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The purpose of this study is to identify and empirically corroborate a fundamental 

situation (Brousseau, 1997) for constructing “proof by contradiction.” We identified 

the four elements of a fundamental situation: i) obtaining strong conviction; ii) ne-

gating the given proposition naturally without being aware of the assumption; iii) 

finding a contradiction easily; and iv) noticing the origin of the contradiction. Based 

on this study, a new research question arises: How can students construct “proof by 

contradiction” using teacher support? 

INTRODUCTION 

“Proof by contradiction” (PbC) is one of the most valuable types of reasoning in 
mathematics and mathematics education. However, students have specific cognitive 
and didactic difficulties in negating propositions and using laws such as the excluded 
middle (Antonini & Mariotti, 2008). Thus, although some authors have proposed di-
dactic suggestions to help students overcome PbC difficulties (e.g., Wu Yu Lin & Lee, 
2003; Antonini & Mariotti, 2008), in our opinion, many students are still unable to 
resolve these difficulties. One possible reason for this may be an overlooked compo-
nent in the studies of students. In other words, almost all students who are analyzed in 
studies of PbC are either supplied PbC by their teachers before they engage in con-
structing PbC for the first time, or they have already been taught PbC before they 
engage in research. 

In contrast, we believe that in order to understand a concept, students must construct 
knowledge by themselves (with their teacher’s support). We assume that students 
cannot fully understand a concept if teachers or others tell them about it beforehand. 
Therefore, suggestions provided by the previous studies are inadequate as they are 
derived from observations of students whose understanding of PbC is not sufficient. In 
clarifying the conditions that enable students to construct PbC by themselves with their 
teacher’s support, findings of previous studies become more meaningful, paving the 
way for elaboration and further research. Thus, our study aims to do the following: 

P1: To identify a fundamental situation (Brousseau, 1997) for constructing PbC 

P2: To corroborate the identified fundamental situation empirically 



Hayata, Uegatani, & Hakamata 

  

3 – 44 PME 42 – 2018 

THEORETICAL BACKGROUND AND METHODOLOGY 

The theoretical background for this study is based on the Theory of Didactical Situa-
tions (TDS; Brousseau, 1997), and the methodology adopted is didactical engineering, 
particularly a priori and a posteriori analysis (Artigue, 1992) within the framework of 
TDS. We used TDS because it is one of the most scientific theories in the discipline. 
Learning is defined in TDS as follows: “The student learns by adapting herself to a 
milieu which generates contradictions, difficulties and disequilibria, rather as human 
society does. This knowledge, the result of the student’s adaptation, manifests itself by 
new responses which provide evidence of learning” (Brousseau, 1997, p. 30, italics in 
the original). This definition aligns with our assumption that students must construct 
knowledge by themselves. 

TDS assumes that students construct mathematical knowledge in didactical or adidac-
tical situations. Since any mathematical knowledge has been historically incubated in 
some situation, there always exist situations wherein it can be constructed. Because not 
all situations are replicable in educational settings, TDS assumes that all mathematical 
knowledge has at least one fundamental situation (FS) that can become a didactical 
situation (Brousseau, 1997, p. 30). However, FSs are not always easily identified by 
mathematics educators, and PbC does not typically employ constructive reasoning (in 
the sense of intuitionism). Thus, an FS for constructing PbC has not yet been identified. 
In TDS, on identifying an FS based on theory, we corroborate it through a priori and a 

posteriori analyses: first, by designing a didactical situation based on the FS (a priori 
analysis); second, by trying to realize this situation in an actual mathematics class-
room; and third, by corroborating our hypothesis about the FS underlying the design. 

FUNDAMENTAL SITUATION OF PROOF BY CONTRADICTION 

Indirect argumentation seems to be a natural way of thinking (Freudenthal, 1973, p. 
629). Thus, an FS for constructing PbC should enable students to employ indirect argu-
mentation and develop this into a PbC. However, previous research suggests that rup-
tures between indirect argumentation and PbC may occur. Mathematicians and ma-
thematics educators have pointed out the specific difficulties of PbC (e.g., Wu Yu Lin 
& Lee, 2003; Antonini & Mariotti, 2008); we distinguish between three types here in 
order to identify our FS. 

D-I: Difficulties in considering PbC as an option and in carrying out the method 

of PbC 

When students try to prove a proposition, they usually do not consider using indirect 
proof, including PbC, as an option. Although they may consider PbC suitable for pro-
ving a given proposition, they often give up constructing PbC mid-way. Several diffi-
culties in the process have been reported: negating the proposition, formalizing and 
interpreting the negation (Wu Yu, Lin & Lee, 2003), finding a contradiction, and so on.  
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D-II: Difficulties in accepting the result of a PbC 

Even if one is able to prove a proposition using PbC, the result may not seem ac-
ceptable: “I think this is one source of frustration, of the feeling that we have been 
cheated, that nothing has been really proved, that it is merely some sort of a trick—a 
sorcery—that has been played on us” (Leron 1985, p. 323). 
D-III: Difficulties in grasping the very structure of PbC 

PbC has a specific structure, that is, when one assumes the negation of a true proposi-
tion P, a contradiction comes into being implying that the negation is false and P is 
true. Thus, one needs to know the theory and the meta-theory (Antonini & Mariotti, 
2008) of PbC. 

In Japan, students engage in PbC in mathematics when they are in the 9th grade and 
learn that the square root of 2 is irrational. However, since they have not been intro-
duced to PbC until then, they face D-I, D-II, and D-III all at once. This confuses them. 
Additionally, knowing the structure of PbC is necessary for overcoming D-I and D-II, 
that is, students must have already overcome D-III to resolve D-I and D-II. Therefore, 
before students engage in PbC, they should engage in PbC in FSs in which they are 
required to face and overcome only D-III.  

In this study, we focus on an insight from Dawkins & Karunakaran (2016), according 
to which, research on student learning of mathematical proofs should pay greater at-
tention to the role of mathematical content. Thus, in order to avoid D-II, FSs for PbC 
should enable students to surmise that the proposition to be proved is true. For exam-
ple, students who have already accepted that the square root of 2 is irrational have less 
trouble accepting the PbC in order to prove it (Antonini & Mariotti, 2008, p.407). In 
addition, in order to avoid the emergence of D-I, an FS should enable students to ne-
gate the sentence naturally and formalize the proposition to be proved. Such situations 
enable students to find a contradiction easily because they autonomously begin to 
enquire into what statements can hold in the false world. Items (i) – (iii) (Figure 1) are 
a summary of the above consideration.  

A fundamental situation (FS) for constructing proof by contradiction is one in which 
students must do the following four things: 

(i) Be strongly convinced that the proposition to be proved is true  

(ii) In investigating the milieu, they must construct a false world by naturally assuming 
the negation of the proposition (without being aware of the assumption). 

(iii) Easily find a contradiction in the false world 

(iv) Notice that they make the assumption themselves and that this is the origin of the 
contradiction 

Figure 1: A fundamental situation for constructing proof by contradiction. 
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However, even if a student is able to find the contradiction and conclude that a prop-
osition is true, s/he may still reason this using indirect argumentation rather than in-
direct proof. Because the core of PbC lies explicitly in assuming the negation of a true 
proposition, students must make such assumptions after they negate and formalize 
propositions. In order to do this, students must identify the origins of a contradiction. 
Thus, we have added (iv) to Figure 1. 

Figure 1 is our proposal for a possible fundamental situation for constructing PbC. In 
the next section, we corroborate this by a priori and a posteriori analysis. 

DESIGN AND A PRIORI ANALYSIS 

The subjects of our analysis are 9th grade students who come across PbC for the first 
time (as mentioned earlier). These students have already learned basic direct proofs in 
geometry and algebra, algebraic skills and concepts, and the notion of irrational num-
bers. They have also learned—but not proven—that the square root of 2 cannot be 
represented as p/q (where p and q are disjointed integers and q is not equal to 0). In 
their textbook, PbC is introduced in order to prove this. We thus designed a mathe-
matics lesson as shown in Figure 3. The teaching protocol employed in this lesson 
followed the “problem-solving lesson” model presented in Figure 2.  
Our experimental lesson was conducted in June 2016 in a junior high school attached 
to a national university. This experiment was conducted during one lesson (50 minu-
tes) on 40 students (20 males/20 females). The teacher was the students’ regular ma-
thematics teacher, and is one of the authors of this study as well. We did not investigate 
students’ pre-conceptions, because such an investigation may affect students’ perfor-
mance in the study. However, our reflection on the experiment revealed that none of 
the students seemed to know PbC well before the experiment; even after students 
found a contradiction, they did not to try to construct PbC by themselves. Instead, they 
all needed the teacher’s support to shift from indirect argumentation to indirect proof.  

 

Figure 2: Lesson model (Mizoguchi, 2015, p. 627; reprinted with permission). 
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Figure 3: Lesson designed to corroborate the FS identified in this study1. 

RESULTS AND A POSTERIORI ANALYSIS 

In the lesson, the teacher posed the problem to the students and shared with them the 
property that the square root of 2 cannot be represented as a common fraction. We 
obtained data from video recordings and the students’ worksheets. Only the problem 
and name fields are written in their worksheets. We banned eraser use so that we could 
examine all the ideas that students produced. During the “individual solving process” 
phase (Figure 2), students tried to solve the problem on their worksheets, and the 
teacher supported them verbally and individually, following the plan in Figure 3. The 
teacher was careful to align his support appropriately in keeping with the students’ 
levels of progress. In the “refining and elaborating solutions” phase, the teacher picked 
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students to present their own solutions (in the order of the mathematical activities C, 
B-1, B-2, and A) and all the students refined and elaborated their own solutions 
through discussion involving the entire class.  

Figure 4: Male student Y’s worksheet (translated into English by the authors, under-
lined by the student; (a), (b), and (c) added by the authors for convenience). 

In the experimental lesson, all the students completed mathematical activity C success-
fully, and almost all the students completed B-1 or B-2 successfully in the first phase, 
that is, they found a contradiction (although some students described it as “strange”). 
Student Y (male) is one of the students who successfully constructed PbC. Figures 4 is 
an example of students’ answers (translated here from their native language). In this 
example, the teacher supported him in constructing PbC (activity A), but PbC seemed 
difficult for him. In the “refining and elaborating solutions” phase, Student Y’s 
presentation was mathematically sound and hence was accepted by the other students 
(See Figure 4 (c)). Next, the teacher presented: “When we need to prove a supposition, 
if we assume the opposite to be true and derive a contradiction, then, the initial sup-
position to be proved is considered true. We call this method ‘proof by contradiction.’” 

Here, let us focus on Student Y’s problem-solving process. As soon as the “individual 
problem-solving process” phase began, Student Y thought the answer was only (a, b) = 
(0,0) and that 

 
was contradictive. To indicate this, he wrote (a), as shown in 

Figure 4. However, he was puzzled by the contradiction and wrote, “Both a and b are 
rational numbers…” Thus, the teacher supported him by following TS-1 for B-2 in 

(a) When we solve , 

, then 
 

Both  and  are rational numbers… 

 
(b) If there are any  and  that satisfy 

 
When we solve , 

 

 
Both  and   are rational numbers. So 

 is a rational number too. Thus,  

is a rational number too; however this 
contradicts the fact that  is an irra-
tional number, so there are no  and   
that satisfy  

 

(c) If there are any  and  that satisfy 
 ( ) 

When we solve , 

 

           

Both  and  are rational numbers. 

So  is a rational number too. Thus,  

is a rational number too; however this 
contradicts the fact that  is an irrational 
number, so there are no  and  that sat-
isfy  when . 

Next, I insert  into , so . 
Thus, , so . 

From this result, if we insert  into 
, it becomes  too. 

For above reasons, the answer is only 
. 
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Figure 3. Five minutes later, he finished writing indirect argumentation (b). Although it 
was a persuasive argument, he did not pay attention to his implicit assumption that 
( ). Hence, the teacher supported him by following TS-2 for B-2 in Figure 3. 
Ten minutes later, he finished writing a mathematically acceptable PbC (c). While in 
the “refining and elaborating solutions” phase, Student Y explained (c) to the other 
students after another student had explained B-2. However, some students could not 
find the essential difference between these two explanations. Thus, the teacher asked 
all the students, “The explanation by Y is very similar to another explanation (B-2). 
What is the important difference between them?” and asked Student Y to explain it. 
Student Y said, “Umm…  , oh, sorry. Well… there is  in my explanation, 

well… we cannot divide 
 
by b” (the original was spoken in his native language), 

and Student Y pointed out that the assumption  is important. This showed that he 
noticed the importance of assuming negation of the proposition to be proved. 

Student Y’s problem-solving process (shown by (a), (b) and (c)) was in accordance 
with our design. Three observations support this claim: first, in (a), he surmised that the 
solution was only (a, b) = (0,0) and found a contradiction in a false world, where the 
negation of the proposition to be proved was assumed; second, he made an indirect 
argument (b); and finally, he developed (b) into (c), that is, PbC, by detecting the origin 
of the contradiction and noticing that the negation of the true proposition was implic-
itly assumed. Thus, these empirical observations corroborate the fact that our designed 
lesson can produce a didactical situation and that our proposed situation in Figure 1 is 
an FS for constructing PbC. 

IMPLICATION 

The purpose of this study was not to design a “good” lesson, but to identify an FS for 
constructing PbC, and to corroborate it. Therefore, although not all the students were 
able to construct PbC by themselves in this lesson, the value of our findings cannot be 
undermined. Given the fact that Student Y (and some other students) constructed PbC 
by themselves (with the teacher’s support), we may conclude that Figure 1 is valid as 
an FS. Designing a “good” lesson according to Figure 1 is thus a future task for 
mathematics teachers rather than for researchers. Our findings also imply a new re-
search question: How can students construct PbC by themselves with their teacher’s 
support? Future researchers investigating students’ cognitive and didactical difficulties 
with PbC should expand their foci to the processes of construction of PbC by learners. 
Researchers should also investigate the differences between the processes underlying 
success and failure in constructing PbC.  

We have three future tasks. First, we must investigate the processes of students who 
construct PbC by themselves, especially to examine whether or not they are able to use 
PbC by themselves, with their teacher’s support (D-I), and whether or not they accept 
the results of PbC (D-II). Second, we must identify fundamental situations for over-
coming D-I and D-II. In other words, we must design curriculum for understanding 
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PbC. Third, we must investigate the effects of applying previous studies’ didactical 
suggestions to our teaching practices. 

Notes 

1 They do not know that 
 
is irrational. Thus, when students solved it in accord-

ance with B-1, we supported their shift to B-2. 
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