IPSHU研究報告シリーズ 研究報告No.55

旧ソ連セミパラチンスク核実験場周辺集落の 環境放射能汚染:

サルジャール、カラウル及びカイナル集落と パブロダール州南部の集落

山本 政儀*・川合 健太・富田 純平 美濃 健太・坂口 綾・大塚 良仁 今中 哲二・遠藤 暁・川野 徳幸 星 正治・Kazbek APSALIKOV Talgat MULDAGALIYEV・Boris GUSEV

March, 2018

広島大学平和科学研究センター 〒730-0053 広島市中区東千田町1-1-89 TEL 082 542 6975 FAX 082 245 0585 E-mail: heiwa@hiroshima-u.ac.jp URL: http://home.hiroshima-u.ac.jp/heiwa/

IPSHU 研究報告シリーズ

研究報告 No. 55

旧ソ連セミパラチンスク核実験場周辺集落の環境放射能汚染: サルジャール、カラウル及びカイナル集落と パブロダール州南部の集落

山本 政儀*

金沢大学環日本海域環境研究センター・低レベル放射能実験施設

(現:金沢大学大学院自然科学研究科)

川合 健太

金沢大学環日本海域環境研究センター・低レベル放射能実験施設

(現:中部電力株式会社)

富田 純平

金沢大学環日本海域環境研究センター・低レベル放射能実験施設

(現: (国研)日本原子力研究開発機構原子力科学研究所)

美濃 健太

金沢大学環日本海域環境研究センター・低レベル放射能実験施設 (現:日本原子力発電株式会社)

坂口 綾

金沢大学環日本海域環境研究センター・低レベル放射能実験施設

(現:筑波大学アイソトープ環境動態研究センター)

大塚 良仁

金沢大学環日本海域環境研究センター・低レベル放射能実験施設 (現:公益財団法人 環境科学技術研究所)

今中 哲二

京都大学原子炉実験所

遠藤 暁

広島大学工学研究科

川野 徳幸

広島大学平和科学研究センター

星 正治

広島大学平和科学研究センター

Kazbek APSALIKOV

Kazakh Scientific Research Institute for Radiation Medicine and Ecology Talgat MULDAGALIYEV

Kazakh Scientific Research Institute for Radiation Medicine and Ecology Boris GUSEV

Kazakh Scientific Research Institute for Radiation Medicine and Ecology

Environmental radioactive contamination in settlements around the former Soviet Union's Semipalatinsk nuclear test site : Sarzhal, Karaul and Kainar settlements , and some settlements located south of the Pavlodar Region

Masayoshi YAMAMOTO*

LLRL, Institute of Nature and Environmental Technology, Kanazawa University (Present: Graduate School of Natural Science and Technology, Kanazawa University)

Kenta KAWAI

LLRL, Institute of Nature and Environmental Technology, Kanazawa University (Present: CHUBU Electric Power Co., Inc.)

Jumpei TOMITA

LLRL, Institute of Nature and Environmental Technology, Kanazawa University (Present: Nuclear Science Research Institute, Japan Atomic Energy Agency)

Kenta MINO

LLRL, Institute of Nature and Environmental Technology, Kanazawa University (Present: The Japan Atomic Power Company)

Aya SAKAGUCHI

LLRL, Institute of Nature and Environmental Technology, Kanazawa University (Present: Center for Research in Isotopes and Environmental Dynamics, University of

Tsukuba)

Yoshihito OHTSUKA

LLRL, Institute of Nature and Environmental Technology, Kanazawa University (Present: Department of Radioecology, Institute for Environmental Sciences)

Tetsuji IMANAKA

Research Reactor Institute, Kyoto University

Satoru ENDO

Graduate School of Engineering, Hiroshima University Noriyuki KAWANO

Institute for Peace Science, Hiroshima University Masaharu HOSHI

Institute for Peace Science, Hiroshima University Kazbek APSALIKOV

Kazakh Scientific Research Institute for Radiation Medicine and Ecology Talgat MULDAGALIYEV

Posserveh Institute for Rediction Medici

Kazakh Scientific Research Institute for Radiation Medicine and Ecology Boris GUSEV

Kazakh Scientific Research Institute for Radiation Medicine and Ecology

* Corresponding author : yama1018@staff.kanazawa-u.ac.jp

目次

Abs	trac	ct•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Ι.	はし	じめ	に	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
$\mathbb{I}.$	サノ	レジ	ヤ	_	ル	及	び	カ	ラ	ウ	ル	集	落	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
Ⅲ.	力 <i>~</i>	イナ	ル	集	落	及	び	パ	ブ	D	ダ	_	ル	州	南	部	の ?	集	落	•	•	•	•	•	•	•	•	•	16
IV.	これ	れま	で	に	調	査	L	た	セ	11	パ	ラ	チ	ン	ス	ク	全;	地	域	の	137	Ċs	5 及	まて	۶ ²	39,2	²⁴⁰ I	Pu	
	蓄種	責量	と	239,	240	Pu	ι/ ¹³	³⁷ C	Cs)	皮で	ゾ	238-	Pu	/23	9,2 4	¹⁰ P	'u龙	友身	村前	能]	七	のよ	北朝	賋					
		••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24
ν.	全体	本の	ま	と	め	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24
参考	文南	状・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26

Abstract

More than 450 nuclear atomic explosions including atmospheric, aboveground and underground nuclear tests had been conducted by the former Soviet Union (USSR) at the Semipalatinsk Nuclear Test Site (SNTS) over the past 40 years. Since 1994, we have concentrated our energies on assessing the human health and environmental impacts of nuclear testing. Especially, residual long-lived radionuclides such as ¹³⁷Cs and Pu isotopes have been measured for soil samples from various areas. The studies focused on the evaluation of radioactive contamination in the settlements where the Semipalatinsk historical cohort resided. In October 2005, detailed soil sampling was carried out around Dolon settlement to estimate the width and position of center-axis of the fallout plume associated with the first USSR atomic bomb on 29 August 1949, and provided useful information on the efforts to estimate radiation dose in Dolon settlement as reliably as possible. Such studies were, next, devoted more time and attention to the Sarzhal and Karaul settlements located in the southeastern direction from the SNTS. The local fallout from the fist thermonuclear event on 12 August 1953 (30 m in height, 400 kt in scale) heavily affected those settlements.

Here, laying stress on Sarzhal and Karaul settlements, the accumulated levels and spatial distribution of soil contamination by ¹³⁷Cs and ^{239,240}Pu have been excessively investigated since 2007. Besides, the radionuclides ²³⁶U and ²³⁷Np derived from bomb materials themselves were also measured together with the induced radionuclides, ¹⁵²Eu and ⁶⁰Co, in some soil samples. Based on those data obtained, radiation doses in air in two settlements were first reconstructed. As a result, adsorbed doses in air in case of the evacuation (non-evacuation) for inhabitants in Sarzhal and Karaul settlements were evaluated to be $20 \sim 100$ mGy ($210 \sim 530$ mGy) and $10 \sim 75$ mGy ($120 \sim 380$ mGy), respectively, as our tentative estimate for 1-year cumulative external doses mainly due to the local fallout from the first USSR hydrogen bomb test in August 1953.

Apart from the above researches, in the Kainar village, one of the villages where the historical cohort resides, located south of the SNTS, and in the Pavlodar District located in the adjust north direction of the SNTS in which data were very limited, accumulated levels of ¹³⁷Cs and Pu isotopes in soils have been measured for evaluating ¹³⁷Cs and Pu inventories and their spatial distributions.

The inventories of 137 Cs found out both inside and outside of the Kainar village were in a wide range of $130 \sim 7,500$ Bq/m². A clear shape similar to a Gaussian function along the center-axis of the radioactive plume, which has been found in Dolon, Sarzhal and Karaul settlements, was not observed in their spatial distributions, indicating a wider and uniformly close contamination of this region.

On the other hand, in Pavlodar District, the ¹³⁷Cs inventories ranged from 1,000 to 3,000 Bq/m² for soil samples. As a whole, Pavlodar areas that the surveys have been conducted were found not to be contaminated so highly, compared with the northeastern areas including Dolon settlement contaminated heavily by the first nuclear atomic explosion in August 1949. The obtained data were also compared with all the data from other areas where we have surveyed until now. The obtained data will be useful for future residents' exposure dose assessment

Key words: Semipalatinsk nuclear test site, Radioactive contamination, Radiation dose, ¹³⁷Cs, Pu isotopes, Sarzhal, Karaul, Kainar, Pavlodar

I. はじめに

21世紀の環境科学に課せられた最大の問題 は、世界中に作り上げてきた環境問題、すなわ ち負の遺産の複合現象を科学的に学び、将来に 向けた新たな解決策を提示することである。こ うした中、核被災の環境、そこでの住民の生活 は最たるものである。

放射線の人体影響研究は、広島・長崎の原爆 被災者数十万人の高線量率・高線量を基にして 発癌への影響、寿命調査などが行われ、その影 響が国際放射線防護委員会(ICRP)で認定さ れてきた。しかしながら、通常の被曝は、長期 の低線量率・低線量が多く、原爆による瞬時の 被曝からのリスクをそのまま適用することには 疑問視されてきた。この難問題を現実的に解決 するためには、大きな集団の長期の低線量率・ 低線量被曝の調査・研究が必須である。

チェルノブイリ原子力発電所事故(1986年 4月)、さらに昨今の東京電力・福島第一原子 力発電所事故(2011年3月)とも関連して特 に長期の低線量率・低線量被曝の人体影響研究 が緊急性を帯びている。1993年から1997年に かけてロシア・アメリカ・中国・カザフスタ ン・フランス・イギリスが共同で国際共同プ ロジェクト "RADOTEST (Radioactivity from Nuclear Test Explosions の略)"副題「原爆実 験による放射性降下物の沈降、移動および人体 影響の研究」をスタートし、多くのデータを発 掘してきた (Warner and Kirchmann, 1999)。

低線量放射線被曝によるリスク評価は、その 対象となる低線量放射線を被曝した集団が少な いこともあり非常に困難であるが、この問題解決 に唯一貢献できるフィールドとして数十万とも言 われる幅広い年齢層の周辺住民が広範囲の低線 量率・低線量被曝を受けてきた旧ソ連(現カザフ スタン共和国)核実験場セミパラチンスク(SNTS) 周辺住民が挙げられる。この核実験場(Fig. 1) では、1949年から1989年の40年間に合計456 回の核実験が実施され、そのうち116回は地上・ 大気圏内で実験が行われた(UNSCEAR, 2000)。 周辺集落住民 (Fig. 2) はこれらの核実験からの フォールアウトによる外部被曝と吸入・経口摂取 による内部被曝を併せた混合被曝を受けてきた (約20万人の住民が健康被害を受けてきたと懸 念されている)。この地域の放射線被曝の人体影 響に関する疫学調査と線量評価は、実態に沿っ た放射線影響のリスク評価をする上で極めて重 要である。これまで、外部被曝 300 ~ 2500 mSv (1949-1992 年間の総被曝線量) に加えて内部被 曝 400 ~ 3000 mSv を受けたと言われている。し かし、これらの外部・内部被曝線量は旧ソ連およ

Underground: 346 times (TNT = 11 M t)

Fig. 1 Former Soviet Union's Semipalatinsk nuclear test site (SNTS) and chart of SNTS with the axes of most significant doseforming local traces of radiation pollution.

びカザフスタンの科学者らによって、当時測定し た数少ない線量率を基にして、数学的モデルで 推定されてきたもので、その検証も含めてモデル の妥当性が問われてきた。それ故に、実試料測 定に基づいた検証が必須である。

本研究グループは、これまでに広範囲の地域 から土壌試料(主に30cmコア)を採取し、セ ミパラチンスク核実験場周辺の放射能汚染の現 状と得られた¹³⁷Cs 蓄積量を基にして周辺住民 の被曝線量を再評価することを目的に研究を進 めてきた (Yamamoto et al., 1996a, 1996b, 1999, 2001, 2002, 2004, 2006; Takada et al., 1996)。 *±* た同時に、建物のレンガの TL 測定により空間 線量、歯の EPR 測定から住民の外部被曝線量 も併せて継続的に評価してきた(GöKsu et al., 2006; Stepanenko et al., 2006; Sato et al., 2006; Zhumadilov et al., 2006)。1949年に行われた旧 ソ連最初の核実験(22kt:鉄塔を用いた地上爆 発)の影響を強く受けたドロン (Dolon) 集落 において、核実験による放射性雲(プルーム) がどの位置をどの程度の幅をもって通過したの かを明らかにするために、2005年にドロン集 落で詳細な土壌採取を行い、¹³⁷Cs と^{239,240}Pu 蓄 積量の分布を明らかにした (Sakaguchi et al., 2006; Yamamoto *et al.*, 2008).

ドロン集落における¹³⁷Csの初期沈着量から 試算した積算空間線量、約500 mSv (Imanaka *et al.*, 2006, 2010) は、当時の建物のレンガの TL 測定による線量 (Stepanenko *et al.*, 2006; Sato *et al.*, 2006; Göksu *et al.*, 2006) やモデル 計算による積算空間線量 (Gordeev *et al.*, 2006; Simon *et al.*, 2006; Stepanenko *et al.*, 2007) と も比較的よく一致し、現在の残留¹³⁷Cs 沈着量 から核実験当時の放射能汚染状況を再現し、過 去から現在までの被曝線量を評価できる可能性 がでてきた。 本研究では、①旧ソ連初の水爆(1953 年 8 月 12日:400kt)の影響を強く受けたサルジャール (Sarzhal)とカラウル(Karaul)集落に焦点を当 て、両集落及びその周辺地域の詳細な放射能汚 染状況を明らかにし、得られたデータを基にし て、ドロン集落をモデルケースとした¹³⁷Csの初 期沈着量から積算空間線量を推定する手法を適 用し、両集落住民の被曝線量の再構築を試みた。

更に、②核実験場南西に位置するカイナル集 落と③詳細な研究が実施されてこなかった核実 験場の北側に隣接するパブロダール州南部の幾 つかの居住地域の放射能汚染に焦点を当て、将 来の被曝線量評価に資するための環境放射能汚 染の実態を明らかにすることを目的とした。ま た、これまでに調査研究を実施してきた全域の 汚染状況との比較も試みた。

Ⅱ. サルジャール及びカラウル集落

旧ソ連初の水爆とサルジャール及びカラウ ル集落の概要

セミパラチンスク核実験場の南東に位置する サルジャール及びカラウル集落は、旧ソ連初の 水爆(RDS-6s, 400 kt, 1953 年 8 月 12 日)に よる局地的フォールアウト(local fallout)の

Fig. 2 Location map of settlements where the Semipalatinsk historical cohort resides.

影響を強く受けた。

この初の水爆は、Layer Cake と呼ばれ水爆 というよりも爆縮型の原爆に近い球構造を持 \mathcal{O}_{\circ} Nuclear, Biological and Chemical Warfare (Bushan, 2002) によると、主要構成材料とし て球の中心からトリチウム (³H) ガス、²³⁹Pu、 ²³⁵U、²³⁸Uのフィッションタンパー、重水素化 リチウム (LiD)、²³⁸Uのフュージョンタンパー、 高性能の爆縮システムと予想されている。予想 されるエネルギー収率(400 kt)の内訳は、核 融合(D-T反応)のエネルギー効率が15-20 % であることから、核融合 80kt とすると核分 裂は320 kt となる。核分裂の収率をさらに細 かく分けると、²³⁵Uと²³⁹Puによる核分裂が40 kt であり、²³⁸Uの14 MeV 中性子による核分 裂が280ktと推定される。しかし構成材料の使 用量などの詳細な情報は公開されておらず、不 明な点が多い。

サルジャール集落では、SNTSから南東100 kmにあるため核実験当日までに避難勧告が出 されており、住民は核実験16日後に集落へ戻っ てきたとされている。一方、カラウル集落では、 SNTSから200km近く離れていることから核 実験当日までに避難勧告が出されていなかっ た。放射性プルームが集落周辺に向かって移動 していることが確認されたため住民は緊急的に 避難し、核実験から10日後に集落へ帰還した(S. Shinkarev 私信)。

サルジャール及びカラウル集落での線量デー タについては、線量率を基にしたモデル計算値 (Gordeev, 2002)や歯を用いた EPR 値 (Sholom *et al.*, 2007)が報告されている。しかし相互の データを比較すると、モデル計算による線量の 方が数倍高く、線量の不一致が問題となってい る。モデル計算値、EPR 値ともにさらなる検 証が必要であるとされている。

2. 実験方法

2.1 土壌試料採取と前処理

放射能汚染についての空間分布を得るために 土壌試料について検討した。すでに先行研究と して幾つかの土壌試料について、データが得ら れている。今回は、2007 年から 2010 年にかけ て、サルジャール、カラウル集落周辺の 89 地 点において採取(深さ 30 cm、直径 4.7 cm ス テンレスパイプを使用)した土壌試料を主に用 いた(試料採取の様子: Fig. 3)。

試料採取は、カザフスタン放射線医学環境研 究所の協力の下、広島大学・金沢大学・京都大 学から成る研究グループで実施した。採取地点 は、旧ソ連初の水爆のプルームが通過したと予 想されるセンター軸に対して垂直になるよう な方向に沿って実施した(Figs. 4 and 5)。予 想されるプルームのセンター軸は、Artemyev (2006)の報告を参考にし、地点① (N50° 27'0", E77° 44'24")と地点② (N 48° 19'12", E 80° 0'0") を結んだ直線とした。また試料採取地点の位置 情報は、全地球測位システム(GPS)を用いて 確認した(Appendixes I and II)。すべての土 壌試料は、国内に持ち帰った後 100 ℃前後で 乾燥、2 mm メッシュで篩い分けした。その後、 粉砕機を用いて試料をできるだけ均一にした。

Fig. 3 Photograph of soil sampling near the Sarzhal settlement in 1995.

Fig. 4 Soil sampling points around Sarzhal settlement.

Fig. 5 Soil sampling points around Karaul settlement.

2.2 化学分離と放射能測定

採取した土壌試料について、下記に示す非破 壊 y 線測定で¹³⁷Cs を定量した後、放射化学分 析を実施して Pu 同位体、一部の試料について フラクショネーション(fractionation)及び誘 導放射性核種を評価するために²³⁶U(²³⁸U)と ²³⁷Np 及び¹⁵²Eu と⁶⁰Co も測定した。

 [¹³⁷Cs]:核分裂生成核種(FP)。プラスチック容器(内径6 cm、高さ2 cm)に土壌試料(60-80 g)を入れ、Ge半導体検出器を用いて y線計測し、¹³⁷Cs(T_{1/2}=30.1 y,β)を定量した。 測定の較正には、New Brunswick Laboratory (NBL)の標準物質(No.42-1)と分析用特級 KClの混合試料を使用した。

[²³⁸Pu,^{239,240}Pu]:原爆・水爆の主要構成材料。 y線測定の後、Pu分析を行った(Yamamoto *et al.*, 1996b)。Global fallout Puで汚染された

通常地域の土壌中 Pu は、硝酸加熱で比較的簡 単に抽出できるが、核実験近傍の Pu は蒸発・ 凝集した土壌粒子等に取り込まれているため、 可能な限り全分解を試みた(Yamamoto et al., 1999)。土壌試料 20-30 g を秤量後、電気炉を 用い一晩加熱(450℃で灰化)した。灰化試料 に化学収率補正用の²⁴²Pu標準溶液を一定量添 加し、硝酸、フッ酸を加えホットプレート上で 蒸発乾固した。この操作を3回繰り返し大部分 のケイ素を除去後、過塩素酸を加え蒸発乾固し、 未反応のフッ酸を除去した。得られた乾固物に 硝酸と過酸化水素を加え加熱抽出し、遠心分離 により上澄みと残渣を分けた。残渣は、さらに 硝酸とフッ酸を加えて再度蒸発乾固した。硝酸 に溶解後、先に得られた抽出溶液と合わせ、0.45 um 孔のフィルターで減圧ろ過し、最終的な抽 出溶液を得た。その後、Pu同位体をFe(OH)。 で共沈させ、陰イオン交換樹脂(DOWEX 1-8 100-200 mesh、NO₃型) カラムでPu分離・ 精製し、ステンレス板上に Pu を電着(1A, 2) 時間)した。表面障壁型 Si 半導体検出器を用 いて a 線を計測した。²³⁹Pu(T_{1/2}=2.41x10⁴ y, a)、 ²⁴⁰Pu (T_{1/2}=6.5x10³ y, a) 及び ²³⁸Pu (T_{1/2}=87.74 y,a)を定量した(a線スペクトロメーターで は、²³⁹Puと²⁴⁰Puのa線エネルギーを区別する ことが困難なので、両者の合計として^{239,240}Pu と記す)。

[²³⁶U,²³⁸U]:²³⁸U(T_{1/2}=4.468x10⁹ y, a) は、
 原爆・水爆のフィションタンパー、²³⁶U(T_{1/2}
 = 2.342x10⁷ y, a) は²³⁸U(n,3n) および²³⁵U
 (n, y) 核反応で生成される(Sakaguchi et al., 2009)。土壌試料を全分解した溶液について、
 U 同位体を測定するために、加速器質量分析
 計(Accelerator Mass Spectrometry: AMS)
 による²³⁶U/²³⁸U比測定用と全²³⁸U濃度測定用
 に分けて化学分離操作を行った(Sakaguchi et al.)

al., 2009)。²³⁶U/²³⁸U 原子数比は、VERA(オー ストリア・ウィーン大学の加速器研究機関)の AMS(TOF-AMS)で、全²³⁸U 濃度は *a* 線ス ペクトロメトリーで定量した。

分析には、土壌試料数gを用い、全分解操 作を行って試料溶液を得た。得られた溶液を秤 量した後、溶液の 2/3 を AMS 測定用(A 溶液) に、残りの1/3を全²³⁸U濃度測定用(B溶液) とし、それぞれ秤量した。B 溶液のみに、²³²U 標準溶液を一定量添加した。A、B溶液それぞ れのUをFe(OH)₃で共沈させ、回収した沈殿 は少量の10 M 塩酸で溶解した後、イソプロピ ルエーテルを用いた溶媒抽出により Fe を除去 した。蒸発乾固後、10M塩酸に溶解して陰イ オン交換樹脂 (DOWEX 1-8 100-200 mesh, CI型)を用いたカラム法によりUを分離・精 製した。精製した B 溶液は Pu 分析と同様にし て電着板を作成した。精製した A 溶液につい ては、Fe標準溶液(1000 ppm)を2 ml 添加し、 再度 U を Fe(OH)₃で共沈させた。遠心分離で 回収した沈殿を電気炉で3時間、800℃で加熱 した。この乾固物(酸化鉄)をAMS 測定用の ターゲットとし、AMS で測定を行った。

[²³⁷Np]:主として ²³⁸U (*n*,2*n*) ²³⁷U → ²³⁷Np 反応で生成。²³⁷U (T_{1/2}=6.75 d β) は短半減 期であるため、その子孫核種である半減期の長 い²³⁷Np (T_{1/2}=2.144x10⁵ y, *a*) を測定して ²³⁷U を評価した。試料に化学収率補正のためのト レーサー ²³⁹Np (²⁴³Am からミルキングして調 整)を一定量添加し、Puと同様な方法で処理 して試料溶液を得た。蒸発乾固後、10M 塩酸 に溶解し、イソプロピルエーテルを用いた溶 媒抽出法により Fe を除去した。続いて TOA-Xylene による Np の溶媒抽出を行った。逆抽 出で得られた溶液に La 担体、塩酸ヒドロキシ ルアミン、硫酸を加え 50℃で加熱。フッ酸を 加えフッ化ランタンによる共沈を行った。沈殿 は、飽和硝酸アルミニウム溶液(8M 硝酸)に 溶解させ、陰イオン交換樹脂(DOWEX 1-8 100-200 mesh, NO₃型)カラムで分離し、さ らにUを除去するために、酢酸系の陰イオン 交換樹脂カラムで精製した。ステンレス板上に Np 電着し、まず²³⁹Np を Ge 検出器で測定して 化学収率を評価した。その後、a線スペクトロ メトリーにより²³⁷Np を定量した(Yamamoto *et al.*, 1989)。

[¹⁵²Eu,⁶⁰Co]: 爆心地直下及びその周辺で中性 子と表層土壌成分との核反応で生成する誘導放 射性核種。¹⁵²Eu(T_{1/2}=13.516 y, β⁻)及び⁶⁰Co (T_{1/2}=5.27 y, β⁻) は現在においても残留してい る可能性が高い核種である。土壌試料 80-90 gを用いて水酸化ナトリウム溶融(電気炉で 100℃まで加熱し水分を蒸発させてから400℃ まで徐々に温度を上げ、一晩加熱溶融)を行 い、溶融物を水に溶解させた。保持担体とし て Ce(Ⅲ)を添加し、沈殿操作を繰り返しな がら Fe、Mn、U、Th、Ra 等を除去し、最終 的に Ce と共に Eu (+ Co) 沈殿物を得た。沈 殿物を乾燥後、定型に加圧成型し、当研究室所 有の尾小屋極低レベル地下測定室の Ge 半導体 検出器 (Hamajima and Komura, 2004) を用 いて y 線計測し、¹⁵²Eu および ⁶⁰Co を定量した。 Eu及び Co分析の化学収率は安定同位体測定 (ICP-MS) より求めた (Nakanishi, 2001)。

3.¹³⁷Cs 初期沈着量を用いた空間線量評価

本研究では、Excel Visual Basic を利用し て壊変系列(decay chain)を考慮した爆発 後の任意の時間における各核種の放射能を計 算するプログラム FPCOMP(Imanaka and Kurosawa, 2009)を使用した。核種のデータ については、日本原子力研究開発機構の核分裂 生成物ライブラリー(JNDC FP Nuclear Data Library)を用いた(Ihara, 1989)。このFP ラ イブラリーでは、中性子エネルギー(熱中性子、 速中性子、14 MeV 中性子)別に U や Pu など の核分裂性物質の核分裂形式に関して、質量数 66 から 182 までの 1227 核種についての核デー タ(核分裂収率、半減期、壊変形式、平均 y 線 エネルギーなど)がアスキー形式で提供されて いる。

3.1 計算対象核種の選択

グラウンドゼロ (ground zero) での爆発後、 放射性プルームが核実験場境界まで移動する間 に、短半減期の FP の大部分は壊変する。した がって周辺集落に放射能汚染を引き起こし、被 曝線量に寄与すると考えられる核種の選択に ついては、爆発後 20 分経過した時点における FPCOMP の計算結果を使用し、74 核種を選択 した。さらに y 線を放出しない、あるいはその 放出が無視できる核種を除外し、最終的に計算 対象核種を 30 核種 (Ihara, 1989) に限定した。 これら 30 核種の物理的半減期、フラクショネー ションに関わる難融性指標、空間線量換算係数 を Table 1 に示す。

3.2 フラクショネーション

FP生成直後から沈着するまでの間、すべて のFPが同一挙動を示すことはあり得ない。土 壌に沈着したFPの組成は、核分裂収率から予 想される比(理論比)と大きく異なることが予 想される。この現象は、フラクショネーション と呼ばれ、化学的分離と物理的分離プロセス によって引き起こされ、FPの沈着挙動を考察 する上で必須である(Hicks, 1982)。放射性核 種の化学的分別の結果、凝縮物粒子の内部に

非揮発性(refractory)元素が、そして粒子表 面に揮発性(volatile)元素が濃集する。凝縮 物の refractory/volatile 比は、粒子の表面積と 体積との比、約1/r(r:粒子半径)に依存す る。つまり小さな粒子ほど、refractory に比べ て volatile の割合が大きくなり、逆に大きな粒 子ほど、volatile に比べて refractory の割合が 大きくなる。一方、放射性核種の物理的分離は、 粒子の沈降速度の違いによって生じる。小さな 粒子に比べ、大きな粒子は沈降速度が速い。そ のために粒子サイズによって放射性プルームの 経路に沿い、放射性核種の物理的分離が起こる。 爆発地点に近い場所では、refractory 元素を高 い割合で含む粒子半径の大きな粒子が沈降す る。爆発地点から距離が離れるにつれ、volatile 元素の割合が高く粒径の小さな粒子が輸送され てくる。もし FP の何か一つでもその放射能強 度が分かれば、他の FP の放射能強度をある程 度の確率で推定することが可能である。

3.3 フラクショネーション効果の評価

フラクショネーションの度合いを見積もる上 で、土壌中の¹³⁷Cs と^{239,240}Puのデータは重要 となる。爆発直後の全ての核種が気化されてい る状態では、未核分裂のPuと他のFPは混在 しているため、refractory (R) に分類される FPの沈着量はPu量から推測することが可能 である。Volatile (V) に分類されるようなFP の挙動については、¹³⁷Csから推測できる。先 行研究(ドロン集落)では、R/V比(ε)を 用いることによって沈着放射能比を推定した (Imanaka *et al.*, 2006, 2010)。 ε は、実際の沈 着放射能比(実測値^{239,240}Pu/¹³⁷Cs比(Pu/Cs比)) をフラクショネーションがない状態のPu/Cs 比(爆弾の組成と出力から計算される理論値) で除することで得られる。

しかしながら、サルジャール・カラウル集落 に放射能汚染を引き起こした水爆の構成材料の 情報(核分裂物質の使用量や燃焼度(爆発規模)) 等が不明であるため、Pu/Cs 比で沈着放射能 組成を考慮することは困難である。そこで、本 研究では²³⁸U(*n.2n*)核反応で生成される²³⁷U (T_{1/2}=6.75 d β⁻)を用いて沈着放射能比を検討 した(²³⁷Uは短半減期であるため、その子孫核 種である半減期の長い²³⁷Npを測定)。ここで R/V比(ϵ)は、先のPu/Cs比の場合と同様 にして、実際の沈着放射能比、実測 U/Cs 比を フラクショネーションがない状態での U/Cs 比 で除することで推定できる。理論比 U/Cs 比に ついては、いくつかの仮定の基で計算した。ま ず①エネルギー収率の内訳(核融合80kt、核 分裂 320 kt)、②核反応1回当たりのエネルギー 放出(17.6 MeV. 200 MeV)、③核反応1回当 たりの中性子放出数(1個、2.5個)を仮定し た。上記のように仮定すると、(核分裂中性子 数)/(核融合反応による14MeV中性子数) の比は、約1.14となる。つまり核分裂中性子 数と核融合反応による 14 MeV 中性子数は、ほ ぼ同数となる。次に²³⁷Uと¹³⁷Csの生成反応を 考える。¹³⁷Cs は、²³⁸Uと 14 MeV 中性子ある いは核分裂中性子との核分裂反応である。それ ぞれの核反応断面積と中性子放出数から、生成 された全¹³⁷Csの約65%は²³⁸Uと14 MeV 中性 子との反応に由来すると計算できる。一方²³⁷U は²³⁸U (*n*,2*n*)反応によって生成される。また ²³⁸U (*n.2n*) 反応における 14 MeV 中性子と核 分裂中性子の核反応断面積は、それぞれ 974.4. 14.1 ミリバーン (mb) である。中性子数比は ほぼ同数であるから、²³⁷Uの主要な生成反応 は²³⁸Uと14 MeV 中性子との(*n*, 2*n*)反応で あると考えられる。以上により²³⁸Uと14 MeV 中性子との核反応に由来する²³⁷Uと¹³⁷Csは、

ターゲット核(²³⁸U)が同じであり、中性子の フラックスも同じであると仮定できる。この仮 定により、²³⁷U/¹³⁷Csの生成比(理論比)を算 出でき、フラクショネーションの効果を考慮す ることが可能となる。ただし、この仮定を用 いて R/V 比を算出する場合、実際に²³⁸U と 14 MeV 中性子との核反応に由来する¹³⁷Cs は全 ¹³⁷Cs の 65%であるから、¹³⁷Cs の実測値に補正 をする必要がある。

本研究では、さらに主に²³⁸U (*n*, *3n*) 反応 によって生成する²³⁶Uにも着目し、²³⁶Uデー タを用いてフラクショネーション効果を考察し た。²³⁸U (*n*, *3n*) 反応における 14 MeV 中性 子と核分裂中性子の核反応断面積は、それぞれ 405.8, 0.058 mb である。したがって²³⁷U の場 合と同様に生成比(理論比)²³⁶U/¹³⁷Cs 比を算 出できる。

FP が volatile あるいは refractory に分類さ れるかについては、爆発後 20 秒後(液体の凝 縮物が固化し始める時間)での存在形態とそ の割合で決定される(Hick,1982)。ただし、核 種によっては refractory と volatile の中間の挙 動を示すものもあり、それぞれの核種 *i* につい て難融性指数(refractory index)という量が 与えられている。 $r_i=1$ が完全難融性で、 $r_i=0$ が完全揮発性となる。¹³⁷Cs は典型的な完全揮 発性の FP であり、Pu 同位体は FP ではない が、完全難融性の FP と同じように挙動する (Crocker *et al.*, 1965; Hicks, 1982)。ここでフ ラクショネーションファクターを w_i とすると、

 $w_i = (1 - r_i) + \varepsilon \cdot r_i - - - (1)$

と表される。 w_i は、任意の FP 核種について与 えられ、沈着した場合にその FP 核種の¹³⁷Cs に対する比が、フラクショネーションがない場 合に比べて何倍になっているかを表す値であ る。さらに任意の核種 iの時間 t における放射 能量を $a_i(t)$ とすると、

 $a_i(t_i) = w_i \cdot f_i(t) \cdot a_{Cs}(t) - -- (2)$

となる。 $f_i(t)$ は、フラクショネーションがない と仮定した場合における核種iの¹³⁷Csに対す る比(理論比)である。(2)式により、¹³⁷Cs 放射能量がわかれば、他のFPの放射能量を推 定することが可能となる。

3.4 空間線量換算係数

地上1mにおける空間線量率は、放射性核 種が一様に地表に分布していると仮定して、沈 着放射能密度から空間線量換算係数*k_i*(dose conversion coefficient)を用いて計算した。 Table 1に示す換算係数は、地表面粗度にとも なう放射線の減衰を考慮した Beck の値である

Table 1 Radionuclides used to estimate γ -ray exposure from local FP deposition in Sarzhal and Karaul settlements.

Nuclide	Half-life	Refractory index ,ri	(10 ⁻⁹ Gy h ⁻¹)/(kBq m ⁻²)
⁹¹ Sr	9.48 b	0.2	2.59
51wX	49.7 m in	0.2	2.08
^{1/2} Sr	2.71 h	1	4.66
"CY	3.54 h	1	0.92
^{9†} Zr	64.1 days	1	2.82
²⁵ Nb	35.0 days	1	2.92
°'Zt	16.9 h	1	0.65
*Nb	1.20 h	1	2.54
27mNb	60,0 s	1	2.8
**Mo	2.75 days	1	0.61
103 Ru	39.4 days	0.5	1.85
105 Ru	4.44 h	0.5	2.96
100 Ru	1.02 years	0.5	0.79
126m Sb	10.4 min	1	7.34
129 Sb	4.32 h	1	5.08
130mSb	40.9 m in	1	9.88
111mTe	1.25 days	0.7	5.29
111 I	8.04 days	0.7	1.49
132Te	3.20 days	0.5	0.8
122	2.28 b	0.5	8.61
^{133m} Te	55.4 m in	0.15	8.46
1111	20.8 h	0.15	2.35
134 Te	41.8 min	0	3.27
IHI	52.6 m in	0	9.71
1951	6.55 h	0	5.48
"Cs	30,17 years	0	2.18
)*0Ba	12.7 days	0.6	0.57
140La	1.68 days	0.6	7.83
142 La	1.545 h	1	8.32
¹⁴⁰ Ce	1.375 days	1	1

(Beck,1980)_°

以上により、時刻 t での空間線量率 d(t) は

$$d(t) = \sum_{i} k_i \cdot W_i \cdot f_i(t) \cdot a_{Cs}(t) - (3)$$

と表され、沈着時刻 t_d から t までの積算空間線 量 D(t) は、

$$D(t) = \int_{d_t}^t d(t)dt$$

= $\sum_i k_i \cdot w_i \int_{t_d}^t f_i(t) \cdot a_{Cs}(t)dt = ---(4)$

となる (Imanaka et al., 2010)。

本研究では、上記した手法を用いて空間線量 を見積もるが、サルジャールとカラウル集落に おいて、その比較対象となるモデル計算による 空間線量は推定されていない。しかし、一部利 用可能な線量率データ、直接比較はできないが、 外部被曝線量のデータが利用可能なので、線量 率(実測値)との直接比較も試みた。

4. 結果と考察

4.1 土壌中^{239,240}Pu及び¹³⁷Cs 蓄積量及び分布

4.1.1 サルジャール集落とその周辺

サルジャール集落周辺で得た測定結果を Appendixes Ⅲに示す。^{239,240}Puと¹³⁷Csの測定 値は、蓄積量 *I*(インベントリー、Bq/m²)で 表記してある。蓄積量 *I*(Bq/m²)は、Wを2 mm メッシュで篩い分けした全乾燥重量(kg)、 *A*を放射能濃度(Bq/kg)、*S*を試料採取用ス テンレスパイプの表面積(m²)とすると、*I* = (W *x A*)/Sで表すことができる。^{239,240}Pu 及び¹³⁷Cs 蓄積量の頻度分布を Fig. 6 示す。

また、プルームの予想通過センター軸からの 距離の関数で今回測定した全データをプロット したものを Fig. 7 に示す。

Fig. 6 Histograms of ¹³⁷Cs and ^{239,240}Pu inventories (Bq/m²) around Sarzhal settlement.

^{239,240}Pu及び¹³⁷Cs 蓄積量は、それぞれ5~
 11,500及び300~17,100 Bq/m²の範囲で変動し、平均値はそれぞれ1,020及び4,420 Bq/m²
 であった。サルジャール周辺での¹³⁷Cs 蓄積量

は、日本における global fallout ¹³⁷Cs (3,000 ~ 8,000 Bq/m²) 蓄積量の概ね2倍内である。一方、 ^{239,240}Pu 蓄積量は、日本の global fallout (40 ~ 120 Bq/m²)の数十倍高い値である。サルジャー ル周辺における^{239,240}Pu と ¹³⁷Cs の採取地点の 値は、同一地点データに大きなバラツキがある ので、幾何平均での分布も示した (Fig. 7 の右 図)。横軸は、予想されるセンター軸からの距 離であり、横軸の正方向が北東方向に対応する。 幾何平均の分布はガウス分布類似の分布を示し ている。1 地点での測定値のばらつきは大きい (Fig. 8)。

核実験から約 60 年経過した今日においてで さえ、当時のプルームが通過した形跡を確認で きる。最大値を示す付近の場所がセンター軸で あるように思われる。本研究ではサルジャー ル集落内の空間線量を見積もるため、集落内 の¹³⁷Cs 蓄積量が重要なパラメーターとなる。 ¹³⁷Cs 蓄積量は 1,100 ~ 5,700 Bq/m²の範囲にあ る。Global fallout からの寄与に関しては、ド ロン集落周辺で 500 Bq/m² 程度(Gastberger *et al.*, 2000)の値が報告されているが、サル

Fig. 7 Distributions of individual values and geometric means of ¹³⁷Cs and ^{239,240}Pu inventories in soils as a function of the distance from the supposed center axis of fallout plume in Sarzhal settlement.

Fig. 8 Distribution of deviation values (individual value/mean values for ¹³⁷Cs (A) and ^{239,240}Pu (B) inventories in soils at one sampling point) as a function of distance from the supposed center axis of fallout

ジャール集落を含む南方面では報告が無く、実際に測定されたデータは上記したようにバラ ツキが非常に大きいので、今回は補正を行わな かった。カラウル集落に対しても同様に処理し た。核実験当時(1953年8月)の値に補正す ると3,700~19,700 Bq/m²となる。したがっ てサルジャール集落内での¹³⁷Cs 初期沈着量を 4,000~20,000 Bq/m²とした。ガウス関数の フィッティングにより放射性プルームのセン ター軸は、予想されていた軸よりも1.8~2.5 km 程度南西方向にあり、その分布幅は約20 km であると推定された。

Fig. 9 Histograms of ${}^{137}Cs$ and ${}^{239,240}Pu$ inventories (Bq/m²) around Karaul settlement.

4.1.2 カラウル集落とその周辺

カラウル集 落 周 辺 で 得 た 測 定 結 果 を Appendixes Ⅳに、その頻度分布を Fig. 9 に示 す。Fig. 10 にプルームの予想通過センター軸

Fig. 10 Distributions of individual values and geometric means of ¹³⁷Cs and ^{239,240}Pu inventories in soils as a function of the distance from the supposed center axis of fallout plume in Karaul settlement.

からの距離の関数で今回測定した全データ及び 地点毎の幾何平均をプロットしたものを示し た。^{239,240}Puと¹³⁷Csの蓄積量はそれぞれ34~ 1540、502~9918 Bg/m²であり、単純平均値 は 430、2,650 Bq/m²であった。カラウル集落 はサルジャール集落からさらに南東方向に100 km 程度離れており、SNTS から直線距離でお およそ 200 km のところに位置している。プ ルームがサルジャールからカラウルへと移動す る間に拡散・降下したため、カラウル周辺で の^{239,240}Puと¹³⁷Csの蓄積量は全体的にみてサ ルジャールよりも低い値となっている。集落 内での¹³⁷Cs 幾何平均の変動幅は、580~4.200 Bq/m²、核実験当時の値に補正すると 2,000 ~ 14,400 Bq/m^2 となる。したがって、カラウル 集落内での¹³⁷Cs初期沈着量を2.000~15.000 Bq/m²と評価した。また得られたデータに対 して、ガウス関数でフィッティングした結果よ り実際のプルームのセンター軸は、予想され ていた軸よりも 0.4 ~ 0.7 km 北東方向にあり、 その分布幅はおおよそ 20 km、サルジャール集 落付近の幅と大差なく、同じような幅でプルー ムが到着したことが示唆される。

4.1.3 ^{239,240}Pu/¹³⁷Cs 放射能比

サルジャール及びカラウル集落周辺における ^{239,240}Pu/¹³⁷Cs 放射能比の空間分布を Fig. 11 に 示す。1地点につき3つの測定値があるが、そ の幾何平均値をその地点での代表値としてプ ロットした。^{239,240}Pu/¹³⁷Cs 比はサルジャール村 周辺で0.05 ~ 0.72 (平均:0.21 ± 0.11)、カラ ウル集落周辺で0.08 ~ 0.29 (平均:0.16 ± 0.05) であった。

サルジャール集落で観測された異常に高い ^{239,240}Pu/¹³⁷Cs は粒径の大きな hot particle の影 響によると考えられる。サルジャール集落では

Fig. 11 Spatial distribution of geometric mean ^{239,240}Pu/¹³⁷Cs activity ratios in soil collected around (A) Sarzhal and (B) Karaul settlements

全体的にバラツキが大きく、対照的にカラウル 集落ではバラツキが比較的小さい。これは、サ ルジャール集落が核実験場により近いために、 粒径の大きな hot particle がカラウル集落に比 べて多く降下したことによると思われる。また、 以前にドロン集落で得られたガウス分布のピー クのような^{239,240}Pu/¹³⁷Cs比の分布(Yamamoto *et al.*, 2008)は見られなかった。^{239,240}Pu/¹³⁷Cs 放射能比でフラクショネーションの影響を見る と、サルジャール集落 - カラウル集落間で大き な差は無い様に見える。

4.2 空間線量評価

 4.2.1 ²³⁶U,²³⁷Np データを用いたフラク ショネーション効果の評価

旧ソ連最初の原爆(1949年8月)はPu爆弾 であることは既知であるが、1953年8月の水 爆については不明な点が多い。特に、起爆剤が ²³⁵Uなのか²³⁹Puなのか不明である。水爆につ いての組成、規模などの情報を得るために、²³⁸U (*n*, 2*n*)、²³⁸U (*n*, 3*n*)、²³⁵U (*n*, γ) 核反応で 生成する可能性がある²³⁷Np、²³⁶Uの測定を試み た。これらの核種の考察は特に核分裂生成核種 の収率を見積もる際に必須である。²³⁶U、²³⁷Np データ (Appendixes V and IV) およびそれら から計算した R/V 比(ε) を Fig. 12 (Appendix VII) に示した。R/V 比を²³⁶U から計算すると 0.2 ~ 0.4、²³⁷U から計算すると 0.7 ~ 1.3 の範囲 であった。

仮定では²³⁶Uと²³⁷Uは、ともに²³⁸Uターゲッ ト核種と14 MeV 中性子の核反応により生成し たとした。しかし実際は14 MeV 中性子が非弾 性散乱などによってエネルギーを失う可能性が ある。核データライブラリー(Ihara, 1982)に よると、²³⁶Uの生成反応である(*n*, *3n*)反応の 核反応断面積は、14 MeV 付近で一定でなく、 中性子の衝突などでエネルギーが下がると急激 に断面積は下がる。一方、²³⁷Uの生成反応であ る(*n*, *2n*)反応の断面積は、14 MeV 付近で プラトーであり、多少エネルギーが下がったと しても断面積は比較的一定である。水爆実験の 中性子エネルギースペクトルが利用可能でない ため、本研究では、²³⁷Uを用いた R/V 比を採 用した。全体の仮定(400 kt やその内訳など)

Distance (km) from the supposed centerline of plume axis

Fig.12 Comparison of fractionation factors (ϵ) estimated from $^{236}U/^{137}Cs$ and $^{237}U/^{137}Cs$ ratios.

の不確かさを考慮し、R/V比を1.0と仮定して 空間線量を試算した。

4.2.2 ¹³⁷Cs 単位沈着量(kBq/m²)当たり の FP の空間線量

1953年8月12日の午前7時30分、ソ連初 の水爆実験が行われた。この核実験によるキ ノコ雲は高さ16 km まで達し、平均64.6 km/ hの風速で南東方向に移動した。爆心地から各 集落までの距離から、プルームの到達時間が 予想されており、サルジャール村で1.7h、カ ラウル村で 2.9 h とされている (Gordeev et al., 2002)。本研究でも同じ到達時間を採用した。 地上1mにおける¹³⁷Cs単位沈着量(1kBq/ m²) 当たりの積算空間線量の時間変化(サル ジャールに沈着後から 50 年まで) を Fig. 13 に示した。積算空間線量は1日で50年までの 全積算線量の45%、1週間で70%、1年間で 98%を占める。サルジャール村ではプルームの 到達時間1.7時間~1年、そして避難を考慮し 16日~1年までの積算空間線量を計算すると、 前者が 21 mGy、後者が 5 mGy となる。同様 にしてカラウル村では2.9時間~1年、10日~ 1年までの空間線量を計算すると、前者が19 mGy で後者が6mGy となる。

Fig.13 Cumulative γ exposure in air at 1 m above ground after deposition using an assumed initial ¹³⁷Cs deposition of 1 kBq/m², fission contribution of ²³⁹Pu (80%) and ²³⁸U (20%), and a refractory/volatile ratio of 1.0.

4.2.3 ¹⁵²Eu 単位沈着量(kBq/m²)当たり の空間線量

誘導放射性核種として検出された¹⁵²Eu及び ⁶⁰Coの測定結果を Appendix 畑に示した。

得られた値を1953年8月当時の値に補正す ると、⁶⁰Co/¹⁵²Eu 放射能比は、サルジャール村 で31±3、カラウル村で17±3となる。こ れらの放射能比は、誘導放射性核種が土壌中 の安定同位体と熱中性子による(n, y)反 応によって生成したと仮定した場合における ⁶⁰Co/¹⁵²Eu 放射能比(0.26)と比べると、か なり高い値を示している。これは、水爆が鉄 塔(30m)上で行われたために、主に鉄塔に含 まれていた⁵⁹Coを放射化して生成した⁶⁰Coの 影響であると考えられる。地上1mにおける ¹⁵²Euの単位沈着量(1 kBq/m²)当たりの誘 導放射性核種による空間線量率の時間変化を Fig. 14 に示した。また、ここでは土壌中に含 まれる安定同位体のデータとして、簡易的に広 島の土壌データを用いた。主な誘導放射性核種 (²⁴Na,⁵⁶Mn,²⁶Al,⁴²K,⁴⁶Sc) について、時間別に積 算の空間線量は、¹⁵²Eu 単位沈着量(1kBq/m²) 当たり 43 mGy (1.7 h ~ 1 y)、40 mGy (2.9 h $\sim 1 \text{ y}$, 0.34 mGy (10 d $\sim 1 \text{ y}$), 0.33 mGy (16 d~1y)と推定できる。

4.2.4 空間線量率(FP、誘導放射性核種
 (²³⁷U、⁶⁰Co)の比較

サルジャール集落における FP からの空間線 量率にサルジャール集落(07S9-2)の¹⁵²Eu、 ⁶⁰Co、²³⁷Uデータを用いて計算した空間線量率 (誘導放射性核種、²³⁷U、⁶⁰Co)を纏めて¹³⁷Cs 初 期沈着量を10 kBg/m²、R/V 比を1と仮定した。 ²³⁷Uによる線量率は、蓄積量と線量率換算係数 0.592 (nGy/h) / (kBq/m²) を用いて計算した。 また Fig. 15 の ⁶⁰Co による線量率は、¹⁵²Eu 単位 沈着量から計算したものではなく、⁶⁰Coの蓄積 量と線量率換算係数 0.0136 (mGy/h) / (kBq/ m²)を用いて計算した。全体の空間線量率 (FP+Induced-Total+²³⁷U+⁶⁰Co) への寄与の割 合は、時間によって変化する。爆発後7時間~ 2日間での FP-Total と Induced-Total の寄与 率はそれぞれ約50%と同程度になる。2日以降 は、Induced-Totalの大部分が短半減期核種に よるものであるため、Induced-Totalの線量率 は急速に減衰し、FP-Total が支配的になる。5 日以降、²³⁷Uの寄与率が上昇し、10日での寄与 率は23% (FP-Total: 77%) となる。1 年後では、 FP-Total よりも⁶⁰Coの寄与率の方が上回ってお り、以降は⁶⁰Coによる線量率が支配的になる。

4.2.5 線量率モニタリングデータとの比較
 今回測定したデータを用いて計算した空間
 線量率(FP+Induced-Total+²³⁷U)と利用可能

である線量率 (Shinkarev,2007) の既存モニタ リングデータ (爆発の 2.5h、24h、84h、218h、 360h 後測定)を比較した結果を Table 2 に示す。

Table 2 Comparison of calculated total doseswith monitoring values.

Time after	Calculat	ted dose r	ate (µ	Gy/h)	Dose rate (µ Gy/h)	Monitoring
explosion	FP	Induced	U-237	Total	Reported value*	location
H+2.5h	5757 - 43182	7384	-92	13233 - 50658	105240	Karaul
H+24h	672 - 3362	1907	84	2663 - 5353	10787	Sarzhal
H+84h	67 - 500	102	66	235 - 668	1578	Karaul
H+218h	22 - 165	1.	33	55 - 198	263	Karaul
H+360h	24 - 120	0	18	42 - 138	132 - 324	Sarghal

¹³⁷Cs 初期沈着量、¹⁵²Eu、⁶⁰Co データはモニタ リングポイントに合わせてサルジャール集落あ るいはカラウル集落の値を用いている。FP に よる線量率は、¹³⁷Cs 初期沈着量に依存するた めに幅広い範囲を持つことになる。既存モニタ リングデータは、計算による全線量率と比較す ると1~8倍高い値となっている。既存モニタ リングデータが本研究の計算値より高くなる理 由としては、まずフラクショネーション効果 が考えられる。先に議論したように R/V 比は 0.7-1.3の範囲であり、下限のR/V比(0.7)を 用いると計算値はさらに低くなる。上限の R/ V比を用いると計算値は最大で約2倍になると 考えられる。他の理由としてはモニタリングポ イントの不確かさである。もし正確な位置情報 が分かれば最適の¹³⁷Cs 初期沈着量を用いて比 較することが可能となる。

4.2.6 サルジャール、カラウル集落におけ る空間線量の推定

最後にそれぞれの集落での¹³⁷Cs 初期沈着量、 ¹³⁷Cs 単位沈着量当たりの積算空間線量から FP による空間線量を見積もった。また同様にして ¹⁵²Eu 初期沈着量、¹⁵²Eu 単位沈着量当たりの積 算空間線量から誘導放射性核種による空間線 量を計算した。避難有りの場合 10d ~ 1y、16d ~ 1y の期間における誘導放射性核種による空 間線量の寄与は小さいため省略した。

- サルジャール集落
- 1) FP による空間線量
- ¹³⁷Cs 初期沈着量①、¹³⁷Cs 単位沈着量当たりの 積算空間線量②とすると、
- 〇避難無 $(1.7h \sim 1y)$: ① 4 ~ 20 (kBq/m^2) x ② 20 mGy $(1.7h \sim 1y) = 80 \sim 400$ mGy
- 〇避難有 $(16d \sim 1y)$: ① 4 ~ 20 (kBq/m^2) x ② 5 mGy $(16d \sim 1y) = 20 \sim 100$ mGy
- 2) 誘導放射性核種による空間線量
- ¹⁵²Eu 初期沈着量③、¹⁵²Eu 単位沈着量当たりの 積算空間線量④とすると、
- ○避難無 (1.7h ~ 1y) : ③ 3 (kBq/m²) x ④ 43
 mGy (1.7h ~ 1y) =130 mGy
- サルジャール集落での積算の空間線量は、避難
 無(1.7h~1y): 210-530 mGy、避難有(16d~1y): 20~100 mGy と予想される。

カラウル集落

- FP による空間線量
- ¹³⁷Cs 初期沈着量⑤、¹³⁷Cs 単位沈着量当たりの 積算空間線量②とすると、
- ○避難無 (2.9h ~ 1y) : ⑤ 2-15 (kBq/m²) x
 ② 20 mGy (2.9h ~ 1y) = 40 ~ 300 mGy
- 〇避難有 $(10d \sim 1y)$: ⑤ 2 ~ 15 (kBq/m^2) x
 - (2) 5 mGy (10d \sim 1y) =10 \sim 75 mGy
- 2) 誘導放射性核種による空間線量
- ¹⁵²Eu 初期沈着量⑥、¹⁵²Eu 単位沈着量当たりの 積算空間線量④とすると、
- ○避難無 (2.9h ~ 1y) : ⑥ 2 (kBq/m²) x ④ 40
 mGy (2.9h ~ 1y) = 80 mGy

カラウル集落での積算の空間線量は、避難無 (2.9h ~ 1y):120 ~ 380 mGy、 避 難 有(16d ~ 1y):10 ~ 75 mGy と予想される。 それぞれの集落で得られた空間線量値は空気の 吸収線量であり、人への線量を評価する場合に は生活様式にともなうパラメーターを考慮する 必要がある。

なお、本研究は金沢大学大学院自然科学研究 科物質科学専攻 河合健太氏の博士前期課程の 研究(修士論文)として実施されたものである。

Ⅲ. カイナル集落及びパブロダール州南部の集落

1. 調査地域の概要

1.1 アブラリンスク地区のカイナル集落

セミパラチンスク核実験場では数多くの地上 及び大気中で実験が行われたが、なかでも次の 3つの地上核実験が広範囲にわたって甚大な被 害をもたらしたと言われている:①1949/8/29 (最初の原爆実験、爆発威力:22 kt、爆発高 度:30 m)、②1951/9/24 (38.3 kt、30 m)、③ 1953/8/12 (最初の水爆実験、400 kt、30 m)。 ①の実験は実験場から北東方向のドロン集落 を、②の実験は実験場から南西方向のアブラリ ンスク地区(主集落:カイナル集落)を、③の 実験は実験場から南東方向のサルジャール集落 やカラウル集落を直撃した。

核実験場から南西約 150 km に位置するアブ ラリンスク地区のカイナル集落 (Fig. 16) は、 1950 年当時、人口約 3000 人の遊牧民の集落で あった。この集落に、著しい放射性降下物があっ たのは②の 1951/9/24 に行われた爆発高度 30 mの地上核実験(当時の風速は 26.4 km/h)で あるが、③の爆発に際しても被害を受け、1963 年までにこの居住地域の住民は少なくとも 10 回以上の放射性降下物による放射能の影響下に おかれたと言われている。川野ら (2003)の「カ ザフスタン共和国セミパラチンスク被曝実態調

Fig. 16 Photographs of soil sampling around the Kainar settlements.

査報告書」によると、カイナル集落においては、 実験の直前になると軍人がやって来て屋外に出 て伏せるように命令され、遠方への避難は指示 されなかった内容の証言が多いとされている。

アブラリンスク地区主任医師、シャハンタ エフ・アキンバイ (Shahantaefu Akinbai) 氏 は、カイナル集落の住民の深刻な放射線被害に 関する最初の情報が1957年にアカデミー会員 の S. B. バルムハノフ氏と T. D. アトチャバロ フによって得られたと述べている。住民の30 ~ 40%に、歯茎、粘膜、鼻、腸の出血と言っ た独自の症状が集中的、また、脱毛、極度の疲 労、全般的虚弱、労働能力の喪失も現れた。住 民によると、こうした病気は核実験が開始され て初めて発生した病気である。当時、現地の人 が患ったこのような原因不明のだるさ・疲れや すさの地区独自の後遺症の症状は、「カイナル 症候群」と名付けられ後で多くの人の命を奪っ た (Akinbai, 1995)。ここの住民には、"不安 定型"の染色体異常が他の集落と比べて多く観 察されており、核実験の開始から半世紀以上も 経過しているにも関わらず、住民の中で放射能 の医学的影響が現れ続けている。

1.2 パブロダール州南部のカラカンダ州に

接する地域

パブロダール州は、中央アジアのカザフスタ ンの州の1つ。北にロシアのシベリア連邦管区 と、西は北カザフスタン州とアクモラ州に接し、 東は東カザフスタン州に接し、南はカラガンダ 州に接する。パブロダール州方面に被害をもた らした規模の大きな核実験の存在は報告されて いない。しかし、度重なる地上及び大気中核実 験によるフォールアウトからの影響が懸念され ている。今回は、クルチャトフから直線距離で 北約 95 km に位置するアック(Akku)集落ま での一円を調査対象とした(Fig. 17)。

Fig. 17 Map of some settlements in Pavlodar areas where surveys have been conducted.

2. 実験方法

2.1 土壤試料採取

アブラリンスク地区のカイナル集落を中心に、 その周辺地域も含めて核実験による半減期の 長い放射性核種¹³⁷Cs及びプルトニウム同位体 (²³⁸Pu、²³⁹Pu、²⁴⁰Pu)の土壌中での蓄積量やそ の空間分布を把握するために広範囲の地域から 土壌試料(2007~2012)を採取した(Fig. 18, Appendixes IX)。

一方、パブロダール州南部の核実験場に隣接 する地域においては (Fig. 19)、残留放射能レ ベル及び空間分布を把握するために、2006 年 8 月クリビンカ(Krivinka)集落周辺から→ベス カラガイ(Beskaragay)集落→アック(Akku) 集落→シェルバクティ(Shcherbakty)集落→ セミノフカ(Semenovka)集落→カノネルカ (Kanoneruka)集落の順で土壌試採取を実施し た。さらに追加として、2007 年にシェルバク

Fig. 18 Soil sampling locations in and outside the Kainar settlement and the atomic bombs which had effects on the Kainar area.

ティ集落内で、2007 年及び 2008 年に範囲を広 めてカノネルカ集落及びその周辺で試料採取 を行った(Appendixes X)。試料は、直径 4.7 cm ステンレスパイプを用いて、一サイトにお いて約 30cm 深さで1~3地点から採取した。 採取した全ての土壌試料は、国内に持ち帰った 後、100℃前後で乾燥、2 mm メッシュで篩い 分けし粉砕器を用いてできるだけ均一にした。

Fig. 19 Soil sampling locations at some settlements in Pavlodar areas located in the adjust north direction of the SNTS.

2.2 化学分離と放射能測定

採取した土壌試料についての¹³⁷Cs 及び Pu 同位体(²³⁸Pu、^{239,240}Pu)の測定は、上記した 方法と同じである。今回、パブロダール州から の試料に対して Pu 汚染源の由来等を明らかに するために、上記と同様な方法で Pu を分離し、 さらに酢酸系の陰イオン交換樹脂カラムで Pu を再精製して、HR – ICP-MS で²⁴⁰Pu/²³⁹Pu 原 子数比(以後、²⁴⁰Pu/²³⁹Pu 比と記す)を測定し た(日本分析センターに委託)。

3. 結果と考察

3.1 カイナル集落とその周辺

全ての¹³⁷Cs 及び Pu 同位体の測定値は、試料 採取日での値で示してある。

3.1.1 カイナル集落方面での予備調査

核実験場の南西方向のカイナル集落及びそ の周辺の放射能汚染の実態を知るために、1999 年9月に予備調査を実施した。サルジャール 集落からカイナル集落に通じる道路脇(99K20. 21)、カイナル集落入口の広場 (99K22)、及 び道路から南方向にあるアブラリー(Abraly) 集落 (99K19) で土壌 (10 cm 及び 30 cm 深 さ、及びコア土壌)を採取した。¹³⁷Cs 蓄積量 (Appendix XI) は、920~5,900 Bq/m²の範囲 で変動し、同一地点でもバラツキは大きく、最 高値はカイナル集落に通じる道路脇の 99K20 地点で検出された。^{239,240}Pu 蓄積量も 60~1,460 Bq/m²で大きく変動した。1.460 Bg/m²の高い ^{239,240}Pu 蓄積量は、ドロンやサルジャール集落 等で多数の地点で検出されてきた。硝酸加熱抽 出できる Pu 成分が 10~40 %と少なく、核実 験周辺のドロン、サルジャール、カラウル集落 などで見出だされてきた結果と同様な結果を得

た。 大気圏核実験からの global fallout Pu は、 硝酸加熱で比較的容易に抽出できることを考え ると、今回の Pu は地上爆発の際に蒸発した表 層十壌や原爆構成物等の様々な粒径の凝集粒子 に取り込まれた Puであり、爆心地から約150 km 離れたこの地域まで影響を及ぼしたことが 確認できる。土壌の採取地域は、殆どがステン レスパイプでさえ打ち込むことが困難な固い礫 まじりの裸地であった。Appendix XII に¹³⁷Cs 深度分布の結果示すが、表層下 5cm (99K21 で は10cm 深さ)までに大部分が蓄積されており、 今回の採取場所では表層土壌の風化は否定でき ないものの深部までの撹乱がそれほど起きてい ないと思われる。検出された¹³⁷Cs 蓄積量の上 限値 5,000 ~ 6,000 Bq/m² を 1951 年 9 月の核爆 発時点に減衰補正すると15.000~18.000 Bg/ m²の高い降下量があったことが推定される。 このような結果を踏まえて、以下のカイナル集 落及び広域の調査・研究を継続した。

なお、global fallout からバックグラウンド ¹³⁷Cs の寄与に関しては、ドロン集落周辺で 500 Bq/m² 程度(Gastberger *et al.*, 2008)の値が 報告されている。南方面では報告が無く、実際 に測定されたデータは上記したようにバラツキ が非常に大きいので、今回のデータも含めて以 下のデータについては補正を行わなかった。

Fig. 20 Soil sampling locations in and nearoutside the Kainar settlement

Fig. 21 Distributions of ¹³⁷Cs and ^{239,240}Pu inventories in soils in and near-outside the Kainar settlement.

3.1.2 カイナル集落及びその近郊

2007 ~ 2010 年にわたって集落内(7C1 ~ 7C6, 10K1,10K9 ~ 10K12)及びその近郊(7C7 ~ 7C10,10K2 ~ 10K8))で採取した土壌のサンプリング地点(22 地点)をFig. 20 に、測定データを Appendixes XIII に示す。集落内では、当時の放射性降下物を保存していると思われる未撹乱地域の存在は不明であり、全ての場所が細かい礫などを含む固い土壌で覆われていた。1 地点当り3 試料の 30 cm 深さまでの採取

Fig. 22 Activity ratios of ^{239,240}Pu/¹³⁷Cs and ²³⁸Pu/^{239,240}Pu in soils in and near-outside the Kainar settlement. All data are as of the date of measurements: C-series, 2007/8; K-series, 2010/10).

を目標としたが採取困難な場所がいくつか存在 した。22 地点についての、¹³⁷Cs 及び^{239,240}Puの 採取日での蓄積量(1951 年 9 月の核爆発時点で の減衰補正した¹³⁷Cs 値)は、それぞれ、145 ~ 5,358 Bq/m²(565 ~ 19,500 Bq/m²)及び 12 ~ 908 Bq/m²の幅広い範囲で変動し、平均は 1,900 ± 1,230 Bq/m²(7,200 ± 4,600 Bq/m²)、中央値 1,680 Bq/m(6,300 Bq/m²)及び 195 ± 149 Bq/ m²、中央値 168 Bq/m²であった(Fig. 21)。集 落内においては、集落中央(7C3,7C4)で¹³⁷Cs 及び ^{239,240}Pu について、4,200 ~ 4,600 Bq/m²及 び 510 ~ 910 Bq/m²の他の地点よりも数倍高い

Fig. 23 Distributions of ¹³⁷Cs inventries in soils inside and outside the Kainar area.

値が検出された。また、^{239,240}Pu/¹³⁷Cs 放射能比 (Fig. 22) は、測定時点(1951年9月の核爆発 時点での減衰補正値)では0.027~0.303(0.07 ~0.078)で、平均は0.106±0.046(0.028±0.012)、 中央値は0.096(0.026)であった。Pu同位体の ²³⁸Pu/^{239,240}Pu放射能比は、0.018~0.083の範 囲で変動し、平均は0.043±0.013、中央値は 0.043であった。

集落内での¹³⁷Cs 蓄積量については、低い値 よりも高い値の方が初期の汚染をより反映して いると思われる。集落中央の高い値を用いて 1951年9月の核爆発時点(減衰補正のみを考慮) での初期沈着量を推定すると15,000~17,000 Bq/m²になる。この値は、先に報告した1953 年8月の水爆からの局地的フォールアウトの被 害を受けたサルジャール集落(¹³⁷Cs の初期沈 着量13,700~19,700 Bq/m²及びカラウル集落 2,000~14,400 Bq/m²での上限値に匹敵する。

また、1949 年 8 月の旧ソ連最初の原爆からの 局地的フォールアウトの影響を強く受けたド ロン集落での¹³⁷Cs 初期沈着量 10,000 ~ 16,000 Bq/m² と同程度のように思われる。カイナル 地域の 2007 年の調査は、1951 年 8 月の核実験 から局地的フォールアウトの被害を受け 56 年 も経過しており、この間の表層土壌の流出、撹 乱等を考えると、少なくとも今回の測定値以上 の¹³⁷Cs 初期沈着量が推測できる。

3.1.3 カイナル集落一円の¹³⁷Cs 蓄積量の 空間分布

カイナル集落一円の¹³⁷Cs 降下量の空間分布 を知るために、2007 ~ 2010 年の採取試料に加 えて 2011 ~ 2012 年にかけてさらに広域で土壌 採取を行った。測定した全ての測定結果の採 取日での¹³⁷Cs 蓄積量を Fig. 23 に示す。87 地 点 192 試料の¹³⁷Cs 降下量は、129 ~ 7,482 Bq/ m²の範囲で分布した。平均値は 1,740 ± 1,290 Bq/m²、中央値は 1,450 Bq/m²であった。1951 年 9 月の核爆発時点に減衰補正すると、470 ~ 30,000 Bq/m²、平均値は 6,700 ± 5,000 Bq/ m²、中央値は 5,500 Bq/m²になる。アクブラク (Akbulak) (12K20, 12K27 ~ 12K29) 及びアブ ラリー (Abraly) (12K6 ~ 12K10) 集落内外で の¹³⁷Cs 蓄積量は、概ね 1,000 ~ 3,000 Bq/m²、 1951 年 9 月の核爆発時点に減衰補正すると 4,000 ~ 12,000 Bq/m²で、カイナル集落と比べて大 差ないように思える。

Fig. 24 に、1951 年 9 月に減衰補正した¹³⁷Cs 蓄積量の全データ及びカイナル集落データをそ れぞれ対数正規分布でプロットした結果を示 す。両者の分布は概ね一致しており、累積加相 対密度 90% の値は約 15,000 Bq/m² になる。こ の値が、この地域の¹³⁷Cs 初期沈着量を代表し ていると考えられる。

38 地点 112 試料で測定された^{239.240}Pu 蓄積 量は、11~1,455 Bq/m²範囲で変動し、カイ ナル集落内及びその近傍での平均は 195 ± 149 Bq/m² (n=64) であった。

^{239,240}Pu/¹³⁷Cs 放射能比は、採取日及び爆発時 での減衰補正値で、それぞれ0.027 ~ 0.80(平

Fig. 24 Logarithmic normal distribution of ¹³⁷Cs inventories decay-corrected to 1951/9 in soil samples collected around the Kainar area.

均 0.15 ± 0.10、中央値 0.11)及び 0.007 ~ 0.22 (平均 0.039 ± 0.027、中央値 0.030)であった。 この比は、被曝線量評価の際の FP のフラク ショネーションを考慮する上で重要なファク ターになる。先のドロン集落周辺で検出され た^{239,240}Pu/¹³⁷Cs 放射能比は、2005 年の試料採 取時点で 0.90 ~ 2.0、1949 年 8 月の原爆時に補 正すると 0.25 ~ 0.55 となる。カイナル集落で の中央値 0.03 は、ドロン集落の 1 / 10 程度であ り、非揮発性の Pu 降下が揮発性の¹³⁷Cs 降下 に比べて相対的に少なかったことが示唆され る。²³⁸Pu/^{239,240}Pu 放射能比は 0.018 ~ 0.091 (平 均 0.053 ± 0.016、中央値 0.050)で、ドロン集 落での²³⁸Pu/^{239,240}Pu 放射能比 0.019 ~ 0.058 (大 部分: 0.03 ~ 0.04) と同程度である。

カイナル集落一円で測定した¹³⁷Cs と^{239,240}Pu 蓄積量及び^{239,240}Pu/¹³⁷Cs 比のポイントデータ からそれぞれの空間分布を分かりやすくする ために ArcGIS ソフトを用いて 2 次元マップ を作成した結果を Fig. 25 に示す。外挿手法

Fig. 25 Spatial distributions of (a) ¹³⁷Cs and (b) ^{239,240}Pu inventories, and (c) ^{239,240}Pu/¹³⁷Cs activity ratios in soils collected around the Kainar area. Maps were made by extrapolation using the ArcGIS software.

には、ArcGIS に組み込まれている Emperical Bayesian Kriging を用いた。図から分かるよ うに、データの多くある¹³⁷Cs 分布については、 ドロン集落やサルジャール及びカラウル集落周 辺で観測された放射性プルームのセンター軸に 沿っての蓄積量のガウス分布のような空間分布 をみられない。この結果は、測定した範囲の地 域内であるが、放射性プルームが大きな広がり を持って、おおむね一様に降り注いだことを示 唆していると思われる。

4. 核実験場の北側に隣接するパブロダール州 南部の幾つかの居住地区

 4.1 パブロダール州南部の幾つかの集落と その周辺

2006 年に採取した試料の¹³⁷Cs 及び Pu の蓄 積状況を Fig. 26(Appendixes XIV)に示す。 ¹³⁷Cs 蓄積量は、271 ~ 3,000 Bq/m²の範囲で検 出され、平均は 1,586 ± 716 Bq/m² (n = 26)、 中央値は 1,505 Bq/m²であった。試料を採取し た中で核実験場に最も隣接しているクリビンカ 及びその周辺(P1 ~ P6)では、殆どが 1,100 ~ 2,000 Bq/m² であったが、3,000 Bq/m²の値が 集落内で検出された。クルチャトフから直線で 約 82 km 離れているベスガラガイ周辺では 1,000 ~ 2,200 Bq/m²、最も遠方のアック(クルチャ

Fig. 26 Inventories (Bq/m^2) of ¹³⁷Cs and ^{239,240}Pu in soils (ca. 30 cm in depth) from some settlements in Pavlodar areas located in the adjust north direction of the SNTS.

トフから直線で約 95 km,P11 ~ P13)では 2,000 Bq/m²、シェルバクティ周辺(P16、P17)では 1,500 ~ 2,000 Bq/m²、セメノフカに通じる道路 脇及び集落内(P18 ~ P21)では、1,500 Bq/m² 前後であった。2007年に再調査したシェルバク ティ集落内(5地点、15 試料)では、大部分が 1,000 ~ 1,500 Bq/m²、1地点で 2,400 Bq/m²で、2006 年結果と同程度であった。全体として、調査し たこの地域の¹³⁷Cs 蓄積量は、1,000 ~ 3,000 Bq/ m²の範囲であると思われる。今回調査した核実 験場北側の隣接地域は、ドロン集落周辺の測定 日(2005年)での¹³⁷Cs 蓄積量 9,000 ~ 10,000 Bq/m²と比べて最高値は 1/3程度である。

一方、^{239,240}Pu 蓄積量は 6.8 ~ 2,300 Bq/m² で、 平均は 248 ± 434 Bq/m²、中央値は 151 Bq/m² であった。2,300 Bq/m²の高い値がクリビンカ 集落手前の P2 地点で観測された。

検出された Pu 汚染源の由来を明らかにする ために²⁴⁰Pu/²³⁹Pu 比の測定を試みた(Fig. 27)。 検出された²⁴⁰Pu/²³⁹Pu 比は、0.042 ~ 0.195 範 囲で変動した。

原爆級 Pu の²⁴⁰Pu/²³⁹Pu 比は通常 0.05 前後、 大気圏核実験からの global fallout ²⁴⁰Pu/²³⁹Pu 比は約 0.18 である。低い値(0.04 ~ 0.07)が 見出だされた地点は、原爆材料の未核分裂 の Pu が飛来していることを示している。最

Fig. 27 ^{239,240}Pu inventories and ²⁴⁰Pu/²³⁹Pu atomic ratios in soils from some settlements in Pavlodar areas located in the adjust north direction of the SNTS.

大の^{239,240}Pu 蓄積量が検出された P2 地点の ²⁴⁰Pu/²³⁹Pu 比は 0.042 ± 0.001 で最も低く、未 核分裂 Pu の hot particle の飛来によると思わ れる。この結果を見る限り、クリビンカ、シェ ルバクティ周辺まで核実験からの Pu 降下の影 響を強く受けていて、それ以遠のベスガラガイ 及びアックでは Pu 降下の影響が少ないように 思われる。²³⁸Pu/^{239,240}Pu 放射能比は、0.01 ~ 0.052 範囲であった。日本の土壌中の global fallout ²³⁸Pu/^{239,240}Pu 放射能比は 0.02 ~ 0.03 である。

^{239,240}Pu/¹³⁷Cs 放射能比は、被曝線量評価を行 う際 FP 生成直後から沈着するまでの間の難容 性(refractory)及び揮発性(volatile)元素の フラクショネーションを知る上で重要なファ クターである。^{239,240}Pu/¹³⁷Cs 放射能比は、0.025 ~ 2.08 範囲で変動するが、高い^{239,240}Pu 蓄積 量が観測された P2 地点の値(2.08)を除くと、 0.025~0.187範囲(平均:0.095 ± 0.053、中央 値:0.077) であった。1949年8月の最初の原 爆実験の影響を強く受けたドロン集落周辺で の^{239,240}Pu/¹³⁷Cs 放射能比は、2005 年の試料採 取時点で 0.90 ~ 2.0 範囲の高い値が検出されて いる。今回の北側の隣接する地域での値は、ド ロンでの値よりも相対的に小さく、Pu 等を含 む粒子状物質の降下が少なかったことを示唆す る。

4.2 カノネルカ集落及びその周辺との比較

カノネルカ集落は、1949 年 8 月 29 日の最初 の原爆実験の影響を強く受けたドロン集落から 北東方向に直線でさらに約 28 km 離れている。 当時の報告されている放射性プルームの流れか ら予想すると、おそらくカノネルカ集落も直撃 されたと思われる。2008 年の採取試料におけ る¹³⁷Cs 蓄積量は 680 ~ 8,900 Bq/m² の範囲で あった (Fig. 28, Appendix XV)。大部分の値 は 2,000 ~ 4,000 Bq/m² 範 囲 で、8,900 Bq/m² の高い値が集落北側の 8H11 地点で観測され た。同時に採取した他の2 試料についても 6,860 と 4,120 Bq/m²と高く、この地点を中心に蓄積 量のガウス分布のような空間分布が得られ、お そらく、この地点が放射性プルームのセンター 軸であると考えられる。

Fig. 29 に、パブロダール地域で得た¹³⁷Cs および^{239,240}Pu 蓄積量を、今回のカノネルカ及び

Fig. 28 Sampling locations in soils around the Kanonerka Village and their ^{137}Cs inventories (Bq/m²) with geometric mean.

既に得られてきたドロン集落等の結果と比較 して示した。試料採取時期が異なるため、特 に¹³⁷Cs 蓄積量の比較に関しては注意が必要で るが、図から明らかなように、パブロダール州 の実験場に隣接する居住地域の両核種の蓄積量 は、1949 年 8 月の最初の原爆実験の影響を強 く受けた地域と比べて明らかに低く、北方向に それほど大きな影響を与えていない。パブロ ダール州方面に被害をもたらした規模の大きな

Fig. 29 Comparison of ¹³⁷Cs and ^{239,240}Pu inventories in soils between Pavlodar and other areas

Fig. 30 Comparison with the ¹³⁷Cs inventories in soils from all areas around the Semipalatinsk nuclear test site where have been surveyed until now.

核実験の存在は報告されていない。しかし、度 重なる地表及び大気中核実験によるフォールア ウトからの汚染レベルは実験場の北東方向のド ロン村等と比べて低いが、クリビンカ集落手 前の P2 地点で高い^{239,240}Pu 蓄積量(²⁴⁰Pu/²³⁹Pu 比= 0.042 ± 0.001、原爆級の Pu 同位体比)が 観測されたことを考慮すると、この地域もレベ ルは低いが局地的 fallout を少なからず受けて いることは確かである。

IV. これまでに調査したセミパラチンス ク全地域の¹³⁷Cs及び^{239,240}Pu 蓄積量と ^{239,240}Pu/¹³⁷Cs及び²³⁸Pu/^{239,240}Pu 放射能 比の比較

これまでに測定してきた全地域の¹³⁷Cs及び Pu 蓄積量と^{239,240}Pu/¹³⁷Cs 及び²³⁸Pu/^{239,240}Pu 放 射能比を纏めて Appendixes XVI に示した。 データは全て、試料採取日に補正した値である。 Fig. 30 に¹³⁷Cs 蓄積量の比較を示す。いずれの 地域においても、¹³⁷Cs 及び^{239,240}Pu 蓄積量は幅 広く変動するが、低い値あるいは平均値よりも 高い値の方が初期の汚染をより反映していると 思われる。試料採取時期が異なっているために、 直接比較は困難(¹³⁷Csの場合)であるが、概ね ドロン、サルジャール、カラウル集落が高く汚 染されている。今回測定を行ったカイナル集落 一円の汚染は、上記の高汚染地域よりもやや低 く、パブロダール地域方面は、全体として、これ までに測定してきたセミパラチンスク全域と比 べて¹³⁷Cs 蓄積量はかなり低いことが判明した。

V. 全体のまとめ

サルジャール、カラウル集落周辺の 89 地点 で 30 cm 土壌試料コアを採取した。集落内で の放射性核種の初期沈着量、FP の空間分布、 フォールアウトの沈着組成(フラクショネー ション効果)を知るために¹³⁷Cs、²³⁶U、²³⁷Np (²³⁷U)、²³⁸Pu、^{239,240}Pu、¹⁵²Eu、⁶⁰Coを測定した。 ¹³⁷Cs 及び^{239,240}Pu の測定結果から、1 地点での 値のバラツキは大きいが、2 つの集落で蓄積量 に関して概ねガウス分布のような空間分布が得 られた。現在の¹³⁷Cs の蓄積量(インベントリー) から核実験当時の初期沈着量をサルジャール集 落内で4~20(kBq/m²)、カラウル集落内で 2~15 kBq/m²と推定した。また^{239,240}Pu/¹³⁷Cs 放射能比は2つの集落で比較的一致しており、 2つの集落の間での大きなフラクショネーショ ン効果はないと考えられる。

本研究では²³⁶U/¹³⁷Cs 比と²³⁷U/¹³⁷Cs 比で R/ V 比を算出した。²³⁶U から計算した R/V 比は 0.2 ~ 0.4 と低い値となった。これは²³⁶U の生成反 応である(*n*, *3n*)反応の核反応断面積が、14 MeV 付近で一定でなく、中性子の衝突などで エネルギーが低下すると急激に断面積が小さく なるためであると考えられる。²³⁷U から計算し た R/V 比は 0.7 ~ 1.3 となった。

¹³⁷Cs、¹⁵²Eu、²³⁷U、⁶⁰Coの単位沈着量当たり の線量率を計算し、線量率の時間変化を推定し た。FPによる線量率が大半を占めるが、時間 によって全体の線量率への寄与が大きく変動す ることが分かった。爆発から数日までの間では、 誘導放射性核種の線量率はFPと同程度である が、それ以降は短半減期核種が多いため線量率 は急激に減衰する。さらに1年以降では⁶⁰Co による線量率が支配的になることが分かった。

計算による線量率と線量率の既存モニタリ ングデータ(爆発の2.5h、24h、84h、218h、 360h後測定)を比較した。既存モニタリング データは、計算による全線量率と比較すると1 ~8倍高い値となった。幅広い範囲を示すのは、 計算による FP の線量率が¹³⁷Cs 初期沈着量に 大きく依存することによると思われる。また既 存モニタリングデータが本研究の計算値より高 くなる理由としては、まずフラクショネーショ ン効果が考えられる。R/V 比は 0.7 ~ 1.3 の範 囲であり、上限の R/V 比(1.3)を用いると計 算値は最大で2倍程度になると考えられる。他 の理由としては既存モニタリングデータのサイ ト位置の不確かさである。正確な位置情報が分 かれば¹³⁷Cs 初期沈着量の最適値を用いてさら に比較検証することが可能である。

以上の結果から積算空間線量を計算し、サル ジャール集落で避難無(1.7h~1y):210~530 mGy、避難有(16d~1y):20~100mGy、一方、 カラウル集落で避難無(2.9h~1y):120~380 mGy、避難有(16d~1y):10-75 mGyと評価できた。

核実験場の南西方向のカイナル集落及びその 周辺の放射能汚染の実態を明らかにするために 2007~2012年にかけて、数多くの地点から土 壌試料を採取し、¹³⁷Cs 及び Pu 同位体を測定し た。87地点192 試料の¹³⁷Cs 蓄積量は、129~ 7,482 Bg/m²の範囲で分布した。平均値は 1,740 ± 1,290 Bg/m²、中央値は 1,450 Bg/m² であっ た。1951年9月の核爆発時点に減衰補正する と、470~30.000 Bg/m²、平均値は6.700 ± 5.000 Bq/m²、中央値は 5,500 Bq/m² になる。38 地 点 112 試料で測定された^{239,240}Pu 蓄積量は、11 ~ 1,455 Bq/m²範囲で変動し、カイナル集落 内及びその近傍での平均は195 ± 149 Bg/m² (n=64) であった。カイナル集落一円の¹³⁷Cs 降下量の分布は、ドロン集落やサルジャール及 びカラウル集落周辺で観測された放射性プルー ムのセンター軸に沿っての蓄積量のガウス分布 のような空間分布を示さず、測定した範囲内で あるが、放射性プルームが大きな広がりを持っ

て概ね一様に降り注いだことを示した。空間線 量の推定に関しては、今回得られたデータを基 にして考察を進める予定である。

さらに、これまで詳細な調査が限定されてき た核実験場の北側に隣接するパブロダール州の 幾つかの居住地区の放射能汚染状況を把握する ために、¹³⁷Csと^{239,240}Pu 蓄積量及び Pu の汚染 源を知るために²⁴⁰Pu/²³⁹Pu 同位体比の測定を 行い、これまでに調査を行ってきた全地域の 汚染状況との比較を行った。今回調査したパ ブロダール南部の¹³⁷Cs 蓄積量は概ね 1,000~ 3,000 Bq/m² 範であった。また、核実験場に近 いクリビンカ集落周辺で2,300 Bq/m²の高い ^{239,240}Pu 蓄積量が見出だされ、²⁴⁰Pu/²³⁹Pu 比は 0.042 ± 0.001 で最も低く、未核分裂 Puの hot particle がこの地域まで飛散していることがわ かった。全体として、これまでに測定してきた セミパラチンスク全域と比べて¹³⁷Cs 蓄積量は かなり低いことが判明した。

これまでに得てきたセミパラチンスク全域の データは、今後の被曝線量再評価の上で貴重な データベースとなる。

謝 辞

本研究を進めるにあたり、試料採取に御協力 いただいたカザフ放射線医学環境研究所の研究 者及び各地域の住民の方々に深謝する。また本 論文の作成にあたって、校正などに御協力い ただいた広島大学平和科学研究センターの下 手美和様に感謝する。本研究は、長期に渡る 文部省の科学研究費助成金(基盤研究(A,B): 海外、代表者:星 正治、山本政儀、川野徳幸) No.22404004、19404005、23406002、20406002、 26257501、24310044、23310183、15H03137の 助成を受けて行われた。

参考文献

- Akinbai, S.1995. 被曝 50 年国際シンポジウム (1995 年 7/31 ~ 8/2, 広島)、原水協、 http://antiatom.org/page/index.php?id=132
- Atetemye, O. I., Umarov, M. A. (2006), Radionuclides distribution from the 1953 explosion at the Semipalatinsk test site, Proc. Radioactivity after Nuclear Explosions and Accident. Moscow, Russia, Dec. 5-6, 2005, Gigrometizda, St. Petersburg, 2, 240– 253 (in Russian)
- Gastberger, M., Steinhäusler, F., Gerzabe, M. H., Hubmer, A., Lettner, H., 2000. ⁹⁰Sr and ¹³⁷Cs in environmental samples from Dolon near the Semipalatinsk nuclear test site. Health Phys., 79, 257–265.
- Beck, H. L. (1980), Exposure rate conversion factors for radionuclides deposited on the ground. EML-378 USDOE.
- Bushan, G. Katyal K. (2002), Nuclear,
 Biological and Chemical Warfare, Ashish (March 1, 2002) ISBN-13: 978-8176483124,
 296 pp.
- Crocker, G. R., Kawahara, F. K., Freiling, E. C. (1965), Nuclear debris formation. In: Klement AW (ed) Radioactive fallout from nuclear weapons tests, Proceedings of the Second Conference. Germantown, Maryland, Nov. 3–6, 1964, CONF–765, USAEC, 72–80.
- GöKsu, H. Y., Stepanenko, V. F., Bailiff, I. K., Jungner, H. (2006), Intercomparison of luminescence measurements of bricks from Dolon village: experimental methodology and results of European study group, J. Radiat. Res., 47 (suppl), A29–A37.

- Gordeev, K., Vasilenko, I., Lebedev, A., Bouville,
 A., Luckyanov, N., Simon, S. L., Stepanov,
 Y., Shinkarev, S., Anspaugh, L., 2002. Fallout
 from nuclear tests: dosimetry in Kazakhstan.
 Radiat Environ. Biophys., 41, 61–67.
- Hamajima, Y., Komura, K. (2004), Background components of Ge detectors in Ogoya underground laboratory. Appl. Radiat. Isot., 61, 179-183.
- Hicks, H. G. (1982), Calculation of the concentration of any radionuclides deposited on the ground by offsite fallout from a nuclear detonation, Health Phys., 42, 585–600.
- Ihara, H. (ed.), (1989), Tables and figures from JNDC Nuclear Data Library of fission products, Version 2, JAERI-M. 89–204.
- Imanaka, T., Fukutani, S., Yamamoto, M., Sakaguchi, A., Hoshi, M. (2006), External radiation in Dolon village due to local fallout from the first USSR atomic bomb test in 1949. J Radiat. Res., 47 (suppl), A121–A127.
- Imanaka, T., Kurosawa, N. (2009), Application and development of FPCOMP for calculating FP composition. Proceedings of Ninth Workshop on Environmental Radioactivity, Tsukuba, Mar 27–28, 2008, KEK Proc 2008–9, pp 51–60 (in Japanese).
- Imanaka, T., Yamamoto, M., Kawai, K., Sakaguchi, A., Hoshi, M., Chaizhunusova, N., Apsalikov, K. (2010), Reconstruction of local fallout composition and gamma-ray exposure in a village contaminated by the first USSR nuclear test in the Semipalatinsk nuclear test site in Kazakhstan. Radiat. Environ. Biophys., 49, 673–684.

河合 健太, 2011. 旧ソ連セミパラチンスク核実

験場周辺集落の放射能汚染と被曝線量評価, 金沢大学大学院・自然科学研究科物質科学専 攻,修士論文,2011年3月.

- 川野 徳幸, 峠岡 康幸, 平岡 敬, 松尾 雅 嗣, K. N. Apsalikov, Z. Zhumadilov, 星 正 治, 2003. カザフスタン共和国セミパラチン スク被曝実態調査報告書, 広島大学原爆放射 線医科学研究所, 広島大学・ひろしま平和科 学コンソーシアム, pp. 1
- Nakanishi, T. (2001), Eu-152 measurement at Kanazawa University (I), http://www. rri.kyoto-u.ac.jp/IPA/DS02/Final_pdf/ Nakanishi.pdf.
- NHK, 2009.「核は大地に刻まれていた~"死の 灰"消えぬ脅威~」, NHK 総合テレビ, 2009 年8月6日放送.
- Sakaguchi, A., Yamamoto, M., Hoshi, M., Imanaka, T., Apsalikov, K. N., Gusev, B. I. (2006), Radiological situation in the vicinity of Semipalatinsk Nuclear Test Site: Dolon, Mostik, Cheremshki and Budene settlements, J. Radiat. Res., 47 (suppl), A101–A116.
- Sakaguchi, A., Kawai, K., Steier, P., Quinto, F., Mino, K., Tomita, J., Hoshi, M., Whitehead, N., Yamamoto, M. (2009), First results of U-236 levels in global fallout, Sci. Tol. Environ., 407, 4238-4242.
- Sato, H., Hoshi, M., Takada, J. (2006), Intercomparison of luminescence measurements of bricks from Dolon' village: experimental methodology and results from Japanese laboratory, J. Radiat. Res., 47 (suppl), A23-A28.
- Sholom, S., Desrosiers, M., Bouville, A., Luckyanov, N., Chumak, V., Simon, S. L. (2007), EPR tooth dosimetry of SNTS area

inhabitants, Radiat. Meas., 42, 1037–1040. Shinkarev, S. (2007), Private communication.

- Simon, S. L., Beck, H. L., Gordeev, K., Bouville, A., Anspaugh, L. A., Land, C. E., Luckyanov, N., Shinkarev, S. (2006), External dose estimates for Dolon village: Application of the US/ Russian joint methology, J. Radiat. Res., 47 (suppl), A143–A147.
- Stepanenko, V. F., Hoshi, M., Yamamoto, M., Sakaguchi, A., Takada, J., Sato, H., Iaskova, E. K., Kolizshenkov, T. V., Kryukova, I. G., Apsalikov, K. N., Gusev, B. I., Jungner, H. (2006), International intercomparison of retrospective luminescence dosimetry method: sampling and distribution of the brick samples from Dolon' village, Kazakhstan, J. Radiat. Res., 47 (suppl), A15–A21.
- Stepanenko, V. F., Ivannikov, A. I., Bailiff, I. K., Zhumadilov, K., Skvortsov, V. G., Argembaev, R., Tsyb, A. F., Hoshi, M. (2007), The 1st Nuclear Test in the former USSR of 29 August 1949: comparison of individual dose estimates by modeling with EPR retrospective dosimetry and luminescence retrospective dosimetry data for Dolon village, Kazakhstan, Radiat. Meas., 42, 1041–1048.
- Takada, J., Hoshi, M., Yamamoto, M., Nagatomo, T., *et al.* (1996), Dosimetry study of residents near Semipalatinsk Nuclear Test Site, High levels of Natural radiation 1996, Radiation Dose and Health Effects, pp.191-195,
- United Nations Scientific Committee on the Effects of Atomic Radiation (2000), Sources and effects of ionizing radiation, UNSCEAR 2000 Report, Annex C. United Nations. New

York. United Nations, New York.

- Warner, S. F., Kirchmann, R. J. C. (1999),SCOPE 59, Nuclear Test Explosions:Environmental and Human Impacts, JOHNWILEY & SONS, LTD, pp.304.
- Yamamoto, M., Chatani, K., Komura, K., Ueno, K. (1989), Development of alpharay spectrometric techniques for the measurement of low-level ²³⁷Np in environmental soil and sediment, Radiochim. Acta, 47, 63-68.
- Yamamoto, M., Tsumura, A., Katayama, Y., Tsukatani, T. (1996a), Plutonium isotopic composition in soil from the former Semipalatinsk Nuclear Test Site, Radiochim. Acta,, 72, 209–215.
- Yamamoto, M., Tsukatani, T., Katayama, Y. (1996b) Residual radioactivity in the soil of the Semipalatinsk nuclear test site in the former USSR, Health Phys., 1, 142–148
- Yamamoto, M., Hoshi, M., Takada, J., Sekerbaev, A. K. H., Gusev, B. I. (1999), Pu isotopes and ¹³⁷Cs in the surrounding areas of the former Soviet Union's Semipalatinsk nuclear test site. J Radioanal. Nucl. Chem., 242, 63–74.
- Yamamoto, M., Hoshi, M., Takada, J., Tsukatani, T., Oikawa, S., Yoshikawa, I., Takatsuji, T., Sakerbaev, A. Kh., Gusev,
 B. I. (2001), Some aspects of plutonium in and around the former Soviet Union's Semipalatinsk Nuclear Test Site, Plutonium in the Environment (A. Kudo, Ed.), Elsevier Science Ltd., pp. 375-399.
- Yamamoto, M., Hoshi, M., Takada, J., Oikawa,S., Yoshikawa, I., Takatsuji, T., Sekerbaev,A. K. H., Gusev, B. I. (2002), Some aspects

of environ-mental radioactivity around the former Soviet Union's Semipalatinsk nuclear test site: local fallout Pu in Ust' -Kamenogorsk district, J. Radioanal. Nucl. Chem., 252, 373-394.

- Yamamoto, M., Hoshi, M., Takada, J., Sakaguchi, A., Apsalikov, K. N., Gusev, B.
 I. (2004), Current levels and distribution of ¹³⁷Cs and Pu isotopes in soil on the Kazakhstan territory of the Kazakhstan-Chinese border: Semipalatinsk and Lob Nor nuclear test sites detonation, J. Radioanal. Nucl. Chem., 261, 533–545.
- Yamamoto, M., Hoshi, M., Sakaguchi, A.,
 Shinohara, K., Kurihara, O. Apsalikov,
 K. N. and Gusev, B. I. (2006), Plutonium
 and uranium in human bones from areas
 surrounding the Semipalatinsk nuclear test
 site, J. Radiat. Res., 47, Suppl., 85–94.
- Yamamoto, M., Tomita, J., Sakaguchi, A., Imanaka, T., Fukutani, S., Endo, S., Tanaka, K., Hoshi, M., Gusev, B. I., Apsalikov, K. N. (2008), Spatial distribution of soil contamination by ¹³⁷Cs and ^{239,240}pu in the village of Dolon near the Semipalatinsk nuclear test site: New information on traces of the radioactive plume from the 29 August 1949 nuclear test, Health Phys., 94, 328–337.
- Zhumadilov, K. S., Ivannikov, A., Apsalikov, K.
 N., Zhumadilov, Z., Toyoda, S., Zharlyganova,
 D., Tieliewuhan, E., Endo, S., Tanaka, K.,
 Miyazawa, C., Okamoto, T., Hoshi, M. (2006),
 Radiation dose estimation by tooth enamel
 EPR dosimetry for residents of Dolon and
 Bodene, J. Radiat. Res., 47 (suppl), A47–
 A53.

Appendix I Geographical position (GPS) of soil sampling sites around Sarzhal in 2007-2009

point No. Lab. ID S1 0751 S2 0753 S4 0751 S5 0753 S4 0753 S5 0753 S6 0755 S7 0756 S1 0751 S5 0755 S1 0751 S2 0751	N° 49.63075 49.61611 49.6064 49.60064 49.59206 49.58303 49.553803 49.553803 49.553803 49.553803 49.553803 49.553803 49.553803 49.553803 49.55383 49.5528 49.5528 49.55528 49.55558 40.55558 40.55555	E° 78.79328 78.79328 78.79328 78.7733864 78.77444 78.75864 78.75869 78.75869 78.73069 78.72033 78.71122 78.72033 78.72122 78.63872 78.63872 78.63872	(X: km)	point No.	Lab. ID. 07R1	N°	2
S1 0781 S2 0781 S3 0782 S4 0784 S5 0785 S4 0784 S5 0785 S1 0754 S5 0785 S1 0751 S21 0751 S22 0751 S23 0751 S24 0751 S25 0751 S25 </th <th>49,63075 49,61611 49,61611 49,61611 49,50064 49,59206 49,58303 49,57283 49,57283 49,57283 49,56183 49,55437 49,56183 49,55437 49,56183 49,5208 49,5208</th> <th>78.79328 78.78381 78.77344 78.77364 78.75864 78.74589 78.74589 78.74589 78.73069 78.73069 78.72033 78.71122 78.70425 78.70425 78.60372 78.60372</th> <th>in anna</th> <th></th> <th>0781</th> <th></th> <th></th>	49,63075 49,61611 49,61611 49,61611 49,50064 49,59206 49,58303 49,57283 49,57283 49,57283 49,56183 49,55437 49,56183 49,55437 49,56183 49,5208 49,5208	78.79328 78.78381 78.77344 78.77364 78.75864 78.74589 78.74589 78.74589 78.73069 78.73069 78.72033 78.71122 78.70425 78.70425 78.60372 78.60372	in anna		0781		
 S2 S2 S3 S4 S5 S5 S7 S7 S75 S74 S751 S74 S751 S75 S75 S75 S75 S75 S75 S75 S75 S74 S74 S71 S71 S71 S71 S71 S71 S72 S73 S74 S74 S74 S71 S73 S74 S74 S74 S75 S75 S75 S74 S75 S75 S75 S75 S75 S75 S75 S76 S71 S71 S72 S73 S74 S75 S76 S77 S77 S78 S78 S77 S78 S77 S78 <li< td=""><td>9,62525 9,61611 49,60064 49,59206 49,58247 49,58283 49,58283 49,58283 49,58283 49,58283 49,58283 49,58283 49,58283 49,58283 49,5384 49,60264 49,60264 49,60264 49,53648 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,536888 40,53688 40,53688 40,53688 40,556888 40,556888888 40,556888 40,556888 40,556888888888 40,556888 40,5568888888888</td><td>78.75381 78.77444 78.75364 78.75364 78.74699 78.74399 78.73069 78.71122 78.71122 78.71122 78.70425 78.60372 78.60372</td><td>10.9950</td><td>K1</td><td></td><td>48 05578</td><td>70</td></li<>	9,62525 9,61611 49,60064 49,59206 49,58247 49,58283 49,58283 49,58283 49,58283 49,58283 49,58283 49,58283 49,58283 49,58283 49,5384 49,60264 49,60264 49,60264 49,53648 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53658 49,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,53688 40,536888 40,53688 40,53688 40,53688 40,556888 40,556888888 40,556888 40,556888 40,556888888888 40,556888 40,5568888888888	78.75381 78.77444 78.75364 78.75364 78.74699 78.74399 78.73069 78.71122 78.71122 78.71122 78.70425 78.60372 78.60372	10.9950	K1		48 05578	70
 S.3 S.4 S.4 S.5 S.7 S.7 S.8 S.8 S.9 S.12 S.13 S.13 S.14 S.13 S.13 S.14 S.13 S.14 S.13 S.14 S.15 S.13 S.14 S.15 S.13 S.14 S.15 S.15 S.14 S.15 S.15 S.14 S.15 S.15 S.21 S.21 S.22 S.23 S.24 S.25 S.21 S.21 S.22 S.23 S.24 S.25 S.25 S.25 S.26 S.21 S.21 S.22 S.23 S.24 S.25 S.25 S.25 S.26 S.27 S.28 S.28 S.28 S.29 S.29 S.21 S.21 S.22 S.23 S.24 S.25 S.25 S.26 S.27 S.28 S.28 S.29 S.29 S.29 S.21 S.21 S.22 S.22 S.23 S.24 S.24 S.25 S.25 S	49.61611 49.60778 49.59206 49.58303 49.58303 49.58333 49.5833 49.55447 49.55483 49.55483 49.55483 49.5018 49.50294 49.60867 49.50288 49.53808 49.5383 49.5383 49.53883 49.558857 49.55885 49.55885 49.55885 49.55885 49.55885 49.55885 40.5585 40.558585 40.558585 40.55856 40.55856 40.55856 40.55856 40.55856 40.55856 40.55856 40.55856565656	78.71444 78.75864 78.75864 78.74589 78.74589 78.73069 78.72033 78.71122 78.70425 78.60872 78.60872	9,9630	K2	07B7	CC050 87	70
 54 0755 57 0755 57 0755 58 0756 57 0755 58 0756 511 0751 511 0751 512 07516 513 07515 514 07514 515 07515 515 07515 516 07516 7515 516 07516 7516 07516 7519 7531 512 07516 511 07516 512 07516 512 07515 513 07516 753 07516 753 07519 514 07516 753 07515 515 07516 753 07515 516 07516 753 07516 753 07516 753 07516 753 0851 753 08515 533 08515 533 08515 533 08515 533 08515 533 08515 534 08515 535 08515 537 08515 537 08515 	49,500778 49,58206 49,58206 49,58303 49,55383 49,55383 49,55383 49,55383 49,55383 49,55383 49,55383 49,56183 49,55183 49,503867 49,503867 49,503867 49,503887 49,53844 49,52288 49,52288	78.75864 78.75864 78.74589 78.73069 78.7122 78.71122 78.71122 78.60872 78.60872	8.9621	2 2	0782	1000000	DL
53 0753 54 0754 57 0754 59 0756 510 07510 511 07511 512 07513 513 07513 514 07514 515 07516 514 07516 515 07516 516 07516 517 07515 518 07516 517 07516 518 07516 517 07516 518 07516 517 07516 518 07516 519 07516 511 07516 512 07519 521 07519 522 07516 523 07516 524 07519 525 0855 526 07516 521 0855 522 0855 523 08516	49.52006 49.58303 49.58303 49.57383 49.55383 49.55383 49.55383 49.55383 49.55383 49.55383 49.55383 49.55383 49.55383 49.55383 49.55383 49.53544 49.52383 49.53583 49.55558 49.55583 49.55583 49.55583 49.55583 49.55583 49.55558 49.555558 49.55558 49.55558 49.55558 49.555558 49.55558 49.55558 49.55558 49.55558 49.55558 49.55558 49.55558 49.55558 49.55558 49.55558 49.55558 49.55558 49.55558 49.55558 49.55558 49.55558 40.55558 40.55558 40.55558 40.55558 40.55558 40.55558 40.55558 40.55558 40.55558 40.55558 40.55558 40.55558 40.555558 40.555558 40.555558 40.555558 40.555558 40.555558 40.555555558	78.74589 78.74589 78.72059 78.71122 78.70425 78.70425 78.60331	C240.8	CA.	AUTO	004510	01
S7 0753 S10 0751 S11 0751 S12 0751 S13 0751 S14 0751 S15 0751 S14 0751 S15 0751 S16 0751 S17 0751 S16 0751 S17 0751 S18 0751 S17 0751 S18 0751 S17 0751 S18 0751 S17 0751 S18 0751 S19 0751 S18 0751 S18 0751 S21 0751 S22 0751 S23 0751 S24 0751 S25 0853 S25 0853 S25 0853 S25 0851 S33 0851 S33 08515 S3	49,58347 49,58303 49,58303 49,56383 49,56383 49,56383 49,56383 49,56383 49,56383 49,56383 49,56383 49,56384 49,50387 49,60367 49,50383 49,53644 49,50383 49,53644 49,5383 49,5383	78.73069 78.723069 78.71122 78.70425 78.70425 78.69872 78.69372	27667	52	OTRS	48 03456	02
 S8 9758 510 9751 511 9751 9851 985	49,57283 49,55283 49,55283 49,55487 49,55487 49,55183 49,55183 49,55183 49,55183 49,55183 49,55183 49,50387 49,60344 49,60344 49,50383 49,53644 49,52283 49,52283	78.72033 78.71122 78.70425 78.69872 78.69872	4.7056	K6	0786	669000	10
S9 0789 S10 07810 S11 07811 S12 07811 S13 07813 S14 07813 S15 07814 S16 07815 S17 07816 S16 07816 S17 07816 S18 07816 S17 07816 S18 07816 S18 07816 S18 07816 S18 07816 S21 07816 S22 07816 S21 07816 S22 07816 S21 07816 S22 08831 S23 08831 S24 08856 S25 08856 S26 08856 S33 08831 S33 08815 S33 08815 S33 08815 S33 08815 S33	49,57283 49,55487 49,55487 49,55683 49,55883 49,55883 49,55883 49,55883 49,55883 49,55883 49,50867 49,60867 49,50867 49,5208 49,5208 49,5208	78.71122 78.70425 78.69872 78.69331	3.6890	K7	0787	48,90642	19
\$10 07510 \$11 07511 \$12 07513 \$13 07514 \$14 07514 \$15 07514 \$15 07515 \$15 07516 \$15 07516 \$16 07516 \$17 07516 \$18 07516 \$19 07516 \$17 07516 \$18 07516 \$21 07516 \$22 07519 \$21 07519 \$22 07519 \$21 07519 \$22 07519 \$21 07519 \$22 07519 \$22 07511 \$22 0851 \$23 0853 \$24 0855 \$25 0856 \$25 0856 \$25 0851 \$23 0851 \$23 08515 \$23	49,56383 49,55447 49,55447 49,55483 49,55683 49,55683 49,55183 49,55183 49,53644 49,60867 49,50867 49,53644 49,53644 49,53648 49,53688 49,53688 49,53688 49,53688 49,53688 49,53688 49,53688 49,53688 49,53688 49,53688 49,53688 49,53688 49,53688 49,53688 49,53688 49,53688 49,53688 49,53688 49,53688 49,55488 49,55888 49,55888 49,55888 49,55888 49,55888 49,55888 49,55888 49,55887 49,55887 49,558888 49,558888 49,558888 49,558888 49,558888 49,558888 49,558888888 49,5588888 49,5588888 49,55888888888 49,558888 49,5588888888888 49,558888888888888 49,5588888888888888888888888888888888888	78.70425 78.69872 78.69331	2.5115	K8	07B8	48.97000	62
SII 07511 S12 07513 S13 07513 S14 07513 S15 07513 S16 07515 S17 07516 S16 07516 S17 07516 S16 07516 S17 07516 S18 07516 S19 07516 S19 07519 S21 07519 S22 07519 S21 07519 S22 07519 S23 07519 S24 07519 S25 0853 S25 0853 S26 0856 S27 0857 S28 0856 S31 0853 S32 08513 S33 08513 S33 08513 S33 08513 S33 08513 S33 08515 S33	49.55447 49.56475 49.53803 49.53803 49.53803 49.53303 49.5334 49.60264 49.60867 49.60867 49.53644 49.53643 49.5365 49.53643 49.53643 49.53643 49.53645 49.53645 49.53645 49.53645 49.53645 49.53645 49.53645 49.55665 49.555665 49.5556656565 49.55566565656565656565656565656565656565	78.69872	1.5354	K9	0789	48.98417	52
 S12 S13 S13 S14 O7514 S15 O7516 S17 S22 O7519 S21 O7519 S22 S23 S24 S25 S25 S25 S26 S21 S25 S26 S26 S21 S21 S22 S23 S23 S24 S25 S25 S26 S21 S21 S22 S23 S23 S24 S25 S25 S25 S26 S21 S21 S22 S23 S24 S25 S25 S25 S26 S21 S21 S22 S23 S23 S24 S35 S31 S31 S31 S31 S31 S31 	49,53605 49,53803 49,53803 49,53831 49,53831 49,53831 49,5383 49,5384 49,5384 49,5383 49,5208 49,5208	12209 84	0.6221	K10	08K1	48 97344	64
S13 07813 S14 07814 S15 07816 S16 07816 S17 07816 S18 07816 S19 07816 S19 07816 S19 07816 S19 07816 S19 07816 S19 07816 S21 07819 S22 07819 S23 07819 S24 07820 S24 0853 S24 0853 S25 0853 S24 0855 S25 0856 S21 0855 S23 0855 S24 0855 S25 0856 S33 08511 S34 08513 S35 08514 S35 08515 S37 08515 S37 08515 S37 08515 S37 08515 S37 08515	49.53803 49.53803 49.50183 49.60294 49.60294 49.60267 49.50867 49.53644 49.5283 49.51225	tonand.	-0.1820	KII	08K2	48 97944	54
S14 0/514 \$15 07515 \$16 07516 \$17 07516 \$19 07516 \$19 07516 \$21 07516 \$21 07516 \$21 07519 \$21 07519 \$22 07519 \$21 07519 \$22 07519 \$21 07519 \$22 07520 \$21 07520 \$22 0853 \$23 0853 \$24 0855 \$25 0855 \$25 0855 \$23 0855 \$23 08511 \$23 08511 \$23 08512 \$33 08515 \$33 08515 \$33 08515 \$33 08515 \$33 08515 \$33 08515	49.52831 49.56183 49.60394 49.60394 49.60867 49.53644 49.52883 49.52008 49.52008	78.68808	-1.0372	K12	08K3	48 98539	10
S10 07511 S17 07517 S18 07517 S19 07517 S20 07517 S21 07519 S22 07519 S21 07519 S22 07519 S21 07519 S22 07519 S23 07520 S24 0853 S25 0853 S25 0853 S25 0855 S26 0855 S27 0855 S28 0855 S31 0851 S33 08513 S34 08513 S35 08515 S35 08515 S37 08515 S37 08515 S37 08515 S37 08515 S37 08515	49,5997 49,60344 49,60344 49,59706 49,50867 49,52883 49,52008 49,52008	46400.0/	01001-	K13	08K4	48.99200	64
S17 07817 S18 07819 S20 07819 S21 07819 S22 07819 S21 07819 S22 07819 S21 07819 S22 07819 S21 07819 S22 07819 S23 0781 S24 0851 S25 0853 S25 0853 S26 0855 S27 0855 S28 0855 S28 0855 S31 0855 S33 08513 S33 08513 S34 08513 S35 08515 S37 08515 S37 08515 S37 08515 S37 08515 S37 08515	49,60294 49,60144 49,60867 49,60867 49,50867 49,5288 49,52283 49,51225	12127 27	7070'0	K14	08K5	48 99736	20
\$18 07518 \$20 07518 \$21 07518 \$22 07519 \$22 07519 \$22 07519 \$22 07519 \$22 07519 \$22 0751 \$22 0851 \$23 0851 \$24 0854 \$25 0855 \$25 0855 \$25 0855 \$25 0855 \$25 0855 \$25 0855 \$25 0855 \$23 0851 \$23 0851 \$23 0851 \$23 0851 \$23 0851 \$33 0851 \$33 0851 \$33 0851 \$33 0851 \$33 0851 \$33 0851	49.60144 49.59706 49.50867 49.52644 49.52783 49.52088 49.51225	78 73014	10000	K15	08K6	49 00083	79
\$19 07519 \$21 07519 \$221 07520 \$222 07520 \$223 07520 \$224 0883 \$225 0885 \$226 0885 \$226 0885 \$226 0885 \$237 0885 \$238 0885 \$239 0885 \$230 0885 \$231 0885 \$232 0885 \$330 0885 \$331 08811 \$333 08811 \$333 08811 \$333 08811 \$336 08811 \$337 08811 \$337 08811 \$337 08811	49.59706 49.60867 49.53644 49.52783 49.52008 49.51225	78.73561	5.7463	K16	08K7	48.96875	62
 S20 S21 S21 S22 S22 S23 S23 S24 0851 S85 S25 0853 S33 S34 0854 0853 S35 0851 0853 0854 0851 0851	49.60867 49.53644 49.52783 49.52008 49.51225	78.74278	5.8953	K17	08K8	48.97611	20
S21 08S1 S22 08S2 S23 08S3 S24 08S3 S25 08S3 S25 08S4 S25 08S5 S26 08S5 S27 08S5 S28 08S5 S29 08S6 S31 08S1 S33 08S13 S34 08S13 S33 08S13 S34 08S15 S35 08S15 S33 08S15 S33 08S15 S33 08S15 S33 08S15 S34 08S15 S35 08S15 S36 08S15 S37 08S15	49.53644 49.52783 49.52008 49.51225	78.74850	6.9611	K18	08K9	48.98297	70
\$\$22 0852 \$\$24 0853 \$\$24 0853 \$\$24 0854 \$\$25 0853 \$\$25 0854 \$\$25 0855 \$\$25 0855 \$\$25 0855 \$\$25 0855 \$\$25 0856 \$\$25 0856 \$\$23 0851 \$\$23 0851 \$\$23 0851 \$\$31 0851 \$\$33 0851 \$\$33 0851 \$\$33 0851 \$\$33 0851 \$\$33 0851 \$\$33 0851 \$\$33 0851 \$\$33 0851 \$\$33 0851 \$\$33 0851 \$\$33 0851	49.52783 49.52008 49.51225	78.68814	-1.1331	K19	08K10	48 98967	54
\$23 0853 \$24 0854 \$25 0855 \$25 0855 \$25 0855 \$25 0855 \$27 0855 \$23 0855 \$24 0855 \$25 0855 \$23 0851 \$23 0851 \$31 0851 \$33 08512 \$33 08512 \$33 08513 \$33 08513 \$33 08513 \$33 08513 \$33 08515 \$337 08515 \$337 08515	49.51225	78.68314	-1.9682	K20	08K11	48 99642	64
\$24 0854 \$25 0855 \$25 0855 \$27 0855 \$28 0855 \$27 0856 \$28 0855 \$29 0856 \$31 0851 \$33 0851 \$33 0851 \$33 08513 \$33 08513 \$33 08514 \$33 08515 \$33 08515 \$337 08515 \$337 08515 \$337 08515	49.51225	78.67525	-2.9203	IC3	08K12	49 00311	20
 S22 S22 S26 S27 S28 S28 S29 S30 S31 S31 S32 S33 S34 S851 S35 S31 S31	The No. No.	78.66731	-3.8809	K22	08K13	49 00981	10
2.20 0857 2.28 0857 5.29 0857 5.30 0851 5.31 08510 5.31 08511 5.32 08511 5.33 08513 5.34 08513 5.34 08513 5.35 08513 5.35 08513 5.37 08513	49.50422	78.65903	-4.8734	K73	08K14	49.01661	20
22/ 005/ 528 00858 530 08510 531 08510 531 08511 533 08513 533 08513 534 08513 535 08514 535 08515 536 08515 537 08517	10044.44	18.05208	6097.5-	K74	08K15	10010-64	54
 S29 S30 S31 S31 S32 S31 S31 S31 S32 S33 S33 S34 S814 S35 S35 S35 S36 S317 S317 S31 	10004.64	78 63769	-7 6764	K25	08K16	49.04358	19
S30 08510 S31 08511 S32 08512 S33 08513 S34 08513 S35 08514 S35 08513 S34 08513 S35 08514 S35 08514 S35 08515 S36 08515 S37 08517	49.47231	78.63047	-8.5616	K26	10K1	48.97881	62
S31 08S11 S32 08S12 S33 08S13 S34 08S14 S35 08S14 S35 08S15 S35 08S14 S35 08S15 S35 08S15 S35 08S15 S37 08S17	49.46447	78.62300	-9.4943	K27	10K2	48.97633	62
S32 08S12 S33 08S13 S34 08S14 S35 08S14 S35 08S15 S35 08S15 S37 08S17	49.62522	78.65244	2.3159	K28	10K3	48.97444	79
S33 08513 S34 08514 S35 08515 S35 08515 S37 08517	49.62208	78.63944	1.3503	K29	10K4	48.97311	79
534 08514 S35 08815 S36 08816 S37 08817	49.61897	78.62578	0.3470	K30	10K5	48.97144	62
S36 08S16 S37 08S17	49.61528	78.61300	-0.6403	K31	10K6	48.96947	61
S37 08S17	40 60430	78 58064	1400.1-	K32	10K7	48.96778	79
	49.59992	78.57792	-3.6777	K33	10K8	48.96517	62
S38 08S18	49.59497	78.56567	-4.7120	K34	10K9	48.96236	61
S39 09S1	49.60956	78.60175	-1.6641	K35	10K10	48.96072	61
S40 09S2	49.59508	78.56547	-4.7166	K36	10K11	48.95919	61
S41 09S3	49.59044	78.55400	-5.6858	K37	10K12	48.95794	79
S42 09S4	49.58669	78.54150	-6.6601	K38	10K13	48.95619	61
S43 09S5	49.58272	78.52944	-7.6220	K39	10K14	48.95528	62
S44 0956	49.57903	00/15.8/	0680.8-				
545 0957 0957	16120704	10/20/07	C0C5.1	*Distance from	the supposed center	cr-axis of the plun	ne from
240 0958 247 0050	49.02191	1000001	2.3044				
01S00 848	49.63458	C6CL98L	61133				
S49 09S11	49.64175	78.68228	5.1159				
S50 09S12	49.64953	78.69317	6.2472				

around Karaul in 2007-2010	Distance *
JPS) of soil sampling sites	Position by GPS
Geographical position (C	
	50

ampling		Position	by GPS	Distance *
oint No.	Lab. ID	N°	E	(X: km)
KI	07B1	48.95578	79.27139	-3.0008
K2	07B2	48.95022	79.25856	4.1079
K3	07B3	48.95906	79.24394	4.4190
K4	0784	48.94519	79.24089	-5.4679
K5	07B5	48.93456	79.25878	-5.0761
K6	07B6	48.92422	79.25903	-5.7085
K7	07B7	48.90642	79.25381	-7,1326
K8	07B8	48.97000	79.27372	-1.9720
K9.	07B9	48.98417	79.29381	0.1033
K10	08K1	48.97344	79.23372	4.1224
KII	08K2	48.97944	79.23972	-3.3917
K12	08K3	48.98539	79.24608	-2.6431
K13	08K4	48.99200	79.25158	-1.9037
K14	08K5	48.99736	79.25878	-1.1423
K15.	08K6	49.00083	79.26125	-0.7786
K16	08K7	48.96875	79.27294	-2.0963
K17	08K8	48.97611	79.28194	-1,1029
K18	08K9	48.98297	79.29169	-0.0964
K19	08K10	48.98967	79.30131	0.8915
K20	08K11	48.99642	79.31097	1.8861
K21	08K12	49.00311	79.32058	2.8739
K22	08K13	49,00981	79.33019	3,8618
K23	08K14	49.01661	79.34008	4.8730
K24	08K15	49.03000	1635931	6.8487
K25	08K16	49.04358	79.37886	8.8562
K26	10K1	48.97881	79.22700	4.1843
K27	10K2	48.97633	79.21789	-4.8781
K28	10K3	48.97444	79.21158	-5.3694
K29	10K4	48.97311	79.20492	-5.8473
K30	10K5	48.97144	79.19844	-6.3345
K31	10K6	48.96947	79.19219	-6.8278
K32	10K7	48.96778	79.18578	-7.3135
K33	10K8	48.96517	79.17978	-7.8320
K34	10K9	48.96236	79.17400	-8.3495
K35	10K10	48.96072	79.16753	-8.8350
K36	10K11	48.95919	79.16097	-9.3184
K37	10K12	48.95794	79.15453	-9.7780
K38	10K13	48.95619	79.14808	-10.2688
K39	10K14	48.95528	79.14433	-10.5480

App	endix II	I Results of Pu-	239,2	40 and Cs	-137 data in Sarzha	al (2007 - 2009)						
Sa	umpling	Distance from the	Pu-	239,249	Cs-137	Pu-239,140	Geometric	Cs-137	Geometric	Pu/Cs	Geor	netric
k	cation	center-axis (km)*	I	3q/kg)	(Bq/kg)	(Bq/m^2)	mean	(Bq/m^2)	mean		ū	can
	2007											
S1	07S1-1	10.9930	0.11	± 0.01	2.24 ± 0.21	25.0 ± 2.1		524.9 ± 48.0		0.048		
	07S1-2	10.9930	1.97	± 0.09	13.21 ± 0.37	356.8 ± 16.8		2390.1 ± 66.6		0.149		
	07S1-3	10.9930	0.15	± 0.01	2.19 ± 0.16	33.2 ± 2.2	66.7	478.0 ± 35.3	843.3	0.069	0.079	± 0.054
S2	07S2-1	9.9630	0.33	± 0.01	6.36 ± 0.32	65.3 ± 2.6		1269.9 ± 64.2		0.051		
	07S2-2	9.9630	0.22	± 0.01	6.48 ± 0.22	42.6 ± 2.3		1272.5 ± 42.9		0.033		
	07S2-3	9.9630	0.46	± 0.02	7.68 ± 0.30	97.0 ± 3.6	64.6	1618.4 ± 63.9	1377.7	0.060	0.047	± 0.014
S3	07S3-1	8.9621	0.10	± 0.01	1.33 ± 0.12	27.8 ± 1.8		375.3 ± 35.1		0.074		
	07S3-2	8.9621	0.40	± 0.02	4.99 ± 0.26	98.1 ± 4.1		1209.6 ± 63.1		0.081		
	07S3-3	8.9621	4.87	± 0.24	8.21 ± 0.29	1363.2 ± 67.5	154.9	2298.1 ± 81.1	1014.2	0.593	0.153	± 0.298
S 4	07S4-1	8.0425	1.03	± 0.04	13.08 ± 0.30	242.0 ± 9.8		3085.9 ± 70.7		0.078		
	07S4-2	8.0425	0.89	± 0.03	6.94 ± 0.27	265.6 ± 10.2		2058.0 ± 81.5		0.129		
	07S4-3	8.0425	0.88	± 0.04	8.62 ± 0.32	230.9 ± 10.1	245.7	2269.7 ± 84.0	2433.7	0.102	0.101	± 0.025
SS	07S5-1	7.0580	0.61	± 0.03	4.98 ± 0.38	169.5 ± 7.1		1373.7 ± 103.5		0.123		
	07S5-2	7.0580	1.50	± 0.05	4.20 ± 0.29	354.2 ± 11.7		994.1 ± 68.0		0.356		
	07S5-3	7.0580	0.48	± 0.03	6.36 ± 0.30	111.8 ± 6.2	188.6	1486.5 ± 69.0	1266.2	0.075	0.149	± 0.150
S6	07S6-1	5.7662	2.68	± 0.11	14.67 ± 0.82	780.3 ± 32.4		4272.0 ± 237.7		0.183		
	07S6-2	5.7662	1.19	± 0.04	8.46 ± 0.40	338.9 ± 12.5		2414.9 ± 113.7		0.140		
	07S6-3	5.7662	2.63	± 0.09	9.99 ± 0.42	730.4 ± 26.5	578.0	2799.1 ± 116.5	3068.0	0.261	0.188	± 0.061
S7	07S7-1	4.7056	0.02	± 0.00	1.32 ± 0.16							
	07S7-2	4.7056	2.24	± 0.07	11.26 ± 0.32	607.3 ± 19.1		3056.7 ± 85.5		0.199		
	07S7-3	4.7056	1.15	± 0.04	14.89 ± 0.68	372.0 ± 12.4	475.3	4803.5 ± 219.8	3831.8	0.077	0.124	± 0.086
S8	07S8-1	3.6890	0.82	± 0.03	9.59 ± 0.48	199.7 ± 6.7		2342.7 ± 117.5		0.085		
	07S8-2	3.6890	2.59	± 0.11	24.16 ± 0.99	593.8 ± 24.5		5527.1 ± 226.9		0.107		
	07S8-3	3.6890	0.31	± 0.01	5.03 ± 0.36	73.6 ± 3.5	205.9	1179.6 ± 83.6	2481.1	0.062	0.083	± 0.023
S9	07S9-1	2.5115	0.96	± 0.03	7.21 ± 0.44	218.7 ± 7.8		1634.3 ± 100.6		0.134		
	07S9-2	2.5115	9.53	± 0.50	25.35 ± 0.72	2600.0 ± 137.5		6913.6 ± 196.7		0.376		
	07S9-3	2.5115	0.62	± 0.03	5.62 ± 0.39	146.1 ± 6.2	436.3	1325.6 ± 91.6	2465.0	0.110	0.177	± 0.147
S10	07S10-1	1.5354	5.21	± 0.28	27.28 ± 0.73	1263.0 ± 66.8		6606.8 ± 177.2		0.191		
	07S10-2	1.5354	3.09	± 0.11	7.17 ± 0.27	705.5 ± 25.6		1636.2 ± 62.6		0.431		
	07S10-3	1.5354	8.02	± 0.39	27.10 ± 0.80	2094.7 ± 102.1	1231.2	7076.2 ± 210.2	4245.0	0.296	0.290	± 0.120
S11	07S11-1	0.6221	2.76	± 0.10	23.65 ± 0.65	631.2 ± 23.6		5399.5 ± 148.2		0.117		
	07S11-2	0.6221	2.61	± 0.09	12.51 ± 0.41	717.2 ± 24.1		3430.7 ± 111.2		0.209		
	07S11-3	0.6221	7.67	± 0.39	30.03 ± 1.33	1756.1 ± 88.7	926.4	6872.6 ± 303.6	5030.6	0.256	0.184	± 0.071
*Dis and	stance from X > 0 or 3	m the supposed cent X<0 corresponds	ter-axi: to N oi	s of the radi	oactive plume from th n from the trace cent	le first USSR hydrog terline.	en atomic bon	ıb test in August,195	i3. X=0 is set	to the cer	nter-axis	

Appendix III-	-2 (continued)								
Sampling	Distance from the	Pu-239,249	Cs-137	Pu-239,249	Geometric	Cs-137	Geometric	Pu/Cs	Geometric
location	center-axis (km)*	(Bq/kg)	(Bq/kg)	(Bq/m^2)	mean	(Bq/m^2)	mean		mean
2007									
S12 07S12-1	-0.1820	2.49 ± 0.08	13.31 ± 0.39	584.7 ± 19.3		3119.2 ± 91.5		0.187	
07S12-2	2 -0.1820	2.37 ± 0.08	32.13 ± 0.63	674.4 ± 21.9		9125.7 ± 180.3		0.074	
07S12-3	3 -0.1820	2.02 ± 0.06	12.80 ± 0.49	541.6 ± 15.3	597.7	3420.8 ± 130.2	4600.6	0.158	0.130 ± 0.059
S13 07S13-1	-1.0372	1.88 ± 0.06	16.56 ± 0.47	538.4 ± 17.5		4746.5 ± 134.5		0.113	
07S13-2	2 -1.0372	15.66 ± 0.54	17.67 ± 0.58	3508.9 ± 121.0		3957.2 ± 129.0		0.887	
07S13-3	3 -1.0372	2.01 ± 0.06	4.89 ± 0.22	506.9 ± 15.7	985.7	1231.0 ± 54.2	2848.9	0.412	0.346 ± 0.390
S14 07S14-1	-1.8318	3.21 ± 0.10	20.81 ± 0.54	604.8 ± 19.2		3915.5 ± 101.4		0.154	
07S14-2	2 -1.8318	3.87 ± 0.14	40.48 ± 0.68	975.9 ± 35.0		10194.3 ± 170.0		0.096	
07S14-3	3 -1.8318	6.01 ± 0.23	44.82 ± 1.24	1486.7 ± 56.3	957.4	11074.8 ± 305.6	7617.8	0.134	0.126 ± 0.030
S15 07S15-1	0.8202	8.35 ± 0.37	39.55 ± 0.86	1923.6 ± 84.4		9111.0 ± 199.0		0.211	
07S15-2	2 0.8202	4.78 ± 0.19	33.53 ± 0.90	1034.5 ± 40.3		7249.9 ± 195.2		0.143	
07S15-3	3 0.8202	8.45 ± 0.28	45.74 ± 1.03	1838.0 ± 60.0	1540.8	9949.1 ± 223.5	8694.2	0.185	0.177 ± 0.035
S16 07S16-1	5.0531	0.68 ± 0.02	16.07 ± 0.45	177.7 ± 6.1		4179.6 ± 117.4		0.043	
07S16-2	2 5.0531	0.75 ± 0.03	4.57 ± 0.26	182.6 ± 7.2		1107.1 ± 62.6		0.165	
07S16-3	5.0531	3.07 ± 0.14	27.81 ± 1.09	786.1 ± 35.4	294.4	7125.6 ± 278.8	3206.6	0.110	0.092 ± 0.061
S17 07S17-1	5.5165	3.32 ± 0.11	19.69 ± 1.06	869.3 ± 29.8		5161.5 ± 278.5		0.168	
07S17-2	2.5165	1.85 ± 0.05	11.16 ± 0.66	493.9 ± 14.0		2974.5 ± 176.7		0.166	
07S17-3	3 5.5165	3.13 ± 0.10	17.51 ± 1.17	610.1 ± 19.3	639.9	3410.0 ± 227.4	3741.0	0.179	0.171 ± 0.007
S18 07S18-1	5.7463	3.36 ± 0.12	5.15 ± 0.27	811.4 ± 29.7		1240.7 ± 64.2		0.654	
07S18-2	2 5.7463	8.61 ± 0.34	7.18 ± 0.33	1697.2 ± 67.0		1416.1 ± 64.8		1.198	
07S18-3	3 5.7463	3.07 ± 0.10	6.40 ± 0.42	656.8 ± 22.1	967.1	1369.6 ± 90.9	1340.0	0.480	0.722 ± 0.375
S19 07S19-1	5.8953	1.68 ± 0.05	3.23 ± 0.19	284.3 ± 8.6		546.4 ± 31.9		0.520	
07S19-2	2.8953	2.69 ± 0.07	7.15 ± 0.38	343.6 ± 9.6		913.4 ± 48.5		0.376	
07S19-3	5.8953	11.97 ± 0.52	21.29 ± 0.74	2236.8 ± 96.9	602.3	3975.9 ± 137.5	1256.6	0.563	0.479 ± 0.098
S20 07S20-1	6.9611	0.21 ± 0.01	2.56 ± 0.18	62.9 ± 3.4		748.5 ± 51.3		0.084	
07S20-2	2 6.9611	2.98 ± 0.11	12.05 ± 0.30	798.5 ± 29.8		3226.8 ± 79.7		0.247	
07S20-3	6.9611	0.26 ± 0.01	2.94 ± 0.22	71.9 ± 4.0	153.4	798.1 ± 60.5	1244.5	060.0	0.123 ± 0.093

App	endix III-	3 (continued)								
Š	ımpling	Distance from the	Pu-239,249	Cs-137	Pu-239,249	Geometric	Cs-137	Geometric	Pu/Cs	Geometric
ľ	ocation	center-axis (km)*	(Bq/kg)	(Bq/kg)	(Bq/m ²)	mean	(Bq/m ²)	mean		mean
	2008									
S21	08S1-1	-1.1331	3.75 ± 0.14	22.15 ± 0.66	906.7 ± 34.3		5358.4 ± 160.7		0.169	
	08S1-2	-1.1331	6.12 ± 0.24	11.79 ± 0.47	1549.5 ± 60.1		2987.1 ± 118.6		0.519	
	08S1-3	-1.1331	12.64 ± 0.52	38.28 ± 0.66	3776.4 ± 154.1	1744.2	11434.9 ± 196.4	5677.7	0.330	0.307 ± 0.175
S22	08S2-1	-1.9682	1.75 ± 0.06	13.45 ± 0.32	491.4 ± 18.1		3775.8 ± 90.1		0.130	
	08S2-2	-1.9682	8.82 ± 0.27	34.74 ± 0.46	2306.2 ± 71.9		9080.2 ± 119.6		0.254	
	08S2-3	-1.9682	3.50 ± 0.13	17.50 ± 0.25	1094.1 ± 41.1	1074.3	5466.8 ± 78.5	5722.9	0.200	0.188 ± 0.062
S23	08S3-1	-2.9203	3.29 ± 0.08	13.68 ± 0.35	995.6 ± 23.3		4134.7 ± 104.4		0.241	
	08S3-2	-2.9203	1.33 ± 0.06	7.11 ± 0.25	371.2 ± 16.0		1982.5 ± 69.1		0.187	
	08S3-3	-2.9203	2.57 ± 0.09	10.71 ± 0.35	778.5 ± 27.2	660.1	3240.8 ± 107.0	2983.8	0.240	0.221 ± 0.031
S24	08S4-1	-3.8809	0.69 ± 0.03	4.35 ± 0.18	192.5 ± 7.1		1212.6 ± 51.4		0.159	
	08S4-2	-3.8809	12.48 ± 0.40	53.37 ± 0.50	3992.8 ± 127.2		17075.9 ± 160.0		0.234	
	08S4-3	-3.8809	3.72 ± 0.14	14.69 ± 0.30	1236.1 ± 45.9	983.0	4885.4 ± 101.0	4659.4	0.253	0.211 ± 0.050
S25	08S5-1	-4.8734	0.18 ± 0.01	3.21 ± 0.17						
	08S5-2	-4.8734	1.69 ± 0.04	7.72 ± 0.17	464.9 ± 11.7		2123.5 ± 46.9		0.219	
	08S5-3	-4.8734	2.24 ± 0.10	19.98 ± 0.55	762.4 ± 35.3	595.3	6805.1 ± 188.9	3801.4	0.112	0.157 ± 0.076
S26	08S6-1	-5.7609	0.27 ± 0.01	7.06 ± 0.24	94.8 ± 4.8		2492.8 ± 84.6		0.038	
	08S6-2	-5.7609	0.14 ± 0.01	3.50 ± 0.19						
	08S6-3	-5.7609	8.33 ± 0.22	16.31 ± 0.30	1984.9 ± 53.3	433.9	3886.0 ± 72.7	3112.4	0.511	0.139 ± 0.334
S27	08S7-1	-6.6826	5.43 ± 0.12	10.42 ± 0.22	1783.5 ± 40.7		3421.8 ± 72.8		0.521	
	08S7-2	-6.6826	2.24 ± 0.06	15.20 ± 0.50	652.2 ± 16.6		4425.9 ± 146.1		0.147	
	08S7-3	-6.6826	4.63 ± 0.17	16.55 ± 0.40	1223.6 ± 45.3	1124.8	4377.2 ± 104.6	4047.1	0.280	0.278 ± 0.190
S28	08S8-1	-7.6264	0.39 ± 0.02	2.29 ± 0.12	122.7 ± 5.7		718.1 ± 36.8		0.171	
	08S8-2	-7.6264	1.70 ± 0.06	14.46 ± 0.30	466.9 ± 15.2		3969.9 ± 83.6		0.118	
	08S8-3	-7.6264	0.88 ± 0.04	6.24 ± 0.30	252.8 ± 10.7	243.7	1789.8 ± 86.0	1721.5	0.141	0.142 ± 0.027
S29	08S9-1	-8.5616	0.40 ± 0.02	4.26 ± 0.24	120.3 ± 5.6		1267.8 ± 71.0		0.095	
	08S9-2	-8.5616	2.98 ± 0.06	3.64 ± 0.17	876.5 ± 17.9		1070.2 ± 49.4		0.819	
	08S9-3	-8.5616	0.14 ± 0.01	3.81 ± 0.14		324.8		1164.8		0.279 ± 0.512
S30	08S10-1	-9.4943	4.00 ± 0.09	13.00 ± 0.33	839.9 ± 18.8		2725.7 ± 69.1		0.308	
	08S10-2	-9.4943	2.94 ± 0.06	16.29 ± 0.27	855.4 ± 17.4		4740.4 ± 79.5		0.180	
	08S10-3	-9.4943	1.01 ± 0.03	8.99 ± 0.30	299.3 ± 8.9	599.1	2676.4 ± 90.1	3258.0	0.112	0.184 ± 0.100
S31	08S11-1	2.3159	14.22 ± 0.27	28.46 ± 0.68	3905.0 ± 73.3		7817.1 ± 186.9		0.500	
	08S11-2	2.3159	3.17 ± 0.09	16.61 ± 0.37	867.0 ± 25.8		4541.0 ± 101.2		0.191	
	08S11-3	2.3159	4.70 ± 0.11	23.37 ± 0.70	1206.7 ± 28.5	1598.6	6003.6 ± 180.0	5973.2	0.201	0.268 ± 0.175

App	endix III-4	4 (continued)								
S	ımpling	Distance from the	Pu-239,249	Cs-137	Pu-239,249	Geometric	Cs-137	Geometric	Pu/Cs	Geometric
Ic	ocation	center-axis (km)*	(Bq/kg)	(Bq/kg)	(Bq/m ²)	mean	(Bq/m^2)	mean		mean
	2008									
S32	08S12-1	1.3503	0.69 ± 0.03	15.94 ± 0.31	205.0 ± 8.2		4767.0 ± 93.1		0.043	
	08S12-2	1.3503	5.47 ± 0.16	26.45 ± 0.31	1681.9 ± 48.4		8130.0 ± 96.0		0.207	
	08S12-3	1.3503	13.73 ± 0.30	25.95 ± 0.34	3664.9 ± 80.0	1081.1	6928.3 ± 90.5	6451.4	0.529	0.168 ± 0.247
S33	08S13-1	0.3470	0.17 ± 0.01	2.12 ± 0.14	40.6 1.7		519.0 ± 35.0		0.078	
	08S13-2	0.3470	1.77 ± 0.05	5.98 ± 0.17	521.6 ± 14.9		1761.5 ± 50.0		0.296	
	08S13-3	0.3470	2.65 ± 0.07	11.41 ± 0.29	817.9 ± 20.1	258.6	3520.2 ± 88.5	1476.4	0.232	0.175 ± 0.112
S34	08S14-1	-0.6403	7.21 ± 0.16	40.24 ± 0.48	1900.8 ± 42.1		10605.9 ± 126.0		0.179	
	08S14-2	-0.6403	39.24 ± 1.02	26.54 ± 0.47	11502.2 ± 299.5		7779.2 ± 136.6		1.479	
	08S14-3	-0.6403	2.11 ± 0.07	14.11 ± 0.29	654.7 ± 23.2	2428.0	4386.3 ± 90.9	7126.2	0.149	0.341 ± 0.759
S35	08S15-1	-1.6641	10.81 ± 0.26	46.55 ± 0.56	2192.5 ± 53.6		9438.4 ± 114.4		0.232	
	08S15-2	-1.6641	0.79 ± 0.02	10.98 ± 0.40	228.6 ± 6.7		3158.9 ± 115.1		0.072	
	08S15-3	-1.6641	6.63 ± 0.14	44.92 ± 0.49	1777.7 ± 36.6	962.2	12048.8 ± 130.4	7108.8	0.148	0.135 ± 0.080
S36	08S16-1	-2.7042	6.38 ± 0.29	44.78 ± 0.52	1901.3 ± 85.0		13349.6 ± 154.7		0.142	
	08S16-2	-2.7042	3.54 ± 0.09	16.45 ± 0.31	1123.5 ± 29.3		5215.2 ± 98.0		0.215	
	08S16-3	-2.7042	9.68 ± 0.17	52.25 ± 0.49	2670.3 ± 47.5	1786.8	14413.9 ± 134.3	10011.7	0.185	0.178 ± 0.037
S37	08S17-1	-3.6777	5.86 ± 0.11	26.58 ± 0.29	1696.6 ± 32.9		7695.4 ± 82.5		0.220	
	08S17-2	-3.6777	7.69 ± 0.21	39.81 ± 0.44	2086.1 ± 57.4		10805.5 ± 120.6		0.193	
	08S17-3	-3.6777	8.15 ± 0.46	39.04 ± 0.37	2270.1 ± 127.6	2002.9	10877.5 ± 103.9	9670.9	0.209	0.207 ± 0.014
S38	08S18-1	-4.7120	5.74 ± 0.13	23.01 ± 0.33	1543.6 ± 34.7		6189.3 ± 87.6		0.249	
	08S18-2	-4.7120	9.33 ± 0.22	34.38 ± 0.48	2528.7 ± 59.7		9312.0 ± 130.8		0.272	
	08S18-3	-4.7120	2.83 ± 0.06	30.92 ± 0.45	634.1 ± 14.0	1352.7	6920.6 ± 100.8	7361.1	0.092	0.184 ± 0.098
	2009									
S39	09S1-1	-1.6641	7.37 ± 0.16	29.77 ± 0.28	2143.5 ± 45.5		6778.2 ± 82.0		0.316	
	09S1-2	-1.6641	5.60 ± 0.12	17.50 ± 0.34	1162.4 ± 25.2		3636.2 ± 71.6		0.320	
	09S1-3	-1.6641	14.54 ± 0.49	67.84 ± 0.49	2749.4 ± 91.9	1899.2	12828.1 ± 92.1	6812.5	0.214	0.279 ± 0.060
S40	09S2-1	-4.7166	3.96 ± 0.11	16.46 ± 0.30	1178.8 ± 33.7		4897.7 ± 90.3		0.241	
	09S2-2	-4.7166	3.23 ± 0.08	20.40 ± 0.31	860.1 ± 20.8		4257.5 ± 82.0		0.202	
	09S2-3	-4.7166	5.83 ± 0.13	34.51 ± 0.46	1374.3 ± 30.0	1117.0	8136.7 ± 109.6	5536.0	0.169	0.202 ± 0.036

App	endix III-2	5 (continued)								
S	umpling	Distance from the	Pu-239,249	Cs-137	Pu-239,249	Geometric	Cs-137	Geometric	Pu/Cs	Geometric
ľ	ocation	center-axis (km)*	(Bq/kg)	(Bq/kg)	(Bq/m^2)	mean	(Bq/m^2)	mean		mean
	2009		1							
S41	09S3-1	-5.6858	2.89 ± 0.07	9.63 ± 0.27	804.6 ± 20.5		2679.5 ± 76.0		0.300	
	09S3-2	-5.6858	2.17 ± 0.06	9.87 ± 0.24	570.5 ± 15.3		2597.3 ± 63.4		0.220	
	09S3-3	-5.6858	4.00 ± 0.17	9.60 ± 0.19	1052.2 ± 45.3	784.6	2528.0 ± 50.4	2600.9	0.416	0.302 ± 0.099
S42	09S4-1	-6.6601	7.32 ± 0.18	23.83 ± 0.40	1298.3 ± 32.3		4226.7 ± 70.8		0.307	
	09S4-2	-6.6601	5.40 ± 0.12	16.39 ± 0.32	1375.1 ± 30.8		3265.6 ± 82.2		0.421	
	09S4-3	-6.6601	9.75 ± 0.33	26.20 ± 0.37	1679.7 ± 57.1	1442.1	3536.6 ± 63.7	3654.7	0.475	0.395 ± 0.086
S43	09S5-1	-7.6220	3.13 ± 0.08	18.68 ± 0.26	564.3 ± 13.6		3369.4 ± 47.3		0.167	
	09S5-2	-7.6220	4.92 ± 0.11	25.47 ± 0.30	1320.9 ± 29.6		6845.3 ± 80.1		0.193	
	09S5-3	-7.6220	4.80 ± 0.10	12.10 ± 0.29	1050.7 ± 21.1	921.8	2649.9 ± 63.4	3939.0	0.397	0.234 ± 0.126
S44	09S6-1	-8.5896	2.04 ± 0.09	12.06 ± 0.20	507.2 ± 21.3		3003.3 ± 50.8		0.169	
	09S6-2	-8.5896	2.74 ± 0.10	16.75 ± 0.34	434.0 ± 15.9		2651.3 ± 54.1		0.164	
	09S6-3	-8.5896	4.71 ± 0.10	22.67 ± 0.19	755.3 ± 16.0	549.9	3631.8 ± 31.1	3069.4	0.208	0.179 ± 0.024
S45	09S7-1	1.3565	7.36 ± 0.17	27.53 ± 0.24	2044.2 ± 46.8		7644.5 ± 65.7		0.267	
	09S7-2	1.3565	1.87 ± 0.06	10.07 ± 0.26	486.9 ± 15.4		2616.6 ± 68.2		0.186	
	09S7-3	1.3565	3.23 ± 0.13	24.62 ± 0.35	909.7 ± 37.2	967.4	5429.8 ± 98.9	4771.1	0.168	0.203 ± 0.053
S46	09S8-1	2.8644	0.39 ± 0.02	2.30 ± 0.16	92.4 ± 4.1		548.1 ± 38.6		0.169	
	09S8-2	2.8644	1.53 ± 0.04	9.99 ± 0.25	438.9 ± 12.5		2247.1 ± 72.5		0.195	
	09S8-3	2.8644	1.18 ± 0.03	5.61 ± 0.16	271.8 ± 7.9	222.5	1012.7 ± 37.5	1076.4	0.268	0.207 ± 0.052
S47	09S9-1	3.3318	3.56 ± 0.10	17.20 ± 0.18	944.4 ± 26.4		4562.6 ± 46.6		0.207	
	09S9-2	3.3318	4.69 ± 0.11	25.59 ± 0.31	1320.1 ± 30.2		5642.7 ± 86.9		0.234	
	09S9-3	3.3318	1.98 ± 0.06	24.65 ± 0.40	578.9 ± 18.6	897.0	7197.6 ± 117.4	5701.2	0.080	0.157 ± 0.082
S48	09S10-1	4.1133	5.51 ± 0.17	27.80 ± 0.48	1344.7 ± 40.6		6783.5 ± 116.5		0.198	
	09S10-2	4.1133	1.69 ± 0.06	19.32 ± 0.48	426.9 ± 14.9		4874.1 ± 120.9		0.088	
	09S10-3	4.1133	5.54 ± 0.18	26.20 ± 0.35	1460.2 ± 47.2	942.9	5408.5 ± 93.3	5633.9	0.270	0.167 ± 0.092
S49	09S11-1	5.1159	1.33 ± 0.05	5.36 ± 0.15	361.5 ± 13.0		1142.2 ± 40.1		0.316	
	09S11-2	5.1159	0.94 ± 0.05	20.89 ± 0.32	238.6 ± 11.9		4141.1 ± 82.0		0.058	
	09S11-3	5.1159	2.29 ± 0.06	12.54 ± 0.23	528.8 ± 13.4	357.3	2271.2 ± 52.8	2206.5	0.233	0.162 ± 0.132
S50	09S12-1	6.2472	1.11 ± 0.03	4.85 ± 0.18	261.0 ± 8.0		896.6 ± 43.2		0.291	
	09S12-2	6.2472	0.88 ± 0.03	12.38 ± 0.14	210.0 ± 7.3		2320.3 ± 33.4		0.091	
	09S12-3	6.2472	0.35 ± 0.01	11.67 ± 0.26	69.6 ± 2.2	156.3	1801.9 ± 51.0	1553.4	0.039	0.101 ± 0.133

ddv		NCSUIS OF LU-22	12,240 alla CS-		icu aluulu Nala	nı serucinen	(0107 - 1007) 11			
	Sampling	Distance from the	Pu-239,249	Cs-137	Pu-239,249	Geometric	Cs-137	Geometric	Pu/Cs	Geometric
	location	center-axis (km)*	(Bq/kg)	(Bq/kg)	(Bq/m^2)	mean	(Bq/m^2)	mean		mean
	2007									
K1	07K1-1	-3.001	0.12 ± 0.01	0.89 ± 0.11	36.6 ± 2.5		267.9 ± 32.3		0.136	
	07K1-2	-3.001	0.06 ± 0.01	0.93 ± 0.10	15.1 ± 1.4		241.1 ± 26.0			
	07K1-3	-3.001	1.23 ± 0.04	5.16 ± 0.25	298.3 ± 10.3	54.9	1251.1 ± 59.4	432.3	0.238	0.180 ± 0.072
K2	07K2-1	-4.108	0.09 ± 0.01	1.39 ± 0.12	19.2 ± 1.4		287.9 ± 25.5			
	07K2-2	-4.108	0.85 ± 0.03	6.47 ± 0.34	225.6 ± 8.0		1724.9 ± 89.5		0.131	
	07K2-3	-4.108	0.38 ± 0.02	2.40 ± 0.19	99.0 ± 4.6		622.5 ± 49.5		0.159	
K3	07K2-4	-4.108	1.85 ± 0.07	10.96 ± 0.52	479.1 ± 17.9	220.4	2844.1 ± 134.2	1450.8	0.168	0.152 ± 0.020
	07K3-1	-4.419	2.41 ± 0.10	20.08 ± 0.77	608.9 ± 24.0		5071.0 ± 195.7		0.120	
	07K3-2	-4.419	0.92 ± 0.04	7.87 ± 0.43	217.9 ± 9.0		1870.3 ± 102.7		0.117	
	07K3-3	-4.419	4.5 ± 0.2	31.02 ± 0.97	1098.6 ± 37.7	526.3	7636.0 ± 237.6	4168.3	0.144	0.126 ± 0.015
K4	07K4-1	-5.468	0.52 ± 0.02	6.29 ± 0.36	126.0 ± 4.9		1528.1 ± 86.5		0.082	
	07K4-2	-5.468	0.41 ± 0.02	3.16 ± 0.24	95.7 ± 4.4		737.6 ± 56.9		0.130	
	07K4-3	-5.468	0.46 ± 0.02	3.79 ± 0.24	93.2 ± 3.7	104.0	760.4 ± 48.9	949.9	0.123	0.109 ± 0.025
KS	07K5-1	-5.076	7.43 ± 0.39	34.26 ± 0.77	1540.3 ± 81.5		7102.1 ± 160.4		0.217	
	07K5-2	-5.076	0.84 ± 0.03	6.25 ± 0.21	196.1 ± 6.8		1460.6 ± 49.2		0.134	
	07K5-3	-5.076	2.90 ± 0.12	17.17 ± 0.34	554.2 ± 23.6	551.2	3282.2 ± 65.2	3241.1	0.169	0.170 ± 0.041
K6	07K6-1	-5.708	1.61 ± 0.06	7.15 ± 0.51	427.1 ± 15.3		1899.4 ± 136.7		0.225	
	07K6-2	-5.708	1.08 ± 0.03	6.84 ± 0.30	222.0 ± 6.7		1407.5 ± 61.3		0.158	
	07K6-3	-5.708	0.81 ± 0.03	7.68 ± 0.53	158.3 ± 6.5	246.7	1494.9 ± 103.7	1586.9	0.106	0.155 ± 0.060
K7	07K7-1	-7.133	0.55 ± 0.02	3.03 ± 0.33	138.7 ± 5.4		761.3 ± 83.1		0.182	
	07K7-2	-7.133	1.11 ± 0.04	8.11 ± 0.34	233.5 ± 8.1		1704.2 ± 71.5		0.137	
	07K7-3	-7.133	0.33 ± 0.02	2.81 ± 0.26	85.6 ± 4.3	140.5	736.9 ± 67.1	985.1	0.116	0.143 ± 0.034
K8	07K8-1	-1.972	5.31 ± 0.21	27.25 ± 0.61	1427.7 ± 56.7		7320.8 ± 163.5		0.195	
	07K8-2	-1.972	5.80 ± 0.24	21.80 ± 0.91	1490.8 ± 62.7		5602.2 ± 232.7		0.266	
	07K8-3	-1.972	5.21 ± 0.29	30.68 ± 0.88	1343.1 ± 74.0	1419.2	7898.3 ± 226.8	6867.8	0.170	0.207 ± 0.050
K9	07K9-1	0.103	1.46 ± 0.06	10.42 ± 0.47	393.0 ± 15.8		2803.8 ± 127.4		0.140	
	07K9-2	0.103	4.47 ± 0.15	18.97 ± 0.49	1228.4 ± 42.3		5209.4 ± 133.7		0.236	
	07K9-3	0.103	2.74 ± 0.10	15.32 ± 0.23	776.8 ± 29.3	721.1	4342.2 ± 66.4	3987.9	0.179	0.181 ± 0.048
*Dis	tance from t	the supposed center	r-axis of the radio	active plume from th	ne first USSR hydro	gen atomic bo	omb test in August,19	953. X=0 is se	etto the ce	nter-axis
and 7	X >0 or X<	<pre><0 corresponds to</pre>	N or S direction	i from the trace cen	terline.))			

Annendix IV Results of Pu-239 240 and Cs-137 in soils collected around Karaul settlement (2007 - 2010)

App	endix IV-2 (continued)								
	Sampling	Distance from the	Pu-239,249	Cs-137	Pu-239,249	Geometric	Cs-137	Geometric	Pu/Cs	Geometric
	location	center-axis (km)*	(Bq/kg)	(Bq/kg)	(Bq/m^2)	mean	(Bq/m^2)	mean		mean
	2008									
K10	08K1-1	-4.122	0.97 ± 0.03	8.03 ± 0.54	269.0 ± 8.4		2219.9 ± 23.6		0.121	
	08K1-2	-4.122	2.43 ± 0.10	17.04 ± 0.80	529.4 ± 20.8		3719.2 ± 35.9		0.142	
	08K1-3	-4.122	0.99 ± 0.02	4.50 ± 0.47	219.3 ± 3.8	314.9	993.9 ± 22.3	2017.0	0.221	0.156 ± 0.052
K11	08K2-1	-3.392	0.38 ± 0.01	3.11 ± 0.37	109.1 ± 2.7		900.1 ± 18.1		0.121	
	08K2-2	-3.392	0.58 ± 0.01	2.07 ± 0.29	144.2 ± 3.4		519.5 ± 13.1		0.278	
	08K2-3	-3.392	0.60 ± 0.02	5.45 ± 0.33	133.1 ± 3.6	127.9	1210.3 ± 15.9	827.2	0.110	0.155 ± 0.094
K12	08K3-1	-2.643	0.96 ± 0.03	5.59 ± 0.51	247.3 ± 7.8		1433.3 ± 22.8		0.173	
	08K3-2	-2.643	0.75 ± 0.02	2.50 ± 0.35	218.7 ± 5.6		729.2 ± 15.4		0.300	
	08K3-3	-2.643	1.22 ± 0.05	4.50 ± 0.34	342.4 ± 13.1	264.6	1264.1 ± 14.2	1097.3	0.271	0.241 ± 0.067
K13	08K4-1	-1.904	1.67 ± 0.05	13.00 ± 0.76	475.0 ± 13.4		3701.8 ± 31.4		0.128	
	08K4-2	-1.904	1.62 ± 0.04	9.10 ± 0.62	459.2 ± 12.6		2582.2 ± 25.8		0.178	
	08K4-3	-1.904	2.90 ± 0.06	13.89 ± 0.79	703.0 ± 15.6	535.2	3364.1 ± 33.8	3180.0	0.209	0.168 ± 0.041
K14	08K5-1	-1.142	0.50 ± 0.02	5.11 ± 0.57	148.3 ± 7.1		1517.1 ± 21.3		0.098	
	08K5-2	-1.142	2.82 ± 0.09	15.08 ± 0.78	851.5 ± 25.8		4561.7 ± 31.9		0.187	
	08K5-3	-1.142	3.00 ± 0.08	11.84 ± 0.91	770.7 ± 20.4	460.0	3045.4 ± 34.3	2762.2	0.253	0.167 ± 0.078
K15	08K6-1	-0.779	1.93 ± 0.08	19.12 ± 0.96	523.8 ± 21.2		5176.5 ± 36.9		0.101	
	08K6-2	-0.779	0.69 ± 0.02	2.99 ± 0.43	173.2 ± 5.7		752.0 ± 16.7		0.230	
	08K6-3	-0.779	1.65 ± 0.04	6.80 ± 0.60	462.8 ± 12.4	347.5	1905.8 ± 22.2	1950.3	0.243	0.178 ± 0.078
K16	08K7-1	-2.096	3.26 ± 0.12	15.59 ± 0.83	839.3 ± 31.3		4015.9 ± 35.0		0.209	
	08K7-2	-2.096	0.15 ± 0.01	1.81 ± 0.35	44.8 ± 2.6		544.9 ± 15.3		0.082	
	08K7-3	-2.096	4.55 ± 0.13	29.19 ± 0.74	1084.5 ± 31.1	344.2	6963.7 ± 30.0	2479.2	0.156	0.139 ± 0.064
K17	08K8-1	-1.103	2.27 ± 0.09	9.60 ± 0.66	672.8 ± 25.6		2844.7 ± 29.1		0.237	
	08K8-2	-1.103	2.99 ± 0.10	23.61 ± 1.48	860.1 ± 28.1		6787.9 ± 60.5		0.127	
	08K8-3	-1.103	2.35 ± 0.08	17.06 ± 1.07	521.4 ± 18.1	670.7	3779.7 ± 44.7	4179.0	0.138	0.160 ± 0.060
K18	08K9-1	-0.096	1.56 ± 0.05	11.52 ± 0.92	498.5 ± 17.2		3688.4 ± 45.1		0.135	
	08K9-2	-0.096	4.19 ± 0.13	22.22 ± 1.20	1424.1 ± 44.8		7552.9 ± 58.2		0.189	
	08K9-3	-0.096	0.60 ± 0.02	3.20 ± 0.33	142.8 ± 4.9	466.3	762.2 ± 14.9	2769.0	0.187	0.168 ± 0.031
K19	08K10-1	0.891	0.94 ± 0.02	6.09 ± 0.41	286.1 ± 7.4		1859.9 ± 18.6		0.154	
	08K10-2	0.891	1.22 ± 0.03	10.98 ± 0.56	413.8 ± 11.6		3729.4 ± 26.4		0.111	
	08K10-3	0.891	0.28 ± 0.01	3.37 ± 0.29	87.5 ± 2.8	218.0	1045.8 ± 12.9	1935.8	0.084	0.113 ± 0.035
K20	08K11-1	1.886	3.43 ± 0.10	18.81 ± 1.05	1014.1 ± 30.1		5563.7 ± 49.8		0.182	
	08K11-2	1.886	1.04 ± 0.03	11.40 ± 0.64	299.8 ± 9.2		3290.1 ± 29.4		0.091	
	08K11-3	1.886	1.63 ± 0.06	15.09 ± 0.50	486.9 ± 19.0	529.0	4515.8 ± 23.0	4356.2	0.108	0.121 ± 0.049

Appe	indix IV-3 ((continued)								
	Sampling	Distance from the	Pu-239,249	Cs-137	Pu-239,249	Geometric	Cs-137	Geometric	Pu/Cs	Geometric
	location	center-axis (km)*	(Bq/kg)	(Bq/kg)	(Bq/m ²)	mean	(Bq/m^2)	mean		mean
	2008									
K21	08K12-1	2.874	2.02 ± 0.05	11.77 ± 0.49	612.6 ± 13.8		3573.7 ± 22.9		0.171	
	08K12-2	2.874	2.09 ± 0.06	16.23 ± 0.87	527.6 ± 14.4		4094.4 ± 37.5		0.129	
	08K12-3	2.874	3.76 ± 0.11	19.71 ± 1.37	996.2 ± 28.9	685.4	5228.6 ± 57.1	4245.2	0.191	0.161 ± 0.032
K22	08K13-1	3.862	3.33 ± 0.12	16.93 ± 0.75	606.9 ± 21.8		3080.9 ± 34.1		0.197	
	08K13-2	3.862	0.47 ± 0.02	3.28 ± 0.32	132.3 ± 4.4		933.8 ± 15.4		0.142	
	08K13-3	3.862	2.46 ± 0.07	13.36 ± 0.77	608.5 ± 16.5	365.6	3308.7 ± 35.9	2119.3	0.184	0.172 ± 0.029
K23	08K14-1	4.873	4.93 ± 0.15	25.96 ± 0.88	1139.4 ± 35.8		5999.7 ± 38.7		0.190	
	08K14-2	4.873	1.76 ± 0.05	10.40 ± 0.67	494.5 ± 12.9		2928.1 ± 27.8		0.169	
	08K14-3	4.873	0.09 ± 0.00	1.90 ± 0.25		750.6		4191.4		0.179 ± 0.015
K24	08K15-1	6.849	0.09 ± 0.01	1.45 ± 0.29	27.7 2.6		429.5 ± 13.2		0.064	
	08K15-2	6.849	0.25 ± 0.01	3.02 ± 0.31	71.4 ± 3.0		853.0 ± 14.3		0.084	
	08K15-3	6.849	0.12 ± 0.01	0.98 ± 0.24	28.6 ± 2.6	38.4	240.9 ± 11.3	445.2	0.119	0.086 ± 0.028
K25	08K16-1	8.856	$0.43 \hspace{0.2cm} \pm \hspace{0.2cm} 0.01$	3.06 ± 0.43	132.7 ± 4.2		938.9 ± 18.4		0.141	
	08K16-2	8.856	1.12 ± 0.04	6.12 ± 0.55	343.4 ± 12.6		1871.7 ± 23.1		0.183	
	08K16-3	8.856	0.59 ± 0.02	5.46 ± 0.38	185.2 ± 5.5	203.6	1715.3 ± 15.1	1444.6	0.108	0.141 ± 0.038
	2010									
K26	10K1-1	-4.184	1.41 ± 0.09	9.46 ± 0.22	358.4 ± 22.5		2408.5 ± 57.1		0.149	
	10K1-2	-4.184	0.70 ± 0.04	2.05 ± 0.16	195.9 ± 11.0		575.4 ± 45.2		0.340	
	10K1-3	-4.184	1.81 ± 0.09	15.75 ± 0.70	599.2 ± 29.0	347.8	5217.8 ± 230.7	1933.8	0.115	0.180 ± 0.122
K27	10K2-1	-4.878	2.09 ± 0.05	10.12 ± 0.32	608.5 ± 14.0		2946.3 ± 92.6		0.207	
	10K2-2	-4.878	1.01 ± 0.03	3.17 ± 0.12	247.6 ± 7.4		779.5 ± 30.2		0.318	
	10K2-3	-4.878	1.11 ± 0.03	4.23 ± 0.16	335.5 ± 8.9	369.7	1275.4 ± 49.6	1430.8	0.263	0.258 ± 0.056
K28	10K3-1	-5.369	1.20 ± 0.03	5.07 ± 0.14	270.1 ± 7.6		1137.2 ± 30.8		0.237	
	10K3-2	-5.369	0.25 ± 0.01	1.23 ± 0.13	72.9 ± 3.6		361.6 ± 39.5		0.202	
	10K3-3	-5.369	2.14 ± 0.05	6.35 ± 0.15	546.8 ± 12.9	220.8	1624.1 ± 39.5	874.1	0.337	0.253 ± 0.070
K29	10K4-1	-5.847	$1.07 \hspace{0.2cm} \pm \hspace{0.2cm} 0.04$	6.12 ± 0.22	211.3 ± 7.5		1210.3 ± 43.4		0.175	
	10K4-2	-5.847	3.75 ± 0.10	16.63 ± 0.42	909.4 ± 23.7		4033.0 ± 101.4		0.225	
	10K4-3	-5.847	$0.44 \hspace{0.2cm} \pm \hspace{0.2cm} 0.02$	0.72 ± 0.16	149.0 ± 5.2	305.9	241.0 ± 53.8	1055.7	0.618	0.290 ± 0.243

Appe	indix IV-4 (u	continued)								
	Sampling	Distance from the	Pu-239,249	Cs-137	Pu-239,249	Geometric	Cs-137	Geometric	Pu/Cs	Geometric
	location	center-axis (km)*	(Bq/kg)	(Bq/kg)	(Bq/m ²)	mean	(Bq/m ²)	mean		mean
	2010									
K30	10K5-1	-6.335	1.30 ± 0.05	6.35 ± 0.24	382.2 ± 14.2		1869.2 ± 71.0		0.204	
	10K5-2	-6.335	0.99 ± 0.04	3.83 ± 0.17	264.5 ± 11.7		1024.8 ± 45.4		0.258	
	10K5-3	-6.335	1.35 ± 0.05	36.71 ± 1.52	364.4 ± 14.7	332.7	9918.2 ± 411.6	2668.4	0.037	0.125 ± 0.115
K31	10K6-1	-6.828	3.46 ± 0.11	11.01 ± 0.32	959.3 ± 30.6		3055.6 ± 88.7		0.314	
	10K6-2	-6.828	2.19 ± 0.12	7.33 ± 0.54	488.0 ± 27.6		1632.9 ± 120.5		0.299	
	10K6-3	-6.828	0.78 ± 0.04	4.35 ± 0.26	230.7 ± 12.7	476.2	1288.8 ± 76.1	1859.6	0.179	0.256 ± 0.074
K32	10K7-1	-7.313	1.52 ± 0.06	9.93 ± 0.42	370.2 ± 13.5		2411.8 ± 102.1		0.153	
	10K7-2	-7.313	0.10 ± 0.01	1.33 ± 0.11						
	10K7-3	-7.313	0.41 ± 0.03	2.40 ± 0.19	122.7 ± 8.0	213.1	722.3 ± 56.3	1319.9	0.170	0.161 ± 0.012
K33	10K8-1	-7.832	0.83 ± 0.04	4.16 ± 0.22	264.3 ± 13.8		1322.0 ± 70.7		0.200	
	10K8-2	-7.832	0.19 ± 0.01	2.64 ± 0.14						
	10K8-3	-7.832	1.23 ± 0.06	7.96 ± 0.18	367.0 ± 17.3	311.4	2375.1 ± 52.7	1772.0	0.155	0.176 ± 0.032
K34	10K9-1	-8.349	0.52 ± 0.03	6.13 ± 0.20	160.9 ± 10.4		1903.0 ± 63.5		0.085	
	10K9-2	-8.349	1.05 ± 0.04	7.52 ± 0.20	230.7 ± 8.4		1647.5 ± 44.5		0.140	
	10K9-3	-8.349	0.55 ± 0.03	1.71 ± 0.19	139.2 ± 7.8	172.9	430.4 ± 48.0	1105.1	0.323	0.156 ± 0.125
K35	10K10-1	-8.835	0.38 ± 0.03	3.04 ± 0.14	91.7 ± 7.5		734.9 ± 33.8		0.125	
	10K10-2	-8.835	0.93 ± 0.04	9.34 ± 0.37	259.9 ± 11.0		2614.9 ± 104.6		0.099	
	10K10-3	-8.835	0.67 ± 0.02	5.53 ± 0.18	201.1 ± 5.6	168.6	1661.3 ± 53.2	1472.5	0.121	0.114 ± 0.014
K36	10K11-1	-9.318	0.11 ± 0.01	1.63 ± 0.12						
	10K11-2	-9.318	0.45 ± 0.01	4.22 ± 0.20	104.2 ± 3.3		985.8 ± 46.4		0.106	
	10K11-3	-9.318	1.24 ± 0.05	14.22 ± 0.36	192.8 ± 7.6	141.8	2209.8 ± 56.4	1475.9	0.087	0.096 ± 0.013
K 37	10K12-1	-9.778	0.35 ± 0.01	4.85 ± 0.18	98.5 ± 4.0		1380.1 ± 52.4		0.071	
	10K12-2	-9.778	0.41 ± 0.02	4.42 ± 0.17	100.0 ± 5.7		1086.1 ± 42.8		0.092	
	10K12-3	-9.778	0.07 ± 0.00	0.92 ± 0.12		99.3		1224.3		0.081 ± 0.015
K38	10K13-1	-10.269	0.61 ± 0.04	6.77 ± 0.32	166.6 ± 10.5		1838.7 ± 88.0		0.091	
	10K13-2	-10.269	0.68 ± 0.04	6.92 ± 0.25	199.6 ± 12.6		2042.1 ± 74.2		0.098	
	10K13-3	-10.269	0.10 ± 0.01	0.62 ± 0.12		182.3		1937.8		0.094 ± 0.005
K39	10K14-1	-10.548	0.70 ± 0.04	4.56 ± 0.15	149.8 ± 8.5	149.8	970.7 ± 32.2	70.7	0.154	0.154 ± 0.010

Appendi	x V Meas	Atomic ratio	36, Np-237, Pu-2	239,240 and Cs-137 Activity	concentrations concentration	in soil samples			nventory	
Samplig settlement	- (Lab.ID)	U236/U238 (x10 ⁻⁸)	U-236 (x10 ⁸)	Np-237	Pu-239,240	Cs-137	U-236	Np-237	Pu-239,240	Cs-137
			(atoms/g)	(Bq/kg)	(Bq/kg)	(Bq/kg)	(atoms/m ²)	(Bq/m^2)	(Bq/m^2)	(Bq/m^2)
Tailan	99K24-3	2.52 ± 0.095	1.20 ± 0.05	0.0102 ± 0.0010	3.44 ± 0.09	16.5 ± 0.50	3.714E+13	3.16	1064.8	5096
Sarzhal	07S302			n.d.	0.52 ± 0.02	8.18 ± 0.20			144.7	2289
	07S9-2	29.3 ± 0.339	16.30 ± 0.19	0.0180 ± 0.0020	5.59 ± 0.16	25.3 ± 0.70	4.448E+14	4.902	1525.5	6917
	07S14-3			0.0264 ± 0.0010	7.56 ± 0.25	44.8 ± 1.20		6.531	1867.8	11080 ± 306
	0S15-3	15.0 ± 0.299	5.99 ± 0.12	0.0314 ± 0.0010	8.95 ± 0.21	45.7 ± 1.00	1. 304E+14	6.839	1948.5	9954
	0S19-3			0.0073 ± 0.0010	3.74 ± 0.11	21.3 ± 0.70		1.355	698.3	3978
	07S2-1	0.985 ± 0.110	0.20 ± 0.01		0.33 ± 0.01	6.36 ± 0.32	4.037E+12		65.3 ± 2.6	1270 ± 64
	07S6-1	3.42 ± 0.206	0.69 ± 0.05		2.68 ± 0.11	14.67 ± 0.82	1.999E+13		780.8 ± 32	4272 ± 238
	08S2-2	105 ± 5.0	28.80 ± 1.37		8.82 ± 0.27	34.74 ± 0.46	2.373E+14		726.8 ± 23	9080 ± 120
	08S7-3	3.55 ± 0.228	0.62 ± 0.06		4.63 ± 0.17	16.55 ± 0.40	1. 639E+13		1224 ± 45	4377 ± 105
	08S10-3	3.05 ± 0.275	0.59 ± 0.04		1.91 ± 0.03	8.99 ± 0.39	9.308E+12		299.3 ± 8.9	2676 ± 90
Karaul	B5-1	10.9 ± 0.677	4.44 ± 0.28	0.0134 ± 0.0010	3.32 ± 0.09	34.3 ± 0.80	9.218E+13	2.786	689.3	7106 ± 166
	B8-1	9.99 ± 0.336	4.09 ± 0.14	0.0109 ± 0.0010	2.95 ± 0.11	27.2 ± 0.60	1.100E+14	2.934	793.5	7324 ± 162
Kokpekty	G4-2	0.537 ± 0.042			0.191 ± 0.01					
	07G5-1	0.638 ± 0.062	0.530 ± 0.05				8.82E+12			1152
	07G3-2	0.537 ± 0.042	0.346 ± 0.03				8.61E+12			3272
Dolon	05D02-1	0.216 ± 0.026	0.103 ± 0.01		4.22	5.11	4.30E+12			
	05D06-3	1.41 ± 0.076	0.656 ± 0.04		32.80	20.17	1.96E+13			
	05D24-3	1.00 ± 0.100	0.236 ± 0.02		11.26	13.91	8.83E+12			
	05D30-3	1.07 ± 0.090	0.227 ± 0.02		0.89	2.79	1.03E+13			
Japan (Tat	sunokuchi,	Ishikawa Pref.)					(2.23±0.62)x1	0 ¹³		

			Atomic ratio		Aton	ns/Bq	(Bq/Bq)
Sampling	I	U-236	U-236	Np-237	U-236 (atom)	U-236 (atom)	Pu-239,240
location	(Lab. ID)	U-238	Pu-239*	Pu-239*	Cs-137 (Bq)	Pu-239,240 (Bq)	Cs-137
Tailan	99K24-3	$(2.25 \pm 0.10)_{\rm X} 10^{-8}$	0.038 ± 0.002	$0.307~\pm~0.032$	7.27.E+09	$3.49.E^{+10}$	0.208
Sarzhal	07S302						0.064
	07S9-2	$(2.93 \pm 0.04)_{\rm X}10^{-7}$	0.310 ± 0.010	0.333 ± 0.037	6.44.E+10	2.92.E+11	0.221
	07S14-3			0.361 ± 0.014			0.169
	0S15-3	$(1.50 \pm 0.03)_{\rm X} 10^{-7}$	0.071 ± 0.002	0.363 ± 0.014	1.31.E+10	6.69.E+10	0.196
	0S19-3			0.202 ± 0.028	1.31.E+10		0.176
	07S2 - 1	$(0.985 \pm 0.100) \times 10^{-3}$	$1.927~\pm~0.223$				0.052
	07S6-1	$(3.42 \pm 0.21) \text{x} 10^{-8}$	$0.237~\pm~0.017$				0.183
	08S2-2	$(1.05 \pm 0.05) \times 10^{-6}$	0.072 ± 0.004				0.254
	08S7-3	$(3.55 \pm 0.23) \times 10^{-8}$	0.137 ± 0.010				0.280
	08S10-3	$(3.05 \pm 0.28) \times 10^{-8}$			1.31.E+10	3.14.E+11	0.212
Karaul	B5-1	(1.09±0.09)x10- ^s	$0.142 ~\pm~ 0.010$	0.418 ± 0.041	1.29.E+10	1.34.E+11	0.097
	B8-1	$(9.99\pm0.34) \text{ x}10^{\circ}$	$0.147~\pm~0.007$	0.382 ± 0.037	1.50.E+10	1.39.E+11	0.108
Kokpekty	G4-2 07G5-1 07G3-2	(0.537±0.042)x10 ^{-*} (0.683±0.062)x10 ^{-*} (0.537±0.042)x10 ^{-*}			7.63.E+09 2.63.E+09		
Dolon	05D02-1	(0.216±0.026)x10⁴	0.0026 ± 0.0003		2.02.E+09	2.44.E+09	0.825
	05D06-3	(1.41 ± 0.08) x10 ⁻⁸	0.0021 ± 0.0001		3.25.E+09	2.00.E+09	1.627
	05D24-3	(1.00±0.10)x10 ⁻⁸	0.0022 ± 0.0002		1.70.E+09	2.10.E+09	0.810
	05D30-3	(1.07±0.09)x10 ⁻⁸	0.0270 ± 0.0023		8.14.E+09	2.54.E + 10	0.320
Japan (Ishik	ƙawa Pref.): g	lobal fallout			$(4.88 \pm 0.85) \text{E}^{+}09$	(1.56 ± 0.10) E+11	0.031 ± 0.005

Appendix VI Ratios of U-236/U-238, U-236/Pu-239, Np-239/Pu-239 and so on , measured in soils

Pu-239*: Pu-240/Pu-239 atomic ratio for bomb material was assumed to be 0.045.

0	
0	
_	
9	
5	
èn.	
(4)	
_	
1	
rin .	
()	
\leq	
-	
3	
0	
5	
-	
0	
_	
(a)	
_	
1	
()	
9	
0	
ŝ	
\sim	
1	
5	
-	
_	
-	
-	
0	
-	
4	
-	
0	
Ě	
()	
<u> </u>	
,00	
4	
-	
-	
0	
-	
Ĕ.	
atic	
atic	
natic	
onatio	
onatio	
tionatio	
ctionatio	
ctionatic	
actionatic	
ractionatio	
fractionatic	
fractionatic	
of fractionatic	
of fractionatic	
of fractionatic	
n of fractionatic	
on of fractionatic	
on of fractionatic	
tion of fractionatic	
tion of fractionatic	
ation of fractionatic	
uation of fractionatic	
luation of fractionatic	
aluation of fractionatic	
'aluation of fractionatic	
valuation of fractionatic	
Evaluation of fractionatic	
Evaluation of fractionatic	
Evaluation of fractionatic	
[Evaluation of fractionatic	
II Evaluation of fractionatic	
/II Evaluation of fractionatic	
VII Evaluation of fractionatic	
VII Evaluation of fractionatic	
(VII Evaluation of fractionation	
x VII Evaluation of fractionatic	
ix VII Evaluation of fractionatic	
dix VII Evaluation of fractionatic	
ndix VII Evaluation of fractionatic	
ndix VII Evaluation of fractionatic	
endix VII Evaluation of fractionatic	
pendix VII Evaluation of fractionatio	
pendix VII Evaluation of fractionatic	
ppendix VII Evaluation of fractionatic	
Appendix VII Evaluation of fractionatic	
Appendix VII Evaluation of fractionatic	

r	-
C	0
t	-sc
2	0
000	C7-
F	Ċ
E	F

		(Date of measureent))Date of measureent)		Decay corrected at 1953	14MeV U-238 Act.Ratio (A)		Theoretical value 14MeV U-238	(8)		
Sample								U-236		U-236	U-236	R/V=A/B	
No.	Km	U-236			Cs-137		Cs-137*	Cs-137*		Cs-137*	Cs-137*	ω.	errror%
		(atoms/m ²)	error%	Bq/m ²	(Bq/m2)	error%	(Bq/m²)	(Bq/Bq)	error%	(Atoms/Atoms)	Activity ratio		
07S2-1	10	4.04E+12	4.90	0.00377	1.27.E+03	5.04	2.72.E+03	2.13.E-06	7.03	7.16586	9.23E-06	0.231	1.6
07S6-1	5.8	2.00E+13	7.29	0.01867	4.27.E+03	5.57	1.33.E+04	2.15.E-06	9.17		9.23E-06	0.233	2.1
08S2-2	-2	2.37E+14	4.76	0.22166	9.08.E+03	1.32	3.04.E+04	1.12.E-05	4.94		9.23E-06	1.217	6.0
08S7-3	-6.7	1.64E+13	9.68	0.01531	4.38.E+03	2.39	1.37.E+04	1.72.E-06	76.6		9.23E-06	0.186	1.9
08S10-3	-9.5	9.31E+12	6.73	0.00869	2.68.E+03	3.37	7.70.E+03	1.74.E-06	7.53		9.23E-06	0.188	1.4
*: Here,	500]	Bq/m ² as glob	bal fallo	ut BG of Cs-137 w	as subtracted from	measu	rement value						

*Cs-137: It was assumed that both U-236 and U-237 were produced by the reaction with U-238 and 14Mec neutron.
14Mev U-238 fission: 224kt,
2 Mev U-238 fission:56 kt
2 MeV U-235+PU-239 fission: 40 kt
Percentage of Cs-137 produced by reaction with U-238 and 14Mev neutron is about 65% of the total.

(II) U-237/Cs-137

		(Date of measureent))Date of measureent)		Decay corrected at 1953	14MeV U-238 Act.Ratio (A)		Theoretical value 14MeV U-238	(B)		
Sample									U-237		U-237	U-237	R/V=A/B	
No.		Np-237			U-237	Cs-137		Cs-137*	Cs-137*		Cs-137*	Cs-137*	ω	error%
		Bq/m ²	error%	atoms/m ²	Bq/m2	(Bq/m ²)	error%	(Bq/m^2)	(Bq/Bq)	error%	(Atoms/Atoms)	Activity ratio		
07S14-3	-1.8	6.53	3.34	6.376E+14	7.58E+08	1.11.E+04	2.76	3.74.E+04	3.11E+04	4.33	17.2066	28090	1.11	4.8
07B8-1	-2.0	2.93	3.69	2.864E+14	3.40E+08	7.32.E+03	2.23	2.41.E+04	2.17E+04	4.32			0.77	3.3
07S19-3	5.9	1.35	2.81	1.323E+14	1.57E+08	3.98.E+03	3.46	1.23.E+04	1.97E+04	4.45			0.70	3.1
07S15-3	0.8	6.84	2.29	6.676E+14	7.93E+08	9.95.E+03	2.25	3.34.E+04	3.65E+04	3.21			1.30	4.2
07B5-1	-5.1	2.79	2.65	2.720E+14	3.23E+08	7.11.E+03	2.26	2.34.E+04	2.13E+04	3.48			0.76	2.6

Sampling		Concentration	(Bq/kg): Values	at measurement da	ate (2009/5)	
location	(Lab. ID)	Pu-239,240	Cs-137	Eu-152	Co-60	
Tailan	99K24-3	1064.8 ± 28	5096 ± 154	184.4 ± 8.3	268.7 ± 13.4	
Sarzhal	07S9-2	2600 ± 137	6914 ± 197	168.0 ± 10.0	60.0 ± 5.0	
Karaul	05S5-2	196.1 ± 10.1	1461 ± 32	120.5 ± 11.0	23.3 ± 3.0	
Sampling			Concer	ntration (Bq/kg)		Ratio
location	(Lab. ID)	Pu-239,240	Cs-137	Eu-152	Co-60	Co-60/Eu-152
Tailan	99K24-3			3192.0 土 144	407621 ± 20328	127.7
Sarzhal	07S9-2			2908.9 ± 173	91066 ± 7585	31.3
Karaul	05S5-2			2085.3 ± 190	35331 ± 4551	16.9

-
.5
S
()
õ
a,
E
IS
5
-
t
.2
>
п
0
H
1
e
P
>
9
p
0
2
H
ĕ
-=
0
9
5
r)
9
p
Ξ
10
2
5
-
ä
E
0
Ö
p
H
2
3
0
Ξ
2
~
1
H
Π
>
-
IX.
P
u
é
d

-42-

Appendix I	X Soil sampling locati	ions insi	de and	outside ar	nd arour	nd the	Kainar s	ettlement		Appendix IX-2 (continued:	Soil sam	pling le	ocations	in 2011	and 2()12)		
Site No.	Sampling location	Ľ	utitude	(N)	Loi	ngitud	le (E)	z	Е	Site No. Sampling locat	ion]	Latitud	le (N)	Γ	ongituc	le (E)	Z	Щ
)	(•)	$\left \widehat{\cdot} \right $	()	()) E	()	1			(0)	5	(") ()	0	(")	(0)	(₀)
1) 1999/9/1	10 Sampling									④ 2011/10/9 Sampling								
99K19	within Abraly village	49	10	4.2	LL	57	1.2	49.1678	77.9503	11K1 Akbulak	49	15	41.3	LL	56	0.10	49.3281	77.9334
99K20	roadside to Kainar	49	19	25.2	LT	49	44.4	49.3237	77.8290	11K2 (49	10 10	40.5	F	5 7 7 4 7	30.6 20.6	49.3279 40.3270	77.9032
99K21	roadside to Kainar	49	15	33	<i>LL</i>	27	13.2	49.2592	77.4537	CV11 11K4	49	<u>1</u>	515			0.0c 48.6	40 3310	2010.11
99K22	entrance of Kainar	49	13	27.6	LL	23	3.0	49.2243	77.3842	11K5	6 4	20	2.30	LL	66	5.3	49.3340	77.8181
2) 2007/8/2	31-9/1 Sampling									11K6	49	20	24.4	LL	47	27.2	49.3401	77.7909
07C-1	within village	49	12	17.3	LL	22	11.5	49.2048	77.3699	11K7	49	21	4.4	LL	45	58.3	49.3512	77.7662
07C-2	within village	49	12	4.9	<i>LT</i>	22	53.0	49.2014	77.3814	11K8	49	20	567	LL	44	29.6	49.4908	77.7416
07C-3	within village	49	12	8.3	LL	22	59.0	49.2023	77.3831	11K9	49	20	39.8	LL	42	45.8	49.3444	77.7127
07C-4	within village	49	11	42.5	LL	22	52.6	49.1951	77.3813	11K10	49	25	16.5		41	16.3	49.3379	77.6879
07C-5	within village	49	11	55.2	77	23	59.1	49.1987	77.3998	11K11 Abraly	49	210	52.9		20	38.9 5 0	49.3314	77.6340
07C-6	roadside	49	12	19.5	<i>LT</i>	23	53.9	49.2054	77.3983	11K13 +	44 40	<u>1 8</u>	20.02		96	34.8	49,3157	7909 LT
07C-7	roadside	49	12	50.6	77	23	50.0	49.2141	77.3972	11K14	4 4	18	25.5	LL	35	4.8	49.3071	77.5847
07C-8	roadside	49	13	24.4	<i>LT</i>	23	44.1	49.2234	77.3956	11K15	49	17	, 49.9	LL	33	29.5	49.2972	77.5582
07C-9	roadside	49	13	57.2	LL	23	46.5	49.2326	77.3963	11K16	49	17	14.2	LL	32	10.3	49.2873	77.5362
07C-10	roadside	49	14	30.0	LL	23	59.9	49.2417	77.4000	11K17	49	16	37.1	LL	30	37.3	49.2770	77.5104
07C-11	roadside	49	14	53.3	LL	24	26.3	49.2481	77.4073	11K18	49		5 10.1		20	1.60	49.2695	77.4838
07C-12	roadside	49	15	57.3	LL	24	54.2	49.2659	77.4151	(5) 2012/8/4-5 Sampling	1							
07C-13	roadside	49	16	28.9	LL	25	4.8	49.2747	77.4180	12K1	49	2 1	36.5	F F	55	34.1	49.3101	77.9261
07C-14	roadside	49	15	104	LL	25	15.0	49.2529	77 4208	12172	44	14	0.61		6 4	4/.4	10221	0066.11
07C-15	roadside	64	15	16.5	- 17	26	3.2	49.2546	77.4342	12K3	49 49	1 4	1.04		500	00.7	49.2341	CCC6.11
070-16	enadeide	10	4	30.4		36	0.01	10 2581	CLVV LL	17K5	49	1 -	203		200	39.6	49.2081	77 9443
01-010	roadeide	64	<u>1</u>	t.00		07 LC	36.0	7190 01	77.4600	12K6	6 4	10	50.4	- 1-	56	57.3	49.1807	77.9493
070-18	roadeida	f f	<u>1</u>	2.27		1 00	0.00	1102.01	0001-11	12K7	49	10	21.1	LL	57	5.7	49.1725	77.9516
01-010	noadsida	44 70 4	CI 2	0.00 277		07 07	202	4075604	2714.11	12K8	49	6	50.2	LL	57	3.4	49.1639	77.9509
010-19	noadsida	4 10 10	3 2	2.20		202	0.00 E 6	7072.04	CT04.11	12K9	49	6	33.7	LL	56	28.5	49.1594	77.9413
07-20		44 40	1 <u>1</u>	0.00		67	1.0	101201	1044.	12K10	49	6;	53.5	LL	55	48.2	49.1649	77.9301
17-0/0	roadside	44 40	17	1.6		67 66	0.1	2602.64	CC04.11	12K11	49	1 =	0.00	- F	20.4	28.1	49.1667	1168.77
010-22		τt ,	2	C.12		67 6	0.00	10.2720	1664.11	17112	404	1 =	24.0		000	10.2 10.2	40.1020	1040.11
0/C-23	roadside	44	0 !	34.2		0° 0	C. 14	49.2762	cIIC//	21N21 17K14	44	1 2	48.3		40	5.61 1.75	49.134	4000.11
0/C-24	roadside	6 4	1	8.30		25	0.6	49.2850	0956.//	12K15	49	13	25.4	- 1-	45	38.3	49.2237	77.7606
0/C-25	roadside	49	18	43.0		3	53.2	49.3119	1866.11	12K16	49	14	20.1	LL	4	14.8	49.2389	77.7374
07C-26	roadside		16	52.5		39	51.3	49.3313	77.6643	12K17	49	15	15.5	LL	42	45.1	49.2543	77.7125
(3) 2010/9/2	22 Sampling		;	ļ						12K18	49	15	47.0	LL	40	39.8	49.2631	77.6777
10K1	outside village	49	=	57.3	LL.	24	10.60	49.1992	77.4029	12K19	49	13	40.1	F	38	50.8	49.2611	77.6474
10K2	outside village	49	10	40.4	LL	25	26.58	49.1779	77.4241	12K20	49	41 ; 41 ;	58.2	FI	37	49.7	49.2662	77.6305
10K3	outside village	49	10	39.6	LL	25	42.83	49.1777	77.4286	12K21	49	4	1 55.2	F [52	53.7	49.2487	77.4316
10K4	outside village	49	10	42.7	<i>LL</i>	25	18.07	49.1785	77.4217	12K22	64 0	4 -	41.5		17	40.2	C042.246	77 4012
10K5	outside village	49	10	49.9	LL	24	54.67	49.1805	77.4152	77771 77771	49	1 2	+ 72.1 22.1		7 K	0.07 0.02	49.2409	C164.11
10A6	outside village	49	Ξ	1.25	<i>LL</i>	24	34.98	49.1837	77.4097	12N25	49	τ <u></u> τ΄	2.00		5 6	516	49.2506	775477
10K7	outside village	49	11	10.5	LL	24	13.36	49.1863	77.4037	12K26	49	15	14.9	. L	1 4	44.2	49.2541	77.5789
10K8	outside village	49	Ξ	21.1	LL	23	53.80	49.1892	77.3983	12K27	49	15	46.8	LL	36	26.1	49.2630	77.6073
10A9	within village	49	= :	33.5	5	23	39.99	49.1926	77.3944	12K28	49	15	53.4	LL	37	7.50	49.2648	77.6188
10K10	within village	49	= :	33.6	F 1	23	23.94	49.1927	77.3900	12K29	49	15	14.2	LL	37	55.9	49.2539	77.6322
10K11	within village	49	= :	34.1	5	23	14.97	49.1928	77.3875	12K30	49	5	20.9	F 1	37	16.2	49.2891	77.6212
10K12	within village	49	Ξ	30.4	1.1	27	59.60	49.1918	77.3832	12K31	49	18	22.9	11	36	47.1	49.3064	77.6131

No.	Sampling location	Sampling _	La	titude (î	Lon	gitude	(E)	N	ы
		date	(。)	(,)	(*)	(。)	(,	(")	(。)	(。)
2006										
P1	Outside Krivinka	2002/8/26	51	11	34.3	78	23	12.8	51.193	78.387
P2	Outside Krivinka	2002/8/26	51	~	17.4	78	13	11	51.138	78.220
P3	Outside Krivinka	2002/8/26	51	9	51.2	78	10	56.2	51.114	78.182
P4	Within Krivinka	2002/8/26	51	٢	47.8	78	6	37.2	51.130	78.160
P5	Within Krivinka	2002/8/26	51	٢	50.0	78	6	43.2	51.131	78.162
$\mathbf{P6}$	Exit of Krivinka	2002/8/26	51	8	33.6	78	6	28.6	51.143	78.158
ЪŢ	15 km from krivinka	2002/8/26	51	16	5.6	78	4	20.5	51.268	78.072
P8	\rightarrow	2002/8/26	51	18	33.1	LL	58	56.2	51.309	77.982
6d	Outside Beskaragay	2002/8/26	51	21	49.7	LL	54	57.5	51.364	77.916
P10	Exit of Beskaragay	2002/8/26	51	22	47.0	LL	53	22.7	51.380	77.890
P11	Within Akku	2002/8/26	51	27	13.0	LL	48	21.1	51.454	77.806
P12	Outside Akku	2002/8/27	51	27	22.6	LL	47	21	51.456	77.789
P13	Within Akku	2002/8/27	51	29	7.6	LL	46	18	51.485	77.772
P14	Within Akku	2002/8/27	51	27	58.2	51	27	19.7	51.466	51.455
P15	15 km from Akku	2002/8/27	51	27	19.7	78	1	44.8	51.455	78.029
P16	Exit of Shcherbakty	2002/8/27	51	22	56.5	78	18	47.9	51.382	78.313
P17	Forest near Shcherbakty	2002/8/27	51	21	32.0	78	17	11.7	51.359	78.287
P18	Bordar of Pavlodar	2002/8/27	51	14	57.1	78	34	18.6	51.249	78.572
P19	↓ (20km)	2002/8/27	51	٢	23.0	78	49	46.3	51.123	78.830
P20	Semenovka	2002/8/27	51	7	51.0	79	9	42.7	51.048	79.112
P21	↓ (20km)	2002/8/27	50	57	26.5	79	21	33.1	50.957	79.359
P22	Exit of Semenovka	2002/8/27	50	53	19.3	79	27	49.8	50.889	79.464
P23	Near kanoneruka	2002/8/27	50	44	6.9	79	39	42.9	50.735	79.662
*	Townhouse of Akku		51	27	50.0		47	5.0	51.464	77.785
2007										
Ch1	Within Shcherbakty	2007	52	29	36.9	78	6	23.9	52.4936	78.1602
Ch2	Within Shcherbakty	2007	52	29	53.4	78	10	57.8	52.4982	78.1648
Ch3	Within Shcherbakty	2007	52	29	23.0	78	٢	58.1	52.4897	78.1564
Ch4	Within Shcherbakty	2007	52	28	34.0	78	10	2.39	52.4928	78.1594
Ch5	Within Shcherbakty	2007	52	30	14.4	78	6	15.0	52.4873	78.1540

Appendix X-2 Soil sampling locations in the Kanonerka Village in 2007 and 2008.

		-)			
Sampling	comment	Sampling	Lat	itude (N)	Long	jitud€	(E)	Z	Е
No.		date	(∘)	ε	(``)	⊙	ε	(,,)	(0)	(0)
2007										
07H1		2007	50	б	23.7	79	0	20.2	50.723	79.706
07H2		2007	50	б	33.5	79	1	27.9	50.726	79.691
07H3		2007	50	б	18.8	79	1	18.7	50.722	79.689
07H4		2007	50		1.9	79	1	2.3	50.734	79.695
07H5		2007	50	ю	9.7	79	0	38.1	50.731	79.677
2008										
08H1	Glassland	2008/9/9	50	38	51	79	39	30.7	50.676	79.659
08H2	Glassland	2008/9/9	50	39	51.2	79	39	25	50.662	79.657
08H3	Glassland	2008/9/9	50	0	2.5	79	39	25.7	50.679	79.657
08H	Glassland	2008/9/9	50	1	29	79	39	55.5	50.691	79.665
08H5	Glassland	2008/9/9	50	0	17.9	79	0	28.3	50.710	79.675
08H6	Glassland	2008/9/9	50	б	0.1	79	1	9.3	50.718	79.686
08H7	Glassland	2008/9/9	50		9.7	79	39	36.2	50.736	79.660
08H8	Glassland	2008/9/9	50		38.6	79	38	28.5	50.706	79.613
08H9	Glassland	2008/9/9	50	5	1.1	79	37	19.9	50.750	79.622
08H10	Glassland	2008/9/9	50	5	2.6	79	36	10.7	50.757	79.603
08H11	Glassland	2008/9/9	50	5	3.3	79	35	1.2	50.762	79.584
08H12	Glassland	2008/9/9	50	9	10	79	ю	8.8	50.769	79.569
08H13	Glassland	2008/9/9	50	٢	13.8	79	33	19.2	50.787	79.555
08H14	Glassland	2008/9/9	50	8		79	32	29.8	50.801	79.516

Appendiz	XI Rest	ults of ¹³⁷ Cs.	and Pu in soil co	llected at Kains 239,240 p.,	solution 1999/	9/10 ¹³⁷ G.	239,240 D. ,	A chivite	to softo
Sample	Sample	Sampling	SJ	nJ	Soluble Pur	LS L	n.J.	ACIIVII	y ratio
No.	Lab. ID	depth (cm)	Bq/kg	Bq/kg	Total Pu	Bq/m^2	Bq/m^2	239,240 Pu/ 137 Cs	238 Pu/ 239,240 Pu
99K19	19-1	0-10	31.9 ± 0.4			2717 ± 34			
	19-2	0-10	11.4 ± 0.4			923 ± 34			
	19-3	0-30	19.3 ± 0.5	0.92 ± 0.02	0.402	5021 ± 130	239 ± 5	0.048 ± 0.001	0.05 ± 0.004
	19-4	0-30	4.06 ± 0.28			1096 ± 76			
99K20	20-1	0-10	26.9 ± 0.6			2629 ± 58			
	20-2	0-10	55.9 ± 0.9	13.9 ± 0.5	0.116	5868 ± 93	1455 ± 57	0.248 ± 0.005	0.09 ± 0.006
	20-3	0-30	22.9 ± 0.4			5381 ± 92			
99K21	21-1	0-10	24.7 ± 0.6			2385 ± 60			
	21-2	0-10	31.0 ± 0.76	3.23 ± 0.08	0.297	3464 ± 83	351 ± 9	0.101 ± 0.003	0.07 ± 0.005
	21-3	0-30	7.16 ± 0.36			1348 ± 68			
	21-4	0-30	10.4 ± 0.4			2349 ± 90			
99k22	22-1	0-10	8.85 ± 0.61	0.61 ± 0.02	0.311	917 ± 63	60.7 ± 2.0	0.066 ± 0.002	0.050 ± 0.004
	22-2	0-10	9.05 ± 0.42			693 ± 32			
	22-3	0-30	4.31 ± 0.21			1131 ± 55			
*Ratio of	soluble I	^b u fraction (leaching by HNG	D ₃) for total Pu					

1999/9/10
н.
areas
t Kainar
la
collected
soil
Ξ.
Pu
and]
ŝ
37
if^{1}
S
ult
es
R
XI
ix
pend

in 1000 V ain -11.0 10 -1 £137 C 6 £12 414 AT IN 4:5 <

mindder		to controld ind					
Sample	Depth	137 Cs	137 Cs	Sample	Depth	¹³⁷ Cs	¹³⁷ CS
No.	(cm)	Bq/kg	(Bq/m^2)	No.	(cm)	Bq/kg	(Bq/m^2)
99K19	0-5	33.0 ± 0.7	1613 ± 32	99K21	0-5	90.6 ± 1.5	3793 ± 64
	5-10	2.11 ± 0.23	124 ± 14		5-10	23.5 ± 0.5	1558 ± 36
	10-15	0.24 ± 0.07	14.0 ± 4.1		10-15	1.64 ± 0.24	77.0 ± 11.3
	15-20	0.35 ± 0.07	19.0 ± 3.8		15-20	0.68 ± 0.1	35.0 ± 5.1
	20-29	0.58 ± 0.15	47.0 ± 12.2		20-30	0.38 ± 0.11	15.0 ± 4.3
	Total		1817		Total		5478
99K20	0-5	$44.2 ~\pm~ 0.8$	2393 ± 42	99k22	0-5	20.5 ± 0.5	1141 ± 29
	5-10	4.93 ± 0.38	321 ± 25		5-10	n.d.	
	10-15	0.76 ± 0.14	42.0 ± 7.7		10-15	0.62 ± 0.09	35.0 ± 5.1
	15-20	n.d.			15-20	$0.27 \hspace{0.2cm} \pm \hspace{0.2cm} 0.12$	15.0 ± 6.7
	20-30	n.d.			20-28	n.d.	
	Total		2756		Total		1191

Ð.
d'
Ğ
Ξ.
'n
C
0
<u>.</u>
ca
÷
2
S,
31
òó
\geq
Ò
2
Ъ,
.=
50
.Ħ
p
Ξ
a
9
\mathbf{ls}
0
Š
Ξ.
\$
nt
e
H
E.
n.
as
õ
Ц
η
Ч
p
ar
Ś
\mathcal{O}
137
ų
0
ts
ul
S
ž
_
Ξ
\mathbf{Z}
2
· 🖓

Sample S No. I 07C1	Sample	σ						
No. I 07C1	-	Sampung	¹³⁷ Cs	^{239,240} Pu	¹³⁷ Cs	^{239,240} Pu	Activ	ity ratio
07C1	Jab. ID	site	Bq/kg	Bq/kg	(Bq/m^2)	(Bq/m^2)	^{239,240} Pu/ ¹³⁷ CS	$^{238}\mathrm{Pu}/^{239,240}\mathrm{Pu}$
	1-1		7.86 ± 0.34	0.49 ± 0.02	1745 ± 76	110 ± 5	0.063 ± 0.004	0.027 ± 0.006
	1-2		9.66 ± 0.42	0.82 ± 0.05	2119 ± 92	$180~\pm~10$	0.085 ± 0.006	0.046 ± 0.009
	1-3		5.12 ± 0.34	0.41 ± 0.02	$1020~\pm~68$	81.3 ± 4.1	0.080 ± 0.007	0.021 ± 0.006
07C2	2-1		4.19 ± 0.31	0.94 ± 0.05	1052 ± 77	235 ± 12	0.223 ± 0.020	0.071 ± 0.010
07C3	3-1		21.3 ± 0.95	4.59 ± 0.22	4218 ± 188	909 ± 43	0.215 ± 0.014	0.051 ± 0.004
	3-2		$28.7~\pm~1.0$	3.36 ± 0.14	4344 ± 154	508 ± 21	0.117 ± 0.006	0.041 ± 0.004
	3-3	center of	9.23 ± 0.48	0.96 ± 0.05	1500 ± 78	157 ± 9	0.104 ± 0.008	0.043 ± 0.008
07C4	4-1	village	19.1 ± 0.9	1.51 ± 0.08	4512 ± 208	357 ± 19	0.079 ± 0.006	0.034 ± 0.006
	4-2		15.5 ± 0.7	$1.45 ~\pm~ 0.07$	3485 ± 156	327 ± 15	0.094 ± 0.006	0.034 ± 0.005
	4-3		$20.0~\pm~0.5$	$1.94 ~\pm~ 0.09$	$4640~\pm~118$	$450~\pm~20$	0.097 ± 0.005	0.050 ± 0.006
	4-4		6.24 ± 0.31	0.43 ± 0.03	1321 ± 65	91.9 ± 5.8	0.070 ± 0.006	0.029 ± 0.009
07C5	5-1		9.19 ± 0.30	$1.08 ~\pm~ 0.07$	2069 ± 67	242 ± 15	0.117 ± 0.008	0.036 ± 0.008
	5-2		9.20 ± 0.43	0.62 ± 0.04	$1459~\pm~69$	98.5 ± 6.6	0.067 ± 0.006	0.083 ± 0.015
	5-3		8.18 ± 0.51	$1.00~\pm~0.04$	1406 ± 87	171 ± 6	0.122 ± 0.009	0.031 ± 0.004
07C6	6-1		2.38 ± 0.13	0.12 ± 0.01	537 ± 28	$26.1 ~\pm~ 2.7$	0.049 ± 0.006	0.048 ± 0.022
	6-2	roadside	5.29 ± 0.44	0.56 ± 0.04	1118 ± 92	118 ± 7	0.106 ± 0.011	0.024 ± 0.008
	6-3		1.09 ± 0.17	0.08 ± 0.01	188 ± 29	13.4 ± 1.1	0.071 ± 0.012	0.031 ± 0.014
07C7	7-1	roadside	9.48 ± 0.36	0.78 ± 0.04	$2357~\pm~90$	193 ± 9	0.082 ± 0.005	0.030 ± 0.006
	7-2		3.47 ± 0.31	0.37 ± 0.02	$620~\pm~56$	66.8 ± 3.6	0.108 ± 0.011	0.043 ± 0.009
	7-3		2.80 ± 0.20	$0.40~\pm~0.02$	555 ± 40	78.9 ± 3.9	0.142 ± 0.012	0.059 ± 0.010
07C8	8-1	roadside	5.30 ± 0.27	0.62 ± 0.03	1452 ± 74	169 ± 8	0.116 ± 0.008	0.046 ± 0.008
	8-2		5.76 ± 0.31	0.49 ± 0.02	1704 ± 91	145 ± 7	0.085 ± 0.006	0.041 ± 0.008
	8-3		10.7 ± 0.5	2.03 ± 0.09	2768 ± 142	524 ± 22	0.189 ± 0.013	0.043 ± 0.005
07C9	9-1	roadside	12.2 ± 0.3	$0.81 ~\pm~ 0.05$	3062 ± 77	$204~\pm~13$	0.067 ± 0.004	0.049 ± 0.010
	9-2		22.3 ± 0.6	$1.91 ~\pm~ 0.08$	5358 ± 152	$460~\pm~20$	0.086 ± 0.004	0.038 ± 0.005
	9-3		3.29 ± 0.3	0.33 ± 0.02	937 ± 86	92.8 ± 5.3	0.099 ± 0.011	0.054 ± 0.012

Appendi	x XIII-2	(continued)						
Sample	Sample	Sampling	¹³⁷ Cs	^{239,240} Pu	¹³⁷ Cs	^{239,240} Pu	Activi	ity ratio
No.	Lab. ID	site	Bq/kg	Bq/kg	(Bq/m^2)	(Bq/m ²)	^{239,240} Pu/ ¹³⁷ Cs	²³⁸ Pu/ ^{239,240} Pu
07C10	C10-1	roadside	3.18 ± 0.31	0.41 ± 0.02	741 ± 72	95.7 ± 4.5	0.129 ± 0.014	0.018 ± 0.005
	C10-2		1.75 ± 0.12	0.12 ± 0.01	449 ± 32	30.5 ± 2.3	0.068 ± 0.007	0.077 ± 0.020
	C10-3		6.22 ± 0.44	0.61 ± 0.03	1447 ± 102	141 ± 8.1	0.097 ± 0.009	0.045 ± 0.009
07C11	C11-1	roadside	18.2 ± 0.5	1.62 ± 0.08	3512 ± 94	314 ± 15	0.089 ± 0.005	0.048 ± 0.007
	C11-2		4.04 ± 0.21	0.14 ± 0.01	971 ± 51	33.5 ± 3.1	0.035 ± 0.004	0.067 ± 0.023
	C11-3		2.14 ± 0.22	0.45 ± 0.03	474 ± 49	99.5 ± 5.8	0.210 ± 0.025	0.040 ± 0.010
07C12	C12-1	roadside	11.6 ± 0.7	0.95 ± 0.06	2845 ± 176	232 ± 13	0.081 ± 0.007	0.033 ± 0.007
	C12-2		7.02 ± 0.49	0.66 ± 0.03	1521 ± 106	144 ± 7	0.095 ± 0.008	0.049 ± 0.009
	C12-3		9.64 ± 0.37	0.87 ± 0.04	2281 ± 87	206 ± 10	0.090 ± 0.006	0.064 ± 0.009
07C13	C13-1	roadside	6.46 ± 0.56	0.85 ± 0.05	1425 ± 124	188 ± 11	0.132 ± 0.014	0.064 ± 0.011
	C13-2		10.2 ± 0.5	0.84 ± 0.05	2310 ± 102	192 ± 12	0.083 ± 0.006	0.056 ± 0.011
	C13-3		4.84 ± 0.27	0.51 ± 0.04	1083 ± 61	115 ± 8	0.106 ± 0.010	0.059 ± 0.014
07C14	C14-1	roadside	6.51 ± 0.33	1.45 ± 0.07	1582 ± 80	352 ± 18	0.223 ± 0.016	0.073 ± 0.009
	C14-2		7.28 ± 0.31	0.67 ± 0.04	1650 ± 71	152 ± 9	0.092 ± 0.007	0.073 ± 0.012
	C14-3		2.37 ± 0.18	0.22 ± 0.02	444 ± 33	40.7 ± 3.9	0.092 ± 0.011	0.067 ± 0.023
07C15	C15-1	roadside	1.61 ± 0.20	0.74 ± 0.05	398 ± 49	183 ± 11.1	0.461 ± 0.064	0.018 ± 0.006
	C15-2		1.46 ± 0.10	0.07 ± 0.01	246 ± 17	11.4 ± 1.3	0.046 ± 0.006	0.057 ± 0.026
	C15-3		5.89 ± 0.18	0.83 ± 0.04	1417 ± 44	200 ± 9	0.141 ± 0.008	0.065 ± 0.008
07C16	C16-1	roadside	2.79 ± 0.22	0.52 ± 0.04	591 ± 47	109 ± 8	0.185 ± 0.020	0.079 ± 0.016
	C16-2		1.83 ± 0.16	0.25 ± 0.02	323 ± 29	43.8 ± 2.7	0.136 ± 0.015	0.073 ± 0.015
	C16-3		8.02 ± 0.40	0.92 ± 0.05	1602 ± 79	183 ± 10	0.114 ± 0.008	0.065 ± 0.010
07C17	C17-1	roadside	9.02 ± 0.34	2.39 ± 0.12	1914 ± 73	508 ± 26	0.265 ± 0.017	0.007 ± 0.007
	C17-2		15.8 ± 0.9	2.15 ± 0.10	3373 ± 189	458 ± 22	0.136 ± 0.010	0.007 ± 0.007
	C17-3		2.89 ± 0.18	0.55 ± 0.03	639 ± 39	121 ± 7	0.189 ± 0.016	0.013 ± 0.013
07C18	C18-1	roadside	2.92 ± 0.17	0.88 ± 0.04	606 ± 36	183 ± 8	0.303 ± 0.022	0.009 ± 0.009
	C18-2		6.40 ± 0.34	1.25 ± 0.07	1161 ± 61	227 ± 12	0.196 ± 0.015	0.008 ± 0.008
	C18-3		1.35 ± 0.13	0.39 ± 0.02	275 ± 26	80.0 ± 4.6	0.291 ± 0.032	0.013 ± 0.013

Appendix	XIII-3 (co.	ntinued)						
Sample	Sample	Sampling	^{137}Cs	^{239,240} Pu	¹³⁷ Cs	239,240 Pu	Activi	ty ratio
No.	Lab. ID	site	Bq/kg	Bq/kg	(Bq/m^2)	(Bq/m^2)	^{239,240} Pu/ ¹³⁷ Cs	²³⁸ Pu/ ^{239,240} Pu
07C19	C19-1	Road side	14.6 ± 0.7	3.15 ± 0.12	2016 ± 92	435 ± 17	0.216 ± 0.013	0.068 ± 0.005
	C19-2		16.4 ± 0.8	2.94 ± 0.13	3057 ± 142	550 ± 24	0.180 ± 0.011	0.060 ± 0.005
	C19-3		5.30 ± 0.28	1.64 ± 0.07	931 ± 49	288 ± 13	0.309 ± 0.021	0.062 ± 0.007
07C20	C20-1	Road side	7.70 ± 0.55	2.29 ± 0.11	1655 ± 118	491 ± 23	0.297 ± 0.025	0.065 ± 0.006
	C20-2		8.76 ± 0.53	1.64 ± 0.07	1536 ± 93	288 ± 13	0.187 ± 0.014	0.071 ± 0.007
	C20-3		10.8 ± 0.6	3.13 ± 0.11	2453 ± 125	710 ± 26	0.289 ± 0.018	0.077 ± 0.005
07C21	C21-1	Road side	13.5 ± 0.6	3.42 ± 0.13	2743 ± 113	694 ± 26	0.253 ± 0.014	0.066 ± 0.005
	C21-2		9.76 ± 0.36	1.87 ± 0.09	2097 ± 78	402 ± 20	0.192 ± 0.012	0.058 ± 0.007
	C21-3		15.6 ± 0.4	3.01 ± 0.13	2958 ± 84	571 ± 25	0.193 ± 0.010	0.064 ± 0.005
07C22	C22-1	Road side	3.45 ± 0.38	0.38 ± 0.02	775 ± 85	84.9 ± 4.1	0.110 ± 0.013	0.066 ± 0.011
	C22-2		11.5 ± 0.7	1.79 ± 0.09	3017 ± 183	472 ± 25	0.156 ± 0.012	0.068 ± 0.008
	C22-3		16.0 ± 0.8	3.53 ± 0.15	3780 ± 179	834 ± 35	0.221 ± 0.014	0.074 ± 0.005
07C23	C23-1	Road side	2.59 ± 0.20	0.73 ± 0.04	577 ± 44	162 ± 8	0.282 ± 0.026	0.072 ± 0.011
	C23-2		1.70 ± 0.16	0.41 ± 0.02	416 ± 39	101 ± 6	0.243 ± 0.026	0.048 ± 0.010
	C23-3		3.45 ± 0.25	1.06 ± 0.05	836 ± 61	258 ± 13	0.308 ± 0.027	0.056 ± 0.008
07C24	C24-1	Road side	2.58 ± 0.15	0.40 ± 0.02	567 ± 33	88.5 ± 4.7	0.156 ± 0.012	0.052 ± 0.010
	C24-2		5.27 ± 0.28	0.79 ± 0.04	1146 ± 60	172 ± 8	0.150 ± 0.010	0.063 ± 0.009
	C24-3		0.62 ± 0.18	0.16 ± 0.01	129 ± 37	34.2 ± 2.9	0.265 ± 0.080	0.044 ± 0.017
07C25	C25-1	Road side	13.6 ± 0.6	2.89 ± 0.14	3020 ± 142	644 ± 30	0.213 ± 0.014	0.062 ± 0.006
	C25-2		0.97 ± 0.14	0.30 ± 0.02	218 ± 31	68.6 ± 3.9	0.314 ± 0.048	0.051 ± 0.011
	C25-3		2.56 ± 0.17	0.43 ± 0.02	585 ± 39	97.7 ± 5.5	0.167 ± 0.015	0.076 ± 0.013
07C26	C26-1	Road side	0.92 ± 0.13	0.74 ± 0.04	274 ± 39	218 ± 12	0.796 ± 0.120	0.091 ± 0.013
	C26-2		4.42 ± 0.19	0.65 ± 0.03	1229 ± 54	181 ± 8	0.147 ± 0.009	0.072 ± 0.009
	C26-3		2.53 ± 0.16	0.59 ± 0.03	698 ± 43	163 ± 8	0.233 ± 0.019	0.082 ± 0.011

umple	Sample	Sampling	^{137}Cs	^{239,240} Pu	^{137}Cs	^{239,240} Pu	Activi	y ratio
о.	Lab. ID	site	Bq/kg	Bq/kg	(Bq/m ²)	(Bq/m ²)	^{239,240} Pu/ ¹³⁷ Cs	²³⁸ Pu/ ^{239,240} Pu
K1	10K1-2		8.09 ± 0.26	0.65 ± 0.02	2801 ± 91	224.7 ± 5.2	0.080 ± 0.003	0.035 ± 0.004
	10K1-3		12.8 ± 0.2	1.14 ± 0.02	4176 ± 69	374.6 ± 7.1	0.090 ± 0.002	0.040 ± 0.003
<u></u> <u></u>	10K2-1		6.11 ± 0.22	0.66 ± 0.02	2250 ± 81	244.3 ± 8.9	0.109 ± 0.006	0.047 ± 0.007
	10K2-2		6.41 ± 0.18	0.89 ± 0.04	1914 ± 53	266.8 ± 9.9	0.139 ± 0.006	0.038 ± 0.007
	10K2-3		7.84 ± 0.30	0.32 ± 0.01	2061 ± 80	84.2 ± 3.6	0.041 ± 0.002	0.048 ± 0.009
K3	10K3-1		8.37 ± 0.26	0.94 ± 0.02	2551 ± 79	286.0 ± 7.3	0.112 ± 0.005	0.044 ± 0.005
	10K3-2		4.60 ± 0.13	0.48 ± 0.01	1358 ± 38	141.1 ± 4.1	0.104 ± 0.004	0.047 ± 0.006
	10K3-3		9.51 ± 0.17	0.95 ± 0.02	2040 ± 36	204.0 ± 4.1	0.100 ± 0.003	0.054 ± 0.004
24	10K4-1		11.2 ± 0.2	1.10 ± 0.04	2359 ± 44	233.4 ± 8.5	0.099 ± 0.004	0.065 ± 0.008
	10K4-2		9.13 ± 0.15	0.84 ± 0.03	2307 ± 38	212.4 ± 8.1	0.092 ± 0.004	0.050 ± 0.007
	10K4-3	along a line	3.60 ± 0.12	0.47 ± 0.02	1055 ± 34	137.6 ± 5.9	0.130 ± 0.007	0.060 ± 0.010
\mathbf{S}	10K5-1	perpendicular	1.97 ± 0.13	0.16 ± 0.01	600 ± 40	47.6 ± 3.3	0.079 ± 0.008	0.053 ± 0.016
	10K5-2	to the road	7.13 ± 0.13	1.06 ± 0.04	1740 ± 33	259.6 ± 8.8	0.149 ± 0.006	0.038 ± 0.005
	10K5-3		7.14 ± 0.21	0.78 ± 0.02	1978 ± 59	216.6 ± 4.9	0.110 ± 0.004	0.049 ± 0.004
16	10K6-1		3.21 ± 0.16	0.29 ± 0.02	889 ± 45	79.7 ± 6.4	0.090 ± 0.009	0.080 ± 0.022
	10K6-2		5.52 ± 0.18	0.51 ± 0.02	1657 ± 54	152.5 ± 5.9	0.092 ± 0.005	0.047 ± 0.008
	10K6-3		5.07 ± 0.21	0.82 ± 0.04	1555 ± 65	251.3 ± 11.6	0.162 ± 0.010	0.045 ± 0.009
Ľ	10K7-1		4.36 ± 0.20	0.58 ± 0.02	1319 ± 60	177.0 ± 7.5	0.134 ± 0.008	0.041 ± 0.008
	10AK-2		0.55 ± 0.10	0.17 ± 0.02	145 ± 26	43.8 ± 4.0	0.303 ± 0.061	0.047 ± 0.020
	10K7-3		7.40 ± 0.19	0.82 ± 0.03	2586 ± 66	288.0 ± 11.9	0.111 ± 0.005	0.030 ± 0.006
8	10K8-1		3.86 ± 0.15	0.33 ± 0.02	1375 ± 54	116.3 ± 6.1	0.085 ± 0.006	0.052 ± 0.011
	10K8-2		0.79 ± 0.13	0.08 ± 0.01	242 ± 38	23.1 ± 2.8	0.095 ± 0.019	
	10K8-3		1.38 ± 0.27	0.04 ± 0.01	450 ± 86	12.0 ± 2.3	0.027 ± 0.007	
67	10K9-1		6.40 ± 0.31	0.61 ± 0.03	1768 ± 85	167.4 ± 7.8	0.095 ± 0.006	0.042 ± 0.009
	10K9-2		6.46 ± 0.24	0.78 ± 0.03	2014 ± 74	243.7 ± 10.3	0.121 ± 0.007	0.025 ± 0.006
	10K9-3		3.39 ± 0.22	0.23 ± 0.02	1216 ± 78	84.0 ± 6.6	0.069 ± 0.007	0.045 ± 0.016
10	10K10-1		2.11 ± 0.08	0.51 ± 0.03	624 ± 24	149.2 ± 7.4	0.239 ± 0.015	0.030 ± 0.008
	10K10-2		1.61 ± 0.18	0.20 ± 0.02	458 ± 51	55.9 ± 4.5	0.122 ± 0.017	0.035 ± 0.015
	10K10-3	within the	5.03 ± 0.22	0.41 ± 0.02	1278 ± 56	104.6 ± 5.7	0.082 ± 0.006	0.038 ± 0.010
11	10K11-1	village	6.28 ± 0.28	0.74 ± 0.04	1928 ± 86	227.9 ± 11.4	0.118 ± 0.008	0.048 ± 0.010
	10K11-2		13.4 ± 0.3	0.67 ± 0.03	4481 ± 84	225.7 ± 8.8	0.050 ± 0.002	0.032 ± 0.006
	10K11-3		6.27 ± 0.26	0.50 ± 0.02	1755 ± 73	138.7 ± 6.3	0.079 ± 0.005	0.034 ± 0.008
12	10K12-1		13.4 ± 0.3	1.08 ± 0.03	3585 ± 85	289.2 ± 8.6	0.081 ± 0.003	0.032 ± 0.004
	10K12-2		15.1 ± 0.3	1.41 ± 0.03	3431 ± 78	320.9 ± 7.0	0.094 ± 0.003	0.027 ± 0.003
	10K12-3		8 04 + 0 30	0.56 + 0.00	1470 + 55	1038 ± 35	0.070 ± 0.001	0.038 ± 0.006

pth
dej
n.
ni
CI
30
ca.
•••
6/
$^{/10}$
[]
0
ū
.=
ampling
s
led
continu
Ċ
-2
VIII
pendix

Sample	Sample	Sampling	^{137}Cs	^{137}Cs	Sample	Sample	Sampling	^{137}Cs	^{137}Cs
No.	Lab. ID	site	Bq/kg	(Bq/m^2)	No.	Lab. ID	site	(Bq/kg)	(Bq/m^2)
11K1	11K1-1		7.44 ± 0.43	2103 ± 121	11K10	11K10-1		11.62 ± 0.34	2952 ± 86
11K2	11K2-1		4.98 ± 0.31	1095 ± 67	11K11	11K11-1		1.86 ± 0.26	634 ± 88
11K3	11K3-1		4.87 ± 0.33	1168 ± 78	11K12	11K12-1		6.72 ± 0.49	1413 ± 103
11K4	11K4-1		11.21 ± 0.52	3151 ± 145	11K13	11K13-1		1.54 ± 0.22	397 ± 58
11K5	11K5-1		3.57 ± 0.25	788 ± 55	11K14	11K14-1		4.56 ± 0.31	1297 ± 87
11K6	11K6-1		24.21 ± 0.77	7482 ± 239	11K15	11K15-1		1.93 ± 0.24	704 ± 86
11K7	11K7-1		9.34 ± 0.51	3560 ± 193	11K16	11K16-1		1.31 ± 0.14	314 ± 33
11K8	11K8-1		4.39 ± 0.25	1612 ± 93	11K17	11K17-1		0.51 ± 0.20	177 ± 71
11K9	11K9-1		9.04 ± 0.37	2016 ± 83	11K18	11K18-1		1.88 ± 0.24	430 ± 55

Appendix	x XIII-6 (co	ontinued: sam	pling in 2012/8/4-5	; ca. 30 cm in depth)					
Sample	Sample	Sampling	137 Cs	¹³⁷ CS	Sample	Sample	Sampling	137 CS	^{137}Cs
No.	Lab. ID	site	Bq/kg	(Bq/m^2)	No.	Lab. ID	site	(Bq/kg)	(Bq/m^2)
12K1	12K1-1		10.8 ± 0.5	$2226~\pm~100$	12K17	12K17-1		27.1 ± 1.9	2337 ± 160
	12K1-3		3.13 ± 0.247	1099 ± 87		12K17-3		8.46 ± 0.43	$1832~\pm~94$
12K2	12K2-1		3.67 ± 0.237	548 ± 35	12K18	12K18-1		$12.8\ \pm\ 0.4$	$3182~\pm~90$
	12K2-3		4.79 ± 0.59	1529 ± 188		12K18-3		$19.1~\pm~0.6$	$5947~\pm~173$
12K3	12K3-1		1.87 ± 0.172	299 ± 28	12K19	12K19-1		3.57 ± 0.38	267 ± 28
	12K3-3		0.94 ± 0.15	304 ± 49		12K19-3		3.70 ± 0.32	1289 ± 111
12K4	12K4-1		10.3 ± 0.5	$2002~\pm~100$	12K20	12K20-1		3.95 ± 0.29	$1024~\pm~76$
	12K4-3		5.84 ± 0.341	1766 ± 103		12K20-3		1.46 ± 0.19	387 ± 51
12K5	12K5-1		6.39 ± 0.323	1313 ± 66	12K21	12K21-1		4.35 ± 0.27	870 ± 54
	12K5-3		2.11 ± 0.211	339 ± 34		12K21-3		1.12 ± 0.23	314 ± 63
12K6	12K6-1		9.53 ± 0.506	2148 ± 114	12K22	12K22-1		3.47 ± 0.25	954 ± 69
	12K6-3		7.03 ± 0.44	1797 ± 112		12K22-3		2.69 ± 0.27	398 ± 40
12K7	12K7-1		0.82 ± 0.144	137 ± 24	12K23	12K23-1		$10.1~\pm~0.6$	2737 ± 153
	12K7-3		3.24 ± 0.258	903 ± 72		12K23-3		24.1 ± 0.5	5972 ± 116
12K8	12K8-1	Glassland	0.75 ± 0.22	214 ± 63	12K24	12K24-1	Glassland	11.8 ± 0.8	$2860~\pm~189$
	12K8-3		0.46 ± 0.10	153 ± 34		12K24-3		9.83 ± 0.60	2520 ± 155
12K9	12K9-1		14.3 ± 0.7	1132 ± 54	12K25	12K25-1		5.09 ± 0.32	$1275~\pm~81$
	12K9-3		4.89 ± 0.36	1245 ± 93		12K25-3		5.64 ± 0.36	$1225~\pm~79$
12K10	12K10-1		2.91 ± 0.24	863 ± 71	12K26	12K26-1		5.69 ± 0.31	$1487~\pm~80$
	12K10-3		7.34 ± 0.55	2396 ± 179		12K26-3		4.73 ± 0.39	922 ± 76
12K11	12K11-1		2.45 ± 0.20	436 ± 35	12K27	12K27-1		13.7 ± 0.4	$3519~\pm~100$
	12K11-3		12.5 ± 0.6	3231 ± 159		12K27-3		2.02 ± 0.17	700 ± 60
12K12	12K12-1		6.54 ± 0.25	2043 ± 79	12K28	12K28-1		8.63 ± 0.35	2231 ± 91
	12K12-3		4.62 ± 0.45	1377 ± 134		12K28-3		2.10 ± 0.18	611 ± 54
12K13	12K13-1		29.7 ± 1.5	1397 ± 70	12K29	12K29-1		13.3 ± 0.3	$4056~\pm~102$
	12K13-3		12.1 ± 0.7	3954 ± 214		12K29-3		6.17 ± 0.39	2013 ± 126
12K14	12K14-1		5.18 ± 0.28	1160 ± 62	12K30	12K30-1		3.29 ± 0.28	858 ± 72
	12K14-3		12.0 ± 0.5	3327 ± 146	12K31	12K31-1		7.46 ± 0.26	$2704~\pm~95$
12K15	12K15-1		14.9 ± 1.0	2007 ± 139		12K31-3		$12.1~\pm~0.6$	3077 ± 158
	12K15-3		9.09 ± 0.512	3168 ± 178					
12K16	12K16-1		3.02 ± 0.205	543 ± 37					
	12K16-3		8.64 ± 0.518	$1532~\pm~92$					

Sample	Total	Activity	concentration	Invent	ory	Activity ratio	Activity ratio	Atomic ratio*
No.	weight	¹³⁷ Cs	239,240 Pu	^{137}Cs	^{239,240} Pu	²³⁸ Pu/ ^{239,240} Pu	^{239,240} Pu/ ¹³⁷ Cs	²⁴⁰ Pu/ ²³⁹ Pu
	(g)	(Bq/kg)	(Bq/kg)	(Bq/m^2)	(Bq/m^2)			
)6P1-1	807.43	4.61 ± 0.22	0.488 ± 0.031	2148 ± 101	227 ± 6		0.106 ± 0.008	0.082 ± 0.008
)6P1-2	778.06	5.5 ± 0.18	0.421 ± 0.025	2469 ± 80	189 ± 7		0.077 ± 0.005	0.099 ± 0.011
)6P2-1	702.33	2.73 ± 0.19	5.676 ± 0.378	1107 ± 77	2299 ± 54	0.010 ± 0.002	2.077 ± 0.200	0.042 ± 0.001
)6P2-2	658.10	5.54 ± 0.18	0.864 ± 0.043	2101 ± 69	328 ± 5		0.156 ± 0.009	0.066 ± 0.003
)6P3-1	629.01	4.16 ± 0.27	0.284 ± 0.016	1508 ± 97	103 ± 4		0.068 ± 0.006	0.101 ± 0.008
)6P3-2	619.25	5.64 ± 0.33	0.923 ± 0.092	2016 ± 119	330 ± 18		0.163 ± 0.019	0.068 ± 0.006
)6P4	591.57	8.64 ± 0.27	0.936 ± 0.049	2946 ± 93	319 ± 5		0.108 ± 0.007	0.077 ± 0.004
)6P5	813.53	2.85 ± 0.15	0.440 ± 0.036	1335 ± 71	207 ± 6		0.155 ± 0.015	0.068 ± 0.008
)6P6	531.09	3.69 ± 0.25	0.514 ± 0.024	1130 ± 78	157 ± 5		0.139 ± 0.012	0.066 ± 0.007
)6P7	826.40	3.18 ± 0.17	0.584 ± 0.009	1517 ± 82	279 ± 6	0.021 ± 0.002	0.184 ± 0.010	0.072 ± 0.006
)6P8	875.96	1.76 ± 0.13	0.071 ± 0.005	888 ± 65	35.9 ± 4.6	0.052 ± 0.017	0.040 ± 0.004	0.195 ± 0.051
6d9(868.20	1.76 ± 0.13	0.076 ± 0.007	882 ± 66	38.2 ± 2.5		0.043 ± 0.005	0.185 ± 0.008
)6P10	836.19	4.69 ± 0.19	0.221 ± 0.020	2262 ± 91	107 ± 13		0.047 ± 0.005	0.153 ± 0.023
)6P11	825.73	4.54 ± 0.23	0.261 ± 0.017	2163 ± 109	124 ± 5		0.057 ± 0.005	0.138 ± 0.013
)6P12	832.06	4.98 ± 0.16	0.239 ± 0.015	2388 ± 76	115 ± 7	0.057 ± 0.014	0.048 ± 0.003	0.167 ± 0.021
)6P13	780.22	2.53 ± 0.16	0.105 ± 0.011	1138 ± 74	47.3 ± 6.5		0.042 ± 0.005	0.192 ± 0.030
)6P14	906.09	0.52 ± 0.08	0.013 ± 0.003	271 ± 40	6.76 ± 0.76		0.025 ± 0.007	
)6P15	826.59	1.73 ± 0.12	0.071 ± 0.005	825 ± 56	33.8 ± 2.3		0.041 ± 0.004	
)6P16	808.88	4.17 ± 0.27	0.480 ± 0.027	1947 ± 127	224 ± 8		0.115 ± 0.010	0.077 ± 0.004
)6P17	828.86	3.27 ± 0.17	0.611 ± 0.030	1564 ± 83	292 ± 9	0.022 ± 0.005	0.187 ± 0.014	0.078 ± 0.005
)6P18	815.47	1.92 ± 0.18	0.140 ± 0.006	902 ± 83	66.1 ± 3.2	0.021 ± 0.006	0.073 ± 0.008	0.130 ± 0.011
)6P19	783.44	3.31 ± 0.19	0.152 ± 0.016	1497 ± 84	68.6 ± 4.7		0.046 ± 0.005	0.158 ± 0.017
)6P20	752.39	0.96 ± 0.11	0.038 ± 0.002	418 ± 47	16.7 ± 3.6	0.029 ± 0.009	0.040 ± 0.005	0.190 ± 0.038
)6P21	787.63	3.31 ± 0.15	0.539 ± 0.025	1502 ± 68	245 ± 11	0.018 ± 0.005	0.163 ± 0.010	0.067 ± 0.002
)6P22	824.06	2.75 ± 0.19	0.304 ± 0.011	1308 ± 92	145 ± 8	0.017 ± 0.004	0.111 ± 0.009	0.068 ± 0.013
16P73	775 83	67 + 038	0 000 T 0 030	2000 ± 160	VI T LVV		0 1 1 0 T 1 0 0 1 0	0.015 1.0.005

typical value of ""ru/""ru alonnic rauo for global failout is ca. 0.16, while its value for atomic bomb ru is around 0.05.

Sampling	Sample	Cs-137*	Cs-13	¢.	Geo.mean Cs-137	K	40	Vatural radio Ra-22	nuclid 6	es Ra	-228
site	No.	(Bq/kg)	(Bq/m	(-	(Bq/m ²)	(Bc	(kg)	(Bq/kg		(B	q/kg)
08H1	14	3.56 ± 0.16	1284.7 ±	58.0		686.6	± 7.1	12.92 ± 0	35	13.34	± 0.4
	1-2	7.19 ± 0.23	2172.1 ±	68.0		618.8	# 7.4	12.52 ± 0	(39	12.34	+ 0.4
	1-3	3.97 ± 0.17	1233.6 ±	53,8	1509.9	513.7	± 6.8	11.61 ± 0	37	10.44	+ 0
08H2	2-1	3.27 ± 0.12	908.1 ±	33.1		675.9	± 5.5	11.45 ± 0	1.27	12.73	+ 0.4
	2-2	5.83 ± 0.18	+ 8.6671	54.1		6'869	± 6.6	11.71 ± 0	32	13.08	+ 0
	2-3	5.32 ± 0.19	1600.8 ±	56.6	1377.9	694.6	± 7.3	13.36 ± 0	37	14.22	+ 0.4
08H3	3-1	4.90 ± 0.18	# 0.1001	012		681.5	# 7.2	13.81 ± 0	137	14.11	± 0.6
	3-2	3.68 ± 0.16	1407.5 ±	62.3		695.2	# 7.2	12.87 ± 0	36	13.19	+ 0.4
	3-3	6.55 ± 0.15	1834,3 ±	43.0	1699.4	682.4	± 5.5	12.64 ± 0	1.28	14.33	* 0.*
08H4	4-1	6.15 ± 0.21	2138.1 ±	74.7		667.8	# 7.6	13.81 ± 0	39	13.67	¥ 0.4
	4-2	3.24 ± 0.16	1105.0 ±	53.8		671.3	# 7.2	12.72 ± 0	.36	13.99	± 0.6
	4-3	5.88 ± 0.19	1255.1 ±	41.2	1436.7	663.2	± 6.7	13.01 ± 0	35	13.95	± 0.4
3HS	5-1	6.08 ± 0.16	2178.2 ±	58.3		685.2	± 5,8	14.21 ± 0	121	14.87	+ 0.
	5-2	4.87 ± 0.16	1563.0 ±	52.1		685.7	± 6.2	11.21 ± 0	020	12.52	+ 0
	5-3	4.74 ± 0.18	1296.7 ±	49.8	1640.5	665.3	F. 7.1	14.08 ± 0	137	15.47	+ 0.4
08H6	1-9	16.31 ± 0.27	3866.8 ±	63.9		523.5	± 5.6	15.12 ± 0	35	14.53	+ 0
	6-2	12.28 ± 0.30	2663.0 ±	64.2		529.0	# 7.0	16.18 ± 0	.44	15.00	+ 0.
	6-3	8.07 ± 0.25	2269.2 ±	715	2858.9	562.0	# 7.4	16.35 ± 0	.46	17,08	± 0.
08H7	1-2	12.15 ± 0.27	4089.3 ±	8.68		651.3	± 7,0	13.42 ± 0	38	14.61	+ 0.
	7-2	8.96 ± 0.24	2896.2 ±	78.5		642.8	± 7.3	10.83 ± 0	37	11.53	+ 0.4
	7-3	8.13 ± 0.23	2879.8 ±	82.1	3243.0	654.6	± 7.2	12.02 ± 0	37	13.62	± 0.4
08H8	1-8	8.34 ± 0.16	3124.9 ±	58.8		682.1	± 4.9	9.41 ± 0	22	62.01	+ 0.4
	8-2	8.73 ± 0.26	3364.3 ±	9.101		686.2	± 8.2	10.23 ± 0	38	11.70	÷0
	8-3	11.86 ± 0.30	4383.4 ±	109.3	3585.2	674.7	± 8.0	10.77 ± 0	38	11.23	+ 0.4
6H80	1-6	7.82 ± 0.19	3043.9 ±	74.1		654.6	± 6.0	14.81 ± 0	33	17.83	÷0
	9-2	8.21 ± 0.24	3354.7 ±	1-16		658.6	# 7.5	14.46 ± 0	.40	16.50	; +
	6-3	8.85 ± 0.20	3745.0 ±	85.6	3369.1	658.8	± 6.2	14.68 ± 0	33	17.17	÷0 +
01H80	1-01	8.68 ± 0.14	3780.9 ±	8.09		662.9	£ 4.3	14.95 ± 0	24	16.32	+ 0.4
	10-2	6.44 ± 0.23	2674.8 ±	1.26		670.6	± 7.9	14.70 ± 0	(43	14.56	;0 #
	10-3	10.83 ± 0.40	3985.1 ±	146.2	3428.5	621.9	± 10.9	14.44 ± 0	09.0	15.35	+ 1.0
11H80	1-11	19.45 ± 0.20	6858.7 ±	68.8		645.6	± 4.2	10.79 ± 0	121	10.80	+ 0
	11-2	24.65 ± 0.48	8902.0 ±	174.6		692.8	± 9.8	9.80 ± 0	97	10.63	+ 07
	11-3	10.69 ± 0.29	4115.5 ±	113.5	6310.3	673.4	¥ 85	12.77 ± 0	.42	10.37	0 #
08H12	12-1	8.36 ± 0.20	3377.5 ±	6.87		1.700	± 6.1	11.90 ± 0	150	11.59	0 #
	12-2	6.79 ± 0.22	2639.5 ±	86.9		641.2	# 7.6	11.57 ± 0	37	06'11	+ 0.0
	12-3	4.90 ± 0.14	1985.6 ±	55.5	2606.1	653.7	± 5.3	11.26 ± 0	1.26	12.29	+ 0.4
£1H80	13-1	11.90 ± 0.35	2061.7 ± 1	61.0		151.3	± 5,0	6.44 ± 0	65'	4.31	+ 0.4
	13-2	16.28 ± 0.29	3419.4 ±	0'19		219.8	± 4.2	7.56 ± 0	020	5.94	+ 0.
	13-3	11.71 ± 0.28	2569.1 ± 0	2:09	2626.2	272.9	± 5.1	8.19 ± 0	34	60.9	+ 0
08H14	14-1	11.97 ± 0.11	676.1 ±	36.4		625.9	± 5.8	16.25 ± 0	32	15.14	0 #
	14-2	9.26 ± 0.27	2110.9 ±	60.4		586.6	± 7.6	14.57 ± 0	.43	14.07	+ 0.
	14-3	5.18 ± 0.12	1825,3 ±	43.9	1375.9	624.2	4.7	15.74 ± 0	1.26	17.23	¥ 0.4
prest in the	village		Cs137	Pu239.	240	Pu/Cs					
Inter anno			inna nun	20 13 -1	5 mg	20177					

Appendi in soil sa	ix XIV amples	-2 (continued:]	Resultsof ¹³⁷ Cs kty in 2007.
Sample	Lab.	¹³⁷ Cs	¹³⁷ Cs
No.	ID	(Bq/kg)	(Bq/m^2)
Ch1	1-1	8.47 ± 0.24	2419 ± 68
	1-2	5.49 ± 0.21	1326 ± 51
	1-3	4.49 ± 0.19	1270 ± 54
Ch2	2-1	1.89 ± 0.13	638 ± 45
	2-2	4.73 ± 0.21	1574 ± 69
	2-3	1.08 ± 0.11	367 ± 37
Ch3	3-1	2.74 ± 0.18	891 ± 58
	3-2	4.03 ± 0.19	1150 ± 54
	3-3	4.38 ± 0.18	1361 ± 55
Ch4	4-1	5.76 ± 0.22	1556 ± 60
	4-2	4.10 ± 0.13	1172 ± 37
	4-3	3.06 ± 0.17	890 ± 49
Ch5	5-1	0.18 ± 0.12	53.6 ± 35
	5-2	1.49 ± 0.14	508 ± 46
	5-3	0.64 ± 0.12	197 ± 38
All ¹³⁷ Cs (data are	the values on the	sampling date

-53-

													and a sec					
			-	-		-	"Cs inve	ntory (B	(, m /t				H 047'667	inventor.	<u>y (Bq/m'</u>			
Region & District	Samping date	Sampling location	Number of site	Number of Meas.	Lowest	Highest (Mean Average)	One N siguma	n n	ceo. One nean sample	number of Meas.	Lowest	Highest	Mean (Average)	One siguma	Median	Geo. mean s	One
Pavlodar																		
Krivinka	2006/8	in & around the settlement	9	6	1107	2946	1862	634	2016 1	766	6	103	2299	462	693	227	282	
Beskaragay	2006/8	in & around the settlement	4	4	888	2264	1387	655	202	297	4	35.9	279	115	114	73	80	
Akku	2006/8	in & around the settlement	4	4	271	2388	1490	978	651 1	122	4	6.8	124	73	56	81	46	
Shcherbakty	2006/8 2007	in & around the settlement	L	16	197	2419	1177	587	221	000	2	224	297	261				
SemenovKa	2006/8	in & around the settlement	4	4	418	1502	1181	517	403 1	052	4	16.7	245	119	66	107	80	
Beskaragaiskii																		
Izvyestka	1995/10	in & around the settlement	1	1						8649	2	269	323	296	38	296	195	
Cheremushki	2002/10, 2003/10	in the settlement	15	14	660	8357	3303	2462	9455 2	1455	4	4003	12920	8830	3665	9198	8128	
Mostik	1995/10	in & around the settlement	1	7	695	5857	3331	1688	3438 2	825	3	375	1520	942	272	930	809	
Mostik	2002/10, 2003/10	in the settlement	5	5	587	2767	1626	784	627	452	2	137	245	191	76	181	183	
Budene	2002/10, 2003/10	in the settlement	13	10	261	6269	2538	1930	044	854	5	673	3767	2250	1263	2625	1897	
Chagan	1995/10	in & around the settlement	1	5	1056	2755	1868	744	805 1	738	2	99	187	127	25	127	111	
Dolon	1995/10	in & around the settlement	2	10	405	2187	1294	560	326]	166	2	2130	2230	2180	71	2180	2178	
Dolon	2002/10, 2003/10	in & around the settlement	25	22	788	10314	3957	3039	2751 2	944	10	463	14321	5910	4925	3905	3546	
Dolon	2005/9	in & around the settlement	25	LL	209	0006	3571	2073	3273 2	897	78	76	40903	5060	6196	2860	2729	
Kanoneruka	2008/9	in & around the settlement	14	42	676	8902	2722	1522	2419 2	382	1							447
Dolon→R142→Semipalatinsk	1996/9	side of the road	4	24	1510	7495	3288	1710	594 2	927	8	144	3900	784	1286	251	381	
Semipalatinsk	1996/9	in the City	2	13	551	3129	1678	838	695 1	479	5	49	858	242	346	108	129	
	0,000			5	11/2	0,000	0540		1000	100	Ċ	5	000	0.00	150		101	
Semipalatinsk→A322→Korosteli	1996/9	side of the road	9	30	C011	9062	2549	1466	2301	167	12	31	266	260	961	1/2	181	
Ust'Kamenogorusk																		
Semipalatinsk→R141→R24→ Ust'Kamenogorusk	1997/10	side of the road	4	16	789	5389	2721	1316	2755 2	399	8	122	272	205	50	207	199	
Ust'Kamenogorusk	1997/10	in & around the settlement	9	26	352	7674	2532	1702	2161 2	059	12	38	422	196	qq8	160	162	
Ust'Kamenogorusk→R10→R147 →Semipalatinsk	1997/10	side of the road	6	39	175	6854	2456	1551	234 2	004	14	53	512	187	121	157	156	
Zhana-Semeyskii, Abaiskii																		
Semipalatinsk→R138→ outside Karaul	1999/10	side of the road	17	40	356	4179	2121	1031	174	824	12	91	525	232	127	211	201	
Kasukabulaku	2008/8	in the settlement	5	ю	824	1588	1133	402	987 1	089	14	141	1563	459	375	376	366	
Karaul	2007-2010	in & around the settlement	39	110	241	9918	2514	2040	849]	797	110	15	1540	413	361	270	278	
Kundyzdy	2008/8	in the settlement	9	17	247	3606	1565	1192	122	133	17	34	467	176	149	109	121	
Semipalatinsk→R139→ outside Sarzhal	1999/9	side of the road	5	19	171	3188	1389	258	269]	117	5	36	723	342	258	364	235	
Znamenka	1995/10	in the settlement	1	1						873								48
Znamenka	2008/8	in the settlement	5	0							15	3.2	249	82	LL	55	45	
Sarzhal	1995/10	in & around the settlement	7	33	1295	10689	4201	2448	3129 2	881	10	263	1800	1058	553	1009	893	
Sarzhal	2007-2010	in & around the settlement	50	146	375	17076	4429	3245	3584 3	321	146	25	11502	1031	1220	723	611	
Tailan	1999/9	in the settlement	3	4	6384	14485	10418	4207 1	0398 9	772	1							964
R139→outside Kainar	1999/9	side of the road	4	17	693	5868	2620	1937	737 2	0113	4	61	1455	526	631	295	293	
R139–outside Kainar, Abulay, Akuhulak	2007/8, 2011/10, 2012/8	side of the road, in & around the settlement	62	127	129	7482	1613	1278	297	154	48	11	834	258	203	186	184	
Kainar	2007/8, 2010/9	in & around the settlement	22	64	145	5358	1900	1229	680	524	64	12	606	195	149	168	149	
Total number			400	965							637							

Appendix XVI Accumulated levels of ¹³⁷Cs and ^{299,240}Pu in soils from the areas around the Semipalatinsk Nuclear Test Site where have been measured until now.

					Pu-239,2	40/Cs-13	7 Activity	ratio						Pu-238	(/Pu-239.)	240 iActi	vity ratio		
Rejion & District	Samping date	Sampling location	Number of site	Number of Meas.	Lowest	Highest (Mean Average) s	One siguma	Median	Geo. nean s	One	Number of Meas.	Lowest 1	Highest (1	Mean werage) s	One jsiguma	Median	Geo. mean	One sample
Pavlodar																			
Krivinka	2006/8	in & around the settlement	9	6	0.068	2.08	0.339	0.653	0.137	0.160			1000	0.050	2000	1000	2000	2000	0.010
beskaragay Akku	2006/8	in & around the settlement in & around the settlement	4 4	4 4	0.040	0.057	0.0043	0.045	0.045	0.041		7 1	170.0	70.0	100.0	170.0	160.0	10.0	0.057
Shcherbakty	2006/8 2007	in & around the settlement	7	. 61	0.115	0.187	0.151												0.022
SemenovKa Doctranomictrii	2006/8	in & around the settlement	4	4	0.0046	0.163	0.09	0.058	0.076	0.076		3	0.017	0.029	0.021	0.007	0.018	0.021	
Deskal aguisku Izvvestka	1995/10	in & around the settlement	1	2	0037	0.092	0.065	0.039	0.065	0.058		2	0.002	0.03	0.016	0.029	0.016	0.0076	
Cheremushki	2002/10, 2003/10	in the settlement	15	4	0.638	2.09	1.354	0.625	1.345	1.235		4	0.031	0.04	0.037	0.004	0.037	0.037	
Mostik	1995/10	in & around the settlement		ŝ	0.11	0.26	0.19	0.075	0.200	0.179		ŝ	0.019	0.029	0.023	0.006	0.020	0.022	0
Mostik	2002/10, 2003/10	in the settlement	ς Σ	74	0.05	0.177	0.114	90.0	0.114	0.177		_ <	1000	0000	2000		2000	2000	0.039
Budene Charan	2002/10, 2003/10 1995/10	in the settlement in & around the cettlement	13	n r	12.0	0.060	00271	0.037	0C/.0	0.05 1100		4 c	0.034	0.039	0.036	7700.0	0.036	0.036	
Cuagan Dolon	1995/10	in & around the settlement	- 6	10	1.32	1.50	1.41	0.124	1.41	1.410		10	0.034	0.039	0.037	0.004	0.037	0.037	
Dolon	2002/10, 2003/10	in & around the settlement	25	1 ∞	0.30	1.49	1.00	0.437	1.124	0.830		6	0.03	0.046	0.038	0.0047	0.038	0.038	
Dolon	2005/9	in & around the settlement	25	78	0.25	5.68	1.21	1.07	0.955	0.993		LL	0.019	0.058	0.0356	0.0086	0.036	0.035	
Kanoneruka	2008/9	in & around the settlement	14	_ (0.149	0							0.045
Dolon→R142→Semipalatinsk	1996/9	side of the road	4	×	0.037	0.657	0.242	0.235	0.170	0.154		×	0.021	0.038	0.030	0.01	0.026	0.029	
Semipalatinsk	1996/9	in the City	2	5	0.019	0.053	0.035	0.0067	0.034	0.033		5	0.022	0.047	0.030	0.010	0.026	0.029	
Semipalatinsk→A322→	1006/0	side of the road	9	1	0.018	0.083	0.052	0.017	0.052	0.040		1	0.024	0.043	0.03	0 0064	0.0295	0.030	
Korosteli Ust'Kamenoporusk			>	1	01000			11000	1			1		200	200	100000			
Seminalatinsk→R141→R24→	01/2001		-																
Ust'Kamenogorusk	01//261	side of the road	4	8	0.035	0.079	0.06	0.016	0.059	0.058		(for all da	ta (n=19))						
Ust'Kamenogorusk	1997/10	in & around the settlement	9	12	0.018	0.09	0.056	0.019	0.061	0.052			0.026	0.084					
Ust'Kamenogorusk \rightarrow R10 \rightarrow R147 \rightarrow Semipalatinsk	1997/10	side of the road	6	15	0.026	0.084	0.047	0.016	0.041	0.044									
Zhana-Semeyskii, Abaiskii																			
Semipalatinsk→R138→ outside Karaul	1999/10	side of the road	17	12	0.038	0.126	0.074	0.027	0.078	0.070		12	0.008	0.046	0.029	0.012	0.031	0.026	
Kasukabulaku	2008/8	in the settlement	5	3	0.164	0.515	0.295	0.191	0.207	0.260		13	0.0081	0.052	0.025	0.012	0.022	0.022	
Karaul Kundyzdy	2007-2010 2008/8	in & around the settlement in the settlement	39 6	110 17	0.037 0.043	0.618 0.173	0.170	0.0786	0.1556 0.115	0.155 0.107		32 16	0.0021 0.012	$0.0579 \\ 0.048$	0.0157 0.0264	0.0126 0.0121	0.0117 0.0289	0.0119 0.024	
Semipalatinsk→R139→outside	1000/0	cide of the road	v	v	0.037	2760	1010	0.085	0.085	9000		v	1000	0.041	0.031	0.0075	0.030	0.030	
Sarzhal	0112001) -) -	1000	0	1710	0000	0	0		5	140.0	1000	1000	0000			
Znamenka Znamenka	2008/8	in the settlement	- 2	1 0							cc0.0	11	0.030	0.18	0 113	0.045	0 119	0 104	
Sarzhal	1995/10	in & around the settlement		10	0.10	0.30	0.189	0.065	0.18	0.177		10	0.005	0.013	0.0089	0.003	0.0085	0.0084	
Sarzhal	2007-2010	in & around the settlement	50	146	0.033	1.475	0.235	0.198	0.189	0.184		LL	0.0016	0.107	0.0137	0.017	0.0095	0.0093	
Tailan	1999/9	in the settlement	7	1							0.151	-							0.0065
R139→outside Kainar	1999/9	side of the road	4	4	0.016	0.082	0.041	0.0285	0.033	0.031		4	0.052	0.085	0.0638	0.0162	090.0	0.062	
R139-outside Kainar, Abulay, Akuhulak	2007/8, 2011/10, 2012/8	side of the road, in & around the settlement	<i>6L</i>	48	0.035	0.796	0.201	0.123	0.188	0.173		48	0.018	0.091	0.063	0.0132	0.065	0.061	
Kainar	2007/8, 2010/9	in & around the settlement	22	64	0.027	0.303	0.106	0.047	0.096	0.098		62	0.018	0.0063	0.0432	0.0133	0.043	0.040	

ISSN 1342-5935

IPSHU研究報告シリーズ 研究報告No.55

旧ソ連セミパラチンスク核実験場周辺集落の環境放射能汚染: サルジャール、カラウル及びカイナル集落とパブロダール州南部の集落

2018年3月発行

- 発行
 広島大学平和科学研究センター
 〒730-0053 広島市中区東千田町1−1−89
 TEL: 082-542-6975 FAX: 082-245-0585
 E-mail: heiwa@hiroshima-u.ac.jp
 URL: http://home.hiroshima-u.ac.jp/heiwa/
- 印刷株式会社 ニシキプリント 〒733-0833 広島市西区商工センター7丁目5-33

② 2018広島大学平和科学研究センター