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Optimization of Link Member of Eccentrically Braced

Frames for Maximum Energy Dissipation

M. Ohsakia,∗, T. Nakajimab,1

aDept. of Architecture, Hiroshima University, Higashi-Hiroshima, Japan
bDept. of Architecture and Architectural Engineering, Kyoto University, Kyoto, Japan

Abstract

An optimization method is presented for design of an eccentrically braced
frame (EBF), which is used as a passive control device for seismic design of
building frames. The link member between the connections of beams and
braces of EBF is reinforced with stiffeners in order to improve its stiffness
and plastic deformation capacity. We present a method for optimizing the
locations and thicknesses of the stiffeners of the link member. The opti-
mal solutions are found using a heuristic approach called tabu search. The
objective function is the plastic dissipated energy before failure. The de-
formation of the link member under static cyclic loads is simulated using a
finite element analysis software package. It is demonstrated in the numerical
examples that the dissipated energy can be increased through optimization
within small number of analyses.

Keywords: Eccentrically braced frame, Link member, Energy dissipation,
Shape optimization, Tabu search

1. Introduction

Owing to recent development of computer technologies as well as the al-
gorithms for analysis and structural optimization, we can optimize complex
structures using sophisticated finite element (FE) analysis for evaluation of
elastoplastic responses. For example, the body of a vehicle can be optimized
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considering crash properties [1, 2]. However, most of the optimization ap-
proaches based on FE-analysis have been developed for application to prob-
lems with simple elastic responses [3].

In the conventional formulations of optimization problems in the field of
building engineering, the stiffnesses of beams and columns of frames are op-
timized to minimize the total structural volume under constraints on elastic
stresses and displacements against static loads [4]. However, one of the crit-
icisms on optimization in building engineering is that the structures in this
field should be designed considering large uncertainty in loads and materials,
and the structures should be robust against all possible load types.

Substantial effort has been made over the decades for optimizing the
structural parts and components such as beams, columns, and joints, in
civil and architectural engineering. Recently, numerical optimization meth-
ods have been proposed using heuristic approaches and sophisticated finite
element models [5]. It is worthwhile to spend much computational effort
for optimization of structural parts, because they are mass-products and
the design loads and deformation demands on structural parts are much
simpler than those for the building structure. The authors optimized the
cross-sectional shape of the clamping device of a frame-supported membrane
structure [6]. The first author optimized the flange shape of a beam with
reduced section for maximization of plastic energy dissipation under static
monotonic loads [7] and cyclic loads [8]. However, in their study, a heuristic
approach called simulated annealing is used, and more than thousand anal-
yses are required for optimization. Therefore, it is important to develop a
computationally efficient algorithm for optimizing structural parts consider-
ing complex elastoplastic responses.

Eccentrically connected braces are effectively used as a passive control
device for dissipating seismic energy in the link member between the connec-
tions of beams and braces. A frame with such braces is called an eccentrically
braced frame (EBF). The link member should have enough energy dissipation
capacity before ductile failure to prevent collapse of the frame. Therefore,
seismic performance may be improved through optimization of link mem-
ber for maximizing ductility and energy dissipation. Prinz and Richards [9]
studied the effect of web-opening in the link member of an EBF by carrying
out parametric study on the number and locations of the openings. They
concluded that opening holes in the web is not effective, because stress con-
centration may occur around the hole leading to premature failure of the link.
Okazaki and Engelhardt [10] carried out cyclic loading tests for 37 specimens
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of link member with various types of stiffeners, steel materials, and loading
protocols. They found that the fracture in the web of link member can be
delayed by appropriately modifying the locations of stiffeners.

In this study, we present a method for optimizing the link member of
an EBF. The deformation of the link member under static cyclic loads is
simulated using the commercial FE-analysis software package ABAQUS Ver.
6.10.3 [11]. The failure of the link member is predicted by the failure index
defined by the triaxiality of the stress field and the accumulated plastic strain
in tension and compression [12, 13]. The objective function is the dissipated
energy before failure of the link member. The design variables are the loca-
tions and thicknesses of the stiffeners. An approximate optimal solution is
found using a heuristic approach called tabu search. The accuracy of FE-
analysis as well as failure index is verified in comparison to the experimental
results in [10] under forced static cyclic deformations with increasing ampli-
tude at the beam ends. It is demonstrated in the numerical examples that
the dissipated energy before failure can be increased through optimization
with small number of analyses, although global optimality of the solution is
not guaranteed.

2. Failure analysis of eccentrically braced frames

Consider an EBF as shown in Fig. 1 with two braces that are connected
eccentrically to the beams in each story. The typical dimension of the frame is
indicated in comparison to the length e of the link member. The link member
between the connections of beams and braces is supposed to dissipate seismic
input energy by plastic deformation. Stiffeners are attached in one side of a
link member, which is subjected to cyclic forced deformation. The ductility
of the member is defined, as follows, using the failure index.

The responses of the link under pseudo-static loading are simulated by
FE-analysis using shell elements. The state variables such as stresses and
strains, which are functions of pseudo-time t, are evaluated at each integra-
tion point. Let εp(t) denote the equivalent plastic strain defined as

εp(t) =

∫ t

0

√
2

3
ε̇p

ij(τ)ε̇p
ij(τ)dτ (1)

where εp
ij(t) is the plastic strain tensor, ˙( ) is the derivative with respect to

time, and the summation convention is used. The equivalent plastic strain
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Figure 1: An eccentrically braced frame; (a) frame model, (b) link member.

represents amount of plastic deformation in material level, and is evaluated
at each integration point. Many fracture criteria have been presented using
εp(t). In the following, the argument t is omitted for brevity.

We use an extended version of the SMCS criterion that was developed for
simulating ductile fracture of metals due to void growth [12, 13]. The critical
plastic strain εcr is first defined as

εcr = α exp

(
−1.5

σm

σe

)
(2)
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where σm is the mean stress, and σe is the von Mises equivalent stress. The
parameter α is dependent on material. Eq. (2) indicates that the critical
plastic strain for ductile fracture depends on the stress triaxiality σm/σe.
Then the failure index for monotonic loading is defined as

If =
εp

εcr
(3)

The material is assumed to fracture when If reaches 1.0. As seen from (2)
and (3), εcr has a smaller value if the material is in tensile state and σm has
a larger positive value.

The formulations (2)–(3) are based on the ductile fracture due to void
growth under monotonic tensile deformation. Accordingly, the failure index
If does not incorporate the effect of cyclic loading, where the void shrinks due
to compressive plastic loading. Therefore, we use the following formulation by
Kanvinde and Deierlein [14]. The equivalent plastic strain εp is divided into
εt (> 0) and εc (> 0) that are accumulated during tensile and compressive
plastic loading states, respectively, which are identified by the sign of σm. The
significant plastic strain ε∗, which represents the amount of void growth, is
defined as

ε∗ = εt − εc (4)

The critical value εcr∗ for ε∗ is given as

εcr∗ = exp (−λεp)ε
cr (5)

where λ is a positive material parameter. As is seen from (5), εcr∗ is smaller
than εcr, and decreases in accordance with an increase of εp. Ductile fracture
is assumed to occur when the cyclic failure index I∗

f , defined as follows,
reaches 1.0:

I∗
f =

ε∗

εcr∗ (6)

The rotation angle γ of link is defined, as follows, using the length e and
the relative transverse displacement δ, calculated as the difference between
the vertical displacements at the two ends:

γ =
δ

e
(7)

Let V and ke denote the shear force and initial value of the stiffness V/γ
of the link. The plastic component γp of rotation angle is calculated by
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Figure 2: Loading protocol for experiment [10].

subtracting the elastic component V/ke from the total value γ as

γp = γ − V

ke

(8)

According to American Institute of Steel Construction (AISC) [15], the
strength and failure mode of a link member depend on the length e as well
as the ratio of the fully plastic moment Mp to the shear strength Vp. In
this paper, we consider a short link with moderately large Mp/Vp, which is
classified to exhibit shear/bending failure mode. The loading capacity of a
short link is restricted by the elastoplastic buckling of the web and flange.
The demand for rotation angle of this link varies between 0.02 and 0.08 as
a linear function of Mp/Vp. Okazaki et al. [10] conducted a series of cyclic
tests for link under four types of loading protocol. We use the results of
monotonically increasing amplitude, as shown in Fig. 2, for verification of
the material model and identification of the parameters in failure index.

The general purpose FE-analysis software package ABAQUS Ver. 6.10.3 [11]
is used for static elastoplastic analysis. The shell elements S4R and S3R with
linear interpolation and reduced integration are used, as shown in Fig. 3, for
modeling the link member, because triangular and quadrilateral elements are
automatically selected through mesh generation by Python script.
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Figure 3: FE-mesh of link member.
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Figure 4: Comparison of force-rotation relation to experimental result in [10]; thick gray
line: experiment, dotted line: analysis (S = 0.01 m).

The link member has the wide-flange section W10×33, which is denoted
as H-247×202×7×11 in Japanese specification. However, the measured di-
mensions are used for the section of beam; i.e., the thicknesses of web and
flange are 8.1026 mm and 11.306 mm, respectively [16]. The link member has
four equally spaced stiffeners of thickness 10.0 mm on one side, and length
e =1219 mm.

The material is ASTM A992, where Young’s modulus is 2.0×105 N/mm2

and Poisson’s ratio is 0.3. The values of yield stress σy and tensile strength σu

(N/m2) obtained by uniaxial tests for web and flange are (σy, σu) = (4.02 ×
108, 5.30×108) and (3.79×108, 5.18×108), respectively. The same material as
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Figure 5: Comparison of analysis results of force-rotation relation with different mesh
sizes; thick gray line: S = 0.01 m, dotted line: S = 0.02 m.

web is used for the stiffener. The bilinear relation with kinematic hardening
with coefficient 0.006 is used assuming that the maximum stress is attained
at the plastic strain equal to 0.15. The parameter α for the failure index is
2.6 as identified in Ref. [13].

All the translational and rotational displacement components are fixed
at boundary ‘A’ in Fig. 3 except the displacement in z-direction (axial direc-
tion). A forced cyclic displacement in x-direction (vertical direction) is given
at boundary ‘B’.

After defining the geometry of the beam, finite-element mesh is auto-
matically generated, where the accuracy of analysis can be controlled by the
nominal size S in the process of mesh generation; i.e., the mesh is generated
so that the average size of an element is equal to S. In the following exam-
ples, S = 0.01 m is given to have about 25 elements in the vertical direction
of the web, and 20 elements in the transverse direction of the flange. The
relation between shear force and inelastic rotation of Type-6B in Ref. [10] is
plotted in thick gray line in Fig. 4, while the dotted line shows the analysis
result, which has moderately good agreement with the experimental result,
although the numerical result has larger strength in the first few cycles, and
smaller strength in the subsequent cycles. Fig. 5 compares the numerical
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Figure 6: Histories of maximum failure index by FE-analysis of the experimental model;
solid line: S = 0.01 m, dotted line: S = 0.02 m.
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Figure 7: Stress distribution of experimental model at cycle 16.944.

results with S = 0.01 m (thick gray line) and 0.02 m (dotted line), which do
not have much difference.

According to Kanvinde and Deierlein [14], the parameter λ for the failure
index may vary between 2.5 and 8.0. In the following, an intermediate value
4.0 is used for λ. Fig. 6 shows the histories of maximum values of failure
index I∗

f among all elements for S = 0.01 m and 0.02 m. As is seen, the
maximum failure index becomes larger as the mesh size becomes smaller.
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Figure 8: Histories of maximum equivalent plastic strain by FE-analysis of the experimen-
tal model; solid line: S = 0.01 m, dotted line: S = 0.02 m.
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Figure 9: Stress distribution of experimental model at the final state (cycle 22.25).

For S = 0.01 m, the failure index reaches 1.0 at cycle 16.944 at the element
indicated in Fig. 7, which is located in the flange that exhibits local buckling.
In contrast, for S = 0.02 m, the failure index reaches 1.0 at cycle 20.756 at the
element located in the web at the beam end. Therefore, the location of failure
has been successfully found with S = 0.01 m; hence, we use S = 0.01 m in
the following examples. Fig. 8 shows the histories of maximum values of
equivalent plastic strain, which shows that the results with S = 0.01 m have
larger plastic strain than those with S = 0.02 m.
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The deformation at the final state (cycle 22.25) is shown in Fig. 9, which
exhibits local flange buckling. In this model, the number of elements is 8856,
number of nodes is 9014, and number of degrees of freedom is 54084. A
PC with Intel Xeon 3.33GHz and 12GB memory is used for computation.
Although the PC has six cores, only single core is available for computation
using ABAQUS, and the CPU time is 7764.2 s.

3. Formulation of optimization problem and optimization method

3.1. Optimization problem

We optimize the locations and thicknesses of stiffeners of the link beam
for maximization of plastic dissipated energy before the failure index reaches
1.0. Since the optimization problem is highly nonlinear, and demands much
computational cost for evaluation of the objective function, we use a heuristic
approach called tabu search (TS), which can obtain an approximate optimal
solution within small number of analyses. TS has successfully been applied
to optimization problems with integer variables [17]. Therefore, the variables
are discretized into integer values.

Let J = (J1, . . . , Jm) denote the vector of m design variables. Real values
X1, . . . , Xm are defined by integer values J1, . . . , Jm with the specified lower-
bound value X0

i and increment ∆Xi as

Xi = X0
i + (Ji − 1)∆Xi, (i = 1, . . . ,m) (9)

Therefore, all properties of the link member are functions of J.
We maximize the plastic energy Ep(J) dissipated before I∗

f (J) reaches 1.0
during the specified cyclic deformation. Let si denote the number of sampling
values that Ji can take. The optimization problem is formulated as follows
as an unconstrained problem:

Maximize F (J) = Ep(J) (10a)

subject to Ji ∈ {1, . . . , si}, (i = 1, 2, ...,m) (10b)

3.2. Optimization method

TS is classified as a single-point search heuristic approach, which is a slight
extension of the random local search [4, 17]. In contrast to a population-based
approach such as genetic algorithm, TS has single solution at each step of
local search. Therefore, TS is more suitable than a genetic algorithm for
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  (2)  Update variables.

FE-model generation (Python Script)

   (1) Generate parts of flange, web, etc.

   (2) Define sections and material parameters.

   (3) Combine parts to assemble set.

   (4) Assign boundary and loading conditions.

   (5) Generate meshes.

   (6) Output model data.

Input file: 

Job.inp

Analysis using

ABAQUS/Standard

Output file:

 Job.odb

Postprocess (Python Script)

 Extract responses:

          dissipated energy
          stresses and strains 
          reaction forces

Figure 10: Optimization algorithm using TS and ABAQUS.

structural optimization problems that demand large computational cost for
response evaluation. TS basically moves to the best neighborhood solution
even if it does not improve the current solution. A tabu list is used to
prevent an unfavorable phenomenon called cycling, in which small number of
solutions are selected alternatively. The basic algorithm of TS is summarized
as follows:

Step 1 Randomly generate a seed solution Ĵ, and initialize the tabu list T as
T = {Ĵ}. Evaluate the objective function and initialize the incumbent
optimal objective value as F opt = F (Ĵ).

Step 2 Generate a set of q neighborhood solutions N = {JN
1 , . . . ,JN

q } from

Ĵ, and evaluate the objective value of each solution.

Step 3 Among the solutions in the set N , select the best one that has the
maximum value of F (JN

j ), and is not included in the list T . Assign the

best solution as the new seed solution Ĵ.

Step 4 Update the incumbent optimal objective value as F opt = F (Ĵ), if
F (Ĵ) > F opt.

Step 5 Add Ĵ to the list T . Remove the oldest solution from T , if the
number of solutions in T exceeds the specified limit.
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Step 6 Output F opt and the corresponding optimal solution, if the number
of iterations reaches the specified value; otherwise, go to Step 2.

The definition of neighborhood is problem dependent. For variables with
simple integer values, the neighborhood values of Ji at the current value k
may be given as Ji = k − 1, k, k + 1. Therefore, we have at most 3m neigh-
borhood solutions for a problem with m variables. It is desirable to search all
the neighborhood solutions when selecting the next seed solution. However,
one of the purpose of this study is to show that the complex performance of
a structure can be improved through small number of analyses; therefore, we
limit the neighborhood solutions to a very small size.

Fig. 10 shows the data flow between TS and FE-analysis using ABAQUS.
The pre-process and post-process are carried out using the Python script.
The computations of functions and the process of TS are coded using Fortran.

4. Optimization of link member

The link member to be optimized has the same wide-flange section W10×33
as the experimental model. Thicknesses of web and flange are their nominal
values 7.366 mm and 11.050 mm, respectively. The standard solution of the
link member has four equally spaced stiffeners of thickness 10.0 mm in one
side, and the length e = 1219 mm. Accordingly, the link member has the
ratio Mp/Vp = 639 mm, which is classified to exhibit shear/bending failure
mode.

The material is ASTM A992, which is the same as the experimental
model. Young’s modulus is 2.0×105 N/mm2 and Poisson’s ratio is 0.3. The
nominal value 359.0 N/mm2 is taken for the yield stress for web, flange, and
stiffener, and the hardening coefficient is 0.006. The same parameter values
α = 2.6 and λ = 0.4 as the experimental model are used for the failure index.

The locations and thicknesses of the four stiffeners are optimized. In
order to preserve the symmetry, the independent variables for the locations
Xi (mm) are defined by the two integer variables J1 and J2 as

Xi = X0
i + (Ji − 6)∆Xi, Ji ∈ {1, . . . , 11}, (i = 1, 2) (11)

where X0
i is the location of the standard model, and ∆X1 = ∆X2 = 20

(mm). Therefore, the lower and upper bounds for (Xi − X0
i ) are −100 mm

and 100 mm, respectively.
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Figure 11: Forced cyclic rotation angle of the beam.

The thicknesses Xi (mm) of the stiffeners are defined by the variables J3

and J4 as

Xi = X0
i + (Ji − 3)∆Xi, Ji ∈ {1, . . . , 7}, (i = 3, 4) (12)

where X0
i is 10 mm, and ∆X3 = ∆X4 = 3 (mm); hence, the lower and upper

bounds of Xi are −4 mm and 22 mm, respectively.
The loading protocol is shown in Fig. 11, which has a constant amplitude

±0.08 of the rotation angle. For the TS, the number of neighborhood solu-
tions is 5, number of steps is 10, and the size of tabu list is 50. Although the
solution obtained by TS is not the global optimum, the best solution during
all steps is hereafter called optimal solution. Fig. 12 shows the stresses of
the standard solution at cycle 4.2565, when I∗

f reaches 1.0 at a web element
connected to the flange, as indicated in Fig. 12. As is seen, local buckling
occurs at the flange near the beam end.

Optimal solution has been found from the standard solution as the ini-
tial solution. Five solutions were rejected by the tabu list. The optimal
locations of four stiffeners are (−80,−40, +40, +80) (mm), relative to the
standard solution, and the optimal thicknesses are (22,10,10,22) (mm), while
the thicknesses of the standard solution are (10,10,10,10) (mm). Fig. 13
shows the stresses of the optimal solution at cycle 6.2690, when If reaches
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Figure 12: Stress distribution of standard solution when I∗f reaches 1.0.

+9.085e+05

+3.502e+07

+6.913e+07

+1.032e+08

+1.374e+08

+1.715e+08

+2.056e+08

+2.397e+08

+2.738e+08

+3.079e+08

+3.420e+08

+3.761e+08

+4.103e+08

Maximum failure index

Figure 13: Stress distribution of optimal solution when I∗f reaches 1.0.

Table 1: Optimization results

model cycle Rmax (kN) Ep (kN· m) Efinal
p (kN· m) I∗final

f

Standard 4.2565 384.27 401.65 678.73 3.7577
Optimal 6.2690 388.93 601.49 696.40 2.4182

Intermediate 5.2615 385.71 486.78 670.56 2.1564
Standard (incremental) 16.755 363.72 368.79 841.81 16.543
Optimal (incremental) 21.242 365.40 760.38 908.25 2.91226
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Figure 14: Comparison of analysis results of force-rotation; thick gray line: optimal solu-
tion, dotted line: standard solution.
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Figure 15: Histories of plastic dissipated energy; solid line: optimal solution, dotted line:
standard solution.
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Figure 16: Histories of maximum failure index; solid line: optimal solution, dotted line:
standard solution.

1.0 at an element in the web near the beam end. Although the failure of the
optimal solution is determined by local buckling near the beam ends, which
is similar to the standard solution, the optimal solution has two more cycles
than the standard solution before the failure index reaches 1.0. We can see
from these results that the two stiffeners become thicker and move to the
ends, where the standard solution have large deformation. The responses of
the solutions are listed in Table 1, dissipated energy before I∗

f reaches 1.0 in-
creased about 50% from the standard solution; hence, the energy dissipation
property can be drastically improved through optimization. It is also seen
from Table 1 that the maximum value Rmax of the reaction force becomes
slightly larger as the result of optimization. Fig. 15 shows the histories of
plastic energy dissipation of the optimal and initial solutions, which confirms
that energy dissipation property is slightly improved through optimization.
Therefore, the energy dissipation property has been improved mainly due to
enhancement of ductility rather than strength. Fig. 16 shows the history of
failure index with respect to cycle number. As is seen, increase of failure
index is successfully suppressed through optimization.

The dissipated energy Efinal
p and the failure index I∗final

f at the final state
(cycle 7.25) is also listed in Table 1. Since the fracture of material is not
incorporated in the constitutive model of steel, the dissipated energy un-
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til the final state of the initial and optimal solutions are almost the same;
however, the failure index at the final state has been reduced through opti-
mization. The moment-rotation relations are compared in Fig. 14 for initial
and optimal solutions. As is seen, the peak moment has not been improved
through optimization, but the deterioration after cyclic deformation has been
improved.

The intermediate solution has the mean values between the standard and
optimal solutions; i.e., the locations of four stiffeners are (−40,−20, +20, +40)
(mm), and the thicknesses are (16,10,10,16) (mm). As expected, all responses
except the final failure index of the intermediate solution have the values be-
tween those of standard and optimal solutions, which verifies the reliability
of the FE-analysis.

5. Conclusions

It has been shown in this paper that the plastic energy dissipation prop-
erty of a link member of an EBF can be drastically improved by optimizing
the locations and thicknesses of the stiffeners. The link member is subjected
to cyclic forced deformation, and its failure is defined using the failure in-
dex. The elastoplastic responses are evaluated using a commercial software
package called ABAQUS. The accuracy of the material model is verified and
the parameters for failure index are identified using the existing experimental
results.

It has been demonstrated that TS is very effective for structural optimiza-
tion problem, for which substantial computational cost is needed for function
evaluation. Although the global optimality is not guaranteed, it is important
that the performance of the structure is drastically improved within small
number of analyses. The software package ABAQUS and the algorithm of
TS are combined using the Python script available in ABAQUS.

Although this paper showed only one example of optimization of a struc-
tural part, it is very important to demonstrate that a passive control device
can be optimized using an FE-analysis software package within a practically
acceptable computational cost. This way, some of physical experiments for
developing such devices can be replaced by numerical experiments, and the
cost and time period for the development of a new device may be drastically
reduced.
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