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Abstract

Pulsar magnetospheres have strong magnetic fields and large amounts of plasma. The structures of these
magnetospheres are studied using force-free electrodynamics. To understand pulsar magnetospheres, discussions
must include their outer region. However, force-free electrodynamics is limited in it does not handle dissipation.
Therefore, a resistive pulsar magnetic field model is needed. To break the ideal magnetohydrodynamic (MHD)
condition E B 0· , Ohm’s law is used. This work introduces resistivity depending upon the distance from the
star and obtain a self-consistent steady state by time integration. Poloidal current circuits form in the
magnetosphere while the toroidal magnetic field region expands beyond the light cylinder and the Poynting flux
radiation appears. High electric resistivity causes a large space scale poloidal current circuit and the magnetosphere
radiates a larger Poynting flux than the linear increase outside of the light cylinder radius. The formed poloidal-
current circuit has width, which grows with the electric conductivity. This result contributes to a more concrete
dissipative pulsar magnetosphere model.
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1. Introduction

Electron positron pair plasma fills a pulsar’s magnetosphere,
which can be described using force-free electrodynamics
Goldreich & Julian (1969). A time-developed method can be
used to create steady pulsar magnetosphere solutions, as
suggested by Spitkovsky (2006), Komissarov (2006), and
McKinney (2006). Electric current flows along open magnetic
field lines, whereas Poynting flux is radiated outward beyond
the light cylinder.

Force-free electrodynamics has drawbacks when the electric
and magnetic fields have parallel components, causing charged
particles to accelerate parallel to the magnetic field line.
Therefore, highly accelerated particles emit curvature radiation
and pair creation occurs. This process changes the pulsar’s
magnetospheric structure. Deformation of the magnetosphere
causes electromagnetic radiation to differ from the ideal
magnetohydrodynamic (MHD) case. Therefore, the calculation
of Poynting flux using force-free electrodynamics does not use
the real condition.

To address this problem, resistive electromagnetic simula-
tion has been studied. This method results in a clear global
electromagnetic field structure by which an amount of Poynting
flux between the vacuum and force-free cases is radiated.
Electrical conductivity dependence of global current circuit
structure is revealed.

This paper shows that such a model can produce a steady
magnetosphere. I introduce the dependence of current density
on distance from the star surface. At the outer boundary, the
electrical conductivity gradually decreases, making it easy to
understand a pulsar magnetosphere, including its structures and
its radiation mechanism.

1.1. Other Research

1.1.1. Method of Solving the Pulsar Equation

The pulsar equation is introduced by the ideal MHD
condition and the force-free approximation. A scalar function
of the pulsar equation gives the structure of the magnetosphere;

however, this equation has a singularity in the light cylinder.
The reason is that the rotational speed is limited by the speed of
light. Solving the pulsar equation in all regions has become
more difficult due to the presence of the singularity.
Contopoulos et al. (1999) first solved the pulsar equation on
both the inner and outer sides of the light cylinder using an
iterative method to connect them. Gruzinov (2005) examined
the structure of the surrounding separatrix in the equatorial
plane. Timokhin (2006) showed the solution for a different
closed magnetosphere.

1.1.2. Time-developed Method

In quasi-analytic methods, the stability of solutions is
unknown; the time-developed method, however, can obtain
stable solutions. Spitkovsky (2006) found a 3D inclined rotator
solution; Komissarov (2006) obtained a result using a 2D
axisymmetric fully relativistic MHD code, and McKinney
(2006) did so using a force-free code. Tchekhovskoy et al.
(2013) obtained a result using 3D oblique rotator fully
relativistic MHD.
One weak point of this method is that electric-particle

motion is neglected. The force-free method is limited as it
cannot handle pair creation.

1.1.3. Particle-in-cell Method

Maxwell’s equations for the electromagnetic field and
charged particles constitute equations of motion, which can
be solved by time integration. The electromagnetic field is
calculated at each point of the grid. The position and velocity of
the particles are calculated using the equations of motion. A
non-zero number of particles in a grid is required to represent a
plasma magnetosphere. Indeed, a large number of particles is
needed to match the above conditions in all calculation regions,
but computers cannot handle such numbers due to limited
memory size. Therefore, the ratio of superparticle electric
charge and mass is different from that of real particles. In
particle-in-cell method, a simple pair creation model is used,
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and it differs for each author. Furthermore, the result
magnetosphere strongly depends on pair creation model.

In the case without active pair creation, the pulsar magneto-
sphere has two charged clouds in the polar and equatorial
regions. This is known to describe a pulsar with a disk-dome
configuration (Krause-Polstorff & Michel 1985). This solution
is not stable and experiences diocotron instability as shown by
Pétri (2009).

Philippov & Spitkovsky (2014) applied a sufficient pair
plasma to obtain a nearly force-free aligned rotator solution.
Cerutti et al. (2015) found the same result. Chen &
Beloborodov (2014) combined pair creation and an axisym-
metric magnetosphere; their simulation did not result in pair
creation. Philippov et al. (2015) described a generalized-
inclination rotator, whereas Cerutti et al. (2016) showed a 3D-
PIC simulation.

1.1.4. Resistive Force-free Format

The resistive force-free format adds electrical resistivity to
the force-free approximation. In the case where electrical-
conductivity limit is very high, the result is expected to
approach the force-free approximation. The current-density
formula is derived from Ohm’s law. The time development of
Maxwell equations and the current-density equation shows a
steady solution.

A current-density model was first applied to a pulsar
magnetosphere by Lyutikov (2003). This model is derived
from Ohm’s law, but has one free parameter: the velocity along
the magnetic field line. To simplify this equation, Lyutikov
(2003) set the velocity along the magnetic field to zero.

The characteristic of this current-density model gives a
space-like electromagnetic field. Some works present different
results from the ideal MHD case. Different current densities
model different magnetospheric solutions. The structure of the
current sheet and the emitted Poynting flux are different.
Poynting Gruzinov (2007, 2008) noticed the sign of the

current-density four-vector. The space-like current-density
region differs from the case of ideal MHD.
Li et al. (2012) shows the Poynting flux dependence of

2( ) . The poynting flux of the magnetosphere has been
obtained as an intermediate value in the vacuum and force-free
cases.
So far, the shape and width of the electric current have not

been examined. Therefore, I consider these properties under
change to the global region of current flow.

2. Current-density Model

2.1. Force-free Electromagnetic Fields

In the case of the force-free approximation, the current-
density is uniquely determined by electromagnetic fields under
the ideal MHD condition. The explicit form will be derived
below. The force-free condition is written as

E
j B

c
c

0. 1( )

By the cross product to Equation (1) with B and using a
vector calculus identity, we have

j
E B j B B

c
B B

, 2
2 2

( · ) ( )

where B 02 has been assumed. We also assume that the ideal
MHD condition E B 0· always holds, such that the time
derivative is also zero:

E B
E

B E
B

t t t
0. 3( · ) · · ( )

The time-derivative terms of the electromagnetic fields are
substituted by the Maxwell equations, and Equation (3)
becomes

B B j B E E
c

4
0. 4( ) · · ( ) · ( )

By eliminating the term j B· from Equation (2), the current
density is given by

j
E E B B B E E

B
c B B

4
,

5

2 2

( · ) · ( ) · ( )

( )

where the charge density ρ is replaced by Gauss’s
law, E 4· .
The first term in Equation (5) is the E B drift. If E B∣ ∣ ∣ ∣,

then there is a frame in which the electric field vanishes. The
velocity of this frame measured in the lab frame is E B B2.
Unfortunately, the condition E B∣ ∣ ∣ ∣ is not guaranteed in the
dynamics. Physically, if E B∣ ∣ ∣ ∣ happens elsewhere, strong
currents should flow to reduce the electric field. In the
numerical calculation, this effect should be included by hand
to construct proper force-free fields. The second term in
Equation (5) describes the current flow along the magnetic
field. In this way, the current density is determined uniquely for
given E B, in the force-free approximation. The electro-
magnetic fields E and B should be solved with the source (5)
involving the spatial derivatives of E and B. Thus, causal
structure, i.e., information propagation with light velocity c, is
broken in this approximation.

Table 1
Normalized Poynting Flux L L0 Across the Light Cylinder of Electric

Conductivity 0 for n=2

0 0 L L0

1 5 0.0078
5 25 0.0225
10 50 0.0438
20 100 0.0917
50 250 0.1548
100 500 0.3492
150 750 0.6032

Table 2
Normalized Poynting Flux L L0 Across the Light Cylinder of Electric

Conductivity 0 for n=1

0 0 L L0

0.1 0.5 0.0100
0.2 1.0 0.0102
0.5 2.5 0.0155
1 5 0.0118
2 10 0.0151
3 15 0.0183
4 20 0.0252
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2.2. Resistive Scheme

We here derive another current model described by
electromagnetic fields, namely the resistive model proposed
by Li et al. (2012). Our basic assumption is Ohm’s law, which
in the fluid rest frame is

j E , 6fluid fluid ( )

where σ is the electric conductivity.
The relation between the current density and the electro-

magnetic fields in the laboratory frame is given by the Lorentz
transformation. We consider a frame where the electric and
magnetic fields are parallel. The fluid rest frame is given by the
Lorentz boost 1 along the parallel. The laboratory frame is
given by another boost, , in the E B direction. Thus, the
laboratory frame can be connected to the fluid rest frame
through two boosts with 1 and . After some algebra, we have

j
E B

B E

c

B E

c E B E

B E

1

,

7

e

e
B E

B E

2
0
2

2
0 0 0

2
0
2

2
0
2

0
2

0
2

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )

where E0 and B0 are given by two Lorentz invariants defined by
(E 00 )

E BE B , 80
2

0
2 2 2 ( )

E BE B . 90 0 · ( )
They are explicitly solved as

B E B E E BB
1

2
4 , 100

2 2 2 2 2 2( ( ) ( · ) ) ( )

B EE B , 110 0
2 2 2 ( )

E BB Bsign . 120 0
2( · ) ( )

The magnitude of is given by

B B

B E
. 13

2
0
2

2
0
2

( )

There remains one parameter, , which describes fluid speed in
the direction of the magnetic field.

The current density from Equation (7) can also be expressed
by E and B only, as in the force-free case. By introducing E0,
the velocity in the first term is always less than c. The velocity
is furthermore reduced to the standard drift-velocity in the case
where E B 0· .

The second important point is the fact that Equation (7) is
expressed by E and B without spatial derivatives other than the
charge density. This is in contrast to the force-free case.

2.3. Speed Along the Magnetic Field

Here, we discuss the parameter , which describes the fluid
velocity in the direction of the magnetic field line. This quantity
should be determined only by physical argument. Gruzinov
(2011) proposed that the relativistic four-current vector j,e( )

should be space-like. This condition determines as

E c
. 14e

x e
2 2

0
2 2 2

( )

With this choice, Equation (7) becomes

j
E B B Ec

B E

E c B E

B E
, 15

x e

2
0
2

2 2
0
2 2 2

0 0

2
0
2

( )
( )

where x is given by

B E

B E
. 16x

2
2

0
2

0
2

0
2

( )

Space-like four current may not be adequate for the pulsar
magnetosphere. Within closed-magnetic field lines, charge-
separated plasma co-rotates with the central star. However, this
condition may not hold in the open-field-line region.
Li et al. (2012) assumed 0; i.e., the velocity parallel to

the magnetic field is slowest. This assumption may not be
justified, but Equation (7) has the simple form

j
E B B Ec E B E

B E
. 17

e
B E

B E 0 0 0

2
0
2

2
0
2

0
2

0
2 ( )

( )

In our numerical calculation, we adopt this type of current
model.

2.4. Correspondence between the Force-free and Vacuum
Solutions

When electrical conductivity 0 and electric charge
0e in the vacuum, the force-free approximation corre-

sponds to . The toroidal field current sheet is formed on
the equatorial plane in the force-free approximation, but not in
the vacuum case as no current flows in the vacuum. The
amount of current flowing through the magnetosphere will vary
depending on the electrical conductivity σ. Poynting flux does
not diverge in the limit of infinite electrical conductivity
because there are no more vacuum gaps.

2.5. Difference in the Solution due to the Current-density
Model

In the case of force-free electrodynamics, the form of the
electric current is unique. In the resistive force-free scheme, the
expression of the current density is not determined uniquely,
because the speed in the magnetic field line direction is a free
parameter. Li et al. (2012) set 0. The region where
magnetic field lines are closed is formed properly in the case of
the uniform electrical conductivity. Poloidal current flows in
the region where the magnetic field lines are open. On the other
hand, different current densities in the model proposed by
Gruzinov (2007). Guruzinov proposed a current-density model
to satisfy the space-like current-density conditions. But, it
remains unclear whether this current-density model is valid or
not for pulsar magnetospheres.
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3. Numerical Method and Problem Setup

3.1. Electromagnetic Fields

Maxwell’s equations are solved with the charge density e
and the current density j:

B
E

c t

1
, 18( )

E
B

j
c t c

1 4
, 19( )

B 0, 20· ( )

E 4 . 21e· ( )

To solve these equations, we use a scalar potential Φ and a
vector potential A satisfying the Coulomb gauge, A 0· .
For axially symmetric fields, the following form given by two
functions, F t r, ,( ) and G t r, ,( ), is automatically satisfied
with the gauge condition:

A e e
r

F
G

r

1

sin sin
, 22⎜ ⎟⎛

⎝
⎞
⎠ ( )

where e is a unit vector in the azimuthal direction. The
magnetic field B is given by A:

B e e
r

G
S

r

1

sin sin
, 23⎜ ⎟⎛

⎝
⎞
⎠ ( )

where the function S in B is given by

S F, 24( )

and the differential operator is defined by

r r

sin 1

sin
. 25

2

2 2
⎜ ⎟⎛
⎝

⎞
⎠ ( )

The electric field E is expressed by the time derivative of A
and the gradient of Φ:

E A
c t

, 26( )

e e
r

F

c t r

G

c t

1

sin

1

sin
. 27⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ ( )

The electric field (Equation (27)) is given by the time
derivative of F such that it is convenient to solve the time
derivative of Equation (24), i.e.,

F

t

S

t
. 28⎜ ⎟⎛

⎝
⎞
⎠ ( )

Substituting these forms (Equations (23) and (27)) into
Equation (19), we have two wave equations for G and S.
They are the f component and the rotation of the poloidal
component of Equation (19):

c t
G

c
j r

1 4
sin , 29

2

2

2

⎛
⎝⎜

⎞
⎠⎟ ( )

c t
S

c

rj

r

j1 4
sin . 30r

2

2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

From Equation (21), we have the Poisson equation for Φ:

r r
r

r r

1 1

sin
sin 4 . 31e2

2
2

⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟ ( )

One advantage to the potential formalism is that the constraints,
Equations (18) and (20), are automatically satisfied.

3.2. Region

In our numerical calculation, we use the spherical coordinate
r,( ) with range r r r0 out, and 0 2. Typically,
we set r r 60out 0 The light cylinder, RL, is located at
R r 1 5L 0 . We use the finite difference method to
solve the partial differential equations. The typical numbers of
cells on the grid are 60 and 96 in the r and θ directions,
respectively. The grid-cell spacing in the radial direction is
taken as r r1 2 to obtain fine resolution near the inner
region, whereas the spacing in the angular direction is constant.

3.3. Boundary Conditions

In this section, we discuss the boundary conditions. Figure 1
shows the four boundaries in the calculation region. First, we

Figure 1. Figure of the 2D computational domain and four boundaries. The
thin black line represents the grid. The red line is the star surface, the thick
black line is the rotation and magnetic axis, the green line is the equatorial
plane, and the blue line represents the outer boundary.

Figure 2. Structure of the surface toroidal flux function S r r ,0 0( ).
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consider the condition at the inner boundary r0. The poloidal
magnetic field there is a dipole field given by

B B B B
r r

, ,
2 cos

,
sin

, 0 , 32d r 3 3

⎡
⎣⎢

⎤
⎦⎥[ ] ( )

where μ is the dipole moment and the field strength on the pole
r0 is B r20 0

3. The magnetic flux function G for a purely
dipole field is given by

G
r

sin
. 33d

2
( )

We always fix the function G at r r0 as

G r
r

,
sin

. 340

2

0
( ) ( )

Thus, the continuity of the radial component Br is guaranteed.
Inside the surface r r0, the ideal MHD condition holds

such that the electric field is given by the rotational velocity

v er sin( ) and the magnetic-dipole field

E v B
r r

sin
,

2 cos sin
, 0 . 35d

2

0
2

0
2

⎡
⎣⎢

⎤
⎦⎥ ( )

The θ component is given by E Gd . From the
continuity of E , the electric potential Φ at the surface can be
chosen as

r
r

,
sin

, 360

2

0
( ) ( )

and

F

t
0. 37( )

Next, we consider the toroidal magnetic field,
B S r sin( ). For the force-free case, the current function
S is given by a function of G. In particular, in the

Figure 3. Poloidal and toroidal magnetic fields in the meridian plane for 10, 500 . The light cylinder radius, R cLC , is shown by the red vertical line. The
poloidal magnetic field is shown by the solid black line. The dashed black lines show the magnetic dipole poloidal magnetic fields. The toroidal magnetic strength is
indicated by contour color. The bottom panels are zoomed-in views.
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split-monopole solution, the toroidal magnetic flux is given by

S G
G

B r
2 , 38m m

m

0 0
2

⎛
⎝⎜

⎞
⎠⎟ ( )

and G B r 1 cosm 0 0
2 ( ), where B0 is a constant,

B B r rr 0 0
2( ) . The toroidal magnetic flux can also be

expressed as a function of θ by eliminating Gm:

S B r sin . 39m 0 0
2 2 ( )

The current function should vanish for the rotating dipole in the
region p at the surface, where p is the polar-cap angle

rsin p 0
1 2( ) . We expect that the magnetic field near

the pole, even for a rotating dipole, will be similar to that in the
split-monopole case. At the same time, the functional form (39)
should be truncated for p. Our choice of S at r0 is a simple
quadratic function of sin2 :

S r
r

,
2

sin 1
sin

sin
, 40

p
0

0

2
2

2

⎡
⎣⎢

⎤
⎦⎥( ) ( )

where the coefficient B0 is replaced by the dipole
moment B r20 0

3.
In Figure 2, we compare the functions Equations (40) and

(39) truncated at p. The sharp drop of Equation (39) at p
means that there is a current sheet there. Our choice, Equation
(40), smoothly goes to zero at p, but the strength is much
smaller. To examine this fact, we use in the numerical
calculation S multiplied by a factor α.

Here, we summarize the values at the inner boundary r0:

E
r

2 cos sin
, 41

0
2

( )

E 0, 42( )

B
r

2 cos
, 43r

0
3

( )

B
sin 1

0 .
44r p

p

2 sin

sin p0
2

2

2

⎧
⎨⎪
⎩⎪

⎡
⎣⎢

⎤
⎦⎥ ( )

( )
( )

On the other hand, the remaining components, Er and B ,
cannot be specified. They are given by radial derivative of the
potentials.

The other boundary conditions are almost clear. On the pole
0, E E, and B B, should vanish, such that the functions

should satisfy the condition on the pole

G r S r F r
r

, 0 0, , 0 0, , 0 0,
, 0

0.

45

( ) ( ) ( ) ( )

( )
We assume a symmetry with respect to the equator such that

E B0, 0. On the equator, the boundary conditions for
S F, and Φ are

S r F r
r

, 2 0, , 2 0,
, 2

0. 46( ) ( ) ( ) ( )

The conditions for the magnetic flux function G are different
inside and outside the light cylinder 1. The magnetic flux
function G for r 1 is

G r, 2
0, 47

( ) ( )

whereas that for r 1

G r G, 2 , 480( ) ( )
where G0 is a constant describing the last open field line.
Finally, at the outer boundary, we impose outgoing

condition. To remove numerical reflection at the outer
boundary, the size rout is set to a sufficiently large value, and
the simulation time is limited to t rout.

3.4. Electrical Conductivity σ

The current model Equation (17) has electrical conductivity
σ. Electrical conductivity σ depends on r by the following
formula:

r
r

. 49
n
0( ) ( )

Here, 0 is the electrical conductivity of the surface
r 1 ;0 ( ) n is r-dependence parameter. The electrical

conductivity is large in the vicinity of the star and falls off with
increasing radial distance. The outer boundary is set to an
almost-vacuum condition. We now consider each of the
electrical-conductivity parameters 2, 5, 10, 20, 50, 1000
in the n=2 case.

4. Result

4.1. The Structure of the Obtained Solution

The dynamical Equations (17) and (29)–(31) are integrated by
time, and almost-stationary solutions are obtained after several
wave-crossing periods. Steady states appeared under each
electrical-conductivity parameter 2, 5, 10, 20, 50, 1000 in
the n=2 case. The results for n=2 and 10, 500 are
explained in the next section.

4.1.1. Poloidal Magnetic Field, G

The dynamical equations are integrated by time, and almost-
stationary solutions are obtained after several wave-crossing
periods. From the star surface to the outside area, the
magnetosphere gradually becomes a steady state. Specifically,
the magnetic field at radius r=30 became steady over the time
period t=50. Here, the formation of the magnetic field in
terms of its poloidal and toroidal components is explained

Figure 4. Time-averaged toroidal magnetic flux function S for the center of the
star. 0.74.
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separately. Figure 3(a) shows the steady-state magnetic fields
n 2, 100 in the meridian plane. The red line in
Figure 3(a) is a light cylinder of radius R R 5LC . The
black solid lines represent the flux functions G r0( )
0.05, 0.1, 0.4, normalized by the dipole poloidal magnetic
flux in surface. In particular, the thick black line of Figure 3(b)
is G r 0.20( ) . The magnetic field lines, G=0.2, pass
through the light cylinder in the case of the magnetic dipoles.
For comparison, those for the magnetic dipole are also shown
by black dashed lines with the same values, G rd 0( )
0.05, 0.1, 0.4. The lines with G r 0.2850( ) are open
outwardly, and the others are closed within the light cylinder.
Both lines for the dipolar and numerical results of, e.g.,
G r 0.050( ) , are parallel for r r 30 , but they are
significantly separated beyond the light cylinder. The line for

the vacuum dipole is closed, whereas that for our numerical
result is open, and the structure becomes almost radial. Open
and closed-magnetic field lines feature the same force-free-
electrodynamics pulsar solution. The magnetic field is very
strong and it moves with the plasma; it cannot co-rotate
because the co-rotation speed outside of the light cylinder
exceeds the speed of light. Thus, the magnetic field lines are
open for the outside. Specifically, G=0.285 in the equatorial
plane is greater than 0.2, toroidal current form a poloidal
magnetic fields in the vicinity last open field line. Next, I show
the result of changing the electrical-conductivity parameter 0.
Figures 3(a) and (c) respectively correspond to the electrical
conductivities 100 and 50. Comparison of these two
figures shows that they exhibit poloidal magnetic fields of the
same shape.

Figure 5. Electrical potential Φ for n 2, 10, 500 . The red line is the light cylinder radius R=5. The black line is the equal value of the poloidal-magnetic flux
function G. The black dotted line shows a dipole-magnetic flux equal to the value of the function. The bottom panels show zoomed-out views.
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4.1.2. Toroidal Magnetic Field S

The toroidal magnetic field B S R is also shown in
Figure 3(a). The color contour represents S r0

2( ). Red and

blue indicate negative and positive values, respectively. The
maximum value of S is located inside the light cylinder.
Figure 3(b) shows the magnetic field near the star surface.

According to Figure 3(b), the toroidal field S has a negative

Figure 6. Top: poloidal current density j rp
2 for n 2, 10, 500 . Middle: poloidal current density of first term component in Equation (17) for 10, 500 .

Bottom: poloidal current density of the second-term component in Equation (17) for 10, 500 .

8

The Astrophysical Journal, 850:205 (14pp), 2017 December 1 Kato



value in theG 0.2 region and a positive value in theG 0.2
area near the equatorial plane. The poloidal current inwardly
flows in the polar region, i.e., the region from the z-axis to the
maximum with respect to θ, whereas the current outwardly
flows along the last open line in the equatorial region. The
toroidal magnetic field S gradually goes to zero outwardly due
to resistivity and spreads to the outside beyond the light
cylinder. No toroidal magnetic field, S, exists near the pole.
This result is due to spatial symmetry.

Figure 4 shows the time-averaged toroidal flux S in
0.74. The toroidal magnetic field S decreases gradually

by the radius from the star. The maximum value of S falls
inside the light cylinder radius. The maximum value does not
match the radius of the light cylinder. The concentrated
poloidal current area is the light cylinder interior.

The toroidal magnetic field, S, increases due to large
electrical conductivity 0. In our model, the value increases
with the increase of r Equation (49). The toroidal magnetic
field increase proportionally to electrical conductivity.
Figure 3(c) shows the electromagnetic field for 500 , five
times bigger than the 100 case. In addition, this field area
spreads out. This is in contrast to the poloidal magnetic field G,
which is not changed by the electrical conductivity.

4.1.3. Electrostatic Potential Φ

Figure 5(a) shows the electrostatic potential contour of
100 . From 0.01 to 0.08, contours are equally spaced

for each 0.01. In the numerical calculation, the electrostatic
potential on the star’s surface does not change with time
because of the boundary conditions Equation (36). Blue lines in
Figure 5(a) spread out from the surface boundary and extend in
the radial direction. Blue lines are connected vertically toward
the equatorial plane because the field’s boundary condition has
only an R component in this plane. Figure 5(b) shows the
electrostatic potential of the spatial region from Z=0 to 30.
Here, the contour line is drawn in increments of 0.005
from 0.04.
The densities of the equipotential lines are proportional to

the strength of the electric field, which is strong on the star
surface and decreases as one goes radially outward. No electric
field dominant (E B 02 2 ) area exist in r1 30. The
magnetic field in the obtained results is always stronger than
the electric field.
Figure 5(c) is the drawn contours of the 500 electrostatic

potential cases. Electrical conductivity 0 increases along with
the electrostatic potential of the equatorial plane. However, the
difference of electrostatic potential of the equatorial plane
between the 100 and 500 is about 10%.
When the electrical conductivity is different from this case,

the overall structure of the solution remains similar. For
example, electrical conductivity is increased in a toroidal
magnetic field, but little shape change was observed about the
potential.

4.1.4. Poloidal Current jp

Current density is divided into poloidal and toroidal
components. The poloidal component of current density jp
consists of jr and j :

j j j . 50p r
2 2 ( )

Figure 6(a) plots the magnitude of the poloidal current
density at electric conductivity 100 . The yellow region has
a large current density; the blue region has a small current
density. Figure 6(a) shows that an electric circuit forms in the
magnetosphere. Figure 6(d) shows the poloidal current density
j rp

2 for 500 . Both figures exhibit the same poloidal current
circuit structure. The figure is divided into three parts to
understand the mechanics of the poloidal current-density
distribution. Figure 7 shows a current circuit schematic
diagram. The oblique lines in the central region indicate low
poloidal current density. The arrows A and B are the current
inside of the light cylinder; both parts of current flow along the
magnetic field line but in opposite directions. Arrow C
indicates current that does not flow along the magnetic field,
but returns inside. The total current flow composes the current
circuit and gives rise to the toroidal magnetic field. Poloidal

Figure 7. Diagram showing poloidal current circuit. The A and B arrows are
the current flow along with the magnetic field. The C arrow shows the current
perpendicular to the magnetic field line. This current circuit shows the toroidal
magnetic field.

Figure 8. For n 2, 100 . Poloidal current vector direction shown in the
meridional plane. The color of the vector indicates the intensity of poloidal
current from blue to red.
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current makes the toroidal magnetic field. The oblique lines in
the region near the star indicate a dead zone. In this region,
plasma co-rotates with the star; thus, the poloidal current does
not exist.

The r-component electric field Er is formed on the star
surface. Therefore, current flows to the inside of pc from the
star surface. The poloidal current density, jr, at neutral is zero.
The neutral star surface represents a boundary at which the
direction of the poloidal current is interchanged. Where
0 neutral (Arrow A), j 0r because there is a current
toward the star. In addition, there is a current flowing outward
from the star, neutral p (Arrow B). The region p is
a closed zone in which poloidal current does not flow, meaning
that there is a region of low poloidal density besides the star’s
surface. The concentration of poloidal current caused by the
Lorentz force. Concentration of the current occurs on the upper
and lower sides (Arrow A and Arrow B). The poloidal current

density of the open magnetic field lines for the area outside of
the light cylinder also spread spatially. Focusing on large areas
of lower current density (Arrow C), and has a distribution that
across the magnetic field lines. This corresponds to a large Z
component of the current vector. In order to clarify, I compare
the magnitudes of poloidal current in different component
sections.
Figures 6(b) and (c) are obtained by drawing a distribution of

the first term and the absolute value of the second term of the
poloidal current Equation (17). The B Er component of the first
term becomes dominant due to the fact that the electrical
conductivity σ decreases outward, making the second term
small. The current along the magnetic field hardly flows to the
outside because it is assumed that the electrical conductivity σ
has a spatial dependence. Also, the electric field has a
component perpendicular to the magnetic field. The poloidal
current perpendicular to the magnetic field is generated by the
electric field. Therefore, the flow of current toward the star
across the magnetic field lines occurs gradually. When this flow
returns to the star, one round of the current circuit is formed.
Figures 8 and 9 are obtained by drawing the direction of the
vector of the poloidal currents. The strength of the poloidal
current is increased toward the red from the blue.
Figure 6(d) illustrates the poloidal current density at electric

conductivity 500 . In the case of 200 , the j 0p area is
eliminated by r=10. In the case of 500 , the poloidal
current density distribution is changed, as shown in Figure
6(d); this is because the components perpendicular to the
magnetic lines of force become dominant.
Figures 6(e) and (f) are each of the poloidal current densities

in the cases where 500 .

4.1.5. Poynting Flux

Poynting flux is present because there is a non-zero cross
product of the electric and magnetic fields; it is emitted from
the surface outward. I calculated the Poynting flux for the
obtained steady solution. Figures 10 and 11 depict the
magnitude and direction distributions of the Poynting vector.
The magnitude of the Poynting vector increases from blue to
red. As shown in Figure 3(a), Poynting flux has a maximum

Figure 9. Same as Figure 8, for 500 .

Figure 10. For n 2, 100 . Vector diagram of Poynting flux. The
intensities of the vectors increase in order from blue, green, yellow, red.

Figure 11. Same as Figure 10, for n 2, 500 .
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value at the position of the light cylinder, and decreases
gradually outside.

The Poynting flux passing through the light cylinder is
important, thus I calculated the Poynting flux’s R component,
LR(R), summing up over Z direction:

L R R E B E B dz2 . 51R

z

z z
0

max
( ) ( ) ( )

Figure 12 shows that the normalized Poynting flux settles
from the inside to the outside over time. Figure 13 plots the
distance dependence of normalized pointing flux on the light
cylinder.

Poynting flux decreases with radius because the toroidal
magnetic field S does not spread to the outside.

In the small-conductivity case, Poynting flux decreases
rapidly with distance from the surface. Current circuit structure
form within a small region. Poynting flux increases linearly
with respect to electrical conductivity 0 in the light cylinder.
However, Poynting flux outside of the light cylinder is not
linearly proportional to electrical conductivity ;0 this is
because the spatial width of the current circuit is changed by
the electrical conductivity. A large spatial scale poloidal current
causes a large spatial toroidal magnetic field area. This is

evident in the distribution of the toroidal field S under changing
electrical conductivity.

4.2. Electrical Conductivity ( 0) Dependence of Magnetosphere
and Poynting Flux

Under the same field from the equation of current-density
model, the current along the magnetic field is increased by high
electrical conductivity. However, it is not a solution that is
proportional to the electric conductivity due to its nonlinearity.
The most significant change is dependent upon the electrical
conductivity 0, as it adjusts the spatial scale of the current
circuit. Circuits are smaller when the electrical conductivity 0
is small. Conversely, the high the electric conductivity 0, the
current circuit becomes large. As can be seen from the current-
density distribution, the spatial structure of the current circuit is
difficult to grasp clearly. Therefore, instead of the current-
density distribution, consider the toroidal magnetic field
distribution. Figure 3 shows contours of the toroidal magnetic
field S, which is proportional to the electrical conductivity.
Contours have a shape that extends further outward, rather than
remaining at the same location. From the results mentioned
above, the current circuit expands by increasing the electrical
conductivity.
The contour level is five times larger in Figure 6(a) than in

Figure 6(d). The maximum toroidal magnetic field S become
about five times larger between the 100 and 500 cases.
Other 0 parameters suggest similar results.

Figure 12. The horizontal axis shows the number of steps and the vertical axis
indicates the normalized Poynting flux. Each line can be seen that converges to
a constant value at 10, 20, 500 for more than time 70 steps, meaning that
the magnetosphere is in a stable state over time.

Figure 13. Vertical axis Poynting fluxes are normalized by the value of the
light cylinder, while the horizontal axis is the distance from the magnetic axis.
Poynting flux is maximal at light cylinder R=5 and is attenuated outside. The
green, yellow, and blue lines correspond to 10, 20, 500 , respectively.
When the electrical conductivity decreases, the Poynting flux damping appear.

Figure 14. Normalized Poynting flux L c2 4 3( ) across the light cylinder of
electric conductivity 0 for n=2.

Figure 15. Same as Figure 14, for n=1.
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In the near-star region and farther out, the toroidal magnetic
field strength is of the same order and shape.

At around r 20, the toroidal magnetic field S gradually
decreases outward. Magnetic field lines remain open, but
current is insufficient to create a toroidal magnetic field.

In Figure 6(a), poloidal current is small in the blue region.
Two characteristic structures appear in Figure 6(a): the
equatorial plane and the closed region.

Radial Poynting flux LR made by B and Ez components.
This section discusses the Poynting flux dependence of the
electric conductivity.

4.2.1. n=2 Case

We set different electric conductivities 0 on the star surface,
r 10 ( ). The radial index is set to n=2. Figure 14

shows the regularized Poynting flux to surface electric
conductivity 0. Poynting flux is integrated over the light-
cylinder radius R cLC , and is proportional to electric
conductivity 0.

From the fitting result, the linear coefficient is
L3.7 10 3
0 , where the normalized Poynting flux

is L c0
2 4 3.

4.2.2. n=1 Case

Figures 14 and 15 show the Poynting flux decrease by
radius. Poynting flux L depend upon electrical conductivity 0,
but the Poynting flux in n=1 is clearly less than in the n=2
case, because the poloidal-current circuit for the n=2 case
expands more narrowly than for n=1. The Poynting flux for
the n=1 case is not clearly proportional to the electric
conductivity.

5. Discussion

5.1. The Global Magnetospherical Structure’s Electrical-
conductivity Dependence

Our simulation introduces the radial dependency the of
electric conductivity r( ), Equation (49). r( ) is parameterized
by n and 0. The current density is derived from Ohm’s law;
however, the current density includes velocity along the
magnetic field as a parameter and cannot be determined
uniquely.
Poynting flux increases monotonically along with electrical

conductivity 0 because toroidal magnetic field is increased by
a large poloidal current. In both the n=1 case and n=2
cases, Poynting flux is not linearly dependent on the

Figure 16. Poloidal and toroidal magnetic field meridional plane by surface change S. From top to bottom and left to right: S r S r, ,s 0( ) ( ),
parameter 0.5, 1.0, 2.0, 3.0s .
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parameters. The poloidal current circuit has width and circuit
shape. Poynting flux gradually decreases outward. In the case
of n=1, Poynting flux increases gradually compared to the
n=2 case. It is found that in the n=1 case, the current circuit
is more widely spread than in the n=2 case.

To compared to other research results in the parameter .
In previous papers, only 0 has been considered as a parameter.
Thus, I use the value of r 5( ) . The magnitude of the
Poynting flux in each of the parameter is different.

From the force-free simulation result by Spitkovsky (2006),
the Poynting flux is

L

L
1 sin , 52

0

2( ) ( )

where α is the angle between the rotation and magnetization
axes. 0 corresponds to an aligned rotator. Poynting flux is
smaller than that in the paper Li et al. (2012).

Li et al. (2012) shows the Poynting flux in the resistive
force-free condition. In Tables 1 and 2, the Pointing flux of the
each electrical-conductivity of n=2 and n=1 are summar-
ized. In the n=2 case, we have

L

L
2.3 10 1.9 10 . 53

0

3 2⎜ ⎟⎛
⎝

⎞
⎠ ( )

In the n=1 case, we have

L

L
1.2 10 8.3 10 . 54

0

2 4⎜ ⎟⎛
⎝

⎞
⎠ ( )

Li et al. (2012) corresponds to the case of n=0. In this case,
the electric current is spread more widely than in the n=1 and
n=2 cases. Our simulation outer electric conductivity close to
vacuum. Thus, Poynting flux becomes small. Poynting flux in
the light cylinder is proportional to electrical conductivity. It is
different from their result.

5.2. The Magnetospheric Structure Independent of the Surface-
boundary Toroidal Magnetic Field

Current circuits connect to the star surface; however, the
toroidal magnetic field set boundary B 0 Equation (32). To
check whether the toroidal magnetic field of the star surface
affects the magnetosphere, a calculation was performed under
different surface toroidal magnetic field conditions. The toroidal
magnetic field in the surface-boundary set S r S r, ,s 0( ) ( ),
and parameter changed 0.5, 1.0, 2.0, 3.0s . The resulting
magnetic field is shown in Figure 16. The results show that the
Poynting flux does not change for parameter s. Poynting flux L
is independent of the surface toroidal magnetic field. The
magnetic field formed by the current circuit can be considered
independent.

5.3. Solve both Hemispheres in the Magnetosphere

Solutions that dose not form magnetic field line structures
may remain open for a closed configuration. This result is in
contrast to other studies showing that magnetic field lines
gradually opened under strong toroidal current flows in the
equatorial plane. In this study, the electrical conductivity in the
equatorial plane is set to be the same as in other region.
Figure 17 shows the results, which predict the magnetosphere
grows unstable overtime. Color represents the toroidal magn-
etic field. Instability was developed in the vicinity of the
Y-point and equatorial plane beyond the light cylinder. When

the electrical conductivity is large, instability grows faster. In
the closed-magnetic field-configuration case, electric conduc-
tivity can range up to 600 . In the open-boundary-condition
case, electrical conductivity can range up to 1500 .

5.4. Equatorial Plane Current Sheet

The equatorial plane boundary condition is set as E 0.
The radial magnetic direction is antiparallel to the upper and
lower equatorial planes. In center of the current sheet, the
magnetic field is very weak. There is no boundary condition for
Er. Thus E B2 2 does not meet the force-free condition. The
force-fee split-monopole and dipole solution has the same
character to the current-sheet formation. The split monopole
yields a magnetic flux of f Z R( ). From Ampéreʼs law, a
poloidal magnetic field open in infinite distance needs a
toroidal current sheet in the equatorial plane. The equatorial
toroidal current sheet is described using the Dirac delta
function. In the dipole-magnetic field case, electric current
concentrates in the last open field line. In this paper, the
equatorial plane boundary condition is idealized to solve
problems.

6. Conclusion

I use a current model derived from Ohm’s law to understand
resistive force-free magnetospheres. I introduce an electrical
conductivity dependent upon distance from the star. A steady
state is obtained by combining Maxwell equations and the
boundary condition. These resistive force-free solutions show
that the current has width and circuit shape. A toroidal
magnetic field is formed outside of the light cylinder. The
Poynting flux from magnetosphere has a maximum in the light
cylinder and decreases on the outside. In the high-conductivity
case, the current circuit spreads more widely. The shape of the
current circuit varies with the spatial dependence of the
electrical conductivity. The Poynting flux in the light cylinder
is in proportion to the electrical conductivity. The surface-
toroidal-magnetic field does not affect Poynting flux in the light
cylinder.

Figure 17. Whole spherical simulation result. Same as Figure 3(a), for
n=2, 200 .

13

The Astrophysical Journal, 850:205 (14pp), 2017 December 1 Kato



The author is thankful to Yasufumi Kojima for many useful
comments and help with the code.

ORCID iDs

Yugo. E. Kato https://orcid.org/0000-0002-3828-5430

References

Cerutti, B., Philippov, A., Parfrey, K., & Spitkovsky, A. 2015, MNRAS, 448, 606
Cerutti, B., Philippov, A. A., & Spitkovsky, A. 2016, MNRAS, 457, 2401
Chen, A. Y., & Beloborodov, A. M. 2014, ApJL, 795, L22
Contopoulos, I., Kazanas, D., & Fendt, C. 1999, ApJ, 511, 351
Goldreich, P., & Julian, W. H. 1969, ApJ, 157, 869

Gruzinov, A. 2005, PhRvL, 94, 021101
Gruzinov, A. 2007, arXiv:0710.1875
Gruzinov, A. arXiv:1101.3100
Gruzinov, A. 2008, 6 arXiv:0802.1716
Komissarov, S. S. 2006, MNRAS, 367, 19
Krause-Polstorff, J., & Michel, F. C. 1985, MNRAS, 213, 43
Li, J., Spitkovsky, A., & Tchekhovskoy, A. 2012, ApJ, 746, 60
Lyutikov, M. 2003, MNRAS, 346, 540
McKinney, J. 2006, MNRAS, 368, L30
Pétri, J. 2009, A&A, 503, 1
Philippov, A., & Spitkovsky, A. 2014, ApJL, 785, L33
Philippov, A., Spitkovsky, A., & Cerutti, B. 2015, ApJL, 801, L19
Spitkovsky, A. 2006, ApJL, 648, L51
Tchekhovskoy, A., Spitkovsky, A., & Li, J. G. 2013, MNRAS, 435, L1
Timokhin, A. 2006, MNRAS, 368, 1055

14

The Astrophysical Journal, 850:205 (14pp), 2017 December 1 Kato




