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ABSTRACT. In this paper, we study about estimating the probabilities of misclas-
sification in the high-dimensional data. In many cases, the cross-validation (CV) is
often used for estimations of the probabilities of misclassification. CV provides a
nearly unbiased estimate, using the original data when the sample sizes are large.
On the other hand, the properties of CV are unknown when the dimension is large
as compared to the sample sizes. Therefore, we investigate asymptotic properties
of CV when the dimension and the sample sizes tend to be large. Furthermore, we
suggest the three methods for correcting the bias by using CV which is usable in the
high-dimensional data. We show performances of the estimators in the simulation
studies.

1. Introduction

In this paper, we consider estimating the probabilities of misclassification
for a classification rule constructed from a training data. The probabilities of
misclassification are expressed by

P(2|1) = Pr(the rule classifies « to Ils| « € II),
P(1|2) = Pr(the rule classifies « to I1| € IIy).

For k = 1,2, the training data Xy = (%g1,..., Ty, ) consists of Nj obser-

vations where a ' is the transpose of @, and @, is ith p-variate feature vector
belonging to kth population IIx. For observation @, the statistician wishes to
estimate the probabilities of misclassification for a classification rule. In this pa-
per, we consider the following classification rule using the discriminant function
dx (x) = d(x). Tt is to classify @ as coming from II; if d(x) > ¢ and from Iy if
d(x) < ¢, where c¢ is a cut-off point. For example, Fisher’s discriminant function
is given by

dp(x) = (%, — Z2) ' S7* {93 — %(:El + 5:2)} :

where &y is the sample mean of Xy, for (k = 1,2), and S is the pooled sample
covariance matrix (Fisher, 1936). As another sample, we consider the following
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discriminant function,
Dy(x) = (& — &) ' 8™ (@ — &) — b(x — &) 8™ (z — &),

where b is a constant. D, is introduce in Fujikoshi and Seo (1998) and includes
various discriminant functions, for example Dj is the same as dp when b = 1.
Then, by using the discriminant function d, the probabilities of misclassification
are given by

P(2]1) =Pr{d(z) <c|xell},
P(1]12) =Pr{d(xz) > c | z € IIo}.

The probabilities of misclassification are natural risks to measure the good-
ness of discrimination. If we had the exact evaluation of the probabilities of
misclassification for all classifiers, we could select the best classifier and make
accurate discrimination. So, we want to obtain the probabilities of misclassi-
fication. However, in general, it is hard to obtain the exact evaluation of the
probabilities of misclassification, therefore it is necessary to estimate the prob-
abilities of misclassification from the observation. Estimation methods of the
probabilities of misclassification are separated to the parametric and the non-
parametric methods. In the parametric methods, we assume a distribution and
a classification rule and derives an approximation formula of the probabilities
of misclassification. It is given by Okamoto(1963) and Tonda, et al. (2017)
etc. However, since it is necessary to assume a distribution and a classification
rule, the parametric methods can only be applied to restrictively classification.
Hence, an approximation formula needs to be derived for each assumption. On
the other hand, estimators of the probabilities of misclassification are used for
the Cross-validation (CV) for a long time (see Lachenbruch and Mickey, 1968;
Stone, 1974). CV is one of the non-parametric methods and is so useful that
the method of CV does not need assumption of a distribution and a classifi-
cation rule. Furthermore, CV provides a nearly unbiased estimate, using the
original data when sample sizes are large (see McLachlan, 1974; Efron, 1997).
In recently, the data whose the dimension is large are observed, for example,
the image data and the genetic data. However, asymptotic properties of CV are
not known well in the high-dimensional case. Hence, we investigate asymptotic
properties of CV when the dimension and the sample sizes tend to be large.
Furthermore, it is known that the bias of CV increases with the dimension in
the simulation studies. Therefore, we suggest three methods for correcting the
bias by using CV which usable in the high-dimensional data.

This paper is organized as follows: In section 2, we investigate asymptotic
properties of CV by using an asymptotic expansion in the high-dimensional case.
In section 3, we suggest three methods for correcting the bias by using CV. In
section 4, we show performances of the estimators in simulation studies.
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2. Asymptotic properties

In this section, we investigate asymptotic properties of CV for estimating
the probabilities of misclassification. Most of the asymptotic results of CV are
based on the large samples (LS) framework:

N
p is fixed, Ni, No — o0, N = o) (k=1,2),
k

where N = Nj + Na. Regarding the estimation of the probabilities of misclas-
sification, it is also known that the bias is Oz based on the LS framework (see
McLachlan, 1974), where O means a term of the kth order with respect to
(N;L NS p7t (N — p)~1). However, the data whose the dimension is large
as compared to the sample sizes have been observed in recently. Therefore we
consider an asymptotic theory based on the high-dimensional (HD) framework:

N
p, N1, Ny — o0, E:O(l) (k= 1,2), %—woe(o,l),

and N —p—2>0.

REMARK 1. The Mahalanobis distance A = {(p1 — 1) "3~ (g1 — py) }1/?
may tend to infinity depending on p. However, since P(2|1) — 0 with A — oo,
we assume that A = O(1) even when p — oo in this paper.

In this section we assume that IIj is the normal population with the mean
vector py and the covariance matrix 3 for k = 1,2, that is

Iy« Np(p1,3), It Np(pe, X). (1)

Firstly, we consider the bias of the estimator by CV. The estimator Pey of the
probability of misclassification using CV expresses as

Ny
Poy =Ny " 1(d) (2,) < o),

=1

where 1(-) is the indicator function and d=% is the discriminant function con-
structed without 1,. Then we have the following theorem.

THEOREM 1. If the expansion of the probability of misclassification P(2|1)
18 given by

1
P(2|1) = Qo <]\1;1, Z\I;2> + NQl (1\1;17]52) + O, (2)

where Qo(x1,72) and Q1(x1,32) are C' class functions around (p/Ni,p/N2),
then

E[Pcv (2]1)] — P(2]1) = O;.
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PROOF. From (2), an expectation of the estimator by CV is given by

BiPev i = Qo (7 2 ) + @ (g ) + 0
oz ) s d)

p 9 p P
+N1(N1—1)6x1Q (N N)+OQ

Since Q is a C'! class function, Qo /dz1 is the continuous function and 9Qq /0x1(p/N1, p/N2)
is bounded as Ny, No, p — co. Therefore

BlPey (2] - PRI = 515 5@ (50 3 ) + 01 = On.

The proof of this theorem does not need to assume normality of the popu-
lations. From the proof of this theorem, the estimator by CV is an asymptotic
unbiased estimator in the HD framework but the order of its bias is larger than

the LS framework. For the classification with dg, the following theorem is given
in Tonda et al. (2017).

THEOREM 2. Let x € 1y, then P(2|1) can be expanded as
P2[1) = 2(v) + ¢(v)F1(A) + O2,
where ¢(-) is the density function of N(0,1),
=v (A2)

-3 o e o )

Moreover the Fy(A) is given as follows:
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where m = N1No /N and

o= (N —1)m2A%(p — 1+ mA?) G = m(N —1)(Ny — No)(p — 1 +mA?)?
N(N-p=13(N-p) ' N(N —p—1)3(N —p) 7
Ty =q1 + q2,
- _ T (2p—1) +4mA? s, 20—
W7\ (p-14mA2? "N-p—1" (N-p)(N-1)
1 (p— 1)2 2
2
+‘h{vw <”(N—p><p—2> TNy
L (M- HamA? 2 L1
2\ (p—1+mA2)? -1 N
2 4
qlT(O)(p—l+mA2 N — p—1>
T 2(p — 1) + 4mA? 4
724(0) (p—1+mA%)2  N-p-1
2 2
el Ty A T NS, o)
T :@ 2(p71)+8mA2_ 2(p—1)
@778 \p-1+mA22  (N-p)(N 1)
1 mA?
+tq

p—1+mAZ2 7qz(p— 1+ mA2)2’
Therefore, we obtain the following corollary.

COROLLARY 1. In the case of classification with dp, the bias of CV has
order O1.

Secondly, we consider evaluating the mean squared error (MSE) of Poy (2]1).
The straightforward calculations give

MSE (Pey (2]1)) = Bias (Pov(@[1) -+ Var (Pev(2)1))
Var (Pcv(zu))

2
—Pr (d< V(@) < ¢,d D (@12) < ¢) = Pr (¢ (@) <)

o [Pr (d(_l)(azn) < c) —Pr (d(_l)(azu) < e, d" (@10) < c)] .

Note that Poy(2]1) has consistency if d(=V (z1;) and d(~2)(z15) are asymptoti-
cally independent, that is

Pr (d(’l)(mll)gc,d(’Q)(a:lg) ) Pr (d< )(x11)<c>2%0, (3)

as N1, No,p — o0.
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EXAMPLE 1. In the case of the LS framework, the classification rule using
the discriminant function Dy clearly satisfies condition (3) from the Slutsky’s
theorem.

Hereafter, we show that MSE of CV for the discriminant function D in the
HD framework.

LEMMA 1. Let x € Iy, then Dy(x) is expressed as
Dy(x) = tr(AU) (4)

where U = TV, 'TT, Vi ~ W3(N — p, I3), Vo = TT " ~ Ws(p, I3,Q), and V;
and T are independent, and

n/Ny 0 —n/V/Ny
A= 0 -nb/Ny  nb/v/Ny |,
n/VNs b/VRY (- b)

n=N—2.
The proof is given in the appendix.

THEOREM 3. Let € II; and b = 1+ Oy, then P(2|1) is expanded as
follows:

P2[1) = &(v) + Or. ()
where
)
n and s are given in the appendix.

The proof is given in Fujikoshi and Seo (1998) and Fujikoshi (2000). In this
paper, we can show the different way of the proof in the appendix. This theorem
means that the estimator of the probabilities of misclassification by using CV is
an asymptotic unbiased estimator in the case of classification with D;, and the
order of its bias is O; in the HD framework.

LEMMA 2. The sample mean and the sample covariance matriz of I1; are
expressed as follows:
_ n1 _(—i)

1
LT = Ewk + Ewkh

0 P o) (o)

ni
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for k =1,2. Moreover,

n§=(n-1)80+ "1 (- a2V (o-al’)

where ngy = N1 — 1, ng = N — 1, and :i'fc_i), S,i_i) and 8 are the sample
mean, the sample covariance matrix and the pool covariance matriz without xy;,
for example, a’c,(cﬂ), S,(;Z) and S for k =1 express as

N1
(=7 -1 j :
Ty =" .’Elj,

J#i
N D)
S (N, —2) Z(wlﬂ Z; )(wlj T ) ,
Jj#i

S(iz) = (Nl — 2)5;72) + n2.85.

It is easy to proof of Lemma 2 so that we leave out its proof. Suppose that

Dl()_i) is Dy constructed without x;;. From Lemma 2, we have the following
lemma.

LEMMA 3. Dé_i)(wh-) and Dlg_j)(wlj) are expressed by

Dl(;ii)(wli) = tr(A,U) - T{ 'a{ UAUay, (©)
N -1
T = 3
it Nl 5 + tI‘( 1U>7
ng_j)(anj) = tr(A2U) — Ty 'a; UAU as, @)
N, —1
— B
2 N1—2+tr( 2U)7

where U = T‘/l_lTT) ‘/1 ~ W4(N - D I4)} ‘/2 = TTT ~ W4(p7I479)7 and
Vi and T are independent, and a; = (0, —71171/2,07 DT, as = (0, —n;1/2, 1L,0)T,
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Nyt 0 — Ny Y2 0
0 —b(ny — )ny?  b(ny — D)Y2n7t b(ng — 1)V 2n?
Al = (Tl — 1) N—1/2 b ( ! 1/)2 1_1 ( ! ) ! ( ! 21 !
5 (n1 — 1)Y*n] 1-9b bn;
0 b(ny — 1)Y/2n? byt —bn; 2
Nyt 0 0 —N; 2
B 0 —b(ny — )ny?  b(ny — 1D)Y2n7% b(ng —1)V2n?
Az =(n—1) 0 b(ny — 1)/2n;? —bn;? bny!
N, Y2 by — 1)V 207! byt 1—b

The proof is given by the appendix.

following theorem.

THEOREM 4. Letb=1+ O then

Using this lemma, we obtain the

2
PI‘ (Déil)(.’tll) S C, Dl()72)($12) S C) — PI‘ (Dl()il) (wll) S C) = O]_.

Therefore, it holds that

PROOF.

MSE(Poy (2]1)) = O1.

tion of Dlg_l)(mll) and Dé_2)(m12) is expanded as

B(t) = exp {

Therefore, it is used the inversion formula

Pr (Aﬁl/z (Dz(,_l)(wn) - 771) < 1,057 (Dz(,_z)(ﬂﬂm) - 772) < Sﬂz) = ®(z1)®(x2) + O1.

From this formula,

Pr (Dl(j”(a:n) < e, DD (@) < c)
— o (A;f” (c— m)) > (A;21/2 (c— 772)) O,

=0 ()\;11/2 (c—m))2 + 0.

Since Theorem 3,

The characteristic function ¢(t) = ¢(t1,t2) of the joint distribu-

12 t2
i — 2)\11} exp {if1772 - 2/\22} +0;

(-1) 2 oL 2
Pr (Db (z11) < c) = (A (e—n) +0
Therefore, we complete the proof of this theorem.

From this theorem, the estimator of CV has a consistency to P(2|1) in the
HD framework. On the other hand, we obtain the following theorem in Tonda
et al. (2017).
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THEOREM 5. MSE of the propose estimator tends to 0 as Oy order in the
normal populations.

Therefore, Theorems 4 and 5 mean that MSE of CV is the same order
as MSE of the estimator in Tonda et al. (2017) and the two estimators have
consistency to P(2|1).

3. Correcting the bias of CV

In this section, we suggest three methods for correcting the bias of the
estimator using CV. The previous section, we showed that if the sample sizes
are sufficiently large, the estimator of CV is good estimator even for the high-
dimension. However, the bias of CV estimator is large for the small sample sizes
and increases with the dimension. Therefore, it is necessary to correct the bias
of CV estimator in the HD framework.

P = Qo (#e b ) + g () 0y

3.1. Method I : Using the leave-two-out CV. The method I is one of
the non-parametric methods for correcting the bias of the information criterion
proposed by Yanagihara and Fujisawa (2012). In this section, we consider using
this idea to the estimation of the probabilities of misclassification. The leave-
two-out CV is expressed by

Pev,(2]1) = — Z% > 1<d(_i’_j)(w1k)§c>

1<j  ke{ij}

where N;_l) =N; £, N9 = N — ¢ and d(=»79) is the discriminant function
constructed without «q; and ;. Then

E [PCV(QH)} Qo (N "N, ) ME (N ]€2>
0 P
Rkl (%3 ) e
E [Pcv2(2|1)] Qo <N "Ny ) T Ql (N Jf;z)
2p 0 p
+m8x1Q (Nl N2> e
B[ Pov@D)] - PEIY) = #61‘1 <§ ﬁ) o

: s 5 PP
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Therefore, a new estimator is given by
R ) N2 )
Pi(2]1) = § Pov (@1) = = (Pews 21) ~ Pev(2lD)) ¢

Then it holds that
E [Pl(zu)} — P(2[1) = 0.

Hence, we can correct the bias of CV by using the leave-two-out CV in the HD
framework. Furthermore, the similar method for correcting the bias can be done
by using the two estimators of leave-k-out CV of different k.

3.2. Method IT : Leave-A-out CV. We consider leaving out A instead of one
from a training data by CV method. This idea was proposed by Yanagihara et al.
(2006) and Yanagihara et al. (2013) for correcting the bias of the information
criterion. In this section, we use this idea to estimating the probabilities of
misclassification. Suppose that FZ(V__Z} and F; are the empirical distributions of
Ti1, .-, L1i—1,L1i+1 - --,L1nN, and xy;, respectively. The discriminant function
d=# is constructed by using (1 qu)FJ(V_fi +u)F; where uy = (1—X)/(N1—\).
For example, assuming the discriminant function dy is parameterized, MLE of
parameter 6 is given as follows:

N1
o 1 11—\

(=i50) — . .
0 = argmax § o g#i log f(@1x;0) + N, o8 f(x130) ¢,

where f is a probability density function of x1;. Then d=#Y is the same as

. — (=i
dj—i»y- In the normal case, the estimators of mean acg 52

matrix S(=%*) are given by

and covariance
Loy Mol 1A

! Ny -\t Ny — A

) 1 ) NG . T
(—is)) _ (-3)\ a(—9) 1 _ A l)) ( A l))

S ) {(N ) STV N (1-=2X) (a:h T Ty — oy
1
(8)

In the case A = 1, this method is the same as usually CV (leave-one-out CV).
We define by using d%" as

T

N
, 1 S
Pev, (21) = A ; 1(d" M (@) < o).
This method is called leave-A-out CV in this paper. Let A =1 — /N, and if we
obtain an expansion by

2 _o (P P L (P P
E|P 2] =Q5 [ —, — + — I
[ CVA( | )] 0 (vaNza)‘) NQl <N13N27>\> +027
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where Qf (21, 22, r3) and Q% (21, 2, 23) are C! class functions around (p/Ny, p/Na, 1).
Then, it is hold that

) (PP R
E[PCVA(2|1)]*QO (leN >+ Ql <N1 N2 )\)+O2
_ P p)_£ 9 A
- (Nl—l’N2> NangO (Nl Nz’ 1>

1 D
+NQ1(N 1N>+02

Therefore, the bias of leave-A-out CV is given by
E[Pov, (21)] - P(2]1)

P 9 p P p P
= —_— NT 0 AT 0 1 O
Nl(Nl—l)ale <N1 N) N8m3Q0<N1’N2 )+ ?
Thus, we can correct a bias by deciding  so that the term of Oy is 0, that is, k
is decided as follows:

k:N];gXl)ail ( )/3333 (pl N 1)

EXAMPLE 2. In the case of dp and ¢ =0, X is decided as follows:
A=1-k(A)/N,

“(A):fm{ (A”mﬂvﬁ_l <A2+N2‘§1>} Y

A derivation of this k is given in the appendiz.

This method has the same calculation load as CV and can correct the bias
of CV. On the other hand, we must derive A for correcting the bias.

3.3. Method IIT : Modified a cutoff point. We propose a method for
correcting the bias by modifying a cut-off point c.

P(2|1) = Pr(d(x) < ¢+ c1/N|z € ILy)
= p P t( P P a 0
QO(N "Ny +N>+Q (N "Ny’ +N)+ »
where Qf (21, 22, 23) and Q1 (1, z9, 23) are C' class functions around (p/Ny,p/Na, ¢).

E[Pcvc<2\1)} Qo( 15 >+Q*< F +§;>+02
QO( J@)*Naxg (z€>

+ Ql( N2)+02
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Therefore, the bias of Poy, (2]1) is given by
E[Pov. (211)] - P(2|1)

p 0 p P L0 i(p »
= — = —c—= — Os.
Nl(N1—1)8x1Q0<N1’N2> N oz 0\ NNy ¢ T2
Thus, we can correct the bias by deriving ¢; so that the term of Oy is 0, that is,
¢y is derived as follows:

Nf)le)ail <N1 Ng>/8m3 < N )

From Theorem 3, we have the following.

Cc1 =

EXaAMPLE 3. In the case of Dy, we can have c1 as follows;

N—p—1 N2 1
—1)*(V-1) pb®>  p
)\(1)2:4(71— A2 PP
(™) (N—p—1)3 TR
=X+ A\ + 0y

a(d) =5 {3 e=m -}

where n and X2 are given by Theorem 3

Nn? 3 2 1 pb pb? Nn?
A= 4 T Y (A ) NI L
: <Np>3(Np n N)( +N1+N2)+ N2(N — )

This method have the same the calculation load as CV and can correct the
bias of CV. On the other hand, we must derive c;.

4. Numerical study

In this section, we investigate performances of CV and the three methods
for the classification rule with dz by the Monte Carlo method. Without loss of
generality, we can assume that py = A(1,...,1)"/2\/p, p2 = —A(1,...,1)'/2\/p
and ¥ = I,. CV, L, II, III, and TNW indicate the cross-validation, the methods
I, II, TII in section 3, and the estimator in Tonda et al. (2017), respectively. The
configuration of the values of Ny, N, p and A were N7, No = 15,20, 25, 30, 35,
p/N =1/5,3/5and A = 1.05,1.68,2.56, 3.29 satisfying N—p—2 > 0. The values
of A correspond to the values 0.30, 0.20, 0.10, 0.05 of ®(—A/2), respectively. an
estimator of A is necessary to use the methods II and III, so that A? was given
by

A2_N—P—3 ., pN
A“ = " D NN,
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where D? = (%1 —&2)T S~ (Z1 —&2). A? is unbiased and a consistent estimator
of A% under both of the approximation frameworks (see Tonda et al. (2017)). In
the tables, the 1-2 columns indicate the rate of the dimension p and the sample
size N and A, respectively. The 3—4 columns indicate the dimension p and the
sample size N, respectively. In table 1, the 5-9 columns indicate 100 times the
biases of the estimators for CV, I, II, III, and TNW in the case N = N5. In the
table 2, the 5-9 columns indicate 100 times the MSEs of the estimators for CV,
I, II, 111, and TNW in the case N; = Ns.

In table 1, we can see that the biases of the three methods I, II, III are
small than CV and TNW. On the other hand, we can see that MSE of TNW
is smaller than other estimators in table 2. From figure 1 and 2, a bias of all
estimators tend to 0 when N is large in both case p/N = 1/5 and 3/5. From
figure 3 and 4, we can see that MSEs of all estimators also tend to 0 when N
is large, and MSE of the estimators in the case p/N = 1/5 are smaller than the
case p/N = 3/5. Moreover, from figure 5 and 6, we can see that a variance of
TNW is smaller than other estimators and a variance of the method I is larger
than other estimators. The results mean that a variance of CV is large so that
MSE of CV is large, and a variance of the method I is larger than CV.

5. Conclusion

In this paper, we showed that CV is an asymptotic unbiased and a consistent
estimator even if the dimension is large. However, the bias of CV increases with
the dimension. Furthermore, we proposed the three methods for correcting the
bias of CV in the HD framework and investigated the performances of the three
methods in the simulation studies. While the method I can be applied to many
cases, its MSE is larger than MSE of other methods. On the other hand, while
MSEs of the methods IT and IIT are the same as CV, it is necessary to derive the
parameters k and c¢;. We consider that CV is better than other methods if the
sample sizes are sufficiently large. The method I makes the bias smaller than CV
without assumptions, it is a good method if only bias correction is considered.
On the other hand, the methods II, III are better than other methods if we can
derive the optimal value of x and d. Moreover, when the sample sizes are small,
we consider that an approximation formula is better than the non-parametric
methods. In the future work, we need to show asymptotic properties of CV for
various cases (e.g. the non-normal case and the quadratic discriminant) and
consider the non-parametric methods for decreasing MSE.
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TABLE 1. (Bias of estimators) x100

p/N| A | p N | CV I II III TNW

1/5 {105 6 15|0.451 -0.021 0.043 0.015 1.402
10 250300 -0.021 -0.049 -0.023 0.839
14 35)0.223 0.028 0.040 0.021 0.604

168 6 15]0.392 0.030 0.083 0.038 1.309
10 251]0.18 -0.030 0.009 -0.033 0.753
14 35(0.163 0.004 0.038 0.007 0.556

256 | 6 15]0.275 0.035 0.101 0.045 0.978
10 25)0.112 -0.041 0.014 -0.025 0.554
14 35)0.104 0.001 0.037 0.003 0.404

329 6 15]0.157 -0.015 0.058 0.013 0.662
10 25{0.072 -0.028 0.019 -0.017 0.393
14 35(0.075 0.004 0.039 0.009 0.293

3/5 1.05 |18 15|0.807 0.043 0.166 0.275 1.086
30 25|0.516 0.047 0.132 0.126 0.652
56 35(0.335 0.002 0.067 0.042 0.434

1.68 18 15(0.912 0.040 0.303 0.282 1.301
30 250516 -0.024 0.168 0.069 0.758
56 35(0.396 0.024 0.156 0.061 0.554

256 |18 15]0.953 0.002 0.466 0.302 1.355
30 250583 0.019 0.324 0.137 0.862
56 35 (0.397 0.003 0.219 0.055 0.609

329118 15|0.910 -0.039 0.539 0.323 1.255
30 250.538 -0.008 0.346 0.120 0.784
56 35]0.377 -0.004 0.253 0.061 0.544
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TABLE 2. (MSE of estimators) x100

p/N| A | p N | CV I II III TNW

1/5 1 1.05| 6 15| 1.437 1.704 1.424 1.429 0.877
10 25]0.846 0.978 0.838 0.839 0.496
14 35| 0.607 0.687 0.602 0.603 0.357

1.68| 6 15| 1.111 1.294 1.092 1.094 0.625
10 25| 0.664 0.755 0.657 0.658 0.366
1435|0473 0.529 0.470 0.470 0.259

256 | 6 15]0.733 0.846 0.720 0.720 0.369
10 250433 0.487 0.429 0429 0.212
14 35| 0.308 0.341 0.306 0.306 0.150

329 | 6 15| 0460 0.530 0.454 0.452 0.199
10 25|0.274 0.307 0.272 0.271 0.116
14 35|0.194 0.215 0.193 0.193 0.081

3/5 [1.05|18 15| 1.679 2.187 1.671 1.709 1.033
30 2510996 1.238 0.990 1.005 0.611
56 35 |0.707 0.856 0.703 0.711 0.437

1.68 | 18 15| 1.578 2.029 1.546 1.578 0.967
30 2510920 1.132 0.908 0.921 0.565
56 35 |0.654 0.784 0.647 0.654 0.400

256 | 18 15| 1.367 1.737 1.331 1.348 0.826
30 2510.793 0.964 0.781 0.786 0.482
56 35 |0.564 0.669 0.558 0.560 0.341

3.29 |18 15| 1.142 1.435 1.110 1.112 0.676
30 2510.660 0.797 0.649 0.649 0.388
56 3510460 0.542 0.455 0.454 0.270
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%103 A = 1.05 %103 A = 1.68
15 = . . . . 14 = . .
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FI1GURE 1. The figures plot the biases of the estimators for each
A in the case of p/N =1/5. CV, I, I, III, and TNW indicate

the cross-validation, the methods I, II, III in section 3, and the
estimator in Tonda et al. (2017), respectively.
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FI1GURE 2. The figures plot the biases of the estimators for each
A in the case of p/N = 3/5. CV, I, I, III, and TNW indicate
the cross-validation, the methods I, II, III in section 3, and the

estimator in Tonda et al. (2017), respectively.
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F1GURE 3. The figures plot MSEs of the estimators for each A
in the case of p/N = 1/5. CV, I, II, III, and TNW indicate
the cross-validation, the methods I, II, III in section 3, and the
estimator in Tonda et al. (2017), respectively
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FI1GURE 4. The figures plot MSEs of the estimators for each A
in the case of p/N = 3/5. CV, I, II, III, and TNW indicate
the cross-validation, the methods I, II, III in section 3, and the
estimator in Tonda et al. (2017), respectively
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FIGURE 5. The figures are the boxplots of P(2|1) — P(2|1) for
each A in the case of Ny = 35 and p/N = 1/5. CV, I, II, III,
and TNW indicate the cross-validation, the methods I, II, III
in section 3, and the estimator in Tonda et al. (2017), respec-
tively
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FIGURE 6. The figures are the boxplot of P(2|1) — P(2|1) for
each A in the case of Ny = 35 and p/N = 3/5. CV, I, II, III,
and TNW indicate the cross-validation, the methods I, II, III
in section 3, and the estimator in Tonda et al. (2017), respec-
tively
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Appendix

A.1. Lemma of moments. In this section, we show key lemmas for the proof
of theorems.

LEMMA A.4. Let A and B be p X p symmetric matrices, and let Z be
an n X p random matriz and have a normal distribution with E[Z] = M and
Cov(vec(ZT)) = £®1,, denoted by Z ~ N, xp(M,E®1,). Then, we have the
following moments,

Eftr(AZTZ)] =tr {A(nE+M"M)},
E[tr(AZ"ZBZ" Z)] = ntr(AX)tr(BX) + n(n + 1)tr(AXBX)
+(n+ )tr(AM " MBX) + (n + 1)tr(ASBM " M)
+tr(AZ)tr(BM ™M) + tr(AM " M)tr(BX) + tr(AM " MBM " M),
E[tr(AZ" Z)tr(BZ " Z)] = n*tr(AX)tr(BX) + 2ntr(AXBY)
+ ntr(AM " M)tr(BE) + ntr(AX)tr(BM " M)
+ 2tr(AXBM " M) + 2tr(AM " M BX) + tr(AM " M)tr(BM " M).

The proof of the lemma is given in Gupta and Nagar (2000). From Lemma
A .4, we have the following lemma.

LEMMA A.5. Let A and B be p X p symmetric matrices, and let W be a
p X p random matriz and have a central Wishart distribution with n degrees of
freedom, covariance matriz 3, denoted by W ~ W,(n,3). Then, we have the
following moments,
E[tr(AW)] = ntr(AX),
E[tr(AW)tr(BW)] = 2ntr(AXBX) 4 n’tr(AX)tr(BY),

Etr(AWBW)] = n(n + 1)tr(AXBX) 4 ntr(AX)tr(BX).

LEMMA A.6. Let A and B be p X p symmetric matrices, and let Z ~

Nyxp(M, I, ® I,) and

W:\/ﬁ(isz—Q).

Then, it holds that

—n/2

I, 2Al  ElyZ"2)

NG

-1
X exp [—nlmtr(AQ) +n Y2y {MTMA (Ip - 2A> }] )

Elexp{tr(AW)}g(Z " Z)] =
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where = I, + n'MTM and

Z ~ Nuxp (M (Ip - %A)l : (Ip - ;ﬁA)l ® In> :

A.2. Proof of Lemma 1. Suppose that
u=3"Y%x - ;) ~ N,y(0,I,),
W =n2~ 128812 w W, (n, I,),
z1 = VNIZV2(2) — ) ~ N, (0, 1),
zo = /NoX7 V(@5 — pa) ~ Np(v/N28, ),

where § = X Y2(puy — p1), @ = MM and M = (/N26,0,0). Let Q =
(U,Zl,ZQ), then

Vo =Q'Q ~ Wsl(p, I3,9),
Vi=T@Q W™'Q)'T" ~Ws(N —p,Is),
QW lQ=TV, 'T".
where T is Bartlett’s decomposition of Vs, that is, Vo = TT . Let U = (u;;) =

Q"W ~1Q then we show that D(x) is expressed by u;j. Therefore, we easily
have (4).

A.3. Proof of Theorem 3. Let

1
W1: N_p(N—

le — Ig) = 0,(1).
From Lemma 1,
U=1v,'T’

= o Ve (V) PEWATT (V) T EWETT 4 0, (N 1)),

tr(AU) = N

p
-Pp
where T = p~ /2T and Va = p~ V4,

ag = NL(—NH(N _ )02y (ATWf“TT) .
—p

Then it can be expanded as

E [exp {ittr (AU )} | V3]

. p
=E t
oo i

{tr(AVg) +ap + al} + Op((N — p)_l)v

{tr (AVQ) +ag + al}} ‘ Vz} +Op((N=p)7")

= exp {ith_ptr (AVQ) } E [ (14 by) [Va] + O, (N — p) ™),
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where i = v/—1,

b1 :’LtN aj.

-p
From Vi ~ W3(N —p, I3), ag = tr(MyW7) and Lemma A.6,

E [eitaog(‘/l) |‘/2:|

2
VAT
exp {or (M)} {1+ e (M) D EIO(ZT 2001+ 0,V =),

—(N-p)/2

exp {—/N = ptr(My) | Elg(Z] Z1)]

Is —

where

- 2 -1
Zl ~ N(N—p)X3 (O, (Ig - mM@) ®INP> s

. 2 -1
ZZ) ~W; (NI% (Ig \/mMo> > ;

are independent of V, and My = —itp(N — p)~3/2TT AT and g(V1) = 1 + by.
The moments are given by

B[bn |Va] = it

oo () |

:jv%;[Mm<A€§)+3U(TTATA%)}+C%«N¥—M‘U

Efa:| V2],

[4tr(AVg) - :m%u« { (AVQ)QH +0,((N —p)™h).

N-p (N-p

Secondly, let
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then Wy = O,(1) from the central limit theorem where Q* = I35 + p~1Q. We
can obtain the following expansions:

Va=p (ﬂ +p_1/2W2) :

tr(Mo) = itp(N — p)~*/*tr(AV),

tr(AVs) = tr(A(Q" +p~ P W)
= tr (AQ¥) + p~/2tr(AW,),

tr(MZ) = ()2 (N — p)~>tr { (AVQ)Q} ,

{(AVQ) }—tr{( Q*+p1/2W2))2}

{ (AQY) }+2p*1/2tr(An AW,) + 0,(1),
tr(Mg) = —(it)*p* (N — p) =" *tr{(AVR)*},
tr{(AV2)*} = tr{(AQ*)*} + O, (p~ /%) = Oy 2.

Since V, ~ W3(p, Is, §2), we obtain the following expansions:

exp 4 it P
N —

p p!/? 2
— exp {itN U (ARY) it (AW) + (it)2p2(N — p)~3tr {(AQ*) }}

ptr(AVg) + tr(MO)}

x exp {2(it)2p (N — p) (AR AWS) + O,(N —p) ) }
exp {2(it)2p2(N — p) (AR AW2) + O,((N = p) ) |
=14 2(it)?p*/2(N — p) 3tr(AQ* AW,) + 0.
Put M = itp3/?(N — p)~3A. From Lemma A.6, we can have

2 -p/2

I, — =M
\/ﬁ 0

X exp [—pl/Qtr(Mg‘Q*) +p~ Y2 {QMO* <13 - 5}3M0*) _1}]
= exp [t { (I + 207 ) (M5)* } | BIN(Z] 20)

tr{(Ig —|—3plﬂ))(MO*)3}] + 0.

E [exp {tr(MsW2)} h(Z] Z»)] =

. [“*gj@
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Moreover, since tr{(I3 + 3p~'Q))(Mg)*} = Oy s,
E [exp {tr(MgWa)} h(Z5 Z»)]

— exp [tr{(.rg + 2p—1n)(Mg)2H E[W(Z3 Z5)] + O,

where h(Zy Zy) = (14 2(it)?p~V/2(N — p) " 'tr(AQ* AW,)), and Z; and Z are
the random matrices that satisfy

Vo = Z, Zo,
Zy ~ Npyxs(M,Is ® I,),

~ -1 —1

Zy ~ Ny <M (13 f 2p*1/2Mg) , <13 - 2p*1/2M5‘) ® Ip> .
The moments are given by

B[(Z] Zo)] = 1+ 2(it)*p~ V(N — p)~ltr (AQ*AE [WQD ,

E(W)] :@{(m;ﬁM;)*

2 - 2
+p_1 <1—3+\/23Mg> Q (Ig-i-\/ﬁMS()_l)} - QF 201/2,

where
= L o1 s *
WQZ\/ﬁ EZQ ZQ—Q .

From above result, we have

4 w_ 2 ﬂ,bip _
an_ptr(AQ )N—p(A +N2 N, +p(1 b)),

s =2 [pQ(N —p) 3tr {(AQ*)2} + ﬁtr{(b +2p7'Q) AQ}}

Therefore, we have the characteristic function ¢(t) of Dy(x) as
B(t) = exp(itn — t2s?/2) + Oy.

From this expansion, we can have the result of Theorem 3 by using the inversion
formula.
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A.4. Proofof Lemma 3. The proof of Lemma 3 imitates the proof of Lemma
1. Suppose that

uy; = X3 (@1; — p1) ~ N,p(0,1,,),

uy; =27V (@1; — p1) ~ Ny(0, 1),

W = (n—2)2 V2800812 LW, (n -2, 1,),
2=V =152 (&) — ) ~ Ny (0, 1),
2o = VN2V (@5 — py) ~ Np(VIN2S, I,),

where 6 = 27 Y2(puy — 1), Q= M "M and M = (1/N26,0,0,0).
Let Q = (w1;, U1, 21, 22), then

‘/2 = QTQ ~ W4(p71479)7
Vi=T (Q'W™'Q)™'T ~ Wuy(N —p, L),
QTW?lQ _ T‘/l_lTT,

where T is Bartlett’s decomposition of Vs, that is, Vo = TT . Let U = (uij) =
QTW~1Q then D(i)(:cli) and D(j)(wlj) are expressed by u;; from Lemma 2.
Therefore, we easily have (6), (7).

A.5. Expansion of ¢(t). Let

1
N-p

W, = N—p( V1—I4)7

then W1 = O,(1) from the central limit theorem. From Lemma 2,

1
Dz()_i) (x1;) = tr(AU) — Tz‘ila;—UAaniV (6=1,2).

Then, we obtain an expansion of U as follows:

U=T1Tv,'T"

_ P
N-—p

1
N-—p

~ 1



28 Tomoyuki NAKAGAWA

where T = p~ /2T = O,(1). From above result, it can be expanded as

HM¢0=N{pﬁﬂAﬁﬁ+mp+%&+OAN4®,
M-l —3/2
T = ) +tr(BU) = bi,o + bi,1 + bio + Op(N7/7),
L —
7 P’ TV,A,V 3/2
a, UAUa; = W {ai VoA Voa; +cio+cin + ci’z} + O,(N ),

Ti_l =830+ Si1+ Si2+ Op(Nfg/z),
where Vi = p~1V, and

aig = (~1) YN — p)~ D/ 24 (A,-TWfHTT) , (£=0,1,2),

N1—1 P
bio =
=N 2 TN,

(VYN 2P yas T _
bie = (DN —p) "< ptr(BszlT ). (t=12),

)

tr (Blf/g) s

Ci,O = 7(N — ]?)71/20,2T (‘72A1TW1TT =+ TWlfTAZf/Q) a;,
cii=(N—p)la) (:i"Wl:i"TAi:i"WlfT F VR ATWETT + TWfTTAiVQ) ai,
850 = b;é, 85,1 = bi,lb;(? S50 = b;é” (bil — biobi2) .

Then Dé_i) is expanded as follows:

2

—i p
Dy (@) = I

tr (AZ‘N/Q) — Si,o(]\/,piipya;r‘??Ai‘?Qai

+ Do+ D+ Op(N71)7

where
2 ~ ~
Dio = Np_ pai,o - (pr (Si,Oci,O + 81‘,1(1:V2AiVQai> ,
p v’ T AT
D, = N pai,l - (N —p)? (Si,OCi,l + Si1Ci0 t+ Si2a; V2A1'V2l1¢) .

We consider the characteristic function of joint distribution of Dlgfl)(scu) and

D£72)(w12), that is,
o(t)=E {exp {itlDl(:l)(a:u) + it2D£72) ($12)H ;

where t = (t;,t5) " and i = /—1.
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Firstly, we consider the following conditional expectation given V5,

E [exp {itng_l)(mn) + itle(,_Q) (3’312)}’ ‘72}

2 ~ ~
= exp [itl {Npptr (A1V2) - 81,0p2‘11TV2A1V2¢11}

(N —p)
2
. ~ p - ~
+lt2 {Np— ptr (AQ‘/Q) — SQQMU/;‘/QAQ‘/QGQ}}
x E [exp (Zt1D10+Zt2D20+Zt1D11+Zt2D21+O )|‘/2:| .

We expand the following conditional expectation,
E [exp (iti D1, + itaDayg +it1 D11 + itaDay + Op(N71))| ‘/2]
=E [exp (it1 Dy + itsDa) (1 + it1 D11 + itaDay)| VQ} +O,(N7Y.
Let
My =it M, o + ita Mo o,
Mo = (N—p)~'/?TT {—Np_ij

2
+(_va%p)8]0 {B ‘/QA +A ‘/QB +330 a]‘/QA ‘/20'] }:| T.

p
N —
Then

exp (it1.D1,0 + itaDa o) = exp {tr(MoW7)} .
From Vi ~ Wy(N —p, 1) and and Lemma A.6,

E [exp {tr (MoW1)} g(V1)| V3
9 —(N—p)/2

= I, — M
TUN=—p

exp{—\/mtr (Mo)} E [9 (Z~1TZ~1)‘ V2} )

where
- 2 -1
Zy~ Ny 0, <I4—M0> oIy, |,
1 (N—p)x4 ( \/m p

. 2 -1
Z!Z, ~ W, (N - p, <I4 - M0> )
N—p

are independent of V5, and

g(V1) =1+it1 D11 +iteDaj.
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h(V2) =B [g (2] 21)| Va] = 1+t E[D1a| Va] + itB [ D2 Val

E[D;| Vo] = NL_pE[ai,1 V3]

p2

- (N _ p)Q (SLOE [CiJ ‘VQ] +E [Si,lci,O ‘VQ] + a;r%AzVQalE [Si72 |‘/2}> .

The moments are given by

2
tr {TTAZT <Nl_leT21 - I4> }‘ V2‘|

= ﬁ [Btr (Aﬁ@) + 4tr (TTAZTMOQ)} +0, (N=p)71),

E [ai,l |‘/2] =E

- - 1 -~ - - - 1 - -
Elci1|Va]=E {tr {TTBq;T <N_pzle - I4> T'AT <N_leTZ1 - 14)}

.

2
-p

-7
Ftr (BJQ) tr (A,@) + 5tr (TTB,.VQAJ* n TTAiVQB,;T)

tau ((TTBVAT + TTAVBT) ME )} +0, (N = p) ),

Elsiicio|V2] = bZOQE [bicio|Va],
Elsio[Va] = b (E b7, [Va] — bioE [bi2|V2])
E _p e N
[bi,18i70|‘/2] = N7E tro T B,‘T 7Z1 Z1 —I4
—p p
. - - - . 1 e .
xtr { (TTBngAiT n TTAinBiT) (Zszl - I4>}’ Vg}
N-—p
2p

— m [tr {Bi (%BJN/QAJN/Q + ‘72141‘7231"72)}

+ 260 (TTBIMy ) tr { (TTB VAT + TT AV BT) My }] + 0, (N =p)7Y),

wharm )}

= [ B} 2 (@m0, (v,

2
p
Bl V] = e
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. . 1 2
tr {TTB,»T (szzl - I4> }| VQ]
P

- ot e (B0) 0 (17 B25) 0, (7).

Secondly, let

Wo = /b (;V2 - Q) , (A.10)

then Wy = O,(1) from the central limit theorem where Q* = I, + p~1Q. We
obtain the following expansion by using (A.10).

1
ver (@ ),

P 2

N-p

tr (Aszz) - Sipi(Np_ p)2 a;rf/ZAi‘}Qai

2
p * p T O * *
= tr AlQ — S; - 5 a; Q AZQ a;
N —p ( ) ’O’O(N*p)Z

+aig+a;;+ Op(p™),

bio = bi 0,0+ bi0.1,
—3/2
8,0 = 8i,0,0 + 85,01 + Si0,2 + Op(p / )

tr (M3) = tr {(2o2")’} + 200 {Zo" (p7 122 W2 +21027) } + 0, (071),

tr (M) = tr {(EOQ*)3} +0,(p~?),
h(V2) = h(p2*) + Oy (p~/*(N — p)~1/?)

=1+ 017
where
2
* p T oO* * 1 p
o AT A+ — tr (AW,
a’l,o (N_p)287031a2 a; + \/ﬁ{N_p I'( 2)
2
- m5i70’0 (G,ZTQ*AiWQCli + alTWQAlQ*al)} s
P’ T p T
af’l = —m8737072ai Q*Aiﬂ*ai — WSi’O’Oai WQAiWQCLi
—ﬂs' (aTﬂ*A»W a; +a; W. A»Q*a')
(pr)2 %,0,1 % 1 YV2a; i 244 i)

ny P . n P 1
b0 n1—1+N—ptr( ) n1—1+N—p< +n1>’
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N _pptI‘ (31W2) 5

bio1 =

nl(nl — 1)(N —p)
ni(N —p) +p(n —1)(n1 + 1)’

—2 -3 12
01 = —b; 50bi01, $i0,2=0;00b501

—1
$i,0,0 =b; g0 =

s

w
<

[1]

s = it181 s +itaEo 5,

o= (N —p)~1/2 _LA,
j,O ( p) |: N_p J

[1]

2
p p
(N —p)QSJ’O’O { J J J J SJ,O,ON pa] J a; ]}:| 5

(1]

2
7,1 (N — p)71/2ﬁ8j7071 (BJQ*AJ —+ Ajﬂ*Bj + Sj,oyoa;rﬂ*AjQ*aij)

1
+ %8?7070 (ajTQ*AjWgaij + G,JTWQA]‘Q*CL]'BJ‘) + Sj,()’la,jTQ*AjQ*aij.

Let
M = ity M + ita M3
2
M, = N\/_ﬁp {(Np_p)QsjoyoajTg*Ajn*aij + A;
= NL_psmo (B A, + AjQ*Bj)} .
Then

exp(itiaj o + itgas o) = exp {tr (MgWs)}.

Therefore, we can expand ¢(t) as follows:

é(t) =E [exp [itl { Np

2

tr <A1‘~/2) - 81,0(Npp)2a1r‘72A1‘~/201}
~ 2 ~ ~
+ ita {Npptr (szz) - 52,0(Npp)2a;V2AzV202H

wcexp (e (043)} {1+ g (u3) v | + 0 =)

= exp{(Eo02)%) [1 +tr {(aon*ﬁ}} h(p€2*)

X exp {itl {Np_ ptr (Alﬂ*) — Sl,o,o(Np_p)gairQ*AlQ*al}

2
it {Np_ptr (AQQ*) — SQVO’O(NPWCL;Q*AQQ*CLQ}}

X B [exp {tr (MgWa)} [1 + itya} | + itsa
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+2tr {EOQ* (p_1/250W2 n 519*) }H +0,.
From above result and and Lemma A.6,
E [exp {tr (MgW>)} h* (V2)]
ol (22)

2
I,— —M;
/P

X exp {pl/Qtr (M) 4 p~H%4r

o (1 )|
=exp [tr {(I4 +2p~'Q)(M})*}| E [h* (ZQTZZ)}

4 _ * -
x [1+ ﬁtr{<I4+3p 19)(M0)3}} +0(™),

Zy ~ N, M|I-—Mj; NI ——M] ®I,|.
2 p><4< < \/]3 0) \/]3 0 p

The moments are given by

E {tr {EOQ* (p_1/2502;22 + E'-19*) H =0(p™ "),

where

2

E [CL;J] = 7(]VPWE[S]"O7Q]Q,;FQ*AJ‘Q*QJ- — ﬁ5j7070E {a;WQAjWQGJ}
P3/2 T X T
— WE |:8j,071 (aj Q*AjWQCLj + a; WQA]‘Q*CL]')} R

Elsjo,2] = bj’,g70(N+m2E Htr(BjW?)2H 7
E :{tr(BjWQ)2H 4 {tr(B; M) + O(p=112) = O(p~12),

E[a] WoA;Waa;| = B [tr (B;W2 4,W2 )| = dtr (Mg B; MG 4;,9°) + O(1) = O(1),

E :8j70,1ajTQ*Ajv~V2aj] = N\/—ﬁpbj_’gUE [tr(BjWQ)tr(BjQ*AjWQ) s

E 'tr(BjWQ)tr(Bjn*Ajvifz)} = 4tr(B; M )tr(B; A;Q° M) + 0(1) = O(1),

where
~ 1 ~+ =~
Wy = \/p (pz;z2 —Q*) :
Since (Iy + 3p~*Q)(M()? = Oy /2, we have the following expansion:
E [exp (it Dy)] = exp {it'n —t" At/2} + Oy, (A.11)



34 Tomoyuki NAKAGAWA

where n = (11,12) " and

n; = Np_ptr (AJQ*) — a;Q*AjQ*aj,

U
OOV = )2

i ot (1o (14 55))

N bp?(ny —1)(n — 1) 1+ 2(ny — 1)1/2 +n1—1
n{(N = p)? +n1(N = p)p(n1 — 1)(m1 + 1) ny/? n

n— p(ny —1) 1
. 1-b(1
“xop e (1o (e ) ) o

A= ( A Ar ) c Ay =2[tr (B 0B o) +tr { (Is + 2p7'Q Q) M7, M; o}l

/\21 )\227
Nij = tr{ (@02} + e { (L + 271 02) (M)}
(n_l)QN)(Q QP zp)
—g( ) (A 2oy + 0y,
( (N —p)? Ny '
Az = tr (B0 E2,00%) +tr (L + 2p—1n) My M;3,)
=0;.

A.6. Derivation of x(A) in the case of dp. In this section, we show that

k(A) is decided as (9) in the case of dp and ¢ = 0. d%_’\) is estimator of dp for
the method IT and is derived as

_ _ -1 1 _
A ) = @7 2T {5 o Ll e

=tr(A\U) — (1 - NTy 'a"'UAUa,

N

N

Ty =

+ (1= \tr(BU),

where ig_k’” and S(—%*) are given by (8), and U is the same as U in Lemma
1,and @ = (0,n; /%, 1)7T, B=aa" and
-1 —1/2
N, 0 —N,
—A -2 ) -2
NN 0 . {Nl(’”} n3/? {Nl(fA)}

-2
SN P INLT 2 (2 )
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Put Wy = /N —p{(N — p)~'V; — I3}. From 1 — k/N, we have an expansion
of d%_)‘)(a:) as

_ MY 4
T\ = W +0, (N1,

tr(A\U) — (1 - NI 'a UAUa = Np

tI‘(A,\‘N/Q) +ap+a; + Op ((N —p)_l) ,

_ p T 7
ag = 7(]\] — p)3/2 tr(T " A\TW),
2
p 5T R K p T ¥
= ———tr(T" A\TW —————a VLAV
ax (N—p)? r( A 1)+N(N—p)2a 2A\V2a,

where T = p~V/2T and V, = TTT. Then, the characteristic function of d}" ()
is expressed as

E {eitd%*’(m)} —E [E [exp{z’t <Npptr(A,\‘~/2) + ag +a1> +0, ((N —p)_l)}’ ‘/2:|:| ,

E [exp { ith_ptr(A)\Vg) +ap+a1+0, ((N - P)_l)}

/

= exp {ith_ ptr(Aﬂ/'g)} E [{e"*(1+ita)}| Vo] + O, (N —p)7").

Put My = itp(N — p)~3/>T T A\T. From Lemma A.6,

E [{e"*(1 + itay)}| V2]

2
I, — ——— M,
N-—-p

— exp {tr (M2)) {1 4

—(N-p)/2

exp { ~V/N = ptr(Mo) | Elg(Z] 1))

st (M) b Bl (2] 20)] 4 0, = 1))

where

1
- 2
Z1 ~ N(N—p)x3 (Oa (IS - \/mM()) ®INp> )

. 2 -1
ZZy ~ Wy (N—p7 (13 — M0> >
N-—p
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are independent of V,, and My = —itp(N — p)~3/2T T AT and g(V;) = 1+ ita,.
The moments are given by

. . 1 2
E[a1|V2] = NL_pE |;tI' {TTA)\T (N_plezl — I3> }]

2
K P T -
A 5 A
NN )2(1 V2 AxVaa

+

1
.
p

/

AJ@) + 3tr (TTAATMO)]

2
k_ P TS, AT 1
+N(N_p)2a VaAyVaa + Op((N —p)~ 1)

_ ﬁ |:4tI“(A)\‘~/2) - 3“@“ { (AA%)Z)H

2

L a™VaA\Vaa + O,(N —p)7Y).

+N(N—p)

Secondly, let
1 *
W’Q\/Z’("QQ >a

then Wy = O,(1) from the central limit theorem where Q* = I3 + p~12. We
can obtain the following expansions:

Va=p (Q* +p*1/2W2) :

tr(Mo) = itp(N — p)~*/*tr(AV),

(AV)) = (AR + p~ Y2 W))
= tr (AQ") + p~ 2 tr(AWY),

tr(Mg) = (it)*p*(N — p) >tr { (Affz)z} :

w{ (am) = { (a4 w))}

_— {(AAQ*)2} +2p 2t (AN ANWR) + O,(1),
a' VaAyVaa = a' QA Q%a + 0,(1) = 0,(1),
tr(Mg) = —(it)*p* (N — p)~**tr{(A\V2)*},
r{(A\V2)*} = tr{(AQ*)’} + O, (p™"/%) = Oy .
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Since V, ~ W3(p, I3, §2), we obtain the following expansions:

exp {ith_ ptr(AAVg) + tr(MOQ)}

1/2
= exp {ith_ S AN) + it]\l; o (AW) & (it)2p3(N — p)~3tr {(AAQ*)Q}}

X exp {2(it)2p3/2(]\7 — )3t (ANQT ANWR) + O, (N — p)*l)} ,
exp {2(it)2p3/2(N —p)Btr(ANQ ANWa) + O, (N — p)—l)}
=14 2(it)?p*/2(N — p) 3tr(A\Q A\ Wa) + 0.

Put M = itp3/?(N — p)~3A,. From Lemma A.6, we can have

-p/2

9 _
I; — —Mj E[h(Z, Z5)]

VP
2 -1
X exp [—pl/%r(Mg;Q*) +p~V2r {QM; (13 — \/I)MS‘) H

= exp [tr{(Ig + 2p*19)(Mg)2}] ElW(Z] Z»)]
4 _ 3
X [(1 + ﬁtr{(Ig, +3p7lQ)) (M) }] +0,.
Moreover, since tr{(I3 + 3p~*Q))(M)*} = Oy 2,
E [exp {tr(MgWa)} h(Z, Z»)]

— exp [tr{(.rg, + 2p—1n)(Mg)2H E[W(Z3 Z5)] + O,

E [exp {tr(MiWa)} h(Z] Z5)] =

where h(Zy Z5) = (14 2(it)*p~/2(N — p)~1tr(A\Q* A\W3)), and Z; and Z
are the random matrices that satisfy

Vo = Zj Zs,

Z2 ~ NpXS(Ma I3 & Ip)7

~ —1 -1

Zy ~ Nyxs <M (13 _ 2p*1/2Mg) , (13 - 2p*1/2Mg) ® 1,,) .

The moments are given by

BIA(Z] Z2)] = 1+ 2(it)*p /2(N —p) 'tr (4,2 AE [ W2 ),

E[W,)] = /b { <13 + \2M§> -
2

) o ?)
—M; QI+ M} — Q" =0y /5.
0) 3 \/ﬁ 0) 1/2

+p (I: +
p 3 b
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where

p NNV 2 P nip (1-N%  201-Ap

= tr(A\Q") = —— | A+ — — 5 — >+

N — 2(N — N. — _ (=)

p (N —p) 2 {N1< A)} {N1< A)} Ny

2 _ 2/n7 _ )3 #\2 p -1 2
s/\—Q{p (N —p) tr{(A,\Q ) }+(N_p)2tr{(I3+2p Q)AA}]

PN (o mi

- (N-p)P {lew}‘* N;

Therefore, we have the characteristic function ¢(t) of d%_’\) (x) as
¢(t) = exp(itny — 53 /2) + Or.
By using the inversion formula, we have the following formula
Pr (d%_l;A)(:cil) < 0) = ®(—sy'n\) + Os.
From Theorem 3, the probability of misclassification P(2|1) of dp is given as

Pr (dﬁ;”(x) <0z e Hl)
L(N=-p\'"?( s » o v p 2
=0 | —- [ —— AP+ = D) (AT .
< 2( N ) N ™ TN +01
Since A =1—k/N,
- 1 (N-p\"? PP
3,\177/\:—2( N ) A2+F2_F1

1 p N —p\'/? 2, D D
z A T
+4’I’L1N1< N ) - +N2

-1
(A2 PP 2, P _ P
x{? (A +N1+N2) <A -|—N2 N1)}

1/2 —1/2
kp (N —p o, P P
- — A — 4+ — O

nlN < N > ( + nq + N2 ) + 2

L(N=-p\"? (5 » R
—_2<N> A+E_E A+E+ﬁ2 +02«

Therefore, & is given as (9).
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