

博 士 論 文

（Doctoral Thesis）

Research on Efficient Vision-Based

Hardware Architecture for Feature

Representation and Object Detection

特徴表現及び物体検出のための効率

的なビジョンベースのハードウェア

アーキテクチャに関する研究

駱 愛文

(Aiwen Luo)

広島大学大学院先端物質科学研究科
Graduate School of Advanced Sciences of Matter

Hiroshima University

2018 年 3 月

（March 2018）

目 次

（Table of Contents）

1. 主論文（Main Thesis）

Research on Efficient Vision-Based Hardware Architecture for Feature

Representation and Object Detection

 (特徴表現及び物体検出のための効率的なビジョンベースのハードウ

ェアアーキテクチャに関する研究)

 駱 愛文（Aiwen Luo）

2. 公表論文（Articles）

(1) Low-power Coprocessor for Haar-like Feature Extraction with Pixel-based

Pipelined Architecture

Aiwen Luo, Fengwei An, Yuki Fujita, Xiangyu Zhang, Lei Chen and Hans

Jürgen Mattausch

Japanese Journal of Applied Physics, vol.56, no.4S, pp.04CF06:1-9, 2017.

(2) Resource-Efficient Object Recognition Coprocessor with Parallel Processing

of Multiple Scan Windows in 65 nm CMOS

Aiwen Luo, Fengwei An, Xiangyu Zhang, Lei Chen, Hans Jürgen Mattausch

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26,

no. 3, pp. 431-444, March 2018, DOI: 10.1109/TVLSI.2017.2774813.

(3) Flexible Feature-space-construction Architecture and its VLSI Implementation

for Multi-scale Object Detection

Aiwen Luo, Fengwei An, Xiangyu Zhang, Lei Chen, Zunkai Huang and Hans

Jürgen Mattausch

Japanese Journal of Applied Physics, vol.57, no.4S, pp.04FF04:1-8, 2018.

3. 参考論文（Thesis Supplements）

(1) Real-Time Haar-like Feature Extraction Coprocessor with Pixel-Based

Pipelined Hardware Architecture for Flexible Low-Power Object Detection and

Recognition

Aiwen Luo, Fengwei An, Yuki Fujita, Xiangyu Zhang, Lei Chen, Hans Jürgen

Mattausch

Extended Abstracts of the International Conference on Solid State Devices and

Materials, Tsukuba, 2016, pp.457-458.

(2) Reconfigurable Block-based Normalization Circuit for On-chip Object

Detection

Aiwen Luo, Fengwei An, Xiangyu Zhang, Lei Chen and Hans Jürgen Mattausch

Extended Abstracts of the International Conference on Solid State Devices and

Materials, Sendai, 2017, pp.819-820.

(3) A Hardware Architecture for Cell-based Feature-Extraction and Classification

Using Dual-Feature Space

Fengwei An, Xiangyu Zhang, Aiwen Luo, Lei Chen, Hans Jürgen Mattausch

IEEE Transactions on Circuits and Systems for Video Technology, vol.PP,

no.99, pp.1-13, 2017.

(4) A Hardware-oriented Histogram of Oriented Gradients Algorithm and its VLSI

Implementation

Xiangyu Zhang, Fengwei An, Ikki Nakashima, Aiwen Luo, Lei Chen, Idaku

Ishii and Hans Jürgen Mattausch

Japanese Journal of Applied Physics, vol.56, no.4S, pp.04CF01:1-7, 2017.

(5) Pixel-based Pipeline Hardware Architecture for High-performance Haar-like

Feature Extraction

Yuki Fujita, Fengwei An, Aiwen Luo, Xiangyu Zhang, Lei Chen, Hans Jürgen

Mattausch

IEEE Asia Pacific Conference on Circuits and Systems, Korea, 2016, pp.611-

612.

主 論 文

（Main Thesis）

Contents

Contents

Abstract ... 1

List of Figures ... 4

List of Tables .. 9

Chapter 1 Introduction .. 10

1.1 Background ... 10

1.1.1 Machine learning and pattern recognition ... 10

1.1.2 Machine vision and feature representation .. 13

1.1.3 Object detection and classification .. 15

1.2 Motivation and purpose .. 16

1.2.1 Motivation for mobile applications ... 16

1.2.2 Related researches and existing problems ... 18

1.2.3 Purpose of this research ... 20

1.3 Dissertation outline ... 22

References .. 23

Chapter 2 Local Cell-Based Feature Extraction ... 27

2.1 Introduction .. 27

2.2 Local cell-feature component extraction algorithm .. 29

2.3 Hardware implementation of cell-based simplified-SURF feature extraction 33

2.3.1 Overall feature extraction architecture for local cells 33

2.3.2 Pixel-based pipelined circuitry for sub-cell responses 37

2.3.3 Accumulation for local cell-based feature-vector construction 43

2.3.4 Flexible regulation for unlimited image height ... 44

2.4 Experimental VLSI-implementation result and discussion 47

2.5 Conclusion .. 48

References .. 50

Chapter 3 Sliding-Window Approach .. 51

3.1 Introduction .. 51

3.2 Hardware implementation in terms of cell-based feature components 52

3.2.1 Regular rule within one window ... 53

3.2.2 Regular rule within an image .. 57

3.2.3 Implementation of parallel window-feature-vector construction 60

3.3 Hardware implementation with block-based normalized feature components 66

3.4 Experimental results and discussion ... 68

3.4.1 Cell-based feature-vector construction .. 68

Contents

3.4.2 Block-based feature-vector construction ... 70

3.5 Conclusion .. 71

References .. 72

Chapter 4 Feature-Vector Optimization ... 73

4.1 Introduction .. 73

4.2 Hardware implementation for L1-norm ... 74

4.2.1 Block-based normalization algorithm for feature vectors 74

4.2.2 Flexible cell size for multi-scale image pyramid .. 77

4.2.3 Hardware-oriented architecture for block-based L1-norm 79

4.3 Dimensionality reduction of feature vectors based on PLS regression scheme ... 84

4.4 Experimental results and discussion ... 86

4.4.1 VLSI implementation results for L1-norm .. 86

4.4.2 FPGA implementation results of PLS regression .. 88

4.5 Conclusion .. 90

References .. 91

Chapter 5 Implementation of Different Detection Frameworks 93

5.1 Introduction .. 93

5.2 Nearest neighbor search (NNS) combined with simplified-SURF descriptor 94

5.2.1 Hardware architecture for NNS classifier ... 94

5.2.2 ASIC implementation in 65nm CMOS ... 100

5.2.3 A accuracy estimation for detection of different objects 105

5.3 Support vector machine classifier carrying the HOG descriptor 109

5.3.1 Hardware architecture for SVM classifier ... 109

5.3.2 ASIC implementation in 65nm CMOS ... 114

5.3.3 Applications for pedestrian detection .. 115

5.4 Conclusion .. 116

References .. 117

Chapter 6 Summary and Future Research .. 120

6.1 Summary ... 120

6.2 Future work .. 121

Acknowledgement .. 122

List of Publications, Awards and Patents ... 123

公表論文 .. 125

参 考 論 文 .. 126

Abstract

1

Abstract

Machine learning (ML) is described by Arthur Samuel as the field of study that gives

computers the ability to learn without being explicitly programmed. The methods for

solving the ML problem can be classified into two groups, i.e. supervised learning and

unsupervised learning. Pattern recognition is a branch of ML that focuses on the

recognition of patterns and regularities in data. Pattern recognition systems can be trained

from labeled training data in supervised learning, but also can be used to discover

previously unknown patterns in unsupervised learning when no labeled data are available.

Feature representation is becoming an important prerequisite for building ML models

to achieve high detection performance, in particular in vision-based applications. A

wealth of feature-extraction techniques are being presented in this research field. To meet

the requirements of embedded systems with limited resources, this thesis developed a

simplified scale-invariant speeded up robust features (SURF) approach, which can

decrease object-matching complexity and enhance computational performance

significantly, to extract the feature vectors of sliding windows in the image. The further

investigated histogram of oriented gradient (HOG) approach uses a widely accepted

feature for object detection, which attains high accuracy against changes of illumination

of variously textured objects.

Comparing to hardware solutions, the software technologies for feature extraction are

more affected by computationally demanding algorithms so that the power dissipation of

software technologies is burdensome for mobile applications and the processing speed

becomes a bottleneck in case of real-time (>30 frames/s) object detection. Consequently,

the achievable advantages of faster processing speed and lower power consumption lead

to application-specific integrated circuit (ASIC) solutions.

Therefore, a resource-efficient coprocessor for a simplified SURF descriptor,

employing Haar-like wavelets as feature vectors (FVs), is developed and a prototype is

fabricated in 180nm CMOS technology in this research. A pipelined hardware

architecture with low computational budget, that directly uses the serially-inputted pixel

data without pre-storage, is employed for the local image cells. With a novel multiplexing

process of the cell-based partial feature vectors, developed in this research work, the

multidimensional feature vectors of multiple scan windows can be extracted

simultaneously. The high achievable frame rate (up to 325 frames/s) is more than

sufficient for real-time processing, while only 12 k bytes of on-chip memory space is

consumed for feature extraction with the developed simplified SURF descriptor in this

Abstract

2

research. The die area of the prototype is reduced by more than 98.25%, when comparing

to previous works. The normalized power consumption is 8.723 mW, using constant field

scaling to 65 nm CMOS, which is 96.04% less power dissipation than reported in previous

works and is thus much more suitable for mobile applications with limited battery

capacity.

After their completion, the cell-based local FVs are sequentially outputted for the

parallelized window-level multidimensional feature representation, and for subsequent

direct object matching without normalization. In this research, the concept of “regular

rule of reusing times” (RRRT) of each cell is proposed so that the multiple window-based

descriptor vectors can be constructed in parallel with high speed through access to look-

up tables.

The first object detection framework, which combines the pipelined feature extraction,

the cell-based sliding window algorithm and the nearest neighbor search (NNS) classifier,

is verified in 65 nm CMOS technology. During the entire object detection procedure, the

prototype coprocessor can achieve 34.6 fps VGA (640×480) frame rate when working at

200 MHz frequency. Furthermore, the requirements of 1.26 mm2 die area and 26 k bytes

on-chip memory result in 31.49 mW power dissipation at 1.0V supply voltage. The

coprocessor can substantially reduce computation cost without significant degradation of

classification accuracy. The achieved maximal detection accuracy for front-car images is

98.78% and 93.90% for pedestrian detection.

Since the object detection is greatly hampered by a large amount of high-dimensional

FVs in the former-proposed feature-construction scheme, I further employ partial least

squares (PLS) analysis to project the FVs data onto a much lower dimensional subspace,

to reduce the computational amount and to save significantly in resource consumption.

Up to 242.48 MHz frequency of the developed hardware architecture is verified for

pedestrian detection operated on the Altera Stratix-IV field-programmable gate array

(FPGA) platform.

Furthermore, a block-based sliding window algorithm with normalized feature

vectors by the L1-norm scheme is developed for the second object detection framework

that combines the HOG descriptor and the support vector machine (SVM) classifier. The

improved detection framework aims to increase the pedestrian detection accuracy and

robustness. Since fixed application-field parameters will normally make a hardware

architecture unsuitable for practical scenarios, flexible regulation of image size, cell size

(CS), etc., is desired in the second object detection framework to allow usage in a variety

of mobile applications with the usually occurring changes under various circumstances.

Variable image resolutions up to 1024 (width) × ∞ (height) pixels can be handled with

Abstract

3

the same hardware architecture without any modification due to the reported research

results. Five CS levels, i.e., 2×2, 4×4, 8×8, 16×16, 32×32 pixels with an unlimited image

height, applied in the on-chip FV-extraction circuit, are implemented in another 65nm

CMOS prototype ASIC. Up to 125 fps of XGA (1024×768) images can be handled for

object detection by the developed coprocessor. 41 k bytes on-chip memory and 2.86 mm2

die area are consumed in this scheme. The on-chip memory in this scheme seems to

increase when compared to the first framework with the NNS classifier, but this increase

is only due to the higher dimensionality of the HOG descriptor (3780 dimensions) in

comparison to the SURF descriptor (1680 dimensions). Moreover, the on-chip memory

requirement increases linearly with the reference number for the NNS classifier, whereas

the coefficients number of the SVM classifier is fixed for a given window size. Thus on-

chip storage and area requirements for the second framework can be smaller than for the

first framework when many references are used in the NNS classifier. The power

consumption is 21.3 mW when the coprocessor operates at 125 MHz frequency and 1.0

V supply voltage.

In conclusion, this research developed a cell-based feature extraction architecture and

two object detection frameworks combined with NNS and SVM, respectively. Both the

NNS and the SVM classifiers are applied for verifying the high detection performance of

the proposed hardware architectures, which are sufficient to meet the requirements of

mobile applications.

List of Figures

4

List of Figures

Fig.1. 1 Demonstration of supervised learning and unsupervised learning.................... 11

Fig.1. 2 Demonstration of regression and classification in supervised learning. 11

Fig.1. 3 Schematic of the main procedure of general pattern recognition. 12

Fig.1. 4 Objects to be detected and the corresponding feature representation with specific

descriptors ... 14

Fig.1. 5 General applied scenario for detecting different objects including tree, pedestrian

and building. ... 15

Fig.1. 6 The general flowchart for an object detection system....................................... 16

Fig.1. 7 An applied scenario for ADAS to deliver collision warnings. 17

Fig.1. 8 An applied scenario for navigating and controlling a UAV. 17

Fig.1. 9 An illustration of mobile face recognition. ... 18

Fig.1. 10 Explanation of integral-image-based pixel-value summation in an arbitrary

rectangle within the image. The integral image starts from the origin point (0, 0) of

coordinates. Pixel summation of rectangle D can be computed by the four cumulative

sums corresponding to its four corners, i.e., at the locations (x1,y1) , (x2,y1) , (x1,y2) and

(x2,y2). ... 20

Fig.2. 1 An illustration of selection results of the original SURF algorithm with different

numbers (2, 5, 10, respectively) of interest points (IP). ... 27

Fig.2. 2 Four types of Haar wavelet representations where black areas have opposite

weights to white areas... 28

Fig.2. 3 Example of a raw image to be processed, one selected region and its

corresponding grayscale-intensity values at each pixel. ... 29

Fig.2. 4 Selected edge Haar-like feature extraction operated in a 4×4-pixel sub-cell. ... 30

Fig.2. 5 Horizontal sub-cell response employed Haar-like wavelets. 30

Fig.2. 6 Vertical sub-cell response employed Haar-like wavelets. 31

Fig.2. 7 Relationships between the processing units (i.e., pixel, sub-cell and cell) in the

proposed cell-based feature extraction algorithm. .. 32

Fig.2. 8 Pixel scan manner of data supply form the image sensor and image-region

division for feature extraction... 33

Fig.2. 9 Main generation-process flow of the four-dimensional feature components for

the first cell cell1. .. 34

Fig.2. 10 Main generation-process flow of the four-dimensional feature components for

the second cell cell2. ... 35

List of Figures

5

Fig.2. 11 Integrated hardware architecture for extracting the local four-dimensional cell-

feature vectors vcell={∑Dx, ∑Dy, ∑|Dx|, ∑|Dy|} with the simplified-SURF descriptor.

 .. 36

Fig.2. 12 Proposed circuitry with independent left- and right-part summation for

generating horizontal sub-cell responses Dx according to Eq.2.2. 38

Fig.2. 13 Timing analysis with part of data flow for the first sub-cell using independent

left- and right-part summation, to generate horizontal sub-cell responses Dx................ 39

Fig.2. 14 Alternatively proposed circuitry with the arithmetical transition of addition and

subtraction for generating horizontal sub-cell responses Dx according to Eq.2.2. 40

Fig.2. 15 Timing analysis with part of data flow for the first sub-cell using the arithmetical

transition of addition and subtraction to generate horizontal sub-cell responses Dx. 40

Fig.2. 16 Proposed circuitry with the arithmetical transition of addition and subtraction

for generating vertical sub-cell responses Dy according to Eq.2.3. 41

Fig.2. 17 Timing analysis with part of data flow for the first sub-cell using the arithmetical

transition of addition and subtraction to generate vertical sub-cell responses Dy[1]. 42

Fig.2. 18 Proposed circuitry for accumulating the horizontal Dx responses in one cell. 43

Fig.2. 19 Part of the data flow for accumulating the sub-cell responses Dx inside one cell.

 .. 44

Fig.2. 20 Implemented circuitry for processing control with unlimited image height to

generate cell-based feature vectors. .. 45

Fig.2. 21 Alternatively implemented circuitry for processing control with unlimited image

height to generate cell-based feature vectors. ... 46

Fig.2. 22 Microphotograph and parameters of the fabricated chip in 180 nm CMOS

technology for cell-based Simplified-SURF feature extraction with 1.76 mm2 (1.82

mm×0.97 mm) core area. .. 47

Fig.2. 23 Power consumption of the fabricated coprocessor at different working

frequencies and different supply voltages. ... 47

Fig.3. 1 Movement rule of detection windows and blocks. .. 52

Fig.3. 2 Cell locations in one 64×128-pixel window and its covering times by overlapping

blocks. Three kinds of cells, located at corner, edge, and interior of the window are reused

for window-based FV construction in 1, 2 or 4 overlapping blocks, respectively. 54

Fig.3. 3 Construction of a simplified SURF descriptor from local Haar-like feature vectors.

 .. 55

Fig.3. 4 Dimensionality determination of Haar-like SW-feature vectors for different SW-

sizes, constructed from the local four-dimensional cell-feature vectors vcell, which serve

as the basic components for a holistic Haar-like SW-feature vector of the proposed

List of Figures

6

simplified-SURF descriptor. ... 56

Fig.3. 5 Covering times of each cell (block) by 8×8-cell SWs shifted in block units

according to a raster-sliding scheme. ... 58

Fig.3. 6 Corresponding positions of the current cell in each related 8×8-cell SW during

parallel FV construction. .. 59

Fig.3. 7 Corresponding accomplishment ratio of the current cell in each related 8×8-cell

SW during parallel FV construction. .. 60

Fig.3. 8 Flowchart for deciding the index i(n) and the IWA (initial-window address) Wi(n).

 .. 61

Fig.3. 9 Distribution of window order in an input image with w × h pixels, operating with

8×8-pixel cells and 2×2-cell blocks. ... 62

Fig.3. 10 Design flow for parallel window construction basing on the RRRT and the Index

of all OSWs. ... 63

Fig.3. 11 Position of cell C[8,3] in a VGA image and its covering times (i.e. ‘8’) by all

OSWs when a SW-size of 8×16-cells is used. ... 64

Fig.3. 12 Architecture for generating the window address (WA) and the RRRT value of

the current cell C[c,r] for each of the SWs within the image, that contains C[c,r]. 65

Fig.3. 13 Overall hardware architecture for window-based FV construction with block-

based normalization. ... 67

Fig.3. 14 True positive rate and true negative rate for car recognition with different SW

sizes by the proposed simplified-SURF descriptor. ... 69

Fig.3. 15 Pedestrian-detection accuracy as a function of the cluster number, applying a

framework composed by the cell-based simplified-SURF descriptor and the nearest

neighbor search (NNS) classifier. ... 70

Fig.3. 16 Pedestrian detection verification in a software-implementation of the proposed

architecture. .. 70

Fig.4. 1 Parallel feature vector normalization scheme of overlapping blocks with cell-

based feature components. Each cell will be normalized by its neighboring cells within

the same block. ... 76

Fig.4. 2 Generation of a feature pyramid by (a) generating image pyramid first then

calculating fixed-size cell FVs, or (b) calculating FVs of different cell sizes corresponding

to each pyramid level. ... 78

Fig.4. 3 Hardware architecture of the reconfigurable block-based normalization circuit

(BBNC) for pipelined L1-norm processing with cell-based feature vectors. 79

Fig.4. 4 Corresponding block addresses (BAs) for all cells according to their positions.

 .. 82

List of Figures

7

Fig.4. 5 Structure of the ‘block address decoder’ (see Fig.4.3) for coordinating the

reconfigurable normalization according to cell position and image size, customized by

the configuration parameters CNH (up to 128) and CNV (unlimited). 83

Fig.4. 6 Data flow and developed architecture for transforming the dimensionality of

Haar-like FVs from 1680 dimensions to k dimensions. ... 85

Fig.4. 7 Concurrent PLS regression analysis for invoking correct weight vectors in

parallel for multiple SWs related to the current cell. .. 86

Fig.4. 8 Micrograph of the prototype chip in 65 nm CMOS technology and the device

performance for feature vector normalization. ... 87

Fig.4. 9 Layout of the developed circuit for L1-normalization. 88

Fig.4. 10 Proposed object detection system based on FPGA and the applied Altera®

Stratic IV FPGA development board. .. 89

Fig.5. 1 A general flowchart of object detection in supervised learning techniques. 93

Fig.5. 2 Object match in an image according to minimum distance value..................... 94

Fig.5. 3 The flowchart of the object detection system employing the NNS classifier. .. 95

Fig.5. 4 Process flow for the proposed object recognition based on the NNS classifier.97

Fig.5. 5 Cell-based NNS architecture for parallel minimal SED search among multiple

references. ... 98

Fig.5. 6 Diagram of the proposed simplified-SURF descriptor application for multiple

image layers with corresponding Haar-like wavelets. .. 99

Fig.5. 7 Chip microphotograph of the FV-based recognition coprocessor, fabricated in 65

nm CMOS technology within 1.26 mm2 (1.4 mm × 0.9 mm) core area. 100

Fig.5. 8 Measurement system with MU300-EM platform for the designated chip. 102

Fig.5. 9 Power consumption at different supply voltages of the designated 65 nm chip

with NNS classifier and simplified SURF feature descriptor, operating at 200MHz and

1.0V core voltage. ... 102

Fig.5. 10 Frame rate and energy efficiency with different image resolutions operating at

200MHz and 1.0 V core voltage. .. 103

Fig.5. 11 Positive examples for object detection. The front car examples (a) are collected

from the surroundings of Hiroshima University (HU), the lateral car examples (b) are

selected from the car detection dataset UIUC, while the pedestrian examples (c) are

selected from INRIA dataset. ... 106

Fig.5. 12 Negative examples selected from INRIA dataset for different object detections.

 .. 106

Fig.5. 13 ROC curve that indicates the detection accuracy of the fabricated coprocessor

for the case of the lateral car detection application. ... 107

List of Figures

8

Fig.5. 14 Fixed-point software verification of recognition TPR (a), TNR (b) and

Precision-Recall (c) performance of the proposed simplified-SURF descriptor compared

to the original SURF descriptor [28] with feature-based NNS classification. 108

Fig.5. 15 Recognition accuracies of the proposed simplified-SURF FV-based NNS

classification with different SW-sizes for car and pedestrian recognition applications.

 .. 109

Fig.5. 16 The flowchart of object detection which combines with the HOG feature

descriptor and the SVM classifier. ... 110

Fig.5. 17 The linear SVM model employed in this research. 110

Fig.5. 18 Optimal separating hyperplane in the linear SVM approach. 112

Fig.5. 19 The proposed hardware circuit for calculating the linear SVM value, based on

trained weight vector w and constant value b... 113

Fig.5. 20 Micrograph of the prototype chip for object recognition in 65 nm CMOS

technology, which applies HOG descriptor, L1-norm scheme, and SVM classifier.... 114

Fig.5. 21 Pedestrian-detection accuracy with cell-based HOG feature descriptor and a pre-

trained SVM classifier, based on 5656 SWs of 64×128-pixel size. 116

List of Tables

9

List of Tables

TABLE I. I Performance of Recent Hardware Solutions for Feature-Based Object

Detection ... 19

TABLE II. I Necessary Bit Width of Counters and Memory Requirements as a function

of Image Width ... 46

TABLE II. II Performance of the Proposed Hardware Architecture for the Simplified-

SURF Descriptor when applied to Haar-like Feature Vectors 48

TABLE III. I Window numbers for cell-row index c in horizontal direction of w-width

images ... 62

TABLE III. II Window numbers for cell-column index r in vertical direction of h-height

images ... 62

TABLE IV. I Physical Resource Utilization of the Proposed Circuit for Object

Detection with PLS Analysis .. 89

TABLE V. I Structure Overview of On-Chip SRAM Components of the Developed

Prototype Coprocessor …………………………………………………………………86

TABLE V. II Comparison Results with Previous Works .. 104

TABLE V. III Performance Comparison Results with Previous Works 115

Chapter 1

10

Chapter 1

Introduction

1.1 Background

1.1.1 Machine learning and pattern recognition

Machine learning (ML) is described by Arthur Lee Samuel in 1959 [1] as the field of

study that gives computers the ability to learn without being explicitly programmed. As

a branch of artificial intelligence (AI), ML automates analytical model building based on

the idea that machines should be able to learn and adapt to experience. The study and

computer modeling of learning processes in their multiple manifestations constitute the

subject matter of ML [2]. ML is a science that is not a new concept [3] but one that has

gained fresh momentum and is resurged with new interest due to great improvements

resulting from the dynamic growth of new computing technologies and from the

discovery of new facts and theories through observation and experimentation in the past

decade. The acquisition of new knowledge makes researchers strive to implant intelligent

capabilities into machines in the computer era. ML has become more popular than ever

because it can analyze bigger, more complex data and deliver faster, more accurate results.

The popular ML produces precise models more quickly and automatically for data mining

and analysis.

The ML problems can be generally classified into two broad groups, i.e., supervised

learning and unsupervised learning. Supervised learning infers a function from labeled

training data that have a certain relationship with the output data [4]. As illustrated in

Fig.1.1(a), what the correct outputs should look like in blue or red color is already known

by the researcher in supervised learning problems. By contrast, unsupervised learning

allows us to deal with problems even when little or nothing is known about the variables,

and to derive a structure by clustering the data based on relationships among the variables

in the data, as illustrated in Fig.1.1(b), with no feedback on the accuracy of prediction

results [5].

Chapter 1

11

Fig.1. 1 Demonstration of supervised learning and unsupervised learning.

One classic approach to unsupervised learning is the k-means clustering, which

partitions a set of data samples automatically into k clusters that are similar or related by

different variables, depending on the nature of the data, the boundary information and

the clustering classes [6, 7]. There is no feedback based on the prediction results with

unsupervised learning, but we can apply it to build structures in a chaotic environment

with mass data.

Regression and classification are two main categories for dealing with supervised

learning problems [8].

Fig.1. 2 Demonstration of regression and classification in supervised learning.

x2

x1
0

x2

x1
0

(a) (b)

Supervised learning Unsupervised learning

x2

x1
0

(a)

Regression f1 (x)
x2

x1
0

(b)

Classification

positive

negative

x2

x1
0

(c)

Regression
x2

x1
0

(d)

Classification

A
B

CD

f2 (x)

Chapter 1

12

Continuous results and tendencies can be predicted by a regression model, while the

discrete outputs instead are obtained on the basis of some given information by a

classification model. For instance, the given input data in Fig.1.2 (a) is being mapped to

the continuous function f1(x). In a classification problem, the given input variables are

used to predict the sorting results into discrete categories, e.g., two discrete categories as

a positive result or negative result, as illustrated in Fig.1.2 (b). More complicated

demonstrations, with high dimensionality of the continuous function f2(x) for regression

and more discrete categories for classification are shown in Fig.1.2 (c) and Fig.1.2 (d),

respectively. Specific examples for regression and classification can be found in various

previous research works [9, 10].

Pattern recognition is a branch of ML that focuses on the recognition of patterns and

regularities in data [11]. The problem of searching for patterns in data is fundamental

and has a long and successful history [12-15]. Pattern recognition systems can be trained

with labeled training data in supervised learning such as object classification, but also

can be used to discover previously unknown patterns when no labeled data are available

in unsupervised learning with e.g. clustering algorithms.

The pattern recognition is concerned with the automatic discovery of regularities in

data through the chosen computer algorithms and applies these regularities to classify

the input image into different categories as illustrated in Fig.1.3.

Fig.1. 3 Schematic of the main procedure of general pattern recognition.

The categories of the specific objects shown in Fig.1.3 are known in advance. Far

better results can be obtained by adopting an ML approach with trained categories in a

specific training set, which is used to tune the parameters of an adaptive model. The

result of running the pattern recognition can be described as a function f(x). The desired

ASIC

Input image

Categories

Output result

Pattern Recognition

Chapter 1

13

form of the function f(x) can be determined during the training phase, also known as the

learning stage, on the basis of the training dataset. The identity of new input images,

comprising a test dataset, can be determined once the model is trained. Taking a new

image x1 as a testing input, an output vector f(x1) can then be generated, encoded in the

same way as the target vectors in supervised learning problems.

In other pattern recognition problems, i.e., unsupervised learning problems, the

training data consists of a set of input vectors x without any corresponding target values.

The goal of such problems is mainly to discover groups of similar examples within the

categories called ‘clusters’, as indicated in Fig. 1.3, or to take density estimation,

determining the distribution of data within the input’s high-dimensional feature space.

1.1.2 Machine vision and feature representation

Pattern recognition based on specific feature vectors is an important methodology for

digital image and video analysis in many machine-vision-based scenarios. Digital images

are a convenient media for describing and storing spatial, temporal, spectral and physical

components of information contained in a variety of domains (e.g. satellite images,

biomedical images) [16]. Representation of image information by specific features is one

of the most important factors that affect object detection performance.

In many past applications of pattern recognition, some form of fixed pre-processing

concentrated on the feature extraction (FE). The objects in digital images scanned by a

sensor are mapped into a multidimensional feature space through a specific feature

representation by a descriptor as illustrated in Fig.1.4.

Generally, the features are applied for representing the reduced sets of values,

extracted from the input data, e.g. the parts of interest in an image for vision-based

applications.

Using such a reduced representation instead of the complete input data (e.g. raw

pixels of image frames) facilitates the subsequent pattern recognition processing. Many

kinds of feature vectors have been applied for complicated scenes that are suitable for

various application fields. Selection of a FE method is probably the most important factor

for achieving high recognition performance in applications.

A considerable amount of research work has been carried out on FE for different

representations. Feature descriptors such as the gradient location-orientation histogram

(GLOH) [17], the shape context [18], the local binary pattern (LBP) [19], and higher-

order local autocorrelation (HLAC) [20] were proposed to provide specific descriptors

of significant image features based on different construction principles.

Chapter 1

14

Fig.1. 4 Objects to be detected and the corresponding feature representation with specific descriptors

Scale-invariant feature transform (SIFT) [21] as one of most popular FE algorithms

has shown great robustness or invariance to changes in image scale, rotation, illumination,

3D camera viewpoint, and noise. However, the SIFT algorithm has high computational

cost and memory requirement, which prevents it from real-time applications, especially

in the case of implementation by a pure software scheme. The scale-invariant speeded

up robust feature (SURF) [22, 23] approach is regarded as an improved scheme which is

partly inspired by the SIFT and can decrease object-matching complexity and enhance

computational performance significantly, so that it is more suitable for embedded

systems with limited resources.

The original SURF consists of two distinct stages: detection and description. The

main work of the detection stage is to search for essential interest points in scaled image-

frame pyramids. In contrast, the description stage of SURF aims at collecting Haar-filter

responses around each interest point in chosen orientations, which constitutes the

components and determines the dimension of the feature vector. The Haar sequence was

proposed by Alfréd Haar [24] in 1910, and has been widely used and highly developed

until now. The advantage of the Haar-wavelet responses, which are calculated for the

SURF descriptor, is that they enable higher processing speed and better repeatability than

other descriptors, thus decreasing object-matching complexity and enhancing

computational performance. Histogram of oriented gradients (HOG) [25] is also a

popular and widely accepted feature descriptor for pattern recognition and attains high

accuracy against changes of illumination of variously textured objects. Feature extraction

and construction is becoming an essential prerequisite for building object-classification

Chapter 1

15

models to achieve high detection performance.

1.1.3 Object detection and classification

In the computer-vision-based solutions, object detection is the technology that is

related to image processing. Object detection is the process of sorting the instances of

semantic objects into classes such as vehicles, pedestrians, faces, trees and buildings as

illustrated in Fig. 1.5. Specifically, object detection is most widely used in the research

domains of face detection and pedestrian detection in the current decade.

Fig.1. 5 General applied scenario for detecting different objects including tree, pedestrian and building.

Generally, there are two main steps in an object-detection system as illustrated in

Fig.1.6: 1) Extracting a number of features, and 2) Training a classifier. In the feature

extraction phase, different feature extraction methods, which have been introduced in

section 1.1.2, are designed for different representations of the characters in images. In

the second phase of training a classifier from a given dataset, including both positive

image samples (responding to the target object) and negative image samples, the aim is

to predict the existence of objects within input testing images, and further to detect the

location of the objects.

Target object

Chapter 1

16

Fig.1. 6 The general flowchart for an object detection system.

A classifier is an algorithm that takes a set of features that characterize objects and

uses them to determine the type (or class) of each object. For each object, the features

measure a number of properties (e.g., brightness, size, shape, texture, etc.) and the

classifier then uses these properties to determine the class that each object belongs to.

Classifiers can give an estimate for the probability that an object belongs to each of the

candidate classes. For supervised classification, a set of known objects called the training

set are used to determine into which classes an object may be categorized. The positive

samples and negative samples for the two known classes are used for training by the

classification programs to learn how to classify objects. There are also unsupervised

classification methods in which the induction engine works directly on the input images,

and there are neither training sets nor pre-determined classes.

A generic image classification approach in pattern recognition collates heterogeneous

training images to certain categories and finds the one category of objects that is the most

likely to be present in an image given for evaluation.

Object detection can apply appropriate classifiers, such as a support vector machine

(SVM), a nearest-neighbor (NN) distance estimation or a neural network as a searching

engine to find out the target object with favorable properties in the evaluated visual data.

Artificial vision systems can be powerful tools for automatic inspection of e.g. fruits or

vegetables, as illustrated in [30]. This thesis will also employ the NN search (NNS) and

the SVM to evaluate the performance of the developed circuits in chapter 5.

1.2 Motivation and purpose

1.2.1 Motivation for mobile applications

These days, many video surveillance systems are applied in public areas such as

roads, airports, supermarkets, train stations, and subways, etc. Image and video capture

Chapter 1

17

programs are widespread in daily life and also intended for military and other purposes.

Various application fields, such as advanced driver assistance systems (ADAS) [26],

wearable devices [27], emotion recognition [28] or unmanned aerial vehicles (UAV) [29]

also extract feature vectors for machine vision in complicated scenarios.

The basic function of ADAS is to detect specific target objects, do classification, alert

the driver of hazardous road conditions, and slow or stop the vehicle in some cases as

shown in Fig.1.7.

Fig.1. 7 An applied scenario for ADAS to deliver collision warnings.

The ADAS is great for fast-moving applications like blind spot monitoring, lane

change assistance, and forward collision warnings. Thus ADAS is experiencing rapid

adoption and growth in automotive systems enabled by advancements in the object

detection and classification technology.

The movement of the current UAV system relies on global positioning system (GPS)

for navigation combining low-cost inertial sensors, sonar, and computer vision

techniques, as illustrated in Fig. 1.8. Navigation and control are two key technologies for

an unmanned aerial vehicle (UAV). The GPS navigation becomes invalid in indoor

applications or when the UAV is hidden by shelters like the trees. Therefore, the

embedded guidance system on the UAV plays a more important role with the

advancements in the object detection and classification technology. The UAV control

shares qualities with typical robotic motion planning problems.

Fig.1. 8 An applied scenario for navigating and controlling a UAV.

Chapter 1

18

Smartphones are widely used in the last decade and it can be regarded as the most

representative device of mobile applications. More and more intelligent functions are

integrated in a mobile device which is far more than its name “phone”. Specifically, in

order to recognize objects from images recorded by the camera of a mobile device, feature

extraction and object detection are applied for mobile applications such as human face

recognition as illustrated in Fig.1.9.

Fig.1. 9 An illustration of mobile face recognition.

For mobile applications of object detection and recognition, there are many factors

that should be considered.

In this thesis, the motivation is to develop a hardware-oriented object detection system

for mobile applications such ADAS, UAV or face detection as discussed above. As the

onboard battery of the mobile device is the critical factor that restricts the utilization in

practice, low power dissipation is the most desired performance to provide enough battery

storage to run object detection on the basis of sufficient detection accuracy. Further, the

resource requirements determine the power consumption and the device cost. Thus

reduction of computational complexity is necessary for mobile applications in hardware

designs. Additionally, sufficient processing speed (> 30 fps) is essential for practical

significance. More functions are desired for mobile applications.

1.2.2 Related researches and existing problems

Many related feature-based object-detection solutions by software, hardware or

combined hardware-software implementations have been reported in many experiments

and applications while maintaining high enough accuracy. The machine or computer

vision applications tend to deal with high image resolutions and high frame rates in recent

years.

On one hand, software libraries like OpenCV [31], OpenCL [32] as well as OpenGL

[33], are supported by multi-core processing systems, CPUs or graphics processing units

Chapter 1

19

(GPUs), so that the conventional vision-based algorithms become feasible for various

feature descriptors, enabling rapid prototyping and overall shorter development periods.

However, the dependence on high-performance hardware devices or platforms makes

these software-library solutions unsuitable for largely outdoor mobile-application

scenarios in spite of the support of rapid prototyping and shorter development periods.

On the other hand, to support the substantial computational amount for processing

multiple frames per second in real time, many hardware implementations for feature-

based object recognition have been proposed in the current decade. For example, a SIFT

detector, using a heterogeneous methodology to partition the workload between CPU and

GPU for embedded systems [34], suffers from similar power consumption (3383 mW)

as the CPU-only scheme (3186 mW), and from the relatively long execution time of 148

ms per image frame even with a small image size of 224 pixels × 224 pixels. Another

CPU-GPU hybrid computing method [35] for feature extraction was introduced with

significant improvements in processing speed. However, this solution is still energy-

hungry, while working at an extremely high frequency, and speed-limited, when

compared to an application-specific integrated circuit (ASIC) [36, 37].

Many hardware implementations based on field-programmable gate array (FPGA) or

ASIC solutions are also proposed in the current decade. A programmable FPGA-based

solution [38] is flexible for different functional designs with relatively short developing

period and high processing speed.

TABLE I. I

Performance of Recent Hardware Solutions for Feature-Based Object Detection

 WSPS [38] TCSVT [39] JSSC [40] CICC [41]

Technology FPGA 65nm CMOS 65nm CMOS 65nm CMOS

Feature type HOG MSEM SIFT SURF

Frequency(MHz) 404 20 200 200

Resolution (pixels) 1920×1080 100×100 1920×1080 1920×1080

Frame rate(fps) 209 40 30 57

Memory usage(kB) 108 14.625 40 400

Peak Power(mW) 3600 9 198.4 220

However, the power consumption for a FPGA-based solution is extremely large

when compared to ASIC solutions [39-41] as shown in Table I.I. Moreover, the machine

or computer vision applications tend to require high resolutions and high frame rates,

which leads to more energy computation. As opposed to the rapid growth of computer

vision, the development of battery-storage capacity is meeting a significant bottleneck,

Chapter 1

20

which causes great limitations for energy-critical mobile applications. Moreover, the

large data-storage requirements and the limited memory bandwidth for image processing

also cause difficulties for high-performance implementations of object detection in

mobile terminals. The hardware computational cost is mainly depended on the algorithm

for the chosen feature type and the intrinsic characteristic of the hardware architecture or

platform. In other words, the feature type and hardware architecture are two critical

factors in hardware implementations for object detection.

There is a pretty important concept named integral image which was introduced to

computer graphics by Franklin C. Crow [42] in 1984 and was used for multiple previous

research works. The integral image has become one of the most popular methods applied

in the realization of feature-based object-detection systems because of its convenience

for calculating the pixel-intensity sum for any rectangle area of the image. The

calculation time of the integral image is independent of the rectangle size as illustrated

in Fig. 1.10, so that a remarkable improvements of feature-calculation speed can be

achieved. However, integral images require large memory space for accumulated-sum

storage [41, 43], which is hardly affordable for resource-limited on-chip systems in

mobile embedded applications. Therefore, an alternative scheme is requested for feature

calculation of visual data from the image sensor more efficiently and meeting this

requirement is an import objective in this research.

Fig.1. 10 Explanation of integral-image-based pixel-value summation in an arbitrary rectangle within the

image. The integral image starts from the origin point (0, 0) of coordinates. Pixel summation of rectangle

D can be computed by the four cumulative sums corresponding to its four corners, i.e., at the locations

(x1,y1) , (x2,y1) , (x1,y2) and (x2,y2).

1.2.3 Purpose of this research

The purpose of this research is to analyze the main impact factors in relation to

(x1,y1)
A B

C D

D = Rectangle(x2,y2)-A-B-C

(0,0)

 = Rectangle(x2,y2)-Rectangle(x2,y1)

 -Rectangle(x1,y2)+Rectangle(x1,y1)

Integral image

(x2,y1)

(x1,y2) (x2,y2)

x

y

Chapter 1

21

resource efficiency, high processing speed, low computational cost and low power

consumption, so as to construct reconfigurable hardware structures for flexible

regulations of feature extraction and object detection that are suitable for dedicated

mobile applications and handheld devices.

The novel proposals to approach the realization of this purpose are as follows:

Firstly, considering the insufficiencies in current strategies for feature-based object

detection, this research proposes a resource-efficient hardware architecture for a

representative feature descriptor, i.e., the simplified SURF descriptor employing Haar-

like wavelets as feature vectors. It can substantially reduce computational cost without

significant degradation of classification accuracy due to the applied simplified structure.

A low computational-budget hardware architecture, that directly uses the serial input-

pixel data without pixel pre-processing such as for integral images, is employed for

feature vector extraction of local image cells.

Secondly, an innovative window-based search approach is proposed for high-

dimensional feature extraction and parallel object detection at the same time. The

partially computed feature vectors of multiple simultaneously-processed scan windows

are sent to the detection engine to start already searching for target objects while the

feature vectors of the scan windows are constructed. The detection operation

synchronizes with the serial output of cell-based local feature vectors. Due to the

efficiency of the cell-based multi-window parallel process, a significant reduction of

power and storage consumption is achieved in this research. Furthermore, feature-

dimensionality reduction, which employs the partial least squares (PLS) regression, are

included to reduce the computational cost.

Finally, experimental detection-performance verifications with different classifiers

are reported in this work. In particular, the detection procedure, employing nearest

neighbor search (NNS) or SVM as the object classifier, is applied to quantitatively verify

the obtainable achievement of a significant reduction in power and storage consumption

without significant degradation of detection accuracy. Flexible image resolutions,

handled by the coprocessor hardware architecture without any modifications, enhance

the compatibility and versatility of the desired detection system for multi-scale or multi-

object applications.

Hardware-friendly prototypes for the proposed hardware designs are mainly verified

with SOTB (Silicon on thin BOX) CMOS technology so that it can be easily be applied

to mobile applications as e.g. the popular handheld devices. An FPGA platform is also

employed in this research for verifying the feasibility of the proposed algorithms and

evaluating the detection performance.

Chapter 1

22

1.3 Dissertation outline

The thesis is organized into six parts as follows:

Chapter 1 introduces the background including traditionally implemental approaches

and discusses their pros and cons with respect to the vision-based object detection in the

field of the popular machine learning. A highly-performing hypothesis for a feature-based

detection scheme is proposed and formulated in this section.

Chapter 2 proposes a simplified SURF descriptor and its pipelined scheme for local

cell-based feature extraction, which is a cornerstone of object detection in computer

vision. The typical integral image is substituted by an immediate-processing engine for

the serially input-pixel data from the image sensor without normalization, resulting in

resource efficiency and real-time processing.

The developed window-based feature-space-construction algorithm, applying local

cell FVs, is illustrated in chapter 3. Instead of extracting feature vectors only around the

interest points as in the previous SURF algorithms, this research applies an overlapping

scan-window approach for covering the entire image without detection of interest points.

In chapter 4, an improvement scheme with both FV normalization and dimensionality

reduction is proposed for enhancing the detection robustness as well as decreasing the

computational cost. The high-dimensional feature spaces are substantially reduced, to

avoid the processing of dense and unnecessarily large data amounts during the recognition

procedure. Flexible regulation strategies for highly-robust performance are explored with

the L-norm scheme. Local feature vectors are further computed in terms of programmable

cell size and window size with unlimited image height, to increase the flexibility for usage

in many different applications.

Chapter 5 illustrates the hardware results with different object-detection frameworks,

in combination with either simplified-SURF or HOG descriptors. The detection

performance is compared and discussed for the cases of NNS and SVM classifiers.

The conclusions of this dissertation as well as the future-work tasks are summarized

in chapter 6.

Chapter 1

23

References

[1] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM

Journal of Research and Development, vol.3, no.3, pp.211-229, Jul. 1959.

[2] J. G. Carbonell, R. S. Michalski, T.M. Mitchell, “An Overview of Machine

Learning,” In Machine Learning, Symbolic Computation, Springer, Berlin,

Heidelberg, 1983, pp.3-23.

[3] D. M. Dutton, and G. V. Conroy, “A review of machine learning,” The Knowledge

Engineering Review, vol.12, no.4, pp. 341-367, 1997.

[4] M. Mohri, A. Rostamizadeh, A. Talwalka, Foundations of Machine Learning, The

MIT Press, 2012, ISBN: 9780262018258.

[5] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM

computing surveys (CSUR), vol. 31, no.3, pp.264-323, 1999.

[6] G. H. Ball and D. J. Hall, “A Clustering Technique for Summarizing Multivariate

Data,” Behavioral Science, vol.12, no.2, pp.153-155, 1967.

[7] J. A. Hartigan, and M. A. Wong, “Algorithm AS 136: A k-means clustering

algorithm,” Journal of the Royal Statistical Society, Applied Statistics, vol.28, no.1,

pp.100-108, 1979.

[8] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, “RA Olshen

Classification and Regression Trees Chapman and Hall,” Classification and

regression trees, CRC press, 1984.

[9] A. Liaw, and M. Wiener, “Classification and regression by randomForest,” R

news, vol.2, no.3, pp.18-22, 2002.

[10] G. De'ath, K. E. Fabricius, “Classification and regression trees: a powerful yet

simple technique for ecological data analysis,” Ecology, vol.81, no.11, pp.3178-

3192, Nov. 2000.

[11] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[12] S. Wold, “Pattern recognition by means of disjoint principal components models,”

Pattern recognition, vol.8, no.3, pp.127-139, 1976.

[13] J. S. Taylor, and N. Cristianini, Kernel methods for pattern analysis, Cambridge

university press, 2004.

[14] T. Pavlidis, Structural pattern recognition, vol.1, Springer, 2013.

[15] K. Fukunaga, Introduction to statistical pattern recognition, Academic press, 2013.

[16] A. K. Jain, and A. Vailaya, “Image retrieval using color and shape,” Pattern

recognition, vol. 29, no.8, pp. 1233-1244, 1996.

Chapter 1

24

[17] K. Mikolajczyk, and C. Schmid, “A performance evaluation of local descriptors,”

IEEE Trans. Pattern Analysis and Machine Intelligence, vol.27, no.10, pp. 1615-

1630, Aug. 2005, 10.1109/TPAMI.2005.188.

[18] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using

shape contexts,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24,

no.4, pp.509-522, Aug. 2002, 10.1109/34.993558.

[19] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and rotation

invariant texture classification with local binary patterns,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol.24, no.7, pp.971-987, Jul. 2002,

10.1109/TPAMI.2002.1017623.

[20] Q. Gu, T. Takaki, I. Ishii, “Fast FPGA-based multiobject feature extraction,” IEEE

Trans. Circuits and Systems for Video Technology, vol.23, no.1, pp.30-45, Jan. 2013,

10.1109/TCSVT.2012.2202195.

[21] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int.

journal of computer vision, vol.60, no.2 pp. 91-110, 2004.

[22] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust features,” in Proc.

Computer vision–ECCV2006, Graz, Austria, 2006, pp. 404-417.

[23] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features

(SURF),” Computer vision and image understanding, vol.110, no.3, pp. 346-359,

Jun. 2008.

[24] A. Haar, Math. Ann, “Zur theorie der orthogonalen

funktionensysteme,” Mathematische Annalen, vol.69, no.3, pp.331-371, 1910 [in

German].

[25] N. Dalal, and B. Triggs, “Histograms of oriented gradients for human detection,” in

Proc. IEEE CVPR, San Diego, CA, USA, 2005, pp.886-893.

[26] F. Zaklouta, and B. Stanciulescu, “Real-time traffic sign recognition in three stages,”

Robotics and autonomous systems, vol.62, no.1, pp.16-24, Jul. 2012.

[27] O. D. Lara, and M. A. Labrador, “A survey on human activity recognition using

wearable sensors,” IEEE Communications Surveys & Tutorials, vol.15, no.3,

pp.1192-1209, 2013.

[28] Suchitra, P. Suja, and Shikha Tripathi, “Real-time emotion recognition from facial

images using Raspberry Pi II,” in Proc. IEEE SPIN, Noida, India, 2016, pp.666-670.

[29] A. Gaszczak, T. P. Breckon, and J. Han, “Real-time people and vehicle detection

from UAV imagery,” in Proc. SPIE-IRCV XXVIII, San Francisco, California, USA,

2011, pp. 78780B-1-13.

[30] S. Cubero, N. Aleixos, E. Moltó, J. Gómez-Sanchis, and J. Blasco, “Advances in

Chapter 1

25

machine vision applications for automatic inspection and quality evaluation of fruits

and vegetables,” Food and Bioprocess Technology, vol.4, no.4, pp.487-504, May

2011.

[31] OpenCV library: http://opencv.org/.

[32] G. Wang, B. Rister, and J. R. Cavallaro, “Workload analysis and efficient OpenCL-

based implementation of SIFT algorithm on a smartphone,” in Proc. IEEE Global

Conf. SIP, Austin, TX, USA, 2013, pp. 759-762.

[33] OpenGL library: https://www.opengl.org/.

[34] B. Rister, G. Wang, M. Wu, and J. R. Cavallaro, “A fast and efficient SIFT detector

using the mobile GPU, ” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal

Processing, Vancouver, BC, Canada, 2013, pp. 2674-2678.

[35] S. Lee, H. Kim, D. Park, Y. Chung, and T. Jeong, “CPU-GPU hybrid computing for

feature extraction from video stream,” IEICE Electronics Express, vol.11, no.22,

pp.1-8, 2014.

[36] L. Nardi, B. Bodin, M. Z. Zia, J. Mawer, A. Nisbet, P. H. Kelly, A. J. Davison, M.

Luján, M. F. O'Boyle, G. Riley, N. Topham, and S. Furber, “Introducing

SLAMBench, a performance and accuracy benchmarking methodology for SLAM,”

presented at Int. Conf. Robotics and Automation, WA, USA, May. 26-30, 2015.

[37] A. K. Kushsairy, M. K. Kamaruddin, H. Nasir, S. I. Safie, Z. A. K. Bakti, M. R.

Isa, and S. Khan, “Embedded vision: Enhancing embedded platform for face

detection system,” in Proc. I2MTC, 2016, pp. 1-5.

[38] C. Kelly, C. Kelly, F. M. Siddiqui, B. Bardak, and R. Woods, “Histogram of oriented

gradients front end processing: an FPGA based processor approach,” in Proc. IEEE

Workshop on Signal Processing Systems, 2014, pp. 1-6.

[39] H. Zhu, and T. Shibata, “A Real-Time Motion-Feature-Extraction VLSI Employing

Digital-Pixel-Sensor-Based Parallel Architecture,” IEEE Trans. Circuits and

Systems for Video Technology, vol.24, no.10, pp.1787-1799, Mar. 2014, DOI:

10.1109/TCSVT.2014.2313899.

[40] Y. C. Su, K. Y. Huang, T. W. Chen, Y. M. Tsai, S. Y. Chien, and L. G. Chen, “A

52mW full HD 160-degree object viewpoint recognition SoC with visual vocabulary

processor for wearable vision applications,” IEEE Journal of Solid-State Circuits,

vol.47, no.4 pp.797-809, 2012.

[41] L. Liu, W. Zhang, C. Deng, S. Yin, S. Cai, and S. Wei, “SURFEX: A 57fps 1080P

resolution 220mW silicon implementation for simplified speeded-up robust feature

with 65nm process,” in Proc. IEEE CICC, San Jose, CA, USA, 2013, pp. 1-4.

[42] F. C. Crow, “Summed-area tables for texture mapping,” ACM SIGGRAPH computer

Chapter 1

26

graphics, vol.18, no.3, pp.207-212, 1984.

[43] L. C. Chiu, T. S. Chang, Chen, J. Y., & Chang, N. Y. C. , “Fast SIFT design for real-

time visual feature extraction,” IEEE Trans. Image Processing, vol.22, no.8,

pp.3158-3167, Apr. 2013.

Chapter 2

27

Chapter 2

Local Cell-Based Feature

Extraction

2.1 Introduction

The speeded up robust feature (SURF) descriptor is not only faster but also better

repeatable than other descriptors by relying on integral images for image convolutions [1,

2]. The original SURF consists of two distinct stages, i.e., detection and description. The

main work of the detection stage is to select and search essential interest points (IP) at

distinctive locations in image pyramids. As illustrated in Fig.2.1, different numbers of IP

can be selected to represent the image with repeatable results during the detection stage

of the original SURF algorithm. Whereas, the description stage of the original SURF

algorithm collects and describes Haar wavelet responses [3] around each interest point in

chosen orientations, constituting the highly-dimensional feature vector for feature

representation of various objects. But the generally computational-expensive SURF

algorithm still consumes relatively high power, unacceptable for practical

implementations of computer vision.

Fig.2. 1 An illustration of selection results of the original SURF algorithm with different numbers (2, 5,

10, respectively) of interest points (IP).

To ensure the overall quality of feature extraction and to reduce the power

consumption, a pixel-based pipelined algorithm, necessitating feature extraction from the

entire frame, was proposed in [4]. However, the preprocessing to generate an integral

Chapter 2

28

image from raw pixels is still indispensable in both detection and description stages.

Instead of extracting feature vectors only around the IP as in the previous SURF

algorithms, this research applies a simplified SURF approach for covering the entire

image without detection of IP. The extracted Haar-like responses are used for window-

feature-vector construction to recognize the target objects in the image pyramids,

enhancing the computational efficiency and flexibility.

The Haar-wavelet-response calculation makes the SURF descriptor faster and more

repeatable than other descriptors, thus decreasing object-recognition complexity and

enhancing computational performance. A set of Haar-like feature types such as edge

features, line features, center-surround features, diagonal feature and their separate

rotated features in certain degrees, have been introduced with different restrictions in

previous works [5-9], as illustrated in Figs.2.2 (a-d). Compared with raw pixels, the Haar-

like features focus more on the information within a certain area of the image rather than

every single pixel, which reduces/increases the in-class/out-of-class variability efficiently

and thus makes classification easier [5].

Fig. 2.2 (a) Edge Haar-like features and corresponding rotated features

Fig. 2.2 (b) Line Haar-like features and corresponding rotated features

Fig. 2.2 (c) Center-surround Haar-like feature and corresponding rotated feature

Fig. 2.2 (d) Diagonal Haar-like feature and corresponding rotated features

Fig.2. 2 Four types of Haar wavelet representations where black areas have opposite weights to white

areas.

a(1) a(2) a(3) a(4)

b(1) b(2) b(3) b(4) b(5) b(6) b(7) b(8)

c(1) c(2)

d(1) d(2) d(3)

Chapter 2

29

The Haar-like wavelets can be widely applied to object detection and recognition in

a plenty of research works with respect to face recognition [6], hand gesture recognition

[7] and pedestrian detection [8], etc. Black areas in Fig.2.2 (a-d) have opposite weights

to white areas for each Haar wavelet representation to capture the structural similarities

between instances of an object class [9].

Specifically, the edge Haar-like features shown in Fig.2.2 (a) are employed for the

proposed simplified SURF descriptor in this research, whose black areas have positive

weight “+1” while white areas have negative weight “-1”.

2.2 Local cell-feature component extraction

algorithm

In order to recognize the input object or to detect the target object in the input image,

the input object or target object must be efficiently expressed in the feature representation.

Let F(x, y) be a two-dimensional image pixel array of a image in x and y direction, which

are directly scanned from the image sensor. F(x, y) can be used to denotes the color value

at pixel p(x, y) for color images represented in terms of the three primary RGB colors,

i.e., red, green and blue, which be written as F(x, y) = {FR(x, y), FG(x, y), FB(x, y)}. On

the other hand, F(x, y) can also be applied for denoting the grayscale intensity value, as

illustrated in Fig.2.3, at pixel p (x, y) for gray images.

Fig.2. 3 Example of a raw image to be processed, one selected region and its corresponding grayscale-

intensity values at each pixel.

Therefore, the image space can be mapped onto the n-dimensional feature space X =

{xl, x2, …, xn }by the mapping f :

134 133 133 135

105

95

62

103 112 120

77 92 98

56 78 95

Intensity value of
each pixelOne regionRaw image

x

y

Chapter 2

30

f : F→X, (2.1)

where n is the number of features used to represent the image.

In this research, the Haar wavelets, which are robust in decreasing object-matching

complexity as well as enhancing computational performance, are applied for feature

representation used in the SURF descriptor.

Specifically, the edge Haar-like features shown in Fig.2.4 are employed for the

proposed simplified-SURF descriptor in this research, whose black areas have positive

weight “+1” while white areas have negative weight “-1”. A rectangular sub-division

constructed by a 4×4-pixel array is defined as a sub-cell and applied for basic feature

calculation for edge Haar-like wavelets.

Fig.2. 4 Selected edge Haar-like feature extraction operated in a 4×4-pixel sub-cell.

For horizontal sub-cell responses, the left part and the right part of the 4×4-pixel sub-

cell are summed up respectively before subtraction operation according to Fig. 2.5 and

Eq. 2.2.

Fig.2. 5 Horizontal sub-cell response employed Haar-like wavelets.

𝐷𝑥 = ∑ 𝑝(𝑥)

𝑝(𝑥)∈𝑙𝑒𝑓𝑡𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

− ∑ 𝑝(𝑥)

𝑝(𝑥)∈𝑟𝑖𝑔ℎ𝑡𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

 (2.2)

…

Types of Haar-like sub-cells

4
 p

ix
e

ls

4 pixels

Dx

4 pixels

4
 p

ix
e

ls

Dy

Chapter 2

31

Here p(x) represents the pixel intensity values of a gray-scale image in horizontal (x)

direction, which are directly scanned from the image sensor.

For the vertical sub-cell responses, the up part and the down part of the 4×4-pixel

sub-cell are summed up respectively before subtraction operation according to Fig. 2.6

and Eq. 2.3.

Fig.2. 6 Vertical sub-cell response employed Haar-like wavelets.

𝐷𝑦 = ∑ 𝑝(𝑦)

𝑝(𝑦)∈𝑢𝑝𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

− ∑ 𝑝(𝑦)

𝑝(𝑦)∈𝑑𝑜𝑤𝑛𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

 (2.3)

Here p(y) represents the pixel intensity values of a gray-scale image in vertical (y)

direction, which are also directly scanned from the image sensor.

According to the raster scan manner of the general image sensors, the inputted line-

by-line raw pixels are immediately processed to progressively determine the Haar-like

features Dx and Dy of related sub-cells used by the simplified SURF descriptor.

In order to bring in information about the polarity of the intensity changes, the

absolute values |Dx| and |Dy| for each sub-cell are also extracted according to Eq. 2.4 and

Eq. 2.5 respectively.

|𝐷𝑥| = | ∑ 𝑝(𝑥)

𝑝(𝑥)∈𝑙𝑒𝑓𝑡𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

− ∑ 𝑝(𝑥)

𝑝(𝑥)∈𝑟𝑖𝑔ℎ𝑡𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

| (2.4)

|𝐷𝑦| = | ∑ 𝑝(𝑦)

𝑝(𝑦)∈𝑢𝑝𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

− ∑ 𝑝(𝑦)

𝑝(𝑦)∈𝑑𝑜𝑤𝑛𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

| (2.5)

Important is, this research proposes a novel feature extraction algorithm that the

intensity values p(x) and p(y) can be taken directly from the raw pixels of the image sensor

serially inputted in raster manner, without any preprocessing or pre-storage as integral

image. The feature calculating speed is depended on the working frequency of the image

Chapter 2

32

sensor due to the operation synchronization. Thus the computational complexity and

memory-resource consumption will be significantly reduced in comparison to previous

solutions such as integral-image-based schemes.

A non-overlapped rectangle area with 2×2 sub-cells is further used to construct a ‘cell’,

as illustrated in Fig. 2.7, which is the basic processing unit of the proposed simplified

SURF descriptor. For the local Haar-like wavelet response of one cell, the response values

Dx, Dy, |Dx| and |Dy| of four sub-cells that belong to the same cell are added up and form

the local four-dimensional cell-response vector vcell of Eq. 2.6 at the cell layer.

𝑣𝑐𝑒𝑙𝑙 = { ∑ 𝐷𝑥

𝑥∈𝑐𝑒𝑙𝑙

, ∑ 𝐷𝑦

𝑦∈𝑐𝑒𝑙𝑙

, ∑ |𝐷𝑥

𝑥∈𝑐𝑒𝑙𝑙

|, ∑ |𝐷𝑦

𝑦∈𝑐𝑒𝑙𝑙

|} (2.6)

The pixel-group differences of the four sub-cells in each cell are accumulated and

form local four-dimensional cell-based feature-vector components. Synchronization with

the image sensor’s and immediate usage of each input pixel for the feature-construction

process avoids the dependence on memory-intensive conventional strategies like integral-

image construction or frame buffers.

An efficient control conception is essential for immediate processing of the serially

inputted pixels for local cells feature components. In this research, a counter group in

cooperation with the logic gates are applied for instant stepwise execution and enable

signal generation of the proposed pipeline feature extraction for local cells.

Fig.2. 7 Relationships between the processing units (i.e., pixel, sub-cell and cell) in the proposed cell-

based feature extraction algorithm.

Chapter 2

33

2.3 Hardware implementation of cell-based

simplified-SURF feature extraction

2.3.1 Overall feature extraction architecture for local cells

Feature extraction and construction is becoming a real prerequisite for building

object-classified models to achieve high detection performance. With regard to feature

representation on the basis of the sliding-window strategy, the cell generally is the basic

component for a search window in many feature descriptors. Specifically, there is another

sub concept as sub-cell for the proposed simplified SURF descriptor applying the edge

Haar-wavelet features in this research as illustrated in Section 2.2. This section is going

to present a pipeline hardware architecture for feature extraction on cells which will be

further applied for constructing a high-dimensional window-based feature vector in the

following designs.

Given an entire input image in resolution of w (width)× h (height) pixels as shown in

Fig.2.8, there are w/4 sub-cells and w/8 cells each row in response to a fixed sub-cell size

(4×4 pixels) and cell size (8×8 pixels). With the serially-input pixels scanned in raster

manner by an image sensor, each pixel will be sent instantly to be summed up inside the

corresponding sub-cell and cell for both horizontal and vertical responses without

buffering or any pre-processing. An idea that each pixel will be abandoned without

retreatment after being invoked for response calculation of the non-overlapped sub-cell

and cell is presented in this research. The intermediate calculated results will be

temporarily stored or sent for secondary calculation.

Since the pixel scan procedure from image sensor runs consecutively without pause,

the pixel processing for feature vectors should be also taken successively so as to avoid

additional storage requirement or data loss. For each sub-cell row, the calculation results

of the first three rows of pixels should be buffered until the last pixel of each sub-cell.

Fig.2. 8 Pixel scan manner of data supply form the image sensor and image-region division for feature

extraction.

w pixels

cell1

sub-cell
1

cell2 cellw/8

1st row
sub-cell Raster scan manner sub-cell

w/4

4
 p

ixe
ls h

 p
ixe

ls

...

8
 p

ixe
ls

2nd row
sub-cell

...

Images

Image
sensor

p(7w+7)p(4w)

p(0)

Chapter 2

34

Figures 2.9 and 2.10 briefly illustrate the representative generation process of the

four-dimensional feature components of the first cell ‘cell1’ and the second cell ‘cell2’ in

the first cell row. Due to the raster scan manner of the image sensor, the pixels located at

the image from left to right are inputted serially for feature calculation according to Eq.2.2

and Eq.2.3 on a basic unit of 4×4-pixel sub-cell.

The responses calculation of first sub-cell for the horizontal Dx and vertical Dy results

will not complete until the fourth-pixel p[3w+4] in the fourth-pixel row in a given image

width w is inputted.

Fig.2. 9 Main generation-process flow of the four-dimensional feature components for the first cell cell1.

...

Scanning
Pixel

...

p[3w+4]

p[3w+8]

p[7w+4]

p[7w+8]

vcell1=(∑Dx, ∑Dy, ∑|Dx|, ∑|Dy|)

cell1 cell2 cell3 cellw/8

...

...

...

Sub-cell[3]

Sub-cell[1]

Dx[1] Dy[1]

Dx[3] Dy[3]

Sub-cell[4]

Dx[4] Dy[4]

Sub-cell[2]

Dx[2] Dy[2]

Chapter 2

35

Fig.2. 10 Main generation-process flow of the four-dimensional feature components for the second cell

cell2.

The responses Dx[1] and Dy[1] of the first sub-cell should be buffered for summation

of cell-based feature components until the calculations of the other three sub-cells in the

first cell ‘cell1’ complete. As the 3rd -row pixels are kept scanning forwards from left to

right, the 8th pixel p[3w+8] in the 3rd row is inputted and the responses Dx[2] and Dy[2]

of the second sub-cell will be achieved instantly. Similarly, along with the input of the

pixel p[7w+4] and p[7w+8], the calculation of the other two sub-cells is also completed

sequentially for accumulation result vcell1 of the first cell ‘cell1’.

Before accomplishment of calculation of sub-cells, all the intermediate values should

be temporarily stored. However, once the calculation of the non-overlapped sub-cell is

complete, all pixels and intermediate value related to the current sub-cell can be released

and reset. The final sub-cell responses, i.e., the horizontal Dx and vertical Dy results, are

the only necessary data to be transferred for secondary calculation for cells and windows.

The situation of the second cell ‘cell2’ in the first cell row is similar to the processing

procedure of the first cell ‘cell1’. The sub-cell responses should be computed and

outputted sequentially for the following accumulation in the same cell. The generation of

local four-dimensional feature components of other cells has similar processing procedure.

The pixels shown in green color in Fig.2.9 and Fig.2.10 can reflect the accomplishment

status of each cell and sub-cell. The scanned pixels in green color would be computed

only once and then abandoned because they turned to be redundant and the values of the

sub-cells are the only essential data for next calculation on cells, to refrain from

unnecessary storage requirement.

...

Scanning
Pixel

...

p[3w+12]

p[3w+16]

p[7w+12]

p[7w+16]

vcell2=(∑Dx, ∑Dy, ∑|Dx|, ∑|Dy|)

cell1 cell2 cell3 cellw/8

...

...

...

Raster scan

Sub-cell[3]

Sub-cell[1]

Dx[1] Dy[1]

Dx[3] Dy[3]

Sub-cell[4]

Dx[4] Dy[4]

Sub-cell[2]

Dx[2] Dy[2]

Chapter 2

36

Considering the desired transformation characteristics analyzed above during edge

Haar-like feature vector extraction procedure for the local cell, this research proposes an

alternative solution of feature vector construction with a pixel-based pipelined

architecture, which avoids both image buffers and integral image calculations.

To recognize the target objects among complex backgrounds, a pixel-based pipelined

architecture for real-time feature extraction on the local cell, as illustrated in Fig. 2.11, is

proposed for efficient cell-based feature representation.

Other than processing one pixel per cycle in a pipeline for the integral image as in

previous works like [4], the serial-input pixels from the image sensor are used

immediately to proceed with Dx and Dy calculation of the corresponding sub-cells by the

‘sub-cell calculator’ according to Eq.2.2 and Eq.2.3, and then to sum the four sub-cells

up as cell-feature vectors vcell according to Eq.2.6.

Intermediate sub-cell responses are temporarily saved in the first storage while the

cell results are then buffered in the second storage as shown in Fig. 2.11, respectively.

The first storage is actually divided into two parts for computing Dx and Dy responses of

each sub-cell respectively.

The calculation of Dx and Dy sub-cell responses are operated at the same time, but the

generation of intermediate Dx and Dy sub-cell results are asynchronous due to the different

regional divisions as shown in Fig.2.4.

Fig.2. 11 Integrated hardware architecture for extracting the local four-dimensional cell-feature vectors

vcell={∑Dx, ∑Dy, ∑|Dx|, ∑|Dy|} with the simplified-SURF descriptor.

∑Dx

IN

DyDx

sub-cell
 calculator

IN

OUT

 pipeline
controller

∑Dx

∑Dy

∑|Dx|

∑|Dy|

Load signal

en

0

Dx

Dy

|Dx|

|Dy|absolute
value

calculator

Image
resolution

First Storage
∑|Dy|∑|Dx|

address 2

OUT

∑Dy

Second Storage

 address 1

32

 image sensor

Load_FV

64

en2

en1

Intermediate data

32

64

32

32

64

Intermediate data

MUX1

MUX2

Pixels

Chapter 2

37

To enable the pixel-based pipelined-adding operation with an immediate

accumulation of pixel values after transfer from the image sensor, the dual-port memory

is employed for the implementations of both the first storage and the second storage

shown in Fig. 2.11. Accesses conflicts between reading and writing are also avoided by

a fixed clock-cycle delay when accessing to the same address, which in particular

guarantees continuity of the whole pipeline processing. In particular, the two storages are

applied for buffering the intermediate data under the control of the pipeline controller.

The pipeline controller is mainly composed of a counter group, logic gates, and

registers, to manage the writing and reading addresses for the two dual-port memories, as

well as selection signals for multiplexers and load signals for the registers, etc.

Specifically, variable counters can be employed for flexible regulation about image size

to be processed, which is considered important for reconfigurable designs and will be

expanded and discussed in the following contents.

The cascaded multiplexers (i.e. MUX1 and MUX2) cooperated with the second

storage and the adder shown in Fig. 2.11 are designed to aid for summing up the adjacent

sub-cells that are assigned to the same cell.

There are two iterative structures in the sub-cell calculator, to compute sub-cell

responses according to Eq.2.2 and Eq.2.3 respectively, which will be discussed in detail

in the next sections.

Consequently, the processing speed only relies on the pixel-transfer frequency from

the image sensor by the proposed pixel-based pipeline cell-feature extraction architecture,

to implement the calculation in hardware for the local four-dimensional cell-feature

vector vcell.

2.3.2 Pixel-based pipelined circuitry for sub-cell responses

2.3.2.1. Horizontal response Dx

In the case of computing Dx responses, adjacent pixels that are assigned to the same

part (left or right) of the same sub-cell, are transfer to the sub-cell calculator by another

two cascaded multiplexers. Two methods can be employed for calculating the horizontal

sub-cell response Dx in this research with different arithmetic priorities and storage

policies. The first strategy for computing horizontal response Dx is to separate the left

part and right part of each sub-cell exactly the same as Fig. 2.4, accumulate pixels

according to Eq.2.2 and store the intermediate results of the left part and right part

independently. Another strategy for generating the Dx responses is to transform addition

and subtraction instantly according to the pixel position inside the sub-cell so that the

Chapter 2

38

final horizontal sub-cell response Dx can be obtained by a combined computation on all

pixels inside a same sub-cell. Both of these two methods own their respective advantages

and disadvantages.

Figure 2.12 illustrates the circuitry and its operating principle of the first method

mentioned above. The pixels on the image are scanned in raster manner and inputted

serially to the Dx calculator, which is a part (another part is the Dy calculator) of the sub-

cell calculator as shown in Fig. 2.11. Intermediate partial-addition results of left- and

right-part pixels of each sub-cell are temporarily stored in the first storage (Dx part) which

employs a dual-port memory. Given an image with w width, w/2 words of the first storage

must be consumed because the left part and right part of each sub-cell are stored

independently and occupy one word respectively.

To accumulate the pixels inputted in raster manner immediately, each temporarily

stored value in the first storage is read out successively for accumulation with the adder,

shown in the more detailed representation of the Dx calculator in Fig.2.12. The serial

pixel stream from the image sensor is sent to the one port (‘a’ port) of the adder located

in the Fig.2.12, adds up with the current value (e.g. the ‘0’ transferred from two

multiplexers MUX3 and MUX4 for initialization) from the other port (‘b’ port) of the

adder and generate an instant sum value simultaneously.

Fig.2. 12 Proposed circuitry with independent left- and right-part summation for generating horizontal

sub-cell responses Dx according to Eq.2.2.

The blue lines shown in the right circuitry in Fig.2.12 illustrate the pixel processing

procedure when accumulating a horizontal response Dx for one sub-cell.

Take the first sub-cell as an example for timing analysis. The first two pixels, i.e., p[1]

and p[2], in the first pixel row in the image belong to the left part of the first sub-cell

p[4]

P[w+4]

p[3]

P[w+3]

p[2]

P[w+2]

p[1]

P[w+1]

p[w]

p[w-1]

 en

MUX3

MUX4

p[1]+p[2]

p[3]+p[4]

p[5]+p[6]

p[w-1]+p[w]

First dual-port memory
for Dx responses

0

p[1]

p[1]+p[2]

②
③

①

a

b
④

…p[w] p[1]p[2]

Image w pixels

… p[3]

1

2

3

w/2

P[w+1]

Pixels

⑤

right

part

sum

left

part

sum

load

load

REG

Dx

REG

Dx calculator

REG

Load
signal

…

Dx

4
 p

ix
el

s

4 pixels

Chapter 2

39

response Dx[1], thus the first pixel p[1] will plus the second pixel p[2] by the adder in the

Dx calculator and then the summing result (i.e., p[1]+ p[2]) will be sent to the memory

(i.e., the ‘First dual-port memory for Dx responses’ in the circuitry in Fig.2.12) after some

certain delays for temporary storage as illustrated in Fig.2.13. The intermediate sum

‘p[1]+ p[2]’ will be read out from the memory to the ‘b’ port of adder through the

cascaded multiplexers MUX3 and MUX4 when the first pixel p[w+1] in the second row

is inputted. As both the pixels p[w+1] and p[w+2] belong to the left part of the first sub-

cell, they will be added up and the intermediate sum to be stored in the memory will be

updated as ‘p[1]+ p[2]+p[w+1]+p[w+2]’.

Fig.2. 13 Timing analysis with part of data flow for the first sub-cell using independent left- and right-

part summation, to generate horizontal sub-cell responses Dx.

The processing procedure of the right part of the first sub-cell is similar to the left

part’s accumulation until the first response Dx[1] is generated. We can find the first two

pixels p[3] and p[4] in the right part of the first sub-cell are added up and then the sum

‘p[3]+ p[4]’ is revoked for accumulation when the pixel p[w+3] is inputted as illustrated

in Fig.2.13. Afterwards, the updated sums are sent back to the corresponding storage unit.

This accumulative behavior of the proposed circuitry will continue until the first four

pixel rows are scanned. The separate results of left- and right- part of each sub-cell are

generated in sequence when processing the fourth-pixel row. Final left- and right-part

summation results are transferred to separate registers for subtraction when becoming

available, to calculate the sub-cell’s Dx according to Eq.2.2. The Dx processing for a sub-

cell row is completed by a subtractor with the sequential loading of accumulation results

for left and right parts of each sub-cell into registers. In other words, the operations of

addition and subtraction are supported by two independent devices in this circuitry.

It costs simpler control for frequent arithmetical transitions, i.e., the exchange

between addition and subtraction for Dx responses in this circuitry shown in Fig.2.12.

However, this method occupies more memory space and much more memory access for

calculation, which results in more memory requirement and more power consumption.

Another circuitry for generating the Dx responses is proposed for saving memory

clock

REG

Memory

p[1]+0

0 p[1]+0

p[1]+p[2]

a

b

p[1]

0 p[1]

p[2] p[3] p[4] …… p[w-1] p[w] p[w+1] p[w+2]

0 p[3] …… 0 p[w-1] p[1]+p[2]

p[3]+0 p[3]+p[4] …… p[w-1]+0 p[w-1]+p[w]
p[1]+p[2]
+p[w+1]

p[1]+p[2]

+p[w+1]

p[1]+p[2]+
p[w+1]+p[w+2]

p[1]+p[2] p[3]+0 p[3]+p[4] …… p[w-1]+0 p[w-1]+p[w]
p[1]+p[2]

+p[w+1]

p[1]+p[2]+

p[w+1]+p[w+2]

……

p[w+3]

p[3]+p[4]

p[3]+p[4]

+p[w+3]

Chapter 2

40

space in this research as illustrated in Fig.2.14. Every four pixels belong to a same sub-

cell that all the related pixels in one sub-cell are calculated in each pixel row. However,

this calculation involves frequent exchanges between addition and subtraction for

computing horizontal Dx responses but less storage space is consumed in this strategy.

Fig.2. 14 Alternatively proposed circuitry with the arithmetical transition of addition and subtraction for

generating horizontal sub-cell responses Dx according to Eq.2.2.

Also, take the first sub-cell as an example for timing analysis of circuitry illustrated

in Fig.2.14 and Fig.2.15. The first four pixels in the first-pixel row belong to the first sub-

cell although they also locate at different parts of the sub-cell. The addition is operated

for the former two pixels p[1] and p[2] while subtraction is taken for the latter two pixels

p[3] and p[4].

The intermediate computing result ‘p[1]+p[2]-p[3]-p[4]’ is temporarily stored in the

memory and invoked for accumulation when the first four pixels are inputted in the next

pixel row. Thus, each sub-cell consumes only one word in the memory so that one haft

of storage space can be saved compared to the first strategy shown in the Fig.2.12.

Fig.2. 15 Timing analysis with part of data flow for the first sub-cell using the arithmetical transition of

addition and subtraction to generate horizontal sub-cell responses Dx.

p[4]

P[w+4]

p[3]

P[w+3]

p[2]

P[w+2]

p[1]

P[w+1]

p[w]

p[w-1]

en

MUX3

MUX4

p[1]+p[2]-p[3]-

p[4]+.+.-.-.+.+.-.-

p[5]+p[6]-p[7]-

p[8]+.+.-.-.+.+.-.-

p[9]+p[10]-p[11]-

p[12]+.+.-.-.+.+.-.

p[w-3]+p[w-2]-

p[w-1]-p[w]+.+.-..

First dual-port memory
for Dx responses

0

p[1]

p[1]+p[2]-p[3]-p[4]

②
③

①

a

b
④

…p[w] p[1]p[2]

Image w pixels

… p[3]

1

2

3

w/4

P[w+1]

Pixels

⑤

REG

Dx

REG

Dx

calculator

REG

…

Dx

4
 p

ix
el

s
4 pixels

p[1]+p[2]- . -

.+.+.-.-p[w+4]

p[1]+p[2]- . -

.+.+.-.-p[w+4]

p[1]+p[2]-.-

.+.+.-p[w+3]

p[1]+p[2]-.-

.+.+.-p[w+3]

p[1]+p[2]-p[3]-

.+.+p[w+2]

p[1]+p[2]-p[3]-

p[4]+p[w+1]

p[1]+p[2]- . -

+.+p[w+2]

p[1]+p[2]-p[3]-

p[4]+p[w+1]

p[w+4]

p[1]+p[2]

-p[3]-p[4]

p[w+3]

p[1]+p[2]

-p[3]-p[4]

clock

REG

Memory

p[1]+0

0 0

p[1]+p[2]

a

b

p[1]

0 p[1]

p[2] p[3] p[4] …… p[w] p[w+1] p[w+2]

p[1]+p[2] ……

p[1]+p[2]-p[3]
p[1]+p[2]

-p[3]-p[4]
……

0 0 ……

……

p[1]+p[2]-p[3]

Chapter 2

41

The reduction of storage resource is worthy of more complex controls for embedded

applications or integrated circuit designs because the additional operation transformations

between additions and subtractions are negligible on the basis of the high processing

speed of hardware circuitry. The less memory requirement generally results in the smaller

occupied area and less power consumption, both of which are far more important and

more critical factors for the integrated circuits.

2.3.2.2. Vertical responses Dy

The operating principle of Dy calculator in Fig.2.16 to create the sub-cell response Dy

is similar to the Dx calculator in the second strategy. The Dy calculator also uses an

adder/subtractor circuit for obtaining the Dy values.

In contrast to the architecture for calculating the Dx data, the hardware architecture

for Dy calculation successively adds up the four adjacent pixels assigned to a same 4×4-

pixel sub-cell in the two upper pixel rows according to Eq.2.3. It is not necessary to store

the upper-half and lower-half of each sub-cell separately in the second dual-port memory,

because the adder-subtractor sums up the pixels in the upper-half rectangle of each sub-

cell and then subtracts the pixels in the lower-half rectangle of this sub-cell, as illustrated

in Fig. 2.17.

Similar to the Dx implementation, another dual-port memory as the first-storage

implementation for Dy responses to enable the pixel-based pipelined-adding operation

with an immediate accumulation of pixel values after transfer from the image sensor.

Conflicts between reading and writing accesses are avoided by the fixed clock-cycle

delay between accesses to the same address, which in particular guarantees continuity of

the whole pipeline processing.

Fig.2. 16 Proposed circuitry with the arithmetical transition of addition and subtraction for generating

vertical sub-cell responses Dy according to Eq.2.3.

p[4]

P[w+4]

p[3]

P[w+3]

p[2]

P[w+2]

p[1]

P[w+1]

p[w]

p[w-1]

 en

MUX5

MUX6

p[1]+p[2]+p[3]+

p[4]+.+.+.+.-.-.-.-

p[5]+p[6]+p[7]+

p[8]+.+.+.+.-.-.-.-

p[9]+p[10]+.+.+.

+.+.-.-.-.-.-.-.-.-

p[w-3]+p[w-2]+p[w-1]

+p[w]+.+.+.+.-.-.-.-.-.-.-.-

First dual-port memory
for Dy responses

0

p[1]

p[1]+p[2]+p[3]+p[4]

②
③

①

a

b
④

…p[w] p[1]p[2]

Image w pixels

… p[3]

1

2

3

w/4

P[w+1]

Pixels

⑤

REG

Dy

REG

Dy

calculator

REG

…

Dy

4
 p

ix
el

s

4 pixels

Chapter 2

42

Fig.2. 17 Timing analysis with part of data flow for the first sub-cell using the arithmetical transition of

addition and subtraction to generate vertical sub-cell responses Dy[1].

The sequential four pixels p[1], p[2], p[3], p[4] are transferred to the adder-subtractor

and accumulated with the help of the cascaded multiplexers (i.e. MUX5 and MUX6) in

the Dy calculator.

The accumulated result ‘p[1]+p[2]+p[3]+p[4]’ will be stored in a certain-width word

in the memory, read out to sum up the responding four pixels in the next row, and

feedback the updated accumulated result ‘p[1]+p[2]+p[3]+p[4]+p[w+1]+p[w+2]

+p[w+3]+p[w+4]’ to the former word in the memory. Then the adder-subtractor circuit

reads out the sum of the two upper rows of each sub-cell from memory and sequentially

subtracts the four adjacent pixel values of each sub-cell in each of the two lower pixel

rows as they arrive from the image sensor. The same operations are performed for the

remaining w/4-1 sub-cells of the sub-cell row until the pixel p[4w-1] is inputted from the

image sensor.

Consequently, only w/4 words in the first storage would be sufficient for intermediate

sub-cell summation results of both Dx and Dy processing of a given image width w. In

other words, the intermediate result of each sub-cell only occupies one word in the

memory.

The two multiplexers (i.e., MUX3 and MUX4 in the Dx calculator, MUX5 and MUX6

in the Dy calculator) form an iterative structure to initialize the calculation for each sub-

cell and to execute a recursive data loop for the two dual-port memories. After the

completion of calculations in one sub-cell row, the storage space of the two dual-port

memories can be initialized and reused for the Dx and Dy calculation of the next sub-cell

row. Then processing changes to the second sub-cell row in a similar manner and when

the pixel p[7w+7] is inputted, the Dx and Dy values of the fourth sub-cell of cell1 can be

completed. The word precision for both the first storage is 16-bit, which is sufficient for

providing accurate accumulation of eight 8-bit gray pixels in a half rectangle of each sub-

cell.

It is well to be reminded that the processing of input images is in principle unlimited

height h in this research, which significantly enhances the utilization ratio of on-chip

Dy[1]

p[w+

4]

p[w+

3]

p[w+

1]

p[w+

2]

p[1]+p[2]

p[1]+p[2]

+p[3]+p[4]

p[1]+0 p[1]+p[2]

p[1]

p[1]+p[2]+

p[3]+p[4]

clock

REG

Memory 0 0

a

b

p[1]

0

p[2] p[3] p[4] …… p[w]

……

p[1]+p[2]+p[3] ……

0 0

……

p[1]+p[2]+p[3]

p[2w
+4]

p[2w
+3]

p[2w
+1]

p[2w
+2]

…

…

…

…
p[3w
+4]

p[3w
+3]

p[3w
+1]

p[3w
+2]

…

…

…

…

… …

…

…

…

…

…

Chapter 2

43

hardware resources and increases the area efficiency. The unlimited height h is enabled

on the basis of flexible regulation with variable counters and logic gates, which will be

illustrated in the following section 2.3.4.

2.3.3 Accumulation for local cell-based feature-vector

construction

Upon completion, Dx and Dy results are sent to the iterative structure for the

immediate accumulation of ∑Dx, ∑|Dx|, ∑Dy and ∑|Dy| of the corresponding cell as

illustrated in Fig.2.11. In other words, once the last relevant pixel of a sub-cell has been

processed, the Dx or Dy result will be transferred instantaneously for the accumulation of

the local feature vector vcell of the current cell, according to Eq.2.6, with a fixed size of

2×2 sub-cells.

Fig.2. 18 Proposed circuitry for accumulating the horizontal Dx responses in one cell.

The architecture and operating procedure for cell-based feature vector are similar to

the above schemes for Dx or Dy. Figure 2.18 illustrates the procedure for accumulating

Dx responses in one cell on behalf of the cell-based feature vector accumulation. The cell-

based components of other sub-cell responses Dy, |Dx| and |Dy| can be achieved by the

almost same architecture as Fig.2.18.

Once the Dx and Dy results are generated by circuitries respectively introduced in

section 2.3.2, they will be transferred to the right part of circuitry in Fig.2.18 immediately.

During the input of the last pixel line of one cell row, i.e., p[7w+i], and i∈[0,w-1], a local

four-dimensional cell-feature vector is completed every 8 clock cycles. Every two

adjacent sub-cells in a sub-cell row are grouped into one non-overlapping cell. This

subsequently enables the completion of the local four-dimensional cell-feature vector vcell

Dx[4]

Dx

[w/4+4]

Dx

[w/2+4]

Dx

[w+4]

Dx[3]

Dx

[w/4+3]

Dx

[w/2+3]

Dx

[w+3]

Dx[2]

Dx

[w/4+2]

Dx

[w/2+2]

Dx

[w+2]

Dx[1]

Dx

[w/4+1]

Dx

[w/2+1]

Dx

[w+1]

Dx

[w/4]

Dx

[w/2]

Dx

[w]

Dx

[2w]

Dx

[w/4-1]

Dx

[w/2-1]

Dx

[w-1]

Dx

[2w-1]

Image w/4 sub-cells

1
 s

u
b

-c
el

l

REG

clk

en

MUX1

MUX2

Dx[1]+Dx[2]

Dx[3]+Dx[4]

...

...

...

P[w/4-1]+P[w/4]

Second dual-port memory
for ∑Dx vectors

0

②

③

①

a

b
④

…
Dx

[w/4]
Dx[1]Dx[2]Dx[3]

1

2

3

w/8

Dx

[w/4+1]

Dx

⑤

Address

…
…

…

1
 c

el
l

Dx

2
 s

u
b

-c
el

ls

2 sub-cells

Dx

DxDx

1 cell

Chapter 2

44

(∑Dx, ∑Dy, ∑|Dx|, ∑|Dy|) of cell1 as illustrated in Fig.2.19. The four-dimensional vectors,

consisting of components ∑Dx, ∑|Dx|, ∑Dy and ∑|Dy|, are eventually outputted for parallel

window-level Haar-like feature vector construction and partial object recognition at the

same time.

Fig.2. 19 Part of the data flow for accumulating the sub-cell responses Dx inside one cell.

Intermediate calculation results of the sequential sub-cells are saved in the second

storage in Fig.2.18, which also apply dual-port memory for preventing from accessing

conflicts. Given an image with width w, w/8 intermediate cell-summation results for one

cell row have to be stored. The storage space of the second dual-port memory can also be

overwritten afterwards during processing of the next cell row, once the processing for the

previous cell row is completed. Specifically, only w/8=128 words for temporary

summations of the two 16-bit horizontal cell-based dimensions (i.e., ∑Dx and ∑|Dx|) and

the two 16-bit vertical cell-based dimensions (i.e., ∑Dy and ∑|Dy|) have to be stored in

the second storage, respectively.

In conclusion, the proposed pixel-based pipeline cell-feature extraction architecture

synchronizes with the image sensor, image buffering and integral image calculation

become completely unnecessary.

2.3.4 Flexible regulation for unlimited image height

There is a pipeline controller shown in the overall architecture in Fig.2.11, which

mainly manages to written and read addresses for the two dual-port memories, as well as

selection signals for the six multiplexers and load signals for the registers.

Corresponding to the two types of circuitry for computing and accumulating the

horizontal Dx responses as mentioned above, there are also two types of control circuits

implemented in the pipeline controller.

The first type of implemented circuitry for pipelined processing control is shown in

detail in Fig.2.20, which is composed of three 1-bit counters, two 2-bit counters, 14 logic

gates and three variable counters. The left part of the controlling circuit in Fig. 2.20 can

…

…

…
Dx[1]+Dx[2]

+Dx[w/4+1]

Dx[3]+Dx[4]Dx[3]+0Dx[1]+Dx[2]Dx[1]+0
Dx[w/4-1]+

Dx[w/4]
Dx[w/4-1]+0…

Memory

Address

21 w/8…

Dx[3]+Dx[4]

+Dx[w/4+3]

Dx[1]+Dx[2]

+Dx[w/4+1]-

Dx[w/4+2]

…

∑Dx[1] ∑Dx[2]

Dx[3]+Dx[4]

+Dx[w/4+3]

+Dx[w/4+4]

∑Dx[w/8]

Dx[w/4-

1]+Dx[w/4]

+Dx[w/2-1]

Dx[w/4-1]+Dx[w/4]

+Dx[w/2-1]

+Dx[w/2]

Dx[w/2+1]

+Dx[w/2+2]+

Dx[w+1]

Dx[w/2+3]

+Dx[w/2+4]
Dx[w/2+3]+0

Dx[w/2+1]

+Dx[w/2+2]
Dx[w/2+1]+0 Dx[w-1]+Dx[w]Dx[w-1]+0…

Memory

Address

21 w/8…

Dx[w/2+3]+Dx[w

/2+4]+Dx[w+3]

Dx[w/2+1]+

Dx[w/2+2]+

Dx[w+1]+Dx[w+2]

…
Dx[w/2+3]+Dx[w/

2+4]+Dx[w+3]+D

x[w+4]

Dx[w-1]

+Dx[w]+Dx[2w-

1]

Dx[w-1]+Dx[w]

+Dx[2w-1]+Dx[2w]

∑Dx[w/8+1] ∑Dx[w/8+2] ∑Dx[w/4]

Chapter 2

45

be utilized for controlling the computational circuitry in Fig.2.12, while the right part of

the circuit in Fig. 2.20 is applied for managing the accumulation inside one cell for the

circuitry as illustrated in Fig.2.18.

Fig.2. 20 Implemented circuitry for processing control with unlimited image height to generate cell-based

feature vectors.

Specifically, variable ⌈log2(M)⌉-bit and ⌈log2(N)⌉-bit counters control the memory

usage of the first storage during Dx calculation for one sub-cell row in images of width w.

For computing Dx responses with the independent calculation for left- and right- part of

a sub-cell, the parameters should be set as M=2, N= w/M. As the output signals of these

variable counters are directly created under the inputted image width w, they can change

the final output enable signals, such as ‘EN1’ for the multiplexer MUX1 and ‘EN2’ for

the multiplexer MUX2 in Fig.2.18. The read/write addresses of the second storage for the

accumulation of the 4 components of each local cell-feature vector are assigned by a

⌈log2(P)⌉-bit counter, where P= w/8. The generated address ‘Addr1’ is applied for written

and read address for the first storage (dual-port memory) while the address ‘Addr2’ is

applied for written and read address for the second storage shown in the overall

architecture in Fig.2.11.

Since the left- and right- parts of one sub-cell are separately computed, the computed

results are temporarily stored in two registers respectively, so that two divisive enable

signals ‘Load_left’ and ‘Load_right’ should be created for loading correct data to the

registers. The final cell-based feature vectors of each cell will be latched into a register

by the enable signal of ‘Load_FV’. In conclusion, the counter group would dimension the

desired memory space and processing clock circles with responding to the image width

w.

log2(N)-bit

counter

&

START

R
E

G log2(M)-bit

counter
2-bit

counter&

1-bit
counter

R
E

G

REG

EN3Addr 1

OR

NOT

&

N
O

T

REG

REG

Load_left

SELECTOR
en10

EN4 Load_right

N=w/MM=2

log2(P)-bit

counter

P=w/8

R
E

G 2-bit

counter

&

&

1-bit

counter

&

Addr 2

REG

EN2 EN1

NOT

&

NOT

R
E

G

Load_FV

1-bit
counter

Chapter 2

46

Fig.2. 21 Alternatively implemented circuitry for processing control with unlimited image height to

generate cell-based feature vectors.

Comparing to the implementation shown in Fig.2.20, the left part of the circuitry in

Fig.2.21 is much simpler. This scheme can be applied for controlling the computation of

both horizontal Dx results and vertical Dy results of a 4×4-pixel sub-cell. Thus the variable

input parameter M is equal to 4 and N is still equal to w/M. For instance, the output

enables signals ‘EN5’ and ‘EN6’ can be applied for selecting control for multiplexers

MUX5 and MUX6 respectively when computing the vertical Dy results inside one cell.

Another enable signal ‘Load_sum’ is used for loading the final summation of one sub-

cell to a register. The right part of this circuitry is the same as implementation shown in

Fig.2.20. Under the control of above two types of circuitries, the feature extraction

architecture shown in Fig.2.11 can be applied for flexible image resolutions with

unlimited height h.

TABLE II. I

Necessary Bit Width of Counters and Memory Requirements as a function of Image Width

Image Width

(w pixel)

Bit Width

⌈log2(w/2)⌉-bit counter

Bit Width

⌈log2(w/4)⌉-bit counter

Bit Width

⌈log2(w/8)⌉-bit counter

Memory

(words)

256 7 bits 6 bits 5 bits 320

512 8 bits 7 bits 6 bits 640

640 9 bits 8 bits 7 bits 1280

1024 9 bits 8 bits 7 bits 1280

1920 10 bits 9 bits 8 bits 2560

2048 10 bits 9 bits 8 bits 2560

Table II.I summarizes the total number of the required 16-bit memory words and the

variable-counter width for local cell-feature-vector calculation in relation to the image

width w. Consequently, 9-, 8- and 7-bit counters are sufficient to create up to 512, 256

and 128 read/write addresses for the Dx part and Dy part in the first storage and the second

storage, respectively, to support 1024 pixels of the image width.

log2(N)-bit

counter

START

R
E

G log2(M)-bit

counter

2-bit
counter

&

EN5Addr 1

OR

NOT
REG

Load_sum

O
R

N
O

T

EN6

R
E

G

N=w/MM=4

log2(P)-bit

counter

P=w/8

R
E

G 2-bit

counter

&

&

1-bit

counter

&

Addr 2

REG

EN2 EN1

NOT

&

NOT

R
E

G

Load_FV

1-bit
counter

Chapter 2

47

2.4 Experimental VLSI-implementation result

and discussion

A VLSI prototype of the Haar-like feature-extraction coprocessor was implemented

in Rohm 180nm CMOS technology with 1.76 mm2 (1.82 mm×0.97 mm) core area, as

shown in the photomicrograph of Fig. 2.22.

Chip operation at up to 120 MHz is verified for VGA(640×480 pixels)-size video

frames with a short processing time of 3.072 ms (i.e., 325 fps frame rate), the low power

dissipation of 43.45 mW working at the 1.8V supply voltage. The lower working

frequency leads to lower power dissipation according to different speed requirements of

various applications. Figure 2.23 demonstrates the power consumptions over a range of

supply voltages and operating frequencies.

Fig.2. 22 Microphotograph and parameters of the fabricated chip in 180 nm CMOS technology for cell-

based Simplified-SURF feature extraction with 1.76 mm2 (1.82 mm×0.97 mm) core area.

Fig.2. 23 Power consumption of the fabricated coprocessor at different working frequencies and different

supply voltages.

The power consumption of this coprocessor is 4.78 mW at 1.8 V supply voltage and

12.5 MHz frequency, which is sufficient for processing 30 fps VGA images from general

image sensors. The more performance of the proposed pipelined hardware scheme for

0
.9

7
m

m

1.82mm

Core area 1.76 mm
2

Supply voltage 1.8 V

Frequency 120 MHz

Power
consumption 43.45 mW

Search time
(VGA)

3.072 ms

Chapter 2

48

local cell-based simplified-SURF descriptor applied Haar-like feature vector is

summarized in Table II.II.

TABLE II. II

Performance of the Proposed Hardware Architecture for the Simplified-SURF Descriptor when

applied to Haar-like Feature Vectors

Technology 180 nm SOTB CMOS

Die area 1.76 mm2

Design target Feature extraction

Extraction scope Entire frame

Image resolution 1024×∞ pixels

Feature type Haar-like hardware

Frequency 120 MHz

Core/IO voltage 1.8 V/ 3.3 V

Power 43.45 mW

Maximum frame rate 325 fps (VGA)

Memory usage 12 kB

In our ASIC realization, a storage space of 1024 16-bit words is implemented for both

Dx and Dy calculation of the sub-cells. On the other hand, 512 words of 64-bit precision

are implemented in the second storage of our fabricated prototype coprocessor and are

assigned for summation of the cell-feature vector components of one cell row, meaning

that 32 kb of dual-port memory is consumed for completing the local four-dimensional

cell-feature vectors. Consequently, only 64 kb of storage space has to be assigned to the

overall circuitry for local cell-feature vector extraction to enable the processing of images

with up to 1024-pixel width and unlimited height. Another 32 kb of SRAM (Static

Random-Access Memory) space is served as FIFO (First In First Out) for buffering cell-

based feature vectors, which are further used for high-dimensional window-based feature

construction for recognizing target objects. In conclusion, only a small memory size of

only 96 kb (i.e., 12 kB) is sufficient for realizing the flexible image-size processing (up

to 1024 pixels × ∞ pixels) with our hardware architecture.

2.5 Conclusion

A pixel-based pipelined hardware architecture for extracting a simplified SURF

descriptor, which relies on Haar-like feature vectors of image cells, is developed in this

research. The architecture immediately processes every input pixel without pre-storage

of raw images and reuses memory space for local cell-based feature-vector calculation of

different cell rows in the processed image, making it highly flexible for multi-size image

processing with low memory requirements. Due to the flexibility in image resolution, the

Chapter 2

49

prototype chip can deal with a maximum width w of 1024 pixels and an unlimited height

h. Specifically, a sub-cell with 4×4 pixels and a cell with fixed 2×2 sub-cells are defined

in this section to capture sufficient details of the target object. Since the proposed scheme

shortens the critical path and the searching time of pixel positions, the redundant

computing cost is greatly reduced. A VLSI prototype for cell-based feature extraction of

all sliding windows across the image frame was implemented in 180 nm CMOS

technology, which is verified with the achievement of very fast real-time processing

speed and high energy efficiency.

Chapter 2

50

References

[1] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust features,” in Proc.

Computer vision–ECCV2006, Graz, Austria, 2006, pp. 404-417.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features

(SURF),” Computer vision and image understanding, vol.110, no.3, pp. 346-359, Jun.

2008.

[3] A. Haar, Math. Ann, “Zur theorie der orthogonalen

funktionensysteme,” Mathematische Annalen, vol.69, no.3, pp.331-371, 1910 [in

German].

[4] D. Jeon, M. B. Henry, Y. Kim, I. Lee, Z. Zhang, D. Blaauw, and D. Sylvester, “An

energy efficient full-frame feature extraction accelerator with shift-latch FIFO in 28

nm CMOS,” IEEE Journal of Solid-State Circuits, vol.49, no.5, pp.1271-1284, 2014.

[5] R. Lienhart, and J. Maydt, “An extended set of haar-like features for rapid object

detection,” In Proc. Image Processing ICIP, vol. 1, pp. 900-903, 2002.

[6] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, “FPGA-based face detection system

using haar classifiers,” in Proc. ACM/SIGDA international symposium on Field

programmable gate arrays, pp. 103-112, Feb. 2009.

[7] Q. Chen, N. D. Georganas, and E. M. Petriu, “Real-time vision-based hand gesture

recognition using Haar-like features,” in Proc. IMTC. pp. 1-6, May, 2007.

[8] A. Mohan, C. Papageorgiou, T. Poggio, “Example-based object detection in images

by components,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.23,

no.4, pp. 349-361, 2001.

[9] C. P. Papageorgiou, M. Oren, and T. Poggio, “A general framework for object detection,”

In Proc. Computer Vision, pp. 555-562, Jan. 1998.

Chapter 3

51

Chapter 3

Sliding-Window Approach

3.1 Introduction

In the former two chapters, a cell-based feature extraction architecture and a block-

based normalization, applied to the sequential cell-based feature vectors (FVs), have been

proposed. In order to recognize a target object, an appropriate region which matches the

target object should be represented by the FVs. The image cell (e.g., 8×8 pixels) and block

(e.g., 16×16 pixels) are generally too small to completely reflect the essential information

for a common object, such as a car (e.g., 128×64 pixels), a pedestrian (e.g., 64×128 pixels),

a face (e.g., 64×64 pixels), etc. Thus relatively large groups of square-shaped cells or

blocks, which are both important for extracting sufficient pictorial information in detail

for feature representation of local regions (i.e., cells and blocks), are generally combined

for constructing a high-dimensional window whose size is mapped to the size of the target

objects. The feature descriptor with a window-based localization is a crucial factor for

accurate object recognition basing on a sliding-window strategy.

The sliding-window strategy has been proved to be competitive in terms of

classification performance for a large variety of detection tasks and many state-of-the-art

paradigms [1-5]. The designated sizes of the scan window (SW) are depended on location

and size of different target objects in the image. The SW feature vector quantifies the

similarity of contained objects to reference SWs for the recognition process.

Two schemes are proposed for window-based feature construction in this research.

One of the feature representation schemes is a direct decoding from reutilization

information of each cell with a new concept called “regular rule of reusing times” (RRRT).

The other scheme for window-based feature representation is to arrange the normalized

block-based feature components without frequent accesses to the cell-based components.

Specifically, this research applies an overlapped sliding-window approach to the

simplified-SURF descriptor for covering the entire image and employs Haar-like FVs for

the whole image, instead of extracting FVs only around the interest points as in the

previous SURF algorithms [6-7]. The extracted Haar-like responses are used for window-

Chapter 3

52

based FV construction for the proposed simplified-SURF descriptor to recognize the

target objects within the SWs.

3.2 Hardware implementation in terms of cell-

based feature components

On the basis of feature components on cells, the 2×2-cell block feature vector can be

represented by cell-FVs. The feature components of the four cells of each block are

arranged in zigzag order to form higher dimensional block-feature vectors for feature

descriptor.

On one hand, with the block movement by one cell in raster manner inside a window

for constructing the high-dimensional feature vector of the entire scan window (SW), as

illustrated in Fig.3.1, the local cell-FV becomes the basic component and each cell can

be covered by up to four overlapped blocks.

Fig.3. 1 Movement rule of detection windows and blocks.

window shifts by
2 cells

Raster scan

Input image

block shifts
by 1 cell

2 cells

1 cell: 8×8 pixels

2
 c

e
lls

Wwi pixels

W
h

e p
ixe

ls

Overlapped
windows

1 window

Overlapped
blocks

Chapter 3

53

On the other hand, with the window movement by one non-overlapped block stride

(i.e., two-cell stride) in a row-raster-scan manner, the local cell can be overlapped and

revoked for window construction in multiple times when sliding the window for capturing

all target objects within the complete image. In other words, the local cell-FVs can be

reused by both blocks and windows during the feature space construction and the

synchronous detection procedure.

In order to apply the local cell-based feature components directly without

recalculation for block components, the regular rule of local cells constrained by the inner

block movement inside a SW and the window movement inside an image should be

determined. So that each cell-based local feature vector is scanned and extracted only

once without complex re-computations, and reutilized for all corresponding blocks and

SWs.

3.2.1 Regular rule within one window

3.2.1.1. RRRT rule and window FV dimensionality

The image region of a block is represented by 2×2 cells in this research. As an

alternative hardware solution to traditional window-sliding strategies, a cell-based

perspective for window search and construction is used for confirming the reusing times

of each cell located in one SW. The proposed sliding-window algorithm mainly confirms

the cell location in each window to which the current cell belongs so that the partial local

FV components at the corresponding window position are correctly invoked for feature

representation and object detection.

The location of one cell within the SW determines the reused time of the current cell

in this window due to the moving manner of the overlapped blocks. As the block slides

by one cell within one SW in raster scan manner, it causes reutilization of cells in different

overlapped blocks, as illustrated in Fig.3.2, depending on their respective positions within

the window. The recycling time or reusing time R of a cell in a SW varies with changes

of the block size.

Specifically, shifting of 2×2-cell blocks by one cell in the horizontal and vertical

direction on the SW results in three reused cases for cell-FVs. As indicated in right part

of Fig.3.2, the cells at corner, edge and internal positions in the SW, which are marked in

different colors, are overlapped by 1, 2 and 4 blocks, respectively, illustrating that the

corresponding cell-FVs are used by 1, 2 and 4 times for the window-based FV

construction. All the sequential cells outputted from the feature extracting circuits such

as the simplified-SURF scheme in Fig.2.8 in different windows are abided in the same

way.

Chapter 3

54

Consequently, the regular rule of local cells on blocks within a window can be

summarized by a regular rule of reusing times (RRRT) and revoked for the feature

descriptor construction in every SW by decoding according to the inner cell position

within the SW.

By exploiting the cell-overlapping characteristics of blocks, the concept of the block

in this research loses its sense of presence in the SW-feature vector construction.

Fig.3. 2 Cell locations in one 64×128-pixel window and its covering times by overlapping blocks. Three

kinds of cells, located at corner, edge, and interior of the window are reused for window-based FV

construction in 1, 2 or 4 overlapping blocks, respectively.

In other words, the whole feature extraction procedure of the SW is based on the local

cell-FVs and their corresponding reused times RRRT which are depended on the cell

position within each SW.

Consequently, all cells of one SW are scanned only once respectively and then

construct the window-level feature descriptor vector together with dimensionality dSW

according to Eq.3.1 as follows:

𝑑𝑆𝑊 = 𝑑𝑐 ∗ ∑ 𝑅(𝑖)𝑖=𝑘
𝑖=1 (3.1)

where dc is the dimensionality of the local cell-based FV, R(i) represents the RRRT

value corresponding to the ith cell celli within the window, and k is on behalf of the total

cell number in one SW.

For instance, there are 128 cells in the 64×128-pixel SW and each local 8×8-pixel

cell contains dc=4 local dimensional feature components, as discussed in Chapter 2, for

the proposed simplified SURF descriptor, resulting in dSW =1680 dimensions according

cell

1
2
8

p
i
x
e
l
s

64 pixels

cell position

RRRT

Belong to 1 block

Current cell

Neighbor cells

Belong to 2 blocks

Belong to 4 blocks

Non-overlapped cell

1. Corner

2. Edge

3. Interior

2 11
4 22
4 22

2
4
4

2 2 2
4 4 4
4 4 4

2
4
4

4 22
4 22
4 22

4
4
4

4 4 4
4 4 4
4 4 4

4
4
4

4 22
4 22
4 22

4
4
4

4 4 4
4 4 4
4 4 4

4
4
4

4 22
4 22
4 22

4
4
4

4 4 4
4 4 4
4 4 4

4
4
4

4 22
4 22

4
4

4 4 4
4 4 4

4
4

4 22
2 11

4
2

4 4 4
2 2 2

4
2

8 cells

1
6

c
e
l
l
s

Chapter 3

55

to the RRRT rule.

As illustrated in Fig.3.3, The Haar-like responses of all sub-cells, located in the same

cell, are added up and form a local cell-based FV. An image cell for the simplified SURF

descriptor contains four sub-cells of 4×4 pixels each. The four cells within a block are

arranged in raster manner to form 16 dimensional block-FVs basing on 4-dimensional

cell-FVs (∑Dx, ∑|Dx| and ∑Dy, ∑|Dy|) each, from which the SW feature vector is

constructed. Thus, 1680 dimensions Haar-like FV can be obtained by arranging the 16-

dimension block-FVs from the four cell-FVs in sequence according to the block

movement in a SW.

Consequently, the dimensionality 𝑑𝑆𝑊 of a SW-FV can be accumulated on the basis

of the local cell-FVs by decoding the RRRT value according to the corresponding cell

position within one SW. The regular rule of RRRT has already embodied the

characteristics of blocks by the cell-FV reutilization. This cell-based SW scheme leads to

great improvement in computational-cost reduction in comparison to previous designs.

Fig.3. 3 Construction of a simplified SURF descriptor from local Haar-like feature vectors.

3.2.1.2. Regulation of window size

Similar to the effect of cell size and block size, larger window size also leads to a

slower processing speed for extracting the window-level FV. The dimensionality 𝑑𝑆𝑊

of a window-level FV in flexible size can be calculated on the basis of the dc-dimensional

cell-FVs by Eq.3.1 or Eq.3.2 as follows:

Dx

Current cell

Neighbor cells

Block:2×2 cells

2 cells

Cell:2×2 sub-cells

8 pixels

sub-cell0 sub-cell1

sub-cell2 sub-cell3

sub-cell0

sub-cell1

sub-cell2

sub-cell3

Dx Dy |Dx| |Dy|

4 dimensions in 1 cell

∑Dx∑Dy∑|Dx|∑|Dy|

0

Dy

4 pixels

1 sub-cell

1 sub-cell1 window

Wwi pixels

W
h

e
p

ix
e

ls

Cell 0

0

16 dimensions in 1 block

Cell 3

block
movement
by 1 cell

4

p
ix

el
s

Cell 1 Cell 2

corner 1 block
edge

internal

∑Dx
∑Dy
∑|Dx|
∑|Dy|

Chapter 3

56

𝑑𝑆𝑊 = (𝑁𝑐𝑜𝑟𝑛𝑒𝑟 × 1 + 𝑁𝑒𝑑𝑔𝑒 × 2 + 𝑁𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 × 4) × 𝑑𝑐 (3.2)

Here, the parameters Ncorner, Nedge and Ninterior represent the amount of corner-, edge-

and interior-located cells in the SW. The values of these three parameters are related to

the window size (Wwi pixels × Whe pixels), which leads to various window-FV

dimensionalities depending on the SW size.

The designated size of a SW and its sub-regions are mainly determined by the size of

target objects in the image. For example, in [9], a window in size of 64 (width) × 128

(height) pixels is selected for human detection. Different components such as head, legs,

and arms are further identified by various sub-regions with 42×42 pixels, 69×46 pixels,

or 47×31 pixels, respectively.

Figure 3.4 shows the dimensionality-calculation method for the Haar-like SW-feature

vectors applied in the simplified-SURF descriptor of our research.

Fig.3. 4 Dimensionality determination of Haar-like SW-feature vectors for different SW-sizes,

constructed from the local four-dimensional cell-feature vectors vcell, which serve as the basic components

for a holistic Haar-like SW-feature vector of the proposed simplified-SURF descriptor.

8 cells

1
6

 c
el

ls

0

1680 dimensions

…

corner: 4 cells
edge: 40 cells
internal: 84 cells

corner: 4 cells
edge: 40 cells
internal: 84 cells

0

784 dimensions

…

0

1232 dimensions

…

0

1680 dimensions

…

16 cells

corner: 4 cells
edge: 32 cells
internal: 60 cells

corner: 4 cells
edge: 24 cells
internal: 36 cells

8 cells

8
 c

el
ls

10 cells

8
 c

el
ls

8
 c

el
ls

(Ncorner×1+Nedge×2+Ninternal×4)×dc
dimensions

Chapter 3

57

The SW sizes are 128×64 pixels, 96×64 pixels, 64×64 pixels and 64×128 pixels,

adapted to different target objects (e.g., cars, faces, and pedestrians) of variable scales.

Image resolution flexibility with different SW sizes can be applied to match varying types

of multi-scale processing.

In other words, the corresponding adaptability to different object types results from

the flexibility of the developed hardware architecture with respect to the SW size.

Specifically, the raster block movement in a SW of 64×128 pixels or 8×16 cells results

in 4 corner cells, 40 edge cells, and 84 interior cells. Therefore, the proposed simplified

SURF descriptor, using Haar-like four-dimensional cell-FVs, owns (4×1+40×2+84×4) ×

4 =1680 dimensions in case of 64×128-pixel SWs. On the other hand, a dimensionality

of (4×1+24×2+36×4) × 4=784 is obtained for a 64×64-pixel SW. The dimensionality for

other SW sizes is calculated likewise according to Eq.3.2. The variety and variability of

window size can be able to apply for multi-scale image pyramid as well, which is with

similar properties for image pyramid as the cell size illustrated in section 4.2.2.

3.2.2 Regular rule within an image

For recognizing the object in a designated region (i.e. SW in this research), the local

cell-based feature components, such as the four-dimensional Haar-like feature

components (∑Dx, ∑|Dx| and ∑Dy, ∑|Dy|) in the simplified SURF descriptor, have to be

organized for SW-level description. Since SWs are moved in a non-overlapped block

stride (i.e. 2×2 cells) for searching the complete image in the raster sliding-window

paradigm, most cells are overlapped by multiple SWs.

Since the SW is shifted in block units across the image, the total amount of SWs can

be confirmed. Given an entire input image with w × h pixels, the maximal window

number N in horizontal direction and M in the vertical direction can be inferred from

Eq.3.3, where Wwi and Whe are width and height of the designated SW, respectively, and

Bs is the square-block size, which is 16 in our case. Thus, based on a 64×128-pixel SW,

a VGA (640×480 pixels) image is divided into N × M = 37 × 23 = 851 mutually

overlapping SWs, while there are N × M = 61 × 41 = 2501 SWs for XGA (1024 × 768

pixels) images.

{
𝑁 =

𝑤−𝑊𝑤𝑖

𝐵𝑠
+ 1

𝑀 =
ℎ−𝑊ℎ𝑒

𝐵𝑠
+ 1

 (3.3)

In order to enhance the computational capability of SW-level feature extraction, all

Chapter 3

58

SWs overlapping a given cell are processed in parallel in this work. Usually, a cell is

located in multiple SWs due to the shifting by block units across the image. Therefore,

the local cell-FV can be reused for multiple SWs. In other words, not only the overlapping

blocks as illustrated in Fig.3.2 but also the related overlapping SWs can invoke the four-

dimensional cell-feature vectors simultaneously.

To specify the reusing time by overlapping SWs of the current cell (i.e., the cell in

blue shown in the input image of Fig.3.5), the number of overlapping SWs must be

determined according to the SW size and the cell location in the input image.

For a designated SW size of Wwi pixels × Whe pixels, a given cell can be located in up

to Wwi/Bs overlapping SWs in the horizontal direction and Whe/Bs overlapping SWs in the

vertical direction. In case of SWs with a size of 64×64 pixels (8×8 cells), the number of

overlapping SWs in which each cell (block) is located, is illustrated in Fig.3.5. The four

cells located in the first block belong all to only one SW (i.e. the first SW), while the 7th

cell in the 7th cell row, highlighted with blue color in Fig.3.5, is located in 4×4=16 SWs.

Fig.3. 5 Covering times of each cell (block) by 8×8-cell SWs shifted in block units according to a raster-

sliding scheme.

1 2 3 4 4 4 4 4 2 1

2 4 6 8 8 8 8 8 4 2

3

6

3 6 9 12 12 12 12 12 6 3

4 8 12 16 16 16 16 8 4

9

12

4 8 12 16 16 16 16 16 8 412

4 8 12 16 16 16 16 16 8 412

4 8 12 16 16 16 16 16 8 412

1 2 3 4 4 4 4 4 2 13

2 4 6 8 8 8 8 8 4 26

3 6 9 12 12 12 12 12 6 39

4 8 12 16 16 16 16 16 8 412

...

...

...

...

...
...

...

...

...

...

...

...

...

...

The current cell

Input image

...

16

Maximal number
of overlapping
windows

4

8

12

16

16

16

16

4

8

12

16

8 cells

8
 c

e
lls

4 8 12 16 16 16 16 16 8 41216

Scan Window
Overlapping
window number

Chapter 3

59

For a SW with a size of 64×64 pixels (8×8 cells), up to 16 SWs can be overlapping

on a cell simultaneously if the image is larger than 14×14 cells. All the 16 related windows

are illustrated respectively in Fig.3.6. As the current 8×8-pixel cell marked in blue is

located in all the 8×8-cell SW (even at different places), the cell-FV is a part of a

components of all 16 windows. As the current cell is only scanned and computed for once,

all the calculations related to the current cell-FV for each SW should be completed in

sequence. The 7th cell in the 7th cell row in the image is locating at the 7th row and the 7th

column in the first window W1, but it is also locating at the 7th row and the 5th column in

the second window W2, etc. The sequentially inputted cell-FVs will be invoked instantly

for all related SWs overlapping on the current cell, although the resulting partial feature

components of different windows are available at different accomplishment ratio as

shown in Fig.3.7.

Changes in the SW size cause also changes of the maximal number of SWs

overlapping a given cell. For instance, in case of 64×128-pixel SWs, up to 32 SWs are

overlapping an 8×8-pixel cell, because there are up to Wwi/Bs=4 and Whe/Bs=8 SWs in the

horizontal and vertical direction in a large enough image, respectively.

Fig.3. 6 Corresponding positions of the current cell in each related 8×8-cell SW during parallel FV

construction.

W1 W2 W3 W4

W5 W6 W7 W8

W9 W10 W11 W12

W13 W14 W15 W16

Cell locations in
multiple SWs

Parallel FV construction for
multiple overlapped windows

Chapter 3

60

Fig.3. 7 Corresponding accomplishment ratio of the current cell in each related 8×8-cell SW during

parallel FV construction.

Thus a parallelized scheme for window-based feature space construction is essential

for speeding up the data processing. All cell-FVs in the entire image are extracted only

once, then stored temporarily and afterwards reutilized for all related blocks and SWs, to

avoid complex re-computation. Thus computational cost and complexity of the feature

extraction are significantly reduced. Furthermore, the storage space for one row of SWs

should be overwritten for next row of SWs, which results in much less storage

requirement than in the previous research.

3.2.3 Implementation of parallel window-feature-vector

construction

To compute all related SWs basing on the current cell, a parallel processing scheme

has to be proposed. In this research, the window index (WI) or window address (WA)

represents the relationships about all related SWs based on the current cell, which is

utilized to assign the certain order for organizing the cell-FV components to each

corresponding window-level FV.

A cell-based window scan circuitry is proposed for mainly confirming the cell

location in each SW that the current cell belongs to, so that the partial local cell-FV

components at the corresponding SW position are correctly invoked for feature

construction and object recognition. The developed parallel SW (PSW) method, which

exploits simultaneous processing of multiple SWs, operates with cell-FVs and takes

advantage of the reusing times RRRT of cells in each related SW.

Specifically, each cell-FV from the feature extraction circuitry carries specific

information corresponding to its cell position within the multidimensional SW-FV. For

W1 W2 W3 W4
0

1

Accomplishment ratio

W5 W6 W7 W8 W9 W10 W11 W12W13 W14 W15 W16

Chapter 3

61

example, the cell C[c,r] represents the cell that locates at cth column and rth row of the

image.

From the sliding steps of the sliding-window algorithm and the cell’s column (c) and

row (r) indices, the initial-window address (IWA) Wi(n) can be derived as illustrated in

Fig. 3.8, where the index i(n) represents the first SW containing the current cell C[c,r].

On the basis of the parameters c and r indices from one cell, its corresponding IWA can

be computed according to the conditions constrained as the flowchart in Fig.3.8. The

value of the index i(n) depends on the location of the current cell C[c,r] and the SW size,

where n=c+(r-1)·w/8 represents the order number of the current 8×8-pixel cell C[c,r] in

the input-cell sequences for an image width of w pixels.

Furthermore, the number of SWs, in which the 8×8-pixel cell C[c,r] is located, can be

calculated from the cell’s position. The multiplication parameters in horizontal and in

vertical directions illustrate the number of overlapping scan windows (OSWs) containing

C[c,r] in these directions. The total number of OSWs is calculated as hor×ver.

Fig.3. 8 Flowchart for deciding the index i(n) and the IWA (initial-window address) Wi(n).

Apart from the four cell-FV components, multiple SWs and cell positions in each SW

are associated with each cell.

For each SW in which the cell is located, the cell position corresponds to a cell address

within the window. The window number corresponding to different cell positions are

initialized in a look-up-table. The numbers of SWs in a w×h-pixel image in horizontal

(hor) and vertical (ver) direction are summarized in Table III.I and Table III.II.

 c≤8 & r≤16?

C[c,r]

i(n) = 1

r≤16? c mod 2=0? i (n)= i(n-1)

YES

NO

i (n)= i(n-1)+1

YES YES

NO NO

c≤8? r mod 2=0?

NO

i(n)=N·⌊(r-16)/2⌋+1
YES

c mod 2=0?

NO

YES

YES

NO

Initial- window
address

 (IWA): Wi(n)

i(n)

i(n)=N·⌊(r-16)/2+1⌋+1

n =c+(r-1)·w/8

Chapter 3

62

TABLE III. I

Window numbers for cell-row index c in horizontal direction of w-width images

c 1~2 3~4 5~6 7~8 9~10 11~12 13~14 15~w/8-14 w/8-13 ~ w/8-12 … w/8-1~w/8

hor 1 2 3 4 5 6 7 8 7 … 1

TABLE III. II

Window numbers for cell-column index r in vertical direction of h-height images

r 1~2 3~4 5~6 7~(h/8-6) (h/8-5)~(h/8-4) (h/8-3)~(h/8-2) (h/8-1)~h/8

ver 1 2 3 4 3 2 1

Figure 3.9 illustrates the window distribution in an input image with w× h pixels,

operating with 8×8-pixel cell and 2×2-cell block, where Eq.3.3 defines N that represents

the window number in one row when window sweeps within a block stride.

Fig.3. 9 Distribution of window order in an input image with w × h pixels, operating with 8×8-pixel cells

and 2×2-cell blocks.

Based on the IWA index i(n), the window number j and k in horizontal and vertical

directions respectively, which are initialized in a look-up-table, the indices of all OSWs

containing C[c,r] can be obtained by Eq.3.4.

𝐼𝑛𝑑𝑒𝑥 = {𝑖(𝑛) + j + N ∙ k}, j ∈ [0, hor − 1], k ∈ [0, ver − 1] (3.4)

Figure 3.10 summarizes the design flow for parallel window construction of FV space

according to the separate regular rules within a window and an image. Since the RRRT

value can be obtained on the basis of the regular rule within a window and the index of

each OSW can be computed in accordance with the regular rule within an image, each

...

block

16pixels

1
6

p
ix

el
s

w pixels

h
 p

ixels

...

...

W

1W
2W 3W 4W

NW3

W

NW21N

W 12 N

N

8pixels

cellcell

cellcell

8
p

ix
el

s

Chapter 3

63

OSW can be operated in parallel by applied the RRRT value.

Fig.3. 10 Design flow for parallel window construction basing on the RRRT and the Index of all OSWs.

When a 64×128-pixel SW contains the current cell, its responding coefficients as, bs,

cs, or ds (s∈[0,7]) in Eq.3.5 are ‘1.’ Otherwise, its responding coefficients are ‘0.’ As listed

in Table III.I and III.II for the case of a SW with 64×128 pixels, the maximal value of hor

is ‘4’ while the maximal value of ver is ‘8’. Therefore, one cell can be covered in up to

4×8=32 OSWs.

For example, the cell C[8,3] as in the VGA (640×480 pixels) image is taken as the

current cell.





































37*)(727*)(717*)(77*)(7

33*)(323*)(313*)(33*)(3

32*)(222*)(212*)(22*)(2

31*)(121*)(111*)(11*)(1

3)(02)(01)(0)(0

............

NniNniNniNni

NniNniNniNni

NniNniNniNni

NniNniNniNni

nininini

WdWcWbWa

WdWcWbWa

WdWcWbWa

WdWcWbWa

WdWcWbWa

 (3.5)

Through the lookup tables (Tables III.I and III.II), C[8,3] is contained in eight OSWs,

as illustrated in Fig.3.11, since hor is four in the horizontal direction and ver is two in the

vertical direction. The initial window Wi(n) of C[8,3] is the first window W1 (i(n)=1) of

these eight OSWs, which can be derived from the first condition in the flowchart of Fig.

3.8. Therefore, eight coefficients of the parameter corresponding to the eight OSWs can

be calculated by Eq.3.5.

Cell location

calculation

1) IWA

2) hor

3) ver

c

r

Cell position in

one SW (corner,

edge, internal)

RRRT

Index of all

OSWs

Parallel window

construction

Chapter 3

64

Fig.3. 11 Position of cell C[8,3] in a VGA image and its covering times (i.e. ‘8’) by all OSWs when a

SW-size of 8×16-cells is used.

That is, coefficients a0, b0, c0, d0, a1, b1, c1, and d1 in Eq.3.5 are ‘1’ while all other

coefficients are ‘0.’ As a result, the OSW indices for C[8,3] are summarized as

{1,2,3,4,38,39,40,41}. Thus all the overlapping OSWs related to the 8×8-pixel cell C[8,3]

in the VGA image are listed in the matrix in Eq.3.6.

[
𝑊1 𝑊2 𝑊3 𝑊4

𝑊38 𝑊39 𝑊40 𝑊41
] (3.6)

For other cell size, SW sizes and image size, the maximal number of OSWs in

horizontal and vertical directions can change as described in above discussion.

To implement the window algorithm as reported above, a loop control circuit for

generating the window address (WA) and the RRRT value of the current cell C[c,r] for

each of the SWs within the image is proposed as illustrated in Fig.3.12. The multiplication

parameters hor and ver are initialized in the window-look-up-table (WLUT). A cell-

position-look-up-table (CPLUT) is used to determine the reuse times according to RRRT

(i.e. 1, 2, or 4) inside each OSW.

Each SW, declared by Windex, is allocated a separate cache space (storage unit) for

storing the cell location within the SW, which determines the cell’s RRRT value through

look-up in CPLUT. In this way, the reuse times of the current cell-FV in all declared SWs

Windex are calculated.

Cell [8,3]

Chapter 3

65

Fig.3. 12 Architecture for generating the window address (WA) and the RRRT value of the current cell

C[c,r] for each of the SWs within the image, that contains C[c,r].

Each word in the storage unit for intermediate cell addresses of OSWs requires 7-bit

if an OSW consists of 128 cells for 64 × 128-pixel or 128 × 64-pixel SWs. The storage

capacity in CPLUT determines the practicability of the circuit in this research.

Specifically, the storage requirement, i.e., the number of words in the storage unit of the

CPLUT, which depends on the sizes of the input image, SW, and block, is at most

N×Whe/Bs.

The reuse times of the current cell in each OSW define how many vector components

will be processed in parallel for window-level FV construction. For example, in the case

of “2” as the RRRT value of one cell, the number of parallel-processed vector components

is “8,” as the four cell-FV components of the simplified SURF descriptor are used twice.

To record to cell position in each related OSW, 16kbits of memory are assigned, which

allows up to 1024 parallel processed SWs.

After OSW determination, the corresponding components of the reference FVs are

invoked to execute the next stage of object detection according to the cell position in each

OSW (Windex). For instance, the nearest-neighbor-search (NNS) is continued by partial

squared Euclidean distance (PSED) calculation between the newly constructed FV of

each declared OSW and the reference vectors, which will be described in detail in the

following Chapter 5.

Window
index

calculator

Window-
look-up-table

(WLUT)

C[c,r]

0

2

4

D
e

co
d

e
r

IWA

Cell-position-look-up-table
(CPLUT)

Current cell
location
analyzer

All OSWs
finished?

indices of all
OSWs

ver

Windows
polling

Current
window

No

Next
cell

Yes

1~128
1~128

...

1~128
1~128

...

Next
window

Cell reusing
times

c

r

Window
address

(WA)

Storage
unit

W1
W2

Wn×Whe/B

+

1

 base index i

Address

0
Input

OutputM
U

X

hor
Address
selector

={
2, W0

RRRT

REG

2 cells
1, W1

W1

W0

WN-1

2
 c

e
lls

0, WN-1

1

Chapter 3

66

3.3 Hardware implementation with block-based

normalized feature components

The parallel window construction method basing on the concept of RRRT of each cell

in one SW is proposed in above section so that we can reconstruct the scan-window-based

FVs based on the local cell components and a decoding scheme.

To reduce the times of memory access for the relatively large amount of cell number,

another parallel window-level or window-based FV construction method is proposed in

this research. Distinguished from the scheme described in section 3.2, the sliding-

window-based localization for detecting the target objects in the input image is handled

directly by the arrangement of the normalized block-based FVs in this method, rather than

by a decoding scheme from the RRRT for each cell.

A fixed size of 2 × 2 cells is chosen for the image region of a block in this research.

This results in 7×15=105 blocks within a 64×128-pixel window for pedestrian detection,

while 7×7=49 blocks are contained within a 64×64-pixel window for face detection when

a default CS of 8×8 pixels is used. The feature components of the four cells of each block

are arranged in zigzag order to form 4×4=16 dimensional block-feature vectors for

simplified-SURF descriptor and 4×9=36 dimensional block-feature vectors for HOG

descriptor. Note that the regulation of window size mentioned in section 3.2.1.2 still valid

in this block-based normalized FV construction scheme. Thus 1680-dimensional

window-level FV for simplified SURF descriptor and 3780-dimensional window-level

FV for HOG descriptor will be generated for a 64×128-pixel window.

Since the appropriate arrangement of sub-region components for feature construction

in a SW can improve the performance of object detection significantly. The

computational amount for local FV-component arrangement is an important factor to be

considered. The developed pipeline architecture for FV construction is based on

sequential cell-based FVs inputs and the developed parallel block-based L1-norm scheme

reported in Chapter 4.

A feature space construction architecture including the FV normalization procedure

is constituted as illustrated in Fig. 3.13. Four main functional parts, i.e. the parameter

initializing circuit (PIC), the sequential pixel-based pipelined circuit (PBPC), the

reconfigurable block-based normalization circuit (BBNC) and parallel window-based

search circuit (WBSC), in this research.

The serially-inputted raw pixels scanned directly from the image sensor, are

transferred to the sequential PBPC for extracting the local FVs for the cells, without

preprocessing or pre-storage. The processing speed only relies on the pixel-transfer

Chapter 3

67

frequency from the image sensor. The PIC transforms the flexible input-image resolution

into the parameters CNH and CNV according to the customized CS programmable up to

32×32 pixels. As the feature normalization is performed across blocks represented by four

cells, the block size is depended on the customized CS.

Fig.3. 13 Overall hardware architecture for window-based FV construction with block-based

normalization.

The reconfigurable BBNC is implemented by addition, multiplication, bit shift,

decoding, and division with variable input parameters for various cell numbers in

horizontal and vertical directions from PIC. The WBSC is utilized for allocating the

currently normalized block-FVs from the BBNC to all related SWs for parallel

construction of the corresponding FVs for these SWs.

In WBSC, the number and the respective order of related SWs overlapping the current

block are decoded according to the block position in the input image. Since all block-

overlapping SWs related to current blocks are processed in parallel, the SW order for

controlling the write and read addresses of the storage space for the intermediate SW-

based FVs has to be buffered and invocated recursively as well. Each normalized block

is invoked only once and then the local normalized results are reused by all related

windows, to avoid redundant re-computation.

Rather than outputting one cell per time with the previously reported RRRT solution

for cell reutilization in cell-based construction schemes, the local FV-components of four

cells in one block are outputted simultaneously by the BBNC. There is no need to reuse

Horizontal pixel
…

R/W

data

Pixel-based

pipelined circuit

(PBPC)

Block-based

normalization circuit

(BBNC)

local cell
FVs

CNH

Image
sensor

raw
pixels

CNV

…

W
in

d
ow

 a
d
d
re

ss

…
…

1

memory

Window 0

Window 1

Window 2

Window N

…

Window-based search circuit (WBSC)

Image
resolution

R/W

data

…

…

CS

Parameter initializing

circuit (PIC)

CS

10

window-based
FVs

Chapter 3

68

the normalized block-FV components inside the same SW as well since all blocks have

been computed and arranged in raster manner by the BBNC. Additionally, the number of

the SW-internal overlapped blocks is smaller than the cell number. In consequence, the

block-based architecture prompts less computational amount and power consumption for

local FV construction.

Multiple BBNCs in parallel can be applied for simultaneous multi-cell processing,

e.g. applied for block-based FV inputs, so that the hardware architecture for normalization

is not confined by the specific architecture for FV extraction. Moreover, the storage space

for buffering the local cell-based FVs and related partial block FVs is reinitialized after

completion of the processing of one block row.

3.4 Experimental results and discussion

3.4.1 Cell-based feature-vector construction

Vehicle detection is applied for an example to evaluate the efficiency of our proposed

algorithm by software-based simulation as illustrated in Fig. 3.14.

A set of positive samples (i.e. cars), which are collected in the surroundings of

Hiroshima University (HU), and negative samples (i.e. non-cars) from the INRIA dataset

[10] are selected for verification in this work. A reasonable quantity of samples plays a

significant role in establishing sufficient diversity to correctly detect the input data from

the testing dataset [11].

Therefore, 1225 positive samples from the HU dataset and 12180 negative samples

obtained by cropping non-car images from the INRIA dataset are resized to three kinds

of SW sizes, i.e. 128 pixels × 64 pixels, 96 pixels × 64 pixels, and 64 pixels × 64 pixels,

for training. Furthermore, corresponding sizes of 556 positive samples gathered from the

HU dataset and 1812 negative samples cropped from the INRIA dataset are used as the

image set for testing.

The results as shown in Fig.3.14 demonstrate that the classification performance

enhances with the increase of SW size, which determines the feature-vector

dimensionality. The obtained true positive rate (TPR) and true negative rate (TNR) results

indicate a high accuracy of the proposed simplified-SURF descriptor for vehicle

recognition. The high accuracy also testifies the appropriateness of the window-scan step

size chosen in this research.

Chapter 3

69

Fig.3. 14 True positive rate and true negative rate for car recognition with different SW sizes by the

proposed simplified-SURF descriptor.

The one-sided increase of TPR or FPR can also impact the validity of the vehicle-

detecting accuracy (ACC) with different quantities of testing samples according to the

relationship in Eq.3.7. Here P is the number of all positive samples, N represents the

number of non-car samples (negative samples), TP is the number of vehicle images

detected correctly among all positive samples, TN is the number of correctly detected

negative samples among all negative samples, and FP is the number of negative samples

that are detected as positive samples. The specificity (SPC) is an associated variable of

FPR (SPC=1-FPR).

TPR =
TP

P
× 100%; FPR =

FP

N
× 100%; SPC =

TN

N
× 100%; ACC =

TP+TN

P+N
× 100% (3.7)

Rather than using the entire training dataset as reference data for the nearest neighbor

search (NNS), the k-means algorithm is further used to cluster the dataset into k groups.

The centroids of these k groups are finally taken as the reference data for classification.

Since only w/8 cell-based FVs have to be temporarily stored before constructing the

FV of the first window, the memory requirement is again much lower than in the

conventional integral-image-based implementations.

Synchronization with the pixel-input frequency from the image sensor and

parallelized partial processing of multiple relevant SWs lead to flexibility with respect to

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

80%

84%

88%

92%

96%

100%

 SW:128x64 pixels

 SW:96x64 pixels

 SW:64x64 pixelsT
ru

e
 P

o
s
it
iv

e
 R

a
te

Reference Number

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

94%

95%

96%

97%

98%

99%

100%

 SW:128x64 pixels

 SW:96x64 pixels

 SW:64x64 pixels

T
ru

e
 N

e
g

a
ti
v
e

 R
a

te

Chapter 3

70

the size of processed cells, windows, and images. Furthermore, drastically reduces

memory consumption, fast processing speed, and low power dissipation are achieved in

the proposed cell-based window-level FV construction scheme.

3.4.2 Block-based feature-vector construction

Pedestrian detection is employed as an illustration to evaluate the accuracy of the

block-based FV construction method on an equivalent software emulation employing an

advanced 3.30GHz Intel® Core™ i5-4590 CPU and 8 GB of RAM memory.

Fig.3. 15 Pedestrian-detection accuracy as a function of the cluster number, applying a framework

composed by the cell-based simplified-SURF descriptor and the nearest neighbor search (NNS) classifier.

Fig.3. 16 Pedestrian detection verification in a software-implementation of the proposed architecture.

A framework composed by the cell-based simplified-SURF descriptor and the NNS

0 25 50 75 100 125 150

0.86

0.88

0.90

0.92

0.94

A
c
c
u
ra

c
y

claster number

 L
2
-norm

 L
1
-norm

 No norm

Chapter 3

71

classifier shows that the L1-norm achieves comparable detection accuracy performance

to the case where L2-norm is applied in Fig.3.15, but the hardware implementation for

L1-norm is much simpler and requires much fewer resources than the L2-norm scheme.

On the other hand, the proposed L1-norm scheme further operates with much better

accuracy than without normalization (no-norm) for detection system from the INRIA

dataset. Figure 3.16 shows the pedestrian detection result operating at a VGA (640×480

pixels) image by software-implementation of the proposed architecture with a 64×128-

pixel SW. in practical application, the image should be adjusted to different scales or

dynamically change the window size to match the object sizes in the testing image.

Multiple parallel block-based L1-norm circuits can accelerate the processing speed

and the memory reutilization of each block leads to large reductions in on-chip storage

requirements.

3.5 Conclusion

Since the feature descriptor with a window-based localization is a crucial factor for

accurate object recognition based on a sliding-window strategy, two schemes are

proposed for window-based feature construction in this chapter. One of the feature

representation schemes uses direct decoding from reutilization information of each cell

with the new concepts of a RRRT (regular rule of reusing times) table and a window

index, which weakens the block concept and simplifies the computation by lookup-table

usage during the FV construction procedure. The other scheme arranges the normalized

block-based feature components without frequent accesses to cell-based components.

Both of these two methods can avoid complex re-computation, thus computational cost

and complexity of the feature extraction are significantly reduced. Furthermore, the

storage space, required by these two methods for one row of SWs, can be overwritten for

the next row of SWs, which results in much less storage requirement than in the previous

research. It could be verified, that the second method with block-based normalized FVs

can achieve higher detection accuracy than the former cell-based scheme without

normalization of the FVs.

Chapter 3

72

References

[1] Dollár, Piotr, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A

benchmark,” in Proc. IEEE Computer Vision and Pattern Recognition, 2009, pp.

304-311.

[2] M. Enzweiler, and D. M. Gavrila, “Monocular pedestrian detection: Survey and

experiments,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.31,

no.12, pp.2179-2195, 2009.

[3] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object

detection with discriminatively trained part-based models,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol.32, no.9, pp.1627-1645, 2010.

[4] C. H. Lampert, B. B. Matthew, and T. Hofmann, “Beyond sliding windows: Object

localization by efficient subwindow search,” in Proc. IEEE Computer Vision and

Pattern Recognition, 2008, pp. 1-8.

[5] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of image

windows,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.34, no.11,

pp.2189-2202, 2012.

[6] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust features,” in Proc.

Computer vision–ECCV2006, Graz, Austria, 2006, pp. 404-417.

[7] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features

(SURF),” Computer vision and image understanding, vol.110, no.3, pp. 346-359,

Jun. 2008.

[8] A. Mohan, C. Papageorgiou, T. Poggio. “Example-based object detection in images

by components,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.23,

no.4, pp. 349-361, Apr. 2001.

[9] N. Dalal, INRIA Human Dataset (2005) [http://pascal.inrialpes.fr/data/human/].

[10] J. A. Eichel, A. Mishra, N. Miller, N. Jankovic, M. A. Thomas, T. Abbott, D.

Swanson, and J. Keller, “Diverse Large-Scale ITS Dataset Created from Continuous

Learning for Real-Time Vehicle Detection,” IEEE Trans. Intelligent Transportation

Systems, vol.16, no.1, pp. 1-13, Mar. 2015.

Chapter 4

73

Chapter 4

Feature-Vector Optimization

4.1 Introduction

Feature vector normalization (FVN) and dimensionality reduction (DR) are two

important issues for feature-vector-based designs, to reduce the complexity of

computation without a significant decrease in accuracy.

To support the substantial computational amount for processing multiple frames per

second in real time, a pixel-based pipelined architecture that synchronizes to the working

frequency of the image sensor was reported for both cell-based HOG [1] and simplified-

SURF descriptor applied Haar-like feature vector [2]. The integral image is substituted

by an immediate processing engine for the serially input-pixel data from the image sensor

in our previous work. Local feature vectors (FVs) are computed in terms of a sub-region

named ‘cell’. The cell-based local FVs are sequentially outputted for the scan-window-

based multidimensional feature representation, matching to an object directly without

normalization and dimensionality reduction.

On one hand, although the non-normalized cell-based feature descriptors effectively

reduced the computational complexity, the omission of normalization in the feature-

extraction stage results in unstable accuracy results against circumstance changes in the

detection stage. This is a serious concern, because the real-world practical application

circumstances generally vary irregularly and unpredictably. Illumination intensity of light

source, foreground-background contrast and the automatic gain control from a camera,

etc., limit the performance of vision-based object detection and recognition systems. To

avoid degradation of performance due to above issues, an effective normalization method

turns out to be essential [3-5].

On the other hand, object detection and recognition are greatly hampered by a high-

dimensional feature descriptor, such as the 1680-dimensional window-level FV for the

simplified SURF descriptor or the 3780-dimensional window-level FV for the HOG

descriptor, which will be generated for a 64×128-pixel scan window. In such high-

dimensional spaces, classical pattern recognition algorithms such as the nearest neighbor

Chapter 4

74

search (NNS) are nearly intractable with respect to target detection. Feature reduction

without decreasing the detection accuracy turns out to be an essential step.

4.2 Hardware implementation for L1-norm

Similar to the original HOG algorithm [6], the four cell features in a block are

normalized in [3], showing that the L1-sqrt-norm and L2-norm perform equally well,

while more multipliers and more memory accesses make an FPGA-based design much

more complex and resource consuming than without normalization. The L1-sqrt-norm is

also called ‘Least absolute deviation by square root’, which can be illustrated in Eq.4.1.

L2-norm is also called ‘Least square’ that is illustrated in Eq.4.2.

The L1-sqrt-norm:

𝑣 → √
𝑣

‖𝑣‖1+𝜖
 (4.1)

The L2-norm:

𝑣 →
𝑣

√‖𝑣‖2
2+𝜖2

 (4.2)

Here v presents the non-normalized descriptor vector, while 𝜖 is a small constant.

Some regularization 𝜖 is needed as we evaluate descriptors densely, including on empty

patches, but the results are insensitive to 𝜖’s value over a large range [6].

Compared to the L2-norm, the L1-Sqrt-norm avoids squaring the histogram elements

leading to an efficient implementation without reducing the detection rate significantly.

Furthermore, multi-scale and multi-object detection is becoming a tendency for

intelligent machine-vision applications [7-9]. The typical cell size (CS) is reported as 8×8

pixels for the original HOG descriptor [6], and this CS is widely used in other current

research work such as in [4]. The fixed size of cells in the conventional approach to

generating the feature pyramid leads to the requirement of more calculations, including

linear interpolation [9]. However, the multi-scale image pyramid in state-of-the-arts

results in large data expansion and higher computational complexity, necessitating fast

hardware implementations to enable real-time processing. Whereas, the hardware

resource is a critical factor for integrated circuit designs.

4.2.1 Block-based normalization algorithm for feature vectors

To improve detection of the target objects among complex backgrounds, this research

Chapter 4

75

proposes a real-time feature-vector-normalization algorithm. The simpler L1-norm,

which is defined as Eq.4.3 in [6], instead of the L2-norm or the L2-Hys-norm is applied

in this research and is verified to meet a favorable tradeoff between computing complexity

and detection accuracy. Here v presents the non-normalized descriptor vector and 𝜖 is a

small constant.

𝑣 →
𝑣

‖𝑣‖1+𝜖
 (4.3)

Specifically, a reconfigurable normalization circuit [10] together with a cell-based

feature descriptor is performed across overlapping blocks in size of 2×2 cells in this

research.

The non-overlapping rectangular pixel group named ‘cell’ is the elementary output

unit of many cell-based feature descriptors. The dimensionality of the local cell feature

vector varies in accordance with the adopted feature descriptor. For instance, a nine-

dimensional vector for each cell is generated by accumulating weighted gradient

magnitudes in nine bins matching with corresponding gradient-angle groups, each

covering 20° between 0° and 180°, for the case of the HOG descriptor [1]. In contrast,

the edge features of the simplified SURF descriptor with Haar-like feature vector in [2]

compute the gray level differences and their corresponding absolute values between white

and black groups of pixel rectangles, resulting in four dimensions of the local feature

vector for each cell. In practice, the other cell-based feature descriptors, reported in

various research works such as [9] and [11], are desired to be appropriate to be applied in

the proposed L1-norm architecture of this research as well.

Particularly, the proposed block-based Lp-norm operation over an image in this

research is defined as Eq. 4.4.

𝑑𝑖
′ = 𝑑𝑖/(|𝑑𝑖(𝑐𝑒𝑙𝑙0)|

𝑝
+ |𝑑𝑖(𝑐𝑒𝑙𝑙1)|

𝑝
+ |𝑑𝑖(𝑐𝑒𝑙𝑙2)|

𝑝
+ |𝑑𝑖(𝑐𝑒𝑙𝑙3)|

𝑝
)

1/𝑝
 (4.4)

Here, di (i ∈ [0, n-1]) refers to one component of the n-dimensional cell-based feature

vector. For the cell-based HOG descriptor in [1], n=9, while n=4 in the cell-based

simplified SURF descriptor in [2]. In the proposed L1-norm scheme, the parameter p is

set to be ‘1’, i.e., p=1.

A general-purpose normalization-circuit architecture is developed and implemented

by a reconfigurable ASIC-based solution to meet for multi-scale and multi-object

detection tasks. With the block movement by a fixed half-block stride (i.e., one cell stride)

in a row-raster-scan manner in this research, as illustrated in Fig.4.1, the adjacent blocks

Chapter 4

76

are overlapped and one cell can be shared by up to four blocks. The feature vector

components of the four cells of each block are arranged in raster order to form the local

block-based feature vectors, resulting in a final 9×4=36-dimensional local block-based

feature vector in [1] and in a 4×4=16-dimensional local block-based feature vector in [2].

And the local block-feature vectors become the basic components for constructing the

high-dimensional feature vector of the entire scan window. Sharing and reusing of one

cell-based feature vector can increase the dimensionality of the block-based feature vector

and the final window-based feature vector.

Fig.4. 1 Parallel feature vector normalization scheme of overlapping blocks with cell-based feature

components. Each cell will be normalized by its neighboring cells within the same block.

In this research, each cell is normalized by its neighboring cells within the same block

to increase robustness to texture and illumination variation. Specifically, the size ratio

between cells of increasing size is used to define the scaling factor of the corresponding

pyramid level in this research. Since the CS is not a restriction factor for the subsequent

normalization and the window-based feature construction, the proposed hardware

architecture can be applied to calculate components of various CSs up to e.g. 32×32 pixels,

in accordance with the desired pyramid levels. The rectangular CS and the image

resolution are only limited by the on-chip storage capacity for VLSI implementation. The

obtained flexible CS and the unlimited vertical size of input images can be viewed as a

substantial contribution to multi-scale and multi-object detection in our work.

Cell-based
feature-vector extraction

Input image

…

h cells

v
 c

e
ll
s

Related blocks

raster scan

Block-based

normalization

Buffering

Buffering

Buffering

completed block

partial block

partial block

partial block

 Partial

normalization

Sequentially

outputted cells
Block1

Block2

Block3

Block4

cell

Chapter 4

77

Although the configurable normalization concept can be applied for all four block

normalization schemes L2-Hys, L2-norm, L1-sqrt and L1-norm introduced in previous

research, the simpler L1-norm is applied in our hardware design and is verified to meet a

favorable tradeoff between computing complexity and detection accuracy. Furthermore,

flexible regulation for memory allocation is executed according to customization

parameters from the input so that the presented block-based L1-norm-circuit architecture

has high processing-flexibility for different image-cell sizes, cell-based feature

descriptors and image resolutions, which is only limited by the on-chip storage capacity.

Synchronization with the pixel-transfer frequency from the image sensor enables real-

time processing. The cells and blocks are scanned in row raster manner for the entire

image and are arranged in sequence so that the intermediate-calculation results can be

stored and invoked in the proper order.

Different CSs and window sizes (WSs) lead to different block numbers and therefore

different window-based feature vector dimensionality. The designated sizes of the

window are depended on location and size of different target objects in the image since

the window is applied for matching the target object. The sliding-window-based

localization for detecting the target objects in the input image has been discussed in

Chapter 3.

In conclusion, a reconfigurable normalization algorithm with variable cell size is

proposed in this research for extensive applications using image-cell-based feature

vectors.

4.2.2 Flexible cell size for multi-scale image pyramid

Better performance can be achieved by customized normalization of each element

(i.e., cell-FV component) for different local blocks containing the respective cell, and by

treating the results as independent dimensions.

Concerning the presented block-based L1-norm circuit, the developed architecture is

only constrained by the cell number in the horizontal direction. Figure 4.2 (a) shows the

conventional approach to generate the feature pyramid, where the image pyramid is

generated first from the input image by bilinear interpolation, and then feature pyramid

with fixed size (e.g. 8×8 pixels) cells are generated [4]. Thus, each scale of the image

pyramid should be computed independently, which results in a mass of redundant

computation and significant requirements of the on-chip resource.

In this research, the image pyramid is skipped, and the feature vector of each image

scale with different cell sizes are generated directly from the input image as shown in

Chapter 4

78

Fig.4.2 (b). In other words, the cell sizes can be applied for matching the corresponding

level of the feature pyramid so that the multi-scale objects can be detected from the input

image. The ratio between each cell size defines the scaling factor of the corresponding

pyramid level. The cut-off frequency of each filter is proportional to the scaling factor of

the corresponding pyramid level. The low pass filters in response to smaller cell sizes

prevent aliasing by removing high frequencies in the input image.

Since the input pixels are coming in sequence, partial feature vectors are calculated

on-the-fly for all related cells that contain the input pixel.

Fig.4. 2 Generation of a feature pyramid by (a) generating image pyramid first then calculating fixed-

size cell FVs, or (b) calculating FVs of different cell sizes corresponding to each pyramid level.

The resulting partial features of different pyramid levels are available at different

times corresponding to the cell size. In the practical on-chip FV-extraction circuit in this

research, apart from the image resolution flexibility of up to 1024×∞ pixels, there are five

CSs, i.e., 2×2, 4×4, 8×8, 16×16, 32×32 pixels, handled by the for multi-scale and multi-

object detecting applications.

Chapter 4

79

4.2.3 Hardware-oriented architecture for block-based L1-norm

4.2.3.1. Overall architecture

The developed reconfigurable circuit architecture for block-based L1-normalization

consists of three main parts, as illustrated in Fig.4.3. The upper ‘Block part’ is used for

caching and updating of intermediate block-summation results in the currently processed

row of image blocks, which depends on assigned image resolution and CS in different

applications. The four cells related to the same block are outputted successively in the

‘Pipelined L1-norm processing circuit’. The final descriptor feature vector (FV) of a

window is constructed by combining the normalized block-FVs (i.e., d0’, d1’, …, dn’) of

all related blocks. Cache and extension for one row of cells are handled in the lower ‘Cell

part’ of the circuit architecture.

Fig.4. 3 Hardware architecture of the reconfigurable block-based normalization circuit (BBNC) for

pipelined L1-norm processing with cell-based feature vectors.

18

∑
16

positive ?

abs

d0

16
positive ?

abs

d1

16
positive ?

abs

d2

16
positive ?

abs

∑

∑

∑

16×n

block
memory

……

C
e

ll-
b

as
e

d
 f

e
at

u
re

 v
e

ct
o

rs

16

16

16

16 18

18

18

18

…

18

18

18

18

…

N

Y

N

Y

N

Y

N

Y

wren

BA_write

block
address
decoder

BA_read

0

0 1

BA

16×n

 B
lo

c
k

 p
a

rt

18×n

×

2
m

×

2
m

×

2
m

cell
address
decoder

…
×

2
m

REG

block finish

REG

REG

REG

DIV

DIV

DIV

DIV

… …

16

16

16

16

d0
’

d1
’

d2
’

dn-1
’

…

MUX

cell
memory

CA_write

CA_read

CA

block finish

Four cells in 1 block

CNV
CNH

load
feature

…

load feature

CNH

Start

P
ip

e
li
n

e
d

 L
1
-n

o
rm

 p
ro

c
e

s
s

in
g

C

e
ll
 p

a
rt

dn-1

Chapter 4

80

The developed pipeline architecture for FV normalization scheme is based on

sequential cell-based FVs inputs. A parameter initializing circuit (PIC) will assist the

sequential pixel-based pipelined circuit (PBPC) to generate sequential cell-based FVs to

the reconfigurable block-based normalization circuit (BBNC).

The serially-inputted raw pixels scanned directly from the image sensor, are

transferred to the sequential BBNC for extracting the local FVs for the cells, without

preprocessing or pre-storage. The processing speed only relies on the pixel-transfer

frequency from the image sensor. The PIC transforms the flexible input-image resolution

into the cell number in horizontal (CNH) and vertical (CNV) directions according to the

customized CS programmable up to 32×32 pixels.

As the L1-norm according to Eq. 4.4 is performed across blocks with 2×2 cells, the

block size is depended on the customized CS. The reconfigurable BBNC is implemented

by addition, multiplication, bit shift, decoding, and division with variable input

parameters for various cell numbers in horizontal and vertical directions. As the CNH and

CNV are two parameters adjustable from circuit input, the extensibility to different cell-

number-dependent image-processing solutions is only limited by the on-chip storage

capacity.

4.2.3.2. Cell part

Since the local non-normalized FVs are inputted in terms of cell-based FV, these cell-

based FVs have to be cached in the ‘Cell part’ until the accumulation operations with

respect its related blocks are all accomplished for block-based normalization. The cell

number to be buffered relies on the CNH direction of the input image. As the L1-norm

(i.e., p=1) according to Eq. 4.4 is performed across blocks with 2×2 cells, “CNH+1” cells

have to be temporarily stored in the ‘cell memory’.

As the cell-FVs are sequentially inputted and processed in parallel for all related

blocks at the same time, the buffer space for the front-stored cells will be overwritten for

the subsequently inputted cells in sequence during the block normalization, resulting in

high efficiency for storage space and energy consumption. Thus the loop cell address

(CA) of the cell memory for writing or reading cell-based FVs is generated by a decoder.

Specifically, only 1024/8+1=129 cells in size of 8×8 pixels have to be stored for XGA

images with 1024×768 pixels. In other words, the image width and the CSs to be handled

by this circuit are only constrained by the on-chip memory capacity.

Besides, there is no constraint in image height in principle because of the reutilization

of memory space. In particular, each word of the cell memory has nine-bin×16 bit=144

bits for the HOG descriptor in the practical ASIC design.

Chapter 4

81

To ensure a fixed-point computation in the middle ‘Pipelined L1-norm processing’

part of Fig. 4.3, the numerator of Eq. 4.4, i.e. each cell-FV component, is multiplied by a

factor of 2m, which determines the computational precision of the block normalization.

We set m=12 in the practical chip design to meet a tradeoff between the required data

bandwidth and the precision of the calculation results. Only the integral part of the product

is retained for the subsequent division by the block-internal accumulation of FVs. Thus

the hardware architecture for the complicated floating-point computation of division can

be implemented by a fixed-point circuit with insignificant part of the precision loss.

4.2.3.3. Block part

In this research, the sequentially outputted cells are invoked for partial block

normalization immediately. The upper ‘Block part’ of Fig. 4.3 is used for caching and

updating of intermediate block-summation results in the currently processed image blocks.

Since the block moves by a fixed half-block stride (i.e., one cell stride) in a row-raster-

scan manner, the intermediate block-summation required massive redundant memory

space if all image blocks are stored. For instance, (640/8-1)×(480/8-1)=4661 overlapping

blocks have to be buffered for processing VGA (640×480 pixels) images on 8×8-pixel

cells.

As the former blocks, which are already outputted in sequence for window-based FV

construction, become invalid, these utilized blocks can be discarded and the

corresponding storage space can be reinitialized in the block memory. Therefore, only 80

words and 128 words in the ‘block memory’ are required for processing VGA and XGA

images, respectively. The four 16-bit FV-components of the corresponding four

independent cells of each block are accumulated, resulting in 18-bit precision for each

bin of the HOG descriptor. This means that each word of the block memory can be

allocated to 9×18-bit=162bits for each local block-FV component.

The necessary storage space for one row of blocks as well as the corresponding storing

locations, i.e. read and write block addresses (BAs) for the block memory, are regulated

in accordance with the CNH and CNV parameters of the input image. The BA describes

the number of the cell-overlapping block and its respective positions covering the current

cell in the image.

A given cell can be covered by up to four blocks, in case of block movement by one

cell in a row-raster manner inside a window. Cells which can be covered by 1, 2 or 4

blocks are marked identically in Fig. 4.4 and the corresponding BAi (i from 0 to 3) are

given in Eq. 4.5.

Chapter 4

82

𝐵𝐴 = {

𝐵𝐴0 = 𝑘 − 𝑘/ℎ
𝐵𝐴1 = 𝑘 − 𝑘/ℎ − 1
𝐵𝐴2 = 𝑘 − 𝑘/ℎ − ℎ
𝐵𝐴3 = 𝑘 − 𝑘/ℎ − ℎ + 1

 (4.5)

Here k and h represent the current-cell order number in the whole image and the

image’s CNH value, respectively.

Although cells marked in the same color in Fig. 4.4 are overlapped by the same

number of blocks (1, 2 and 4 blocks for cells marked in black, gray and white,

respectively), the BA or BAs, i.e. the sequential block order in the image that the current

cell belongs to, are different for each cell.

Fig.4. 4 Corresponding block addresses (BAs) for all cells according to their positions.

For instance, the four corner cells are all overlapped by one single block, but their

separate BA is assigned as BA0, BA1, BA3, and BA2 by Eq. 4.5 as illustrated in Fig. 4.4.

In other words, the BA related to the current cell is depended on the image resolution and

the cell position in the image.

Figure 4.5 illustrates more reconfigurable-architecture details of the ‘block address

decoder’, which generates the BAs related to a given image cell. All the cells in the input

image are categorized into nine cases according to the situation analyzed above so that

all BAs can be sequentially decoded by Eq. 4.5 with lower computational cost.

BA0 BA0,BA1 BA1

BA0,BA3

BA1,BA2

BA2BA2,BA3BA3

Cell

BA0,BA1,BA2,BA3

Image

h cells

cell[k]

Chapter 4

83

Fig.4. 5 Structure of the ‘block address decoder’ (see Fig.4.3) for coordinating the reconfigurable

normalization according to cell position and image size, customized by the configuration parameters

CNH (up to 128) and CNV (unlimited).

As illustrated in the circuit block ‘address analyzer’ of Fig. 4.5, the four possible block

addresses are first calculated and then selected as the final outputted BAs on the basis of

the assigned cell case. The input customization parameters of the circuit block ‘status

monitor’ determine the configuration information of the currently processed image. The

status monitor is composed of a counter array for simpler architecture parameterization.

The counters have the function of a decoding logic which can translate the external

regulation parameters into the local control signals, contributing to the architecture’s

processing flexibility in terms of image size (CNH×CNV cells).

4.2.3.4. Pipelined L1-norm processing circuit

Local variations in illumination and foreground-background contrast make effective

local contrast normalization essential for good performance in object detection. The

internal components of each inputted cell-based FV are used for normalization within a

block according to Eq. 4.4 with p=1. The absolute values of each FV-component of the

four cell-based FVs in a block are accumulated separately. The multiplied product of FVs

cell position in the current image

Four possible
block addresses

wren

BA0 BA1 BA2 BA3

block address (BA)

MUX

00 01 10 11

2
select

corner

edge

center

covered
block
order

00

01

10

11

2

2

2

2

covered block
number

0

1

2

Y

Y

Y

N

N

N

cell number cell row cell column

counter
3

counter
2

counter
1 =CNH?

load
feature

inc inc
reset

Y

Noutout

&

inc

=CNV?

reset
Y

Nout

maximal words
in block memory

1 2 3 4 5 6 7 8 9

00

01

11

2

2

2

0

1

2

3

CNV

CNH

CNH

A
d

d
re

s
s

 a
n

a
ly

z
e

r
S

ta
tu

s
 m

o
n

ito
r

Chapter 4

84

of the current cell by a factor of 2m from the ‘cell part’ will be invoked for the division as

soon as the accumulation operations of the four cells within a block are completed. The

pipeline registers synchronously latch the transmitted data with the same rising clock edge

so that the results can be transferred to the following register in the pipeline. In other

words, the proposed circuit is constructed as a pipeline processing cluster.

Once the FV extraction for one block, is accomplished as indicated in Fig.4.3, the

corresponding block-FV is transferred for window-based FV construction and the storage

space for this block-FV is reinitialized for the subsequent block soon afterwards.

Otherwise, the cell-FV and the partial block-FV results are temporarily stored in the

memory for block-FV construction. The necessary storage space for one row of blocks as

well as the corresponding storing locations, i.e. read and written BAs for the block

memory, are regulated in accordance with the CNH and CNV of the input image.

Consequently, on-chip memory requirements are strongly reduced. Moreover, multiple

BBNCs in parallel can be applied for simultaneous multi-cell processing, e.g. applied for

block-based FV inputs, so that the hardware architecture for normalization is not confined

by the specific architecture for FV extraction.

4.3 Dimensionality reduction of feature vectors

based on PLS regression scheme

The curse of dimensionality is inherently expensive for hardware circuit designs,

especially for the nearest neighbor search (NNS) classifier. One of the desired functions

of this research is to reduce the cardinality of the high-dimensional FV representation

space. To circumvent the densely processed data during recognition procedure, we

employ partial least squares (PLS) [12] analysis to project the FVs onto a much lower

dimensional space. The PLS analysis can preserve significant discriminative information

that makes it as an efficient dimensionality reduction technique in pattern recognition.

The dimensionality reduction scheme performed in this research is to analyze the FVs

by the PLS model for each SW in the image. The basic idea of PLS is to construct new

descriptor vectors as the descriptor variables (i.e., the FVs). A brief mathematical

description of the procedure is provided in Eq.4.6.

𝑿 = 𝒀𝑷𝑻 + 𝑬 (4.6)

where X is a n×d data matrix denoting an d-dimensional space of FVs for n original

window samples, Y is a n×k data matrix containing k extracted FVs, the (d×k) matrix P

Chapter 4

85

represents the loading of weight vectors, and the n×d matrix E is the residuals. For Haar-

like descriptor, the dimensionality d of window-level FV is equal to 1680, and k (k<d)

newly constructed components in matrix Y summarize the original FVs as well as

possible.

In this research, a set of weight vectors (or projection vectors) WPLS= {w1, w2,…, wk}

are pre-stored in a memory and invoked for PLS analysis with corresponding original

cell-based Haar-like FV vcell={∑Dx, ∑Dy, ∑|Dx|, ∑|Dy|}. The search of SWs overlapping

current cell and dimensionality reduction of current window are two concurrent

procedures, according to the RRRT value and current window value obtained by the

circuitry shown as Fig.4.6.

Fig.4. 6 Data flow and developed architecture for transforming the dimensionality of Haar-like FVs

from 1680 dimensions to k dimensions.

The cell-based FV vcell as one individual processing unit which is computed by Eq.2.6

is projected onto corresponding components in the weight vectors WPLS that is obtaining

the latent vectors di as a result.

Each weight component wi is 1680 dimensions in application scene of Haar-like

descriptor when operating in 64×128-pixel SWs. The 1680-dimensional space of Haar-

like FV of the current window is projected onto k 1680-dimensional weight components

wi in parallel, constructing k-dimensional extracted FV {d1, d2,…, dk} of the current

window, which is then applied for object recognition.

Specifically, each weight component wi is segmented to 4-dimensional sub-

components for the raw cell-based Haar-like FVs on the basis of the index of current

window and the RRRT value R (i.e. 1, 2, or 4) according to the current cell.

Figure 4.7 shows a part of 4-dimensional sub-components of weight vectors

wk

cell1

cell2

cell3

...
×

Inter-
mediate

reductive
value

W1

W2

W851

+

PdPcPbPa

∑|Dy|∑|Dx|∑Dy∑Dx

×
×

×
+

reg
reg

reg
reg

re
g

d1

FIFO

w1

w2

...

v = {∑Dx,∑Dy, ∑|Dx|, ∑|Dy|}

RAM

...w2w1

Input

weights

 (cell-FVs)

d2

..
.

Matrix of weights

w1_1

w1_2

w1_3

w1_4

w1_5

w1_6

w1_7

w1_8

...

...

w1_1680

w2_1

w2_2

w2_3

w2_4

w2_5

w2_6

w2_7

w2_8

...

...

w2_1680

...

...

...

...

...

...

...

...

...

...

...

w1 ...

1680×k

weight vectors segmentation

Current window

RRRT Value

wk _1

wk _2

wk _3

wk _4

wk _5

wk _6

wk _7

wk _8
...

...

w2 wk

wk_1680

wk

dk

Storage unit

re
g

Chapter 4

86

segmented in each window corresponding to the cell sequence on VGA images. All the

4-dimensional sub-components which are projected onto one same cell for the simplified

SURF descriptor applying Haar-like FVs will be processed in parallel. The intermediate

cell-based accumulative results of dimensionality reduction of each SW in PLS analysis

are temporarily stored and updated in a storage unit respectively.

Then, a simple and efficient nearest neighbor classifier is used to classify this lower-

dimensional vectors {d1, d2,…, dk} as either a human or non-human on the popular INRIA

pedestrian dataset consisting of complex scenes in pedestrian detection applications.

Fig.4. 7 Concurrent PLS regression analysis for invoking correct weight vectors in parallel for

multiple SWs related to the current cell.

4.4 Experimental results and discussion

4.4.1 VLSI implementation results for L1-norm

A proof-of-concept prototype chip for flexible feature vector normalization is

fabricated in 65 nm CMOS, as shown in the photomicrograph of Fig.4.8. The 3780-

dimensional cell-based HOG descriptor is applied for reconfigurable FV extraction in this

design. The total core area for the L1-norm circuit is about 0.655×1.195 mm2. The layout

of the L1-norm circuit in Fig. 4.9 verifies its logical density.

Due to the flexibility in image resolution, the prototype chip can deal with a maximum

width of 128 cells and an unlimited image height with five different cell sizes, i.e., 2×2,

4×4, 8×8, 16×16, 32×32 pixels.

...

w2

w1

current

window

W1

W2

W3

 current cell

1~4

cell1

9~12

5~8

cell2

13~16

17~20

1~4

cell3

21~24

25~28

5~8

9~12

cell4

29~32

33~36

13~16

17~20

1~4

cell5 cell81 cell82

57~60

61~64

65~68

69~72

73~76

77~80

cell83

81~84

85~88

89~92

93~96

...

...

...

...

...

weight vectors

segmentation

R=1

R=2

R=4

...cell6

9~12

5~8

21~24

25~28

cell84 cell85

57~60

61~64

65~68

69~72

73~76

77~80

cell86

81~84

85~88

89~92

93~96

57~60

61~64

65~68

69~72

73~76

77~80

81~84

85~88

89~92

93~96

...

...

...

...

...

...

1677~16801669~1672

1673~1676

1661~1664

1665~1668

1653~1656

1657~1660

cell1207 cell1208

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

R=1

R=1

R=2 R=2 R=2

R=2 R=2 R=2

R=2

R=2

R=4

R=2

R=2

R=2 R=2

R=2

R=4 R=4

R=4 R=4

R=1

Chapter 4

87

Approximately 31 fps real-time-processing capability for XGA-size image frames can

be obtained when operating at 25 MHz frequency. The power consumption of this

coprocessor is 21.3 mW at 1.0 V core voltage when operating at the maximal frequency

of 125 MHz. Lower working frequency can be used, which leads to lower power

dissipation by adjusting to the different speed requirements of various applications.

Fig.4. 8 Micrograph of the prototype chip in 65 nm CMOS technology and the device performance

for feature vector normalization.

The required storage space for on-chip for the reconfigurable general-purpose L1-

norm circuit consumes only 36 kbits dual-port memory space due to the applied

reutilization scheme.

 From the layout of the proposed VLSI implement of the L1-norm circuit, the

memory occupies most of the area of the die chip, which illustrates that the memory

requirement is a critical factor for the on-chip circuit design.

The word precision for each FV-component of the cell-based HOG descriptor is 16

bit, resulting in 9×[16+log2(2×2)]=162bit for each local 36-dimensional normalized

block-FV (2×2 cells), to provide good classification accuracy and minimized hardware

cost. The on-chip storage capacity allows up to 128 cells in the horizontal direction can

be handled without restrictions of the CS.

Pipelined L1-norm
processing circuit

1
.1

9
5

 m
m

0.655 mm

Core area 0.78 mm2

Supply voltage 1.0 V

Maximal
frequency 125 MHz

Power
consumption 21.3 mW

Frame rate
(XGA)

158fps

(@125MHz)

On-chip
SRAM 36 kbits

Image
resolution

Flexible ≤
1024×∞ pixels

Multi-scale 5-level
pyramid

C
e

ll
 p

a
rt

B
lo

c
k

 p
a

rt

Chapter 4

88

Fig.4. 9 Layout of the developed circuit for L1-normalization.

The extended bit width of each component of the local cell-FV by the factor 2m (m=12

in real chip design), which should be recovered for the final detection results, ensures an

optimized tradeoff between the data precision and the computational complexity.

Note that the developed architecture can handle also other cell-based feature

descriptors for normalized SW-based FV construction to enable the realization of various

object detecting applications.

4.4.2 FPGA implementation results of PLS regression

The hardware circuit of the proposed PLS analysis for dimensionality reduction for

the simplified SURF descriptor with Haar-like FVs was described by Verilog HDL and

then implemented on Altera® Stratic IV field-programmable gate array (FPGA).

As shown in Fig.4.10, the demo-system consists of a DE4 FPGA board, an LCD

display and with or without a CameraLink camera with XGA (1024×768 pixels) frames.

A 1680-dimensional Haar-like FV is transformed to 8-dimensional simplified FV, which

significantly reduce the computation amount and cost for object detection.

1
.1

9
5

 m
m

0.655 mm
C

e
ll
 p

a
rt

B
lo

c
k

 p
a

rt

Pipelined L1-norm
processing circuit

Chapter 4

89

Fig.4. 10 Proposed object detection system based on FPGA and the applied Altera® Stratic IV FPGA

development board.

An independent DIV transmitter-receiver board is inserted to the FPGA development

board and an assistant driver is installed in the FPGA as well. The PC serves as a host to

program the configuration files to FPGA device and manage the datasets.

TABLE IV. I

Physical Resource Utilization of the Proposed Circuit for Object Detection with PLS Analysis

Resources Used Available Utilization

Combinational ALUTs 14730 182400 8%

Memory ALUTs 272 91200 1%

Dedicated logic registers 9676 182400 5%

Total registers 10108 N/A N/A

Total block memory bits 397164 14625792 3%

DSP block 18-bit elements 144 1288 11%

Total PLLs 3 8 38%

The synthesis result of the proposed object detection system with PLS analysis circuit

is listed in Table IV.I, the multipliers are configured by look-up tables (LUTs) and DSP

block elements. Part of registers are employed as assistant units to implement pipelined

data flow with memory access, and others are used for operations like fixed time circle

delay, etc. The total memory usage in Table IV.I is mainly determined by the

dimensionality of weight vector, which is in accordance with the dimensionality of

window-level FV of the simplified SURF descriptor. The results indicate that the

proposed object detection with PLS regress is able to work at up to 242.48 MHz frequency,

which is sufficiently high processing speed for real-time applications.

FPGA Development Board

LCD Display

Program runs
on PC

USB
Blaster Port

Stratix IV GX

EP4SGX230KF40C2

Camera Link
Connector

DVI Transmitter
Connector

Chapter 4

90

4.5 Conclusion

On one hand, a hardware-friendly coprocessor applied for a general-purpose L1-norm

engine is developed and implemented in 65 nm CMOS technology within 0.78 mm2 core

area. Multiple cell sizes (CSs) up to 32×32 pixels are used to define the scaling factor of

the corresponding pyramid level. The flexible CS and the unlimited height of input

images (≤1024×∞ pixels) make an important contribution to multi-scale and multi-object

detection, enabling much smaller computational effort than required in previous research

works. Flexible application adjustment is provided by input customization parameters, so

that the presented block-based L1-norm circuit can achieve high processing flexibility for

different image-cell sizes, cell-based feature descriptors, and image resolutions.

On the other hand, the PLS regression scheme significantly reduces the FV

dimensionality as well as the computation cost for object detection stage. Therefore, more

corresponding low dimensional reference vectors can be adopted for an NNS classifier

with limited storage resources for on-chip or FPGA-based designs. The developed

reutilization scheme of memories for intermediate-result storage allows a significant

reduction for both storage requirements and core area consumption.

Lower computational cost and pipelined data transmission result in increased

efficiency with respect to power consumption and high processing speed. Consequently,

the applied prototype architecture demonstrates less memory usage, lower energy

consumption, and higher detection robustness for real-time object detection in various

mobile applications, than previously possible.

Chapter 4

91

References

[1] X. Zhang, F. An, I. Nakashima, A. Luo, L. Chen, I. Ishii, and H. J. Mattausch, “A

hardware-oriented histogram of oriented gradients algorithm and its VLSI

implementation,” Japanese Journal of Applied Physics, vol.56, no.4S, pp. 04CF01,

2017.

[2] A. Luo, F. An, Y. Fujita, X. Zhang, L. Chen, and H. J. Mattausch, “Low-power

coprocessor for Haar-like feature extraction with pixel-based pipelined

architecture,” Japanese Journal of Applied Physics, vol.56, no.4S, pp. 04CF06,

2017.

[3] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, and K. Doll, “FPGA-based real-

time pedestrian detection on high-resolution images,” In Proc. IEEE Conf.

Computer Vision and Pattern Recognition Workshops, 2013, pp. 629-635.

[4] A. Suleiman, and V. Sze, “An energy-efficient hardware implementation of HOG-

based object detection at 1080HD 60 fps with multi-scale support,” Journal of

Signal Processing Systems, vol.84, no.3, pp.325-337, 2016.

[5] K. Takagi, K. Mizuno, S. Izumi, H. Kawaguchi, and M. Yoshimoto, “A sub-100-

milliwatt dual-core HOG accelerator VLSI for real-time multiple object

detection,” In Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing

(ICASSP), 2013, pp. 2533-2537.

[6] N. Dalal, and B. Triggs, “Histograms of oriented gradients for human detection,” In

Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, vol.

1, 2005, pp. 886-893.

[7] K. Takagi, K. Tanaka, S. Izumi, H. Kawaguchi, and M. Yoshimoto, “A real-time

scalable object detection system using low-power HOG accelerator VLSI,” Journal

of Signal Processing Systems, vol.76, no.3, pp.261-274, 2014.

[8] J. Y. Kim, M. Kim, S. Lee, J. Oh, K. Kim, and H. J. Yoo, “A 201.4 GOPS 496 mW

real-time multi-object recognition processor with bio-inspired neural perception

engine,” IEEE Journal of Solid-State Circuits, vol.45, no.1, pp.32-45, 2010.

[9] A. Suleiman, Z. Zhang, and V. Sze, “A 58.6 mw 30 frames/s real-time programmable

multiobject detection accelerator with deformable parts models on full HD

Chapter 4

92

1920×1080 videos,” IEEE Journal of Solid-State Circuits, vol.52, no.3, pp.844-855,

2017.

[10] A. Luo, F. An, X. Zhang, L. Chen, and H. J. Mattausch, “Reconfigurable block-

based normalization circuit for on-chip object detection,” In Proc. Int. Conf. Solid

State Devices and Materials, 2017, pp. 819-820.

[11] K. Mizuno, K. Takagi, Y. Terachi, S. Izumi, H. Kawaguchi, and M. Yoshimoto, “A

sub-100mW dual-core HOG accelerator VLSI for parallel feature extraction

processing for HDTV resolution video,” IEICE Transactions on Electronics, vol.96,

no.4, pp.433-443, 2013.

[12] W. W. Chin, “The partial least squares approach to structural equation

modeling,” Modern methods for business research, vol.295, no.2, 1998, p.295-336.

Chapter 5

93

Chapter 5

Implementation of Different

Detection Frameworks

5.1 Introduction

The recent rapid development in data mining has made available a wide variety of

algorithms, drawn from the fields of statistics, pattern recognition, machine learning, and

databases [1]. Machine learning (ML) techniques have been used to capture normal

behavioral patterns and to classify the new behavior as either normal or abnormal [2]. As

mentioned in the Introduction in Chapter 1, ML problems can be generally assigned to

supervised learning and unsupervised learning problems. Pattern recognition systems can

be trained from labeled training data in supervised learning such as object classification,

but also can be used to discover previously unknown patterns, as e.g. by clustering

algorithms, when no labeled data are available in unsupervised learning.

For vision-based object detection, many appropriate classifiers such as support vector

machine (SVM), nearest-neighbor (NN) distance estimation, the AdaBoost classifier [3]

and artificial neural networks (ANNs) can be employed as searching engines to find out

target objects with favorable properties in the captured visual data. An ideal application

in vision-based detection would be to gather sufficient positive and negative images for

a user or a program, and then to apply a classification algorithm for training a classifier

that can label or predict new unseen input images as belonging to the positive or the

negative class as illustrated in Fig.5.1.

Fig.5. 1 A general flowchart of object detection in supervised learning techniques.

Chapter 5

94

In order to verify the performance of the developed hardware architecture for object

recognition and detection, this research employs two demonstration frameworks, which

are in part motivated by the tasks of vehicle and pedestrian detection.

On one hand, a resource-efficient object recognition coprocessor, which applies the

simplified SURF descriptor and the nearest-neighbor search (NNS) classifier, is proposed

for frontal vehicle detection. On the other hand, another popular framework, composed

of the histogram of oriented gradient (HOG) descriptor and the SVM classifier [4-5], is

reported for pedestrian detection as well. Both demonstration frameworks perform binary

categorization of each new input image into either the positive or the negative class.

With the proposal about feature vector (FV) extraction, construction, normalization

and dimensionality reduction, described in previous chapters, the recognition and

detection process is executed in parallel with the construction of the used

multidimensional FV and is therefore completed shortly after FV completion for each

scan/search window (SW) of an image frame.

5.2 Nearest neighbor search (NNS) combined

with simplified-SURF descriptor

5.2.1 Hardware architecture for NNS classifier

The similarity is defined in terms of a more or less complex similarity function. The

smaller the similarity value, the more similar are two objects. As a measurement to

express the differences between the input image and reference images, the term ‘distance’

is used as illustrated in Fig.5.2. The reference pattern with minimum distance is referred

to as the ‘winner’ and the reference pattern with the next smallest distance is referred to

as the nearest-loser.

Fig.5. 2 Object match in an image according to minimum distance value.

Chapter 5

95

Typical query types for NNS classifier are the similarity range query which is

specified by a query object and a similarity distance range [0, ε], and the k-nearest

neighbor query which is specified by a query object and a number k for the k most similar

objects to be retrieved [6]. The k-nearest neighbor query is equivalent to a corresponding

similarity range query. Figure 5.3 shows the flowchart of the object detection employed

in this research. The first framework for object detection is combined with the simplified

SURF feature descriptor and the NNS classifier.

Fig.5. 3 The flowchart of the object detection system employing the NNS classifier.

For the window-based object classification, the FV (i.e., the vector IN) of one scan

window (SW) in the test image can be represented in Eq.5.1, while the FV of the ith

reference (i.e., the vector REFi) is represented by Eq.5.2.

𝑰𝑵 = {𝐼𝑁1, 𝐼𝑁2, ⋯ , 𝐼𝑁𝑊} (5.1)

𝑹𝑬𝑭𝒊 = {𝑅𝐸𝐹𝑖1, 𝑅𝐸𝐹𝑖2, ⋯ , 𝑅𝐸𝐹𝑖𝑊} (5.2)

There are several popular types of operators, such as Hamming distance (HD),

Manhattan distance (MD) and Euclidean distance (ED) in information theory to measure

the distance from the testing image to the reference image. Architectures for fully-parallel

winner-search according to the Hamming-distance [7] and the Manhattan distance [8]

have been proposed based on mixed digital-analog circuits.

The three above distance concepts can be summarized by a general formula called

MinKowsky equation given by Eq. 5.3.

𝐷𝑗 = ∑ 𝜔𝑖 ⋅ [(𝐼𝑁𝑖 − 𝑅𝐸𝐹𝑖𝑗)𝑃]
1/𝑃

𝑊

𝑖=1

 (5.3)

Chapter 5

96

Where if, P=1, Dj represents the Manhattan Distance, P=2, Dj represents the Euclidean

distance, P=1 and INi, REFi ∈{0,1}, Dj represents the Hamming distance. And ωi is a

weighting factor which is set to ‘1’ when computing Euclidean/Hamming distances. More

different metrics proposed by different communities, including Chebychev, Camberra,

Mahalanobis [9], and Kullback-Leibler distance [9]. In many practical applications,

particularly in the fields of image recognition and authentication, the ED, which is the

most natural and appropriate distance measure [10], is known to give better results than

HD or MD.

In this research, after the overlapping scan window (OSW) determination and

construction, the NNS classifier is continued by partial squared Euclidean distance

(PSED) calculation between the newly constructed window-level FV for the input image

and the reference images. In the perspective of overall system processing, the NNS

classification is operated simultaneously with the window-FV construction with multiple

paralleled SWs. For each SW in which the cell is located, the cell position corresponds to

an address within the reference FV. Meanwhile, the cell-based reference vectors for NNS

are organized in the same way as the extraction sequence of the cell-FV.

Thus the implementation of NNS can be additionally abided by the “regular rule of

reusing times” (RRRT) for the SW-FV construction which is discussed in Chapter 3.

Figure 5.4 further illustrates the main processing procedure with the NNS classifier

to search the final recognition winner among the inputted reference data for the target

testing image. Pixel processing for extracting FV for images is the fundamental

requirement for feature-based image representation. Since the testing image is

represented by cell-based FVs construction strategy, the corresponding FVs of the

reference data should be organized in the same way as the testing image FVs, so as to

reduce the computational cost.

As the window sweeps within a block stride (i.e. 2 cells), the number of paralleled

processing windows are dynamically changes. For this purpose, a partial-storage concept

and the parallel-pipelined computation architecture applied in [11-14] are also employed

in this research. Specifically, the 1680-dimensional simplified-SURF reference FVs are

segmented into the four local cell-FV parts for e.g. car recognition.

Chapter 5

97

Fig.5. 4 Process flow for the proposed object recognition based on the NNS classifier.

The parallelized PSED calculation is employed with respect to the FVs of all OSWs,

under consideration of the reuse time of the current cell C[c,r]. Generally, each of the

simultaneously processed OSWs is in a different stage of its FV construction and PSED

calculation with respect to the reference FVs.

According to the cell position in each OSW (i.e., Windex, where the index is defined in

Eq.3.6), the corresponding components of the cell-based reference FVs are invoked to

execute the next step of the PSED computation.

Until the SED results between all OSWs and reference FVs are determined, the

cumulative PSED-storage unit in Fig. 5.5 has to store N×Whe/Bs intermediate PSED

results for each reference FV. Here N is defined in Eq.3.3, Whe is the height of the

designated SW, and Bs is the square-block size, which is 16 pixels in this research. The

WA of the memory for intermediate storage of PSED values, which are related to the

order number of the current window and the RRRT value, can be calculated by the

hardware circuit illustrated in Fig. 3.12.

When cell row Whe/8 of the image is processed, NNS for the first row of SWs finish

sequentially. Depending on the block size Bs, NNS for one SW will complete the supply

of the local cell-FV of every (Bs/8)th cell.

Afterwards, NNS for the next row of SWs will complete, when an 8×8-pixel-cell row

(Whe+Bs)/8 is processed. During the completion of NNS for a SW, the sequentially

determined final SED to each reference FV is latched in Buffer 2 of Fig. 5.5, and is then

compared to the intermediate minimum stored in Buffer 3.

 Track a moving research

window based one cell

Reference data
(From database)

Search

nearest neighbor

Start

Extract the feature vectors in

pipeline

Recognition Winner

Recognize the objects in real time

Scan the image pixels

Chapter 5

98

Fig.5. 5 Cell-based NNS architecture for parallel minimal SED search among multiple references.

If the SED in Buffer 2 is smaller than that in Buffer 3, it will be stored in Buffer 3 as

the new intermediate minimum. After SED comparison for the last reference FV, NNS is

completed, the global minimum is saved in Buffer 3, and the corresponding reference FV

determines the classification result for this SW.

Important is, that each cell is scanned only once and then scanning results are reused

in all related SWs. Additionally, there is no need for tracking SW-internal overlapped

blocks since the NNS recognition proceeds based on cells. Consequently, the proposed

parallel SW (PSW) algorithm effectively reduces the computational complexity and leads

to high performance in hardware implementation.

Multi-scale and multi-object detection has become a tendency for intelligent machine-

vision applications [15-17]. However, the multi-scale image pyramid results in large data

expansion and higher computational complexity, necessitating fast hardware

implementations to enable real-time processing.

PSED
Storage Unit

&

Buffer 1

REG

Buffer 2

Buffer 3

Load

Load

Reset

Load Signal

A<B
BA

Cell-PSED

Next Window

Next Cell

Local
Minimum

Current
SED

Minimal SED

REG REG REG REG

Cell-
FVs

∑|Dy|4
2

0

Cell-
FVs

∑Dy

4
2

0

Cell-
FVs

∑|Dx|

4
2

0

Cell-
FVs
∑Dx

Part
1

Reference
Memory1

4
2

0

4
2

0
*n

Test
sample Reference

Memory4

C
o

m
p

e
titio

n
 Laye

r
 W

in
n

e
r-take

-all

Part
2

Reference
Memory2

4
2

0
*n Part

34
2

0
*n Part

44
2

0
*n

Reference
Memory3

(Winner)

WA

REG REG

RRRT
Value

REG

Cell1_∑Dx
Cell2_∑Dx
Cell2_∑Dx

…

Cell8_∑Dx
Cell9_∑Dx

Cell7_∑Dx
Cell7_∑Dx

Cell9_∑Dx
Cell10_∑Dx
Cell10_∑Dx
Cell10_∑Dx
Cell10_∑Dx
Cell11_∑Dx

Cell128_∑Dx
Cell127_∑Dx
Cell127_∑Dx
Cell126_∑Dx

…

Cell3_∑Dx
Cell3_∑Dx

1
2
3
4
5

15

417
418
419
420

12
13
14

17
16

19
18

…
…

20
21

Test sampleReferences

Test
sample

Test
sample \

Chapter 5

99

Note that the proposed PSW concept also allows enlarging or reducing the scale of

target objects in images, to match SW and target-object sizes. The PSW concept is not

image-size limited and widely adjustable to pixel-transfer speed and image size of

different image sensors.

Since the resolution of processed images with the customized feature-extracting

circuits, such as the designated circuit for simplified SURF descriptor shown in Fig.2.11,

can be dynamically changed, serial processing of a complete image pyramid on the same

coprocessor hardware with a fixed SW size becomes possible. In this way, high accuracy

of object recognition in real-world images with varying object sizes can be maintained.

Figure 5.6 shows an instance for a pyramid with m image layers in different image

scales, i.e., S, S/4, S/16, S/64, etc., where S is the largest original-image scale in the image

pyramid. In this case, the required operation time with m serial simplified-SURF

descriptors for m image scales takes t=tb+tb/4+tb/16+tb/64+…+tb/4
m-1+m·tde, resulting in

t<2tb+m·tde, when the image scale in the pyramid decreases exponentially by an index

“4”.

Here tb represents the operation time for the largest original-image layer and tde (much

smaller than tb) represents the latency during feature extraction and object recognition.

On the other hand, the required operation time tb+tde with multiple parallel recognition

engines is only limited by the size of the largest original-image layer.

Fig.5. 6 Diagram of the proposed simplified-SURF descriptor application for multiple image layers with

corresponding Haar-like wavelets.

Scale

S

S/4

S/16

S/64

Feature

descriptor 1

Feature

descriptor 2

Feature

descriptor 3

Feature

descriptor 4

tb+tde

tb/4+tde

tb/16+tde

tb/64+tde

......

Chapter 5

100

Consequently, the serial pyramid-processing scheme with a single coprocessor is

feasible for real-time applications, if the processing time of the original image is about 2

times faster than what is required for real-time processing. In conclusion, the proposed

architecture and the designed prototype coprocessor can also be applied for real-time

image-pyramid processing, when an appropriate original-image size is selected.

For applications recognizing objects of different sizes with the prototype-coprocessor

implementation, the value of tb determines whether a serial scheme with a single

coprocessor is sufficient or a parallel scheme with multiple coprocessors is required.

5.2.2 ASIC implementation in 65nm CMOS

The FV-based recognition coprocessor, embedding the cell-based simplified-SURF

FV-extraction unit and the parallel SW recognition engine with a fixed 64×128-pixel

window, is prototyped in 65nm Silicon on thin BOX (SOTB) CMOS technology with

1.26 mm2 (1.4 mm × 0.9 mm) core area, as shown in Fig.5.7.

Fig.5. 7 Chip microphotograph of the FV-based recognition coprocessor, fabricated in 65 nm CMOS

technology within 1.26 mm2 (1.4 mm × 0.9 mm) core area.

In the prototype coprocessor implementation, the total on-chip SRAM is 208 kbits

(i.e. 26 kB). Specifically, 64 kbits of this space are shared for calculating the simplified-

SURF descriptor FVs, 32 kbits of SRAM serve as FIFO for cell-FV buffering and 64kbits

on-chip memory are designated for storing 1680-dimensional references for verification

of the proposed architecture, owing to the limitation of chip area. Another 16kbits on-

chip memory are used for marking the newly processed addresses during NNS

classification according to the current-cell location.

Additionally, the memory space for references can be overwritten from outside to

0
.9

m
m

1.4mm

N
N

S

P
S

W

S
im

p
li

fi
ed

-S
U

R
F

d

es
cr

ip
to

r

3mm

3
m

m

Chip bonding 3mm×3mm die chip in

65nm CMOS

FV-based recognition

coprocessor

Chapter 5

101

meet the needs of practical applications. The PSED storage unit consumes 16kbits

memory space for intermediate PSED-computation-result storage until the current image

cell. The structure overview of the on-chip memory is summarized in Table V.I.

TABLE V. I

Structure Overview of On-Chip SRAM Components of the Developed Prototype Coprocessor

Component of on-chip SRAM Capacity Bit width Type

FV-

extraction

storage

Dx
16 kbits 16-bit

Dual-port SRAM
16 kbits 32-bit

Dy
16 kbits 16-bit

16 kbits 32-bit

FV Buffer 32 kbits 64-bit FIFO

PSW storage
CPLUT 16 kbits 16-bit

Dual-port SRAM
WLUT 16 kbits 16-bit

NNS storage
Temporary SED 16 kbits 32-bit

Single-port SRAM
Reference 64 kbits 32-bit

In comparison to previous works, less memory is consumed, even when multiple

coprocessors are operated in parallel for handling scaled images because the pixel- and

cell-based FV-extraction scheme makes pre-storage in buffers for raw or integral images

unnecessary. Additionally, obsolete data in the storage memories are overwritten as soon

as the new cell or window information becomes available. Only a small memory amount,

determined by the maximum image width, is consumed for the enabling the flexibility of

processing different image sizes.

The memory requirement in [18] is clearly less than in other previous works [19-21]

and also this work because only the FV-extraction procedure is executed in [18]. In

contrast to the previous works, the 208kbits memory in the proposed simplified-SURF

coprocessor of this work is suitable for additionally enabling flexible image sizes up to

1024× ∞ pixels.

Practical 8-bit pixels from XGA frames and four 1680-dimensional reference vectors

are inputted to the coprocessor for verifying the recognition result, utilizing a MU300-

EM platform with peripherals as shown in Fig. 5.8.

Chapter 5

102

Fig.5. 8 Measurement system with MU300-EM platform for the designated chip.

The power consumption measured by the MU300-EM platform is proportional to the

core chip voltage and is further related to chip area, storage capacity and operating

frequency. Approximately 13.38mW is dissipated when the fabricated chip is operating

at a lower core voltage of 0.5 V and 200 MHz as illustrated in Fig.5.9. The energy

efficiency of the fabricated prototype for the FV-based recognition coprocessor is

measured as 910 μJ per VGA frame and 1013 μJ per XGA frame when operating at 200

MHz peak frequency with 1 V supply voltage.

Fig.5. 9 Power consumption at different supply voltages of the designated 65 nm chip with NNS classifier

and simplified SURF feature descriptor, operating at 200MHz and 1.0V core voltage.

MU300-EM Platform

Frequency Monitor

Test data, test pattern,
core voltage, IO voltage,...

Agilent 34401A
Multimeter Agilent 53131A

Universal Counter

Input test data example:

// CLK_SURF LSI_DQ[224] HEX
// RESET_SURF LSI_DQ[223] HEX
…
// PIXEL<7:0> LSI_DQ[87,86,…,80] HEX
0 1 0 1 1 00 0 1 … FF
1 1 0 1 1 00 0 1 … FF
0 0 1 1 0 00 1 1 … FF
…
1 0 1 0 0 01 1 0 … 1A

MU300-EVA
Application

Working
current

Operating
frequency

Current Monitor

// FEATURE <63:0> HEX
FFFF_FFFF_FFFF_FFFF

…
101A_2A00_235A_1024

Output data

Designed
chip

0.5 0.6 0.7 0.8 0.9 1.0
12

16

20

24

28

32

P
o

w
e

r
co

n
su

m
p

tio
n

 (
m

W
)

Supply voltage (V)

Chapter 5

103

As expected and illustrated quantitatively in Fig.5.10, the frame rate reduces and the

energy consumption per frame increases with higher image resolution, resulting in 75.3

QVGA (320×240 pixels), 34.6 VGA and 31.1 XGA frames processed per second,

respectively. The energy efficiency in this work is significantly improved in comparison

to some of the previous works [19, 21], but is still larger when compared to other previous

works [18, 20]. More advanced CMOS technology, lower operating frequency and lower

supply voltage are among the reasons explaining the smaller power consumption in [18]

and [19].

Fig.5. 10 Frame rate and energy efficiency with different image resolutions operating at 200MHz and 1.0

V core voltage.

In particular, the proposed pipelined circuitry in this research for local cell-feature

extraction inside the fabricated prototype consumes only 48.6 μJ per VGA frame and

123.8 μJ per XGA frame. The frame rate in [20] is higher than for the other works due to

the restricted-ROI (region of interest)-based solution, which increases the processing

speed by abnegating a lot of raw-image information. Further comparison to previous

related works is summarized in Table VI.II.

In particular, the word precisions for each memory word ensures a lossless fixed-point

processing (no rounding required) for data computing with minimization of hardware cost.

Since no floating-point calculation is involved in the data processing through the entire

hardware architecture, adequate word precisions ensure a data-lossless processing and

gain reasonable classification accuracy.

QVGA VGA XGA
0

10

20

30

40

50

60

70

80

90

418

910

1013

F
ra

m
e

 r
a

te
 (

fp
s)

75.3

34.6
31.1

400

500

600

700

800

900

1000

1100

E
n

e
rg

y
(

μ
J/

fr
a
m

e
)

Chapter 5

104

TABLE V. II

Comparison Results with Previous Works

 JSSC[18] VLSI-C[19] VLSI-C[20] ISSCC[21] This Work

Technology 28nm 40nm 40nm 90nm 65nm

Image resolution

(pixels× pixels)

fixed

640×480
fixed

1280×720

fixed

1280×960

fixed

160×120

variable up to

1024×∞

Design function Feature extraction Object recognition Object recognition Object recognition Object recognition

Feature type SURF hardware PCA hardware Haar-like hardware Haar-like hardware Simplified SURF

Extraction scope Entire frame Entire frame ROI only Entire frame Entire frame

Core area (mm2) 2.22 5.86 9.3 28 1.26

Core / IO voltage(V) 0.47 /- 0.6 /- 0.9 / 2.5 1.2 /2.5 1.0 /3.3

Frequency (MHz) 27 100 220 200 200

Maximal frame rate
(frame per second)

30 5.5 300 294

75.3 (QVGA)

34.6 (VGA)

31.1 (XGA)

Maximal accuracy - 93% 97.4% -
98.78% (for car)

93.90% (for pedestrian)

Power consumption

(mW)
2.8 23 69 1214 31.49

Energy efficiency*
(mJ/frame)

0.093 4.18 0.23 4.129

0.418 (QVGA)

0.910 (VGA)

1.013 (XGA)

Memory usage

(kb)
>56 (FE* only)

3936
 (FE:192;

Recognition:3744)

202.4
(LDP*: 190;

KTP*: 12.4)

1192
(ISPS*: 800;

FSPS*: 392)

208
(FE: 96; PSW: 32;

NNS: 80)

*Energy efficiency = Power consumption / Maximal frame rate; *FE: Feature Extraction;

*LDP: Learning-based Detection Processor; *KTP: Knowledge-based Tracking Processor;

*ISPS: Image Stream Processing System; *FSPS: Feature Stream Processing System.

Furthermore, data (e.g. FVs) normalization is not involved throughout the entire

recognition procedure in this chip design, avoiding division operations. The fixed-point-

number operation is adopted by left or right shifting the bits of one word when there is a

multiple operating relationship between two parameters. Variable counters, such as the

ones in the pixel pipeline controller, are also applied for multiple transformations such as

node reset when detecting the image edges. All factors mentioned above assure that the

recognition accuracy of the fabricated coprocessor chip becomes exactly the same as the

simulated accuracy results by software-implementation of the proposed architecture.

Furthermore, the same coprocessor hardware can be applied to the serial processing

of complete image pyramids (see also Fig. 5.6) to address the issue of changing object

sizes with a single SW size, since the resolution of processed images with our coprocessor

can be dynamically changed. The FV-extraction stage of the fabricated coprocessor needs

about 0.384 ms, 1.536 ms and 3.9 ms for QVGA, VGA and XGA frame sizes, respectively,

since the feature extraction speed relies only on the pixel-transfer frequency from the

image sensor. These FV-extraction times are more than two times faster than what is

required for real-time processing so that complete pyramid FV-extraction for videos with

these frame sizes is realistic in real time.

For the entire recognition procedure including NNS, the processing time at 200 MHz

frequency with a 64×128-pixel SW becomes 13.28 ms, 28.9 ms and 32.13 ms in case of

Chapter 5

105

QVGA, VGA and XGA frame sizes, respectively. Please note that due to the image-cell

FV reuse concept, the processing-time increase for larger image sizes in much smaller

than the pixel-number increase. As a consequence of above processing-time results,

multiple coprocessors in parallel are needed to achieve real-time processing for the image

pyramid of XGA frame size. However, in the case of QVGA frame size, a serial scheme

with the same coprocessor hardware is feasible for real-time variable-size object

recognition. On the other hand, smaller size SWs consume less processing time for each

frame because of the greatly reduced FV-dimensionality to match the target objects.

Further, the smaller number of SWs overlapping a given cell results in less repetitive

usage of the cell-based FVs as well. Therefore, the adjustment of the SW size can also be

applied to reduce image-pyramid-processing time by a considerable degree for achieving

real-time recognition.

In conclusion, considering the processing time for feature extraction or the entire

object recognition procedure, a serial single-core solution or a parallel multi-core solution

(e.g. multiple feature extraction engines or entire recognition engines) can be applied for

image-pyramid processing.

Consequently, a highly energy-efficient hardware architecture for object recognition

has been developed, which can be applied to extensive visual applications based on cell-

based FVs. The proposed feature extraction architecture is particularly suitable for mobile

applications, due to the low power dissipation and the low hardware resource

requirements. In addition, the image-size flexibility of the proposed architecture can be

controlled by the implemented bit-alterable counters for real-time processing of higher-

resolution images than VGA, e.g., XGA (1024×768 pixels).

5.2.3 A accuracy estimation for detection of different objects

The reported hardware architecture is capable of handling different applications for

object detection and recognition. To verify the performance of the proposed hardware

algorithm in extensive visual applications, different objects, including the front car, lateral

car, pedestrian, are served as positive samples shown in Fig.5.11 (a), (b) and (c)

respectively.

Chapter 5

106

Fig.5. 11 Positive examples for object detection. The front car examples (a) are collected from the

surroundings of Hiroshima University (HU), the lateral car examples (b) are selected from the car

detection dataset UIUC, while the pedestrian examples (c) are selected from INRIA dataset.

For the case of vehicle detection, an NNS classifier employing 1680-dimensional

Haar-like FVs is implemented as an example to evaluate the efficiency of the proposed

algorithm by software-based simulation. A set of positive samples (i.e., lateral cars) from

the car detection dataset UIUC [22-23] and negative samples (i.e., non-cars) from INRIA

dataset [24] are selected for verification as shown in Fig.5.12 in this work.

Fig.5. 12 Negative examples selected from INRIA dataset for different object detections.

A reasonable quantity of samples plays a significant role in establishing sufficient

diversity to correctly detect the input data from the testing dataset [25]. Therefore, 550

positive samples from the UIUC dataset and 12180 negative samples obtained by

cropping non-car images from the INRIA dataset are resized to 128×64 pixels (16×8

cells) for training. Furthermore, 199 different positive samples from the UIUC dataset

and 1812 different negative samples cropped from the INRIA dataset are used for the

image set for testing.

(a) (b) (c)

Chapter 5

107

Fig.5. 13 ROC curve that indicates the detection accuracy of the fabricated coprocessor for the case of the

lateral car detection application.

For evaluating the recognition performance of our proposed algorithm, SEDs between

the extracted FVs of the SWs and the reference vectors are calculated for NNS

classification. The receiver operating characteristic (ROC) curve in Fig. 5.13 is evaluated

with the image set for testing. The ROC curve indicates that the proposed classifier’s

detection accuracy increases with an increased quantity of testing samples.

In the case of vehicle detection, the integral image strategy of previous software

solutions [26, 27] attained an accuracy range from 85.7 to 100%. In our verification, we

have achieved a maximal true positive rate (TPR) of 97.49%, a specificity of 99.67%, and

a comparably good accuracy (ACC) of 99.45%.

Furthermore, the front-car recognition and pedestrian recognition are also evaluated

in this research. Specifically, on one hand, the front cars images collected from the

surroundings of Hiroshima University (HU) are further applied for front car-recognition

evaluation.

On one hand, the scenic images from the INRIA are cropped to 12180 negative

training images and 4530 negative testing images for evaluating both pedestrian and car

recognition, as shown in Fig.5.12. The negative images stand for non-cars or non-

pedestrian in this solution.

On the other hand, 2416 positive training images and 1126 positive testing images

(i.e. containing humans) from the posture-complex INRIA dataset are employed for

pedestrian-recognition evaluation. By contrast, 1225 positive training images and 556

positive testing images (i.e. containing front cars) collected from the surroundings of HU

are applied for front-car recognition evaluation.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC Curve of Car Recognition

ROC Curve for Car Recognition

Chapter 5

108

The classification-performance comparisons with the original SURF [28] are

illustrated in Fig.5.14. The proposed simplified-SURF coprocessor with flexible image

sizes is found to achieve a maximum of 91.03% TPR and 96.12% TNR for pedestrian

recognition with a 64×128-pixel SW in the INRIA dataset. For car recognition with a

128×64-pixel SW, the proposed coprocessor achieves a maximum of 97.30% TPR and

99.34% TNR without normalization, which outperforms the previous normalized SURF

descriptor with feature-based NNS classification, as illustrated in Fig.5.14 (a) and (b).

The precision v.s. recall graph is shown in Fig.5.14 (c), confirming the accuracy

improvement as the recall becomes higher. The average precision (AP) of the simplified-

SURF coprocessor for pedestrian recognition is 82.84% based on 1680-dimension FVs,

which is lower than with the original SURF (88.89%). But significant efficiency is

verified for car recognition, where the reported simplified-SURF coprocessor achieves

98.67% AP.

Fig.5. 14 Fixed-point software verification of recognition TPR (a), TNR (b) and Precision-Recall (c)

performance of the proposed simplified-SURF descriptor compared to the original SURF descriptor [28]

with feature-based NNS classification.

0 15 30 45 60 75 90 105 120 135 150
70%

75%

80%

85%

90%

95%

100%

 TP of original SURF for pedestrian recognition [7]

 TP of proposed simplified SURF for pedestrian recognition

 TP of proposed simplified SURF for car recognitionT
ru

e
 P

o
s
it
iv

e
 R

a
te

Reference Number

0 15 30 45 60 75 90 105 120 135 150

80%

85%

90%

95%

100%

 TN of original SURF for pedestrian recognition [7]

 TN of proposed simplified SURF for pedestrian recognition

 TN of proposed simplified SURF for car recognition

T
ru

e
 N

e
g

a
ti
v
e

 R
a

te

Reference Number

50% 60% 70% 80% 90% 100%
0%

20%

40%

60%

80%

100%

P
re

c
is

io
n

Recall

 Precision of original SURF for pedestrian recognition [7]

 Precision of proposed simplified-SURF for pedestrian recognition

 Precision of proposed simplified SURF for car recognition

(a)

(b)

(c)

[28]

[28]

[28]

Chapter 5

109

The accuracy comparison, as further illustrated in Fig.5.15, shows that the

simplification of feature calculation introduces about 6% accuracy deterioration for

pedestrian recognition in most cases, while the hardware resources and performance

benefits are far more significant. The reported algorithm for different object detection and

recognition achieves sufficient performances in resource requirement, power

consumption, calculation cost, and flexibility, with a trade-off of a reasonable accuracy.

The recognition accuracies with different SW-sizes in Fig.5.15 also indicates that the

proposed coprocessor is more efficient for car recognition than for pedestrian recognition.

Fig.5. 15 Recognition accuracies of the proposed simplified-SURF FV-based NNS classification with

different SW-sizes for car and pedestrian recognition applications.

In conclusion, the recognition accuracy enhances with increased window size. The

efficient computational and flexible hardware architecture can enable the proposed

object-recognition coprocessor to perfectly meet outdoor mobile-applications

requirements without significant degradation of classification accuracy.

5.3 Support vector machine classifier carrying

the HOG descriptor

5.3.1 Hardware architecture for SVM classifier

A Support Vector Machine (SVM) is a discriminative classifier formally defined by

a separating hyperplane. In other words, the SVM algorithm outputs an optimal

hyperplane which categorizes new examples according to the given labeled training data

0 20 40 60 80 100 120 140 160 180 200 220

86%

88%

90%

92%

94%

96%

98%

Recognition of the Proposed Simplified SURF Descriptor

 SW:128x64 pixels car

 SW:96x64 pixels car

 SW:64x64 pixels car

 SW:64x128 pixels pedestrian

Reference Number

A
c
c
u

ra
c
y

Chapter 5

110

(supervised learning). In order to intuitively define a criterion to estimate the worth of the

hyperplanes, the operation of the SVM algorithm is finding the hyperplane that gives the

largest minimum distance to the training examples.

Many recent hardware implementations, such as [4] and [5], have demonstrated that

the support vector machine (SVM) classifier [29] carrying the HOG descriptor leads to

one of the most accurate and therefore presently most popular detection frameworks.

Basing on the L1-norm scheme as mentioned in section 4.2, this research further

developed an object detection and recognition circuit employing cell-based HOG

descriptor and linear SVM classifier as illustrated in Fig.5.16.

Fig.5. 16 The flowchart of object detection which combines with the HOG feature descriptor and the

SVM classifier.

There are various cases about SVM models, so that different SVM mathematical

formulations can be found. This research applies a linear case for supervised binary

classification problem as illustrated in Fig.5.17, supposing that the training dataset

consists of M vectors from the d-dimensional feature space xi∈Rd. Assume that the two

classes are linearly separable in the linear separate SVM.

Fig.5. 17 The linear SVM model employed in this research.

It is possible to find at least one hyperplane (i.e., linear surface) defined by a d-

dimensional vector w∈Rd (normal to the hyperplane) and a constant bias b ∈ R that can

separate the two classes without errors in linearly separable SVM approach.

The decision rule of the linear separate SVM can be based on the function sgn[f(x)],

Chapter 5

111

where the sign function sgn(x) is defined as Eq.5.4.

𝑠𝑔𝑛(𝑥) = {

−1, 𝑖𝑓 𝑥 < 0
0 , 𝑖𝑓 𝑥 = 0

+1, 𝑖𝑓 𝑥 > 0
 (5.4)

And f(x) is the discriminant function associated with the hyperplane and defined as

Eq.5.5.

𝑓(𝒙, 𝒘, 𝑏) = 𝒘 ∙ 𝒙 − 𝑏 (5.5)

In order to find such a hyperplane, a target yi ∈ {-1,+1} is associated to each vector xi

and one should estimate and so that the following product s is computed to be a positive

value as illustrated in Eq.5.6.

𝑦𝑖 ∙ (𝒘 ∙ 𝒙𝒊 − 𝑏) > 0, 𝑖 = 1,2, … , 𝑀 (5.6)

The linear SVM approach consists in finding the optimal hyperplane that maximizes

the distance between the closest training image sample and the separating hyperplane as

shown in Fig.5.18. The geometrical margin between the two classes (i.e., +1 and -1) is

given by the quantity ‘2/||w||’. The concept of margin, which is a measure of its

generalization capability, is central in the linear SVM approach. The larger the margin,

the higher the expected generalization [30].

The classical linearly constrained optimization SVM problem can be translated into a

discriminant function using a Lagrangian formulation [31], so that the linear SVM

approach becomes an equation depending both on the Lagrange multipliers (related to the

parameters yi, w, and xi) and on the training samples associated with the optimal

hyperplane.

Chapter 5

112

Fig.5. 18 Optimal separating hyperplane in the linear SVM approach.

The Lagrange multipliers effectively weight each training sample according to its

importance in determining the discriminant function. The training samples associated

with nonzero weights are called ‘support vectors’.

In order to implement the linear SVM approach in hardware circuit, this research

developed an offline training model with both negative images and positive images for

generating d-dimensional vector w (normal to the hyperplane) and a constant bias b for

pedestrian detection. Since the 3780-dimensional normalized HOG descriptor is

employed for feature representation in this research, the dimensionality d of the vector w

is equal to 3780 for one SW. The trained weight vector w is stored by the cell in nine

divided SRAMs. Since the cell-based FV for HOG descriptor has nine local dimensional

components, there are nine block storages from SRAM1 to SRAM9, which are distributed

to store separate one dimensional local component of each cell respectively as illustrated

in Fig.5.19.

x2

x1
M

axim
u
m

m
argin

w·x
-b

= +
1

w·x
-b

=0

w·x
-b

= -1

class -1

class +1

Optimal

separating

hyperplane

2||w
||

=

w

x3

origin

b

||w
||

Support

vector

Chapter 5

113

Fig.5. 19 The proposed hardware circuit for calculating the linear SVM value, based on trained weight

vector w and constant value b.

Since the block-based L1-norm is operated in a 2×2-cell region, the normalized FVs

are separated to 4 independent cell-FVs and buffered in 4 corresponding FIFOs for the

consecutive calculation of SVM.

An additional state machine is applied to control the read/write (R/W) address for

each SRAM and enable signals for FIFO so that the correct weight component of each

dimension in each cell can be multiplied with the corresponding FV of each dimension in

each cell from the testing image. There should be nine multipliers for cell-FVs outputted

from each FIFO so that four cell-FVs (i.e., block-based processing) can be handled in

parallel for speeding up the processing procedure. The products of each cell-based

components are accumulated by essential levels of addition. The intermediate results for

accumulating 3780-dimensional FV of each SW are stored in a memory until the

completion of window-level computation. The accumulated results (𝒘 ∙ 𝒙) is applied to

D
Q

C
lk

d9,d8,d7,d6,d5,d4,d3,d2,d1 d9,d8,d7,d6,d5,d4,d3,d2,d1 d9,d8,d7,d6,d5,d4,d3,d2,d1 d9,d8,d7,d6,d5,d4,d3,d2,d1

FIFO1 FIFO2 FIFO3 FIFO4

Block-based Normalized FVs

cell1 cell2 cell3 cell4

SRAM1

d'1

d'2

c1

c2

c3

...

Temporary

SVM

…
…

SRAM2

c1

c2

c3

...

SRAM9

d'9

c1

c2

c3

...

…

…

M1

M2

M9
…

…

…

…

…

…

M1

M2

M9

M1

M2

M9

M1

M2

M9

D
Q

C
lk

D
Q

C
lk

D
Q

C
lk

D
Q

C
lk

D
Q

C
lk

DQ

Clk

D Q

Clk

load

DQ

Clk

Load
b

SVM result

W

R
/W

 a
d

d
re

s
s

Training model

b

Block-based
results

Window-based
results

Chapter 5

114

subtract the trained bias b according to Eq.5.5 to generate the final SVM result for each

SW, which can be applied for determining the recognition result (‘+1’ as positive or ‘-1’

as negative).

5.3.2 ASIC implementation in 65nm CMOS

The developed parallel architecture illustrated in the Fig.5.19 exploits simultaneous

processing of multiple SWs operates with normalized block-FVs and takes advantage of

the parallel processing of blocks in related SWs, while the conventional hardware designs

apply an integral-image scheme which results in significant computational cost and frame

latency. The reconfigurable L1-norm-circuit architecture of block-based FVs is applied

for the object-detection hardware and makes a favorable tradeoff between computing

complexity and detection accuracy.

A proof-of-concept prototype chip for flexible feature space construction and

pedestrian detection is fabricated in 65 nm CMOS, as shown in the photomicrograph of

Fig. 5.20. The 3780-dimensional cell-based HOG descriptor is applied for reconfigurable

FV extraction.

Fig.5. 20 Micrograph of the prototype chip for object recognition in 65 nm CMOS technology, which

applies HOG descriptor, L1-norm scheme, and SVM classifier.

The total core area for object detection is about 2.86 mm2, while the general-purpose

L1-norm circuit occupies about 27.3% of this core area.

When operating at 25 MHz frequency, approximately 31 fps real-time-processing

capability for XGA-size image frames can be obtained. The power consumption of this

coprocessor is 21.3 mW at 1.0 V core voltage when operating at the maximal frequency

of 125 MHz. Lower working frequency can be used, which leads to lower power

dissipation by adjusting to the different speed requirements of various applications.

Performance comparison to the state-of-the-art previous research works is presented in

Table V.III.

S
V

M

c
la

s
s

if
ie

r

H
O

G

L
1

-n
o

rm

1
.1

9
5

 m
m

2.395 mm

Chapter 5

115

TABLE V. III

Performance Comparison Results with Previous Works

 JSSC [16] JSSC [17] IEICE [32] This Work

Technology 130 nm CMOS 65 nm CMOS 65 nm CMOS 65 nm CMOS

Feature descriptor SIFT Cell-based HOG Cell-based HOG Cell-based HOG

Core area(mm2) 7.0×7.0 3.58×3.58 3.3×1.2 1.195×2.395

Power

consumption

496mW

(average@200MHz,

1.2 V)

58.6mW

(@62.5MHz,

0.77 V)

40.3mW

(@42.9MHz,0.7 V)

21.3mW

(@125MHz,1.0 V)

On-chip

SRAM(Kbit)
396×8= 3168 280.1×8=2240.8 610 (one core) 328 (norm:36)

Normalization

scheme

Different ways by

software
Same as Ref.11 L2-Hys-norm L1-norm

Maximal

frequency

200 MHz IPs

/ 400 MHz NoC
125 MHz 110 MHz 125 MHz

Frame rate
60fps(VGA @

200MHz)

30-60fps(HDTV

@125MHz)

30fps (HDTV

@42.9MHz)

31fps(XGA,@ 25MHz)

158fps(XGA,@

125MHz)

Image resolution Fixed 640×480 pixels
Fixed 1920×1080

pixels

Fixed 1920×1080

pixels

Flexible ≤ 1024×∞

pixels

Flexibility for cell

size
-

12 sizes up to 104×104

pixels
Fixed 8×8 pixels

5 sizes up to 32×32

pixels

Multi-scale Multi-scale 12-level pyramid Single scale 5-level pyramid

The required storage space for on-chip object recognition is just 328kbits SRAM,

where the reconfigurable general-purpose L1-norm circuit consumes only 36 kbits dual-

port memory space due to the applied reutilization scheme.

Multiple SWs to match different target objects are constructed simultaneously,

although each SW is in a different stage of its FV construction. For different target object

detection and recognition, corresponding weight vector w and constant bias b can be re-

trained offline basing on different datasets and written to nine SRAMs.

5.3.3 Applications for pedestrian detection

The pedestrian-detection application as an illustration to evaluate the accuracy of the

proposed algorithm and VLSI architecture with an equivalent software emulation

employing an advanced 3.30GHz Intel® Core™ i5-4590 CPU and 8 GB of RAM memory.

The object detection is carried out along with the procedure of SW-based FV construction.

SVM classifier is applied to verify the significance of FVs for object-detection

performance with the 3780-dimensional block-based normalized HOG descriptor.

Figure 5.21 shows that a detection system with L1-norm achieves comparable

accuracy performance to the case where L2-norm is applied and further operates with

much better accuracy than without normalization (no-norm) for different feature

descriptors and classifiers from the INRIA dataset.

Chapter 5

116

Fig.5. 21 Pedestrian-detection accuracy with cell-based HOG feature descriptor and a pre-trained SVM

classifier, based on 5656 SWs of 64×128-pixel size.

It is confirmed that 98.23% pedestrian-detection accuracy with L1-norm can be

achieved by a pre-trained linear SVM classifier, which allocates a trained threshold and

a fixed weight for each dimension of the 3780-dimensional FV of a HOG descriptor using

5656 SWs with a size of 64×128 pixels.

5.4 Conclusion

Two frameworks (i.e., simplified SURF feature descriptor + NNS classifier, and HOG

feature descriptor + SVM classifier) for object detection and recognition are applied for

evaluation of different objects such as front cars, lateral cars, and pedestrians. Both

hardware and software implementations are developed in this section to verify the

detecting performance of the proposed architecture. All results of the evaluation show

that the proposed algorithm in this research is efficient for mobile application. Flexible

application adjustment is provided by input customization parameters for different image-

cell sizes, cell-based feature descriptors, and image resolutions. The developed

reutilization scheme of memories for intermediate-result storage allows a significant

reduction of on-chip storage requirements. Lower computational cost and pipelined data

transmission lead to increased efficiency with respect to power consumption.

Consequently, the applied prototype architecture demonstrates less memory usage, lower

energy consumption, and higher detection robustness for real-time object detection in

various mobile applications.

0.95934

0.98232 0.98356

0.90

0.92

0.94

0.96

0.98

1.00

No norm L2-norm

A
c
c
u

ra
c
y

L1-norm

Chapter 5

117

References

[1] W. Lee, and S. J. Stolfo, “A framework for constructing features and models for

intrusion detection systems,” ACM transactions on Information and system security

(TiSSEC) vol.3, no.4, pp.227-261, 2000.

[2] V. N. P. Dao and V. R. Vemuri, “Computer Network Intrusion Detection: A

Comparison of Neural Networks Methods,” Differential Equations and Dynamical

Systems, vol.10, no.1&2, 2002.

[3] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient boosting algorithm

for combining preferences,” Journal of machine learning research, vol.4, pp.933-

969, Nov. 2003.

[4] A. Suleiman, and V. Sze, “An energy-efficient hardware implementation of HOG-

based object detection at 1080HD 60 fps with multi-scale support,” Journal of

Signal Processing Systems, vol.84, no.3, pp.325-337, 2016.

[5] K. Takagi, K. Mizuno, S. Izumi, H. Kawaguchi, and M. Yoshimoto, “A sub-100-

milliwatt dual-core HOG accelerator VLSI for real-time multiple object

detection,” In Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing

(ICASSP), 2013, pp. 2533-2537.

[6] T. Seidl, and H. P. Kriegel, “Optimal multi-step k-nearest neighbor search,” ACM

SIGMOD Record, vol. 27, no. 2, pp.154-165, 1998.

[7] H. J. Mattausch, T. Gyohten, Y. Soda, and T. Koide, “Compact associative-memory

architecture with fully parallel search capability for the minimum Hamming

distance,” IEEE J. Solid-State Circuits, vol.37, no.2, pp. 218-227, 2002.

[8] Y. Yano, T. Koide, and H. J. Mattausch, “Fully parrallel nearest Manhattan-distance

search memory with large reference-pattern number,” Ext. Abstr. Solid State Devices

and Materials, pp. 254-255, 2002.

[9] J. W. Williams, Y. Li, “Comparative Study of Distance Functions for Nearest

Neighbors,” In: Elleithy K. (eds) Advanced Techniques in Computing Sciences and

Software Engineering, Springer, Dordrecht (2010), pp 79-84.

[10] M. Miyazawa, P. Zeng, N. Iso, and T. Hirata, “A systolic algorithm for Euclidean

distance transform,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.28,

no.7, pp.1127-1134, 2006.

[11] X. Zhang, F. An, L. Chen, and H. J. Mattausch, “Reconfigurable VLSI

implementation for learning vector quantization with on-chip learning circuit,”

Japanese Journal of Applied Physics, vol.55, no.4S, pp.04EF02:1-6, Mar. 2016.

[12] F. An, T. Akazawa, S. Yamasaki, L. Chen, and H. J. Mattausch, “VLSI realization

Chapter 5

118

of learning vector quantization with hardware/software co-design for different

applications,” Japanese Journal of Applied Physics, vol.54, no.4S, pp. 04DE05:1-5,

Mar. 2015.

[13] F. An, and H. J. Mattausch, “K-means clustering algorithm for multimedia

applications with flexible HW/SW co-design,” Journal of Systems Architecture,

vol.59, no.3, pp.155-164, Mar. 2013.

[14] F. An, T. Koide, and H J. Mattausch, “A K-means-based multi-prototype high-speed

learning system with FPGA-implemented coprocessor for 1-NN searching,” IEICE

Trans. Information and Systems, vol.E95-D, no.9, pp.2327-2338, Sep. 2012.

[15] K. Takagi, K. Tanaka, S. Izumi, H. Kawaguchi, and M.Yoshimoto, “A real-time

scalable object detection system using low-power HOG accelerator VLSI,” Journal

of Signal Processing Systems, vol.76, no.3, pp.261-274, 2014.

[16] J. Y. Kim, M. Kim, S. Lee, J. Oh, K. Kim, and H. J. Yoo, “A 201.4 GOPS 496 mW

real-time multi-object recognition processor with bio-inspired neural perception

engine,” IEEE Journal of Solid-State Circuits, vol.45, no.1, pp.32-45, 2010.

[17] A. Suleiman, Z. Zhang, and V. Sze, “A 58.6 mw 30 frames/s real-time programmable

multiobject detection accelerator with deformable parts models on full HD

1920×1080 videos,” IEEE Journal of Solid-State Circuits, vol.52, no.3, pp.844-855,

2017.

[18] D. Jeon, M. B. Henry, Y. Kim, I. Lee, Z. Zhang, D. Blaauw, and D. Sylvester, “An

energy efficient full-frame feature extraction accelerator with shift-latch FIFO in 28

nm CMOS,” IEEE Journal of Solid-State Circuits, vol.49, no.5, pp.1271-1284, 2014.

[19] D. Jeon, Q. Dong, Y. Kim, X. Wang, S. Chen, H. Yu, D. Blaauw, and D. Sylvester,

“A 23mW Face Recognition Accelerator in 40nm CMOS with Mostly-Read 5T

Memory,” in Proc. Symp. VLSI Circuits, Kyoto, Japan, 2015, pp. C48 - C49.

[20] Y. M. Tsai, T.J. Yang, C.C. Tsai, K. Y. Huang, and L. G. Chen, “A 69mW 140-

meter/60fps and 60-meter/300fps Intelligent Vision SoC for Versatile Automotive

Applications,” in Proc. Symp. VLSI Circuits, Honolulu, HI, USA, 2012, p.152-153.

[21] T. W. Chen, Y. L. Chen, T. Y. Cheng, C. S. Tang, P. K. Tsung, T. D. Chuang, L. G.

Chen, and S. Y. Chien, “A multimedia semantic analysis SoC (SASoC) with

machine-learning engine,” in Proc. ISSCC, San Francisco, CA, USA, 2010, p.338-

339.

[22] S. Agarwal, A. Awan, and D. Roth, “Learning to detect objects in images via a sparse,

Chapter 5

119

part-based representation,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol.26, no.11, pp.1475-1490, 2004.

[23] S. Agarwal, and D. Roth, “Learning a sparse representation for object detection,” in

Proc. European Conf. on Computer Vision, Springer, Berlin, Heidelberg, 2002.

[24] N. Dalal, INRIA Human Dataset (2005) [http://pascal.inrialpes.fr/data/human/].

[25] J. A. Eichel, A. Mishra, N. Miller, N. Jankovic, M. A. Thomas, T. Abbott, D.

Swanson, and J. Keller, “Diverse Large-Scale ITS Dataset Created from Continuous

Learning for Real-Time Vehicle Detection,” arXiv preprint

arXiv:1510.02055 (2015).

[26] K. Y. Park, and S.Y. Hwang, “An improved Haar-like feature for efficient object

detection,” Pattern Recognition Letters, vol.42, pp.148-153, 2014.

[27] Y. Tang, C. Zhang, R. Gu, P. Li, and B. Yang, “Vehicle detection and recognition for

intelligent traffic surveillance system,” Multimed Tools Appl, vol.76, pp.5817, 2017.

[28] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features

(SURF),” Computer vision and image understanding, vol.110, no.3, pp. 346-359,

Jun. 2008.

[29] C. Cortes, V. Vapnik, “Support-vector networks,” Machine Learning, vol.20, no.3,

pp. 273–297, 1995.

[30] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.

[31] F. Melgani, and L. Bruzzone, “Classification of hyperspectral remote sensing images

with support vector machines,” IEEE Trans. Geoscience and Remote

Sensing, vol.42, no.8, pp.1778-1790, 2004.

[32] K. Mizuno, K. Takagi, Y. Terachi, S. Izumi, H. Kawaguchi, and M. Yoshimoto, “A

sub-100mW dual-core HOG accelerator VLSI for parallel feature extraction

processing for HDTV resolution video,” IEICE Transactions on Electronics, vol.96,

no.4, pp.433-443, 2013.

Chapter 6

120

Chapter 6

Summary and Future Research

6.1 Summary

As an essential prerequisite for building object-classification models to achieve high

detection performance, a resource-efficient hardware architecture for feature extraction

and representation, applying a simplified SURF descriptor which employs Haar-like

wavelets as feature vectors (FVs), is implemented in this research for dedicated mobile

applications and handheld devices. A low computational-budget hardware architecture,

that directly uses the serially-inputted pixel data without pixel pre-processing, is

employed for FV extraction of local image cells. The typically applied integral image in

previous work is substituted by an immediate processing engine for the serial input of

pixel data from the image sensor, resulting in resource efficiency and real-time

processing. The unlimited height of input images (≤1024×∞ pixels) enables an important

contribution to extensive flexibility for processing different applications.

Further, an innovative sliding-window approach is proposed for simultaneous

processing of parallel FV construction and object detection. Two schemes, employing

cell-based non-normalized FVs and block-based normalized FVs, respectively,

demonstrate the window-level FVs construction, which quantifies the similarity of

contained objects to reference windows for the recognition process. The detection

operation synchronizes with the serial output of local partially computed FVs from

multiple simultaneously processed scan windows. Due to the efficiency of the multi-

window parallel processing, a significant reduction of power and storage consumption is

achieved in this research.

To reduce the computation complexity without a significant decrease in detection

accuracy, the proposed block-based FV-normalization scheme and the dimensionality

reduction employing partial least squares (PLS) regression, turn out to complement each

other and are thus effective for achieving the task of high detection performance. The

PLS regression scheme significantly reduces the FV dimensionality as well as the

computation cost, while the normalization scheme enhances the robustness along with the

texture and illumination variation. The reconfigurable architecture is adapted to variable

cell and window sizes, both of which are suitable for enabling multi-scale image search

Chapter 6

121

and multi-object detection.

Finally, detection-performances evaluation of ASCI and FPGA implementations

with different classifiers are reported, which employ the nearest neighbor search (NNS)

or the support vector machine (SVM) as object classifiers The properties of the

designated architecture include efficient resource utilization, high processing speed and

classification accuracy, low computational cost, low power consumption as well as high

compatibility and versatility for extensive mobile applications and handheld devices.

6.2 Future work

The architecture proposed in this research can be further integrated together with an

image sensor and the essential peripheral circuits, to manufacture a complete on-chip

vision system. The manageable image resolution is confined by the image width so that

higher resolutions such as Full HD (1920×1080 pixels) still cannot be handled with the

developed coprocessor design. The storage capacity limits the processing capacity of the

architecture while the memory requirements occupy a large portion of the area of the bare

chip. It is possible to enhance the processing performance by improving the allocation

strategy of the memory space and the logical scheme of the algorithm. The sliding-

window approach in raster scan manner, which results in mass computation of multiple

overlapping windows, is another place that can be considered for improvements. It is

further possible to apply the developed vision-based feature representation in the fields

of deep learning and neural networks for achieving still better performance in the future.

Acknowledgement

122

Acknowledgement

First of all, I would like to thank my mentor Professor Hans Jürgen Mattausch for

giving me a great opportunity to work with his laboratory. I really appreciate his

supervision during my entire research journey at Hiroshima University. His piercing

insight and laudable humility make being his student a delight. But even more exceptional

are his integrity and his unwavering devotion to his students. I offer my heartfelt thanks

to all his help on the check of my articles. I also would like to express my sincere

appreciation to Professor Minoru Fujishima and Professor Shin Yokoyama for their

invaluable and essential comments from various perspectives.

I want to thank all my research collaborators, the ones who worked with me on the

projects described in this dissertation deserve specific commendations. Thanks to Dr.

Fengwei An for the instruction and help on my research work; And thank Dr. Lei Chen,

without you this journey would never have started. Both Xiangyu Zhang and Jungang

Guan gave me a lot of help on the research and daily life in Japan; thank you very much!

I also want to thank Yuuki Fujita, Ikki Nakashima, Dai Suzuki, and Hiroaki Gau for their

help to collect testing images around the university and take verification for the

architecture design, etc. Thanks to the group members again; they make my research

journey fulfilled and inspire me to learn more knowledge of digital circuit designs in the

field of machine vision.

I am forever grateful to everyone who has made my time in the Graduate School of

Advanced Sciences of Matter at the Hiroshima University the fulfilling and intensely

meaningful experience it has been. I also would like to express thanks to the financial

support from the Japanese government, Hiroshima University, and other civil

organizations to make me complete my study in Japan.

Lastly, and most importantly, I want to thank my family for their unconditional

support and encouragement. Thanks my parents for their indispensable spiritual supports

and giving me the respect to my own opinions and full freedom to choices for my life. I

also want to thank my other family members for their unconditional help and positive

suggestions.

List of Publications, Awards and Patents

123

List of Publications, Awards and

Patents

1. International conference presentations related to this thesis

First author

(1) Real-Time Haar-like Feature Extraction Coprocessor with Pixel-Based

Pipelined Hardware Architecture for Flexible Low-Power Object Detection and

Recognition

Aiwen Luo, Fengwei An, Yuki Fujita, Xiangyu Zhang, Lei Chen, Hans Jürgen

Mattausch;

International Conference on Solid State Devices and Materials, Tsukuba, Japan,

September 2016: Oral Presentation.

(2) Reconfigurable Block-based Normalization Circuit for On-chip Object

Detection

Aiwen Luo, Fengwei An, Xiangyu Zhang, Lei Chen and Hans Jürgen Mattausch

International Conference on Solid State Devices and Materials, Sendai, Japan,

September 2017: Poster Presentation.

Coauthor

(1) Pixel-based Pipeline Hardware Architecture for High-performance Haar-like

Feature Extraction

Yuki Fujita, Fengwei An, Aiwen Luo, Xiangyu Zhang, Lei Chen, Hans Jürgen

Mattausch;

IEEE Asia Pacific Conference on Circuits and Systems, Korea, 2016: Poster

Presentation.

2. Awards

丸文財団 交流研究助成賞、一般財団法人 丸文財団、平成２９年３月８日

3. Patents

(1)【発明の名称】ピクセルベース特徴量抽出回路

【発明者】マタウシュ ハンスユルゲン、 安豊偉、陳蕾、張湘イク、駱愛文

【特許願番号】2016-166568

【出願日】2016 年 8月 29日(Applied in Japan)

List of Publications, Awards and Patents

124

 (2)【発明の名称】画像認識装置

【発明者】マタウシュ ハンスユルゲン、安豊偉、陳蕾、張湘イク、駱愛文

【特許願番号】2017-030253

【出願日】2017 年 2月 21日 (Applied in Japan)

125

公表論文

（Articles）

(1) Low-power Coprocessor for Haar-like Feature Extraction with Pixel-based Pipelined

Architecture

Aiwen Luo, Fengwei An, Yuki Fujita, Xiangyu Zhang, Lei Chen and Hans Jürgen

Mattausch

Japanese Journal of Applied Physics, vol.56, no.4S, pp.04CF06:1-9, 2017.

(2) Resource-efficient Object Recognition Coprocessor with Parallel Processing of

Multiple Scan Windows in 65 nm CMOS

Aiwen Luo, Fengwei An, Xiangyu Zhang, Lei Chen, Hans Jürgen Mattausch

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 3,

pp. 431-444, March 2018, DOI: 10.1109/TVLSI.2017.2774813.

(3) Flexible Feature-space-construction Architecture and its VLSI Implementation for

Multi-scale Object Detection

Aiwen Luo, Fengwei An, Xiangyu Zhang, Lei Chen, Zunkai Huang and Hans Jürgen

Mattausch

Japanese Journal of Applied Physics, vol.57, no.4S, pp.04FF04:1-8, 2018.

126

参 考 論 文

（Thesis Supplements）

(1) Real-time Haar-like Feature Extraction Coprocessor with Pixel-based Pipelined

Hardware Architecture for Flexible Low-power Object Detection and Recognition

Aiwen Luo, Fengwei An, Yuki Fujita, Xiangyu Zhang, Lei Chen, Hans Jürgen

Mattausch

Extended Abstracts of the International Conference on Solid State Devices and

Materials, Tsukuba, 2016, pp.457-458.

(2) Reconfigurable Block-based Normalization Circuit for On-chip Object Detection

Aiwen Luo, Fengwei An, Xiangyu Zhang, Lei Chen and Hans Jürgen Mattausch

Extended Abstracts of the International Conference on Solid State Devices and

Materials, Sendai, 2017, pp.819-820.

(3) A Hardware Architecture for Cell-based Feature-Extraction and Classification

Using Dual-feature Space

Fengwei An, Xiangyu Zhang, Aiwen Luo, Lei Chen, Hans Jürgen Mattausch

IEEE Transactions on Circuits and Systems for Video Technology, vol.PP, no.99,

pp.1-13, 2017.

(4) A Hardware-oriented Histogram of Oriented Gradients Algorithm and its VLSI

Implementation

Xiangyu Zhang, Fengwei An, Ikki Nakashima, Aiwen Luo, Lei Chen, Idaku Ishii

and Hans Jürgen Mattausch

Japanese Journal of Applied Physics, vol.56, no.4S, pp. 04CF01:1-7, 2017.

(5) Pixel-based Pipeline Hardware Architecture for High-performance Haar-like

Feature Extraction

Yuki Fujita, Fengwei An, Aiwen Luo, Xiangyu Zhang, Lei Chen, Hans Jürgen

Mattausch

IEEE Asia Pacific Conference on Circuits and Systems, Korea, 2016, pp.611-612.

