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Abstract 
   

Machine learning (ML) is described by Arthur Samuel as the field of study that gives 

computers the ability to learn without being explicitly programmed. The methods for 

solving the ML problem can be classified into two groups, i.e. supervised learning and 

unsupervised learning. Pattern recognition is a branch of ML that focuses on the 

recognition of patterns and regularities in data. Pattern recognition systems can be trained 

from labeled training data in supervised learning, but also can be used to discover 

previously unknown patterns in unsupervised learning when no labeled data are available. 

Feature representation is becoming an important prerequisite for building ML models 

to achieve high detection performance, in particular in vision-based applications. A 

wealth of feature-extraction techniques are being presented in this research field. To meet 

the requirements of embedded systems with limited resources, this thesis developed a 

simplified scale-invariant speeded up robust features (SURF) approach, which can 

decrease object-matching complexity and enhance computational performance 

significantly, to extract the feature vectors of sliding windows in the image. The further 

investigated histogram of oriented gradient (HOG) approach uses a widely accepted 

feature for object detection, which attains high accuracy against changes of illumination 

of variously textured objects. 

Comparing to hardware solutions, the software technologies for feature extraction are 

more affected by computationally demanding algorithms so that the power dissipation of 

software technologies is burdensome for mobile applications and the processing speed 

becomes a bottleneck in case of real-time (>30 frames/s) object detection. Consequently, 

the achievable advantages of faster processing speed and lower power consumption lead 

to application-specific integrated circuit (ASIC) solutions. 

Therefore, a resource-efficient coprocessor for a simplified SURF descriptor, 

employing Haar-like wavelets as feature vectors (FVs), is developed and a prototype is 

fabricated in 180nm CMOS technology in this research. A pipelined hardware 

architecture with low computational budget, that directly uses the serially-inputted pixel 

data without pre-storage, is employed for the local image cells. With a novel multiplexing 

process of the cell-based partial feature vectors, developed in this research work, the 

multidimensional feature vectors of multiple scan windows can be extracted 

simultaneously. The high achievable frame rate (up to 325 frames/s) is more than 

sufficient for real-time processing, while only 12 k bytes of on-chip memory space is 

consumed for feature extraction with the developed simplified SURF descriptor in this 
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research. The die area of the prototype is reduced by more than 98.25%, when comparing 

to previous works. The normalized power consumption is 8.723 mW, using constant field 

scaling to 65 nm CMOS, which is 96.04% less power dissipation than reported in previous 

works and is thus much more suitable for mobile applications with limited battery 

capacity. 

After their completion, the cell-based local FVs are sequentially outputted for the 

parallelized window-level multidimensional feature representation, and for subsequent 

direct object matching without normalization. In this research, the concept of “regular 

rule of reusing times” (RRRT) of each cell is proposed so that the multiple window-based 

descriptor vectors can be constructed in parallel with high speed through access to look-

up tables. 

The first object detection framework, which combines the pipelined feature extraction, 

the cell-based sliding window algorithm and the nearest neighbor search (NNS) classifier, 

is verified in 65 nm CMOS technology. During the entire object detection procedure, the 

prototype coprocessor can achieve 34.6 fps VGA (640×480) frame rate when working at 

200 MHz frequency. Furthermore, the requirements of 1.26 mm2 die area and 26 k bytes 

on-chip memory result in 31.49 mW power dissipation at 1.0V supply voltage. The 

coprocessor can substantially reduce computation cost without significant degradation of 

classification accuracy. The achieved maximal detection accuracy for front-car images is 

98.78% and 93.90% for pedestrian detection. 

Since the object detection is greatly hampered by a large amount of high-dimensional 

FVs in the former-proposed feature-construction scheme, I further employ partial least 

squares (PLS) analysis to project the FVs data onto a much lower dimensional subspace, 

to reduce the computational amount and to save significantly in resource consumption. 

Up to 242.48 MHz frequency of the developed hardware architecture is verified for 

pedestrian detection operated on the Altera Stratix-IV field-programmable gate array 

(FPGA) platform. 

Furthermore, a block-based sliding window algorithm with normalized feature 

vectors by the L1-norm scheme is developed for the second object detection framework 

that combines the HOG descriptor and the support vector machine (SVM) classifier. The 

improved detection framework aims to increase the pedestrian detection accuracy and 

robustness. Since fixed application-field parameters will normally make a hardware 

architecture unsuitable for practical scenarios, flexible regulation of image size, cell size 

(CS), etc., is desired in the second object detection framework to allow usage in a variety 

of mobile applications with the usually occurring changes under various circumstances. 

Variable image resolutions up to 1024 (width) × ∞ (height) pixels can be handled with 
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the same hardware architecture without any modification due to the reported research 

results. Five CS levels, i.e., 2×2, 4×4, 8×8, 16×16, 32×32 pixels with an unlimited image 

height, applied in the on-chip FV-extraction circuit, are implemented in another 65nm 

CMOS prototype ASIC. Up to 125 fps of XGA (1024×768) images can be handled for 

object detection by the developed coprocessor. 41 k bytes on-chip memory and 2.86 mm2 

die area are consumed in this scheme. The on-chip memory in this scheme seems to 

increase when compared to the first framework with the NNS classifier, but this increase 

is only due to the higher dimensionality of the HOG descriptor (3780 dimensions) in 

comparison to the SURF descriptor (1680 dimensions). Moreover, the on-chip memory 

requirement increases linearly with the reference number for the NNS classifier, whereas 

the coefficients number of the SVM classifier is fixed for a given window size. Thus on-

chip storage and area requirements for the second framework can be smaller than for the 

first framework when many references are used in the NNS classifier. The power 

consumption is 21.3 mW when the coprocessor operates at 125 MHz frequency and 1.0 

V supply voltage. 

In conclusion, this research developed a cell-based feature extraction architecture and 

two object detection frameworks combined with NNS and SVM, respectively. Both the 

NNS and the SVM classifiers are applied for verifying the high detection performance of 

the proposed hardware architectures, which are sufficient to meet the requirements of 

mobile applications. 
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Chapter 1  
 

Introduction  
 

1.1 Background   

1.1.1 Machine learning and pattern recognition 

Machine learning (ML) is described by Arthur Lee Samuel in 1959 [1] as the field of 

study that gives computers the ability to learn without being explicitly programmed. As 

a branch of artificial intelligence (AI), ML automates analytical model building based on 

the idea that machines should be able to learn and adapt to experience. The study and 

computer modeling of learning processes in their multiple manifestations constitute the 

subject matter of ML [2]. ML is a science that is not a new concept [3] but one that has 

gained fresh momentum and is resurged with new interest due to great improvements 

resulting from the dynamic growth of new computing technologies and from the 

discovery of new facts and theories through observation and experimentation in the past 

decade. The acquisition of new knowledge makes researchers strive to implant intelligent 

capabilities into machines in the computer era. ML has become more popular than ever 

because it can analyze bigger, more complex data and deliver faster, more accurate results. 

The popular ML produces precise models more quickly and automatically for data mining 

and analysis. 

The ML problems can be generally classified into two broad groups, i.e., supervised 

learning and unsupervised learning. Supervised learning infers a function from labeled 

training data that have a certain relationship with the output data [4]. As illustrated in 

Fig.1.1(a), what the correct outputs should look like in blue or red color is already known 

by the researcher in supervised learning problems. By contrast, unsupervised learning 

allows us to deal with problems even when little or nothing is known about the variables, 

and to derive a structure by clustering the data based on relationships among the variables 

in the data, as illustrated in Fig.1.1(b), with no feedback on the accuracy of prediction 

results [5]. 
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Fig.1. 1 Demonstration of supervised learning and unsupervised learning. 

One classic approach to unsupervised learning is the k-means clustering, which 

partitions a set of data samples automatically into k clusters that are similar or related by 

different variables, depending on the nature of the data, the boundary information and 

the clustering classes [6, 7]. There is no feedback based on the prediction results with 

unsupervised learning, but we can apply it to build structures in a chaotic environment 

with mass data. 

Regression and classification are two main categories for dealing with supervised 

learning problems [8].  

 
Fig.1. 2 Demonstration of regression and classification in supervised learning. 
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Continuous results and tendencies can be predicted by a regression model, while the 

discrete outputs instead are obtained on the basis of some given information by a 

classification model. For instance, the given input data in Fig.1.2 (a) is being mapped to 

the continuous function f1(x). In a classification problem, the given input variables are 

used to predict the sorting results into discrete categories, e.g., two discrete categories as 

a positive result or negative result, as illustrated in Fig.1.2 (b). More complicated 

demonstrations, with high dimensionality of the continuous function f2(x) for regression 

and more discrete categories for classification are shown in Fig.1.2 (c) and Fig.1.2 (d), 

respectively. Specific examples for regression and classification can be found in various 

previous research works [9, 10]. 

Pattern recognition is a branch of ML that focuses on the recognition of patterns and 

regularities in data [11]. The problem of searching for patterns in data is fundamental 

and has a long and successful history [12-15]. Pattern recognition systems can be trained 

with labeled training data in supervised learning such as object classification, but also 

can be used to discover previously unknown patterns when no labeled data are available 

in unsupervised learning with e.g. clustering algorithms. 

The pattern recognition is concerned with the automatic discovery of regularities in 

data through the chosen computer algorithms and applies these regularities to classify 

the input image into different categories as illustrated in Fig.1.3. 

 

 
Fig.1. 3 Schematic of the main procedure of general pattern recognition. 

The categories of the specific objects shown in Fig.1.3 are known in advance. Far 

better results can be obtained by adopting an ML approach with trained categories in a 

specific training set, which is used to tune the parameters of an adaptive model. The 

result of running the pattern recognition can be described as a function f(x). The desired 
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form of the function f(x) can be determined during the training phase, also known as the 

learning stage, on the basis of the training dataset. The identity of new input images, 

comprising a test dataset, can be determined once the model is trained. Taking a new 

image x1 as a testing input, an output vector f(x1) can then be generated, encoded in the 

same way as the target vectors in supervised learning problems.  

In other pattern recognition problems, i.e., unsupervised learning problems, the 

training data consists of a set of input vectors x without any corresponding target values. 

The goal of such problems is mainly to discover groups of similar examples within the 

categories called ‘clusters’, as indicated in Fig. 1.3, or to take density estimation, 

determining the distribution of data within the input’s high-dimensional feature space. 

 

1.1.2 Machine vision and feature representation 

Pattern recognition based on specific feature vectors is an important methodology for 

digital image and video analysis in many machine-vision-based scenarios. Digital images 

are a convenient media for describing and storing spatial, temporal, spectral and physical 

components of information contained in a variety of domains (e.g. satellite images, 

biomedical images) [16]. Representation of image information by specific features is one 

of the most important factors that affect object detection performance.  

In many past applications of pattern recognition, some form of fixed pre-processing 

concentrated on the feature extraction (FE). The objects in digital images scanned by a 

sensor are mapped into a multidimensional feature space through a specific feature 

representation by a descriptor as illustrated in Fig.1.4.  

Generally, the features are applied for representing the reduced sets of values, 

extracted from the input data, e.g. the parts of interest in an image for vision-based 

applications. 

Using such a reduced representation instead of the complete input data (e.g. raw 

pixels of image frames) facilitates the subsequent pattern recognition processing. Many 

kinds of feature vectors have been applied for complicated scenes that are suitable for 

various application fields. Selection of a FE method is probably the most important factor 

for achieving high recognition performance in applications. 

A considerable amount of research work has been carried out on FE for different 

representations. Feature descriptors such as the gradient location-orientation histogram 

(GLOH) [17], the shape context [18], the local binary pattern (LBP) [19], and higher-

order local autocorrelation (HLAC) [20] were proposed to provide specific descriptors 

of significant image features based on different construction principles. 
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Fig.1. 4 Objects to be detected and the corresponding feature representation with specific descriptors 

Scale-invariant feature transform (SIFT) [21] as one of most popular FE algorithms 

has shown great robustness or invariance to changes in image scale, rotation, illumination, 

3D camera viewpoint, and noise. However, the SIFT algorithm has high computational 

cost and memory requirement, which prevents it from real-time applications, especially 

in the case of implementation by a pure software scheme. The scale-invariant speeded 

up robust feature (SURF) [22, 23] approach is regarded as an improved scheme which is 

partly inspired by the SIFT and can decrease object-matching complexity and enhance 

computational performance significantly, so that it is more suitable for embedded 

systems with limited resources.  

The original SURF consists of two distinct stages: detection and description. The 

main work of the detection stage is to search for essential interest points in scaled image-

frame pyramids. In contrast, the description stage of SURF aims at collecting Haar-filter 

responses around each interest point in chosen orientations, which constitutes the 

components and determines the dimension of the feature vector. The Haar sequence was 

proposed by Alfréd Haar [24] in 1910, and has been widely used and highly developed 

until now. The advantage of the Haar-wavelet responses, which are calculated for the 

SURF descriptor, is that they enable higher processing speed and better repeatability than 

other descriptors, thus decreasing object-matching complexity and enhancing 

computational performance. Histogram of oriented gradients (HOG) [25] is also a 

popular and widely accepted feature descriptor for pattern recognition and attains high 

accuracy against changes of illumination of variously textured objects. Feature extraction 

and construction is becoming an essential prerequisite for building object-classification 
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models to achieve high detection performance. 

 

1.1.3 Object detection and classification 

In the computer-vision-based solutions, object detection is the technology that is 

related to image processing. Object detection is the process of sorting the instances of 

semantic objects into classes such as vehicles, pedestrians, faces, trees and buildings as 

illustrated in Fig. 1.5. Specifically, object detection is most widely used in the research 

domains of face detection and pedestrian detection in the current decade. 

 

 
Fig.1. 5 General applied scenario for detecting different objects including tree, pedestrian and building. 

Generally, there are two main steps in an object-detection system as illustrated in 

Fig.1.6: 1) Extracting a number of features, and 2) Training a classifier. In the feature 

extraction phase, different feature extraction methods, which have been introduced in 

section 1.1.2, are designed for different representations of the characters in images. In 

the second phase of training a classifier from a given dataset, including both positive 

image samples (responding to the target object) and negative image samples, the aim is 

to predict the existence of objects within input testing images, and further to detect the 

location of the objects.  

 

Target object 
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Fig.1. 6 The general flowchart for an object detection system. 

 

A classifier is an algorithm that takes a set of features that characterize objects and 

uses them to determine the type (or class) of each object. For each object, the features 

measure a number of properties (e.g., brightness, size, shape, texture, etc.) and the 

classifier then uses these properties to determine the class that each object belongs to. 

Classifiers can give an estimate for the probability that an object belongs to each of the 

candidate classes. For supervised classification, a set of known objects called the training 

set are used to determine into which classes an object may be categorized. The positive 

samples and negative samples for the two known classes are used for training by the 

classification programs to learn how to classify objects. There are also unsupervised 

classification methods in which the induction engine works directly on the input images, 

and there are neither training sets nor pre-determined classes. 

A generic image classification approach in pattern recognition collates heterogeneous 

training images to certain categories and finds the one category of objects that is the most 

likely to be present in an image given for evaluation. 

Object detection can apply appropriate classifiers, such as a support vector machine 

(SVM), a nearest-neighbor (NN) distance estimation or a neural network as a searching 

engine to find out the target object with favorable properties in the evaluated visual data. 

Artificial vision systems can be powerful tools for automatic inspection of e.g. fruits or 

vegetables, as illustrated in [30]. This thesis will also employ the NN search (NNS) and 

the SVM to evaluate the performance of the developed circuits in chapter 5.  

 

1.2 Motivation and purpose 

1.2.1 Motivation for mobile applications 

These days, many video surveillance systems are applied in public areas such as 

roads, airports, supermarkets, train stations, and subways, etc. Image and video capture 
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programs are widespread in daily life and also intended for military and other purposes. 

Various application fields, such as advanced driver assistance systems (ADAS) [26], 

wearable devices [27], emotion recognition [28] or unmanned aerial vehicles (UAV) [29] 

also extract feature vectors for machine vision in complicated scenarios. 

The basic function of ADAS is to detect specific target objects, do classification, alert 

the driver of hazardous road conditions, and slow or stop the vehicle in some cases as 

shown in Fig.1.7.  

 

 
Fig.1. 7 An applied scenario for ADAS to deliver collision warnings. 

The ADAS is great for fast-moving applications like blind spot monitoring, lane 

change assistance, and forward collision warnings. Thus ADAS is experiencing rapid 

adoption and growth in automotive systems enabled by advancements in the object 

detection and classification technology. 

The movement of the current UAV system relies on global positioning system (GPS) 

for navigation combining low-cost inertial sensors, sonar, and computer vision 

techniques, as illustrated in Fig. 1.8. Navigation and control are two key technologies for 

an unmanned aerial vehicle (UAV). The GPS navigation becomes invalid in indoor 

applications or when the UAV is hidden by shelters like the trees. Therefore, the 

embedded guidance system on the UAV plays a more important role with the 

advancements in the object detection and classification technology. The UAV control 

shares qualities with typical robotic motion planning problems. 

 

 
Fig.1. 8 An applied scenario for navigating and controlling a UAV. 
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Smartphones are widely used in the last decade and it can be regarded as the most 

representative device of mobile applications. More and more intelligent functions are 

integrated in a mobile device which is far more than its name “phone”. Specifically, in 

order to recognize objects from images recorded by the camera of a mobile device, feature 

extraction and object detection are applied for mobile applications such as human face 

recognition as illustrated in Fig.1.9. 

 

 
Fig.1. 9 An illustration of mobile face recognition. 

For mobile applications of object detection and recognition, there are many factors 

that should be considered. 

In this thesis, the motivation is to develop a hardware-oriented object detection system 

for mobile applications such ADAS, UAV or face detection as discussed above. As the 

onboard battery of the mobile device is the critical factor that restricts the utilization in 

practice, low power dissipation is the most desired performance to provide enough battery 

storage to run object detection on the basis of sufficient detection accuracy. Further, the 

resource requirements determine the power consumption and the device cost. Thus 

reduction of computational complexity is necessary for mobile applications in hardware 

designs. Additionally, sufficient processing speed (> 30 fps) is essential for practical 

significance. More functions are desired for mobile applications. 

 

1.2.2 Related researches and existing problems 

Many related feature-based object-detection solutions by software, hardware or 

combined hardware-software implementations have been reported in many experiments 

and applications while maintaining high enough accuracy. The machine or computer 

vision applications tend to deal with high image resolutions and high frame rates in recent 

years. 

On one hand, software libraries like OpenCV [31], OpenCL [32] as well as OpenGL 

[33], are supported by multi-core processing systems, CPUs or graphics processing units 
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(GPUs), so that the conventional vision-based algorithms become feasible for various 

feature descriptors, enabling rapid prototyping and overall shorter development periods. 

However, the dependence on high-performance hardware devices or platforms makes 

these software-library solutions unsuitable for largely outdoor mobile-application 

scenarios in spite of the support of rapid prototyping and shorter development periods. 

On the other hand, to support the substantial computational amount for processing 

multiple frames per second in real time, many hardware implementations for feature-

based object recognition have been proposed in the current decade. For example, a SIFT 

detector, using a heterogeneous methodology to partition the workload between CPU and 

GPU for embedded systems [34], suffers from similar power consumption (3383 mW) 

as the CPU-only scheme (3186 mW), and from the relatively long execution time of 148 

ms per image frame even with a small image size of 224 pixels × 224 pixels. Another 

CPU-GPU hybrid computing method [35] for feature extraction was introduced with 

significant improvements in processing speed. However, this solution is still energy-

hungry, while working at an extremely high frequency, and speed-limited, when 

compared to an application-specific integrated circuit (ASIC) [36, 37]. 

Many hardware implementations based on field-programmable gate array (FPGA) or 

ASIC solutions are also proposed in the current decade. A programmable FPGA-based 

solution [38] is flexible for different functional designs with relatively short developing 

period and high processing speed. 

TABLE I. I   

Performance of Recent Hardware Solutions for Feature-Based Object Detection 

 WSPS [38] TCSVT [39] JSSC [40] CICC [41] 

Technology FPGA 65nm CMOS 65nm CMOS 65nm CMOS 

Feature type HOG MSEM SIFT SURF 

Frequency(MHz) 404 20 200 200 

Resolution (pixels) 1920×1080 100×100 1920×1080 1920×1080 

Frame rate(fps) 209 40 30 57 

Memory usage(kB) 108 14.625 40 400 

Peak Power(mW) 3600 9 198.4 220 

 

However, the power consumption for a FPGA-based solution is extremely large 

when compared to ASIC solutions [39-41] as shown in Table I.I. Moreover, the machine 

or computer vision applications tend to require high resolutions and high frame rates, 

which leads to more energy computation. As opposed to the rapid growth of computer 

vision, the development of battery-storage capacity is meeting a significant bottleneck, 
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which causes great limitations for energy-critical mobile applications. Moreover, the 

large data-storage requirements and the limited memory bandwidth for image processing 

also cause difficulties for high-performance implementations of object detection in 

mobile terminals. The hardware computational cost is mainly depended on the algorithm 

for the chosen feature type and the intrinsic characteristic of the hardware architecture or 

platform. In other words, the feature type and hardware architecture are two critical 

factors in hardware implementations for object detection. 

There is a pretty important concept named integral image which was introduced to 

computer graphics by Franklin C. Crow [42] in 1984 and was used for multiple previous 

research works. The integral image has become one of the most popular methods applied 

in the realization of feature-based object-detection systems because of its convenience 

for calculating the pixel-intensity sum for any rectangle area of the image. The 

calculation time of the integral image is independent of the rectangle size as illustrated 

in Fig. 1.10, so that a remarkable improvements of feature-calculation speed can be 

achieved. However, integral images require large memory space for accumulated-sum 

storage [41, 43], which is hardly affordable for resource-limited on-chip systems in 

mobile embedded applications. Therefore, an alternative scheme is requested for feature 

calculation of visual data from the image sensor more efficiently and meeting this 

requirement is an import objective in this research. 

 
Fig.1. 10 Explanation of integral-image-based pixel-value summation in an arbitrary rectangle within the 

image. The integral image starts from the origin point (0, 0) of coordinates. Pixel summation of rectangle 

D can be computed by the four cumulative sums corresponding to its four corners, i.e., at the locations 

(x1,y1) , (x2,y1) , (x1,y2) and (x2,y2). 

 

1.2.3 Purpose of this research 

The purpose of this research is to analyze the main impact factors in relation to 
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resource efficiency, high processing speed, low computational cost and low power 

consumption, so as to construct reconfigurable hardware structures for flexible 

regulations of feature extraction and object detection that are suitable for dedicated 

mobile applications and handheld devices. 

The novel proposals to approach the realization of this purpose are as follows: 

Firstly, considering the insufficiencies in current strategies for feature-based object 

detection, this research proposes a resource-efficient hardware architecture for a 

representative feature descriptor, i.e., the simplified SURF descriptor employing Haar-

like wavelets as feature vectors. It can substantially reduce computational cost without 

significant degradation of classification accuracy due to the applied simplified structure. 

A low computational-budget hardware architecture, that directly uses the serial input-

pixel data without pixel pre-processing such as for integral images, is employed for 

feature vector extraction of local image cells. 

Secondly, an innovative window-based search approach is proposed for high-

dimensional feature extraction and parallel object detection at the same time. The 

partially computed feature vectors of multiple simultaneously-processed scan windows 

are sent to the detection engine to start already searching for target objects while the 

feature vectors of the scan windows are constructed. The detection operation 

synchronizes with the serial output of cell-based local feature vectors. Due to the 

efficiency of the cell-based multi-window parallel process, a significant reduction of 

power and storage consumption is achieved in this research. Furthermore, feature-

dimensionality reduction, which employs the partial least squares (PLS) regression, are 

included to reduce the computational cost. 

Finally, experimental detection-performance verifications with different classifiers 

are reported in this work. In particular, the detection procedure, employing nearest 

neighbor search (NNS) or SVM as the object classifier, is applied to quantitatively verify 

the obtainable achievement of a significant reduction in power and storage consumption 

without significant degradation of detection accuracy. Flexible image resolutions, 

handled by the coprocessor hardware architecture without any modifications, enhance 

the compatibility and versatility of the desired detection system for multi-scale or multi-

object applications. 

Hardware-friendly prototypes for the proposed hardware designs are mainly verified 

with SOTB (Silicon on thin BOX) CMOS technology so that it can be easily be applied 

to mobile applications as e.g. the popular handheld devices. An FPGA platform is also 

employed in this research for verifying the feasibility of the proposed algorithms and 

evaluating the detection performance. 
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1.3 Dissertation outline   

The thesis is organized into six parts as follows:  

Chapter 1 introduces the background including traditionally implemental approaches 

and discusses their pros and cons with respect to the vision-based object detection in the 

field of the popular machine learning. A highly-performing hypothesis for a feature-based 

detection scheme is proposed and formulated in this section. 

Chapter 2 proposes a simplified SURF descriptor and its pipelined scheme for local 

cell-based feature extraction, which is a cornerstone of object detection in computer 

vision. The typical integral image is substituted by an immediate-processing engine for 

the serially input-pixel data from the image sensor without normalization, resulting in 

resource efficiency and real-time processing. 

The developed window-based feature-space-construction algorithm, applying local 

cell FVs, is illustrated in chapter 3. Instead of extracting feature vectors only around the 

interest points as in the previous SURF algorithms, this research applies an overlapping 

scan-window approach for covering the entire image without detection of interest points. 

In chapter 4, an improvement scheme with both FV normalization and dimensionality 

reduction is proposed for enhancing the detection robustness as well as decreasing the 

computational cost. The high-dimensional feature spaces are substantially reduced, to 

avoid the processing of dense and unnecessarily large data amounts during the recognition 

procedure. Flexible regulation strategies for highly-robust performance are explored with 

the L-norm scheme. Local feature vectors are further computed in terms of programmable 

cell size and window size with unlimited image height, to increase the flexibility for usage 

in many different applications. 

Chapter 5 illustrates the hardware results with different object-detection frameworks, 

in combination with either simplified-SURF or HOG descriptors. The detection 

performance is compared and discussed for the cases of NNS and SVM classifiers. 

The conclusions of this dissertation as well as the future-work tasks are summarized 

in chapter 6. 
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Chapter 2  
 

Local Cell-Based Feature 

Extraction 
 

2.1 Introduction 

The speeded up robust feature (SURF) descriptor is not only faster but also better 

repeatable than other descriptors by relying on integral images for image convolutions [1, 

2]. The original SURF consists of two distinct stages, i.e., detection and description. The 

main work of the detection stage is to select and search essential interest points (IP) at 

distinctive locations in image pyramids. As illustrated in Fig.2.1, different numbers of IP 

can be selected to represent the image with repeatable results during the detection stage 

of the original SURF algorithm. Whereas, the description stage of the original SURF 

algorithm collects and describes Haar wavelet responses [3] around each interest point in 

chosen orientations, constituting the highly-dimensional feature vector for feature 

representation of various objects. But the generally computational-expensive SURF 

algorithm still consumes relatively high power, unacceptable for practical 

implementations of computer vision. 

 

 
Fig.2. 1 An illustration of selection results of the original SURF algorithm with different numbers (2, 5, 

10, respectively) of interest points (IP). 

To ensure the overall quality of feature extraction and to reduce the power 

consumption, a pixel-based pipelined algorithm, necessitating feature extraction from the 

entire frame, was proposed in [4]. However, the preprocessing to generate an integral 
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image from raw pixels is still indispensable in both detection and description stages.  

Instead of extracting feature vectors only around the IP as in the previous SURF 

algorithms, this research applies a simplified SURF approach for covering the entire 

image without detection of IP. The extracted Haar-like responses are used for window-

feature-vector construction to recognize the target objects in the image pyramids, 

enhancing the computational efficiency and flexibility. 

The Haar-wavelet-response calculation makes the SURF descriptor faster and more 

repeatable than other descriptors, thus decreasing object-recognition complexity and 

enhancing computational performance. A set of Haar-like feature types such as edge 

features, line features, center-surround features, diagonal feature and their separate 

rotated features in certain degrees, have been introduced with different restrictions in 

previous works [5-9], as illustrated in Figs.2.2 (a-d). Compared with raw pixels, the Haar-

like features focus more on the information within a certain area of the image rather than 

every single pixel, which reduces/increases the in-class/out-of-class variability efficiently 

and thus makes classification easier [5].  

 

 
Fig. 2.2 (a) Edge Haar-like features and corresponding rotated features 

 
Fig. 2.2 (b) Line Haar-like features and corresponding rotated features 

 
Fig. 2.2 (c) Center-surround Haar-like feature and corresponding rotated feature 

 
Fig. 2.2 (d) Diagonal Haar-like feature and corresponding rotated features 

Fig.2. 2 Four types of Haar wavelet representations where black areas have opposite weights to white 

areas.  

a(1) a(2) a(3) a(4)

b(1) b(2) b(3) b(4) b(5) b(6) b(7) b(8)

c(1) c(2)

d(1) d(2) d(3)
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The Haar-like wavelets can be widely applied to object detection and recognition in 

a plenty of research works with respect to face recognition [6], hand gesture recognition 

[7] and pedestrian detection [8], etc. Black areas in Fig.2.2 (a-d) have opposite weights 

to white areas for each Haar wavelet representation to capture the structural similarities 

between instances of an object class [9]. 

Specifically, the edge Haar-like features shown in Fig.2.2 (a) are employed for the 

proposed simplified SURF descriptor in this research, whose black areas have positive 

weight “+1” while white areas have negative weight “-1”. 

 

2.2 Local cell-feature component extraction 

algorithm 

In order to recognize the input object or to detect the target object in the input image, 

the input object or target object must be efficiently expressed in the feature representation. 

Let F(x, y) be a two-dimensional image pixel array of a image in x and y direction, which 

are directly scanned from the image sensor. F(x, y) can be used to denotes the color value 

at pixel p(x, y) for color images represented in terms of the three primary RGB colors, 

i.e., red, green and blue, which be written as F(x, y) = {FR(x, y), FG(x, y), FB(x, y)}. On 

the other hand, F(x, y) can also be applied for denoting the grayscale intensity value, as 

illustrated in Fig.2.3, at pixel p (x, y) for gray images. 

 

 
Fig.2. 3 Example of a raw image to be processed, one selected region and its corresponding grayscale-

intensity values at each pixel. 

 

Therefore, the image space can be mapped onto the n-dimensional feature space X = 

{xl, x2, …, xn }by the mapping f : 
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f : F→X,            (2.1) 

 

where n is the number of features used to represent the image. 

In this research, the Haar wavelets, which are robust in decreasing object-matching 

complexity as well as enhancing computational performance, are applied for feature 

representation used in the SURF descriptor. 

Specifically, the edge Haar-like features shown in Fig.2.4 are employed for the 

proposed simplified-SURF descriptor in this research, whose black areas have positive 

weight “+1” while white areas have negative weight “-1”. A rectangular sub-division 

constructed by a 4×4-pixel array is defined as a sub-cell and applied for basic feature 

calculation for edge Haar-like wavelets. 

 

 
Fig.2. 4 Selected edge Haar-like feature extraction operated in a 4×4-pixel sub-cell. 

For horizontal sub-cell responses, the left part and the right part of the 4×4-pixel sub-

cell are summed up respectively before subtraction operation according to Fig. 2.5 and 

Eq. 2.2.  

       
Fig.2. 5 Horizontal sub-cell response employed Haar-like wavelets. 

 

𝐷𝑥 = ∑ 𝑝(𝑥)

𝑝(𝑥)∈𝑙𝑒𝑓𝑡𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

− ∑ 𝑝(𝑥)

𝑝(𝑥)∈𝑟𝑖𝑔ℎ𝑡𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

                   (2.2) 
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Here p(x) represents the pixel intensity values of a gray-scale image in horizontal (x) 

direction, which are directly scanned from the image sensor.  

For the vertical sub-cell responses, the up part and the down part of the 4×4-pixel 

sub-cell are summed up respectively before subtraction operation according to Fig. 2.6 

and Eq. 2.3.  

  
Fig.2. 6 Vertical sub-cell response employed Haar-like wavelets. 

 

𝐷𝑦 = ∑ 𝑝(𝑦)

𝑝(𝑦)∈𝑢𝑝𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

− ∑ 𝑝(𝑦)

𝑝(𝑦)∈𝑑𝑜𝑤𝑛𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

                   (2.3) 

 

Here p(y) represents the pixel intensity values of a gray-scale image in vertical (y) 

direction, which are also directly scanned from the image sensor.  

According to the raster scan manner of the general image sensors, the inputted line-

by-line raw pixels are immediately processed to progressively determine the Haar-like 

features Dx and Dy of related sub-cells used by the simplified SURF descriptor. 

In order to bring in information about the polarity of the intensity changes, the 

absolute values |Dx| and |Dy| for each sub-cell are also extracted according to Eq. 2.4 and 

Eq. 2.5 respectively.  

 

|𝐷𝑥| = | ∑ 𝑝(𝑥)

𝑝(𝑥)∈𝑙𝑒𝑓𝑡𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

− ∑ 𝑝(𝑥)

𝑝(𝑥)∈𝑟𝑖𝑔ℎ𝑡𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

|                   (2.4) 

  

|𝐷𝑦| = | ∑ 𝑝(𝑦)

𝑝(𝑦)∈𝑢𝑝𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

− ∑ 𝑝(𝑦)

𝑝(𝑦)∈𝑑𝑜𝑤𝑛𝑠𝑢𝑏−𝑐𝑒𝑙𝑙

|                   (2.5) 

 

Important is, this research proposes a novel feature extraction algorithm that the 

intensity values p(x) and p(y) can be taken directly from the raw pixels of the image sensor 

serially inputted in raster manner, without any preprocessing or pre-storage as integral 

image. The feature calculating speed is depended on the working frequency of the image 
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sensor due to the operation synchronization. Thus the computational complexity and 

memory-resource consumption will be significantly reduced in comparison to previous 

solutions such as integral-image-based schemes. 

A non-overlapped rectangle area with 2×2 sub-cells is further used to construct a ‘cell’, 

as illustrated in Fig. 2.7, which is the basic processing unit of the proposed simplified 

SURF descriptor. For the local Haar-like wavelet response of one cell, the response values 

Dx, Dy, |Dx| and |Dy| of four sub-cells that belong to the same cell are added up and form 

the local four-dimensional cell-response vector vcell of Eq. 2.6 at the cell layer. 

 

𝑣𝑐𝑒𝑙𝑙 = { ∑ 𝐷𝑥

𝑥∈𝑐𝑒𝑙𝑙

, ∑ 𝐷𝑦

𝑦∈𝑐𝑒𝑙𝑙

, ∑ |𝐷𝑥

𝑥∈𝑐𝑒𝑙𝑙

|, ∑ |𝐷𝑦

𝑦∈𝑐𝑒𝑙𝑙

|}              (2.6) 

 

The pixel-group differences of the four sub-cells in each cell are accumulated and 

form local four-dimensional cell-based feature-vector components. Synchronization with 

the image sensor’s and immediate usage of each input pixel for the feature-construction 

process avoids the dependence on memory-intensive conventional strategies like integral-

image construction or frame buffers. 

An efficient control conception is essential for immediate processing of the serially 

inputted pixels for local cells feature components. In this research, a counter group in 

cooperation with the logic gates are applied for instant stepwise execution and enable 

signal generation of the proposed pipeline feature extraction for local cells.  

 

 
Fig.2. 7 Relationships between the processing units (i.e., pixel, sub-cell and cell) in the proposed cell-

based feature extraction algorithm. 
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2.3 Hardware implementation of cell-based 

simplified-SURF feature extraction 

2.3.1 Overall feature extraction architecture for local cells  

Feature extraction and construction is becoming a real prerequisite for building 

object-classified models to achieve high detection performance. With regard to feature 

representation on the basis of the sliding-window strategy, the cell generally is the basic 

component for a search window in many feature descriptors. Specifically, there is another 

sub concept as sub-cell for the proposed simplified SURF descriptor applying the edge 

Haar-wavelet features in this research as illustrated in Section 2.2. This section is going 

to present a pipeline hardware architecture for feature extraction on cells which will be 

further applied for constructing a high-dimensional window-based feature vector in the 

following designs. 

Given an entire input image in resolution of w (width)× h (height) pixels as shown in 

Fig.2.8, there are w/4 sub-cells and w/8 cells each row in response to a fixed sub-cell size 

(4×4 pixels) and cell size (8×8 pixels). With the serially-input pixels scanned in raster 

manner by an image sensor, each pixel will be sent instantly to be summed up inside the 

corresponding sub-cell and cell for both horizontal and vertical responses without 

buffering or any pre-processing. An idea that each pixel will be abandoned without 

retreatment after being invoked for response calculation of the non-overlapped sub-cell 

and cell is presented in this research. The intermediate calculated results will be 

temporarily stored or sent for secondary calculation.  

Since the pixel scan procedure from image sensor runs consecutively without pause, 

the pixel processing for feature vectors should be also taken successively so as to avoid 

additional storage requirement or data loss. For each sub-cell row, the calculation results 

of the first three rows of pixels should be buffered until the last pixel of each sub-cell. 

 

 
Fig.2. 8 Pixel scan manner of data supply form the image sensor and image-region division for feature 

extraction. 
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Figures 2.9 and 2.10 briefly illustrate the representative generation process of the 

four-dimensional feature components of the first cell ‘cell1’ and the second cell ‘cell2’ in 

the first cell row. Due to the raster scan manner of the image sensor, the pixels located at 

the image from left to right are inputted serially for feature calculation according to Eq.2.2 

and Eq.2.3 on a basic unit of 4×4-pixel sub-cell.  

The responses calculation of first sub-cell for the horizontal Dx and vertical Dy results 

will not complete until the fourth-pixel p[3w+4] in the fourth-pixel row in a given image 

width w is inputted.  

 

 

 
Fig.2. 9 Main generation-process flow of the four-dimensional feature components for the first cell cell1. 
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Fig.2. 10 Main generation-process flow of the four-dimensional feature components for the second cell 

cell2. 

The responses Dx[1] and Dy[1] of the first sub-cell should be buffered for summation 

of cell-based feature components until the calculations of the other three sub-cells in the 

first cell ‘cell1’ complete. As the 3rd -row pixels are kept scanning forwards from left to 

right, the 8th pixel p[3w+8] in the 3rd row is inputted and the responses Dx[2] and Dy[2] 

of the second sub-cell will be achieved instantly. Similarly, along with the input of the 

pixel p[7w+4] and p[7w+8], the calculation of the other two sub-cells is also completed 

sequentially for accumulation result vcell1 of the first cell ‘cell1’.  

Before accomplishment of calculation of sub-cells, all the intermediate values should 

be temporarily stored. However, once the calculation of the non-overlapped sub-cell is 

complete, all pixels and intermediate value related to the current sub-cell can be released 

and reset. The final sub-cell responses, i.e., the horizontal Dx and vertical Dy results, are 

the only necessary data to be transferred for secondary calculation for cells and windows. 

The situation of the second cell ‘cell2’ in the first cell row is similar to the processing 

procedure of the first cell ‘cell1’. The sub-cell responses should be computed and 

outputted sequentially for the following accumulation in the same cell. The generation of 

local four-dimensional feature components of other cells has similar processing procedure. 

The pixels shown in green color in Fig.2.9 and Fig.2.10 can reflect the accomplishment 

status of each cell and sub-cell. The scanned pixels in green color would be computed 

only once and then abandoned because they turned to be redundant and the values of the 

sub-cells are the only essential data for next calculation on cells, to refrain from 

unnecessary storage requirement. 
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Considering the desired transformation characteristics analyzed above during edge 

Haar-like feature vector extraction procedure for the local cell, this research proposes an 

alternative solution of feature vector construction with a pixel-based pipelined 

architecture, which avoids both image buffers and integral image calculations.  

To recognize the target objects among complex backgrounds, a pixel-based pipelined 

architecture for real-time feature extraction on the local cell, as illustrated in Fig. 2.11, is 

proposed for efficient cell-based feature representation.  

Other than processing one pixel per cycle in a pipeline for the integral image as in 

previous works like [4], the serial-input pixels from the image sensor are used 

immediately to proceed with Dx and Dy calculation of the corresponding sub-cells by the 

‘sub-cell calculator’ according to Eq.2.2 and Eq.2.3, and then to sum the four sub-cells 

up as cell-feature vectors vcell according to Eq.2.6. 

Intermediate sub-cell responses are temporarily saved in the first storage while the 

cell results are then buffered in the second storage as shown in Fig. 2.11, respectively. 

The first storage is actually divided into two parts for computing Dx and Dy responses of 

each sub-cell respectively.  

The calculation of Dx and Dy sub-cell responses are operated at the same time, but the 

generation of intermediate Dx and Dy sub-cell results are asynchronous due to the different 

regional divisions as shown in Fig.2.4.   

 

 
 

Fig.2. 11 Integrated hardware architecture for extracting the local four-dimensional cell-feature vectors 

vcell={∑Dx, ∑Dy, ∑|Dx|, ∑|Dy|} with the simplified-SURF descriptor. 
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To enable the pixel-based pipelined-adding operation with an immediate 

accumulation of pixel values after transfer from the image sensor, the dual-port memory 

is employed for the implementations of both the first storage and the second storage 

shown in Fig. 2.11. Accesses conflicts between reading and writing are also avoided by 

a fixed clock-cycle delay when accessing to the same address, which in particular 

guarantees continuity of the whole pipeline processing. In particular, the two storages are 

applied for buffering the intermediate data under the control of the pipeline controller.  

The pipeline controller is mainly composed of a counter group, logic gates, and 

registers, to manage the writing and reading addresses for the two dual-port memories, as 

well as selection signals for multiplexers and load signals for the registers, etc. 

Specifically, variable counters can be employed for flexible regulation about image size 

to be processed, which is considered important for reconfigurable designs and will be 

expanded and discussed in the following contents. 

The cascaded multiplexers (i.e. MUX1 and MUX2) cooperated with the second 

storage and the adder shown in Fig. 2.11 are designed to aid for summing up the adjacent 

sub-cells that are assigned to the same cell.  

There are two iterative structures in the sub-cell calculator, to compute sub-cell 

responses according to Eq.2.2 and Eq.2.3 respectively, which will be discussed in detail 

in the next sections.  

Consequently, the processing speed only relies on the pixel-transfer frequency from 

the image sensor by the proposed pixel-based pipeline cell-feature extraction architecture, 

to implement the calculation in hardware for the local four-dimensional cell-feature 

vector vcell.  

 

2.3.2 Pixel-based pipelined circuitry for sub-cell responses 

2.3.2.1. Horizontal response Dx 

In the case of computing Dx responses, adjacent pixels that are assigned to the same 

part (left or right) of the same sub-cell, are transfer to the sub-cell calculator by another 

two cascaded multiplexers. Two methods can be employed for calculating the horizontal 

sub-cell response Dx in this research with different arithmetic priorities and storage 

policies. The first strategy for computing horizontal response Dx is to separate the left 

part and right part of each sub-cell exactly the same as Fig. 2.4, accumulate pixels 

according to Eq.2.2 and store the intermediate results of the left part and right part 

independently. Another strategy for generating the Dx responses is to transform addition 

and subtraction instantly according to the pixel position inside the sub-cell so that the 
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final horizontal sub-cell response Dx can be obtained by a combined computation on all 

pixels inside a same sub-cell. Both of these two methods own their respective advantages 

and disadvantages. 

Figure 2.12 illustrates the circuitry and its operating principle of the first method 

mentioned above. The pixels on the image are scanned in raster manner and inputted 

serially to the Dx calculator, which is a part (another part is the Dy calculator ) of the sub-

cell calculator as shown in Fig. 2.11. Intermediate partial-addition results of left- and 

right-part pixels of each sub-cell are temporarily stored in the first storage (Dx part) which 

employs a dual-port memory. Given an image with w width, w/2 words of the first storage 

must be consumed because the left part and right part of each sub-cell are stored 

independently and occupy one word respectively. 

To accumulate the pixels inputted in raster manner immediately, each temporarily 

stored value in the first storage is read out successively for accumulation with the adder, 

shown in the more detailed representation of the Dx calculator in Fig.2.12. The serial 

pixel stream from the image sensor is sent to the one port (‘a’ port) of the adder located 

in the Fig.2.12, adds up with the current value (e.g. the ‘0’ transferred from two 

multiplexers MUX3 and MUX4 for initialization) from the other port (‘b’ port) of the 

adder and generate an instant sum value simultaneously.  

 

 
Fig.2. 12 Proposed circuitry with independent left- and right-part summation for generating horizontal 

sub-cell responses Dx according to Eq.2.2. 

 

The blue lines shown in the right circuitry in Fig.2.12 illustrate the pixel processing 

procedure when accumulating a horizontal response Dx for one sub-cell. 
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response Dx[1], thus the first pixel p[1] will plus the second pixel p[2] by the adder in the 

Dx calculator and then the summing result (i.e., p[1]+ p[2]) will be sent to the memory 

(i.e., the ‘First dual-port memory for Dx responses’ in the circuitry in Fig.2.12) after some 

certain delays for temporary storage as illustrated in Fig.2.13. The intermediate sum 

‘p[1]+ p[2]’ will be read out from the memory to the ‘b’ port of adder through the 

cascaded multiplexers MUX3 and MUX4 when the first pixel p[w+1] in the second row 

is inputted. As both the pixels p[w+1] and p[w+2] belong to the left part of the first sub-

cell, they will be added up and the intermediate sum to be stored in the memory will be 

updated as ‘p[1]+ p[2]+p[w+1]+p[w+2]’.  

 

 

Fig.2. 13 Timing analysis with part of data flow for the first sub-cell using independent left- and right-

part summation, to generate horizontal sub-cell responses Dx. 

 

The processing procedure of the right part of the first sub-cell is similar to the left 

part’s accumulation until the first response Dx[1] is generated. We can find the first two 

pixels p[3] and p[4] in the right part of the first sub-cell are added up and then the sum 

‘p[3]+ p[4]’ is revoked for accumulation when the pixel p[w+3] is inputted as illustrated 

in Fig.2.13. Afterwards, the updated sums are sent back to the corresponding storage unit. 

This accumulative behavior of the proposed circuitry will continue until the first four 

pixel rows are scanned. The separate results of left- and right- part of each sub-cell are 

generated in sequence when processing the fourth-pixel row. Final left- and right-part 

summation results are transferred to separate registers for subtraction when becoming 

available, to calculate the sub-cell’s Dx according to Eq.2.2. The Dx processing for a sub-

cell row is completed by a subtractor with the sequential loading of accumulation results 

for left and right parts of each sub-cell into registers. In other words, the operations of 

addition and subtraction are supported by two independent devices in this circuitry.  

It costs simpler control for frequent arithmetical transitions, i.e., the exchange 

between addition and subtraction for Dx responses in this circuitry shown in Fig.2.12. 

However, this method occupies more memory space and much more memory access for 
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space in this research as illustrated in Fig.2.14. Every four pixels belong to a same sub-

cell that all the related pixels in one sub-cell are calculated in each pixel row. However, 

this calculation involves frequent exchanges between addition and subtraction for 

computing horizontal Dx responses but less storage space is consumed in this strategy.  

 

 

Fig.2. 14 Alternatively proposed circuitry with the arithmetical transition of addition and subtraction for 

generating horizontal sub-cell responses Dx according to Eq.2.2. 

Also, take the first sub-cell as an example for timing analysis of circuitry illustrated 

in Fig.2.14 and Fig.2.15. The first four pixels in the first-pixel row belong to the first sub-

cell although they also locate at different parts of the sub-cell. The addition is operated 

for the former two pixels p[1] and p[2] while subtraction is taken for the latter two pixels 

p[3] and p[4]. 

The intermediate computing result ‘p[1]+p[2]-p[3]-p[4]’ is temporarily stored in the 

memory and invoked for accumulation when the first four pixels are inputted in the next 

pixel row. Thus, each sub-cell consumes only one word in the memory so that one haft 

of storage space can be saved compared to the first strategy shown in the Fig.2.12. 
 

 

 

Fig.2. 15 Timing analysis with part of data flow for the first sub-cell using the arithmetical transition of 

addition and subtraction to generate horizontal sub-cell responses Dx. 

p[4]

P[w+4]

 

 

p[3]

P[w+3]

 

 

p[2]

P[w+2]

 

 

p[1]

P[w+1]

 

 

p[w]

 

 

 

p[w-1]

 

 

 

 

 

 

 
en

MUX3

MUX4

p[1]+p[2]-p[3]-

p[4]+.+.-.-.+.+.-.-

p[5]+p[6]-p[7]-

p[8]+.+.-.-.+.+.-.-

p[9]+p[10]-p[11]-

p[12]+.+.-.-.+.+.-.

 

 

 

 

p[w-3]+p[w-2]-

p[w-1]-p[w]+.+.-..

First dual-port memory 
for Dx responses

0

p[1]

p[1]+p[2]-p[3]-p[4]

②
③

①

a

b
④

…p[w] p[1]p[2]

Image w pixels

… p[3]

       

1

2

3

w/4

P[w+1]

Pixels

 

 

 

 

 

⑤

REG

Dx

REG

Dx 

calculator

REG

…

Dx

4
 p

ix
el

s
4 pixels

p[1]+p[2]- . -

.+.+.-.-p[w+4]

p[1]+p[2]- . -

.+.+.-.-p[w+4]

p[1]+p[2]-.-

.+.+.-p[w+3]

p[1]+p[2]-.-

.+.+.-p[w+3]

p[1]+p[2]-p[3]-

.+.+p[w+2]

p[1]+p[2]-p[3]-

p[4]+p[w+1]

p[1]+p[2]- . -

+.+p[w+2]

p[1]+p[2]-p[3]-

p[4]+p[w+1]

p[w+4]

p[1]+p[2]

-p[3]-p[4]

p[w+3]

p[1]+p[2]

-p[3]-p[4]

clock

REG

Memory

p[1]+0

0 0

p[1]+p[2]

a

b

p[1]

0 p[1]

p[2] p[3] p[4] …… p[w] p[w+1] p[w+2]

p[1]+p[2] ……

p[1]+p[2]-p[3]
p[1]+p[2]

-p[3]-p[4]
……

0 0 ……

……

p[1]+p[2]-p[3]



 

Chapter 2  

41 

 

The reduction of storage resource is worthy of more complex controls for embedded 

applications or integrated circuit designs because the additional operation transformations 

between additions and subtractions are negligible on the basis of the high processing 

speed of hardware circuitry. The less memory requirement generally results in the smaller 

occupied area and less power consumption, both of which are far more important and 

more critical factors for the integrated circuits.  

 

2.3.2.2. Vertical responses Dy 

The operating principle of Dy calculator in Fig.2.16 to create the sub-cell response Dy 

is similar to the Dx calculator in the second strategy. The Dy calculator also uses an 

adder/subtractor circuit for obtaining the Dy values.  

In contrast to the architecture for calculating the Dx data, the hardware architecture 

for Dy calculation successively adds up the four adjacent pixels assigned to a same 4×4-

pixel sub-cell in the two upper pixel rows according to Eq.2.3. It is not necessary to store 

the upper-half and lower-half of each sub-cell separately in the second dual-port memory, 

because the adder-subtractor sums up the pixels in the upper-half rectangle of each sub-

cell and then subtracts the pixels in the lower-half rectangle of this sub-cell, as illustrated 

in Fig. 2.17.  

Similar to the Dx implementation, another dual-port memory as the first-storage 

implementation for Dy responses to enable the pixel-based pipelined-adding operation 

with an immediate accumulation of pixel values after transfer from the image sensor.  

Conflicts between reading and writing accesses are avoided by the fixed clock-cycle 

delay between accesses to the same address, which in particular guarantees continuity of 

the whole pipeline processing.  

 
Fig.2. 16 Proposed circuitry with the arithmetical transition of addition and subtraction for generating 

vertical sub-cell responses Dy according to Eq.2.3. 
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Fig.2. 17 Timing analysis with part of data flow for the first sub-cell using the arithmetical transition of 

addition and subtraction to generate vertical sub-cell responses Dy[1]. 

The sequential four pixels p[1], p[2], p[3], p[4] are transferred to the adder-subtractor 

and accumulated with the help of the cascaded multiplexers (i.e. MUX5 and MUX6) in 

the Dy calculator. 

The accumulated result ‘p[1]+p[2]+p[3]+p[4]’ will be stored in a certain-width word 

in the memory, read out to sum up the responding four pixels in the next row, and 

feedback the updated accumulated result ‘p[1]+p[2]+p[3]+p[4]+p[w+1]+p[w+2] 

+p[w+3]+p[w+4]’ to the former word in the memory. Then the adder-subtractor circuit 

reads out the sum of the two upper rows of each sub-cell from memory and sequentially 

subtracts the four adjacent pixel values of each sub-cell in each of the two lower pixel 

rows as they arrive from the image sensor. The same operations are performed for the 

remaining w/4-1 sub-cells of the sub-cell row until the pixel p[4w-1] is inputted from the 

image sensor.  

Consequently, only w/4 words in the first storage would be sufficient for intermediate 

sub-cell summation results of both Dx and Dy processing of a given image width w. In 

other words, the intermediate result of each sub-cell only occupies one word in the 

memory. 

The two multiplexers (i.e., MUX3 and MUX4 in the Dx calculator, MUX5 and MUX6 

in the Dy calculator) form an iterative structure to initialize the calculation for each sub-

cell and to execute a recursive data loop for the two dual-port memories. After the 

completion of calculations in one sub-cell row, the storage space of the two dual-port 

memories can be initialized and reused for the Dx and Dy calculation of the next sub-cell 

row. Then processing changes to the second sub-cell row in a similar manner and when 

the pixel p[7w+7] is inputted, the Dx and Dy values of the fourth sub-cell of cell1 can be 

completed. The word precision for both the first storage is 16-bit, which is sufficient for 

providing accurate accumulation of eight 8-bit gray pixels in a half rectangle of each sub-

cell. 

It is well to be reminded that the processing of input images is in principle unlimited 

height h in this research, which significantly enhances the utilization ratio of on-chip 
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hardware resources and increases the area efficiency. The unlimited height h is enabled 

on the basis of flexible regulation with variable counters and logic gates, which will be 

illustrated in the following section 2.3.4. 

 

2.3.3 Accumulation for local cell-based feature-vector 

construction 

Upon completion, Dx and Dy results are sent to the iterative structure for the 

immediate accumulation of ∑Dx, ∑|Dx|, ∑Dy and ∑|Dy| of the corresponding cell as 

illustrated in Fig.2.11. In other words, once the last relevant pixel of a sub-cell has been 

processed, the Dx or Dy result will be transferred instantaneously for the accumulation of 

the local feature vector vcell of the current cell, according to Eq.2.6, with a fixed size of 

2×2 sub-cells.  

 
Fig.2. 18 Proposed circuitry for accumulating the horizontal Dx responses in one cell. 

 

The architecture and operating procedure for cell-based feature vector are similar to 

the above schemes for Dx or Dy. Figure 2.18 illustrates the procedure for accumulating 

Dx responses in one cell on behalf of the cell-based feature vector accumulation. The cell-

based components of other sub-cell responses Dy, |Dx| and |Dy| can be achieved by the 

almost same architecture as Fig.2.18. 

Once the Dx and Dy results are generated by circuitries respectively introduced in 

section 2.3.2, they will be transferred to the right part of circuitry in Fig.2.18 immediately. 

During the input of the last pixel line of one cell row, i.e., p[7w+i], and i∈[0,w-1], a local 

four-dimensional cell-feature vector is completed every 8 clock cycles. Every two 

adjacent sub-cells in a sub-cell row are grouped into one non-overlapping cell. This 

subsequently enables the completion of the local four-dimensional cell-feature vector vcell 
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(∑Dx, ∑Dy, ∑|Dx|, ∑|Dy|) of cell1 as illustrated in Fig.2.19. The four-dimensional vectors, 

consisting of components ∑Dx, ∑|Dx|, ∑Dy and ∑|Dy|, are eventually outputted for parallel 

window-level Haar-like feature vector construction and partial object recognition at the 

same time.  

 

 

Fig.2. 19 Part of the data flow for accumulating the sub-cell responses Dx inside one cell. 

 

Intermediate calculation results of the sequential sub-cells are saved in the second 

storage in Fig.2.18, which also apply dual-port memory for preventing from accessing 

conflicts. Given an image with width w, w/8 intermediate cell-summation results for one 

cell row have to be stored. The storage space of the second dual-port memory can also be 

overwritten afterwards during processing of the next cell row, once the processing for the 

previous cell row is completed. Specifically, only w/8=128 words for temporary 

summations of the two 16-bit horizontal cell-based dimensions (i.e., ∑Dx and ∑|Dx|) and 

the two 16-bit vertical cell-based dimensions (i.e., ∑Dy and ∑|Dy|) have to be stored in 

the second storage, respectively. 

In conclusion, the proposed pixel-based pipeline cell-feature extraction architecture 

synchronizes with the image sensor, image buffering and integral image calculation 

become completely unnecessary. 

 

2.3.4 Flexible regulation for unlimited image height 
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selection signals for the six multiplexers and load signals for the registers. 

Corresponding to the two types of circuitry for computing and accumulating the 

horizontal Dx responses as mentioned above, there are also two types of control circuits 

implemented in the pipeline controller.  

The first type of implemented circuitry for pipelined processing control is shown in 

detail in Fig.2.20, which is composed of three 1-bit counters, two 2-bit counters, 14 logic 
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be utilized for controlling the computational circuitry in Fig.2.12, while the right part of 

the circuit in Fig. 2.20 is applied for managing the accumulation inside one cell for the 

circuitry as illustrated in Fig.2.18.   

 

 
Fig.2. 20 Implemented circuitry for processing control with unlimited image height to generate cell-based 

feature vectors. 

 

Specifically, variable ⌈log2(M)⌉-bit and ⌈log2(N)⌉-bit counters control the memory 

usage of the first storage during Dx calculation for one sub-cell row in images of width w. 

For computing Dx responses with the independent calculation for left- and right- part of 

a sub-cell, the parameters should be set as M=2, N= w/M. As the output signals of these 

variable counters are directly created under the inputted image width w, they can change 

the final output enable signals, such as ‘EN1’ for the multiplexer MUX1 and ‘EN2’ for 

the multiplexer MUX2 in Fig.2.18. The read/write addresses of the second storage for the 

accumulation of the 4 components of each local cell-feature vector are assigned by a 

⌈log2(P)⌉-bit counter, where P= w/8. The generated address ‘Addr1’ is applied for written 

and read address for the first storage (dual-port memory) while the address ‘Addr2’ is 

applied for written and read address for the second storage shown in the overall 

architecture in Fig.2.11.  

Since the left- and right- parts of one sub-cell are separately computed, the computed 

results are temporarily stored in two registers respectively, so that two divisive enable 

signals ‘Load_left’ and ‘Load_right’ should be created for loading correct data to the 

registers. The final cell-based feature vectors of each cell will be latched into a register 

by the enable signal of ‘Load_FV’. In conclusion, the counter group would dimension the 

desired memory space and processing clock circles with responding to the image width 

w. 
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Fig.2. 21 Alternatively implemented circuitry for processing control with unlimited image height to 

generate cell-based feature vectors. 

 

Comparing to the implementation shown in Fig.2.20, the left part of the circuitry in 

Fig.2.21 is much simpler. This scheme can be applied for controlling the computation of 

both horizontal Dx results and vertical Dy results of a 4×4-pixel sub-cell. Thus the variable 

input parameter M is equal to 4 and N is still equal to w/M. For instance, the output 

enables signals ‘EN5’ and ‘EN6’ can be applied for selecting control for multiplexers 

MUX5 and MUX6 respectively when computing the vertical Dy results inside one cell. 

Another enable signal ‘Load_sum’ is used for loading the final summation of one sub-

cell to a register. The right part of this circuitry is the same as implementation shown in 

Fig.2.20. Under the control of above two types of circuitries, the feature extraction 

architecture shown in Fig.2.11 can be applied for flexible image resolutions with 

unlimited height h. 

 
TABLE II. I  

Necessary Bit Width of Counters and Memory Requirements as a function of Image Width 

Image Width  

(w pixel) 

Bit Width 

⌈log2(w/2)⌉-bit counter 

Bit Width 

⌈log2(w/4)⌉-bit counter 

Bit Width 

⌈log2(w/8)⌉-bit counter 

Memory 

(words) 

256 7 bits 6 bits 5 bits 320 

512 8 bits 7 bits 6 bits 640 

640 9 bits 8 bits 7 bits 1280 

1024 9 bits 8 bits 7 bits 1280 

1920 10 bits 9 bits 8 bits 2560 

2048 10 bits 9 bits 8 bits 2560 

 

Table II.I summarizes the total number of the required 16-bit memory words and the 

variable-counter width for local cell-feature-vector calculation in relation to the image 

width w. Consequently, 9-, 8- and 7-bit counters are sufficient to create up to 512, 256 

and 128 read/write addresses for the Dx part and Dy part in the first storage and the second 

storage, respectively, to support 1024 pixels of the image width. 
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2.4 Experimental VLSI-implementation result 

and discussion 

A VLSI prototype of the Haar-like feature-extraction coprocessor was implemented 

in Rohm 180nm CMOS technology with 1.76 mm2 (1.82 mm×0.97 mm) core area, as 

shown in the photomicrograph of Fig. 2.22. 

Chip operation at up to 120 MHz is verified for VGA(640×480 pixels)-size video 

frames with a short processing time of 3.072 ms (i.e., 325 fps frame rate), the low power 

dissipation of 43.45 mW working at the 1.8V supply voltage. The lower working 

frequency leads to lower power dissipation according to different speed requirements of 

various applications. Figure 2.23 demonstrates the power consumptions over a range of 

supply voltages and operating frequencies. 

 

 
Fig.2. 22 Microphotograph and parameters of the fabricated chip in 180 nm CMOS technology for cell-

based Simplified-SURF feature extraction with 1.76 mm2 (1.82 mm×0.97 mm) core area. 

 

 
Fig.2. 23 Power consumption of the fabricated coprocessor at different working frequencies and different 

supply voltages. 

The power consumption of this coprocessor is 4.78 mW at 1.8 V supply voltage and 

12.5 MHz frequency, which is sufficient for processing 30 fps VGA images from general 

image sensors. The more performance of the proposed pipelined hardware scheme for 
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local cell-based simplified-SURF descriptor applied Haar-like feature vector is 

summarized in Table II.II. 

 

TABLE II. II 

Performance of the Proposed Hardware Architecture for the Simplified-SURF Descriptor when 

applied to Haar-like Feature Vectors 

Technology 180 nm SOTB CMOS 

Die area 1.76 mm2 

Design target Feature extraction 

Extraction scope Entire frame 

Image resolution 1024×∞ pixels 

Feature type Haar-like hardware 

Frequency 120 MHz 

Core/IO voltage 1.8 V/ 3.3 V 

Power 43.45 mW 

Maximum frame rate 325 fps (VGA) 

Memory usage 12 kB 

 

In our ASIC realization, a storage space of 1024 16-bit words is implemented for both 

Dx and Dy calculation of the sub-cells. On the other hand, 512 words of 64-bit precision 

are implemented in the second storage of our fabricated prototype coprocessor and are 

assigned for summation of the cell-feature vector components of one cell row, meaning 

that 32 kb of dual-port memory is consumed for completing the local four-dimensional 

cell-feature vectors. Consequently, only 64 kb of storage space has to be assigned to the 

overall circuitry for local cell-feature vector extraction to enable the processing of images 

with up to 1024-pixel width and unlimited height. Another 32 kb of SRAM (Static 

Random-Access Memory) space is served as FIFO (First In First Out) for buffering cell-

based feature vectors, which are further used for high-dimensional window-based feature 

construction for recognizing target objects. In conclusion, only a small memory size of 

only 96 kb (i.e., 12 kB) is sufficient for realizing the flexible image-size processing (up 

to 1024 pixels × ∞ pixels) with our hardware architecture. 

 

2.5 Conclusion   

A pixel-based pipelined hardware architecture for extracting a simplified SURF 

descriptor, which relies on Haar-like feature vectors of image cells, is developed in this 

research. The architecture immediately processes every input pixel without pre-storage 

of raw images and reuses memory space for local cell-based feature-vector calculation of 

different cell rows in the processed image, making it highly flexible for multi-size image 

processing with low memory requirements. Due to the flexibility in image resolution, the 
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prototype chip can deal with a maximum width w of 1024 pixels and an unlimited height 

h. Specifically, a sub-cell with 4×4 pixels and a cell with fixed 2×2 sub-cells are defined 

in this section to capture sufficient details of the target object. Since the proposed scheme 

shortens the critical path and the searching time of pixel positions, the redundant 

computing cost is greatly reduced. A VLSI prototype for cell-based feature extraction of 

all sliding windows across the image frame was implemented in 180 nm CMOS 

technology, which is verified with the achievement of very fast real-time processing 

speed and high energy efficiency. 
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Chapter 3  
 

Sliding-Window Approach 
 

3.1 Introduction   

In the former two chapters, a cell-based feature extraction architecture and a block-

based normalization, applied to the sequential cell-based feature vectors (FVs), have been 

proposed. In order to recognize a target object, an appropriate region which matches the 

target object should be represented by the FVs. The image cell (e.g., 8×8 pixels) and block 

(e.g., 16×16 pixels) are generally too small to completely reflect the essential information 

for a common object, such as a car (e.g., 128×64 pixels), a pedestrian (e.g., 64×128 pixels), 

a face (e.g., 64×64 pixels), etc. Thus relatively large groups of square-shaped cells or 

blocks, which are both important for extracting sufficient pictorial information in detail 

for feature representation of local regions (i.e., cells and blocks), are generally combined 

for constructing a high-dimensional window whose size is mapped to the size of the target 

objects. The feature descriptor with a window-based localization is a crucial factor for 

accurate object recognition basing on a sliding-window strategy. 

The sliding-window strategy has been proved to be competitive in terms of 

classification performance for a large variety of detection tasks and many state-of-the-art 

paradigms [1-5]. The designated sizes of the scan window (SW) are depended on location 

and size of different target objects in the image. The SW feature vector quantifies the 

similarity of contained objects to reference SWs for the recognition process. 

Two schemes are proposed for window-based feature construction in this research. 

One of the feature representation schemes is a direct decoding from reutilization 

information of each cell with a new concept called “regular rule of reusing times” (RRRT). 

The other scheme for window-based feature representation is to arrange the normalized 

block-based feature components without frequent accesses to the cell-based components. 

Specifically, this research applies an overlapped sliding-window approach to the 

simplified-SURF descriptor for covering the entire image and employs Haar-like FVs for 

the whole image, instead of extracting FVs only around the interest points as in the 

previous SURF algorithms [6-7]. The extracted Haar-like responses are used for window-
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based FV construction for the proposed simplified-SURF descriptor to recognize the 

target objects within the SWs.  

 

3.2 Hardware implementation in terms of cell-

based feature components  

On the basis of feature components on cells, the 2×2-cell block feature vector can be 

represented by cell-FVs. The feature components of the four cells of each block are 

arranged in zigzag order to form higher dimensional block-feature vectors for feature 

descriptor.  

On one hand, with the block movement by one cell in raster manner inside a window 

for constructing the high-dimensional feature vector of the entire scan window (SW), as 

illustrated in Fig.3.1, the local cell-FV becomes the basic component and each cell can 

be covered by up to four overlapped blocks.  

 

 
Fig.3. 1 Movement rule of detection windows and blocks. 
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On the other hand, with the window movement by one non-overlapped block stride 

(i.e., two-cell stride) in a row-raster-scan manner, the local cell can be overlapped and 

revoked for window construction in multiple times when sliding the window for capturing 

all target objects within the complete image. In other words, the local cell-FVs can be 

reused by both blocks and windows during the feature space construction and the 

synchronous detection procedure.  

In order to apply the local cell-based feature components directly without 

recalculation for block components, the regular rule of local cells constrained by the inner 

block movement inside a SW and the window movement inside an image should be 

determined. So that each cell-based local feature vector is scanned and extracted only 

once without complex re-computations, and reutilized for all corresponding blocks and 

SWs. 

 

3.2.1 Regular rule within one window 

3.2.1.1. RRRT rule and window FV dimensionality 

The image region of a block is represented by 2×2 cells in this research. As an 

alternative hardware solution to traditional window-sliding strategies, a cell-based 

perspective for window search and construction is used for confirming the reusing times 

of each cell located in one SW. The proposed sliding-window algorithm mainly confirms 

the cell location in each window to which the current cell belongs so that the partial local 

FV components at the corresponding window position are correctly invoked for feature 

representation and object detection.  

The location of one cell within the SW determines the reused time of the current cell 

in this window due to the moving manner of the overlapped blocks. As the block slides 

by one cell within one SW in raster scan manner, it causes reutilization of cells in different 

overlapped blocks, as illustrated in Fig.3.2, depending on their respective positions within 

the window. The recycling time or reusing time R of a cell in a SW varies with changes 

of the block size.  

Specifically, shifting of 2×2-cell blocks by one cell in the horizontal and vertical 

direction on the SW results in three reused cases for cell-FVs. As indicated in right part 

of Fig.3.2, the cells at corner, edge and internal positions in the SW, which are marked in 

different colors, are overlapped by 1, 2 and 4 blocks, respectively, illustrating that the 

corresponding cell-FVs are used by 1, 2 and 4 times for the window-based FV 

construction. All the sequential cells outputted from the feature extracting circuits such 

as the simplified-SURF scheme in Fig.2.8 in different windows are abided in the same 

way.  
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Consequently, the regular rule of local cells on blocks within a window can be 

summarized by a regular rule of reusing times (RRRT) and revoked for the feature 

descriptor construction in every SW by decoding according to the inner cell position 

within the SW.  

By exploiting the cell-overlapping characteristics of blocks, the concept of the block 

in this research loses its sense of presence in the SW-feature vector construction.  

 

  

Fig.3. 2 Cell locations in one 64×128-pixel window and its covering times by overlapping blocks. Three 

kinds of cells, located at corner, edge, and interior of the window are reused for window-based FV 

construction in 1, 2 or 4 overlapping blocks, respectively. 

 

In other words, the whole feature extraction procedure of the SW is based on the local 

cell-FVs and their corresponding reused times RRRT which are depended on the cell 

position within each SW. 

Consequently, all cells of one SW are scanned only once respectively and then 

construct the window-level feature descriptor vector together with dimensionality dSW 

according to Eq.3.1 as follows: 

 

𝑑𝑆𝑊 = 𝑑𝑐 ∗ ∑ 𝑅(𝑖)𝑖=𝑘
𝑖=1                        (3.1) 

 

where dc is the dimensionality of the local cell-based FV, R(i) represents the RRRT 

value corresponding to the ith cell celli within the window, and k is on behalf of the total 

cell number in one SW.  

For instance, there are 128 cells in the 64×128-pixel SW and each local 8×8-pixel 

cell contains dc=4 local dimensional feature components, as discussed in Chapter 2, for 

the proposed simplified SURF descriptor, resulting in dSW =1680 dimensions according 
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to the RRRT rule.  

As illustrated in Fig.3.3, The Haar-like responses of all sub-cells, located in the same 

cell, are added up and form a local cell-based FV. An image cell for the simplified SURF 

descriptor contains four sub-cells of 4×4 pixels each. The four cells within a block are 

arranged in raster manner to form 16 dimensional block-FVs basing on 4-dimensional 

cell-FVs (∑Dx, ∑|Dx| and ∑Dy, ∑|Dy|) each, from which the SW feature vector is 

constructed. Thus, 1680 dimensions Haar-like FV can be obtained by arranging the 16-

dimension block-FVs from the four cell-FVs in sequence according to the block 

movement in a SW. 

Consequently, the dimensionality 𝑑𝑆𝑊 of a SW-FV can be accumulated on the basis 

of the local cell-FVs by decoding the RRRT value according to the corresponding cell 

position within one SW. The regular rule of RRRT has already embodied the 

characteristics of blocks by the cell-FV reutilization. This cell-based SW scheme leads to 

great improvement in computational-cost reduction in comparison to previous designs. 

  

 
Fig.3. 3 Construction of a simplified SURF descriptor from local Haar-like feature vectors.  
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𝑑𝑆𝑊 = (𝑁𝑐𝑜𝑟𝑛𝑒𝑟 × 1 + 𝑁𝑒𝑑𝑔𝑒 × 2 + 𝑁𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 × 4) × 𝑑𝑐         (3.2) 

 

Here, the parameters Ncorner, Nedge and Ninterior represent the amount of corner-, edge- 

and interior-located cells in the SW. The values of these three parameters are related to 

the window size (Wwi pixels × Whe pixels), which leads to various window-FV 

dimensionalities depending on the SW size.  

The designated size of a SW and its sub-regions are mainly determined by the size of 

target objects in the image. For example, in [9], a window in size of 64 (width) × 128 

(height) pixels is selected for human detection. Different components such as head, legs, 

and arms are further identified by various sub-regions with 42×42 pixels, 69×46 pixels, 

or 47×31 pixels, respectively. 

Figure 3.4 shows the dimensionality-calculation method for the Haar-like SW-feature 

vectors applied in the simplified-SURF descriptor of our research.  

 

 
Fig.3. 4 Dimensionality determination of Haar-like SW-feature vectors for different SW-sizes, 

constructed from the local four-dimensional cell-feature vectors vcell, which serve as the basic components 

for a holistic Haar-like SW-feature vector of the proposed simplified-SURF descriptor. 
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The SW sizes are 128×64 pixels, 96×64 pixels, 64×64 pixels and 64×128 pixels, 

adapted to different target objects (e.g., cars, faces, and pedestrians) of variable scales. 

Image resolution flexibility with different SW sizes can be applied to match varying types 

of multi-scale processing. 

In other words, the corresponding adaptability to different object types results from 

the flexibility of the developed hardware architecture with respect to the SW size. 

Specifically, the raster block movement in a SW of 64×128 pixels or 8×16 cells results 

in 4 corner cells, 40 edge cells, and 84 interior cells. Therefore, the proposed simplified 

SURF descriptor, using Haar-like four-dimensional cell-FVs, owns (4×1+40×2+84×4) × 

4 =1680 dimensions in case of 64×128-pixel SWs. On the other hand, a dimensionality 

of (4×1+24×2+36×4) × 4=784 is obtained for a 64×64-pixel SW. The dimensionality for 

other SW sizes is calculated likewise according to Eq.3.2. The variety and variability of 

window size can be able to apply for multi-scale image pyramid as well, which is with 

similar properties for image pyramid as the cell size illustrated in section 4.2.2. 

 

3.2.2 Regular rule within an image 

For recognizing the object in a designated region (i.e. SW in this research), the local 

cell-based feature components, such as the four-dimensional Haar-like feature 

components (∑Dx, ∑|Dx| and ∑Dy, ∑|Dy|) in the simplified SURF descriptor, have to be 

organized for SW-level description. Since SWs are moved in a non-overlapped block 

stride (i.e. 2×2 cells) for searching the complete image in the raster sliding-window 

paradigm, most cells are overlapped by multiple SWs.  

Since the SW is shifted in block units across the image, the total amount of SWs can 

be confirmed. Given an entire input image with w × h pixels, the maximal window 

number N in horizontal direction and M in the vertical direction can be inferred from 

Eq.3.3, where Wwi and Whe are width and height of the designated SW, respectively, and 

Bs is the square-block size, which is 16 in our case. Thus, based on a 64×128-pixel SW, 

a VGA (640×480 pixels) image is divided into N × M = 37 × 23 = 851 mutually 

overlapping SWs, while there are N × M = 61 × 41 = 2501 SWs for XGA (1024 × 768 

pixels) images. 

 

{
𝑁 =

𝑤−𝑊𝑤𝑖

𝐵𝑠
+ 1

𝑀 =
ℎ−𝑊ℎ𝑒

𝐵𝑠
+ 1

                           (3.3) 

 

In order to enhance the computational capability of SW-level feature extraction, all 
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SWs overlapping a given cell are processed in parallel in this work. Usually, a cell is 

located in multiple SWs due to the shifting by block units across the image. Therefore, 

the local cell-FV can be reused for multiple SWs. In other words, not only the overlapping 

blocks as illustrated in Fig.3.2 but also the related overlapping SWs can invoke the four-

dimensional cell-feature vectors simultaneously.  

To specify the reusing time by overlapping SWs of the current cell (i.e., the cell in 

blue shown in the input image of Fig.3.5), the number of overlapping SWs must be 

determined according to the SW size and the cell location in the input image.  

For a designated SW size of Wwi pixels × Whe pixels, a given cell can be located in up 

to Wwi/Bs overlapping SWs in the horizontal direction and Whe/Bs overlapping SWs in the 

vertical direction. In case of SWs with a size of 64×64 pixels (8×8 cells), the number of 

overlapping SWs in which each cell (block) is located, is illustrated in Fig.3.5. The four 

cells located in the first block belong all to only one SW (i.e. the first SW), while the 7th 

cell in the 7th cell row, highlighted with blue color in Fig.3.5, is located in 4×4=16 SWs. 

 

 
Fig.3. 5 Covering times of each cell (block) by 8×8-cell SWs shifted in block units according to a raster-

sliding scheme. 
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For a SW with a size of 64×64 pixels (8×8 cells), up to 16 SWs can be overlapping 

on a cell simultaneously if the image is larger than 14×14 cells. All the 16 related windows 

are illustrated respectively in Fig.3.6. As the current 8×8-pixel cell marked in blue is 

located in all the 8×8-cell SW (even at different places), the cell-FV is a part of a 

components of all 16 windows. As the current cell is only scanned and computed for once, 

all the calculations related to the current cell-FV for each SW should be completed in 

sequence. The 7th cell in the 7th cell row in the image is locating at the 7th row and the 7th 

column in the first window W1, but it is also locating at the 7th row and the 5th column in 

the second window W2, etc. The sequentially inputted cell-FVs will be invoked instantly 

for all related SWs overlapping on the current cell, although the resulting partial feature 

components of different windows are available at different accomplishment ratio as 

shown in Fig.3.7. 

Changes in the SW size cause also changes of the maximal number of SWs 

overlapping a given cell. For instance, in case of 64×128-pixel SWs, up to 32 SWs are 

overlapping an 8×8-pixel cell, because there are up to Wwi/Bs=4 and Whe/Bs=8 SWs in the 

horizontal and vertical direction in a large enough image, respectively.  

 

 
Fig.3. 6 Corresponding positions of the current cell in each related 8×8-cell SW during parallel FV 

construction. 
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Fig.3. 7 Corresponding accomplishment ratio of the current cell in each related 8×8-cell SW during 

parallel FV construction. 

 

Thus a parallelized scheme for window-based feature space construction is essential 

for speeding up the data processing. All cell-FVs in the entire image are extracted only 

once, then stored temporarily and afterwards reutilized for all related blocks and SWs, to 

avoid complex re-computation. Thus computational cost and complexity of the feature 

extraction are significantly reduced. Furthermore, the storage space for one row of SWs 

should be overwritten for next row of SWs, which results in much less storage 

requirement than in the previous research. 

 

3.2.3 Implementation of parallel window-feature-vector 

construction 

 

To compute all related SWs basing on the current cell, a parallel processing scheme 

has to be proposed. In this research, the window index (WI) or window address (WA) 

represents the relationships about all related SWs based on the current cell, which is 

utilized to assign the certain order for organizing the cell-FV components to each 

corresponding window-level FV.   

A cell-based window scan circuitry is proposed for mainly confirming the cell 

location in each SW that the current cell belongs to, so that the partial local cell-FV 

components at the corresponding SW position are correctly invoked for feature 

construction and object recognition. The developed parallel SW (PSW) method, which 

exploits simultaneous processing of multiple SWs, operates with cell-FVs and takes 

advantage of the reusing times RRRT of cells in each related SW.  

Specifically, each cell-FV from the feature extraction circuitry carries specific 

information corresponding to its cell position within the multidimensional SW-FV. For 
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example, the cell C[c,r] represents the cell that locates at cth column and rth row of the 

image.  

From the sliding steps of the sliding-window algorithm and the cell’s column (c) and 

row (r) indices, the initial-window address (IWA) Wi(n) can be derived as illustrated in 

Fig. 3.8, where the index i(n) represents the first SW containing the current cell C[c,r]. 

On the basis of the parameters c and r indices from one cell, its corresponding IWA can 

be computed according to the conditions constrained as the flowchart in Fig.3.8. The 

value of the index i(n) depends on the location of the current cell C[c,r] and the SW size, 

where n=c+(r-1)·w/8 represents the order number of the current 8×8-pixel cell C[c,r] in 

the input-cell sequences for an image width of w pixels. 

Furthermore, the number of SWs, in which the 8×8-pixel cell C[c,r] is located, can be 

calculated from the cell’s position. The multiplication parameters in horizontal and in 

vertical directions illustrate the number of overlapping scan windows (OSWs) containing 

C[c,r] in these directions. The total number of OSWs is calculated as hor×ver.  

 

 
 

Fig.3. 8 Flowchart for deciding the index i(n) and the IWA (initial-window address) Wi(n). 

 

Apart from the four cell-FV components, multiple SWs and cell positions in each SW 

are associated with each cell. 

For each SW in which the cell is located, the cell position corresponds to a cell address 

within the window. The window number corresponding to different cell positions are 

initialized in a look-up-table. The numbers of SWs in a w×h-pixel image in horizontal 

(hor) and vertical (ver) direction are summarized in Table III.I and Table III.II. 
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TABLE III. I 

Window numbers for cell-row index c in horizontal direction of w-width images 

c  1~2 3~4 5~6 7~8 9~10 11~12 13~14 15~w/8-14 w/8-13 ~ w/8-12 … w/8-1~w/8 

hor 1 2 3 4 5 6 7 8 7 … 1 

 

TABLE III. II 

Window numbers for cell-column index r in vertical direction of h-height images 

r 1~2 3~4 5~6 7~(h/8-6) (h/8-5)~(h/8-4) (h/8-3)~(h/8-2) (h/8-1)~h/8 

ver 1 2 3 4 3 2 1 

 

Figure 3.9 illustrates the window distribution in an input image with w× h pixels, 

operating with 8×8-pixel cell and 2×2-cell block, where Eq.3.3 defines N that represents 

the window number in one row when window sweeps within a block stride. 

 

 
Fig.3. 9 Distribution of window order in an input image with w × h pixels, operating with 8×8-pixel cells 

and 2×2-cell blocks. 

Based on the IWA index i(n), the window number j and k in horizontal and vertical 

directions respectively, which are initialized in a look-up-table, the indices of all OSWs 

containing C[c,r] can be obtained by Eq.3.4. 

 

𝐼𝑛𝑑𝑒𝑥 = {𝑖(𝑛) + j + N ∙ k}, j ∈ [0, hor − 1], k ∈ [0, ver − 1]      (3.4) 

 

Figure 3.10 summarizes the design flow for parallel window construction of FV space 

according to the separate regular rules within a window and an image. Since the RRRT 

value can be obtained on the basis of the regular rule within a window and the index of 
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OSW can be operated in parallel by applied the RRRT value. 

 

 
Fig.3. 10 Design flow for parallel window construction basing on the RRRT and the Index of all OSWs. 

 

When a 64×128-pixel SW contains the current cell, its responding coefficients as, bs, 

cs, or ds (s∈[0,7]) in Eq.3.5 are ‘1.’ Otherwise, its responding coefficients are ‘0.’ As listed 

in Table III.I and III.II for the case of a SW with 64×128 pixels, the maximal value of hor 

is ‘4’ while the maximal value of ver is ‘8’. Therefore, one cell can be covered in up to 

4×8=32 OSWs.  

For example, the cell C[8,3] as in the VGA (640×480 pixels) image is taken as the 

current cell.  
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Through the lookup tables (Tables III.I and III.II), C[8,3] is contained in eight OSWs, 

as illustrated in Fig.3.11, since hor is four in the horizontal direction and ver is two in the 

vertical direction. The initial window Wi(n) of C[8,3] is the first window W1 (i(n)=1) of 

these eight OSWs, which can be derived from the first condition in the flowchart of Fig. 

3.8. Therefore, eight coefficients of the parameter corresponding to the eight OSWs can 

be calculated by Eq.3.5. 
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Fig.3. 11 Position of cell C[8,3] in a VGA image and its covering times (i.e. ‘8’) by all OSWs when a 

SW-size of 8×16-cells is used. 

 

That is, coefficients a0, b0, c0, d0, a1, b1, c1, and d1 in Eq.3.5 are ‘1’ while all other 

coefficients are ‘0.’ As a result, the OSW indices for C[8,3] are summarized as 

{1,2,3,4,38,39,40,41}. Thus all the overlapping OSWs related to the 8×8-pixel cell C[8,3] 

in the VGA image are listed in the matrix in Eq.3.6. 

  

[
𝑊1 𝑊2 𝑊3 𝑊4

𝑊38 𝑊39 𝑊40 𝑊41
]                     (3.6) 

 

For other cell size, SW sizes and image size, the maximal number of OSWs in 

horizontal and vertical directions can change as described in above discussion. 

To implement the window algorithm as reported above, a loop control circuit for 

generating the window address (WA) and the RRRT value of the current cell C[c,r] for 

each of the SWs within the image is proposed as illustrated in Fig.3.12. The multiplication 

parameters hor and ver are initialized in the window-look-up-table (WLUT). A cell-

position-look-up-table (CPLUT) is used to determine the reuse times according to RRRT 

(i.e. 1, 2, or 4) inside each OSW.  

Each SW, declared by Windex, is allocated a separate cache space (storage unit) for 

storing the cell location within the SW, which determines the cell’s RRRT value through 

look-up in CPLUT. In this way, the reuse times of the current cell-FV in all declared SWs 

Windex are calculated.  

Cell [8,3]
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Fig.3. 12 Architecture for generating the window address (WA) and the RRRT value of the current cell 

C[c,r] for each of the SWs within the image, that contains C[c,r]. 

 

Each word in the storage unit for intermediate cell addresses of OSWs requires 7-bit 

if an OSW consists of 128 cells for 64 × 128-pixel or 128 × 64-pixel SWs. The storage 

capacity in CPLUT determines the practicability of the circuit in this research. 

Specifically, the storage requirement, i.e., the number of words in the storage unit of the 

CPLUT, which depends on the sizes of the input image, SW, and block, is at most 

N×Whe/Bs. 

The reuse times of the current cell in each OSW define how many vector components 

will be processed in parallel for window-level FV construction. For example, in the case 

of “2” as the RRRT value of one cell, the number of parallel-processed vector components 

is “8,” as the four cell-FV components of the simplified SURF descriptor are used twice. 

To record to cell position in each related OSW, 16kbits of memory are assigned, which 

allows up to 1024 parallel processed SWs. 

After OSW determination, the corresponding components of the reference FVs are 

invoked to execute the next stage of object detection according to the cell position in each 

OSW (Windex). For instance, the nearest-neighbor-search (NNS) is continued by partial 

squared Euclidean distance (PSED) calculation between the newly constructed FV of 

each declared OSW and the reference vectors, which will be described in detail in the 

following Chapter 5.  
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3.3 Hardware implementation with block-based 

normalized feature components 

The parallel window construction method basing on the concept of RRRT of each cell 

in one SW is proposed in above section so that we can reconstruct the scan-window-based 

FVs based on the local cell components and a decoding scheme.  

To reduce the times of memory access for the relatively large amount of cell number, 

another parallel window-level or window-based FV construction method is proposed in 

this research. Distinguished from the scheme described in section 3.2, the sliding-

window-based localization for detecting the target objects in the input image is handled 

directly by the arrangement of the normalized block-based FVs in this method, rather than 

by a decoding scheme from the RRRT for each cell.  

A fixed size of 2 × 2 cells is chosen for the image region of a block in this research. 

This results in 7×15=105 blocks within a 64×128-pixel window for pedestrian detection, 

while 7×7=49 blocks are contained within a 64×64-pixel window for face detection when 

a default CS of 8×8 pixels is used. The feature components of the four cells of each block 

are arranged in zigzag order to form 4×4=16 dimensional block-feature vectors for 

simplified-SURF descriptor and 4×9=36 dimensional block-feature vectors for HOG 

descriptor. Note that the regulation of window size mentioned in section 3.2.1.2 still valid 

in this block-based normalized FV construction scheme. Thus 1680-dimensional 

window-level FV for simplified SURF descriptor and 3780-dimensional window-level 

FV for HOG descriptor will be generated for a 64×128-pixel window. 

Since the appropriate arrangement of sub-region components for feature construction 

in a SW can improve the performance of object detection significantly. The 

computational amount for local FV-component arrangement is an important factor to be 

considered. The developed pipeline architecture for FV construction is based on 

sequential cell-based FVs inputs and the developed parallel block-based L1-norm scheme 

reported in Chapter 4.  

A feature space construction architecture including the FV normalization procedure 

is constituted as illustrated in Fig. 3.13. Four main functional parts, i.e. the parameter 

initializing circuit (PIC), the sequential pixel-based pipelined circuit (PBPC), the 

reconfigurable block-based normalization circuit (BBNC) and parallel window-based 

search circuit (WBSC), in this research.  

The serially-inputted raw pixels scanned directly from the image sensor, are 

transferred to the sequential PBPC for extracting the local FVs for the cells, without 

preprocessing or pre-storage. The processing speed only relies on the pixel-transfer 
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frequency from the image sensor. The PIC transforms the flexible input-image resolution 

into the parameters CNH and CNV according to the customized CS programmable up to 

32×32 pixels. As the feature normalization is performed across blocks represented by four 

cells, the block size is depended on the customized CS. 

 

 
Fig.3. 13 Overall hardware architecture for window-based FV construction with block-based 

normalization. 

 

The reconfigurable BBNC is implemented by addition, multiplication, bit shift, 

decoding, and division with variable input parameters for various cell numbers in 

horizontal and vertical directions from PIC. The WBSC is utilized for allocating the 

currently normalized block-FVs from the BBNC to all related SWs for parallel 

construction of the corresponding FVs for these SWs. 

In WBSC, the number and the respective order of related SWs overlapping the current 

block are decoded according to the block position in the input image. Since all block-

overlapping SWs related to current blocks are processed in parallel, the SW order for 

controlling the write and read addresses of the storage space for the intermediate SW-

based FVs has to be buffered and invocated recursively as well. Each normalized block 

is invoked only once and then the local normalized results are reused by all related 

windows, to avoid redundant re-computation.  

Rather than outputting one cell per time with the previously reported RRRT solution 

for cell reutilization in cell-based construction schemes, the local FV-components of four 

cells in one block are outputted simultaneously by the BBNC. There is no need to reuse 
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the normalized block-FV components inside the same SW as well since all blocks have 

been computed and arranged in raster manner by the BBNC. Additionally, the number of 

the SW-internal overlapped blocks is smaller than the cell number. In consequence, the 

block-based architecture prompts less computational amount and power consumption for 

local FV construction.  

Multiple BBNCs in parallel can be applied for simultaneous multi-cell processing, 

e.g. applied for block-based FV inputs, so that the hardware architecture for normalization 

is not confined by the specific architecture for FV extraction. Moreover, the storage space 

for buffering the local cell-based FVs and related partial block FVs is reinitialized after 

completion of the processing of one block row.  

3.4 Experimental results and discussion 

3.4.1 Cell-based feature-vector construction 

Vehicle detection is applied for an example to evaluate the efficiency of our proposed 

algorithm by software-based simulation as illustrated in Fig. 3.14.  

A set of positive samples (i.e. cars), which are collected in the surroundings of 

Hiroshima University (HU), and negative samples (i.e. non-cars) from the INRIA dataset 

[10] are selected for verification in this work. A reasonable quantity of samples plays a 

significant role in establishing sufficient diversity to correctly detect the input data from 

the testing dataset [11].  

Therefore, 1225 positive samples from the HU dataset and 12180 negative samples 

obtained by cropping non-car images from the INRIA dataset are resized to three kinds 

of SW sizes, i.e. 128 pixels × 64 pixels, 96 pixels × 64 pixels, and 64 pixels × 64 pixels, 

for training. Furthermore, corresponding sizes of 556 positive samples gathered from the 

HU dataset and 1812 negative samples cropped from the INRIA dataset are used as the 

image set for testing.  

The results as shown in Fig.3.14 demonstrate that the classification performance 

enhances with the increase of SW size, which determines the feature-vector 

dimensionality. The obtained true positive rate (TPR) and true negative rate (TNR) results 

indicate a high accuracy of the proposed simplified-SURF descriptor for vehicle 

recognition. The high accuracy also testifies the appropriateness of the window-scan step 

size chosen in this research. 
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Fig.3. 14 True positive rate and true negative rate for car recognition with different SW sizes by the 

proposed simplified-SURF descriptor. 

 

The one-sided increase of TPR or FPR can also impact the validity of the vehicle-

detecting accuracy (ACC) with different quantities of testing samples according to the 

relationship in Eq.3.7. Here P is the number of all positive samples, N represents the 

number of non-car samples (negative samples), TP is the number of vehicle images 

detected correctly among all positive samples, TN is the number of correctly detected 

negative samples among all negative samples, and FP is the number of negative samples 

that are detected as positive samples. The specificity (SPC) is an associated variable of 

FPR (SPC=1-FPR). 

 

TPR =
TP

P
× 100%;  FPR =

FP

N
× 100%;  SPC =

TN

N
× 100%;  ACC =

TP+TN

P+N
× 100%  (3.7) 

 

Rather than using the entire training dataset as reference data for the nearest neighbor 

search (NNS), the k-means algorithm is further used to cluster the dataset into k groups. 

The centroids of these k groups are finally taken as the reference data for classification. 

Since only w/8 cell-based FVs have to be temporarily stored before constructing the 

FV of the first window, the memory requirement is again much lower than in the 

conventional integral-image-based implementations. 

Synchronization with the pixel-input frequency from the image sensor and 

parallelized partial processing of multiple relevant SWs lead to flexibility with respect to 
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the size of processed cells, windows, and images. Furthermore, drastically reduces 

memory consumption, fast processing speed, and low power dissipation are achieved in 

the proposed cell-based window-level FV construction scheme. 

 

3.4.2 Block-based feature-vector construction 

Pedestrian detection is employed as an illustration to evaluate the accuracy of the 

block-based FV construction method on an equivalent software emulation employing an 

advanced 3.30GHz Intel® Core™ i5-4590 CPU and 8 GB of RAM memory.  

 

  
Fig.3. 15 Pedestrian-detection accuracy as a function of the cluster number, applying a framework 

composed by the cell-based simplified-SURF descriptor and the nearest neighbor search (NNS) classifier. 

 

 
Fig.3. 16 Pedestrian detection verification in a software-implementation of the proposed architecture. 
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classifier shows that the L1-norm achieves comparable detection accuracy performance 

to the case where L2-norm is applied in Fig.3.15, but the hardware implementation for 

L1-norm is much simpler and requires much fewer resources than the L2-norm scheme. 

On the other hand, the proposed L1-norm scheme further operates with much better 

accuracy than without normalization (no-norm) for detection system from the INRIA 

dataset. Figure 3.16 shows the pedestrian detection result operating at a VGA (640×480 

pixels) image by software-implementation of the proposed architecture with a 64×128-

pixel SW. in practical application, the image should be adjusted to different scales or 

dynamically change the window size to match the object sizes in the testing image.  

Multiple parallel block-based L1-norm circuits can accelerate the processing speed 

and the memory reutilization of each block leads to large reductions in on-chip storage 

requirements.  

 

3.5 Conclusion   

Since the feature descriptor with a window-based localization is a crucial factor for 

accurate object recognition based on a sliding-window strategy, two schemes are 

proposed for window-based feature construction in this chapter. One of the feature 

representation schemes uses direct decoding from reutilization information of each cell 

with the new concepts of a RRRT (regular rule of reusing times) table and a window 

index, which weakens the block concept and simplifies the computation by lookup-table 

usage during the FV construction procedure. The other scheme arranges the normalized 

block-based feature components without frequent accesses to cell-based components. 

Both of these two methods can avoid complex re-computation, thus computational cost 

and complexity of the feature extraction are significantly reduced. Furthermore, the 

storage space, required by these two methods for one row of SWs, can be overwritten for 

the next row of SWs, which results in much less storage requirement than in the previous 

research. It could be verified, that the second method with block-based normalized FVs 

can achieve higher detection accuracy than the former cell-based scheme without 

normalization of the FVs. 
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Chapter 4  
 

Feature-Vector Optimization  
 

4.1 Introduction 

Feature vector normalization (FVN) and dimensionality reduction (DR) are two 

important issues for feature-vector-based designs, to reduce the complexity of 

computation without a significant decrease in accuracy. 

To support the substantial computational amount for processing multiple frames per 

second in real time, a pixel-based pipelined architecture that synchronizes to the working 

frequency of the image sensor was reported for both cell-based HOG [1] and simplified-

SURF descriptor applied Haar-like feature vector [2]. The integral image is substituted 

by an immediate processing engine for the serially input-pixel data from the image sensor 

in our previous work. Local feature vectors (FVs) are computed in terms of a sub-region 

named ‘cell’. The cell-based local FVs are sequentially outputted for the scan-window-

based multidimensional feature representation, matching to an object directly without 

normalization and dimensionality reduction.  

On one hand, although the non-normalized cell-based feature descriptors effectively 

reduced the computational complexity, the omission of normalization in the feature-

extraction stage results in unstable accuracy results against circumstance changes in the 

detection stage. This is a serious concern, because the real-world practical application 

circumstances generally vary irregularly and unpredictably. Illumination intensity of light 

source, foreground-background contrast and the automatic gain control from a camera, 

etc., limit the performance of vision-based object detection and recognition systems. To 

avoid degradation of performance due to above issues, an effective normalization method 

turns out to be essential [3-5]. 

On the other hand, object detection and recognition are greatly hampered by a high-

dimensional feature descriptor, such as the 1680-dimensional window-level FV for the 

simplified SURF descriptor or the 3780-dimensional window-level FV for the HOG 

descriptor, which will be generated for a 64×128-pixel scan window. In such high-

dimensional spaces, classical pattern recognition algorithms such as the nearest neighbor 
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search (NNS) are nearly intractable with respect to target detection. Feature reduction 

without decreasing the detection accuracy turns out to be an essential step. 

4.2 Hardware implementation for L1-norm  

Similar to the original HOG algorithm [6], the four cell features in a block are 

normalized in [3], showing that the L1-sqrt-norm and L2-norm perform equally well, 

while more multipliers and more memory accesses make an FPGA-based design much 

more complex and resource consuming than without normalization. The L1-sqrt-norm is 

also called ‘Least absolute deviation by square root’, which can be illustrated in Eq.4.1. 

L2-norm is also called ‘Least square’ that is illustrated in Eq.4.2. 

The L1-sqrt-norm:  

 

𝑣 → √
𝑣

‖𝑣‖1+𝜖
                           (4.1) 

The L2-norm: 

𝑣 →
𝑣

√‖𝑣‖2
2+𝜖2

                           (4.2) 

 

Here v presents the non-normalized descriptor vector, while 𝜖 is a small constant. 

Some regularization 𝜖 is needed as we evaluate descriptors densely, including on empty 

patches, but the results are insensitive to 𝜖’s value over a large range [6]. 

Compared to the L2-norm, the L1-Sqrt-norm avoids squaring the histogram elements 

leading to an efficient implementation without reducing the detection rate significantly. 

Furthermore, multi-scale and multi-object detection is becoming a tendency for 

intelligent machine-vision applications [7-9]. The typical cell size (CS) is reported as 8×8 

pixels for the original HOG descriptor [6], and this CS is widely used in other current 

research work such as in [4]. The fixed size of cells in the conventional approach to 

generating the feature pyramid leads to the requirement of more calculations, including 

linear interpolation [9]. However, the multi-scale image pyramid in state-of-the-arts 

results in large data expansion and higher computational complexity, necessitating fast 

hardware implementations to enable real-time processing. Whereas, the hardware 

resource is a critical factor for integrated circuit designs. 

 

4.2.1 Block-based normalization algorithm for feature vectors 

To improve detection of the target objects among complex backgrounds, this research 
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proposes a real-time feature-vector-normalization algorithm. The simpler L1-norm, 

which is defined as Eq.4.3 in [6], instead of the L2-norm or the L2-Hys-norm is applied 

in this research and is verified to meet a favorable tradeoff between computing complexity 

and detection accuracy. Here v presents the non-normalized descriptor vector and 𝜖 is a 

small constant. 

 

𝑣 →
𝑣

‖𝑣‖1+𝜖
                             (4.3) 

 

Specifically, a reconfigurable normalization circuit [10] together with a cell-based 

feature descriptor is performed across overlapping blocks in size of 2×2 cells in this 

research.  

The non-overlapping rectangular pixel group named ‘cell’ is the elementary output 

unit of many cell-based feature descriptors. The dimensionality of the local cell feature 

vector varies in accordance with the adopted feature descriptor. For instance, a nine-

dimensional vector for each cell is generated by accumulating weighted gradient 

magnitudes in nine bins matching with corresponding gradient-angle groups, each 

covering 20° between 0° and 180°, for the case of the HOG descriptor [1]. In contrast, 

the edge features of the simplified SURF descriptor with Haar-like feature vector in [2] 

compute the gray level differences and their corresponding absolute values between white 

and black groups of pixel rectangles, resulting in four dimensions of the local feature 

vector for each cell. In practice, the other cell-based feature descriptors, reported in 

various research works such as [9] and [11], are desired to be appropriate to be applied in 

the proposed L1-norm architecture of this research as well.  

Particularly, the proposed block-based Lp-norm operation over an image in this 

research is defined as Eq. 4.4.  

 

𝑑𝑖
′ = 𝑑𝑖/(|𝑑𝑖(𝑐𝑒𝑙𝑙0)|

𝑝
+ |𝑑𝑖(𝑐𝑒𝑙𝑙1)|

𝑝
+ |𝑑𝑖(𝑐𝑒𝑙𝑙2)|

𝑝
+ |𝑑𝑖(𝑐𝑒𝑙𝑙3)|

𝑝
)

1/𝑝
     (4.4) 

 

Here, di (i ∈ [0, n-1]) refers to one component of the n-dimensional cell-based feature 

vector. For the cell-based HOG descriptor in [1], n=9, while n=4 in the cell-based 

simplified SURF descriptor in [2]. In the proposed L1-norm scheme, the parameter p is 

set to be ‘1’, i.e., p=1. 

A general-purpose normalization-circuit architecture is developed and implemented 

by a reconfigurable ASIC-based solution to meet for multi-scale and multi-object 

detection tasks. With the block movement by a fixed half-block stride (i.e., one cell stride) 

in a row-raster-scan manner in this research, as illustrated in Fig.4.1, the adjacent blocks 
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are overlapped and one cell can be shared by up to four blocks. The feature vector 

components of the four cells of each block are arranged in raster order to form the local 

block-based feature vectors, resulting in a final 9×4=36-dimensional local block-based 

feature vector in [1] and in a 4×4=16-dimensional local block-based feature vector in [2]. 

And the local block-feature vectors become the basic components for constructing the 

high-dimensional feature vector of the entire scan window. Sharing and reusing of one 

cell-based feature vector can increase the dimensionality of the block-based feature vector 

and the final window-based feature vector. 

 
Fig.4. 1 Parallel feature vector normalization scheme of overlapping blocks with cell-based feature 

components. Each cell will be normalized by its neighboring cells within the same block. 

 

In this research, each cell is normalized by its neighboring cells within the same block 

to increase robustness to texture and illumination variation. Specifically, the size ratio 

between cells of increasing size is used to define the scaling factor of the corresponding 

pyramid level in this research. Since the CS is not a restriction factor for the subsequent 

normalization and the window-based feature construction, the proposed hardware 

architecture can be applied to calculate components of various CSs up to e.g. 32×32 pixels, 

in accordance with the desired pyramid levels. The rectangular CS and the image 

resolution are only limited by the on-chip storage capacity for VLSI implementation. The 

obtained flexible CS and the unlimited vertical size of input images can be viewed as a 

substantial contribution to multi-scale and multi-object detection in our work. 
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Although the configurable normalization concept can be applied for all four block 

normalization schemes L2-Hys, L2-norm, L1-sqrt and L1-norm introduced in previous 

research, the simpler L1-norm is applied in our hardware design and is verified to meet a 

favorable tradeoff between computing complexity and detection accuracy. Furthermore, 

flexible regulation for memory allocation is executed according to customization 

parameters from the input so that the presented block-based L1-norm-circuit architecture 

has high processing-flexibility for different image-cell sizes, cell-based feature 

descriptors and image resolutions, which is only limited by the on-chip storage capacity. 

Synchronization with the pixel-transfer frequency from the image sensor enables real-

time processing. The cells and blocks are scanned in row raster manner for the entire 

image and are arranged in sequence so that the intermediate-calculation results can be 

stored and invoked in the proper order. 

Different CSs and window sizes (WSs) lead to different block numbers and therefore 

different window-based feature vector dimensionality. The designated sizes of the 

window are depended on location and size of different target objects in the image since 

the window is applied for matching the target object. The sliding-window-based 

localization for detecting the target objects in the input image has been discussed in 

Chapter 3.  

In conclusion, a reconfigurable normalization algorithm with variable cell size is 

proposed in this research for extensive applications using image-cell-based feature 

vectors. 

 

4.2.2 Flexible cell size for multi-scale image pyramid 

Better performance can be achieved by customized normalization of each element 

(i.e., cell-FV component) for different local blocks containing the respective cell, and by 

treating the results as independent dimensions.  

Concerning the presented block-based L1-norm circuit, the developed architecture is 

only constrained by the cell number in the horizontal direction. Figure 4.2 (a) shows the 

conventional approach to generate the feature pyramid, where the image pyramid is 

generated first from the input image by bilinear interpolation, and then feature pyramid 

with fixed size (e.g. 8×8 pixels) cells are generated [4]. Thus, each scale of the image 

pyramid should be computed independently, which results in a mass of redundant 

computation and significant requirements of the on-chip resource.  

In this research, the image pyramid is skipped, and the feature vector of each image 

scale with different cell sizes are generated directly from the input image as shown in 
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Fig.4.2 (b). In other words, the cell sizes can be applied for matching the corresponding 

level of the feature pyramid so that the multi-scale objects can be detected from the input 

image. The ratio between each cell size defines the scaling factor of the corresponding 

pyramid level. The cut-off frequency of each filter is proportional to the scaling factor of 

the corresponding pyramid level. The low pass filters in response to smaller cell sizes 

prevent aliasing by removing high frequencies in the input image.  

Since the input pixels are coming in sequence, partial feature vectors are calculated 

on-the-fly for all related cells that contain the input pixel.  

 

 
Fig.4. 2 Generation of a feature pyramid by (a) generating image pyramid first then calculating fixed-

size cell FVs, or (b) calculating FVs of different cell sizes corresponding to each pyramid level. 

 

The resulting partial features of different pyramid levels are available at different 

times corresponding to the cell size. In the practical on-chip FV-extraction circuit in this 

research, apart from the image resolution flexibility of up to 1024×∞ pixels, there are five 

CSs, i.e., 2×2, 4×4, 8×8, 16×16, 32×32 pixels, handled by the for multi-scale and multi-

object detecting applications. 
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4.2.3 Hardware-oriented architecture for block-based L1-norm 

4.2.3.1. Overall architecture 

The developed reconfigurable circuit architecture for block-based L1-normalization 

consists of three main parts, as illustrated in Fig.4.3. The upper ‘Block part’ is used for 

caching and updating of intermediate block-summation results in the currently processed 

row of image blocks, which depends on assigned image resolution and CS in different 

applications. The four cells related to the same block are outputted successively in the 

‘Pipelined L1-norm processing circuit’. The final descriptor feature vector (FV) of a 

window is constructed by combining the normalized block-FVs (i.e., d0’, d1’, …, dn’) of 

all related blocks. Cache and extension for one row of cells are handled in the lower ‘Cell 

part’ of the circuit architecture.  

 

 
Fig.4. 3 Hardware architecture of the reconfigurable block-based normalization circuit (BBNC) for 

pipelined L1-norm processing with cell-based feature vectors. 

18

∑
16

positive ?

abs

d0

16
positive ?

abs

d1

16
positive ?

abs

d2

16
positive ?

abs

∑

∑

∑

16×n

block 
memory

……

C
e

ll-
b

as
e

d
 f

e
at

u
re

 v
e

ct
o

rs

16

16

16

16 18

18

18

18

…

18

18

18

18

…

N

Y

N

Y

N

Y

N

Y

wren

BA_write

block 
address 
decoder

BA_read

0

0 1

BA

16×n

 B
lo

c
k

 p
a

rt

18×n

×

2
m

×

2
m

×

2
m

cell 
address 
decoder

…
×

2
m

REG

block finish

REG

REG

REG

DIV

DIV

DIV

DIV

… …

16

16

16

16

d0
’

d1
’

d2
’

dn-1
’

…

MUX

cell 
memory

CA_write

CA_read

CA

block finish

Four cells in 1 block

CNV
CNH

load 
feature

…

load feature

CNH

Start

P
ip

e
li
n

e
d

 L
1
-n

o
rm

 p
ro

c
e

s
s

in
g

 
C

e
ll
 p

a
rt

dn-1



 

Chapter 4 

 

80 

 

The developed pipeline architecture for FV normalization scheme is based on 

sequential cell-based FVs inputs. A parameter initializing circuit (PIC) will assist the 

sequential pixel-based pipelined circuit (PBPC) to generate sequential cell-based FVs to 

the reconfigurable block-based normalization circuit (BBNC). 

The serially-inputted raw pixels scanned directly from the image sensor, are 

transferred to the sequential BBNC for extracting the local FVs for the cells, without 

preprocessing or pre-storage. The processing speed only relies on the pixel-transfer 

frequency from the image sensor. The PIC transforms the flexible input-image resolution 

into the cell number in horizontal (CNH) and vertical (CNV) directions according to the 

customized CS programmable up to 32×32 pixels.  

As the L1-norm according to Eq. 4.4 is performed across blocks with 2×2 cells, the 

block size is depended on the customized CS. The reconfigurable BBNC is implemented 

by addition, multiplication, bit shift, decoding, and division with variable input 

parameters for various cell numbers in horizontal and vertical directions. As the CNH and 

CNV are two parameters adjustable from circuit input, the extensibility to different cell-

number-dependent image-processing solutions is only limited by the on-chip storage 

capacity. 

 

4.2.3.2. Cell part 

Since the local non-normalized FVs are inputted in terms of cell-based FV, these cell-

based FVs have to be cached in the ‘Cell part’ until the accumulation operations with 

respect its related blocks are all accomplished for block-based normalization. The cell 

number to be buffered relies on the CNH direction of the input image. As the L1-norm 

(i.e., p=1) according to Eq. 4.4 is performed across blocks with 2×2 cells, “CNH+1” cells 

have to be temporarily stored in the ‘cell memory’.  

As the cell-FVs are sequentially inputted and processed in parallel for all related 

blocks at the same time, the buffer space for the front-stored cells will be overwritten for 

the subsequently inputted cells in sequence during the block normalization, resulting in 

high efficiency for storage space and energy consumption. Thus the loop cell address 

(CA) of the cell memory for writing or reading cell-based FVs is generated by a decoder. 

Specifically, only 1024/8+1=129 cells in size of 8×8 pixels have to be stored for XGA 

images with 1024×768 pixels. In other words, the image width and the CSs to be handled 

by this circuit are only constrained by the on-chip memory capacity. 

Besides, there is no constraint in image height in principle because of the reutilization 

of memory space. In particular, each word of the cell memory has nine-bin×16 bit=144 

bits for the HOG descriptor in the practical ASIC design. 
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To ensure a fixed-point computation in the middle ‘Pipelined L1-norm processing’ 

part of Fig. 4.3, the numerator of Eq. 4.4, i.e. each cell-FV component, is multiplied by a 

factor of 2m, which determines the computational precision of the block normalization. 

We set m=12 in the practical chip design to meet a tradeoff between the required data 

bandwidth and the precision of the calculation results. Only the integral part of the product 

is retained for the subsequent division by the block-internal accumulation of FVs. Thus 

the hardware architecture for the complicated floating-point computation of division can 

be implemented by a fixed-point circuit with insignificant part of the precision loss. 

 

4.2.3.3. Block part 

In this research, the sequentially outputted cells are invoked for partial block 

normalization immediately. The upper ‘Block part’ of Fig. 4.3 is used for caching and 

updating of intermediate block-summation results in the currently processed image blocks. 

Since the block moves by a fixed half-block stride (i.e., one cell stride) in a row-raster-

scan manner, the intermediate block-summation required massive redundant memory 

space if all image blocks are stored. For instance, (640/8-1)×(480/8-1)=4661 overlapping 

blocks have to be buffered for processing VGA (640×480 pixels) images on 8×8-pixel 

cells.  

As the former blocks, which are already outputted in sequence for window-based FV 

construction, become invalid, these utilized blocks can be discarded and the 

corresponding storage space can be reinitialized in the block memory. Therefore, only 80 

words and 128 words in the ‘block memory’ are required for processing VGA and XGA 

images, respectively. The four 16-bit FV-components of the corresponding four 

independent cells of each block are accumulated, resulting in 18-bit precision for each 

bin of the HOG descriptor. This means that each word of the block memory can be 

allocated to 9×18-bit=162bits for each local block-FV component. 

The necessary storage space for one row of blocks as well as the corresponding storing 

locations, i.e. read and write block addresses (BAs) for the block memory, are regulated 

in accordance with the CNH and CNV parameters of the input image. The BA describes 

the number of the cell-overlapping block and its respective positions covering the current 

cell in the image.  

A given cell can be covered by up to four blocks, in case of block movement by one 

cell in a row-raster manner inside a window. Cells which can be covered by 1, 2 or 4 

blocks are marked identically in Fig. 4.4 and the corresponding BAi (i from 0 to 3) are 

given in Eq. 4.5. 
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𝐵𝐴 = {

𝐵𝐴0 = 𝑘 − 𝑘/ℎ               
𝐵𝐴1 = 𝑘 − 𝑘/ℎ − 1       
𝐵𝐴2 = 𝑘 − 𝑘/ℎ − ℎ        
𝐵𝐴3 = 𝑘 − 𝑘/ℎ − ℎ + 1

                  (4.5) 

 

Here k and h represent the current-cell order number in the whole image and the 

image’s CNH value, respectively.  

Although cells marked in the same color in Fig. 4.4 are overlapped by the same 

number of blocks (1, 2 and 4 blocks for cells marked in black, gray and white, 

respectively), the BA or BAs, i.e. the sequential block order in the image that the current 

cell belongs to, are different for each cell.  

 

 
 

Fig.4. 4 Corresponding block addresses (BAs) for all cells according to their positions. 

 

For instance, the four corner cells are all overlapped by one single block, but their 

separate BA is assigned as BA0, BA1, BA3, and BA2 by Eq. 4.5 as illustrated in Fig. 4.4. 

In other words, the BA related to the current cell is depended on the image resolution and 

the cell position in the image.  

Figure 4.5 illustrates more reconfigurable-architecture details of the ‘block address 

decoder’, which generates the BAs related to a given image cell. All the cells in the input 

image are categorized into nine cases according to the situation analyzed above so that 

all BAs can be sequentially decoded by Eq. 4.5 with lower computational cost.  
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Fig.4. 5 Structure of the ‘block address decoder’ (see Fig.4.3) for coordinating the reconfigurable 

normalization according to cell position and image size, customized by the configuration parameters 

CNH (up to 128) and CNV (unlimited). 

 

As illustrated in the circuit block ‘address analyzer’ of Fig. 4.5, the four possible block 

addresses are first calculated and then selected as the final outputted BAs on the basis of 

the assigned cell case. The input customization parameters of the circuit block ‘status 

monitor’ determine the configuration information of the currently processed image. The 

status monitor is composed of a counter array for simpler architecture parameterization. 

The counters have the function of a decoding logic which can translate the external 

regulation parameters into the local control signals, contributing to the architecture’s 

processing flexibility in terms of image size (CNH×CNV cells).  

 

4.2.3.4. Pipelined L1-norm processing circuit 

Local variations in illumination and foreground-background contrast make effective 

local contrast normalization essential for good performance in object detection. The 

internal components of each inputted cell-based FV are used for normalization within a 

block according to Eq. 4.4 with p=1. The absolute values of each FV-component of the 

four cell-based FVs in a block are accumulated separately. The multiplied product of FVs 
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of the current cell by a factor of 2m from the ‘cell part’ will be invoked for the division as 

soon as the accumulation operations of the four cells within a block are completed. The 

pipeline registers synchronously latch the transmitted data with the same rising clock edge 

so that the results can be transferred to the following register in the pipeline. In other 

words, the proposed circuit is constructed as a pipeline processing cluster. 

Once the FV extraction for one block, is accomplished as indicated in Fig.4.3, the 

corresponding block-FV is transferred for window-based FV construction and the storage 

space for this block-FV is reinitialized for the subsequent block soon afterwards. 

Otherwise, the cell-FV and the partial block-FV results are temporarily stored in the 

memory for block-FV construction. The necessary storage space for one row of blocks as 

well as the corresponding storing locations, i.e. read and written BAs for the block 

memory, are regulated in accordance with the CNH and CNV of the input image. 

Consequently, on-chip memory requirements are strongly reduced. Moreover, multiple 

BBNCs in parallel can be applied for simultaneous multi-cell processing, e.g. applied for 

block-based FV inputs, so that the hardware architecture for normalization is not confined 

by the specific architecture for FV extraction.  

4.3 Dimensionality reduction of feature vectors 

based on PLS regression scheme 

The curse of dimensionality is inherently expensive for hardware circuit designs, 

especially for the nearest neighbor search (NNS) classifier. One of the desired functions 

of this research is to reduce the cardinality of the high-dimensional FV representation 

space. To circumvent the densely processed data during recognition procedure, we 

employ partial least squares (PLS) [12] analysis to project the FVs onto a much lower 

dimensional space. The PLS analysis can preserve significant discriminative information 

that makes it as an efficient dimensionality reduction technique in pattern recognition.  

The dimensionality reduction scheme performed in this research is to analyze the FVs 

by the PLS model for each SW in the image. The basic idea of PLS is to construct new 

descriptor vectors as the descriptor variables (i.e., the FVs). A brief mathematical 

description of the procedure is provided in Eq.4.6. 

 

𝑿 = 𝒀𝑷𝑻 + 𝑬                            (4.6) 

 

where X is a n×d data matrix denoting an d-dimensional space of FVs for n original 

window samples, Y is a n×k data matrix containing k extracted FVs, the (d×k) matrix P 
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represents the loading of weight vectors, and the n×d matrix E is the residuals. For Haar-

like descriptor, the dimensionality d of window-level FV is equal to 1680, and k (k<d) 

newly constructed components in matrix Y summarize the original FVs as well as 

possible. 

In this research, a set of weight vectors (or projection vectors) WPLS= {w1, w2,…, wk} 

are pre-stored in a memory and invoked for PLS analysis with corresponding original 

cell-based Haar-like FV vcell={∑Dx, ∑Dy, ∑|Dx|, ∑|Dy|}. The search of SWs overlapping 

current cell and dimensionality reduction of current window are two concurrent 

procedures, according to the RRRT value and current window value obtained by the 

circuitry shown as Fig.4.6.  

 

 

Fig.4. 6 Data flow and developed architecture for transforming the dimensionality of Haar-like FVs 

from 1680 dimensions to k dimensions. 

 

The cell-based FV vcell as one individual processing unit which is computed by Eq.2.6 

is projected onto corresponding components in the weight vectors WPLS that is obtaining 

the latent vectors di as a result.  

Each weight component wi is 1680 dimensions in application scene of Haar-like 

descriptor when operating in 64×128-pixel SWs. The 1680-dimensional space of Haar-

like FV of the current window is projected onto k 1680-dimensional weight components 

wi in parallel, constructing k-dimensional extracted FV {d1, d2,…, dk} of the current 

window, which is then applied for object recognition.  

Specifically, each weight component wi is segmented to 4-dimensional sub-

components for the raw cell-based Haar-like FVs on the basis of the index of current 

window and the RRRT value R (i.e. 1, 2, or 4) according to the current cell.  

Figure 4.7 shows a part of 4-dimensional sub-components of weight vectors 
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segmented in each window corresponding to the cell sequence on VGA images. All the 

4-dimensional sub-components which are projected onto one same cell for the simplified 

SURF descriptor applying Haar-like FVs will be processed in parallel. The intermediate 

cell-based accumulative results of dimensionality reduction of each SW in PLS analysis 

are temporarily stored and updated in a storage unit respectively.  

Then, a simple and efficient nearest neighbor classifier is used to classify this lower-

dimensional vectors {d1, d2,…, dk} as either a human or non-human on the popular INRIA 

pedestrian dataset consisting of complex scenes in pedestrian detection applications. 

 

 

Fig.4. 7 Concurrent PLS regression analysis for invoking correct weight vectors in parallel for 

multiple SWs related to the current cell. 

 

4.4 Experimental results and discussion  

4.4.1 VLSI implementation results for L1-norm 

A proof-of-concept prototype chip for flexible feature vector normalization is 

fabricated in 65 nm CMOS, as shown in the photomicrograph of Fig.4.8. The 3780-

dimensional cell-based HOG descriptor is applied for reconfigurable FV extraction in this 

design. The total core area for the L1-norm circuit is about 0.655×1.195 mm2. The layout 

of the L1-norm circuit in Fig. 4.9 verifies its logical density. 

Due to the flexibility in image resolution, the prototype chip can deal with a maximum 

width of 128 cells and an unlimited image height with five different cell sizes, i.e., 2×2, 

4×4, 8×8, 16×16, 32×32 pixels.  
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Approximately 31 fps real-time-processing capability for XGA-size image frames can 

be obtained when operating at 25 MHz frequency. The power consumption of this 

coprocessor is 21.3 mW at 1.0 V core voltage when operating at the maximal frequency 

of 125 MHz. Lower working frequency can be used, which leads to lower power 

dissipation by adjusting to the different speed requirements of various applications. 

 

 
Fig.4. 8 Micrograph of the prototype chip in 65 nm CMOS technology and the device performance 

for feature vector normalization. 

 

The required storage space for on-chip for the reconfigurable general-purpose L1-

norm circuit consumes only 36 kbits dual-port memory space due to the applied 

reutilization scheme. 

 From the layout of the proposed VLSI implement of the L1-norm circuit, the 

memory occupies most of the area of the die chip, which illustrates that the memory 

requirement is a critical factor for the on-chip circuit design.  

The word precision for each FV-component of the cell-based HOG descriptor is 16 

bit, resulting in 9×[16+log2(2×2)]=162bit for each local 36-dimensional normalized 

block-FV (2×2 cells), to provide good classification accuracy and minimized hardware 

cost. The on-chip storage capacity allows up to 128 cells in the horizontal direction can 

be handled without restrictions of the CS. 
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Fig.4. 9 Layout of the developed circuit for L1-normalization. 

 

The extended bit width of each component of the local cell-FV by the factor 2m (m=12 

in real chip design), which should be recovered for the final detection results, ensures an 

optimized tradeoff between the data precision and the computational complexity.  

Note that the developed architecture can handle also other cell-based feature 

descriptors for normalized SW-based FV construction to enable the realization of various 

object detecting applications. 

 

4.4.2 FPGA implementation results of PLS regression 

The hardware circuit of the proposed PLS analysis for dimensionality reduction for 

the simplified SURF descriptor with Haar-like FVs was described by Verilog HDL and 

then implemented on Altera® Stratic IV field-programmable gate array (FPGA). 

As shown in Fig.4.10, the demo-system consists of a DE4 FPGA board, an LCD 

display and with or without a CameraLink camera with XGA (1024×768 pixels) frames. 

A 1680-dimensional Haar-like FV is transformed to 8-dimensional simplified FV, which 

significantly reduce the computation amount and cost for object detection. 
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Fig.4. 10 Proposed object detection system based on FPGA and the applied Altera® Stratic IV FPGA 

development board. 

 

An independent DIV transmitter-receiver board is inserted to the FPGA development 

board and an assistant driver is installed in the FPGA as well. The PC serves as a host to 

program the configuration files to FPGA device and manage the datasets.  

 

TABLE IV. I 

Physical Resource Utilization of the Proposed Circuit for Object Detection with PLS Analysis 

Resources Used Available Utilization 

Combinational ALUTs 14730 182400 8% 

Memory ALUTs 272 91200 1% 

Dedicated logic registers 9676 182400 5% 

Total registers 10108 N/A N/A 

Total block memory bits 397164 14625792 3% 

DSP block 18-bit elements 144 1288 11% 

Total PLLs 3 8 38% 

 

The synthesis result of the proposed object detection system with PLS analysis circuit 

is listed in Table IV.I, the multipliers are configured by look-up tables (LUTs) and DSP 

block elements. Part of registers are employed as assistant units to implement pipelined 

data flow with memory access, and others are used for operations like fixed time circle 

delay, etc. The total memory usage in Table IV.I is mainly determined by the 

dimensionality of weight vector, which is in accordance with the dimensionality of 

window-level FV of the simplified SURF descriptor. The results indicate that the 

proposed object detection with PLS regress is able to work at up to 242.48 MHz frequency, 

which is sufficiently high processing speed for real-time applications. 

 

FPGA Development Board

LCD Display

Program runs 
on PC

USB 
Blaster Port

Stratix IV GX 

EP4SGX230KF40C2

Camera Link 
Connector

DVI Transmitter 
Connector  



 

Chapter 4 

 

90 

 

4.5 Conclusion 

On one hand, a hardware-friendly coprocessor applied for a general-purpose L1-norm 

engine is developed and implemented in 65 nm CMOS technology within 0.78 mm2 core 

area. Multiple cell sizes (CSs) up to 32×32 pixels are used to define the scaling factor of 

the corresponding pyramid level. The flexible CS and the unlimited height of input 

images (≤1024×∞ pixels) make an important contribution to multi-scale and multi-object 

detection, enabling much smaller computational effort than required in previous research 

works. Flexible application adjustment is provided by input customization parameters, so 

that the presented block-based L1-norm circuit can achieve high processing flexibility for 

different image-cell sizes, cell-based feature descriptors, and image resolutions. 

On the other hand, the PLS regression scheme significantly reduces the FV 

dimensionality as well as the computation cost for object detection stage. Therefore, more 

corresponding low dimensional reference vectors can be adopted for an NNS classifier 

with limited storage resources for on-chip or FPGA-based designs. The developed 

reutilization scheme of memories for intermediate-result storage allows a significant 

reduction for both storage requirements and core area consumption. 

Lower computational cost and pipelined data transmission result in increased 

efficiency with respect to power consumption and high processing speed. Consequently, 

the applied prototype architecture demonstrates less memory usage, lower energy 

consumption, and higher detection robustness for real-time object detection in various 

mobile applications, than previously possible. 
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Chapter 5  
 

Implementation of Different 

Detection Frameworks 
 

5.1 Introduction 

The recent rapid development in data mining has made available a wide variety of 

algorithms, drawn from the fields of statistics, pattern recognition, machine learning, and 

databases [1]. Machine learning (ML) techniques have been used to capture normal 

behavioral patterns and to classify the new behavior as either normal or abnormal [2]. As 

mentioned in the Introduction in Chapter 1, ML problems can be generally assigned to 

supervised learning and unsupervised learning problems. Pattern recognition systems can 

be trained from labeled training data in supervised learning such as object classification, 

but also can be used to discover previously unknown patterns, as e.g. by clustering 

algorithms, when no labeled data are available in unsupervised learning. 

For vision-based object detection, many appropriate classifiers such as support vector 

machine (SVM), nearest-neighbor (NN) distance estimation, the AdaBoost classifier [3] 

and artificial neural networks (ANNs) can be employed as searching engines to find out 

target objects with favorable properties in the captured visual data. An ideal application 

in vision-based detection would be to gather sufficient positive and negative images for 

a user or a program, and then to apply a classification algorithm for training a classifier 

that can label or predict new unseen input images as belonging to the positive or the 

negative class as illustrated in Fig.5.1. 

 
Fig.5. 1 A general flowchart of object detection in supervised learning techniques. 
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In order to verify the performance of the developed hardware architecture for object 

recognition and detection, this research employs two demonstration frameworks, which 

are in part motivated by the tasks of vehicle and pedestrian detection. 

On one hand, a resource-efficient object recognition coprocessor, which applies the 

simplified SURF descriptor and the nearest-neighbor search (NNS) classifier, is proposed 

for frontal vehicle detection. On the other hand, another popular framework, composed 

of the histogram of oriented gradient (HOG) descriptor and the SVM classifier [4-5], is 

reported for pedestrian detection as well. Both demonstration frameworks perform binary 

categorization of each new input image into either the positive or the negative class. 

With the proposal about feature vector (FV) extraction, construction, normalization 

and dimensionality reduction, described in previous chapters, the recognition and 

detection process is executed in parallel with the construction of the used 

multidimensional FV and is therefore completed shortly after FV completion for each 

scan/search window (SW) of an image frame. 

 

5.2 Nearest neighbor search (NNS) combined 

with simplified-SURF descriptor  

5.2.1 Hardware architecture for NNS classifier 

The similarity is defined in terms of a more or less complex similarity function. The 

smaller the similarity value, the more similar are two objects. As a measurement to 

express the differences between the input image and reference images, the term ‘distance’ 

is used as illustrated in Fig.5.2. The reference pattern with minimum distance is referred 

to as the ‘winner’ and the reference pattern with the next smallest distance is referred to 

as the nearest-loser. 

 

 
Fig.5. 2 Object match in an image according to minimum distance value. 



 

Chapter 5  

95 

 

Typical query types for NNS classifier are the similarity range query which is 

specified by a query object and a similarity distance range [0, ε], and the k-nearest 

neighbor query which is specified by a query object and a number k for the k most similar 

objects to be retrieved [6]. The k-nearest neighbor query is equivalent to a corresponding 

similarity range query. Figure 5.3 shows the flowchart of the object detection employed 

in this research. The first framework for object detection is combined with the simplified 

SURF feature descriptor and the NNS classifier. 

 

 
Fig.5. 3 The flowchart of the object detection system employing the NNS classifier. 

For the window-based object classification, the FV (i.e., the vector IN) of one scan 

window (SW) in the test image can be represented in Eq.5.1, while the FV of the ith 

reference (i.e., the vector REFi) is represented by Eq.5.2. 

  

𝑰𝑵 = {𝐼𝑁1, 𝐼𝑁2, ⋯ , 𝐼𝑁𝑊}                     (5.1) 

 

𝑹𝑬𝑭𝒊 = {𝑅𝐸𝐹𝑖1, 𝑅𝐸𝐹𝑖2, ⋯ , 𝑅𝐸𝐹𝑖𝑊}                (5.2) 

 

There are several popular types of operators, such as Hamming distance (HD), 

Manhattan distance (MD) and Euclidean distance (ED) in information theory to measure 

the distance from the testing image to the reference image. Architectures for fully-parallel 

winner-search according to the Hamming-distance [7] and the Manhattan distance [8] 

have been proposed based on mixed digital-analog circuits.  

The three above distance concepts can be summarized by a general formula called 

MinKowsky equation given by Eq. 5.3. 

 

𝐷𝑗 = ∑ 𝜔𝑖 ⋅ [(𝐼𝑁𝑖 − 𝑅𝐸𝐹𝑖𝑗)𝑃]
1/𝑃

𝑊

𝑖=1

                               (5.3) 
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Where if, P=1, Dj represents the Manhattan Distance, P=2, Dj represents the Euclidean 

distance, P=1 and INi, REFi ∈{0,1}, Dj represents the Hamming distance. And ωi is a 

weighting factor which is set to ‘1’ when computing Euclidean/Hamming distances. More 

different metrics proposed by different communities, including Chebychev, Camberra, 

Mahalanobis [9], and Kullback-Leibler distance [9]. In many practical applications, 

particularly in the fields of image recognition and authentication, the ED, which is the 

most natural and appropriate distance measure [10], is known to give better results than 

HD or MD. 

In this research, after the overlapping scan window (OSW) determination and 

construction, the NNS classifier is continued by partial squared Euclidean distance 

(PSED) calculation between the newly constructed window-level FV for the input image 

and the reference images. In the perspective of overall system processing, the NNS 

classification is operated simultaneously with the window-FV construction with multiple 

paralleled SWs. For each SW in which the cell is located, the cell position corresponds to 

an address within the reference FV. Meanwhile, the cell-based reference vectors for NNS 

are organized in the same way as the extraction sequence of the cell-FV.  

Thus the implementation of NNS can be additionally abided by the “regular rule of 

reusing times” (RRRT) for the SW-FV construction which is discussed in Chapter 3.  

Figure 5.4 further illustrates the main processing procedure with the NNS classifier 

to search the final recognition winner among the inputted reference data for the target 

testing image. Pixel processing for extracting FV for images is the fundamental 

requirement for feature-based image representation. Since the testing image is 

represented by cell-based FVs construction strategy, the corresponding FVs of the 

reference data should be organized in the same way as the testing image FVs, so as to 

reduce the computational cost. 

As the window sweeps within a block stride (i.e. 2 cells), the number of paralleled 

processing windows are dynamically changes. For this purpose, a partial-storage concept 

and the parallel-pipelined computation architecture applied in [11-14] are also employed 

in this research. Specifically, the 1680-dimensional simplified-SURF reference FVs are 

segmented into the four local cell-FV parts for e.g. car recognition.  
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Fig.5. 4 Process flow for the proposed object recognition based on the NNS classifier. 

 

The parallelized PSED calculation is employed with respect to the FVs of all OSWs, 

under consideration of the reuse time of the current cell C[c,r]. Generally, each of the 

simultaneously processed OSWs is in a different stage of its FV construction and PSED 

calculation with respect to the reference FVs.  

According to the cell position in each OSW (i.e., Windex, where the index is defined in 

Eq.3.6), the corresponding components of the cell-based reference FVs are invoked to 

execute the next step of the PSED computation. 

Until the SED results between all OSWs and reference FVs are determined, the 

cumulative PSED-storage unit in Fig. 5.5 has to store N×Whe/Bs intermediate PSED 

results for each reference FV. Here N is defined in Eq.3.3, Whe is the height of the 

designated SW, and Bs is the square-block size, which is 16 pixels in this research. The 

WA of the memory for intermediate storage of PSED values, which are related to the 

order number of the current window and the RRRT value, can be calculated by the 

hardware circuit illustrated in Fig. 3.12. 

When cell row Whe/8 of the image is processed, NNS for the first row of SWs finish 

sequentially. Depending on the block size Bs, NNS for one SW will complete the supply 

of the local cell-FV of every (Bs/8)th cell.  

Afterwards, NNS for the next row of SWs will complete, when an 8×8-pixel-cell row 

(Whe+Bs)/8 is processed. During the completion of NNS for a SW, the sequentially 

determined final SED to each reference FV is latched in Buffer 2 of Fig. 5.5, and is then 

compared to the intermediate minimum stored in Buffer 3. 
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Fig.5. 5 Cell-based NNS architecture for parallel minimal SED search among multiple references. 

 

If the SED in Buffer 2 is smaller than that in Buffer 3, it will be stored in Buffer 3 as 

the new intermediate minimum. After SED comparison for the last reference FV, NNS is 

completed, the global minimum is saved in Buffer 3, and the corresponding reference FV 

determines the classification result for this SW. 

Important is, that each cell is scanned only once and then scanning results are reused 

in all related SWs. Additionally, there is no need for tracking SW-internal overlapped 

blocks since the NNS recognition proceeds based on cells. Consequently, the proposed 

parallel SW (PSW) algorithm effectively reduces the computational complexity and leads 

to high performance in hardware implementation.  

Multi-scale and multi-object detection has become a tendency for intelligent machine-

vision applications [15-17]. However, the multi-scale image pyramid results in large data 

expansion and higher computational complexity, necessitating fast hardware 

implementations to enable real-time processing.  
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Note that the proposed PSW concept also allows enlarging or reducing the scale of 

target objects in images, to match SW and target-object sizes. The PSW concept is not 

image-size limited and widely adjustable to pixel-transfer speed and image size of 

different image sensors.  

Since the resolution of processed images with the customized feature-extracting 

circuits, such as the designated circuit for simplified SURF descriptor shown in Fig.2.11, 

can be dynamically changed, serial processing of a complete image pyramid on the same 

coprocessor hardware with a fixed SW size becomes possible. In this way, high accuracy 

of object recognition in real-world images with varying object sizes can be maintained. 

Figure 5.6 shows an instance for a pyramid with m image layers in different image 

scales, i.e., S, S/4, S/16, S/64, etc., where S is the largest original-image scale in the image 

pyramid. In this case, the required operation time with m serial simplified-SURF 

descriptors for m image scales takes t=tb+tb/4+tb/16+tb/64+…+tb/4
m-1+m·tde, resulting in 

t<2tb+m·tde, when the image scale in the pyramid decreases exponentially by an index 

“4”.  

Here tb represents the operation time for the largest original-image layer and tde (much 

smaller than tb) represents the latency during feature extraction and object recognition.  

On the other hand, the required operation time tb+tde with multiple parallel recognition 

engines is only limited by the size of the largest original-image layer.  

 

 

Fig.5. 6 Diagram of the proposed simplified-SURF descriptor application for multiple image layers with 

corresponding Haar-like wavelets. 
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Consequently, the serial pyramid-processing scheme with a single coprocessor is 

feasible for real-time applications, if the processing time of the original image is about 2 

times faster than what is required for real-time processing. In conclusion, the proposed 

architecture and the designed prototype coprocessor can also be applied for real-time 

image-pyramid processing, when an appropriate original-image size is selected. 

For applications recognizing objects of different sizes with the prototype-coprocessor 

implementation, the value of tb determines whether a serial scheme with a single 

coprocessor is sufficient or a parallel scheme with multiple coprocessors is required. 

 

5.2.2 ASIC implementation in 65nm CMOS  

The FV-based recognition coprocessor, embedding the cell-based simplified-SURF 

FV-extraction unit and the parallel SW recognition engine with a fixed 64×128-pixel 

window, is prototyped in 65nm Silicon on thin BOX (SOTB) CMOS technology with 

1.26 mm2 (1.4 mm × 0.9 mm) core area, as shown in Fig.5.7.  

  

  

Fig.5. 7 Chip microphotograph of the FV-based recognition coprocessor, fabricated in 65 nm CMOS 

technology within 1.26 mm2 (1.4 mm × 0.9 mm) core area. 

 

In the prototype coprocessor implementation, the total on-chip SRAM is 208 kbits 

(i.e. 26 kB). Specifically, 64 kbits of this space are shared for calculating the simplified-

SURF descriptor FVs, 32 kbits of SRAM serve as FIFO for cell-FV buffering and 64kbits 

on-chip memory are designated for storing 1680-dimensional references for verification 

of the proposed architecture, owing to the limitation of chip area. Another 16kbits on-

chip memory are used for marking the newly processed addresses during NNS 

classification according to the current-cell location.  

Additionally, the memory space for references can be overwritten from outside to 
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meet the needs of practical applications. The PSED storage unit consumes 16kbits 

memory space for intermediate PSED-computation-result storage until the current image 

cell. The structure overview of the on-chip memory is summarized in Table V.I. 

TABLE V. I 

Structure Overview of On-Chip SRAM Components of the Developed Prototype Coprocessor 

Component of on-chip SRAM Capacity Bit width Type 

FV- 

extraction 

storage 

Dx 
16 kbits 16-bit 

Dual-port SRAM 
16 kbits 32-bit 

Dy 
16 kbits 16-bit 

16 kbits 32-bit 

FV Buffer 32 kbits 64-bit FIFO 

PSW storage 
CPLUT 16 kbits 16-bit 

Dual-port SRAM 
WLUT 16 kbits 16-bit 

NNS storage 
Temporary SED 16 kbits 32-bit 

Single-port SRAM 
Reference 64 kbits 32-bit 

 

In comparison to previous works, less memory is consumed, even when multiple 

coprocessors are operated in parallel for handling scaled images because the pixel- and 

cell-based FV-extraction scheme makes pre-storage in buffers for raw or integral images 

unnecessary. Additionally, obsolete data in the storage memories are overwritten as soon 

as the new cell or window information becomes available. Only a small memory amount, 

determined by the maximum image width, is consumed for the enabling the flexibility of 

processing different image sizes.  

The memory requirement in [18] is clearly less than in other previous works [19-21] 

and also this work because only the FV-extraction procedure is executed in [18]. In 

contrast to the previous works, the 208kbits memory in the proposed simplified-SURF 

coprocessor of this work is suitable for additionally enabling flexible image sizes up to 

1024× ∞ pixels.  

Practical 8-bit pixels from XGA frames and four 1680-dimensional reference vectors 

are inputted to the coprocessor for verifying the recognition result, utilizing a MU300-

EM platform with peripherals as shown in Fig. 5.8.  
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Fig.5. 8 Measurement system with MU300-EM platform for the designated chip. 

 

The power consumption measured by the MU300-EM platform is proportional to the 

core chip voltage and is further related to chip area, storage capacity and operating 

frequency. Approximately 13.38mW is dissipated when the fabricated chip is operating 

at a lower core voltage of 0.5 V and 200 MHz as illustrated in Fig.5.9. The energy 

efficiency of the fabricated prototype for the FV-based recognition coprocessor is 

measured as 910 μJ per VGA frame and 1013 μJ per XGA frame when operating at 200 

MHz peak frequency with 1 V supply voltage. 
 

 

 

Fig.5. 9 Power consumption at different supply voltages of the designated 65 nm chip with NNS classifier 

and simplified SURF feature descriptor, operating at 200MHz and 1.0V core voltage. 
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As expected and illustrated quantitatively in Fig.5.10, the frame rate reduces and the 

energy consumption per frame increases with higher image resolution, resulting in 75.3 

QVGA (320×240 pixels), 34.6 VGA and 31.1 XGA frames processed per second, 

respectively. The energy efficiency in this work is significantly improved in comparison 

to some of the previous works [19, 21], but is still larger when compared to other previous 

works [18, 20]. More advanced CMOS technology, lower operating frequency and lower 

supply voltage are among the reasons explaining the smaller power consumption in [18] 

and [19].  

 

  

Fig.5. 10 Frame rate and energy efficiency with different image resolutions operating at 200MHz and 1.0 

V core voltage. 

 

In particular, the proposed pipelined circuitry in this research for local cell-feature 

extraction inside the fabricated prototype consumes only 48.6 μJ per VGA frame and 

123.8 μJ per XGA frame. The frame rate in [20] is higher than for the other works due to 

the restricted-ROI (region of interest)-based solution, which increases the processing 

speed by abnegating a lot of raw-image information. Further comparison to previous 

related works is summarized in Table VI.II.  

In particular, the word precisions for each memory word ensures a lossless fixed-point 

processing (no rounding required) for data computing with minimization of hardware cost.  

Since no floating-point calculation is involved in the data processing through the entire 

hardware architecture, adequate word precisions ensure a data-lossless processing and 

gain reasonable classification accuracy.  
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TABLE V. II 

Comparison Results with Previous Works 

 JSSC[18]  VLSI-C[19] VLSI-C[20] ISSCC[21] This Work 

Technology 28nm 40nm 40nm 90nm 65nm 

Image  resolution 

( pixels× pixels) 

fixed 

640×480  
fixed 

1280×720 

fixed 

1280×960 

fixed 

160×120 

variable up to 

1024×∞ 

Design function Feature extraction Object recognition Object recognition Object recognition Object recognition 

Feature type SURF hardware PCA hardware Haar-like hardware Haar-like hardware Simplified SURF 

Extraction scope Entire frame Entire frame ROI only Entire frame Entire frame 

Core area (mm2) 2.22  5.86 9.3  28 1.26 

Core / IO voltage(V) 0.47 /- 0.6 /- 0.9 / 2.5  1.2 /2.5  1.0 /3.3 

Frequency (MHz) 27  100 220  200 200 

Maximal frame rate 
(frame per second) 

30 5.5  300  294 

75.3 (QVGA) 

34.6 (VGA) 

31.1  (XGA) 

Maximal accuracy - 93% 97.4% - 
98.78% (for car) 

93.90% (for pedestrian) 

Power consumption 

(mW) 
2.8  23 69 1214 31.49 

Energy  efficiency* 
( mJ/frame) 

0.093 4.18  0.23 4.129  

0.418 (QVGA) 

0.910 (VGA) 

1.013 (XGA) 

Memory usage  

(kb) 
>56 (FE* only) 

3936 
 (FE:192; 

Recognition:3744) 

202.4  
(LDP*: 190; 

KTP*: 12.4) 

1192  
(ISPS*: 800; 

FSPS*: 392) 

208 
(FE: 96; PSW: 32; 

NNS: 80) 

*Energy efficiency = Power consumption / Maximal frame rate;  *FE: Feature Extraction; 

*LDP: Learning-based Detection Processor; *KTP: Knowledge-based Tracking Processor;  

*ISPS: Image Stream Processing System; *FSPS: Feature Stream Processing System. 

 

Furthermore, data (e.g. FVs) normalization is not involved throughout the entire 

recognition procedure in this chip design, avoiding division operations. The fixed-point-

number operation is adopted by left or right shifting the bits of one word when there is a 

multiple operating relationship between two parameters. Variable counters, such as the 

ones in the pixel pipeline controller, are also applied for multiple transformations such as 

node reset when detecting the image edges. All factors mentioned above assure that the 

recognition accuracy of the fabricated coprocessor chip becomes exactly the same as the 

simulated accuracy results by software-implementation of the proposed architecture. 

Furthermore, the same coprocessor hardware can be applied to the serial processing 

of complete image pyramids (see also Fig. 5.6) to address the issue of changing object 

sizes with a single SW size, since the resolution of processed images with our coprocessor 

can be dynamically changed. The FV-extraction stage of the fabricated coprocessor needs 

about 0.384 ms, 1.536 ms and 3.9 ms for QVGA, VGA and XGA frame sizes, respectively, 

since the feature extraction speed relies only on the pixel-transfer frequency from the 

image sensor. These FV-extraction times are more than two times faster than what is 

required for real-time processing so that complete pyramid FV-extraction for videos with 

these frame sizes is realistic in real time. 

For the entire recognition procedure including NNS, the processing time at 200 MHz 

frequency with a 64×128-pixel SW becomes 13.28 ms, 28.9 ms and 32.13 ms in case of 
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QVGA, VGA and XGA frame sizes, respectively. Please note that due to the image-cell 

FV reuse concept, the processing-time increase for larger image sizes in much smaller 

than the pixel-number increase. As a consequence of above processing-time results, 

multiple coprocessors in parallel are needed to achieve real-time processing for the image 

pyramid of XGA frame size. However, in the case of QVGA frame size, a serial scheme 

with the same coprocessor hardware is feasible for real-time variable-size object 

recognition. On the other hand, smaller size SWs consume less processing time for each 

frame because of the greatly reduced FV-dimensionality to match the target objects. 

Further, the smaller number of SWs overlapping a given cell results in less repetitive 

usage of the cell-based FVs as well. Therefore, the adjustment of the SW size can also be 

applied to reduce image-pyramid-processing time by a considerable degree for achieving 

real-time recognition. 

In conclusion, considering the processing time for feature extraction or the entire 

object recognition procedure, a serial single-core solution or a parallel multi-core solution 

(e.g. multiple feature extraction engines or entire recognition engines) can be applied for 

image-pyramid processing. 

Consequently, a highly energy-efficient hardware architecture for object recognition 

has been developed, which can be applied to extensive visual applications based on cell-

based FVs. The proposed feature extraction architecture is particularly suitable for mobile 

applications, due to the low power dissipation and the low hardware resource 

requirements. In addition, the image-size flexibility of the proposed architecture can be 

controlled by the implemented bit-alterable counters for real-time processing of higher-

resolution images than VGA, e.g., XGA (1024×768 pixels). 

 

5.2.3 A accuracy estimation for detection of different objects 

The reported hardware architecture is capable of handling different applications for 

object detection and recognition. To verify the performance of the proposed hardware 

algorithm in extensive visual applications, different objects, including the front car, lateral 

car, pedestrian, are served as positive samples shown in Fig.5.11 (a), (b) and (c) 

respectively. 
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Fig.5. 11 Positive examples for object detection. The front car examples (a) are collected from the 

surroundings of Hiroshima University (HU), the lateral car examples (b) are selected from the car 

detection dataset UIUC, while the pedestrian examples (c) are selected from INRIA dataset. 

 

For the case of vehicle detection, an NNS classifier employing 1680-dimensional 

Haar-like FVs is implemented as an example to evaluate the efficiency of the proposed 

algorithm by software-based simulation. A set of positive samples (i.e., lateral cars) from 

the car detection dataset UIUC [22-23] and negative samples (i.e., non-cars) from INRIA 

dataset [24] are selected for verification as shown in Fig.5.12 in this work.  

 
 

 

Fig.5. 12 Negative examples selected from INRIA dataset for different object detections. 

 

A reasonable quantity of samples plays a significant role in establishing sufficient 

diversity to correctly detect the input data from the testing dataset [25]. Therefore, 550 

positive samples from the UIUC dataset and 12180 negative samples obtained by 

cropping non-car images from the INRIA dataset are resized to 128×64 pixels (16×8 

cells) for training. Furthermore, 199 different positive samples from the UIUC dataset 

and 1812 different negative samples cropped from the INRIA dataset are used for the 

image set for testing.  

(a) (b) (c)
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Fig.5. 13 ROC curve that indicates the detection accuracy of the fabricated coprocessor for the case of the 

lateral car detection application. 

 

For evaluating the recognition performance of our proposed algorithm, SEDs between 

the extracted FVs of the SWs and the reference vectors are calculated for NNS 

classification. The receiver operating characteristic (ROC) curve in Fig. 5.13 is evaluated 

with the image set for testing. The ROC curve indicates that the proposed classifier’s 

detection accuracy increases with an increased quantity of testing samples. 

In the case of vehicle detection, the integral image strategy of previous software 

solutions [26, 27] attained an accuracy range from 85.7 to 100%. In our verification, we 

have achieved a maximal true positive rate (TPR) of 97.49%, a specificity of 99.67%, and 

a comparably good accuracy (ACC) of 99.45%. 

Furthermore, the front-car recognition and pedestrian recognition are also evaluated 

in this research. Specifically, on one hand, the front cars images collected from the 

surroundings of Hiroshima University (HU) are further applied for front car-recognition 

evaluation.  

On one hand, the scenic images from the INRIA are cropped to 12180 negative 

training images and 4530 negative testing images for evaluating both pedestrian and car 

recognition, as shown in Fig.5.12. The negative images stand for non-cars or non-

pedestrian in this solution. 

On the other hand, 2416 positive training images and 1126 positive testing images 

(i.e. containing humans) from the posture-complex INRIA dataset are employed for 

pedestrian-recognition evaluation. By contrast, 1225 positive training images and 556 

positive testing images (i.e. containing front cars) collected from the surroundings of HU 

are applied for front-car recognition evaluation.  
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The classification-performance comparisons with the original SURF [28] are 

illustrated in Fig.5.14. The proposed simplified-SURF coprocessor with flexible image 

sizes is found to achieve a maximum of 91.03% TPR and 96.12% TNR for pedestrian 

recognition with a 64×128-pixel SW in the INRIA dataset. For car recognition with a 

128×64-pixel SW, the proposed coprocessor achieves a maximum of 97.30% TPR and 

99.34% TNR without normalization, which outperforms the previous normalized SURF 

descriptor with feature-based NNS classification, as illustrated in Fig.5.14 (a) and (b). 

The precision v.s. recall graph is shown in Fig.5.14 (c), confirming the accuracy 

improvement as the recall becomes higher. The average precision (AP) of the simplified-

SURF coprocessor for pedestrian recognition is 82.84% based on 1680-dimension FVs, 

which is lower than with the original SURF (88.89%). But significant efficiency is 

verified for car recognition, where the reported simplified-SURF coprocessor achieves 

98.67% AP.  

 

 

Fig.5. 14 Fixed-point software verification of recognition TPR (a), TNR (b) and Precision-Recall (c) 

performance of the proposed simplified-SURF descriptor compared to the original SURF descriptor [28] 

with feature-based NNS classification. 
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The accuracy comparison, as further illustrated in Fig.5.15, shows that the 

simplification of feature calculation introduces about 6% accuracy deterioration for 

pedestrian recognition in most cases, while the hardware resources and performance 

benefits are far more significant. The reported algorithm for different object detection and 

recognition achieves sufficient performances in resource requirement, power 

consumption, calculation cost, and flexibility, with a trade-off of a reasonable accuracy. 

The recognition accuracies with different SW-sizes in Fig.5.15 also indicates that the 

proposed coprocessor is more efficient for car recognition than for pedestrian recognition.  

 

 

Fig.5. 15 Recognition accuracies of the proposed simplified-SURF FV-based NNS classification with 

different SW-sizes for car and pedestrian recognition applications. 

 

In conclusion, the recognition accuracy enhances with increased window size. The 

efficient computational and flexible hardware architecture can enable the proposed 

object-recognition coprocessor to perfectly meet outdoor mobile-applications 

requirements without significant degradation of classification accuracy.  

 

5.3 Support vector machine classifier carrying 

the HOG descriptor 

5.3.1 Hardware architecture for SVM classifier 

A Support Vector Machine (SVM) is a discriminative classifier formally defined by 

a separating hyperplane. In other words, the SVM algorithm outputs an optimal 

hyperplane which categorizes new examples according to the given labeled training data 
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(supervised learning). In order to intuitively define a criterion to estimate the worth of the 

hyperplanes, the operation of the SVM algorithm is finding the hyperplane that gives the 

largest minimum distance to the training examples. 

Many recent hardware implementations, such as [4] and [5], have demonstrated that 

the support vector machine (SVM) classifier [29] carrying the HOG descriptor leads to 

one of the most accurate and therefore presently most popular detection frameworks. 

Basing on the L1-norm scheme as mentioned in section 4.2, this research further 

developed an object detection and recognition circuit employing cell-based HOG 

descriptor and linear SVM classifier as illustrated in Fig.5.16. 

 

 
 

Fig.5. 16 The flowchart of object detection which combines with the HOG feature descriptor and the 

SVM classifier. 

There are various cases about SVM models, so that different SVM mathematical 

formulations can be found. This research applies a linear case for supervised binary 

classification problem as illustrated in Fig.5.17, supposing that the training dataset 

consists of M vectors from the d-dimensional feature space xi∈Rd. Assume that the two 

classes are linearly separable in the linear separate SVM. 

 

 
Fig.5. 17 The linear SVM model employed in this research. 

It is possible to find at least one hyperplane (i.e., linear surface) defined by a d-

dimensional vector w∈Rd (normal to the hyperplane) and a constant bias b ∈ R that can 

separate the two classes without errors in linearly separable SVM approach.  

The decision rule of the linear separate SVM can be based on the function sgn[f(x)], 
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where the sign function sgn(x) is defined as Eq.5.4. 

 

𝑠𝑔𝑛(𝑥) = {

−1, 𝑖𝑓 𝑥 < 0
0 , 𝑖𝑓 𝑥 = 0

+1, 𝑖𝑓 𝑥 > 0
                      (5.4) 

And f(x) is the discriminant function associated with the hyperplane and defined as 

Eq.5.5. 

𝑓(𝒙, 𝒘, 𝑏) = 𝒘 ∙ 𝒙 − 𝑏                     (5.5) 

 

In order to find such a hyperplane, a target yi ∈ {-1,+1} is associated to each vector xi 

and one should estimate and so that the following product s is computed to be a positive 

value as illustrated in Eq.5.6. 

 

𝑦𝑖 ∙ (𝒘 ∙ 𝒙𝒊 − 𝑏) > 0,   𝑖 = 1,2, … , 𝑀               (5.6) 

 

The linear SVM approach consists in finding the optimal hyperplane that maximizes 

the distance between the closest training image sample and the separating hyperplane as 

shown in Fig.5.18. The geometrical margin between the two classes (i.e., +1 and -1) is 

given by the quantity ‘2/||w||’. The concept of margin, which is a measure of its 

generalization capability, is central in the linear SVM approach. The larger the margin, 

the higher the expected generalization [30]. 

The classical linearly constrained optimization SVM problem can be translated into a 

discriminant function using a Lagrangian formulation [31], so that the linear SVM 

approach becomes an equation depending both on the Lagrange multipliers (related to the 

parameters yi, w, and xi) and on the training samples associated with the optimal 

hyperplane.  
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Fig.5. 18 Optimal separating hyperplane in the linear SVM approach. 

 

The Lagrange multipliers effectively weight each training sample according to its 

importance in determining the discriminant function. The training samples associated 

with nonzero weights are called ‘support vectors’.  

In order to implement the linear SVM approach in hardware circuit, this research 

developed an offline training model with both negative images and positive images for 

generating d-dimensional vector w (normal to the hyperplane) and a constant bias b for 

pedestrian detection. Since the 3780-dimensional normalized HOG descriptor is 

employed for feature representation in this research, the dimensionality d of the vector w 

is equal to 3780 for one SW. The trained weight vector w is stored by the cell in nine 

divided SRAMs. Since the cell-based FV for HOG descriptor has nine local dimensional 

components, there are nine block storages from SRAM1 to SRAM9, which are distributed 

to store separate one dimensional local component of each cell respectively as illustrated 

in Fig.5.19.  
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Fig.5. 19 The proposed hardware circuit for calculating the linear SVM value, based on trained weight 

vector w and constant value b. 

 

Since the block-based L1-norm is operated in a 2×2-cell region, the normalized FVs 

are separated to 4 independent cell-FVs and buffered in 4 corresponding FIFOs for the 

consecutive calculation of SVM.  

An additional state machine is applied to control the read/write (R/W) address for 

each SRAM and enable signals for FIFO so that the correct weight component of each 

dimension in each cell can be multiplied with the corresponding FV of each dimension in 

each cell from the testing image. There should be nine multipliers for cell-FVs outputted 

from each FIFO so that four cell-FVs (i.e., block-based processing) can be handled in 

parallel for speeding up the processing procedure. The products of each cell-based 

components are accumulated by essential levels of addition. The intermediate results for 

accumulating 3780-dimensional FV of each SW are stored in a memory until the 

completion of window-level computation. The accumulated results (𝒘 ∙ 𝒙) is applied to 
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subtract the trained bias b according to Eq.5.5 to generate the final SVM result for each 

SW, which can be applied for determining the recognition result (‘+1’ as positive or ‘-1’ 

as negative).  

 

5.3.2 ASIC implementation in 65nm CMOS 

The developed parallel architecture illustrated in the Fig.5.19 exploits simultaneous 

processing of multiple SWs operates with normalized block-FVs and takes advantage of 

the parallel processing of blocks in related SWs, while the conventional hardware designs 

apply an integral-image scheme which results in significant computational cost and frame 

latency. The reconfigurable L1-norm-circuit architecture of block-based FVs is applied 

for the object-detection hardware and makes a favorable tradeoff between computing 

complexity and detection accuracy. 

A proof-of-concept prototype chip for flexible feature space construction and 

pedestrian detection is fabricated in 65 nm CMOS, as shown in the photomicrograph of 

Fig. 5.20. The 3780-dimensional cell-based HOG descriptor is applied for reconfigurable 

FV extraction.  

 

 
Fig.5. 20 Micrograph of the prototype chip for object recognition in 65 nm CMOS technology, which 

applies HOG descriptor, L1-norm scheme, and SVM classifier. 

 

The total core area for object detection is about 2.86 mm2, while the general-purpose 

L1-norm circuit occupies about 27.3% of this core area.  

When operating at 25 MHz frequency, approximately 31 fps real-time-processing 

capability for XGA-size image frames can be obtained. The power consumption of this 

coprocessor is 21.3 mW at 1.0 V core voltage when operating at the maximal frequency 

of 125 MHz. Lower working frequency can be used, which leads to lower power 

dissipation by adjusting to the different speed requirements of various applications. 

Performance comparison to the state-of-the-art previous research works is presented in 

Table V.III. 
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TABLE V. III 

Performance Comparison Results with Previous Works 

 JSSC [16] JSSC [17] IEICE [32] This Work 

Technology 130 nm CMOS 65 nm CMOS 65 nm CMOS 65 nm CMOS 

Feature descriptor SIFT Cell-based HOG Cell-based HOG Cell-based HOG 

Core area(mm2) 7.0×7.0 3.58×3.58 3.3×1.2 1.195×2.395 

Power 

consumption 

496mW 

(average@200MHz, 

1.2 V) 

58.6mW 

(@62.5MHz, 

0.77 V) 

40.3mW 

(@42.9MHz,0.7 V) 

21.3mW 

(@125MHz,1.0 V) 

On-chip 

SRAM(Kbit) 
396×8= 3168 280.1×8=2240.8 610 (one core) 328 (norm:36) 

Normalization 

scheme 

Different ways by 

software 
Same as Ref.11 L2-Hys-norm L1-norm 

Maximal 

frequency  

200 MHz IPs  

/ 400 MHz NoC 
125 MHz 110 MHz 125 MHz 

Frame rate 
60fps(VGA @ 

200MHz) 

30-60fps(HDTV 

@125MHz) 

30fps (HDTV 

@42.9MHz) 

31fps(XGA,@ 25MHz) 

158fps(XGA,@ 

125MHz) 

Image resolution Fixed 640×480 pixels 
Fixed 1920×1080 

pixels 

Fixed 1920×1080 

pixels 

Flexible ≤ 1024×∞ 

pixels 

Flexibility for cell 

size 
- 

12 sizes up to 104×104 

pixels 
Fixed 8×8 pixels 

5 sizes up to 32×32 

pixels 

Multi-scale  Multi-scale 12-level pyramid Single scale 5-level pyramid 

 

The required storage space for on-chip object recognition is just 328kbits SRAM, 

where the reconfigurable general-purpose L1-norm circuit consumes only 36 kbits dual-

port memory space due to the applied reutilization scheme. 

Multiple SWs to match different target objects are constructed simultaneously, 

although each SW is in a different stage of its FV construction. For different target object 

detection and recognition, corresponding weight vector w and constant bias b can be re-

trained offline basing on different datasets and written to nine SRAMs. 

 

5.3.3 Applications for pedestrian detection  

The pedestrian-detection application as an illustration to evaluate the accuracy of the 

proposed algorithm and VLSI architecture with an equivalent software emulation 

employing an advanced 3.30GHz Intel® Core™ i5-4590 CPU and 8 GB of RAM memory. 

The object detection is carried out along with the procedure of SW-based FV construction. 

SVM classifier is applied to verify the significance of FVs for object-detection 

performance with the 3780-dimensional block-based normalized HOG descriptor.  

Figure 5.21 shows that a detection system with L1-norm achieves comparable 

accuracy performance to the case where L2-norm is applied and further operates with 

much better accuracy than without normalization (no-norm) for different feature 

descriptors and classifiers from the INRIA dataset. 



 

Chapter 5 

 

116 

 

 
Fig.5. 21 Pedestrian-detection accuracy with cell-based HOG feature descriptor and a pre-trained SVM 

classifier, based on 5656 SWs of 64×128-pixel size. 

 

It is confirmed that 98.23% pedestrian-detection accuracy with L1-norm can be 

achieved by a pre-trained linear SVM classifier, which allocates a trained threshold and 

a fixed weight for each dimension of the 3780-dimensional FV of a HOG descriptor using 

5656 SWs with a size of 64×128 pixels. 

 

5.4 Conclusion 

Two frameworks (i.e., simplified SURF feature descriptor + NNS classifier, and HOG 

feature descriptor + SVM classifier) for object detection and recognition are applied for 

evaluation of different objects such as front cars, lateral cars, and pedestrians. Both 

hardware and software implementations are developed in this section to verify the 

detecting performance of the proposed architecture. All results of the evaluation show 

that the proposed algorithm in this research is efficient for mobile application. Flexible 

application adjustment is provided by input customization parameters for different image-

cell sizes, cell-based feature descriptors, and image resolutions. The developed 

reutilization scheme of memories for intermediate-result storage allows a significant 

reduction of on-chip storage requirements. Lower computational cost and pipelined data 

transmission lead to increased efficiency with respect to power consumption. 

Consequently, the applied prototype architecture demonstrates less memory usage, lower 

energy consumption, and higher detection robustness for real-time object detection in 

various mobile applications. 
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Chapter 6  
 

Summary and Future Research 
 

6.1 Summary 

As an essential prerequisite for building object-classification models to achieve high 

detection performance, a resource-efficient hardware architecture for feature extraction 

and representation, applying a simplified SURF descriptor which employs Haar-like 

wavelets as feature vectors (FVs), is implemented in this research for dedicated mobile 

applications and handheld devices. A low computational-budget hardware architecture, 

that directly uses the serially-inputted pixel data without pixel pre-processing, is 

employed for FV extraction of local image cells. The typically applied integral image in 

previous work is substituted by an immediate processing engine for the serial input of 

pixel data from the image sensor, resulting in resource efficiency and real-time 

processing. The unlimited height of input images (≤1024×∞ pixels) enables an important 

contribution to extensive flexibility for processing different applications. 

Further, an innovative sliding-window approach is proposed for simultaneous 

processing of parallel FV construction and object detection. Two schemes, employing 

cell-based non-normalized FVs and block-based normalized FVs, respectively, 

demonstrate the window-level FVs construction, which quantifies the similarity of 

contained objects to reference windows for the recognition process. The detection 

operation synchronizes with the serial output of local partially computed FVs from 

multiple simultaneously processed scan windows. Due to the efficiency of the multi-

window parallel processing, a significant reduction of power and storage consumption is 

achieved in this research. 

To reduce the computation complexity without a significant decrease in detection 

accuracy, the proposed block-based FV-normalization scheme and the dimensionality 

reduction employing partial least squares (PLS) regression, turn out to complement each 

other and are thus effective for achieving the task of high detection performance. The 

PLS regression scheme significantly reduces the FV dimensionality as well as the 

computation cost, while the normalization scheme enhances the robustness along with the 

texture and illumination variation. The reconfigurable architecture is adapted to variable 

cell and window sizes, both of which are suitable for enabling multi-scale image search 
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and multi-object detection. 

Finally, detection-performances evaluation of ASCI and FPGA implementations 

with different classifiers are reported, which employ the nearest neighbor search (NNS) 

or the support vector machine (SVM) as object classifiers The properties of the 

designated architecture include efficient resource utilization, high processing speed and 

classification accuracy, low computational cost, low power consumption as well as high 

compatibility and versatility for extensive mobile applications and handheld devices. 

 

6.2 Future work 

The architecture proposed in this research can be further integrated together with an 

image sensor and the essential peripheral circuits, to manufacture a complete on-chip 

vision system. The manageable image resolution is confined by the image width so that 

higher resolutions such as Full HD (1920×1080 pixels) still cannot be handled with the 

developed coprocessor design. The storage capacity limits the processing capacity of the 

architecture while the memory requirements occupy a large portion of the area of the bare 

chip. It is possible to enhance the processing performance by improving the allocation 

strategy of the memory space and the logical scheme of the algorithm. The sliding-

window approach in raster scan manner, which results in mass computation of multiple 

overlapping windows, is another place that can be considered for improvements. It is 

further possible to apply the developed vision-based feature representation in the fields 

of deep learning and neural networks for achieving still better performance in the future.  
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