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Abstract

A GPU (Graphics Processing Unit) is a specialized circuit designed to accelerate computa-

tion for building and manipulating images [1, 2, 3]. Latest GPUs are designed for general

purpose computing and can perform computation in applications traditionally handled by

the CPU. Hence, GPUs have recently attracted the attention of many application devel-

opers [4, 5]. NVIDIA provides a parallel computing architecture called CUDA (Compute

Unified Device Architecture) [6], the computing engine for NVIDIA GPUs. CUDA gives

developers access to the virtual instruction set and memory of the parallel computational

elements in NVIDIA GPUs. In many cases, GPUs are more efficient than multicore proces-

sors [7], Since they have thousands of processor cores and very high memory bandwidth.

There is no doubt that data compression is one of the most important tasks in the area of

computer engineering. Most lossless data compression and decompression algorithms are

very hard to parallelize, because they use dictionaries updated sequentially. Usually, data in

a large archive are stored in a compressed format to save the space. If each of compressed

data is accessed many times, it makes sense to use a data compression method that maxi-

mizes performance in terms of decompression time and compression ratio. In particular, if

archived data stored in a data center are accessed by users, and they are processed on the

GPU for display, such data compression method optimized for GPU decompression should

be used.

First, we present a work-optimal parallel algorithm for LZW decompression and to im-

plement it in a CUDA-enabled GPU. Since sequential LZW decompression creates a dic-

1



tionary table by reading codes in a compressed file one by one, it is not easy to parallelize

it. We first present a work-optimal parallel LZW decompression algorithm on the CREW-

PRAM (Concurrent-Read Exclusive-Write Parallel Random Access Machine), which is a

standard theoretical parallel computing model with a shared memory. We then go on to

present an efficient implementation of this parallel algorithm on a GPU. The experimental

results show that our GPU implementation performs LZW decompression in 1.15 millisec-

onds for a gray scale TIFF image with 4096 × 3072 pixels stored in the global memory

of GeForce GTX 980. On the other hand, sequential LZW decompression for the same

image stored in the main memory of Intel Core i7 CPU takes 50.1 milliseconds. Thus, our

parallel LZW decompression on the global memory of the GPU is 43.6 times faster than a

sequential LZW decompression on the main memory of the CPU for this image. To show

the applicability of our GPU implementation for LZW decompression, we evaluated the

SSD-GPU data loading time for three scenarios. The experimental results show that the

scenario using our LZW decompression on the GPU is faster than the others.

Second, we present a new lossless data compression method that we call Adaptive Loss-

Less (ALL) data compression. It is designed so that the data compression ratio is moderate

but decompression can be performed very efficiently on the GPU. This makes sense for

applications such as training of deep learning, in which compressed archived data are de-

compressed many times. To show the potentiality of ALL data compression method, we

have evaluated the running time using five images and five text data and compared ALL

with previously published lossless data compression methods implemented in the GPU,

Gompresso, CULZSS, and LZW. The data compression ratio of ALL data compression is
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better than the others for eight data out of these 10 data. Also, our GPU implementation

on GeForce GTX 1080 GPU for ALL decompression runs 84.0-231 times faster than the

CPU implementation on Core i7-4790 CPU. Further, it runs 1.22-23.5 times faster than

Gompresso, CULZSS, and LZW running on the same GPU.
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Chapter 1

Introduction

1.1 Background

A GPU (Graphics Processing Unit) is a specialized circuit designed to accelerate compu-

tation for building and manipulating images [1]. Latest GPUs are designed for general

purpose computing and can perform computation in applications traditionally handled by

the CPU. Hence, GPUs have recently attracted the attention of many application develop-

ers. NVIDIA provides a parallel computing architecture called CUDA (Compute Unified

Device Architecture) [6], the computing engine for NVIDIA GPUs. CUDA gives develop-

ers access to the virtual instruction set and memory of the parallel computational elements

in NVIDIA GPUs. In many cases, GPUs are more efficient than multicore processors [7],

since they have thousands of processor cores and very high memory bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs: the shared memory and the

global memory [6]. The shared memory is an extremely fast on-chip memory with lower

capacity, say, 16-96 Kbytes. The global memory is implemented as an off-chip DRAM, and

thus, it has large capacity, say, 1.5-12 Gbytes, but its access latency is very large. When

we develop CUDA programs, we need to consider the coalescing of the global memory
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access [7, 8]. To maximize the bandwidth between the GPU and the off-chip DRAM, the

consecutive addresses of the global memory must be accessed at the same time. Thus,

CUDA threads should perform coalesced access when they access the global memory.

There is no doubt that data compression is one of the most important tasks in the area of

computer engineering. In particular, almost all image data are stored in files as compressed

data formats. There are basically two types of image compression methods: lossy and

lossless [9]. Lossy compression can generate smaller files, but some information in original

files are discarded. Hence, decompression of lossy compressed data does not generate files

identical to the original data. On the other hand, lossless compression creates compressed

data, from which we can obtain the exactly same original data by decompression.

The main purpose of this paper is to present a novel lossless data compression method

optimized for efficient decompression using the GPU. Usually, data in a large archive are

stored in a compressed format to store the space. If each of compressed data is accessed

many times, it makes sense to use a data compression method that maximizes performance

in terms of decompression time and compression ratio. In particular, if archived data stored

in a data center are accessed by users, and they are processed on the GPU for display, such

data compression method optimized for GPU decompression should be used. Also, in

training phase of deep learning, each of data stored in an archive is repeatedly accessed. If

such data are processed on the GPU, a data compression method optimized for GPU de-

compression should be used. Thus, our goal is to present a novel lossless data compression

method with better compression ratio and high GPU decompression speed.
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1.2 Contributions

In this dissertation, we present the GPU implementation of LZW decompression and a new

loss-less compression method for very efficient decompression method on the GPU.

1.2.1 A parallel algorithm for LZW decompression, with GPU imple-
mentation

In this work, we focus on LZW(Lempel-Ziv-Welch) compression, which is the most well

known patented lossless compression method [10] used in Unix file compression utility

“compress” and in GIF image format. Also, LZW compression option is included in TIFF

(Tagged Image File Format) file format standard [11], which is commonly used in the area

of commercial digital printing. We present a parallel algorithm for LZW decompression

and the GPU implementation. For the purpose of revealing parallelism of LZW decompres-

sion, we use the PRAM (Parallel Random Access Machine) [12, 13, 14], and assume that

the PRAM is CREW (Concurrent Read Exclusive Write), in which multiple processors can

read from the same address at the same time but cannot write a same address simultane-

ously. The CREW-PRAM is the most popular assumption in terms of limitation of simulta-

neous access to the shared memory. Since a lot of parallel algorithms have been developed

on the CREW-PRAM, we can use these parallel algorithms as sub-algorithms. For exam-

ple, our LZW decompression parallel algorithm uses a parallel algorithm for computing the

prefix-sums of m numbers in O(log m) time using m
log m processors on the CREW-PRAM.

Our LZW decompression is fully parallelized in the sense that each processor is as-

signed to an input code in the compressed string of codes and converts the assigned code
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into the corresponding original input string of characters in parallel. The idea of our LZW

decompression is to generate a pointer-character table from the input code sequence. We

first show that a parallel algorithm for LZW decompression on the CREW-PRAM. More

specifically, we show that LZW decompression of a string with m codes can be done in

O(Lmax + log m) time using m processors on the CREW-PRAM, where Lmax is the maxi-

mum length of characters assigned to a code. We also evaluate the work of this parallel

algorithm, which is the total number of operations performed by processors. We prove

that our parallel LZW decompression performs O(n) work, where n is the length of de-

compressed string, k is the number of characters in the alphabet, and the work is the total

number of instructions executed by all processors on the CREW-PRAM. Since optimal se-

quential LZW decompression takes at least O(n) time, our parallel LZW decompression

algorithm is work-optimal.

We then go on to show an implementation of this parallel algorithm in CUDA archi-

tecture. The experimental results using GeForce GTX 980 GPU and Intel Core i7-4790

(3.66GHz) CPU show that our implementation on a GPU achieves a speedup factor of

13.8-43.6 over a single CPU. For example, LZW-compressed TIFF (Tagged Image File

Format) image “Flowers” with 4096×3072 pixels stored in the global memory of the GPU

can be decompressed in 1.15 milliseconds. Note that the data transfer time to the global

memory is not included. On the other hand, sequential LZW decompression for the same

TIFF image stored in the main memory of the CPU takes 50.1 milliseconds. Thus, our

LZW decompression on the GPU is 43.6 times faster than that on the CPU for this image.
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1.2.2 A new loss-less data compression method: ALL(Adaptive Loss-
Less data compression)

In this work, we present a novel lossless data compression method optimized for efficient

decompression using the GPU. Usually, data in a large archive are stored in a compressed

format to reduce the space. If each of compressed data is accessed many times, it makes

sense to use a data compression method that maximizes performance in terms of decom-

pression time and compression ratio. In particular, if archived data stored in a data center

are accessed by users, and they are processed on the GPU for display, such data compres-

sion method optimized for GPU decompression should be used. Also, in training phase of

deep learning, each of data stored in an archive is repeatedly accessed. If such data are pro-

cessed on the GPU, a data compression method optimized for GPU decompression should

be used. Thus, our goal is to present a novel lossless data compression method with better

compression ratio and high GPU decompression speed.

ALL data compression has five types of codes of length 1, 2, or 3 bytes as follows: single

character code (SC, 1 byte), short run-length code (SRL, 2 bytes), short interval code (SI,

2 bytes), long run-length code (LRL, 3 bytes), and long interval code (LI, 3 bytes). An SC

code simply represents a 1-byte uncompressed character. SRL and LRL codes encode a run

of the same character with length in ranges [2, 16] and [18, 3408], respectively. Also, SI

and LI codes encode a substring in the dictionary of length in ranges [2, 16] and [18, 3408],

respectively. Since longer run and substring, which tend to appear less frequently, use

more bytes, we can think this encoding is Huffman-based byte-wise coding. To accelerate

decompression using the GPU, we use segment-wise coding in which multiple codes use
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the same dictionary and they can be decoded in parallel using multiple threads in the GPU.

However, segment-wise coding may deteriorate the data compression ratio. To compensate

this deterioration, we use adaptive dictionary coding, in which the prefix of the dictionary is

replaced by a magic string. A magic string is used to encode substrings appear frequently.

It can also be used to encode random substrings which can not be compressed into a smaller

sequence of codes. To clarify the performance of ALL data compression method, we have

evaluated the data compression ratio and the running time using five images and five text

data and compared ALL with the other lossless data compression methods implemented

in the GPU, Gompresso, CULZSS, and LZW. The data compression ratio of ALL data

compression is better than the others for eight data out of these 10 data. Also, our GPU

implementation on GeForce GTX 1080 GPU for ALL decompression runs 84.0-231 times

faster than the CPU implementation on Core i7-4790 CPU. Further, it runs 1.22-23.5 times

faster than Gompresso, CULZSS, and LZW.

1.3 Dissertation organization

This dissertation is organized as follows. Chapter 2 describes the GPU and CUDA. We

then go on to describe loss-less data compression methods and, related works for GPU

implementations of loss-less compression and decompression in Chapter 3. In Chapter 4,

we present parallel algorithm for LZW decompression and its GPU implementation. Chap-

ter 5 shows a new lossless data compression method called ALL (Adaptive Loss-Less) data

compression. Chapter 6 concludes this dissertation.
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Chapter 2

GPU and CUDA

In this chapter, we describe the NVIDIA GPU architecture and the CUDA. A GPU (Graph-

ics Processing Unit) is a specialized circuit designed to accelerate computation for building

and manipulating images [1]. Latest GPUs are designed for general purpose computing

and can perform computation in applications traditionally handled by the CPU. Hence,

GPUs have recently attracted the attention of many application developers. NVIDIA pro-

vides a parallel computing architecture called CUDA (Compute Unified Device Architec-

ture) [6], the computing engine for NVIDIA GPUs. CUDA gives developers access to

the virtual instruction set and memory of the parallel computational elements in NVIDIA

GPUs. In many cases, GPUs are more efficient than multicore processors [7], since they

have thousands of processor cores and very high memory bandwidth. Figure 2.1 shows

an architecture of CUDA-enabled GPU. A CUDA-enabled GPU has multiple streaming

processors(SMs), each of which has execution cores with integer and floating point opera-

tions, shared memory, register file. For example, Geforce GTX 1080 (Compute Capability

6.1) has 20 SMs with 128 processor cores, a 96K bytes shared memory, and a register file

with 64K 32-bit registers each. CUDA uses two types of memories:the shared memory and
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Figure 2.1: GPU architecture

the global memory. The shared memory is an extremely fast on-chip memory with lower

capacity, say, 16-96 Kbytes. This memory is divided into equally-sized memory modules,

called banks. For example, GTX 1080 has 32 banks in the shared memory and each banks

which can be accessed simultaneously is 32-bit. Figure 2.2 shows the shared memory and

two access patterns. If two addresses of a memory request fall in the same memory bank,

there is a bank conflict and the access has to be serialized [6]. In figure 2.2, thread 0 and

thread 1 access to bank 0 sequentially, however, thread 2 and thread 3 access to the shared

memory simultaneously.

The global memory is implemented as an off-chip DRAM, and thus, it has large capacity,

say, 1.5-12 Gbytes, but its access latency is very large. When we develop CUDA programs,

we need to consider the coalescing of the global memory access [7, 8]. To maximize the

bandwidth between the GPU and the off-chip DRAM, the consecutive addresses of the
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Figure 2.2: Shared Memory with 32 banks

global memory must be accessed at the same time(coalesced access). However, when the

distant locations are accessed at the same time(stride access), this access pattern needs a lot

of clock cycles. Thus, CUDA threads should perform coalesced access when they access

the global memory. Figure 2.3 shows two types of global memory access: coalesced access

and stride access.

A CUDA program running on a host PC invokes one or more CUDA kernels executed on

a GPU in turn. Each CUDA kernel has one or more CUDA blocks, a set of threads running

on a GPU. Figure 2.4 illustrates the CUDA programming model with 128 threads/block.

Threads in a CUDA block are partitioned into groups of 32 threads each called warps. All

threads in the same warp work completely synchronously, share the program counter, and

execute the same instruction. CUDA supports warp shuffle instructions that exchange a

variable between threads with in a warp without shared memory. We can shuffle data in a
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warp very efficiently. Also, warp vote functions are supported by CUDA. The warp vote

functions: any, all and ballot ( all sync, any sync and ballot sync in CUDA 9.0)

allow the threads of a given warp to perform a reduction-and-broadcast operation [6].

any(predicate) returns non-zero if and only if predicate evaluates to true for one and more

threads in a warp. On the other hand, all(predicate) returns non-zero if and only if predi-

cate evaluates to true for all threads in a warp. Finally, ballot(predicate) returns an 32-bit
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integer whose n-th bit is 1 if and only if n-th thread in a warp evaluates predicate and its

result is true. Figure 2.5 shows three warp vote functions when we assume that a warp is

8-thread and each functions return 8-bit integer. We assume thread 0,1,4 and 6 have integer

3 in register a. Then, the result value of ballot(a == 3) is (01010011)2 which is that 0-th,

1-th, 4-th and 6-th bits are set.

thread 7 thread 6 thread 5 thread 4 thread 3 thread 2 thread 1 thread 0
4 3 1 3 4 2 3 3

__any(𝑎 == 3)

𝑎

__all(𝑎 == 3) __ballot(𝑎 == 3)

01010011 &00000000 &00000001 &

Figure 2.5: warp vote functions

To maximize the performance of a GPU implementation, we should invoke a many

threads and CUDA blocks as possible to hide large memory access latency. GPU occu-

pancy as a percentage can be calculated by dividing concurrent threads by a maximum

number of threads per multiprocessor. Since there are a maximum number of resident

blocks, warps, threads, registers and Maximum amount of shared memory in a streaming

multiprocessor, we should write CUDA programming codes carefully such that GPU oc-

cupancy is high. For example, Since the compute capability of GeForce GTX 1080 is 6.1,

each streaming multiprocessor can have up to 64 resident warps, 2048 resident threads and

32 resident CUDA blocks [6]. If our GPU implementation to GTX 1080 uses 32 regis-

ters/thread, 128 threads/block, 32 resisters/thread and 24 Kbytes shared memory/block, a

CUDA kernel can dispatch 4 CUDA blocks in each streaming multiprocessor because they
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use 128× 4 = 256 resident threads, 24× 4 = 96 Kbytes shared memory and 256× 32 = 16

K registers. Thus, the Occupancy is 256
2048 = 25% as illustrated in the figure 2.6. If this im-
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Figure 2.6: The example of calculating occupancy(GTX1080)

plementation uses 1 Kbytes shared memory/block, a CUDA kernel can dispatch 16 CUDA

blocks(1 × 16 = 16 Kbytes shared memory). Hence, the Occupancy is 128×16
2048 = 100%.
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Chapter 3

Loss-less data compression and related
work

In this chapter, we describe loss-less data compression methods and, related works for GPU

implementations of loss-less compression and decompression.

There is no doubt that data compression is one of the most important tasks in the area of

computer engineering. In particular, almost all image data are stored in files as compressed

data formats. There are basically two types of image compression methods: lossy and

lossless. Lossy compression can generate smaller files, but some information in original

files are discarded. Hence, decompression of lossy compressed data does not generate files

identical to the original data. On the other hand, lossless compression creates compressed

data, from which we can obtain the exactly same original data by decompression.

As usual, we assume that an input data to be compressed is a string of 8-bit charac-

ters taking value in range [0,255]. The task of data compression is to convert it into a

string of codes and that of data decompression is inverse-conversion. One of the simplest

lossless compression methods is run-length encoding, in which each run of the same char-

acter is replaced by a code (character,count). For example, AAAABBBCC is encoded
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to (A,4)(B,3)(C,2) by run-length encoding. This encoding is very useful if an input se-

quence has a lot of long runs such as line drawings. However, it does not achieve good

compression ratio for images with few runs such as natural images and plain text. LZSS

(Lempel-Ziv-Storer-Szymanski) [15] is a well-known dictionary-based lossless compres-

sion method, which replaces a substring appearing before by code (offset, length). LZSS

decompression is performed using a buffer storing recently decoded string as a dictionary.

Each code (offset,length) is decoded by retrieving the corresponding substring in the dic-

tionary. For example, if the dictionary stores ABCDEFGH, then code (2,5) is decoded

to CDEFG. LZ77 (Lempel-Ziv) [16] is a compression method very similar to LZSS. It

uses code (offset, length, next unmatched character). LZW (Lempel-Ziv-Welch) [10] is

a patented lossless compression method used in Unix file compression utility “compress”

and in GIF image format. The idea of LZW compression is to create a dictionary to map

a substring of 8-bit numbers into a code. The dictionary is created by reading the input

string from the beginning. The LZW compression needs to check if a current substring

is in the dictionary. Thus, implementation of the dictionary is not trivial. Usually, it is

implemented using a hash table. On the other hand, LZW decompression checks if a

current code is in the dictionary and its implementation is not difficult. Actually, it is

easy to write a sequential program for LZW decompression running linear time. On the

other hand, LZW compression and decompression are hard to parallelize, because they use

dictionary tables created by reading input data one by one. Parallel algorithms for LZW

compression and decompression have been presented [17]. However, processors perform

compression and decompression in block-wise in the sense that the input data is partitioned
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into blocks of size several Kbytes each and each block is processed sequentially using a

single processor. In other words, multiple processors are used but each processor performs

sequential LZW compression/decompression independently. Hence, such block-wise par-

allel algorithms have low parallelism, and they achieved a speed up factor of no more than

3. In [18], a CUDA implementation of LZW compression has been presented. But, it

achieved only a speedup factor less than 2 over the CPU implementation using MATLAB.

Also, several GPU implementations of dictionary based compression methods have been

presented [19, 20], but they are not LZW compression. In this dissertation, we present GPU

implementation of LZW decompression with code-wise parallel in this work. The idea is

to create a dictionary by parallel pointer traversing. Since pointer traversing is code-wise

parallel, LZW decompression on the GPU is much faster than CULZSS decompression.

Recent lossless data compression uses several other techniques including arithmetic en-

coding, Burrows-Wheeler transform(BWT)[21] and move-to-front transform(MTF). Ta-

ble 3.1 summarizes lossless compression methods used these days.

Table 3.1: Lossless data compression methods and tools
lossless compression encoding method
LZSS, LZ77, LZW dictionary-based encoding

gzip[22], LZH, LZMA dictionary-based encoding, Huffman or arithmetic encoding
bzip2[23], ZZIP BWT, MTF, Huffman-coding, run-length encoding

It is very hard to parallelize LZSS compression, because a newly decoded string is ap-

pended to the dictionary every time after a code is decoded and output. To parallelize LZSS

compression, the input string is partitioned into equal-sized strips, each of which is com-

pressed sequentially. Parallel LZSS decompression can be done for all strips in parallel,
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but codes in each strip are decoded sequentially one by one. Such strip-wise parallel LZSS

decompression called CULZSS have been implemented in a GPU [24],d but it achieves

very small acceleration ratio over the sequential implementation on the CPU due to low

parallelism.

LZ77-based [16] data compression called Gompresso and the GPU implementation have

been shown in [25]. The structure of compressed data of Gompresso is a sequence of codes

(unmatched characters of length at most 15, offset, length). The compression ratio and the

running time on the GPU are better than CULZSS. The GPU implementation is code-wise

parallel in the sense that a thread is arranged in each code of a compressed string. Hence,

it has very high parallelism and a lot of threads work in parallel. Since memory access

latency of the GPU is quite large, higher parallelism can hide large memory access latency

and can attain better performance. However, decoding of codes is performed sequentially

in the worst case due to the code dependency.

Encoding methods such as Huffman encoding and BWT are useful to obtain better com-

pression ratio, but they are hard to parallelize on a GPU. In [26], a bzip2-like lossless

data compression scheme and the GPU implementation have been presented, but the GPU

implementation runs slower than the CPU implementation.
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Chapter 4

A GPU implementation of LZW
compression and decompression

In this chapter, we present GPU implementation of LZW compression and a work-optimal

parallel algorithm for LZW decompression and to implement it in a CUDA-enabled GPU.

Particular, we focus on GPU implementation of LZW decompression. Since sequential

LZW decompression creates a dictionary table by reading codes in a compressed file

one by one, it is not easy to parallelize it. We first describe sequential LZW compres-

sion/decompression algorithm and GPU implementation of parallel LZW compression.

Next, we present a work-optimal parallel LZW decompression algorithm on the CREW-

PRAM (Concurrent-Read Exclusive-Write Parallel Random Access Machine), which is a

standard theoretical parallel computing model with a shared memory. We then go on to

present an efficient implementation of this parallel algorithm on a GPU.

4.1 LZW compression and decompression

The main purpose of this section is to review LZW compression/decompression algorithms,

which are shown in Section 13 in [11]. In addition, we prove several important properties
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and evaluate the running time of LZW decompression algorithm.

The LZW (Lempel-Ziv & Welch) [27] compression algorithm converts an input string

of characters into a string of codes using a code table that maps strings into codes. If the

input is an image, characters may be 8-bit integers representing intensity levels of pixels.

The algorithm reads characters in an input string one by one and adds an entry in a code

table (or a dictionary). At the same time, it writes codes by looking up the code table. Let

X = x0x1 · · · xn−1 be an input string of characters and Y = y0y1 · · · ym−1 be an output string

of codes, where n and m are the length of input and output strings. Also, let k be the number

of characters in the input alphabet. If 8-bit integers used as characters, then k = 28 = 256.

We will explain the details of the algorithm using an example, in which an input is a string

of k = 4 characters a, b, c, and d. Let C be a code table, which determines a mapping of

a code to a string, where a code is a non-negative integer. Initially, C(0) = a, C(1) = b,

C(2) = d, and C(3) = d. By procedure AddTable, a new code is assigned to a string. For

example, if AddTable(cb) is executed after initialization of C, we have C(4) = cb. The

LZW compression algorithm is described in Algorithm 4.1.

Algorithm 4.1 LZW compression algorithm
1: Ω←NULL string (i.e. string of length 0);
2: for i← 0 to n − 1 do
3: if(Ω · xi is in C) Ω← Ω · xi;
4: else Output(C−1(Ω)); AddTable(Ω · xi); Ω← xi;
5: end for
6: Output(C−1(Ω));

In this algorithm,Ω is a variable to store a string and C−1 is the inverse of C. For example,

C−1(a) = 0 because C(0) = a.

Also, “·” denotes the concatenation of strings/characters. Further, “Ω · xi is in C” is true
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if there exists j such that C( j) = Ω · xi.

Table 4.1 shows how an input string cbcbcbcda is compressed by LZW compression

algorithm. First, since Ω · x0 = c is in S , Ω ← c is performed. Next, since Ω · x1 = cb is

not in S , Output(C−1(c)) and AddTable(cb) are performed. In other words, C−1(c) = 2 is

output and we have C(4) = cb. Also, Ω← x1 = b is performed. It should have no difficulty

to confirm that string 214630 is output by this algorithm.

Table 4.1: String stored in Ω, code table C, and output string Y for X = cbcbcbcda

i 0 1 2 3 4 5 6 7 8 -
xi c b c b c b c d a
Ω - c b c cb c cb cbc d a
C - 4 : cb 5 : bc - 6 :

cbc
- - 7 :

cbcd
8 : da -

Y - 2 1 - 4 - - 6 3 0

Next, we will show LZW decompression algorithm. Again, we use a code table C and

initialize it as the same as LZW compression. Let C1(i) denote the first character of code i.

For example C1(4) = c if C(4) = cb. Similarly to LZW compression, the LZW decompres-

sion algorithm reads a string Y of codes one by one and adds an entry of the code table.

At the same time, it writes a string X of characters. The LZW decompression algorithm is

described in Algorithm 4.2.

Table 4.2 shows the decompression process for a code string 214630. First, C(2) = c is

output. Since y1 = 1 is in C, C(1) = b is output and AddTable(cb) is performed. Hence,

C(4) = cb holds. Next, since y2 = 4 is in C, C(4) = cb is output and AddTable(bc) is

performed. Thus, C(5) = bc holds. Since y3 = 6 is not in C, C(y2) · C1(y2) = cbc is

output and AddTable(cbc) is performed. The reader should have no difficulty to confirm
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Algorithm 4.2 LZW decompression algorithm
1: Output(C(y0));
2: for i← 1 to m − 1 do
3: if thenC(yi) has been registered
4: Output(C(yi)); AddTable(C(yi−1) ·C1(yi));
5: else
6: Output(C(yi−1) ·C1(yi−1)); AddTable(C(yi−1) ·C1(yi−1));
7: end if
8: end for

that cbcbcbcda is output by this algorithm, and the generated code table is the same as that

generated by LZW compression.

Table 4.2: Code table C and the output string for 214630

i 0 1 2 3 4 5
yi 2 1 4 6 3 0
C - 4 : cb 5 : bc 6 : cbc 7 : cbcd 8 : da
X c b cb cbc d a

For later reference, we will prove the following lemma for LZW compression and de-

compression:

Lemma 1 Let k, n, m be the number of characters in input alphabet, the length of in-
put/output string of characters, and the length of output/input string of codes for LZW
compression/decompression, respectively. We have: (1) AddTable is performed m−1 times,
(2) m ≤ n always holds, and (3) the total length L(k) + L(k + 1) + · · · + L(k + m − 2) of
strings added in code table C is equal to n + m − 2.

We will prove this lemma for the LZW compression. The readers should have no difficulty

to prove for the LZW decompression.

Proof: When Output in line 4 is executed, AddTable is also performed. Further, Output in

line 5 is executed once. Since Output is executed m times, AddTable is performed m − 1

times.
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When i = 0 in for-loop of line 2, Ω · xi (= x0) in line 3 must be in C. Also, each Output

outputs one code in Y . Hence, line 4 is executed at most n − 1 times. Since AddTable in

line 4 is performed m − 1 times, we have m ≤ n.

LZW compression algorithm performs Output(C−1(Ω)) and AddTable(Ω · xi) in line 4 at

the same time. Hence, when yi (0 ≤ i ≤ m − 2) is output by Output(C−1(Ω)), Ω = C(yi)

and the length of Ω · xi is L(yi) + 1. Thus, a string of length L(yi) + 1 is added to code table

C by AddTable(Ω · xi). Also, when Output(C−1(Ω)) in line 5 is performed, Ω = xn−1 and

L(ym−1) = 1. Thus, we have,

k+m−2∑
i=k

L(i) =
m−2∑
i=0

(L(yi) + 1)

= (
m−1∑
i=0

L(yi)) − L(ym−1) + m − 1 = n + m − 2.

□

We will prove that sequential LZW decompression can be done in O(n) time. We assume

that code table C is implemented as an array of linked lists. The array has k+m−1 elements,

each of which is a pointer to a linked lists. For example, if C(7) = cbcd then the 7-th

element of the array stores a pointer to a linked list storing cbcd. Recall that C(i) = i for

all i (0 ≤ i ≤ k − 1). Hence, it is not necessary to initialize the first k elements in C. If the

value of C(i) (0 ≤ i ≤ k − 1) is necessary, we can return i without accessing C(i). Thus, we

can omit the initializing the first k elements of C. Using the array of linked list for C, “yi is

in C” in line 3 can be determined in O(1) time. Further, Output totally outputs n characters,

and totally n + m − 2 characters are registered to C by AddTable. Therefore, the running

time is O(n + m − 2) = O(n), and we have,
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Lemma 2 LZW decompression algorithm runs O(n) time.

Since at least Ω(n) time is necessary to output n characters, this LZW decompression al-

gorithm is optimal in the sense that no algorithm can perform LZW decompression faster

than O(n).

Implementation of LZW compression is not trivial. It is difficult to determine if “Ω · xi is

in C” in O(1) time. The implementation of code table C must be a hash table, and we need

to take care of conflicts. Parallelizing LZW compression is very hard. So for, the speedup

factor of GPU LZW compression over the sequential algorithm can be only 3 shown in

section .

4.2 GPU implementation of LZW compression for TIFF
images

In this section, we focus on LZW compression of an image into a TIFF image file.

4.2.1 GPU implementation

We assume a gray scale image with 8-bit depth, that is, each pixel has intensity represented

by an 8-bit unsigned integer. Since each of RGB or CMYK color planes can be handled as

a gray scale image, it is obvious to modify gray scale LZW compression for color image

compression.

As illustrated in Figure 4.1, a TIFF file has an image header containing miscellaneous in-

formation such as ImageLength (the number of rows), ImageWidth (the number of columns),

compression method, depth of pixels, etc [18]. It also has an image directory containing

pointers to the actual image data. For LZW compression, an original 8-bit gray-scale image
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Figure 4.1: An image and TIFF image file

is partitioned into strips, each of which has one or several consecutive rows. The number

of rows per strip is stored in the image file header with tag RowsPerStrip. Each strip is

compressed independently, and stored as the image data. The image directory has pointers

to the image data for all strips.

Every pixel has an 8-bit intensity level, we can think that an input string of an integer

in the range [0, 255]. Hence, codes from 0 to 255 are assigned to these integers. Code

256 (ClearCode) is reserved to clear the code table. Also, code 257 (EndOfInformation)

is used to specify the end of the data. Thus, AddTable operations assign codes to strings

from code 258. While the entry of the code table is less than 512, codes are represented as

9-bit integer. After adding code table entry 511, we switch to 10-bit codes. Similarly, after

adding code table entry 1023 and 2037, 11-bit codes and 12-bit codes are used, respectively.

As soon as code table entry 4094 is added, ClearCode is output. After that, the code table

is re-initialized and AddTable operations use codes from 258 again. The same procedure is
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repeated until all pixels in a strip are converted into codes. After the code for the last pixel

in a strip is output, EndOfInformation is written out. We can think that a code string for a

particular strip is separated by ClearCode. We call each of them a code segment. Except

the last one, each code segment has 4094 − 257 + 1 = 3838 codes. The last code segment

for a strip may have codes less than that.

Let us discuss the implementation of back-pointer q for TIFF LZW compression. Since

codes have up to 12 bits and characters are 8 bits, we can implement q as a table which

has 212 × 28 = 220 entries. Since the value of back-pointer q(i, x) takes value up to 12 bits,

each entry can be 2 bytes. Hence, a back pointer can be implemented in 221 = 2 Mbytes.

However, this straightforward implementation has large overhead due to the cache miss.

Hence we will use a hash table to implement back-pointer q.

Let h(i, x) be a hash function returning a 14-bit number, where i and x are 12 bits and

8 bits, respectively. In the experiment that we will show later, we have used the following

hash function h to specify a 14-bit number.

h(i, x) = (i ⊕ (x << 10)) ⊕ (x >> 4)) ∧ 0x3FFF

We use an array of 214 elements with 2 bytes each to store the 14-bit values of back

pointers q(i, x). When we write the value of back pointer in address h(i, x), it may already

be used. If this is the case, the current value of each address (h(i, x)+501i)∧0x3FFF is read

for i = 1, 2,... until an unused address is found. Since at most 3838 elements are added, the

hash table of size 214 = 16384 is good enough.

After ClearCode is output, we need to initialize the hash table. However, it is too costly

to clear all elements in the hash table. Hence, we use the time-stamp technique as follows:
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Since the value of each q(i, x) has 12 bits is stored in 2 byte element, the remaining 4 bits

are used as a time stamp. The time stamp takes value from 0 to 24 − 1 = 15. Initially, the

time stamp is 0 and incremented after ClearCode is output. When the new entry is added

to and some value is written in q(i, x), the current time stamp is written with it. Using the

time stamp, one can determine if the value stored in each q(i, x) is valid. When the time

stamp is incremented 16 times, it is set to 0 and the values of all addresses are initialized

by 0. Note that the size of the hash table is 214 × 2 = 32K bytes, which is much smaller

than the straightforward implementation. However, the hash table of size 32K bytes is too

large to store it in the shared memory, we use the CUDA local memory, which is arranged

in the global memory.

We are now in a position of our implementation of LZW compression using a CUDA-

enabled GPU. We assume that an 8-bit gray scale image to be LZW-compressed is stored

in the global memory of the GPU. Our implementation performs LZW compression and

the resulting image is stored in the global memory using a TIFF format. To maximize

parallelism, we set RowsPerStrip=1, that is, each strip has one row of the gray-scale image.

We assign each thread to one strip, which perform LZW compression of it independently.

Each thread uses the local memory, which is mapped in the global memory of the GPU, to

store the pointer-character table and the hash table. The details of our implementation is

spelled out as follows:

[LZW compression using a CUDA-enabled GPU]

Step 1: The gray-scale image is transposed such that each row of the image is in a column.

Step 2: Each thread performs the LZW compression and the resulting sequence of LZW
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codes is written in the global memory.

Step 3: The prefix-sums of the lengths of the resulting sequences of LZW codes are com-

puted.

Step 4: The resulting LZW codes are concatenated into one to fit a TIFF format using the

prefix-sums.

One CUDA kernel is invoked for each of the three steps. Step 1 can be done by an

algorithm for matrix transposition [28]. After the transposing, each row of the image is

arranged in a column. Since every thread accesses the same position of a column, access to

the image performed in Step 2 is coalesced. After Step 2, the resulting sequences of LZW

codes generated by all threads are separated. To convert it in a TIFF format, they must be

concatenated. For concatenation, the prefix-sums of the lengths of all resulting sequences

of LZW codes are computed in Step 3. More specifically, let l0, l1, l2, . . . be the lengths

of all resulting sequences. The prefix-sums l0, l0 + l1, l0 + l1 + l2, . . . are computed. The

prefix-sums can be computed by a GPU very efficiently [29, 30]. From the prefix-sums,

we can determine the position in the TIFF format where each resulting sequence must be

copied. Step 4 performs this copy operation in an obvious way.

4.2.2 Experimental results

We have used NVIDIA GeForce GTX 980 which has 16 streaming multiprocessors with

128 processor cores each to implement our parallel LZW compression algorithm. We also

use Intel Core i7 4790 (3.6GHz) to evaluate the running time of sequential LZW compres-

sion.
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Crafts Flowers Graph

Figure 4.2: Three gray scale image with 4096 × 3072 pixels used for experiments

Table 4.3: The running time (in milliseconds) of LZW compression using a GPU and a
CPU for three images

GPU GPU
Images compression (transposed) CPU Speed (non-transpose)

ratio Step 1 Step 2 Step 3 Step 4 All -up Step2
“Crafts” 1.23 : 1 0.32 29.3 0.015 0.17 29.3 92.8 3.2 40.4
“Flowers” 1.44 : 1 0.40 23.8 0.015 0.16 22.2 65.4 2.9 33.0
“Graph” 10.8 : 1 0.36 11.0 0.017 0.14 11.0 33.3 3.0 13.2

We have used three gray scale images with 4096 × 3072 pixels (Figure 4.2), which are

converted from JIS X 9204-2004 standard color image data. We set RowsPerStrip=1, and

so each image has 3072 strips with 4096 pixels each. We invoked a CUDA kernel with

4096
32 = 128 CUDA blocks of 32 threads each for compression. Table 4.3 shows the com-

pression ratio, that is, “original image size: compressed image size.” We can see that

“Graph” has high compression ratio because it has large areas with constant intensity lev-

els. On the other hand, the compression ratio of “Crafts” is small because of the small

details. Table 4.3 also shows the running time for LZW compression using a GPU and a

CPU. It shows the running time of each step of GPU LZW compression. Clearly, Step 2

dominates the total computing time. The time for transposition, prefix-sum computation,

concatenating LZW codes is negligible. The table also shows the running time of our GPU

implementation for all steps. Since the sum of the running times of all steps is a little larger
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Table 4.4: The running time (in milliseconds) of two scenarios using our GPU and CPU
implementations and libTIFF library for three images

(1)Scenario 1

Images Compress Transfer Writing All
on GPU GPU→CPU CPU→SSD

“Crafts” 29.3 2.34 3.85 35.2
“Flowers” 22.23 1.44 2.80 26.0
“Graph” 10.99 0.40 0.38 11.3

(2)Scenario 2

Images Transfer Compress Writing All Speed-up libTIFF
GPU→CPU on CPU CPU→SSD

“Crafts” 3.84 3.84 92.8 100.4 2.9 118.6
“Flowers” 3.82 65.4 2.74 71.9 2.8 105.0
“Graph” 3.88 33.3 0.28 37.5 3.3 46.1

Table 4.5: The running time (in milliseconds) of LZW compression for multiple images of
“Crafts” using a GPU

Number of images 1 2 4 8 16 32 64
Running time 29.83 49.98 93.46 176.95 348.32 691.65 1380.68

Running time per image 29.83 24.99 23.37 22.12 21.77 21.64 21.57

than that for all steps, the running time of each step includes overhead for measuring the

running time. We can see that our GPU implementations is about three times faster than the

CPU implementation. The last column shows the running time of Step 2 for the case that

the input image is not transposed. Note that if memory access to the image is not coalesced

if this is the case. Since the running time is rather longer than Step 2 with transpose, we

should perform Step 1 beforehand.

We have evaluated the running time of two scenarios that may be used in real life appli-

cations. What we want to do is to store it using LZW-compressed TIFF format in the SSD
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Figure 4.3: Two scenarios to archive an LZW-compressed image in the SSD

(Solid State Drive) connected to the host PC. We compare the following two scenarios as

shown in Figure 4.3.

Scenario 1: The gray-scale image is compressed and converted into a TIFF image by our

implementation on the GPU. After that, the resulting LZW-compressed TIFF image

is transferred to the host PC and written in the SSD.

Scenario 2: The gray-scale image is transferred to the host PC and compressed using a

CPU. After that, the resulting LZW compressed TIFF image is written in the SSD.

Table 4.4 shows the running time of each scenario. The compression time is much larger

than the data transfer time both for Scenarios 1 and 2. Similarly, the time for all procedures

is a little smaller than the sum of the running time of three procedures because of the

overhead for measuring the running time. We can see that the Scenario 1 is about three

times faster than Scenario 2. The readers may think that our CPU implementation is not

efficient. Hence, we have also used libTIFF, which is a standard library for handling TIFF
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images [31]. The last column shows the time of Scenario 2 using libTIFF. Clearly, it is not

faster than that of our CPU implementation.

Considering practical cases, some application may LZW compress multiple images suc-

cessively. Therefore, we evaluate the running time of LZW compression for multiple im-

ages. Table 4.5 shows the running time (in milliseconds) of LZW compression for multiple

TIFF images of“Crafts”using our proposed GPU implementation. To utilize computation

resources of the GPU as possible, we use CUDA stream [6] to execute kernels concurrently.

We can see that the running time for multiple images is shorter than that for one image since

kernels are invoked asynchronously and overhead due to invoking kernels is hidden. Ac-

cording to the table, when 16 or more images are LZW-compressed, the running time per

image does not change. Also, the running time per image for 64 images is 1.38 times

shorter than that for one image. Therefore, to increase the throughput of the execution,

multiple images should be LZW-compressed.

4.3 Parallel LZW decompression

This section shows our parallel algorithm for LZW decompression.

Again, let X = x0x1 · · · xn−1 be a string of characters. We assume that characters are

selected from an alphabet (or a set) with k characters α(0), α(1), . . ., α(k − 1). We use

k = 4 characters α(0) = a, α(1) = b, α(2) = c, and α(3) = d, when we show examples as

before. Table let Y = y0y1 · · · ym−1 denote the compressed string of codes obtained by the

LZW compression algorithm. In the LZW compression algorithm, each of the first m − 1

codes y0, y1, . . . , ym−2 has a corresponding AddTable operation. Hence, the argument of
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code table C takes an integer from 0 to k + m − 2.

Before showing the parallel LZW compression algorithm, we define several notations.

We define pointer table p using input string Y of codes as follows:

p(i) =


NULL if 0 ≤ i ≤ k − 1

yi−k if k ≤ i ≤ k + m − 1
(4.1)

We can traverse pointer table p until we reach NULL . Let p0(i) = i and p j+1(i) = p(p j(i))

for all j ≥ 0 and i. In other words, p j(i) is the code where we reach from code i in

j pointer traversing operations. Let L(i) be an integer satisfying pL(i)(i) = NULL and

pL(i)−1(i) , NULL. Also, let p∗(i) = pL(i)−1(i). Intuitively, p∗(i) corresponds to the dead end

from code i along pointers. Further, let Cl(i) (0 ≤ i ≤ k + m − 2) be a character defined as

follows:

Cl(i) =


α(i) if 0 ≤ i ≤ k − 1

α(p∗(i + 1)) if k ≤ k + m − 2
(4.2)

It should have no difficulty to confirm that Cl(i) is the last character of C(i), and L(i) is the

length of C(i). Using Cl and p, we can define the value of C(i) as follows:

C(i) = Cl(pL(i)−1(i)) ·Cl(pL(i)−2(i)) · · ·Cl(p0(i)). (4.3)

Table 4.6 shows the values of p, p∗, L, Cl, and C for Y = 214630.

Table 4.6: The values of p, p∗, l, Cl, and C for Y = 214630
i 0 1 2 3 4 5 6 7 8 9

p(i) NULL NULL NULL NULL 2 1 4 6 3 0
p∗(i) - - - - 2 1 2 2 3 0
L(i) 1 1 1 1 2 2 3 4 2 1
Cl(i) a b c d b c c d a -
C(i) a b c d cb bc cbc cbcd da -
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We are now in a position to show parallel LZW decompression on the CREW-PRAM.

Parallel LZW decompression can be done in two steps as follows:

Step 1 Compute L, p∗, and Cl from code string Y .

Step 2 Compute X using p, Cl and L.

In Step 1, we use k processors to initialize the values of p(i),Cl(i), and L(i) for each i

(0 ≤ i ≤ k − 1). Also, we use m processors and assign one processor to each i (k ≤ i ≤

k+m−1), which is responsible for computing the values of L(i), p∗(i), and Cl(i). The details

of Step 1 of parallel LZW decompression algorithm are spelled out in Algorithm 4.3.

Algorithm 4.3 Step 1 of the parallel LZW decompression algorithm
1: for do in paralleli← 0 to k − 1
2: p(i)← NULL; L(i) = 1; Cl(i)← α(i);
3: end for
4: for do in paralleli← 0 to k − 1
5: p(i)← yi−k; p∗(i)← yi−k;
6: while(p(p∗(i)) , NULL) L(i)← L(i) + 1; p∗(i)← p(p∗(i));
7: end for
8: for do in paralleli← k to k + m − 2
9: Cl(i)← α(p∗(i + 1));

10: end for

Step 2 of the parallel LZW decompression algorithm uses m processors to compute

C(y0) ·C(y1) · · ·C(ym−1), which is equal to X = x0x1 · · · xn−1 as follows:

[Step 2 of the parallel LZW decompression algorithm]

Step 2-A: Compute the prefix-sums s(0), s(1), . . . , s(m − 1) of L(y0), L(y1), . . . , L(ym−1) us-

ing m processors by the optimal prefix-sums algorithm on the CREW-PRAM [12].

Step 2-B: Using one processor for each i (0 ≤ i ≤ m − 1), L(yi) characters Cl(pL(yi)−1(yi)) ·

Cl(pL(yi)−2(yi)) · · ·Cl(p0(yi))(= C(yi)) are copied from xs(i−1) to xs(i)−1 in Algorithm 4.4.
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Algorithm 4.4 Step 2B of the parallel LZW decompression algorithm
1: for do in paralleli← 0 to m − 1
2: y(i)← yi;
3: for do j← 1 to L(yi)
4: xs(i)− j ← Cl(y(i));
5: y(i)← p(y(i));
6: end for
7: end for

Table 4.7 shows the values of L(yi), s(i), and C(yi) for Y = 214630. By concatenating

C(y0),C(y1), . . . ,C(y5), we can confirm that X = cbcbcbcda is obtained.

Table 4.7: The values of L(yi), s(i), and C(yi) for Y = 214630

i 0 1 2 3 4 5
yi 2 1 4 6 3 0

L(yi) 1 1 2 3 1 1
s(i) 1 2 4 7 8 9

C(yi) c b cb cbc d a

We can omit for-loop in line 1, which initializes p(i), L(i), Cl(i) for all i (0 ≤ i ≤ k − 1),

because p(i) = NULL, L(i) = 1 and Cl(i) = i. If these elements are accessed, we can return

the value without accessing these elements in an obvious way. For example, when Cl(i)

(0 ≤ i ≤ k − 1) is read, we return i without accessing Cl(i).

Next, we will evaluate the computing time on the CREW-PRAM. Let Lmax = max{L(i) |

0 ≤ i ≤ k + m − 2}. Also, while-loop in line 5 is repeated at most L(i) ≤ Lmax times for

each i. Hence, for-loop in line 3 can be done in O(Lmax) time using m processors. Also,

processor working for value i of for-loop in line 3 repeats while-loop in line 5 L(i) times.

Thus, the work for this task is O(L(k)+ L(k+1)+ · · ·+ L(k+m−2)) = O(n+m−2) = O(n)

from Lemma 1. It is well known that the prefix-sums of m numbers can be computed
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in O(log m) time with O(m) work using m/ log m processors [12]. Hence, every s(i) is

computed in O(log m) time using m/ log m processors. After that, every C(yi) with L(yi)

characters is copied from xs(i)−1 down to xs(i−1) in O(Lmax) time and O(n) work using m

processors. Therefore, we have

Theorem 3 Parallel LZW decompression runs O(Lmax + log m) time with total O(n) work
using m processors on the CREW-PRAM.

From Lemma 2, the work of our parallel LZW decompression is equal to the running time

of optimal sequential LZW decompression, and our parallel LZW decompression is work

optimal.

4.4 GPU implementation of LZW decompression for TIFF
images

The main purpose of this section is to describe a GPU implementation of our parallel LZW

decompression algorithm. We focus on the decompression of TIFF image file compressed

by LZW compression.

4.4.1 TIFF images

In this subsection, we will review TIFF format file. We assume that a TIFF image file con-

tains a gray scale image with 8-bit depth, that is, each pixel has intensity represented by an

8-bit unsigned integer. Since each of RGB or CMYK color planes can be handled as a gray

scale image, it is obvious to modify gray scale TIFF image decompression for color image

decompression. As illustrated in Figure 4.1, a TIFF file has an image header containing

miscellaneous information such as ImageLength (the number of rows), ImageWidth (the
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number of columns), compression method, depth of pixels, etc [11]. It also has an image

directory containing pointers to the actual image data. For LZW compression, an original

8-bit gray-scale image is partitioned into strips, each of which has one or several con-

secutive rows. The number of rows per strip is stored in the image file header with tag

RowsPerStrip. Each strip is compressed independently, and stored as the image data. The

image directory has pointers to the image data for all strips.

Next, we will show how each strip is compressed. Since every pixel has an 8-bit intensity

level, we can think that each strip is a string of integers in the range [0, 255]. Hence, codes

from 0 to 255 are assigned to these integers. Codes 256 (ClearCode) and 257 (EndOfInfor-

mation) are reserved to clear the code table and to specify the end of the data. Codes from

256 to 4094 are used to store strings. As soon as entry for Code 4094 is added, ClearCode

is output the code table is re-initialized. The same procedure is repeated until all pixels in a

strip are converted into codes. After the code for the last pixel in a strip is output, EndOfIn-

formation is written out. We can think that a code string for a particular strip is separated by

ClearCode. We call each of them a code segment. Except the last one, each code segment

has 4094 − 257 = 3837 codes with 254 × 9 + 512 × 10 + 1024 × 11 + 2047 × 12 = 43234

total bits.

We also assume that Differencing Predictor is used in the TIFF images to get better

compression rate. If Predictor is used, every pixel value is replaced by the difference with

the left neighbor. More specifically, if pixel values of a row are x0, x1, x2, . . ., then they

are replaced by x0, x1 − x0, x2 − x1, . . . to obtain better compression rate. Clearly, to obtain

the original values, we need to compute the prefix sums x′0, x
′
0 + x′1, x

′
0 + x′1 + x′2, . . . of
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decompressed pixel values x′0, x
′
1, x

′
2, . . . obtained by LZW decompression. Note that the

subtraction and the addition is done for modulo 256. To compute the prefix-sums of 8-bit

numbers efficiently, we store three 8-bit numbers in 32-bit unsigned integers, and compute

the prefix sums of three lines at the same time. More specifically, suppose that we have

three sequences X′ = x′0, x
′
1, . . ., Y ′ = y′0, y

′
1, . . ., and Z′ = z′0, z

′
1, . . . of 8-bit numbers. Each

x′i , y
′
i , and z′i are stored in one 32-bit unsigned integers such that each of them uses 9 bits.

Additional 1 bit is used to handle the carry of addition. We can compute the pairwise sums

x′i + x′i+1, y′i + y
′
i+1, and z′i + z′i+1, by computing the addition of two 32-bit numbers and

masking out the carry bits using the bitwise AND operation. Using this idea, we can obtain

the original pixel values by computing the prefix-sums of 8 bits efficiently.

4.4.2 GPU implementation of parallel LZW decompression

We assume that an LZW-compressed TIFF image is stored in the global memory of the

GPU. We have implemented our parallel LZW decompression algorithm shown in Sec-

tion 4.3 to decompress this image stored in the global memory.

Figure 4.4 illustrates of the outline of our GPU implementation. Recall that each strip

consists of one or more code segments. Each block copies the first code segment of the

assigned strip in the global memory to the shared memory. After that, it decompresses the

code segment by our parallel LZW decompression algorithm. The resulting pixel values

are copied to the global memory. The same procedure is repeated for all code segments in

the assigned strip.

We will show that how a CUDA block with 1024 threads decompresses a code segment
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Figure 4.4: GPU implementation of parallel LZW decompression
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by our parallel LZW decompression algorithm. Steps 1 and 2 of it are implemented in the

GPU as follows:

Step 1: Each CUDA block copies a code segment in the global memory to the shared mem-

ory by an obvious way. After that, it computes the values of each p(i), p∗(i), L(i), and Cl(i).

Since the table has less than 4096 entries, 1024 threads compute them in four iterations. In

each iteration, 1024 entries of the tables are computed by 1024 threads. For example, in

the first iteration, L(i), p∗(i), and Cl(i) for every i (0 ≤ i ≤ 1023) are computed. After that,

these values for every i (1024 ≤ i ≤ 2047) are computed. Note that, in the second iteration,

it is not necessary to execute the while-loop in line 5 until p(p∗(i)) , NULL is satisfied.

Once the value of p∗(i) is less than 1024, the final resulting values of L(i) and p∗(i) are

computed using those of L(p∗(i)) and p(p∗(i)). Thus, we can terminate the while-loop as

soon as p∗(i) < 1024 is satisfied.

Step 2-A: Each CUDA block of 1024 threads computes the prefix sums of L(y0), L(y1), . . . , L(ym−2)

by parallel prefix-sums algorithm for GPUs shown in [30, 32].

Step 2-B: Each thread writes out L(yi) characters Cl(pL(yi)−1(yi))·Cl(pL(yi)−2(yi)) · · ·Cl(p0(yi))

in the global memory.

Next we will show that our implementation for GeForce GTX 980 can achieve 100%

occupancy of a streaming multiprocessor. The Compute Capability of GeForce GTX 980

is 5.2, in which each streaming multiprocessor can have up to 2048 resident threads, 32

CUDA blocks, a shared memory of size 96Kbytes, and 64K 32-bit registers [6]. Since our

implementation uses CUDA blocks of 1024 threads each, it is sufficient to show that two

CUDA blocks of 2048 threads uses no more than 96Kbytes in a shared memory and 64K
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registers. The tables for p(i) and L(i) use 2 bytes each and p∗(i) and Cl(i) use 1 byte each.

Since each table has 4096 elements, the tables occupy 4096 × 6 = 24K bytes in the shared

memory. The prefix-sum computation by a CUDA block uses 32 4-byte integers in the

shared memory. Hence, two CUDA blocks uses less than 49K bytes. Also, a thread in a

CUDA block uses 28 registers and two CUDA blocks of 2048 threads uses 56K registers.

Thus, two CUDA blocks of 2048 threads can be active in a streaming multiprocessor and

the occupancy can be 100%.

4.5 Experimental results

We have used GeForce GTX 980, which has 16 streaming multiprocessors with 128 pro-

cessor cores each to implement parallel LZW decompression algorithm. We also use Intel

Core i7-4790 (3.66GHz) to evaluate the running time of sequential LZW decompression.

We have used gray scale images, Crafts, Flowers, and Graph with 4096 × 3072 pixels

in Figure 4.5, which are converted from JIS X 9204-2004 standard color image data. We

also use two gray scale images, Random and Black with the same size. The intensity level

of each pixel of Random is selected from [0, 255] independently at random. Every pixel

in Black takes value 0. Thus, the size of compressed image of Random is larger than the

original, and that of Black is very small. The figure also shows the compression ratio S C
S O

,

where S O and S C are the sizes of the original and the compressed images, respectively.

They are stored in TIFF format with LZW compression option. We set RowsPerStrip= 16,

and so each image has 3072
16 = 192 strips with 16 × 4096 = 64k pixels each. We invoked a

CUDA kernel with 192 CUDA blocks, each of which decompresses a strip with 64k pixels.
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Crafts:59.9% Flowers:42.7%

Graph:2.6% Random:136.6%

Black:0.6%

Figure 4.5: Three gray scale image with 4096 × 3072 pixels used for experiments
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We first evaluated the running time of GPU decompression using Core i7 CPU and

GeForce GTX 980 GPU. Table 4.8 summarizes the running time of LZW decompression.

Recall that Step 1 computes the values of L(i), p∗(i), and Cl(i). Step 2A corresponds to the

prefix-sums computation for s. Step 2B writes out string of characters to the global mem-

ory. Clearly, the running time of Step 1 and Step 2A is small if an input LZW compressed

image is small, because the total number of operations is proportional to the total number

of codes, that is, the size of input LZW-compressed image. On the other hand, Step 2B

takes more time for images with high compression ratio, because each thread need to write

out more characters. From the table, the speedup factor of GPU implementation over CPU

implementation is 43.6 for image Flower.

Table 4.8: The running time (milliseconds) of LZW decompression
Images GPU CPU Speedup

Step 1 Step 2A Step 2B Total
Crafts 0.66 0.80 0.41 1.87 61.0 32.6

Flowers 0.38 0.59 0.18 1.15 50.1 43.6
Graph 0.167 0.067 1.59 1.82 25.1 13.8

Random 1.23 1.59 0.76 3.58 76.9 21.5
Black 0.176 0.034 1.66 1.87 26.0 13.9

Suppose that we have a lot of images are stored in the SSD, and we want to perform

some computation such as neural network learning for each of the these images using the

GPU. For this purpose, we need to transfer each image in the SSD to the global memory

of the GPU as a preprocessing step. We call the time of this processing step SSD-GPU

loading time. We evaluate the GPU data loading time for three scenarios as follows:

Scenario A: Non-compressed images are stored in the SSD. They are transferred to the
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GPU via the host computer (CPU). The time for SSD→CPU and CPU→GPU is evaluated.

Scenario B: LZW compressed images are stored in the storage. They are transferred to the

host computer, and decompressed in it. After that, the resulting non-compressed images are

transferred to the GPU. The time for SSD→CPU, CPU decompression, and CPU→GPU is

evaluated.

Scenario C: LZW compressed images are stored in the storage. They are transferred to the

GPU through the host computer, and decompressed in the GPU. The time for SSD→CPU,

CPU→GPU, and GPU decompression is evaluated. We also evaluated the time for “pre-

dictor”, which computes the prefix-sums to obtain pixel values of original images LZW-

compressed with Differencing Predictor option.

The reader should refer to Figure 4.6 illustrating the three scenarios.

SSD Code i7 CPU GeForce GTX 980 GPU

Scenario 
A

Scenario 
B

Scenario 
C

CPU
decompress

GPU
decompress

Figure 4.6: Scenarios A, B, and C
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Table 4.9 shows the running time of three scenarios. From Table 4.9 (1), we can see that

it takes about 10 milliseconds to copy a non-compressed image in the SSD to the global

memory of the GPU. If the size of image stored in the SSD is not a big issue, and if our main

goal is to accelerate the time for load a non-compressed image in the global memory of the

GPU, then other scenarios make sense only if the running time is less than 10 milliseconds.

Unfortunately, from Tables 4.9 (2) and (3), the time necessary to load a non-compressed

image is much larger than 10 milliseconds. Table 4.9 (2) shows the running time using our

LZW decompression sequential algorithm. Table 4.9 (3) uses libTIFF library, a set of C

functions that support the manipulation of TIFF images. We have used a libTIFF function to

read a LZW-compressed TIFF image stored in SSD write decompressed data in the memory

of the CPU. From these tables, we can see that our sequential LZW decompression is not

slower than libTIFF. Hence, it makes sense to compare our GPU implementation and our

sequential LZW decompression. Since the running time of Scenario A is much larger than

Scenario B, Scenario B makes sense only if we want to reduce the total size of images

stored in the SSD.

We can see that, from the Table 4.9 (4), the running time of Scenario C is smaller than

10 milliseconds except for image Random. Since the LZW-compressed image of Random

is larger than the original image, Scenario C for it cannot be faster than 10 milliseconds.

The time for image transfer from the SSD to the GPU is more than 10 milliseconds. It is

quite surprising for us that Scenario C can be faster than Scenario A, and it makes sense to

use our parallel LZW decompression algorithm.
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Table 4.9: The running time (milliseconds) of each Scenario for three images

(1) Scenario A
Images SSD→CPU CPU→GPU Total
Crafts 6.38 3.53 9.91

Flowers 6.43 3.52 9.95
Graph 6.55 3.50 10.05

Random 6.44 3.50 9.94
Black 6.39 3.50 9.89

(2) Scenario B (Our implementation)
Images SSD CPU CPU CPU Total

→CPU decompression predictor →GPU
Crafts 3.72 61.0 7.00 3.58 75.3

Flowers 2.55 50.1 6.99 3.56 63.2
Graph 0.19 25.1 7.00 3.56 35.8

Random 8.47 76.9 6.99 3.57 95.9
Black 0.16 26.0 7.00 3.54 36.7

(3) Scenario B (libTIFF)
Images SSD→CPU CPU→GPU Total

LZW decode+predictor
Crafts 82.0 3.55 85.6

Flowers 71.0 3.53 74.5
Graph 41.1 3.60 44.7

Random 91.0 3.59 94.6
Black 41.1 3.54 44.6

(4) Scenario C
Images SSD CPU GPU GPU Total

→CPU →GPU decompression predictor
Crafts 3.79 2.56 1.86 0.079 8.29

Flowers 2.47 1.75 1.13 0.080 5.43
Graph 0.17 0.16 1.83 0.080 2.24

Random 8.43 5.01 3.57 0.080 17.1
Black 0.15 0.099 1.87 0.079 2.20
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Chapter 5

Adaptive loss-less data compression
method optimized for GPU
decompression

In this chapter, we present a new lossless data compression method that we call Adaptive

Loss-Less (ALL) data compression. It is designed so that the data compression ratio is

moderate but decompression can be performed very efficiently on the GPU.

5.1 ALL: Adaptive Loss-Less data compression

The main purpose of this section is to present ALL (Adaptive Loss-Less) data compression.

We first introduce outline of ALL coding, and then show the details. After that, we briefly

show sequential ALL compression and decompression.

5.1.1 Outline of ALL coding

ALL coding includes several data compression techniques: run-length coding, segment-

wise coding, adaptive dictionary coding, and Huffman-based byte-wise coding.

In run-length coding, a substring with the same character is encoded in a run-length code

with a pair (character, length). For example, run-length codes (A,4)(B,3)(C,2) are decoded
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to AAAABBBCC. ALL codes include run-length codes. The run-length coding achieves

good compression ratio if the input character has many long runs.

The sliding window compression technique is used in LZSS compression. It uses a

dictionary buffer of a fixed size and an interval code with a pair (offset,length). For ex-

ample, suppose that a dictionary buffer of size 8 is used. A compressed codes ABCDE-

FGHI(1,4)(3,3)B(0,3) is decoded to ABCDEFGHICDEFICDBCDE. The decoding opera-

tions for interval codes (1,4), (3,3), and (0,3) are performed as follows. First, when (1,4)

is decoded, the dictionary buffer stores the latest decoded 8 characters BCDEFGHI. Thus,

(1,4) is decoded to a substring of length 4 starting from offset 1 of the dictionary buffer,

that is, CDEF. After that, the dictionary buffer has 8 characters FGHICDEF and interval

code (3,3) is decoded to ICD. Similarly, interval code (0,3) is decoded to CDE, because the

dictionary buffer is CDEFICDB. The sliding window compression works efficiently if the

same substring appears two or more times in close positions. However, it is very hard to

parallelize decompression by the sliding window. Since the decoded string of an interval

code can be obtained after the dictionary buffer is determined, decoding operations must

be performed one by one.

To parallelize decompression for interval codes, we use segment-wise coding. In this

coding, multiple interval codes use the same dictionary. We show how ABCDEFGHI(1,4)I(1,2)B(1,3)

is decoded to ABCDEFGHICDEFICDBCDE. We assume that three interval codes (1,4),

(1,2), and (1,3) are in the same segment and use the same dictionary buffer BCDEFGHI.

They are decoded to CDEF, CD, and CDE in parallel. In ALL data compression, a group

of 16-32 codes called a segment uses the same dictionary, which includes the latest 4096
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uncompressed characters of the first code in the segment.

In the sliding window compression technique, each code is decoded using the latest de-

coded substring as a dictionary. On the other hand, in segment-wise coding, multiple codes

are decoded using the same dictionary. Thus, the last code in a segment uses a distant

substring as a dictionary and the data compression ratio may be deteriorated, because it is

likely that the same substring appears again with higher probability in a closer position. To

compensate this deterioration, we use adaptive dictionary coding. We replace the prefix of

the dictionary buffer by a magic string, which is defined for each segment of codes. For

example, for a compressed string ABCDEFGH(0,4)(4,3)(0,3)(1,3), a magic string IJKL is

preserved for a segment of interval codes (0,4)(4,3)(0,3) and (1,3). When they are decoded,

the latest 8 characters ABCDEFGH stored in a dictionary are overwritten by the magic

string IJKL from the left. We use the resulting string IJKLEFGH as a dictionary. Interval

codes (0,4), (4,3), (0,3), and (1,3) are decoded to IJKL, EFG, IJK, and JKL, and we ob-

tain a decompressed string ABCDEFGHIJKLEFGIJKJKL. A magic string should include

frequently appeared substrings to achieve better compression ratio.

A magic string can also be used to encode a random string with high entropy, which there

is no way to compress in smaller size. Usually, the total size of codes for a random string

may be larger than the input uncompressed data due to the overhead of coding. Magic

strings can minimize the overhead. An interval code in ALL coding supports length up to

3408. So, a random string of length 3408 can be encoded using a magic string of length

3408 and only one interval code (0,3408). Thus, the overhead of the random string of

length 3408 is only one additional interval code.
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In many compression methods, Huffman coding is used to minimize the average code

length. More specifically, fewer bits are assigned to frequently used codes. Since the

number of bits in each code of Huffman coding varies and each code is identified by reading

bits in a code one by one, decoding operation is very hard to parallelize. Hence, it is not

possible to identify the boundary of every code in parallel. Thus, we simply use Huffman-

based byte-wise coding which enables us to identify every code in parallel. ALL coding

uses 1-byte and 2-byte words as atomic elements of coding which constitutes one of the

three codes: 1-byte code (1-byte word), 2-byte code (2-byte word), and 3-byte code (2-

byte word plus 1-byte word). Basically, a 1-byte code simply encodes a 1-byte character.

A 2-byte code is used to represent length from 2 to 16. A 3-byte code represents length

from 18 to 3408. Intuitively, longer codes are appeared less frequently and longer strings

are encoded in them, byte-wise Huffman coding makes sense.

5.1.2 ALL codes

In this subsection, we define ALL codes in detail. ALL compresses a string of 1-byte

characters into ALL codes, each of which consists of one or two words. It uses two types

of words: 1-byte word and 2-byte word. A 1-byte word simply represents 8-bit parameter

c, which can be a 1-byte character or 8-bit length. A 2-byte (16-bit) word stores 12-bit

parameter t and 4-bit parameter l. One or two consecutive words constitute an ALL code,

in which a sequence of one or more 1-byte characters are encoded. More specifically, an

ALL code is a 1-byte word, a 2-byte word, or a 1-byte word plus a 2-byte word as follows:

1-byte code a 1-byte word
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If the previous word is not a 2-byte word of a 3-byte code defined below, a 1-byte

word is a 1-byte code with length L = 1.

2-byte code a 2-byte word

If 4-bit parameter l of the 2-byte word is not 15 (= 1111 in binary) then it is a 2-byte

code with length L = l + 2. Clearly, 0 ≤ l ≤ 14 and so 2 ≤ L ≤ 16.

3-byte code a 2-byte word plus a 1-byte word

If parameter l of the 2-byte word is 15 then it is a 3-byte code with length L such that

L = c+18 if c+18 ≤ 64, that is, c ≤ 46, where c is the parameter of the 1-byte word.

If c ≥ 47 then, L = 16 · (c − 47) + 80, that is, L = 16c − 672. Since 0 ≤ c ≤ 255,

length L can be 18, 19, 20, . . . , 64 and 80, 96, 112, . . . , 3408.

Note that both 2-byte codes and 3-byte codes do not support length 17, because a 2-byte

code and a 1-byte code combined can encode a string of length 17.

ALL data compression uses 3 types of codes as follows:

Single Character Code (1-byte code): A 1-byte code simply represents a 1-byte charac-

ter.

Run-Length Code (2-byte/3-byte code): If parameter t of the 2-byte word in the code is

4095 (= 111111111111 in binary), then it is a Run-Length Code representing a run

of length L with the previous character.

Interval Code (2-byte/3-byte codes): If t of the 2-byte word is not 4095, then it is an

Interval Code representing interval [t, t + L − 1] of length L in the dictionary.
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The reader should refer Table 5.1 that summarizes five types of ALL codes.

Table 5.1: ALL codes: p is the previous character and d0d1 · · · d4095 are 4096 characters in
the dictionary

Codes words length 𝑳 string to be decoded
SC

Single Character 1 𝑐

SRL
Short Run-Length

𝑙 + 2
𝑝𝑝 ⋯𝑝

SI
Short Interval 𝑑)𝑑)*+ ⋯𝑑)*,-+

LRL
Long Run-Length 𝑐 + 18 if	𝑐 ≤ 46

16𝑐 − 672 if	𝑐 ≥ 47

𝑝𝑝 ⋯𝑝

LI
Long Interval sssssssssssssssssssssssssssssssssssssssssss 𝑑)𝑑)*+ ⋯𝑑)*,-+𝑐𝑡 1111

𝑐111111111111 1111

𝑡 𝑙

111111111111 𝑙

𝑐

5.1.3 Adaptive Dictionary

A sequence of ALL codes is partitioned into segments of 32 words each. Since each code

has 1 or 2 words, each segment involves 16-32 codes. The same dictionary is used for all

codes of a segment. A dictionary consists of a previous string and a magic string. The

previous string is a string of uncompressed 4096 characters obtained by decoding codes

in previous segments. If it has less than 4096 characters, then it is right justified and

0’s are filled to obtain a string of length 4096. In particular, the previous string of the

first segment is a run of 4096 0’s, because the first segment has no “previous string.” Let

p0 p1 · · · p4095 be the previous string of 4096 characters, and let w0w1 · · ·wv−1 be the magic

string of v characters. The dictionary can be obtained by overwriting the magic string from

the beginning of the previous string, that is, the dictionary is w0w1 · · ·wv−1 pvpv+1 · · · p4095.

A magic string is a sequence of 8-bit characters determined in the process of compression

to attain better compression ratio. Usually, it includes substrings appearing frequently in

an uncompressed input.
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Figure 5.1 shows an example of ALL codes and the decoded string. In the figure, we

assume that the length of a previous string is 32 and a magic string of length 4 is used.

Thus, the first 4 characters of the dictionary is the magic string. The remaining characters

of the dictionary are 28 characters of the previous string. Five ALL codes in the figure are

decoded as follows.

1. SI code with offset 1 and length 2 + 1 is decoded to “wxy.”

2. SC code with character “z” is decoded to “z.”

3. SI code with offset 0 and length 2 + 1 is decoded to “vwx.”

4. LI code with offset 7 and length 0+18 is decoded to “HIJKLMNOPQRSTUVWXY.”

5. SRL code with length 2 + 2 is decoded to “YYYY.”

Thus, we can confirm that these codes are decoded into the uncompressed string as shown

in the figure.

5.1.4 Data block: encoded data for a strip

An input uncompressed string to be compressed is partitioned into strips of 65536 bytes

each. Each strip is compressed using ALL codes independently. A data block contains

ALL codes with additional parameters necessary to decode a strip. We will show the data

structure of a data block.

Let a0a1 · · · am−1 denote the words for ALL codes in a strip, where m is the number

of words in this strip. We use an array of word identifiers b0b1 · · · bm−1 such that bi = 0

(0 ≤ i ≤ m − 1) if ai is a 1-byte word and bi = 1 if ai is a 2-byte word. Clearly, the strip
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Z Z Z Z Z Z

v w x y magic string

0 4 8 12 16 20 24 28
previous string

dictionary

ALL codes 1 1 z 0 1 7 15 0 4095 2

SI SC SI LI SRL

w x y z v w x H I J K L M N O P Q R S T U V W X Y Y Y Y Y

0 4 8 12 16 20 24 28

SI SC SI LI SRL

Figure 5.1: An example of ALL codes and the decoded string

has k = ⌈ m
32⌉ segments. Magic strings for the k segments are concatenated and stored as

a single magic string. To identify each magic string, we use magic identifiers q0q1 · · · qk−1

such that qi = 0 (0 ≤ i ≤ k − 1) if the length of the magic string of the i-th segment is 0

and qi = 1 if it is not 0. An array of 12-bit integers is used to specify the length of each

non-zero length magic string. If the value stored in a 12-bit integer for i-th magic string is

li, then this magic string has li + 1 characters. Since the length of each magic string is in

range [1,4096], a 12-bit integer field is sufficient to store the length of a magic string.

Figure 5.2 illustrates a format of data block. The format has word counts (16 bits; the

total number of words minus 1), word byte counts (16 bits; the total size of words in bytes

minus 1), magic string counts (11 bits; the number of magic strings) and predictor option

flag (1 bit). Since the total number of words and the total size of words are in the range

[1,65536], their values minus 1 are stored in 16 bits each. Also, the number k of strips is less

than 65536
32 = 2048, and the number of magic strings is stored in 11 bits. Let x0x1 · · · x65535
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denote the 65536 characters of an uncompressed strip. If the predictor option flag is set,

then y0y1 · · · y65535 such that y0 = x0 and yi = (xi − xi−1) mod 256 (1 ≤ i ≤ 65535) are used

for ALL data compression. Note that xi = (y0 + y1 + · · · + yi) mod 256 for all i. Thus, after

y0y1 · · · y65535 is obtained by ALL decompression, an original sequence x0x1 · · · x65535 can

be computed by the prefix-sums for y0y1 · · · y65535. Usually, the compression ratio may be

better for image data if the predictor is used. On the other hand, the predictor should not

be used for most text data.

0

word counts (16 bits)

word byte counts (16 bits)

magic string counts (11 bits)

predictor option flag (1 bit)

word identifiers (1 bit)

words (1-2 bytes)

1magic identifiers (1 bit)

𝑙"magic string length (12 bits)

magic strings (1 byte)

1 1 0 0 0 1 0 1

0 0 1 1 0 1 0 0 1

𝑙# 𝑙$ 𝑙% 𝑙&

0

𝑙" + 1 𝑙# + 1 𝑙$ + 1 𝑙% + 1

Figure 5.2: A data block for a strip of 65536 bytes

5.1.5 ALL file format

ALL file format begins with the header followed by the body. The body simply contains

all data blocks. The header has strip count field storing strip count minus 1. It also has an

array of strip bytes each of which stores the size of the data block for each strip in bytes

minus 1. Since a strip has 65536 bytes, it makes no sense that the data block has more
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than 65536 bytes. Thus, if the value of a strip byte is 65535, then the data block stores

uncompressed 65536 characters of a strip as they are without using ALL codes.

Figure 5.3 illustrates data stored in the header. We assume that the strip count filed has

32 bits and thus the maximum number of strips is 232. Since each strip encodes 65536 = 216

bytes, a single ALL file can encode up to 248 =256T-byte input data in theory.

strip count (32 bits)

strip bytes (16 bits) ⋯

Figure 5.3: ALL file header

5.1.6 Compression and decompression algorithms

We briefly show sequential algorithms for ALL data compression and decompression. Due

to the stringent page limitation, we omit the details, because our main purpose is to show

ALL decompression using a GPU.

For sequential ALL compression, we will show how codes of a segment in a strip are

generated. We first generate codes for a current uncompressed string in a strip using a

previous string of length 4096 as a dictionary. Note that this dictionary has no magic

string. This can be done in the same way as LZSS compression [15]. More specifically, we

find the longest match and the longest run of the prefix of a current uncompressed string.

We select the longest of the two. This procedure is repeated until codes of 32 words are

generated. We compute the current compression ratio,

the current total size of generated words and magic strings
the current total size of encoded uncompressed characters
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for later reference. After that, we find a magic string as follows. We pick following codes

from generated codes:

• the length of codes is less than 3, and

• two or more such codes are consecutive.

We replace such consecutive codes by one interval code using a magic string. For this

purpose, we compute a common superstring that contains all consecutive codes as a sub-

string. For example, for strings of consecutive codes BAA , AAB , BBA , ABA , and

ABB, a string ABAABBA is a common superstring, because it contains every string as a

substring. To achieve better compression ratio, we should use the shortest common super-

string as a magic string. However, the problem of finding the shortest common superstring

is NP-complete [33] and it is not realistic to solve this problem for compression. Hence,

we use a greedy approximation algorithm for the shortest common superstring problem

shown in [34]. We use an approximation solution for the shortest common superstring as

a magic string and start over generation of codes with 32 words again. In other words, we

use the obtained magic string and generate codes with 32 words as before. After that, we

evaluate the current compression ratio again. If this current compression ratio of codes is

not better than the previous one, we do not use this magic string and use the previous codes

computed before. Otherwise, we continue finding a better magic string by repeating the

same procedure until no more improvement of the data compression ratio is possible.

Sequential ALL decompression can be done very easily in linear time. We show how

codes of 32 words for a segment are decoded and the resulting string is written in the
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corresponding output buffer. We assume that previous string of the segment has been al-

ready written in the output buffer. We first need to compute the dictionary for a segment.

Recall that the dictionary can be obtained by replacing the prefix of the previous string

of 4096 characters by the magic string. The reader may think that copy operation with a

large overhead is necessary for this replacement. However, we do not have to copy the

magic string. We can think that the address space of the dictionary is separated such that

addresses [0, v − 1] are arranged in the magic string and those of [v, 4095] are the previ-

ous string, where v is the length of the magic string. Thus, dictionary accesses to address

[0, v− 1] and [v, 4095] are redirect to the magic string and the previous string, respectively.

Hence, each character in the dictionary can be accessed efficiently in O(1) time and the

decoded string of every code can be written in the output buffer in time linear to the length.

5.2 GPU implementation for ALL decompression

We assume that the ALL compressed file is stored in the global memory of the GPU and

show how they are decompressed. Our GPU implementation performs decompression and

stores the resulting decompressed string of characters in the global memory of the GPU.

5.2.1 Parallel prefix scan on the GPU

Before showing a GPU implementation for ALL decompression, we briefly explain a well-

known technique called the parallel prefix scan [35, 30] on the GPU, which computes the

prefix-sums of integers. The parallel prefix scan is used to identify the data block of a strip,

to identify words of a segment, and to compute the writing offset of each code.

Let a0, a1, . . . , a31 be 32 integers of 32 bits each. We assume that 32-bit register A[i] of
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each thread i stores ai (0 ≤ i ≤ 31) . The prefix sums âi = a0+a1+· · ·+ai for all i (0 ≤ i ≤ 31)

can be computed in 5 iterations described in Algorithm 5.1. Figure 5.4 illustrates addition

Algorithm 5.1 Parallel prefix scan
1: for dok ← 0 to 4
2: for do in paralleli← 0 to 31 do in parallel
3: thread i performs A[i]← A[i] + A[i − 2k] if i ≥ 2k;
4: end for
5: end for

performed in the parallel prefix scan. The reader should have no difficulty to confirm that

each A[i] stores the prefix sum âi when this algorithm terminates.

0 4 8 12 16 20 24 28

Figure 5.4: Parallel prefix scan

The parallel prefix scan can be implemented very efficiently using warp shuffle func-

tion [6], which exchanges the values stored in 32-bit registers of different threads in the

same warp. Using warp shuffle function shfl up(), the value stored in A[i − 2k] can be

transferred to thread i with very small overhead.

Next, we will show that the prefix-sums of 128 8-bit integers a0, a1, . . . , a127 under mod-

ulo 256 very efficiently using the parallel prefix scan. It should be clear that they can be
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computed by executing the parallel prefix scan four times in 20 iterations. We show that the

number of iterations can be reduced to 6 if we use SIMD addition vadd4(), which computes

the addition of four 8-bit integers in a 32-bit word under modulo 256. We partition each

32-bit register A[i] (0 ≤ i ≤ 31) used in the parallel prefix scan into the four 8-bit integers

such that each A[i] stores ai, a32+i, a64+i and a96+i. Suppose that the parallel prefix scan is

executed for A[0], A[1], . . . , A[31], with addition being done by SIMD addition vadd4().

Let a[ j, k] denote the interval sum a j + a j+1 + · · · + ak. Each A[i] (0 ≤ i ≤ 31) stores

local prefix-sums a[0, i], a[32, 32 + i], a[64, 64 + i], and a[96, 96 + i]. In particular, A[31]

stores the local sums a[0, 31], a[32, 63], a[64, 95], and a[96, 127]. By simple additions, we

can obtain 32-bit word with four 8-bit integers being 0, a[0, 31], a[0, 63], and a[0, 95]. By

adding this word to every A[i], it stores the prefix-sums a[0, i], a[0, 32+ i], a[0, 64+ i], and

a[0, 96 + i] under modulo 256. For later reference, we call this algorithm parallel 8-bit

prefix scan.

5.2.2 CUDA kernel for ALL decompression

We show how CUDA kernel for ALL decompression invokes CUDA blocks. A CUDA

kernel with CUDA blocks with 64 threads, that is, two warps of 32 threads each, are invoked

for decompression. A warp of 32 threads is assigned to a data block, which contains ALL

codes for a strip with 4096 characters. Two warps in a CUDA block work independently.

Since the compute capability of GeForce GTX 1080 is 6.1, each streaming multiprocessor

can have up to 2048 resident threads and 32 resident CUDA blocks [6]. Thus, each CUDA

block must have 64 or more blocks to achieve 100% occupancy. A warp of 32 threads
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assigned to a data block decodes the codes and writes decompressed string in the output

buffer in the global memory of the GPU.

We will show how each warp is assigned to a data block. Let k be the number of strips

(or data blocks). An integer variable c in the global memory is used as a counter to arrange

a warp to a data block. After the CUDA kernel is invoked, the first thread of every warp

calls function atomicAdd(&c,1), which increments c as an atomic operation and returns

the value of c before addition [6]. If the return value i of atomicAdd satisfies i < k, then

the warp is assigned to the i-th data block and works for decompressing the block. If

i ≥ k then the warp terminates. Since each function call atomicAdd(&c,1) returns 0, 1,

2, . . . in turn, every data block can be assigned a warp and is decompressed by it. Let

s0, s1, . . . , sk−1 be the strip bytes stored in the header and ŝ0, ŝ1, . . . be the prefix sums such

that ŝi = (s0 + 1) + (s1 + 1) · · · + (si + 1) for all i (0 ≤ i ≤ k − 1). Since each i-th data

block has si + 1 bytes, it is allocated from offset ŝi−1 of the body. Thus, a warp can identify

the assigned data block in the global memory if the value of ŝi−1 is computed. We will

show how ŝi−1 is computed by the warp. A warp of 32 threads finds minimum j such

that ŝi− j has been already computed. This can be done by checking 32 values of p’s in

turn and merging the results by ballot function call of CUDA [6]. For such j, the sum

ŝi− j + (si− j+1 + 1) + (si− j+2 + 1) + · · · + (si−1 + 1), which is equal to ŝi−1, is computed by

the parallel prefix scan (Figure 5.4). After that, decompression for i-th data block stored

in offset ŝi−1 is performed. When decompression is completed, the first thread in the warp

calls atomicAdd(&c,1) and performs decompression of strip i′ again if the return value i′ is

smaller than k. Otherwise, the warp terminates. When all warps terminate, decompression
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of all data blocks is completed.

5.2.3 A CUDA block decompressing a data block

We will show how each data block is decompressed by 32 threads in a warp. Recall that

ALL codes are segment-wise and segments are encoded in 32 words each. Thus, 32 threads

decode codes for every segment one by one. We show how codes of 32 words for each

segment are decoded using 32 threads in a warp and decoded string is written in the corre-

sponding output buffer in the global memory. This decoding procedure has four stages as

follows:

Stage 1 Identify all codes of 32 words for the segment.

Stage 2 Determine the code type and the reading offset t, length L, and the writing offset.

Stage 3 Write the decoded strings in the output buffer.

Stage 4 If the predictor option flag is 1, then the prefix-sums of the decoded strings are

computed

As we have mentioned in sequential ALL decompression, copy operation for magic and

previous strings is not necessary. We can think that the address space of the dictionary is

separated into the magic string and the previous string.

In Stage 1, 32 threads read 32 word identifiers of a segment. Let b0, b1, . . . , b31 be these

32 word identifiers. They compute the prefix sums b̂i = (b0 + 1) + (b1 + 1) + · · · + (bi + 1)

for all i (0 ≤ i ≤ 31) by the parallel prefix scan (Figure 5.4). Basically, each i-th thread
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(0 ≤ i ≤ 31) is assigned to the i-th word stored in offset b̂i−1, and works for decoding the

code corresponding to the word.

In Stage 2, each thread identifies the code type (SC, SRL, SI, LRL, or LI) and the reading

offset t and length L of the assigned code. Since the offset of each code has been identified,

this can be done in an obvious way using Table 5.1. After that, the writing offset of each

code is determined as follows. Since each code is decoded to a string of length L, the prefix-

sums of lengths correspond to the writing offset. More specifically, let L0, L1, . . . , L31 be

the lengths of codes corresponding to 32 words. If a code is a 3-byte code with two words,

let the length of the second word be 0 for convenience. The 32 threads in a warp compute

the prefix sums L̂i = L0 + L1 + · · · + Li for all i (0 ≤ i ≤ 31) by the parallel prefix scan

(Figure 5.4). Clearly, the writing offset of each i-th code is L̂i−1.

In Stage 3, the decoded string of each code is written in the output buffer. This decoding

operation is performed for five types of codes in turn as follows:

Step 1: Single Character Codes A thread assigned to a single character code simply copies

the parameter c of it to the output buffer.

Step 2: Short Interval Codes An assigned thread simply copies the string of length L

(≤ 16) in the dictionary to the output buffer.

Step 3: Long Interval Codes We use all 32 threads to copy the string of length L (≥ 18)

in the dictionary to the output buffer.

Step 4: Short Run-length Codes An assigned thread repeats writing previous character

p in the output buffer L (≤ 16) times.
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Step 5: Long Run-length Codes We use all 32 threads to write a run of previous character

p with length L (≥ 18) in the output buffer.

In Steps 3 and 5, at least 18 bytes are written in the output buffer. Hence, 32 threads are

used for this writing operation and such codes are decoded in turn if a segment has multiple

long codes with long length. On the other hand, Steps 2 and 4 perform writing operation for

at most 16 bytes. Thus, we use a single thread for each code and perform writing operation

for all such codes in parallel.

Finally, in Stage 4 if predictor option flag is 1, we compute the prefix-sums of the result-

ing string. For efficient prefix-sum computation, we use the parallel 8-bit prefix scan which

computes the prefix-sums of 128 8-bit short integers under modulo 256.

5.2.4 Performance issues of the GPU implementation for ALL decom-
pression

We will discuss several performance issues of our GPU implementation for ALL decom-

pression.

First, we discuss memory access to the global memory, which is the bottleneck in many

GPU implementations due to large latency. In our GPU implementation, 32 words in the

global memory are read by 32 threads in a warp at the same time. Since these words are

consecutive, memory access is coalesced. Also, the resulting string of each LRL code is

written in the global memory by 32 threads. For decoding each LI code, the dictionary

(or the previous string and the magic string) stored in the global memory are copied to the

output buffer in the global memory by 32 threads. Clearly, these memory access operations

are coalesced. Decoding SC, SI, and SRL codes involves few memory accesses. Thus,
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these codes are decoded using one thread each. Although memory access for these codes

are not coalesced, the performance is not so degraded.

To maximize the performance of a GPU implementation, we should invoke as many

threads and CUDA blocks as possible. For this purpose, the occupancy must be 100%. In

our GPU implementation, a CUDA block with 64 threads uses no shared memory. Each

thread uses 31 32-bit registers. Each streaming multiprocessor of GeForce GTX 1080

(compute capability 6.1) has 2048 resident threads, 32 resident CUDA blocks and 64K 32-

bit registers [6]. Hence, a CUDA kernel can dispatch 32 CUDA blocks in each streaming

multiprocessor, because they use 32 × 64 = 2048 resident threads and 2048 × 31 = 62K

32-bit resisters. Thus, the occupancy of our implementation is 100%. Also, since GeForce

GTX 1080 has 20 streaming multiprocessors, our GPU implementation can dispatch 32 ×

20 = 640 CUDA blocks with 2048 × 20 = 40K threads at the same time. Since each

strip is decoded using a warp of 32 threads, 1280 strips can be decoded in parallel. Thus,

resident threads of GeForce GTX 1080 are fully utilized if the size of uncompressed data

is 1280 × 65536 = 80M bytes or larger.

5.3 Experimental results

We have implemented the following four compression methods in the GPU and evaluated

the performance.

ALL Our Adaptive Loss-Less compression presented in this paper

Gompresso LZ77-based [16] compression implemented in the GPU shown in [25]
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CULZSS GPU implementation of LZSS [15] implemented in the GPU [24]

LZW GPU implementation of LZW [10, 27] shown in [36]

For evaluating the performance including the data compression ratio and the running time

for decompression, we have used a data set in Table 5.2. We have used five images and

five text data. Figure 5.5 shows three JIS standard images, Crafts, Flowers, and Graph.

The pixel value of every pixel of Random image is selected independently at random from

[0, 255]. Hence, it is not possible to generate a smaller compressed data than this uncom-

pressed Random image. Every pixel of Black image is 0 and so the compression ratio is

the minimum. Thus, Random and Black images are extreme for data compression.

Table 5.2: Data set used for evaluating the performance
Data Size (Mbytes) Data contents

Crafts 37.6
Flowers 37.6 Standard RGB images (JIS X 9204-2004)
Graph 37.6 of size 4096 × 3072

Random 37.6 Random image of size 4096 × 3072
Black 37.6 Black image of size 4096 × 3072
wiki 1000 XML dump of a 1G-byte subset of English Wikipedia

matrix 808 Hollywood-2009 sparse matrix in CVS format
linux-2.4.5.tar 114 Source codes of Linux kernel

rctail96 121 Reuters news in XML
w3c2 109 XML documents for w3c

Table 5.3 shows the data compression ratio, the ratio between the uncompressed size and

compressed size. The best compression ratios among the four data compression methods

are underlined. The data compression ratio of ALL is better than the others for almost all

data. For two data, wiki and w3c2, Gompresso is better than ALL, but the difference is

quite small. Since Random image cannot be compressed to smaller data, the compression
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Crafts Flowers

Graphs

Figure 5.5: Three standard images used for experiments

ratio is larger than 1. The overhead of compression of ALL is very small for such data.

Also, for data with low entropy such as Crafts and Black images, ALL is much better than

the others, because run-length encoding works efficiently for long runs in these images.

Table 5.4 shows the running time of decompression. The running time on GeForce GTX

1080 is evaluated for four data compression methods. We also evaluated the running time

of ALL decompression on Intel i7-4790 (3.67GHz) CPU to see the acceleration ratio over
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Table 5.3: Data compression ratio by four compression methods
Data Size (Mbytes) ALL Gompresso CULZSS LZW

Crafts 37.6 0.644 0.781 0.863 0.808
Flowers 37.6 0.434 0.682 0.768 0.657
Graph 37.6 0.0168 0.0480 0.0710 0.0375

Random 37.6 1.0002 1.11 1.20 1.368
Black 37.6 0.00110 0.0370 0.0421 0.00602
wiki 1000 0.534 0.532 0.555 0.540

matrix 808 0.428 0.431 0.454 0.455
linux-2.4.5.tar 114 0.446 0.485 0.573 0.464

rctail96 121 0.396 0.395 0.437 0.489
w3c2 109 0.292 0.326 0.296 0.463

the GPU. Note that, we have implemented a sequential algorithm for ALL using a single

core of Intel i7-4790 CPU and we do not use multicores and hyperthread of the CPU. Since

the comparison of computation powers of GPU and CPU is out of scope of this paper, we

did not implement multithreaded algorithm in the CPU. However, we can say that the CPU

implementation cannot be accelerated more than 8 times by multithreaded implementation

using 8 hyperthreads of Intel i7-4790 CPU. The table shows the running time of ALL using

the CPU and the GPU. It also shows the acceleration ratio of GPU over CPU. From the

table, it achieves high acceleration ratio of 84.0-231. The high acceleration ratio implies

that our implementation of ALL decompression on GPU is highly parallelized and runs

very efficiently. It also shows the ratios of running time between GPU implementation of

ALL and those of the others. Since all ratios are larger than 1, ALL GPU implementation

always runs faster than the others. We also evaluated the ratio of the total size of original

data compressed using each of five types of code showed in table 5.5. Since all the data

blocks in Random image stores uncompressed original data, Random does not have ALL

codes. From this table, text data generate Run-Length codes fewer than image data. This
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Table 5.4: The running time in milliseconds for decompression
Data ALL Gompresso CULZSS LZW

CPU GPU CPU
GPU GPU Gomp

ALL GPU CULZSS
ALL GPU LZW

ALL
Crafts 116.2 1.167 99.5 1.418 1.22 4.113 3.52 2.477 2.12

Flowers 92.73 0.8447 110 2.068 2.45 4.096 4.85 1.255 1.49
Graph 56.21 0.4862 116 4.213 8.67 2.343 4.82 1.531 3.15

Random 87.78 0.3792 231 3.872 10.2 8.918 23.5 3.921 10.3
Black 45.96 0.4605 99.8 5.761 12.5 3.231 7.02 3.729 8.10
wiki 2962 28.05 106 50.41 1.80 218.8 7.80 56.92 2.03

matrix 1932 19.57 98.8 27.12 1.39 87.60 4.48 25.79 1.32
linux-2.4.5.tar 273.6 2.344 117 3.387 1.44 11.29 4.82 3.030 1.29

rctail96 252.1 2.244 112 3.354 1.49 11.43 5.09 3.248 1.45
w3c2 165.8 1.974 84.0 2.803 1.42 10.92 5.53 2.536 1.28

Table 5.5: The ratio of the total size of original data compressed using each of five types of
code

compression Five types of codes
ratio SC SI LI SRL LRL

Crafts 64.40 % 26.3 % 61.0 % 8.51 % 1.59 % 2.65 %
Flowers 43.50 % 6.96 % 89.1 % 0.44 % 1.44 % 2.03 %
Graph 1.68 % 1.09 % 1.61 % 91.10 % 0.102 % 6.05 %

Random 100.02 % 0 % 0 % 0 % 0 % 0 %
Black 0.11 % 0 % 0 % 100 % 0 % 0 %
wiki 53.40 % 12.1 % 81.4 % 5.48 % 1.00 % 0.0801 %

matrix 42.80 % 5.23 % 94.0 % 0.171 % 0.562 % 0.0431 %
linux-2.4.5.tar 44.60 % 14.7 % 61.6 % 21.6 % 1.21 % 0.940 %

rctail96 39.60 % 14.1 % 60.2 % 25.1 % 0.66 % 0.0202 %
w3c2 29.20 % 9.86 % 60.6 % 28.9 % 0.523 % 0.112 %

results imply that SRL and LRL codes have a negligible effect on the compressed ratio, but

may generate divergences when decompression on the GPU and affect the running time of

decompression adversely.

We have evaluated the SSD-GPU loading time for three possible scenarios (Figure 4.6)

as follows:

Scenario A: Uncompressed data in the SSD is transferred to the global memory of the

GPU through the CPU.
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Scenario B ALL-compressed data is transferred to the CPU, it is decompressed using the

CPU, and then the resulting decompressed data is copied to the global memory of

the GPU.

Scenario C ALL-compressed data is transferred to the GPU, and decompression is per-

formed by the GPU.

Table 5.6 shows the SSD-GPU loading time which is the time necessary to load uncom-

pressed data in the global memory of the GPU from the SSD. The best total time of the three

scenarios for each data is underlined. Since all images have the same size, the SSD-GPU

loading times for Scenario A is proportional to the uncompressed data size. In Scenario B,

the time for CPU decompression dominates data transfer time. Hence, it makes no sense to

use CPU decompression to load data in the GPU. The total time of Scenario C is smaller

than that of Scenario A except Random image, in which the compressed data is larger than

the uncompressed data. However, the difference of the total time is very small, because

such data can be decompressed on the GPU very efficiently. Hence, we can say that Sce-

nario C should be selected for loading data in the GPU regardless of data. In particular, we

should use GPU decompression to load data stored in the SSD, even if the storage capacity

is so large that all uncompressed data can be stored.
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Table 5.6: The SSD-GPU loading time in milliseconds using ALL decompression for three
scenarios

Crafts FlowersGraph Rand. Black wiki matrix linux rctail96w3c2
Size (MB) 37.6 37.6 37.6 37.6 37.6 1000 808 114 121 109
Scenario A
SSD→CPU 19.15 19.15 19.13 19.15 19.16 432.0 411.2 57.95 61.09 55.25
CPU→GPU 11.51 11.52 11.52 11.53 11.52 259.8 247.4 34.91 36.28 33.28

Total 30.66 30.67 30.65 30.68 30.68 691.8 658.6 92.86 97.38 88.53
Scenario B
SSD→CPU 12.33 8.296 0.3210 19.14 0.02082 230.4 175.9 25.84 24.20 16.14

CPU decomp. 116.2 92.73 56.21 87.78 45.96 2962 1932 273.6 252.1 165.8
CPU→GPU 11.52 11.52 11.51 11.52 11.51 259.6 247.6 34.92 36.79 33.27

Total 140.1 112.5 68.04 118.4 57.49 3452 2356 334.3 313.1 215.2
Scenario C
SSD→CPU 12.32 8.305 0.3230 19.16 0.02080 230.7 176.2 25.86 24.23 16.16
CPU→GPU 7.402 5.001 0.1940 11.52 0.01320 138.7 106.0 15.57 14.58 9.712

GPU decomp. 1.168 0.8447 0.4862 0.3792 0.4605 28.05 19.57 2.344 2.243 1.974
Total 20.88 14.15 1.003 31.06 0.4945 397.5 301.6 43.77 41.05 27.85
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Chapter 6

Conclusion

In this dissertation, we have presented efficient GPU implementations of parallel LZW de-

compression algorithm and a new data compression method for decompression performed

very efficiently on the GPU.

In Chapter 4, we have presented a work-optimal parallel LZW decompression algorithm

on the CREW-PRAM and implemented in the GPU. The experimental results show that, it

achieves a speedup factor up to 43.6. Also, our parallel LZW decompression in the GPU

can minimize the SSD-GPU data loading time, when images stored in the SSD must be

loaded in the global memory of the GPU.

In Chapter 5, we have presented a new data compression method called ALL (Adaptive

Loss-Less) compression. Although the compression ratio is comparable, the ALL decom-

pression on the GPU is much faster than previously published Gompresso, CULZSS and

LZW decompression. We also provided the SSD-GPU loading time using ALL decompres-

sion. The experimental results show that the scenario, which transfers ALL-compressed

data stored in the SSD to the GPU through a host and decompresses it in the GPU, is

enough fast for practical use.
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