-weel/GFP-weel. For this purpose, cells grown exponentially at $28^{\circ} \mathrm{C}$ were shifted to $36.5^{\circ} \mathrm{C}$ and further incubated before cell lysis, during which CER of individual cells was estimated and plotted against initial cell length at the temperature shift. I observed that the cells harboring act1-ts/actl-ts GFP-weel/GFP-weel initiated growth immediately without showing late induction found in the actl-ts/actl-ts cells of normal weel ${ }^{+}$background and extended cell length at moderately decreased CER (Figure
13). This may occur because actl-ts-induced monomers do not effectively increase Cdc 2 activity in the GFP-weel/GFP-weel cells with lower Cdc2 activity than the normal weel ${ }^{+}$ diploid. Alternatively, increased amount of actin monomers would be expected to activate the positive pathway concomitantly with activation of the negative route. However, the adfl-l/adfl-1 cells showed a considerable decrease in CER (Figure 13). This result is expected if supposed that substantial decrease in actin monomers by the adfl-1 mutation would abolish positive activity of actin monomers more extensively rather than that it would induce Nim1 activation, subsequent inhibition of Cdc2, and elevation of CER. If the above speculation would be correct, cells harboring both adfl-1/adfl-1 and act1-ts/actl-ts would increase monomer forms of actin and activate the positive pathway more strongly. As expected, the double heterozygote showed elevated CER compared with the adfl-l/adfl-1 cells (Figure 13).

Since actin monomers have no effect on nuclear content of GFP-NESx2-Wee1, I expected that, in the GFP-NESx2-weel background, actl-ts-induced increase in actin monomers could not activate positive route but activate negative route normally, then would greatly decrease CER. As expected, I observed that CER was heavily decreased by act1-ts/act1-ts in diploid cells bearing GFP-NESx2-weel/GFP-NESx2-weel (Figure 13). However, adf1-1/adf1-1 reduced CER of GFP-NESx2-wee 1/GFP-NESx2-wee1 cells at the same level as did in the GFP-weel/GFP-weel cells (Figure 13), consistent with the notion that only Nim1 activates CER in both cells. On the contrary, I found that act1-ts/actl-ts did not suppress adf1-1/adf1-1 in diploids bearing GFP-NESx2-weel/GFP-NESx2-weel (Figure 13), confirming a significant positive role of actin monomers in association with nuclear localization of Wee1. Collectively, I propose that actin monomer acts positively on CER through nuclear localization of Wee1.

3.14 | Doubling cell division genes in haploid reproduces diploid growth

Since I identified key genes to ploidy-dependent control of cell size by deleting one copy of them from diploid, I next explored whether these genes could replicate this control in haploid, by constructing haploid cells bearing two copies of each genes or their combinations. I observed that two copies of weel ${ }^{+}$(GFP-weel and weel ${ }^{+}$) elevated CER effectively as compared with wild-type haploid or a reference haploid bearing GFP-weel (1n GFP-weel weel Δ) (Figure 14a). However, two copies of poml ${ }^{+}\left(2 x p o m l^{+}\right)$or actl $^{+}$ ($2 \mathrm{xactl}{ }^{+}$) did not affect or slightly decreased CER, respectively. As expected, two copies of $c d c 25^{+}\left(2 \mathrm{x} c d c 25^{+}\right)$or $c d c 13^{+}\left(2 \mathrm{x} c d c 13^{+}\right)$decreased CER. Next, I examined combinatorial effects of $2 \mathrm{xact1}{ }^{+}$and $2 \mathrm{xpoml}{ }^{+}$in the haploid bearing two copies of weel ${ }^{+}$ (GFP-weel and wee1 ${ }^{+}$). Surprisingly, I found that haploid cells bearing both $2 \mathrm{xact1}{ }^{+}$and

2xpomI ${ }^{+}$at a time in addition to two copies of weel I^{+}(GFP-weel and weel ${ }^{+}$) showed an elevated CER equivalent to control diploid (2n GFP-weel/lysl weeld/+) (Figure 14b), while either $2 \mathrm{xact1}{ }^{+}$or $2 \mathrm{xpoml}{ }^{+}$did not affect CER. These results suggest that $2 \mathrm{xactl}{ }^{+}$ stimulates CER under the condition where $2 \times$ poml ${ }^{+}$activates Weel by inhibiting the authentic activity of Nim1 as inhibitory kinase against Wee1. To explore this assumption, I performed the same experiment using haploids bearing GFP-NESx2-wee1 and wee ${ }^{+}$in the hope that reduced content of nuclear Wee1 would depress the combinatorial effect. As expected, I observed no effect of $2 \mathrm{xact1}{ }^{+}$in combination with $2 \times \mathrm{poml}{ }^{+}$(Figure 14c). Together, these results indicate the importance of cooperation among weel ${ }^{+}$, actl 1^{+}, and poml ${ }^{+}$in haploid. However, haploid cells bearing the triple combination showed slower initial growth, delayed cytokinesis, and longer doubling time, implying artifacts of doubling cell division genes in haploid.

Next I investigated the effect of quintuple combination of two copies of genes (GFPweel plus weel ${ }^{+}, 2 \mathrm{xactl} 1^{+}, 2 \mathrm{xpoml} 1^{+}, 2 \mathrm{xcdc} 25^{+}$, and $2 \mathrm{xcdcl} 3^{+}$). I observed that haploid cells with the quintuple combination showed an equivalent CER to the control diploid (2 n GFP-weel/lysl wee14/+), albeit earlier slowdown of CER and following shorter cell length at septation (Figure 14d). Any quadruple combination without each of $2 \mathrm{xactl}{ }^{+}$, $2 \mathrm{xpom} 1^{+}, 2 \mathrm{x} c d c 25^{+}$, or $2 \mathrm{x} c d c 13^{+}$showed lower CER, confirming the dose-dependent positive roles of these genes. I also performed the same experiment using haploids bearing GFP-NESx2-weel plus weel ${ }^{+}$to verify the significance of nuclear content of Wee1 in the combinatorial elevation of CER (Figure 14e). I observed that haploid cells bearing GFP-NESx2-weel plus weel ${ }^{+}, 2 \mathrm{xact1}^{+}, 2 \mathrm{xpoml} l^{+}, 2 \mathrm{x} c d c 25^{+}$, and $2 \mathrm{xcdc} 13^{+}$showed a greatly decreased CER compared with a control diploid (2n GFP-NESx2-weel/lys1 wee14/+). I also observed no effects on CER by subtraction of 1xact1+ or 1xpoml ${ }^{+}$. These results confirm that the combinatorial effect exerts its ability under sufficient amount of nuclear Wee1. On the other hand, I observed increase in CER by subtraction of either 1xcdc25+ or $1 \mathrm{x} c d c 13^{+}$, indicating that they play negatively against CER under the Wee1-deficient condition where they cannot act well positively. These results are consistent with the observation showing Wee1-dependent positive functions of Cdc 25 and Cdc 13 (Figure 6).

Since the genetic analyses revealed that nuclear content of Wee1 is important for the combinatorial elevation of CER, I next explored whether doubling of genes and their combinations could affect nuclear content of GFP-wee1. I observed that $2 \mathrm{xactl}{ }^{+}$ increased nuclear GFP-Wee1 content (Figure 14f, upper panel). While $2 x$ pom 1^{+}alone slightly decreased nuclear content, it increased one in combination with $2 \mathrm{xactl}{ }^{+}$. These results are consistent with the combinatorial elevation of CER by $2 \mathrm{xactl}{ }^{+}$and $2 \mathrm{xpoml}{ }^{+}$ (Figure 14b), suggesting that lowering Cdc2 activity by the increased nuclear content of

GFP-weel caused the increase in CER. Next, I also examined whether $2 \mathrm{x} c d c 25^{+}$and $2 \mathrm{x} c d c 13^{+}$exerted a positive role for CER by accumulating GFP-Wee1 in the nuclei. I found a clear reduction in nuclear localization of GFP-Wee1 by subtracting $1 \mathrm{x} c d c 25^{+}$or $1 \mathrm{x} c d c 13^{+}$from the quintuple combination (Figure 14f, bottom panel), confirming the dose-dependent roles of these genes in nuclear accumulation of GFP-Wee1 (Figure 4a).

Next, I asked whether two copies of $\mathrm{niml}^{+}\left(2 \mathrm{xnim} 1^{+}\right)$could act positively for CER in haploid. For this purpose, I constructed haploids bearing all combinations of $2 \mathrm{xnim} \mathrm{I}^{+}$, $2 x p o m 1^{+}$, two copies of wee1 ${ }^{+}\left(G F P\right.$-weel plus wee1 ${ }^{+}$or GFP-NESx2-weel plus wee1 $\left.{ }^{+}\right)$, $2 \mathrm{x} a c t 1^{+}, 2 \mathrm{x} c d c 25^{+}$, and $2 \mathrm{x} c d c 13^{+}$, and examined growth kinetics and CER. I observed that $2 \mathrm{xnim} 1^{+}$exclusively increased CER of haploid cells bearing two copies of weel ${ }^{+}$
 CER of haploid cells with all other combinations (not shown) as shown partly (Figure 15): replacement of GFP-wee1 with GFP-NESx2-wee1, or subtraction of each of $1 \mathrm{xact1} 1^{+}$, $1 \mathrm{x} c d c 25^{+}$, or $1 \mathrm{x} c d c 13^{+}$. The positive effect of $2 \mathrm{xniml} 1^{+}$was lost by addition of $2 \mathrm{xpoml}{ }^{+}$ (Figure 15), indicating a specific activity of Nim1. Collectively, these results suggest that positive role of Nim1 was manifested in haploid with sufficient amount of nuclear Wee1 that could resist the inhibitory activity of Nim1. I also observed that $2 \times n i m 1^{+}$shortened cycle time of the haploid cells bearing two copies of weel ${ }^{+}$(GFP-weel plus weel ${ }^{+}$), $2 \mathrm{x} a c t 1^{+}, 2 \mathrm{x} c d c 25^{+}$, and $2 \mathrm{x} c d c 13^{+}$, which was returned to a former condition by further addition of $2 x$ poml ${ }^{+}$. This result is consistent with the prolonged cycle time caused by nim14/+ (Figure 9a), indicating a dosage-dependent specific role of Nim1 for ending cell division cycle possibly through inhibition of Cdc2.

3.15 | A model for cell-size scaling

This study uncovers a mechanism contributing to cell-size scaling with ploidy, and establishes unambiguously that limited numbers of specific genes but not total mass of DNA determine cell size. I found that systems level control of Cdc2 activity is crucial for cell size determination and that copy number of cell division genes controlling Cdc2 activity is origin of ploidy information (Figure 16). In this model, Cdc2 activity level determines CER during the G2 growth phase: higher or lower Cdc2 inhibits or accelerates CER, respectively. Scaling device consists of three mechanisms, positive and negative feedback loops and a feedforward network. In the negative feedback circuit, Cdc25 activates Cdc2 activity in order to accumulate enough Wee1 in the nucleus backward to inhibit Cdc2. Cdc2 controls nuclear content of Cdc25 and Wee1 through affecting actin dynamics. Actin monomers and polymers are associated with nuclear localization of Wee1 and Cdc25, respectively. In the positive feedback loop, actin dynamics also play a
critical role as a gatekeeper to switch ON/OFF the loop. Actin monomers inhibit Nim1 (or indirectly through activation of Pom1) in order to activate Cdc2, while skewed transition toward actin polymers activates Nim1 resulting in inhibition of Cdc2. This positive loop acts to maintain lower Cdc2 activity in cooperation with Cdc25 in order to increase CER in diploid. Nif1, Nim1, and Pom1 constitute the feedforward network and control Weel activity not only through the authentic way (Marshall, Young, Swaffer, et al., 2012; Wood \& Nurse, 2015; Zhu \& Wu, 2014) but also nuclear localization of Wee1. The role of Nim1 is bidirectional dependently on dosage or activity of itself. Half dosage of Nim1 is not sufficient to keep enough Cdc2 activity to accumulate nuclear Wee1 resulting in exclusion of Wee1 from the nuclei in the same way as Cdc25, while loss of Nim1 increases nuclear content of Wee1. I propose that the bidirectional control serves to narrow threshold of Nim1 for nuclear accumulation of Wee1. If supposed that Nim1 activity becomes increased with cell cycle progression during G2 in response to increase in actin polymers (or decrease in actin monomers), nuclear accumulation of Wee1 would be suppressed by Nim1 at early G2 followed by acceleration at a later stage. Nif1 also acts to inhibit Cdc2 independently of Nim1 and Wee1. Collectively, I propose that Cdc2 activity becomes decreased progressively mainly in response to increasing nuclear content of Wee1 during G2 period in diploid cells. Cdc 25 and Nim1 are key regulators for nuclear accumulation of Wee1, with the former accumulating in the nuclei and the latter increased in activity during G2 progression. On the other hand, in haploid, nuclear localization of Wee1 is free from actin dynamics and the feedforward network. Therefore, coordinated actions of the positive and negative feedback mechanisms and the feedforward network are central to ploidy-dependent control of nuclear localization of Weel and finally cell-size scaling with ploidy. Recently, Cao et al. reported that a synthetic gene circuit generates robust scaling of ring formation with colony size in bacteria, which is mediated by integral feedback and incoherent feedforward control (Cao, Ryser, Payne, et al., 2016). Thus, this type of regulatory network may be underscored as a common mechanism for biological scaling.

Here I identified a genetic architecture for control of cell-size scaling with ploidy, however, molecular details remain unsolved. Regardless of the exact mechanism, my findings have important implications for understanding a longstanding and universal issue 'DNA content-cell size rule' in other eukaryotes including plants and animals, in which polyploidy may control tissue-specific cell size and function (Orr-Weaver, 2015; Pandit, Westendorp, \& de Bruin, 2013). Finally, my results may advance agricultural application to breeding of crops and gardening plants and lay the groundwork for therapy of diseases in which polyploid cells are involved.

ACKNOWLEDGEMENTS

I thank P. Russell, P. Nurse, J. Bähler, J. R. Pringle, J. Ishiguro, P. G. Young, H. Masuda, K. Kitamura, K. Kume, D. Hirata and the National Bio-Resource Project (NBRP) Japan for reagents and T. Toda, M. Mizunuma and K. Kume for discussions.

CONFLICT OF INTEREST

The author declares that he has no conflict of interest.

ORCID

Ichiro Yamashita https://orcid.org/0000-0001-6016-5438

REFERENCES

Adams, J., \& Hansche, P. E. (1974). Population studies in microorganism I. evolution of diploidy in Sacchromyces cerevisiae. Genetics, 76, 327-338.

Bähler, J., \& Pringle, J. R. (1998). Pom1p, a fission yeast protein kinase that provides positional information for both polarized growth and cytokinesis. Genes and Development, 12, 1356-1370.

Bendezú, F. O., \& Martin, S. G. (2011). Actin cables and the exocyst form two independent morphogenesis pathways in the fission yeast. Molecular Biology of the Cell, 22, 44-53.

Bhatia, P., Hachet, O, Hersch, M, Rincon, S., Berthelot-Grosjean, M., Dalessi, S., Basterra, L., Bergmann, S., Paoletti, A., \& Martin, S. G. (2014). Distinct levels in Pom1 gradients limit Cdr2 activity and localization to time and position division. Cell Cycle, 13, 538-552.

Booher, R., \& Beach, D. (1988). Involvement of $c d c 13^{+}$in mitotic control in Schizosaccharomyces pombe: possible interaction of the gene product with microtubules. EMBO Journal, 7, 2321-2327.

Cao, Y., Ryser, M. D., Payne, S., Li, B., Rao, C. V., \& You, L. (2016). Collective spacesensing coordinates pattern scaling in engineered bacteria. Cell, 165, 620-630.

Cavalier-Smith, T. (2005). Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany, 95, 147-175.

Chua, G., Lingner, C., Frazer, C., \& Young, P. G. (2002). The sal3 ${ }^{+}$gene encodes an importin- β implicated in the nuclear import of Cdc 25 in Schizosaccharomyces pombe. Genetics, 162, 689-703.

Feilotter, H., Nurse, P., \& Young, P. G. (1991). Genetic and molecular analysis of cdr1/niml in Schizosaccharomyces pombe. Genetics, 127, 309-318.
Gould, K. L., \& Nurse, P. (1989). Tyrosine phosphorylation of the fission yeast $c d c 2^{+}$ protein kinase regulates entry into mitosis. Nature, 342, 39-45.

Gregory, T. R. (2005). The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Annals of Botany, 95, 133-146.

Hammer, J. A. $3^{\text {rd }}$, \& Sellers, J. R. (2012). Walking to work: roles for class V myosins as cargo transporters. Nature Reviews Molecular Cell Biology, 13, 13-26.

Hyun, O. L., Jean, M. D., \& Robert, J. D. (2009). Endoreplication: polyploidy with purpose. Genes and Development, 23, 2461-2477.

Ishiguro, J., \& Kobayashi, W. (1996). An actin point-mutation neighboring the 'hydrophobic plug' causes defects in the maintenance of cell polarity and septum organization in the fission yeast Schizosaccharomyces pombe. FEBS Letters, 392, 237241.

Kamasaki, T., Arai, R., Osumi, M., \& Mabuchi, I. (2005). Directionality of F-actin cables changes during the fission yeast cell cycle. Nature Cell Biology, 7, 916-917.

Kellogg, D. R. (2003). Wee1-dependent mechanisms required for coordination of cell growth and cell division. Journal of Cell Science, 116, 4883-4890.

Kondorosi, E., Roudier, F., \& Gendreau, E. (2000). Plant cell-size control: growing by ploidy? Current Opinion in Plant Biology, 3, 488-492.

Kovar, D. R., Sirotkin, V., \& Lord, M. (2011). Three's company: the fission yeast actin cytoskeleton. Trends in Cell Biology, 21, 177-187.

Lu, L. X., Domingo-Sananes, M. R., Huzarska, M., Novak, B, \& Gould, K. L. (2012). Multisite phosphoregulation of Cdc25 activity refines the mitotic entrance and exit switches. Proceedings of the National Academy of Sciences USA, 109, 9899-9904.

Marshall, W. F., Young, K. D., Swaffer, M., Wood, E., Nurse, P., Kimura, A., Frankel, J., Wallingford, J., Walbot, V., Qu, X., \& Roeder, A. H. K. (2012). What determines cell size? BMC Biology, 10, 101.
Masuda, H., Fong, C. S., Ohtsuki, C., Haraguchi, T., \& Hiraoka, Y. (2011). Spatiotemporal regulations of Wee1 at the G2/M transition. Molecular Biology of the Cell, 22, 555-569.

Nakano, K., \& Mabuchi, I. (2006). Actin-depolymerizing protein Adf1 is required for formation and maintenance of the contractile ring during cytokinesis in fission yeast. Molecular Biology of the Cell, 17, 1933-1945.

Orr-Weaver, T. L. (2015). When bigger is better: the role of polyploidy in organogenesis. Trends in Genetics, 31, 307-315.

Pandit, S. K., Westendorp, B., \& de Bruin, A. (2013). Physiological significance of polyploidization in mammalian cells. Trends in Cell Biology, 23, 556-566.

Rothstein, R. J. (1983). One-step gene disruption in yeast. Methods in Enzymology, 101, 202-211.

Rupeš, I., Webb, B. A., Mak, A., \& Young, P. G. (2001). G2/M arrest caused by actin disruption is a manifestation of the cell size checkpoint in fission yeast. Molecular Biology of the Cell, 12, 3892-3903.

Russell, P., \& Nurse, P. (1986). $c d c 25^{+}$functions as an inducer in the mitotic control of fission yeast. Cell, 45, 145-153.

Russell, P., \& Nurse, P. (1987a). Negative regulation of mitosis by weel ${ }^{+}$, a gene encoding a protein kinase homolog. Cell, 49, 559-567.

Russell, P., \& Nurse, P. (1987b). The mitotic Inducer niml ${ }^{+}$functions in a regulatory network of protein kinase homologs controlling the initiation of mitosis. Cell, 49, 569576.

Sabatinos, S. A., \& Forsburg, S. L. (2010). Molecular genetics of Schizosaccharomyces pombe. Methods in Enzymology, 470, 759-795.

Sugiyama, S. (2005). Polyploidy and cellular mechanisms changing leaf size: comparison of diploid and autotetraploid populations in two species of Lolium. Annals of Botany, 96, 931-938.

Sveiczer, A., Novak, B., \& Mitchison, J. M. (1996). The size control of fission yeast revisited. Journal of Cell Science, 109, 2947-2957.

Vartiainen, M. K., Guettler, S., Larijani, B., \& Treisman, R. (2007). Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science, 316, 1749-1752.

Verde, F., Mata, J., \& Nurse, P. (1995). Fission yeast cell morphogenesis: identification of new genes and analysis of their role during the cell cycle. Journal of Cell Biology, 131, 1529-1538.

Verde, F., Wiley, D. J., \& Nurse, P. (1998). Fission yeast orb6, a ser/thr protein kinase related to mammalian rho kinase and myotonic dystrophy kinase, is required for maintenance of cell polarity and coordinates cell morphogenesis with the cell cycle. Proceedings of the National Academy of Sciences USA, 95, 7526-7531.

Wood, E., \& Nurse, P. (2015). Sizing up to divide: mitotic cell-size control in fission yeast. Annual Review of Cell and Developmental Biology, 31, 11-29.

Wu, L., \& Russell, P. (1997). Nif1, a novel mitotic inhibitor in Schizosaccharomyces pombe. EMBO Journal, 16, 1342-1350.

Zhou, Y., Wang, M., Jiang, M., Peng, L., Wan, C., Liu, J., Liu, W., Zhao, R., Zhao, X., Hu, W., Liu, S, \& Xiao, Y. (2016). Autotetraploid cell Line induced by SP600125 from crucian carp and its developmental potentiality. Scientific Reports, 6, 21814.

Zhu, Y.-H. \& Wu, J.-Q. (2014). Cell-size control: complicated. Cell Cycle, 13, 693-694.

FIGURE 1 CER of haploid and diploid cells. (a) Time-lapse images of wild-type haploid (1n) and diploid (2 n) cells at $28^{\circ} \mathrm{C}$. Photographs were taken every 30 min . Arrowheads indicate the same growing cells with cell length in $\mu \mathrm{m}$. (b) Growth kinetics (top) and CER (bottom), starting from one division to the next.

FIGURE 2 Cdc 2 controls CER negatively. (a-d) Growth kinetics at $36.5^{\circ} \mathrm{C}$. Wild-type, weel-50 (a), $c d c 25-22$ (b), $c d c 2-L 7$ (c), and $c d c 13-117$ (d). (e) CER. (f) Relative CER. Data in (e) were redrawn by setting the 0.5 -h CER value to zero.

FIGURE 3 Haplo-insufficient positive and negative roles for CER. Growth kinetics (left) and maximum CER (right) during incubation at $28^{\circ} \mathrm{C}$ of heterozygotes (cdc254/+, weel4/+, or act14/+), those bearing combinations of deletion, and the homozygote bearing wee14/wee14 used as a reference. Data for wild-type cells are the same as shown in Figure 1. Statistical significance (p value) against the strain marked by bar or one in parenthesis is presented.

FIGURE 4 Cdc2 and actin dynamics control nuclear localization of GFP-Wee1. (a) Nuclear localization of GFP-Wee1 at $28^{\circ} \mathrm{C}$ and after the shift to $36.5^{\circ} \mathrm{C}$ for 20 and 30 min for haploid and diploid, respectively. (b-d) Fluorescence images of live cells. (b) Wildtype and $c d c 2-3 w$ cells bearing GFP-weel or GFP-NESx2-wee1. Intensity of nuclear GFP-Wee1 is also presented. (c) Wild-type, $c d c 254 /+$, and act14/+ cells. (d) Wild-type, act1-ts/act1-ts, and adfl-l/adfl-1 cells. Bar, $10 \mu \mathrm{~m}$.

FIGURE 5 Positive roles of Cdc25 and Act1 depend upon nuclear content of GFPWee1. (a) Growth kinetics and maximum CER at $36.5^{\circ} \mathrm{C}$ of diploid cells bearing series of genotypes for Wee 1 and their heterozygotes (act14/+ or $c d c 254 /+$). Haploid cells were used as a reference. (b) Growth kinetics and maximum CER at $28^{\circ} \mathrm{C}$ of the diploid cells indicated.

FIGURE 6 Cell-size scaling in cells harboring $c d c 25-G F P$. Growth kinetics and maximum CER at $28^{\circ} \mathrm{C}(\mathrm{a}, \mathrm{b})$ and $36.5^{\circ} \mathrm{C}$ (c, d). (a) Haploid ($c d c 25-G F P$) and diploid ($c d c 25-G F P / c d c 25-G F P$) controls, heterozygotes ($c d c 25-G F P / \Delta$, weel $4 /+$, or act1 $1 /+$), and those bearing combinations of deletion. (b) Heterozygote (cdc134/+) and its combinatorial heterozygotes. Data for haploid and diploid controls and the weel4/+ heterozygote are the same as shown in (a). (c) The haploid and diploid controls, heterozygote (cdc25-GFP/cdc25-22), its combination with weel-50/weel-50, and a
wee1-50/weel-50 control. (d) Control diploid bearing 4xactl ${ }^{+}$, its heterozygote ($c d c 25-$ GFP/cdc25-22) and homozygote (wee1-50/weel-50).

FIGURE 7 Cdc2 and actin dynamics control nuclear localization of Cdc25-GFP. (a) Nuclear localization of Cdc25-GFP or Cdc25-NLS-GFP at $28^{\circ} \mathrm{C}$ and after the shift to $36.5^{\circ} \mathrm{C}$ for 1 or 2 h . (b-d) Fluorescence images of live cells. (b) Wild-type, weel-50/weel50 , or $c d c 13-117 / c d c 13-117$ cells. (c) Wild-type or wee14/+ cells. (d) act1-ts/act1-ts or adfl-1/adf1-1 cells. Bar, $10 \mu \mathrm{~m}$.

FIGURE 8 Cell-size scaling in cells harboring $c d c 25-N L S-G F P$. Growth kinetics and maximum CER at $28^{\circ} \mathrm{C}$ in haploid ($c d c 25-N L S-G F P$), diploid ($c d c 25-N L S-G F P / c d c 25-$ $N L S-G F P$), and its heterozygote (wee14/+). Data for their counterparts bearing $c d c 25-$ $G F P$ are the same as shown in Figure 6.

FIGURE 9 Feedforward network controls CER. Growth kinetics and maximum CER at $28^{\circ} \mathrm{C}$ (a-i) or $36.5^{\circ} \mathrm{C}$ (j). (a) Heterozygotes or homozygotes for nim14, pom14, or nif14. (b) nim14/+ heterozygote or its combination (nim14/+ pom14/+). (c, d) wee14/+ heterozygote or its combinations, wee14/+ nim14/+ (c) or weel $1 /+$ pom1 $1 /+$ (d). (e) Cells with $c d c 25-G F P$ background. pom14/+ or wee14/+ heterozygote or their combination (wee1 $1 /+$ pom1 $1 /+$). (f) Diploid cells bearing $3 \mathrm{xact} 1^{+}$or its combinations with nim1 $1 /+$, nim14/nim14, or pom14/+. (g, h) nim14/nim14 homozygote or its combinations with pom14/+ or pom14/pom14 (g) or nifl4/nifld (h). (i) weeld/weeld homozygote or its combinations with nif14/nif14, nim14/nim14, or nif14/nif14 nim14/nim14. (j) Diploid cells bearing $c d c 25-22 / c d c 25-22$ weel $4 /$ weeld or its combination with nim14/nim14. CER of individual cells were also plotted against cell length at septation. Data for wildtype cells ($\mathrm{a}, \mathrm{f}, \mathrm{i}$), wee14/+ or wee14/weel4 cells (c, d, i), or cells bearing $c d c 25$ -GFP/cdc25-GFP or wee14/+ (e) are the same as shown in Figure 1, 3, or 6, respectively.

FIGURE 10 Feedforward network controls nuclear localization of GFP-Wee1. (a) Nuclear localization of GFP-Wee 1 at $28^{\circ} \mathrm{C}$ and after the shift to $36.5^{\circ} \mathrm{C}$ for 20 and 30 min for haploid and diploid, respectively. (b, c) Fluorescence images of live cells. (b) Wildtype, nim14/+, and nim14/nim14 cells. Intensity of nuclear GFP-Wee1 is also presented. (c) Wild-type, pom14/+, and nif1 $\Delta /+$ cells. Bar, $10 \mu \mathrm{~m}$.

FIGURE 11 A close cooperation between the negative feedback loop and the Nim1Pom1 route. Growth kinetics and maximum CER at $28^{\circ} \mathrm{C}$ in wild-type (a, b) or $c d c 25$ GFP (c) background. (a) $c d c 254 /+$ nim14/+, (b) $c d c 254 /+$ pom14/+, (c) $c d c 25-G F P / \Delta$ pom14/+ or cdc134/+ pom14/+. Data for other cells are the same as shown in Figures 1, 3,6 , and 9 .

FIGURE 12 Actin monomers inhibit CER through Nim1-Pom1. Growth kinetics of typical haploid cells (1n actl-ts) (a) and diploid cells (2n actl-ts/act1-ts) (d) after the shift to $36.5^{\circ} \mathrm{C}$, showing early or late induction of extension. (b, c, e, and f) CER of individual cells plotted against initial cell length at the temperature shift. Haploid actl-ts (b) or act1ts weel-50 (c), and diploid actl-ts/actl-ts (e) or actl-ts/actl-ts weel-50/weel-50 (f). (g) Proportion of cells showing early or late induction, or no growth. (h) Average CER of individual cells showing early induction. (i) Diploid cells bearing actl-ts/actl-ts cdc25-22/cdc25-22 weel-50/weel-50, or its combinations with pom14/+ or pom14/+ nim14/nim14. (j) Growth kinetics and maximum CER at $28^{\circ} \mathrm{C}$ of diploid cells bearing wee14/+ nim14/+ act14/+. Data for other cells are the same as shown in Figures 3 and 9.

FIGURE 13 Actin monomers stimulate CER through nuclear accumulation of GFPWee1. CER of individual cells harboring GFP-weel/GFP-weel or GFP-NESx2-wee1/GFP-NESx2-wee1, and their combinations with act1-ts/act1-ts, adf1-1/adf1-1, or adf1-1/adf1-1 act1-ts/act1-ts after the shift to $36.5^{\circ} \mathrm{C}$, plotted against initial cell length at the temperature shift. Average values with SD are also presented.

FIGURE 14 Doubling cell division genes in haploid reproduces diploid growth. (a-e) Growth kinetics and maximum CER at $36.5^{\circ} \mathrm{C}$. (a) Haploids bearing two copies of $c d c 13^{+}$, cdc25 5^{+}, poml ${ }^{+}$, actl ${ }^{+}$, or weel ${ }^{+}$(GFP-weel and weel ${ }^{+}$), and controls (wild and GFPweel weelU). (b) Haploid bearing two copies of weel ${ }^{+}$(GFP-weel and wee1 ${ }^{+}$) (the same in [a]) and its combinations with $2 \mathrm{xpoml} 1^{+}, 2 \mathrm{xact1} 1^{+}$, or $2 \mathrm{xpoml} 1^{+} 2 \mathrm{xact1}{ }^{+}$. Diploid control (2n GFP-weel/lysl wee1U/+) also shown. (c) Haploid bearing GFP-NESx2-weel and weel ${ }^{+}$and its combinations with $2 x$ poml $l^{+}, 2 \times a c t 1^{+}$, or $2 x p o m l^{+} 2 x a c t 1^{+}$. (d) Haploid bearing quintuple combination of two copies of genes (GFP-weel plus weel ${ }^{+}, 2 \mathrm{xact1}^{+}$, $2 \mathrm{xpom} I^{+}, 2 \mathrm{x} c d c 25^{+}$, and $2 \mathrm{x} c d c 13^{+}$) and haploids bearing quadruple combination without each of $2 \mathrm{xact1} 1^{+}, 2 \mathrm{xpoml}{ }^{+}, 2 \mathrm{x} c d c 25^{+}$, or $2 \mathrm{x} c d c 13^{+}$. Diploid control (2 n GFP-weel/lys1 wee14/+) (the same in [b]). (e) Haploid bearing quintuple combination of two copies of genes (GFP-NESX2-weel plus weel ${ }^{+}, 2 \times$ actl ${ }^{+}$, $2 \mathrm{xpoml} 1^{+}, 2 \mathrm{xcdc} 25^{+}$, and $2 \mathrm{xcdcl} 3^{+}$) and haploids bearing quadruple combination without each of $2 \mathrm{xactl} 1^{+}, 2 \mathrm{xpoml} 1^{+}, 2 \mathrm{x} c d c 25^{+}$, or
$2 \mathrm{xcdc} 13^{+}$. Diploid control (2n GFP-NESx2-wee1/lys1 wee1U/+) also shown. (f) Intensity of nuclear GFP-Wee1 (top) and nuclear localization of GFP-Wee1 (bottom) after the shift to $36.5^{\circ} \mathrm{C}$ for 60 and 20 min , respectively.

FIGURE 15 Positive role of Nim1 in haploid. Growth kinetics and maximum CER at $36.5^{\circ} \mathrm{C}$. Series of haploids bearing quadruple or triple combination of GFP-weel (or GFP-NESx2-wee1) plus weel ${ }^{+}$, $2 \mathrm{xact1} 1^{+}, 2 \mathrm{xcdc} 25^{+}$, and $2 \mathrm{xcdc} 13^{+}$indicated and their combinations with two copies of niml ${ }^{+}\left(2 \mathrm{xniml} l^{+}\right)$or with $2 \mathrm{xniml} 1^{+}$plus $2 \mathrm{xpoml}{ }^{+}$.

FIGURE 16 A model for how fission yeast cells scale their size with ploidy. (Left) Genetic framework for control of CER in diploid. (Right) Proposed fluctuation of protein activity or content together with CER during G2 progression in diploid cells. See text for details.

FIGURE S1 Fluorescence images of actin. Cells pre-grown exponentially at $28^{\circ} \mathrm{C}$ in EMM2 (or supplemented with requirements) were incubated at $36.5^{\circ} \mathrm{C}$ for 4 h before staining with rhodamine-phalloidin as described previously (Rupeš, Webb, Mak, et al., 2001). Bar, $10 \mu \mathrm{~m}$.

FIGURE S2 Fluorescence images of GFP-Wee1 in haploid and diploid cells. Cells were cultured exponentially at $28^{\circ} \mathrm{C}$ in EMM2. Contents of GFP-Wee1 (in arbitrary unit) in the nuclei of individual cells were plotted against cell length. Bar, $10 \mu \mathrm{~m}$.

FIGURE S3 Fluorescence images of Cdc25-GFP in haploid and diploid cells. Cells were cultured exponentially at $28^{\circ} \mathrm{C}$ in EMM 2 . Contents of Cdc $25-\mathrm{GFP}$ (in arbitrary unit) in the nuclei of individual cells were plotted against cell length. Bar, $10 \mu \mathrm{~m}$.

TABLE S1 The S. pombe strains used.

Experiment	Strain	Genotype
Figure 1	$\begin{aligned} & 2802 \\ & 2829 \end{aligned}$	$\begin{aligned} & \mathrm{h}^{-} \text {wild } \\ & \mathrm{h}^{+/-} \text {ade6-M210/ade6-M216 } \end{aligned}$
Figure 2	$\begin{aligned} & \hline 2802 \\ & 2829 \\ & 3967 \\ & 4031 \\ & 3823 \\ & 3691 \\ & 3779 \\ & 3800 \\ & 4017 \\ & 4035 \end{aligned}$	```h- wild \mp@subsup{h}{}{+/-}}\mathrm{ ade6-M210/ade6-M216 h- weel-50 \mp@subsup{h}{}{+/}\mathrm{ wee1-50/wee1-50 leu1-32/+ ade6-M210/ade6-M216} h \mp@subsup{\textrm{h}}{}{+/-}}cdc25-22/cdc25-22 ade6-M210/ade6-M216 h cdc2-L7 \mp@subsup{h}{}{+/- cdc2-L7/cdc2-L7 ade6-M210/ade6-M216} h- cdc13-117 \mp@subsup{h}{}{+/- cdc13-117/cdc13-117 ade6-M210/ade6-M216}```
Figure 3	$\begin{aligned} & 2802 \\ & 2829 \\ & 5646 \\ & 4684 \\ & 5649 \\ & 5667 \\ & 5670 \\ & 5669 \\ & 6021 \\ & 4688 \end{aligned}$	h^{-}wild $\mathrm{h}^{+/-}$ade6-M210/ade6-M216 $\mathrm{h}^{-/-}$cdc254::ura4 $4^{+} /+$leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$wee14::ura4 $4^{+} /+$leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 h^{--}act14::ura $4^{+} /+$leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/+}$cdc254::ura4 $4^{+} /+$wee14 $::$ura $^{+} /+$leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{-/}$act14::ura4+/+ cdc254::ura4 ${ }^{+} /+$leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{-/}$act14::ura4+/+ wee14::ura4 $4^{+}+$leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 h^{--}cdc254::ura $4^{+} /+$wee14::ura $4^{+} /+$act10::ura $4^{+} /+$ leu1-32/+ (or +/+) ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$wee14::ura4 4^{+}wee14::ura 4^{+}leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216
Figure 4	$\begin{aligned} & 3174 \\ & 3234 \end{aligned}$	h^{+}lys $1^{+}:: G F P-$ weel wee14::ura 4^{+}ura4-D18 h^{-}cdc2-3w lys1 ${ }^{+}:: G F P$-weel wee14::ura 4^{+}ura $4-D 18$

Figure 4	3707 3891 4042 4181 5701 1371 5685 4699 5301 3180 3256 3728 4060	```h' cdc2-L7 lys1 \(1^{+}:\)GFP-weel wee14::ura \(4^{+}\) ura4-D18 (or -294) \(\mathrm{h}^{+}\)cdc25-22 lys \(1^{+}:: G F P\)-weel weeld: \(:\) ura \(4^{+}\)ura4-D18 ade6-M210 \(\mathrm{h}^{+}\)cdc13-117 lys1 \(1^{+}::\)GFP-wee1 wee14: :ura \(4^{+}\)ura4-D18 \(\mathrm{h}^{+} 2\) xact \(1^{+}::\)ura \(^{+}{ }^{+}\)lys \(1^{+} \because: G F P\)-weel wee14::ura4-3233 ura4-D18 \(\mathrm{h}^{+}\)cdc13-117 2 xact1 \({ }^{+} \because:\) ura \(^{+}{ }^{+}\)lys \(1^{+} \because:\) GFP-weel wee14::ura4-3233 ura4-D18 ade6-M210 \(\mathrm{h}^{-}\)act1-ts lys1 \({ }^{+}:: G F P\)-wee1 wee14: \(:\) ura \(4^{+}\)leu1-32 ura4-D18 \(\mathrm{h}^{-}\)act1-ts cdc13-117 lys1 \({ }^{+}::\)GFP-wee1 wee14::ura \(4^{+}\) leu1-32 ura4-D18 ade6-M210 \(\mathrm{h}^{-}\)adfl-1 lys \(1^{+}:: G F P\)-weel wee14::ura \(4^{+}\)ura4-D18 \(\mathrm{h}^{-}\)adf1-1 cdc2-3w lys1 \({ }^{+}:: G F P\)-weel wee14::ura4 \({ }^{+}\) ura4-D18 \(\mathrm{h}^{+-}\)lys \(1^{+}:: G F P-\) wee \(1 / /\) lys \(1^{+}:: G F P-\) weel 1 wee14::ura4+/wee14::ura4 \({ }^{+}\)leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)cdc2-3w/cdc2-3w lys \(1^{+} \because: G F P-\) wee1/lys \(1^{+} \because: G F P-\) wee1 wee14::ura4 \({ }^{+}\)/wee14: :ura \(4^{+}\)ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)cdc2-L7/cdc2-L7 lys1 \({ }^{+} \because: G F P\)-wee1/lys1 \({ }^{+} \because G F P\)-wee1 wee14::ura4+/wee14:::ura4 \({ }^{+}\) ura4-D18 (or -294)/ura4-D18 (or -294) ade6-M210/ade6-M216 \(\mathrm{h}^{+/-} c d c 25-22 / c d c 25-22\) lys \(1^{+}:: G F P-\) weel/lys \(1^{+}: \because G F P-\) weel wee14::ura4+/wee14::ura \(4^{+}\)leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)cdc13-117/cdc13-117 lys \(1^{+}:: G F P-\) wee1/lys \(1^{+} \because: G F P-\) weel 1 wee14::ura4 \({ }^{+}\)/wee14::ura \(4^{+}\)ura4-D18/ura4-D18 ade6-M210/ade6-M216```

Figure 4	3927	h^{-1-} cdc $254::$ ura $4^{+} /+$lys $1^{+}:: G F P-$ weel $1 / l y s 1^{+}:: G F P$-wee1 wee14::ura4-3233/wee14::ura4-3233 leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 h^{-1} cdc134::ura $4^{+} /+$lys $1^{+} \because: G F P-$ wee1/lys1 $1^{+}:$GFP-wee1 wee14::ura4-3233/wee14::ura4-3233 leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/}$act14::ura $4^{+} /+$lys $1^{+} \because: G F P-$ wee1/lys1 $1^{+}:$GFP-wee1 wee14::ura4-3233/wee14::ura4-3233 leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-} 2$ xact $^{+}::$ura $^{+} /+\left(3 \mathrm{xactl}{ }^{+}\right)$ lys $1^{+}:: G F P-$ weel/lys $1^{+}:: G F P-$ weel wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$cdc13-117/cdc13-117 2xact1 ${ }^{+}::$ura4 $^{+} /+\left(3 \mathrm{xact1}{ }^{+}\right)$ lys $1^{+}:: G F P-w e e 1 / / l y s I^{+}:: G F P-$ weel wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$cdc254::ura4 ${ }^{+} /+2$ xactl $^{+}::$ura $^{+} /+\left(3 \mathrm{xact1}{ }^{+}\right)$ lys $1^{+}:: G F P-$ wee1/lys $1^{+}:: G F P-$ wee1 wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 ade6-M210/ade6-M216 h^{-1} cdc134:: ura4 ${ }^{+} /+2$ xactl $^{+}::$ura4 $^{+} /+\left(3 \mathrm{xact1}{ }^{+}\right)$ lys $1^{+}:: G F P-w e e 1 / l y s 1^{+}:: G F P-w e e 1$ wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$actl-ts/act1-ts lys $1^{+} \because: G F P-$ wee $1 / /$ lys $1^{+} \because: G F P$-wee1 wee14::ura4 ${ }^{+}$/wee14::ura4-3233 leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$act1-ts/act1-ts cdc13-117/cdc13-117 lys1 ${ }^{+}:: G F P-$ wee1/lys $1^{+}:: G F P-$ wee1 wee14::ura4+/wee14::ura4 ${ }^{+}$leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$adf1-1/adf1-1 lys1 $1^{+}:$GFP-wee1/lys $1^{+}:: G F P-$ wee1 wee14::ura4+/wee14::ura 4^{+}ura4-D18/ura4-D18 ade6-M210/ade6-M216

Figure 4	4854 5320 3212 3260	```\(\mathrm{h}^{+/-}\)act1-ts/act1-ts adf1-1/adf1-1 lys \(1^{+}:: G F P-\) wee \(1 / l y s 1^{+}:: G F P-\) wee 1 wee14::ura4 \({ }^{+}\)/wee14::ura \(4^{+}\)ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)adf1-1/adf1-1 cdc2-3w/cdc2-3w lys \(1^{+}:: G F P-w e e 1 / l y s 1^{+} \because G F P-w e e 1\) wee14::ura4 \({ }^{+}\)wee14::ura4 \({ }^{+}\)ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)lys \(1^{+}:: G F P-N E S x 2-\) wee1/lys \(1^{+}: \because G F P-N E S x 2\)-wee1 wee14::ura4+/wee14::ura \(4^{+}\)leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-} c d c 2-3 w / c d c 2-3 w\) lys \(1^{+}:\)GFP-NESx2-wee1/lys \(1^{+} \because: G F P-N E S x 2-w e e 1\) wee14::ura4 \({ }^{+}\)wee14::ura4 \({ }^{+}\)ura4-D18/ura4-D18 ade6-M210/ade6-M216```
Figure 5	3174 3180 3322 3452 3416 3453 5794	h^{+}lys $1^{+}:: G F P$-weel wee14 $::$ ura $^{+}$ura4-D18 $\mathrm{h}^{+/}$lys $1^{+}:: G F P-$ wee $1 / /$ lys $1^{+} \because: G F P-$ weel 1 wee14::ura4+/wee14::ura4 ${ }^{+}$leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$act14::ura4 $4^{+} /+$lys $1^{+} \because: G F P-$ wee1/lys1 $1^{+}:: G F P-$ weel wee14::ura4-3233/wee14::ura4-3233 leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{-/-}$cdc254::ura4 ${ }^{+} /+$lys $1^{+}: \because G F P-w e e 1 / l y s 1^{+}:: G F P$-wee1 wee14::ura4-3233/wee14::ura4-3233 leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 h^{+-}lys $1^{+}:$GFP-weel/lys1-131 wee14::ura4-3233/wee14::ura4-3233 ura4-D18/+ ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$act10 $::$ura $^{+} /+$lys1 $1^{+}::$GFP-wee1/lys $1-131$ wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 ade6-M210/ade6-M216 h^{-1} cdc254::ura $4^{+} /+$lys $1^{+} \because: G F P-$ wee1/lys1-131 wee14::ura4-3233/wee14::ura4-3233 leu1-32/+ (or +/+) ura4-D18/ura4-D18 ade6-M210/ade6-M216

Figure 5	5854 5904 5902 3206 3212 3325 3540 3256 3260	$\mathrm{h}^{+/+} 2 \mathrm{xnim1} 1^{+}::$ura4 $^{+} /+\left(3 \mathrm{xnim1} 1^{+}\right)$lys $1^{+}:$GFP-wee1/lysl-131 wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/+}$act14::ura4+/+2xnim1 ${ }^{+}::$ura $^{+} /+\left(3 \mathrm{xniml} 1^{+}\right)$ lys $1^{+}:$:GFP-wee1/lys1-131 wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/+}$cdc $25 \Delta::$ ura $4^{+} /+2 \times$ ximl $^{+}::$ura $^{+} /+\left(3 \times n i m 1^{+}\right)$ lys $1^{+}:: G F P-$ wee1/lys1-131 wee14::ura4-3233/wee14::ura4-3233 leu1-32/+ (or +/+) ura4-D18/ura4-D18 ade6-M210/ade6-M216 h^{-}lys $1^{+}:: G F P-N E S x 2$-weel wee14: :ura 4^{+}ura4-D18 $\mathrm{h}^{+/-}$lys $1^{+}:: G F P-N E S x 2-$ weel/llys $1^{+} \because: G F P-N E S x 2$-weel wee14::ura4 ${ }^{+}$/wee14::ura 4^{+}leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/+}$act14::ura4 ${ }^{+} /+$ lys $1^{+}:$GFP-NESx2-wee1/lys $1^{+}:: G F P-N E S x 2-$ wee 1 wee14::ura4-3233/wee14::ura4-3233 leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/+}$cdc254:: $\mathrm{ura}^{+} /+$ lys $1^{+}:: G F P-N E S x 2-$ wee1/lys $1^{+}:: G F P-N E S x 2-$ wee 1 wee14::ura4-3233/wee14::ura4-3233 leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$cdc2-3w/cdc2-3w lys $1^{+}:: G F P-w e e 1 / l y s 1^{+} \because: G F P-w e e 1$ wee14::ura4+/wee14::ura4 ${ }^{+}$ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-} c d c 2-3 w / c d c 2-3 \mathrm{w}$ lys $1^{+}:: G F P-N E S x 2-$ wee1/lys1 ${ }^{+}:: G F P-N E S x 2-$ wee1 wee14::ura 4^{+}/wee14::ura 4^{+}ura4-D18/ura4-D18 ade6-M210/ade6-M216
Figure 6	$\begin{aligned} & 1461 \\ & 3614 \end{aligned}$	```\mp@subsup{h}{}{--}}\mathrm{ cdc254::ura4 }\mp@subsup{}{}{+}::cdc25-GFP::leul+/ cdc254::ura4+}::cdc25-GFP::leul + leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216```

Figure 6	$\begin{aligned} & 3884 \\ & 3592 \\ & 2141 \\ & 3962 \\ & 3983 \\ & \hline 3705 \\ & \hline 3733 \\ & 4072 \\ & \hline 3960 \end{aligned}$	```\(\mathrm{h}^{--}\)cdc254::ura4+/cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\) leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{-1-}\) wee14:: ura4 \({ }^{+} /+\)cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+} /\) cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{-/-}\)act14::ura4 \({ }^{+} /+\)cdc254::ura4-2012::cdc25-GFP: :leu1+/ cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{-1}\) wee14::ura4 \(4^{+} /+\) cdc254::ura4 \({ }^{+} /\)cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\) leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{-/-}\)act14::ura \(4^{+} /+\) cdc254::ura4 \({ }^{+}\)cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\) leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{-/}\)weel \(14::\) ura \(4^{+} /+\)act \(1 \Delta::\) ura \(^{+} 4^{+}+\) cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+} /\) cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/+}\)act14::ura4+/+ wee14:::ura \(4^{+} /+\) cdc254::ura4 \({ }^{+}\)cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\) leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{-1}\) cdc134::ura4 \({ }^{+} /+\) cdc254::ura4-2012::cdc25-GFP: :leu1 \({ }^{+}\)/ cdc254::ura4-2012::cdc25-GFP::leu1+ leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{-/}\)cdc134::ura4 \({ }^{+} /+\) cdc254::ura4 \({ }^{+}\)cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\) leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216```

Figure 6	3984 4165 3011 2789 3094 3138 3167 4127	```\(\mathrm{h}^{-/-}\)cdc134::ura4 \({ }^{+} /+\)wee14 \(::\)ura \(^{+} /+\) cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+} /\) cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/+}\)cdc134::ura \(4^{+} /+\)act14::ura \(4^{+} /+\) cdc254::ura4 \({ }^{+} /\)cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\) leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)cdc25-22/cdc251::ura \(4^{+}:: c d c 25-G F P::\) leul \({ }^{+}\) leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)weel-50/weel-50 cdc254::ura4-2012::cdc25-GFP: :leu1 \({ }^{+} /\) cdc254::ura \(4^{+}:: c d c 25-G F P::\) leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)weel-50/weel-50 cdc25-22/cdc254::ura4 \({ }^{+}:: c d c 25-G F P::\) leu1 \(^{+}\) leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-} 2 \mathrm{xact1} 1^{+}::\)ura \(^{+} / 2 \mathrm{xactl}^{+}::\)ura \(^{+}\left(4 \mathrm{xact1}{ }^{+}\right)\) cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\)/ cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-} 2 \mathrm{xactl} 1^{+}::\)ura \(^{+} / 2 \mathrm{xactl} 1^{+}::\)ura4 \(^{+}\left(4 \mathrm{xact1}{ }^{+}\right)\) cdc25-22/cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\) leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)weel-50/weel-50 2xact1 \({ }^{+}::\)ura \(^{+}\)²xact1 \(1^{+}::\)ura \(^{+}\left(4 \mathrm{xactl} 1^{+}\right)\) cdc254::ura4-2012::cdc25-GFP::leu1+/ cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216```
Figure 7	$\begin{aligned} & 1461 \\ & 1557 \end{aligned}$	h^{-}cdc254::ura4 ${ }^{+}:: c d c 25-G F P::$ leu1 ${ }^{+}$leu1-32 ura4-D18 h^{-}cps8-188 (act1-ts) cdc254::ura4 ${ }^{+}:: c d c 25-G F P::$ leu1 $^{+}$ leu1-32 urat-D18 ade6-M210

Figure 7	$\begin{aligned} & 4708 \\ & 1464 \\ & 1795 \\ & 5739 \\ & 1846 \\ & 1909 \\ & 4780 \\ & 1587 \\ & 1870 \\ & 2792 \\ & 4796 \\ & 3614 \\ & 1740 \\ & 4736 \\ & 1488 \end{aligned}$	```\(\mathrm{h}^{-}\)adf1-1 cdc254::ura4 \({ }^{+}:: c d c 25-G F P::\) leu1 \({ }^{+}\)leu1-32 ura4-D18 \(\mathrm{h}^{-}\)wee1-50 cdc254::ura \(4^{+}::\)cdc25-GFP: \(:\)leu1 \({ }^{+}\)leu1-32 ura4-D18 \(\mathrm{h}^{-}\)act1-ts wee1-50 cdc254::ura \(4^{+}:: c d c 25-G F P::\) leul \(^{+}\) leu1-32 ura4-D18 ade6-M210 \(\mathrm{h}^{-}\)adf1-1 wee1-50 cdc254::ura4 \({ }^{+}:: c d c 25-G F P:: l e u 1^{+}\) leu1-32 ura4-D18 ade6-M210 \(\mathrm{h}^{-}\)cdc13-117 cdc254::ura4 \({ }^{+}:\)cdc25-GFP \(::\)leu1 \({ }^{+}\)leu1-32 ura4-D18 ade6-M210 \(\mathrm{h}^{-}\)act1-ts cdc13-117 cdc254:::ura4 \({ }^{+}:: c d c 25-G F P:: l e u 1^{+}\) leu1-32 ura4-D18 ade6-M210 \(\mathrm{h}^{-}\)adf1-1 cdc13-117 cdc254::ura4 \({ }^{+}:: c d c 25-G F P::\) leu1 \(^{+}\) leu1-32 ura4-D18 \(\mathrm{h}^{-}\)cdc251::ura \(4^{+}:: c d c 25-N L S-G F P::\) leu1 \({ }^{+}\)leu1-32 ura4-D18 ade6-M216 \(\mathrm{h}^{-}\)wee1-50 cdc254:::ura \(4^{+}:: c d c 25-N L S-G F P::\) leu1 \({ }^{+}\)leu1-32 ura4-D18 \(\mathrm{h}^{+}\)act1-ts cdc254::ura \(4^{+}:: c d c 25-N L S-G F P::\) leu1 \(^{+}\)leu1-32 ura4-D18 ade6-M210 \(\mathrm{h}^{-}\)adf1-1 cdc254::ura \(4^{+}:: c d c 25-N L S-G F P:: l e u 1^{+}\)leu1-32 ura4-D18 \(\mathrm{h}^{-/}\)cdc254::ura \(4^{+}:: c d c 25-G F P::\) leul \(^{+} /\) cdc251::ura \(4^{+}:: c d c 25-G F P::\) leu1 \(^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)act1-ts/actl-ts cdc254:::ura4 \({ }^{+}:: c d c 25-G F P::\) leul \(^{+} /\) cdc254::ura \(4^{+}::\)cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)adf1-1/adf1-1 cdc254::ura4 \(4^{+}:: c d c 25-G F P:: l e u 1^{+} /\) cdc254::ura \(4^{+}:: c d c 25-G F P::\) leul \(^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/}\)wee1-50/wee1-50 cdc254::ura4 \({ }^{+}:: c d c 25-G F P::\) leu1 \(^{+} /\) cdc254::ura \(4^{+}:: c d c 25-G F P::\) leul \(^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216```

Figure 7	1815 5757 5761 5766 1861 1925 4808 3592 2141	```\(\mathrm{h}^{+-}\)act1-ts/act1-ts wee1-50/weel-50 cdc254::ura4 \({ }^{+}:: c d c 25-G F P::\) leu1 \(^{+} /\) cdc254::ura \(4^{+}:: c d c 25-G F P::\) leu1 \(^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)adf1-1/+ weel-50/weel-50 cdc254::ura4 \(4^{+}:\)cdc25-GFP \(::\)leu1 \(^{+} /\) cdc254::ura \(4^{+}:: c d c 25-G F P::\) leu1 \(^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)adf1-1/adf1-1 wee1-50/+ cdc \(254::\) ura \(^{+}{ }^{+}: c d c 25-G F P::\) leul \(^{+} /\) cdc254::ura4 \({ }^{+}::\)cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+-}\)adf1-1/adf1-1 wee1-50/wee1-50 cdc254:::ura4 \({ }^{+}:: c d c 25-G F P::\) leul \(^{+} /\) cdc254::ura4 \({ }^{+}::\)cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)cdc13-117/cdc13-117 cdc254::ura4 \(4^{+}:: c d c 25-G F P::\) leul \(^{+} /\) cdc254::ura \(4^{+}::\)cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)act1-ts/act1-ts cdc13-117/cdc13-117 cdc254::ura4 \({ }^{+}:: c d c 25-G F P::\) leu1 \(^{+} /\) cdc254::ura4 \({ }^{+}::\)cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)adf1-1/adf1-1 cdc13-117/cdc13-117 cdc254::ura4 \({ }^{+}:: c d c 25-G F P::\) leul \(^{+} /\) cdc254::ura4 \({ }^{+}:: c d c 25-G F P::\) leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{--}\)wee14::ura \(4^{+} /+\)cdc254::ura4-2012::cdc25-GFP:: leu1 \({ }^{+} /\) cdc254::ura4-2012::cdc25-GFP::leu1+ leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{-1}\) act14::ura4+/+ cdc254::ura4-2012::cdc25-GFP::leu1+/ cdc254::ura4-2012::cdc25-GFP::leu1+ leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216```

Figure 7	3705 6134 1886 2797 4811 6139	```\(\mathrm{h}^{-1-}\) act14::ura \(4^{+} /+\)wee14::ura \(4^{+} /+\) cdc254::ura4-2012::cdc25-GFP::leu1+/ cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)cdc254::ura4 \({ }^{+}:: c d c 25-\) NLS-GFP::leul \({ }^{+/}\) cdc254::ura4 \({ }^{+}:: c d c 25-N L S-G F P:: l e u 1^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)weel-50/weel-50 cdc254::ura4 \({ }^{+}:: c d c 25-N L S-G F P::\) leul \(^{+} /\) cdc254::ura \(4^{+}:: c d c 25-N L S-G F P::\) leul \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)act1-ts/act1-ts cdc254::ura4 \({ }^{+}:: c d c 25-N L S-G F P::\) leul \(^{+} /\) cdc254::ura4 \({ }^{+}:: c d c 25-N L S-G F P:: l e u 1^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)adf1-1/adf1-1 cdc254::ura4 \({ }^{+}:: c d c 25-N L S-G F P:: l e u 1^{+} /\) cdc254::ura4 \(4^{+}:: c d c 25-N L S-G F P::\) leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+-}\)wee14::ura4 \(4^{+} /+\) cdc254::ura4 \({ }^{+}:: c d c 25-N L S-G F P:: l e u 1^{+} /\) cdc254::ura4 \({ }^{+}:: c d c 25-N L S-G F P:: l e u 1^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216```
Figure 8	146 3614 3592 6112 6134	```h \mp@subsup{h}{}{-/-}}\mathrm{ cdc254::ura4+ cdc254::ura4+}\mp@subsup{}{}{+}:=cdc25-GFP::leu1+ leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \mp@subsup{h}{}{-/-}}\mathrm{ wee14::ura4+/+ cdc254::ura4-2012::cdc25-GFP::leu1+/ cdc254::ura4-2012::cdc25-GFP::leu1+ leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 h ura4-D18 \mp@subsup{h}{}{+/-}}\mathrm{ cdc254::ura4 +}::cdc25-NLS-GFP::leu\mp@subsup{1}{}{+/ cdc254::ura4+::cdc25-NLS-GFP::leu1+ leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216```

Figure 8	6139	```h+/- wee1\Delta::ura4 4/+ cdc254::ura4+}\mp@subsup{4}{}{+}:cdc25-NLS-GFP::leu1+/ cdc254::ura4+}\mp@subsup{}{}{+}:cdc25-NLS-GFP::leu1+ leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216```
Figure 9	2802	$\mathrm{h}^{\text {- }}$ wild
	2829	$\mathrm{h}^{+/-} \text {ade6-M210/ade6-M216 }$
	6136	$\mathrm{h}^{+-} \text {nim14::LEU2/+ leu1-32/leu1-32 ade6-M210/ade6-M216 }$
	4445	$\mathrm{h}^{+/-}$nim14::LEU2/ nim14::LEU2 leu1-32/leu1-32
		ura4-D18/+ ade6-M210/ade6-M216
	6057	$\mathrm{h}^{-1-} \text { pom14::ura4 }{ }^{+} /+ \text {leu1-32/+ ura4-D18/ura4-D18 }$
		ade6-M210/ade6-M216
	4975	$\mathrm{h}^{+/-}$pom14::ura4 ${ }^{+} /$pom14::ura4 ${ }^{+}$ura4-D18/ura4-D18
		ade6-M210/ade6-M216
	6114	$\mathrm{h}^{+/}$nif14::ura4+/+ leu1-32/+ ura4-D18/ura4-D18
		ade6-M210/ade6-M216
	6117	
		ura4-D18/ura4-D18 ade6-M210/ade6-M216
	4454	$\mathrm{h}^{+/-}$nim14: :LEU2/+ pom14::ura4+/+ leu1-32/leu1-32
		ura4-D18/ura4-D18 ade6-M210/ade6-M216
	4684	$\mathrm{h}^{+/-}$wee14::ura4 ${ }^{+} /+$leu1-32/+ ura4-D18/ura4-D18
		ade6-M210/ade6-M216
	6054	$\mathrm{h}^{-/-}$wee14 $:$ura4 $4^{+}+$nim14 $:$LEU2/+ leu1-32/leu1-32
		ura4-D18/ura4-D18 ade6-M210/ade6-M216
	6113	$\mathrm{h}^{+/}$wee14::ura4 $4^{+}+$pom14::ura4 ${ }^{+} /+$leu1-32/+
		ura4-D18/ura4-D18 ade6-M210/ade6-M216
	3614	$\mathrm{h}^{-/-}$cdc254: ura $^{+}$: $:$cdc $25-G F P:: l e u 1^{+/}$
		cdc254::ura4+::cdc25-GFP::leu1+ leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216
	3390	$\mathrm{h}^{+/-} \text {pom14::ura4+/+ }$
		cdc254::ura4-2012::cdc25-GFP::leu1+/
		cdc254::ura4-2012::cdc25-GFP::leu1+ leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216
	3592	$\mathrm{h}^{-/}$wee14 $::$ura $^{+} /+$cdc254::ura4-2012::cdc25-GFP::leu1 ${ }^{+/}$ cdc254::ura4-2012::cdc25-GFP::leu1+ leu1-32/leu1-32
		ura4-D18/ura4-D18 ade6-M210/ade6-M216

Figure 9	5388	$\mathrm{h}^{+/-}$cdc25-22/cdc25-22 wee14::ura4 ${ }^{+} /$wee14: :ura 4^{+} nim14::LEU2/nim14::LEU2 leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216
Figure 10	3174	h^{+}lys $1^{+}:: G F P$-weel weel $14:$ ura 4^{+}ura4-D18
	3507	h^{+}pom14:::ura 4^{+}lys $1^{+}:: G F P$-weel wee14::ura4-3233 ura4-D18
	4542	h^{+}nim14::LEU2 lys1 $1^{+}:$GFP-weel wee14: $:$ura 4^{+}leu1-32 ura4-D18 ade6-M210
	4607	h^{+}nim14::LEU2 pom14::ura 4^{+}lys $1^{+}:: G F P$-weel wee 14::ura4-3233 leu1-32 ura4-D18 ade6-M216
	5452	h^{+}nif14::ura 4^{+}lys $1^{+}:: G F P$-wee1 wee14::ura4-3233 ura4-D18 ade6-M210
	3180	$\begin{aligned} & \mathrm{h}^{+/-} \text {lys } 1^{+}:: G F P-\text { wee1/lys } 1^{+}:: G F P-\text { wee1 } \\ & \text { weel14::ura4 }{ }^{+} \text {/wee14: :ura } 4^{+} \text {leu1-32/+ } \\ & \text { ura4-D18/ura4-D18 ade6-M210/ade6-M216 } \end{aligned}$
	3526	h^{+-}pom14::ura $4^{+} /$pom14::ura 4^{+} lys $1^{+}:: G F P-$ weel/lys $1^{+}:: G F P-$ weel wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 ade6-M210/ade6-M216
	3529	$\mathrm{h}^{+/-}$pom14:::ura $4^{+} /+$lys $1^{+}:: G F P-$ wee $1 / /$ lys $1^{+} \because: G F P$-weel 1 wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 ade6-M2 10/ade6-M216
	5277	$\begin{aligned} & \mathrm{h}^{+/-} 2 \times \text { pom } 1^{+}:: \text {ura } 4^{+} / 2 \times \text { pom } 1^{+}:: \text {ura } 4^{+}\left(4 x \text { pom } 1^{+}\right) \\ & \text {lys } 1^{+}:: G F P-\text { wee1/lys } 1^{+}:: G F P-\text { wee } 1 \\ & \text { wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 } \\ & \text { ade6-M210/ade6-M216 } \end{aligned}$
	3673	$\begin{aligned} & \mathrm{h}^{+/-} \text {act1-ts/act1-ts pom } 1 \Delta:: \text { ura } 4^{+} /+ \\ & \text {lys } 1^{+}:: G F P-\text { wee1/lys } 1^{+}:: G F P-\text { wee1 } \\ & \text { wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 } \\ & \text { ade6-M210/ade6-M216 } \end{aligned}$
	4574	$\begin{aligned} & \mathrm{h}^{+/-} \text {nim1 } 1: \because \text { LEU2/nim } 1 \Delta:: L E U 2 \\ & \text { lys1 } 1^{+}:: G F P-\text { wee1/lys } 1^{+}:: G F P-\text { weel } \\ & \text { wee1 } 1:: \text { ura } 4^{+} / \text {wee1 } 1:: \text { ura } 4-3233 \text { leu1-32/leu1-32 } \\ & \text { ura4-D18/ura4-D18 ade6-M210/ade6-M216 } \end{aligned}$

Figure 10	4880 6126 4612 4554 5233 5457 5460 5502 4813	$\mathrm{h}^{+/-}$adf1-1/adf1-1 nim14 $\because: L E U 2 / n i m 14::$ LEU2 lys $1^{+}:: G F P-$ weel/lys $1^{+} \because: G F P-$ weel wee14::ura4 ${ }^{+} /$wee14::ura 4^{+}leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$nim1 $1::$ LEU2/+ lys $1^{+}: \because G F P$-wee1/lys1 $1^{+} \because$ GFP-wee1 wee14::ura4 ${ }^{+}$/wee14::ura4-3233 leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}+/-$ nim14 $\because:$ LEU2/nim14 $::$ LEU2 pom14 $::$ ura $^{+}{ }^{+} /+$ lys $1^{+}:: G F P-$ weel/lys $1^{+}:: G F P-$ weel wee14::ura4-3233/wee14::ura4-3233 leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$nim14 $:$LEU2/+ pom $14::$ ura $^{+} /+$ lys $1^{+}:: G F P-$ wee1/lys $1^{+}: \because G F P-$ wee1 wee14::ura4-3233/wee14::ura4-3233 leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-} 2 \mathrm{xniml} l^{+}::$ura $^{+} / 2 \mathrm{xniml} 1^{+}::$ura $^{+}\left(4 \mathrm{xniml} 1^{+}\right)$ lys $1^{+}:: G F P-$ wee1/lys $1^{+} \because: G F P-$ weel 1 wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$nif14::ura4 ${ }^{+} /$nif14::ura4 ${ }^{+}$ lys $1^{+}:: G F P-$ weel/lys $1^{+} \because: G F P-$ wee 1 wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$nif14::ura $4^{+} /+$lys $1^{+}:: G F P-$ weel/lys $1^{+}:: G F P-$ weel wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$nif14::ura4+/nif14::ura4 ${ }^{+}$nim14 $::$LEU2/nim14 $:$LEU2 lys $1^{+}:: G F P-$ weel/lys $1^{+}:: G F P-$ wee1 wee14::ura4-3233/wee14::ura4-3233 leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-} 2 \mathrm{xactl} 1^{+}:: \mathrm{ura4}^{+} /+\left(3 \mathrm{xactl}{ }^{+}\right)$ lys $1^{+}:: G F P-$ weel/lys $1^{+} \because: G F P-$ wee 1 wee14::ura4-3233/wee14::ura4-3233 ura4-D18/ura4-D18 ade6-M210/ade6-M216

Figure 10	4816 4865 5444 5491 5567 5563	
Figure 11	2829 5646 6136 6146 6057 6145	```\(\mathrm{h}^{+/-}\)ade6-M210/ade6-M216 \(\mathrm{h}^{-/-}\)cdc254::ura4 \({ }^{+} /+\)leu1-32/+ ura4-D18/ura4-D18 ade6-M2 10/ade6-M216 \(\mathrm{h}^{+/}\)nim14: : LEU2/+ leu1-32/leu1-32 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)cdc254::ura4 \({ }^{+} /+\)nim14 \(::\)LEU2/+ leu1-32/leu1-32 ura4-D18/+ (or -/-) ade6-M210/ade6-M216 \(\mathrm{h}^{-/}\)pom14::ura4 \({ }^{+} /+\)leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)cdc254::ura4 \({ }^{+} /+\)pom14::ura4 \({ }^{+} /+\)leu1-32/+ (or +/+) ura4-D18/ura4-D18 ade6-M210/ade6-M216```

Figure 11	3614 3884 3733 3390 4270 4272	```\(\mathrm{h}^{-/-}\)cdc254::ura4 \({ }^{+}:: c d c 25-G F P::\) leul \(^{+} /\) cdc254::ura \(4^{+}:: c d c 25-G F P::\) leul \(^{+}\) leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{-1 /}\) cdc254::ura4 \({ }^{+} /\)cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\) leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{-1}\) cdc134::ura4 \({ }^{+} /+\) cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+} /\) cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)pom14::ura4 \({ }^{+} /+\) cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+} /\) cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{--}\)pom14::ura4 \({ }^{+} /+\) cdc254::ura4 \({ }^{+} /\)cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\) leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{-/-}\)pom14::ura4 \(4^{+} /+\)cdc134:: ura \(^{+} /+\) cdc254::ura4-2012::cdc25-GFP::leu1+/ cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216```
Figure 12	$\begin{aligned} & \hline 2802 \\ & 1345 \\ & 3823 \\ & 1664 \\ & 3967 \\ & 3991 \\ & 3760 \\ & 1689 \\ & 2829 \\ & 3660 \\ & 3691 \\ & 3677 \end{aligned}$	h^{-}wild h- cps8-188 (actl-ts) $\mathrm{h}^{-} c d c 25-22$ h^{-}actl-ts cdc25-22 h weel-50 h- actl-ts wee1-50 h^{-}cdc25-22 wee1-50 h^{-}cdc25-22 wee1-50 act1-ts ade6-M216 $\mathrm{h}^{+/-}$ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$act1-ts/actl-ts ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$cdc25-22/cdc25-22 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$act1-ts/act1-ts cdc25-22/cdc25-22 ade6-M210/ade6-M216

Figure 12	4031 4068 3797 1701 3872 5681 4684 5669 6054 6096	$\mathrm{h}^{+/-}$weel-50/wee1-50 leu1-32/+ ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$act1-ts/act1-ts wee1-50/wee1-50 leu1-32/+ ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$cdc25-22/cdc25-22 wee1-50/weel-50 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$act1-ts/act1-ts cdc25-22/cdc25-22 wee1-50/wee1-50 ade6-M210/ade6-M216 h^{+-}act1-ts/act1-ts cdc25-22/cdc25-22 wee1-50/wee1-50 pom14::ura4 ${ }^{+} /+$leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 h^{+-}actl-ts/act1-ts cdc25-22/cdc25-22 wee1-50/wee1-50 pom14::ura4 ${ }^{+} /+$nim14 $::$LEU2/nim14 $::$LEU2 leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$wee14::ura4 ${ }^{+} /+$leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{-/-}$act10::ura4 $4^{+} /+$wee14 $::$ura $^{+} /+$leu1-32/+ ura4-D18/ura4-D18 ade6-M210/ade6-M216 h^{-1} wee14::ura4 ${ }^{+} /+$nim14 $\because:$ LEU2/+ leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$act14::ura4 $4^{+} /+$wee14::ura $4^{+} /+$nim14 $::$LEU2/+ leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216
Figure 13	1407 1621 4734 4854	```\(\mathrm{h}^{+/-}\)lys \(1^{+}: \because G F P-\) wee \(1 /\) lys \(1^{+}: \because G F P\)-weel 1 wee14::ura4+/wee14::ura4 \({ }^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)actl-ts/actl-ts lys \(1^{+} \because: G F P-\) weel \(1 / /\) lys \(1^{+}:: G F P\)-weel wee14::ura4 \({ }^{+}\)/wee14::ura \(4^{+}\)leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)adfl-1/adf1-1 lys1 \(1^{+}:\)GFP-weel/lys \(1^{+}:: G F P-\) weel wee14::ura4+/wee14::ura \(4^{+}\)ura4-D18/ura4-D18 ade6-M210/ade6-M216 \(\mathrm{h}^{+/-}\)act1-ts/act1-ts adf1-1/adf1-1 lys \(1^{+}:: G F P-\) wee \(1 / l y s 1^{+}:: G F P-\) wee 1 wee14::ura4+/wee14::ura \(4^{+}\)ura4-D18/ura4-D18 ade6-M210/ade6-M216```

Figure 13	2548 6129 4775 4944	$\mathrm{h}^{+/-}$lys $1^{+}:: G F P-N E S x 2-$ wee1/lys $1^{+} \because: G F P-N E S x 2$-wee1 wee14::ura4+/wee14::ura4 ${ }^{+}$leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$act1-ts/act1-ts lys $1^{+}: \because G F P-N E S x 2-$ wee1/lys $1^{+}:: G F P-N E S x 2-w e e 1$ wee14::ura4+/wee14::ura4 ${ }^{+}$leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 h^{+-}adf1-1/adf1-1 lys $1^{+}:$GFP-NESx2-wee1/lys $1^{+} \because: G F P-N E S x 2-$ wee 1 wee14::ura4 ${ }^{+}$wee14::ura4 ${ }^{+}$ura4-D18/ura4-D18 ade6-M210/ade6-M216 $\mathrm{h}^{+/-}$act1-ts/act1-ts adf1-1/adf1-1 lys $1^{+}:$GFP-NESx2-wee1/lys $1^{+} \because: G F P-N E S x 2-w e e 1$ wee14::ura4 ${ }^{+}$wee14::ura4 ${ }^{+}$ura4-D18/ura4-D18 ade6-M210/ade6-M216
Figure 14	2802 4149 4133 4507 4123 3432 3174 4222 4348 3471 4405 3441 4354 3477 4410 4742	h^{-}wild $\mathrm{h}^{-} 2 \mathrm{xcdcl3} 3^{+}::$ura $4+$ ura $4-D 18$ $\mathrm{h}^{-} 2 \mathrm{x} c d c 25^{+}::$ura $^{+}$ura $4-$ D 18 h^{-}2xpoml ${ }^{+}::$ura $^{+}{ }^{+}$ura4-D18 $\mathrm{h}^{-} 2 \mathrm{xactl}{ }^{+}::$ura $^{+}$ura4-D18 h^{-}lys $1^{+}:: G F P-$ weel h^{+}lys $1^{+}:: G F P$-weel weel $1::$ ura 4^{+}ura4-D18 $\mathrm{h}^{+/-}$lys $1^{+}:: G F P-$ wee1/lys1-131 wee14::ura4-3233/+ leu1-32/+ ura4-D18/+ ade6-M210/ade6-M216 $\mathrm{h}^{-} 2 \mathrm{xpom1} 1^{+}::$ura $^{+}$lys $1^{+}:: G F P$-weel ura4-D18 $\mathrm{h}^{-} 2 \mathrm{xactl}^{+}::$ura $^{+}$lys1 $1^{+}:$GFP-weel ura $4-D 18$ ura4-D18 h^{-}lys $1^{+} \because$ GFP-NESx2-weel $\mathrm{h}^{-} 2 \mathrm{xpom} 1^{+}:$:ura 4^{+}lys $1^{+}:: G F P-N E S x 2-$ weel ura4-D18 h- $2 \mathrm{xact1} 1^{+}::$ura $^{+}$lys1 $1^{+}:: G F P-N E S x 2-$ weel ura4-D18 h- $2 \mathrm{xact1} 1^{+}::$ura $^{+}{ }^{+} 2 \mathrm{xpom} 1^{+}::$ura $^{+}$ lys1+::GFP-NESx2-weel ura4-D18 $\mathrm{h}^{-} 2 \mathrm{xact1} 1^{+}::$ura $^{+} 2 \mathrm{xpom1} 1^{+}:$ura $^{+} 2 \mathrm{xcdcl3} 3^{+}::$ura $^{+}$ $2 \mathrm{xcdc} 25^{+}::$ura $^{+}$lys $1^{+}:: G F P-$ weel ura4-D18

Figure 14	$\begin{aligned} & 4247 \\ & 4750 \\ & 4467 \\ & 4461 \\ & 4223 \\ & 4745 \\ & 4249 \\ & 4754 \\ & 4468 \\ & 4463 \end{aligned}$	lys1 ${ }^{+}:: G F P-$ weel ura4-D18 h- $2 \mathrm{xpom} 1^{+}::$ura4 $^{+} 2 \mathrm{xcdc} 13^{+}::$ura $^{+} 2 \mathrm{xcdc} 25^{+}::$ura 4^{+} lys1 ${ }^{+}:: G F P-$ wee1 ura4-D18 h 2 xactl ${ }^{+}::$ura $^{+}{ }^{+} 2$ xpoml ${ }^{+}::$ura $^{+}$2xcdc13 $3^{+}::$ura $^{+}$ lys1 ${ }^{+}:: G F P-$ weel ura4-D18 h 2 xactl ${ }^{+}::$ura $^{+}{ }^{+}$2xpom $1^{+}::$ura $^{+} 2 \mathrm{xcdc} 25^{+}::$ura $^{+}$ lys1 ${ }^{+} \because: G F P-$ weel ura4-D18 $\mathrm{h}^{+/-}$lys $1^{+}:: G F P-N E S x 2-$ wee1/lys1-131 wee14::ura4-3233/+ leu1-32/+ ura4-D18/+ ade6-M210/ade6-M216 $\mathrm{h}^{+} 2 \mathrm{xactl}^{+}::$ura $^{+} 2 \mathrm{xpoml}^{+}::$ura $4^{+} 2 \mathrm{xcdcl3} 3^{+}::$ura $^{+}$ $2 \mathrm{xcdc} 25^{+}::$ura $^{+}$lys1 $1^{+}: \because$ GFP-NESx2-wee1 ura4-D18 lys1 ${ }^{+}:: G F P-N E S x 2-$ weel ura4-D18 $\mathrm{h}^{-} 2 \mathrm{xpom} 1^{+}::$ura $^{+} 2 \mathrm{xcdc} 13^{+}::$ura $^{+}{ }^{+} 2 \mathrm{xcdc} 25^{+}::$ura 4^{+} lys $1^{+}:: G F P-N E S x 2-$ weel ura4-D18 $\mathrm{h}^{+} 2$ xactl $^{+}::$ura $^{+}{ }^{+} 2$ xpoml $^{+}::$ura $^{+} 2 \mathrm{xcdcl3} 3^{+}::$ura $^{+}$ lys1 ${ }^{+}:$:GFP-NESx2-weel ura4-D18 h 2 xactl ${ }^{+}::$ura $^{+}{ }^{+} 2$ xpoml ${ }^{+}::$ura $^{+} 2 \mathrm{xcdc} 25^{+}::$ura $^{+}$ lys $1^{+}:: G F P-N E S x 2-w e e 1$ ura $4-D 18$
Figure 15	4247 5215 5168 4249 5184 4217 5126	$\mathrm{h}^{-} 2 \mathrm{xact1} 1^{+}:$ura $4^{+} 2 \mathrm{xcdc} 13^{+}::$ura $^{+} 2 \mathrm{xcdc} 25^{+}::$ura $^{+}$ lys1 ${ }^{+}:: G F P-$ weel ura4-D18 $\mathrm{h}^{+} 2 \mathrm{xnim} 1^{+}::$ura $^{+} 2 \mathrm{xact1} 1^{+}::$ura $^{+} 2 \mathrm{xcdc} 13^{+}::$ura $^{+}$ $2 \mathrm{xcdc} 25^{+}::$ura 4^{+}lys $1^{+}:: G F P-$ weel ura4-D18 $\mathrm{h}^{-} 2 \mathrm{xniml} 1^{+}:$:ura $4^{+} 2 \mathrm{xpoml} l^{+}:$ura $4^{+} 2 \mathrm{xact1}^{+}::$ura 4^{+} $2 \mathrm{xcdc} 13^{+}::$ura $^{+} 2 \mathrm{x} c d c 25^{+}::$ura $^{+}$lys $1^{+}:: G F P$-weel ura4-D18 lys $1^{+}:: G F P-N E S x 2-$ weel ura4-D18 $\mathrm{h}^{-} 2 \mathrm{xnim} 1^{+}::$ura $4^{+} 2$ xactl $^{+}::$ura $^{+} 2 \mathrm{xcdc} 13^{+}::$ura $^{+}$ $2 \mathrm{x} c d c 25^{+}::$ura $^{+}$lys $1^{+}:: G F P-N E S x 2-$ wee1 ura4-D18 $\mathrm{h}^{-} 2 \mathrm{xcdc} 13^{+}::$ura $^{+} 2 \mathrm{xcdc} 25^{+}::$ura $^{+}$lys $1^{+}:: G F P$-weel ura4-D18 h $^{-} 2 \mathrm{xniml} 1^{+}::$ura $^{+}{ }^{+} 2 \mathrm{xcdc} 13^{+}::$ura $^{+} 2 \mathrm{xcdc} 25^{+}::$ura 4^{+} lys $1^{+}:: G F P-$ weel ura4-D18

Figure 15	4213 5115 4208 5112	$\mathrm{h}^{-} 2 \mathrm{xact1} 1^{+}::$ura4 $4^{+} 2 \mathrm{xcdc} 13^{+}::$ura $^{+}$lys $1^{+}:: G F P-$ weel ura4-D18 $\mathrm{h}^{-} 2 \mathrm{xnim} 1^{+}::$ura $^{+} 2 \mathrm{xact1} 1^{+}::$ura $^{+} 2 \mathrm{xcdcl3} 3^{+}::$ura $^{+}$ lys1 ${ }^{+}:: G F P$-weel ura4-D18 h- $2 \mathrm{xact1}^{+}::$ura $^{+} 2 \mathrm{xcdc} 25^{+}::$ura $^{+}$lys $1^{+}:: G F P$-weel $1 ~$ ura4-D18 h 2 x nim1 $1^{+}::$ura $^{+} 2$ xact $^{+}::$ura $^{+} 2 \mathrm{xcdc} 25^{+}::$ura $^{+}$ lys $1^{+} \because$ GFP-weel ura4-D18
Figure S1	1579 1286 1845 1289 2266 3351 2148	```\(\mathrm{h}^{+}\)cdc254::ura \({ }^{+}:: c d c 25-G F P::\) leu1 \({ }^{+}\)leu1-32 ura4-D18 \(\mathrm{h}^{-}\)cdc25-22 leu1-32 ura4-D18 ade6-M216 \(\mathrm{h}^{+}\)cdc13-117 cdc254::ura4 \({ }^{+}:: c d c 25-G F P::\) leul \({ }^{+}\)leu1-32 ura4-D18 ade6-M210 \(\mathrm{h}^{-}\)wee1-50 leu1-32 ura4-D18 \(\mathrm{h}^{-} 2 \mathrm{xact1}{ }^{+}::\)ura \(^{+}\)leu1-32 ura4-D18 ade6-M210 \(\mathrm{h}^{-1-}\) cdc254::ura4 \({ }^{+}:: c d c 25-G F P::\) leu \(^{+} /\) cdc254::ura \(4^{+}:: c d c 25-G F P::\) leul \(^{+}\) leu1-32/leu1-32 ura4-D18/ura4-D18 \(\mathrm{h}^{+/-}\)act14::ura4 \({ }^{+} /+\) cdc254::ura4-2012::cdc25-GFP::leu1 \({ }^{+}\)/ cdc254::ura4-2012::cdc25-GFP::leu1+ leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216```
Figure S2	$\begin{aligned} & 3174 \\ & 3180 \end{aligned}$	$\begin{aligned} & \mathrm{h}^{+} \text {lys } 1^{+}:: G F P \text {-weel weeld: }: \text { ura } 4^{+} \text {ura4-D18 } \\ & \mathrm{h}^{+/-} \text {lys } 1^{+}:: G F P \text {-wee1/lys } 1^{+}: \text {GFP-wee1 } \\ & \text { wee14::ura4 }{ }^{+} \text {wee14::ura } 4^{+} \text {leu1-32/+ } \\ & \text { ura4-D18/ura4-D18 ade } 6-\text { M210/ade } 6-\text { M216 } \end{aligned}$
Figure S3	$\begin{aligned} & 1461 \\ & 3614 \end{aligned}$	```h``` ```cdc254::ura4+}\mp@subsup{}{}{+}:cdc25-GFP::leu1+ +' leu1-32/leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216```

Figure 3

Genotype	CER (max)	P value			
2 n wild	3.94 ± 0.71	-			
2n cdc254/+	3.57 ± 0.95	*	-		
2n wee14/+	2.66 ± 0.66	***		-	(n.s.)
2n act14/+	3.33 ± 0.84	***			-
2n cdc254/+ wee14/+	2.75 ± 0.87	$(-)$	***	n.s.	
2n cdc25 $/+$ act1 ${ }^{\text {/ }}+$	3.47 ± 1.0	*	$\begin{aligned} & \text { n.s. } \\ & (-) \end{aligned}$		n.s.
	2.98 ± 0.81	***		$(-)$	*
$\begin{gathered} 2 \mathrm{n} c d c 25 \Delta /+ \text { act } 1 \Delta /+ \\ \text { wee1 } 1 \Delta /+ \end{gathered}$	3.43 ± 0.81	$\begin{aligned} & * * \\ & \left({ }^{* * *}\right) \end{aligned}$	(n.s.)	(*)	
2 n wee14/wee14	2.08 ± 0.58	***			(*)
1 n wild	2.47 ± 0.59	***			$(-)$

Figure 4

(a)

Ploidy Genotype

1 n	wild
1 n	cdc2-3w
1 n	cdc2-L7
1 n	cdc25-22
1 n	cdc13-117
1 n	2xact1+
1n	2xact1+ cdc13-117
1 n	act1-ts
1 n	act1-ts cdc13-117
1 n	adf1-1
1 n	cdc2-3w adf1-1
2 n	wild
2 n	cdc2-3w/cdc2-3w
2 n	cdc2-L7/cdc2-L7
2 n	cdc25-22/cdc25-22
2 n	cdc13-117/cdc13-117
2 n	cdc250/+
2 n	cdc134/+
2 n	act10/+
2 n	3xact1+
2 n	$3 \times a c t 1+$ cdc13-117/cdc13-117
2 n	3xact1+ cdc254/+
2 n	$3 \times a c t 1+$ cdc134/+
2 n	act1-ts/act1-ts
2 n	act1-ts/act1-ts cdc13-117/cdc13-117
2 n	adf1-1/adf1-1
2 n	act1-ts/act1-ts adf1-1/adf1-1
2 n	cdc2-3w/cdc2-3w adf1-1/adf1-1

Figure 4

$2 \mathrm{n} c d c 2-3 \mathrm{w} / c d c 2-3 \mathrm{w}$
2n GFP-NESx2-wee1/GFP-NESx2-wee1 GFP-NESx2-wee1/GFP-NESx2-wee1

Figure 4

Figure 5

(b)
_- 2n GFP-wee1/GFP-wee1
........ 2n cdc2-3w/cdc2-3w GFP-wee1/GFP-wee1

- 2 n GFP-NESx2-wee1/GFP-NESx2-wee1
........ 2n cdc2-3w/cdc2-3w GFP-NES×2-wee1/GFP-NESx2-wee1

Genotype	CER (max)	P value
2n GFP-wee1/GFP-wee1	5.49 ± 0.72	-
2n $c d c 2-3 w / c d c 2-3 w$ GFP-wee1/GFP-wee1	3.93 ± 0.57	$* * *$
2n GFP-NESx2-wee1/GFP-NESx2-wee1	4.84 ± 0.90	$(-)$
2n $c d c 2-3 w / c d c 2-3 w ~$ GFP-NESx2-wee1/GFP-NESx2-wee1	2.46 ± 0.71	(***)

Figure 6

Genotype	CER (max)	P value			
$\begin{gathered} 2 \mathrm{n} c d c 25-G F P / \\ c d c 25-G F P \end{gathered}$	2.71 ± 0.76	-			
2n cdc25-GFP/ \triangle	1.91 ± 0.56	***	-		
2n wee14/+	1.38 ± 0.83	***		-	
2n act14/+	1.51 ± 0.53	***			-
$\begin{gathered} \text { 2n cdc25-GFP/ } \Delta \\ \text { wee1 } 1 \Delta /+ \end{gathered}$	1.37 ± 0.86	(-)	**	n.s.	(***)
$\begin{aligned} & \text { 2n cdc25-GFP/ } \Delta \\ & \text { act } 1 \Delta /+ \end{aligned}$	1.91 ± 0.50		$\begin{aligned} & \text { n.s. } \\ & (-) \end{aligned}$		(n.s.)
$\begin{aligned} & \text { 2n act1 } 1 \Delta /+ \\ & \quad \text { wee1 } 1 \Delta /+ \end{aligned}$	1.39 ± 0.61			$\begin{aligned} & \text { n.s. } \\ & (-) \end{aligned}$	$\begin{aligned} & \text { n.s. } \\ & \left({ }^{* * *}\right) \end{aligned}$
$\begin{gathered} \text { 2n } c d c 25-G F P / \Delta \\ \text { act1 } 1 /+ \\ \text { wee1 } 1 \Delta /+ \end{gathered}$	1.98 ± 0.67	(***)	(n.s.)	(***)	(n.s.)
1n cdc25-GFP	2.02 ± 0.67	***			(-)

Genotype	CER (max)	P value			
$\begin{gathered} 2 \mathrm{n} c d c 25-G F P / \\ c d c 25-G F P \end{gathered}$	2.71 ± 0.76	-			
2n cdc134/+	1.51 ± 0.70	***	-		
2 n wee14/+	1.38 ± 0.83	***		-	
2 n act14/+	1.51 ± 0.53	***			-
$\begin{aligned} & 2 \mathrm{n} c d c 13 \Delta /+ \\ & \quad c d c 25-G F P / \Delta \end{aligned}$	1.33 ± 0.62	(-)	n.s.		
$\begin{gathered} \text { 2n } c d c 13 \Delta /+ \\ \text { wee1 } 1 \Delta /+ \end{gathered}$	1.60 ± 0.59		n.s.	n.s.	
$\begin{aligned} & 2 \mathrm{n} \mathrm{cdc} 25-G F P / \Delta \\ & \text { act } 1 \Delta /+ \end{aligned}$	1.91 ± 0.50		(-)		
$\begin{aligned} & \text { 2n } c d c 13 \Delta /+ \\ & c d c 25-G F P / \Delta \\ & \text { act } 1 \Delta /+ \end{aligned}$	2.15 ± 0.70	(***)	(*)		***

(d)

Genotype	CER (max)	P value
2n 4xact1+ cdc25-GFP/ cdc25-GFP	2.66 ± 1.31	-
2n 4xact1+ cdc25-GFP/-	3.02 ± 1.02	n.s.
2n 4xact1+ wee1-50/-	2.03 ± 1.15	$*$

Figure 7

2n cdc25-NLS-GFP/cdc25-NLS-GFP
2n wee14/+ cdc25-NLS-GFP/cdc25-NLS-GFP

(d)

2n act1-ts/act1-ts cdc25-GFP/cd25-GFP 2n adf1-1/adf1-1 cdc25-GFP/cdc25-GFP

Figure 8

$\boldsymbol{m} \boldsymbol{- \infty}$ 1n cdc25-GFP
\longrightarrow 2n cdc $25-\mathrm{GFP} / \mathrm{cdc} 25$
GFP
$\longrightarrow 2 n$ wee1 $\triangle /+$ cdc 25 -
GFP/cdc25-GFP
$-\infty-1$ n cdc25-NLS-GFP
$\longrightarrow 2 n \mathrm{cdc} 25-\mathrm{NLS}-$
GFP/cdc25-NLS-GFP
$\longrightarrow 2 n$ wee1 $1 /+$ cdc25 NLS-GFP/cdc25-NLS

Genotype	CER (max)	P value
2n cdc25-GFP/cdc25-GFP	2.71 ± 0.76	-
$\begin{aligned} & \text { 2n wee1U/+ } \\ & c d c 25-G F P / c d c 25-G F P \end{aligned}$	1.38 ± 0.83	(-)
1n cdc 25 -GFP	2.02 ± 0.67	***
2n cdc25-NLS/cdc25-NLS	2.50 ± 0.74	-
$\begin{aligned} & \text { 2n wee14/+ } \\ & \text { cdc25-NLS/cdc25-NLS } \end{aligned}$	2.09 ± 0.63	${ }^{(* * *)}$
1n cdc25-NLS	1.57 ± 0.47	***

(a)

Genotype	CER (max)	P value
2n wild	3.94 ± 0.71	-
2n nim1 $\Delta /+$	2.54 ± 0.87	***
(n.s.)		
2n nim1 $\Delta / n i m 1 \Delta$	4.62 ± 0.80	$* * *$
2n pom1 $/+$	3.02 ± 0.86	$* * *$
2n pom1 $/$ pom1 Δ	2.38 ± 0.89	$* * *$
2n nif1 $/+$	3.49 ± 0.92	$*$
2n nif1 $\Delta / n i f 1 \Delta$	3.16 ± 0.79	$* * *$
1n wild	2.47 ± 0.59	$* * *$
		$(一)$

(c)

Genotype	CER (max)	P value
2 n wee1 $/++$	2.66 ± 0.66	-
2n wee1 $\Delta /+$ nim1 $1 \Delta /+$	2.42 ± 0.73	n.s.

(b)

Genotype	CER (max)	P value
2 n nim1 $1 \Delta /+$	2.54 ± 0.87	-
2 n nim1 $1 \Delta /+$		
pom1 $/++$	3.36 ± 1.38	$* *$

(d)

Genotype	CER (max)	P value
2 n wee1 $\Delta /+$	2.66 ± 0.66	-
2 n wee1 $1 \Delta /+$ pom1$+$	2.82 ± 0.81	n.s.

Figure 9
(e)

Genotype	CER (max)	P value	
2n cdc25-GFP/ $c d c 25-G F P$	2.71 ± 0.76	-	
2n pom1$++$	1.64 ± 0.70	$* * *$	
$2 n$ wee1 $1 /+$	1.38 ± 0.83	$* * *$	-
2n wee1 $1 \Delta /+$ pom1 $/+$	1.72 ± 0.73		$*$

(f)

Genotype	CER (max)	P value
$2 \mathrm{n} \mathrm{3xact1+}$	3.17 ± 0.80	-
$2 \mathrm{n} \mathrm{3xact1+}$ nim1 $1 /+$	3.54 ± 1.39	n.s.
2n 3xact1+ nim1 $/$ nim1	3.95 ± 1.02	$* * *$
2n 3xact1+ pom1 $/+$ $2 n$ wild	3.04 ± 0.83	n.s.

(h)

Genotype	CER (max)	P value
2n nim1 $\Delta /$ nim1 Δ	4.62 ± 0.80	-
2n nim1 $1 \Delta /$ nim1 Δ nif1 1 nif1 Δ	4.18 ± 0.87	$*$

1nwild 2.47 ± 0.59 *
(j)
$\longrightarrow 2 \mathrm{ncdc} 25-22 / c d c 25-22$ wee1 $1 \Delta /$ wee1 Δ
Figure 9 $\longrightarrow 2 n$ cdc25-22/cdc25-22 wee14/wee14 nim1 1 /nim1 1Δ

Genotype	CER (max)	P value
2n $c d c 25-22 / c d c 25-22$ wee1 $1 \Delta /$ wee1 1Δ	2.92 ± 1.14	-
2n cdc25-22/cdc25-22 wee1 $1 \Delta /$ wee1 1Δ	1.78 ± 1.37	***
nim1 $1 \Delta /$ nim1		

(a)

Figure 10

Figure 10

Figure 11

Figure 12

(g)
(h)

Figure 12

(a)

(b)

Figure 14

(d)

Genotype	CER (max)	P value
1n GFP-wee1 wee1+ 2xpom1+ 2xact1+ 2xcdc25+ 2xcdc13+	5.30 ± 1.06	-
1n GFP-wee1 wee1+ 2xact1+ 2xcdc25+ 2xcdc13+	1.85 ± 0.96	$* * *$
1n GFP-wee1 wee1+ 2xpom1+ 2xcdc25+ 2xcdc13+	2.40 ± 0.99	***
1n GFP-wee1 wee1+ 2xpom1+ 2xact1+ 2xcdc13+	4.29 ± 1.48	$* * *$
1n GFP-wee1 wee1+ 2xpom1+ 2xact1+ 2xcdc25+	3.27 ± 1.20	***
2n GFP-wee1/lys1 wee14/+	5.43 ± 1.49	n.s.

(e)

Figure 14
(f) Ploidy GFP-wee1 wee1 act1 pom1

Ploidy GFP-wee1 wee1 act1 pom1 cdc25 cdc13

Figure 15

1n GFP-wee1 wee1+ 2xact1+ 2xcdc25+ $2 x c d c 13+$	——1n GFP-NES×2-wee1 wee1+ 2 xact $1+$ $2 \mathrm{xcdc} 25+2 \mathrm{xcdc} 13+$	1n GFP-wee1 wee1+ $2 x c d c 25+2 x c d c 13+$	$\rightarrow-\begin{aligned} & \text { 1n GFP-wee } 1 \text { wee1 }+ \\ & 2 x a c t 1+2 x c d c 13+ \end{aligned}$	$\rightarrow \begin{aligned} & \text { 1n GFP-wee } 1 \text { wee1 } 1+ \\ & 2 \text { xact } 1+2 \text { xcdc } 25+\end{aligned}$
- $-2 \times \mathrm{xnim} 1+$	$\longrightarrow-+2 \times n i m 1+$	- - $2 \times \mathrm{nim} 1+$	$\longrightarrow-+2 \times n i m 1+$	$\longrightarrow-2 \mathrm{xnim} 1+$

$\longrightarrow-+2 x n i m 1+2 x p o m 1+$

CER (max)	P
1.85 ± 0.96	-

- 2.39 ± 0.82 *
(一)
- 1.88 ± 0.98
n.s.

| CER (max) | P |
| :--- | :--- | :--- | :--- |

Figure S2

1n GFP-wee1

2n GFP-wee1/GFP-wee1

Figure S3

2n cdc25-GFP/cdc25-GFP

