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Chapter 1 

 

An Overview 

 

1. Zeolites 

1.1. What are zeolites? 

1.1.1. Structure, composition and chemistry 

 Zeolites are a group of aluminosilicate minerals that are found naturally or 

synthesized. Silicon and aluminium atoms in zeolites are tetrahedrally coordinated and 

connected with each other via oxygen atoms periodically, forming crystalline 

three-dimensional networks. The structures of zeolites typically have “micropores” 

defined as the pore opening of < 2 nm, expressed as the minimum number of T-atoms 

(tetrahedral atoms in the framework) that form rings (e.g. 8-membered rings, 8MR; 

10-membered rings, 10MR; and 12-membered rings, 12MR) surrounding the channel 

[1,2]. Zeolites are often differentiated as zero to three dimensional according to the 

number of micropores in different crystallographic directions [3,4]. Figure 1-1 shows 

some examples of zeolite structures. In most cases, channels are interconnected with 

each other in two- or three-dimensional zeolites, forming unique and complex channel 

systems. Each zeolite structure is named with three-letter alphabetical codes as shown in 

Table 1-1 by International Zeolite Association (IZA) according to its framework 

topology, not composition.  
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 LTA FAU 

   

 BEA CHA 

 

Figure 1-1 Structural models of zeolites. Oxygen atoms and ionic radius are not 

described. 
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The chemical formula of zeolites is generally written in the form of mixed 

oxides as Mn+
2/nO·xSiO2·Al2O3·yH2O, wherein M means hydrogen, alkali metals, or 

alkaline earth metals, x ≥ 2, and y ≥ 0. Since the trivalent Al3+ has four bondings with 

neighboring oxygen (O-Si), one aluminium atom in the framework of zeolites generates a 

negative charge, being compensated by the cation Mn+. If the Mn+ is H+, it works as an acid 

site in zeolites. The schematic description of the acid site in zeolites is shown in Figure 1-2. 

Zeolites with lower x (typically x = 2–5) are called “low-silica zeolites”, which shows 

hydrophilicity due to the electrical charges by abundant aluminium atoms. In contrast, 

zeolites with higher x (typically x ≥ 5) are called “high-silica zeolites”. High-silica zeolites 

have less aluminium atoms and are more hydrophobic than low-silica zeolites [5]. Zeolites 

with pure silica composition (x ≈ ∞) is also known to be synthesized [6]. Hydrated 

zeolites contain water molecules in the structures. The value y is variable because the water 

molecules in zeolites easily move by adsorption and desorption depending on partial 

pressure of water and temperature. 

Table 1-1 Framework type codes (IZA website [3]). 
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Figure 1-2 Acid sites in zeolites. Lewis acid sites generate by dehydration from 

Brønsted acid sites or dealumination. 

 

 Since zeolites have micropores, they can adsorb various molecules with the 

size smaller than their pore opening. Due to the well-defined structures, zeolites have a 

narrow distribution of the micropore size compared to e.g. activated carbons [7,8]. 

Taking advantage of these characteristics, molecules with different sizes can be 

separated by zeolites (“molecular sieving”) [9]. Zeolites also work as ion-exchangers. 

Charge compensating cations at aluminium sites can be exchanged by other cations by 

commonly known methods such as liquid-phase ion exchange [10]. Another function of 

zeolites is catalysis on a variety of reactions. In catalysis, H+ zeolites and other 

metal-exchanged zeolites with diverse structures have been studied so far [11-13]. 

1.1.2. General applications 

 Based on the functions referred in section 1.1.1., zeolites are used in worldwide 

as water softener (in detergent), dehydrating agents, cracking catalysts in petrochemical 

industry, fine chemicals catalysts, vehicle emission control catalysts, and so on. General 
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applications of zeolites are listed in Table 1-2. 

Table 1-2 General applications of zeolites (referred to the website of Tosoh 

Corporation) 

 

Field Applications 

Gas Production Separation of nitrogen and oxygen from air 

H2 purification in PSA processes 

Removal of carbon dioxide and moisture from air 

Purification in cryogenic processes 

Chemical 

Petrochemical 

Fine chemicals catalysts 

Drying of naphtha cracked gas 

Drying of organic solutions 

Petroleum refining (hydrocracking, isomerization, 

dewaxing etc.) 

Petrochemical catalysts (alkylation, isomerization etc.) 

Environment Adsorption of hydrocarbons in vehicle emissions 

Removal of nitrogen oxides (NOx) in vehicle emissions 

Removal of emissions from semiconductor production 

Adsorption of volatile organic compound (VOC) 

Adsorption of radioactive ions (Cs+, Sr2+ etc.) 

Deodorization 

Living Water softening for detergents 

Drying and purification of refrigerants 

Prevention of cloudiness in multilayer glass 

Removal of trace moisture from urethane paints and 

sealants 

Desulfurization for fuel cells 

Drying of vacuum insulation panels 

Moisture control in pharmaceutical and food packaging 

 

1.2. Synthesis of zeolites 

1.2.1. Brief history of synthetic zeolites 

 The first synthetic zeolite was levynite, reported in the mid-19th century [14]. 

However, an important work in the field of synthetic zeolites was done by R. M. Barrer 

in 1940s who established well-defined synthesis with reproducibility [15]. Following 

his pioneering work, Milton and co-workers in Union Carbide Corporation first 
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synthesized A, X and Y type zeolites [16]. They also first industrialized commercial 

synthetic zeolites. In late-1960s, Mobil Oil Corporation discovered new high-silica 

zeolites (beta and ZSM-5) using organic molecules as templates [17,18]. With the use of 

organic templates, also called “organic structure-directing agents” (OSDA), the number 

of newly synthesized structures has been increasing explosively, reaching for more than 

230 types [3]. New class of zeolites, such as crystalline aluminophosphates (AlPOs) 

[19,20], silico-aluminophosphates (SAPOs) [21,22], metalo-aluminophosphates 

(MeAPOs) [23], borosilicate zeolites [24,25], and germanosilicate zeolites [26,27] 

among others contributed the new findings of zeolite structures. Although a number of 

structures have been discovered in recent years, the commercialized zeolites are still 

limited with some zeolites (Y, mordenite, ZSM-5, ferrierite, beta, chabazite etc.) for the 

reason of costs, unique applications, and stability of materials. 

 

1.2.2. Hydrothermal synthesis 

 Zeolites are generally synthesized by the hydrothermal reaction in basic media 

[28]. Silica source, alumina source, alkali source (mineralizer), water, and OSDA (if 

necessary) are mixed together and well homogenized. Seed crystals are sometimes 

added to promote the nucleation of the target zeolite. Then, the obtained hydrogel is 

heated under atmospheric pressure or in a Teflon-lined stainless steel autoclave at the 

reaction temperature of 80–200 °C under autogenous pressure, typically. Fumed silica, 

sodium silicate, silica sol, and tetraethylorthosilicate (TEOS) among others can be used 

as a silica source. As an alumina source, such as aluminium hydroxide, aluminium 
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sulphate, sodium aluminate, and aluminum isopropoxide are often used. Sodium 

hydroxide and potassium hydroxide are commonly used as an alkali source of the 

reaction. Hydroxide anion OH− in the raw materials works as a mineralizer, promoting 

dissolution-precipitation process of silicates by hydrolysis [29]. OH− can be replaced by 

fluoride anion F−. Some new zeolites have been synthesized with F− [30,31]. 

 The crystallization process of zeolites is described as three parts, that is, 

induction period, nucleation, and crystal growth (Figure 1-3) [29]. The induction period 

is the most mysterious part of zeolite crystallization due to the difficulties of analysis 

with no crystalline phase. During induction period, the primary amorphous phase, 

consisting of non-equilibrium mixture of raw materials, is converted to the secondary 

amorphous phase. The secondary amorphous phase is a pseudo-steady-state 

intermediate, which has partly ordered structures, that is, more complex and larger 

polysilicates, called “secondary building units” (SBUs) [29]. SBUs are considered to be 

used as building blocks for the nucleation and growth of zeolite crystals (Figure 1-4) 

[32]. Supersaturation of the dissolved silicates is the driving force to promote nucleation 

and growth. The crystallization process would become faster and more efficient if the 

aforementioned building blocks are provided as raw materials. For example, Sano has 

been succeeded to synthesize various zeolites in facile routes using parent zeolites as 

only source of silica and alumina [33,34]. 
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Figure 1-4 Illustration of the promotional effect of aging on the zeolites 

crystallization [32]. In this proposed mechanism, different phases are 

obtained from the gel containing corresponding SBUs. 

Figure 1-3 Scheme of zeolite crystallization. (a) Primary amorphous phase, 

(b) secondary amorphous phase, and (c) crystalline product [29]. 
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1.2.3. Organic structure-directing agent (OSDA) 

 In the basic process of zeolite synthesis, alkali cations such as Na+ and K+ 

show structure-directing effect through modifying the amorphous aluminosilicate 

microstructure (Figure 1-4) and stabilizing zeolite framework as charge compensating 

cations. The OSDA, typically selected from the group of quaternary alkylammonium 

cations, works similarly as alkali cations above. However, because the OSDA is bulkier 

and more hydrophobic than alkali cations, it is able to stabilize less aluminium building 

blocks with low electrical density. This is why the OSDA is frequently used to 

synthesize high-silica zeolites [28,29]. 

 Since Barrer first reported the use of tetramethylammonium cation as an OSDA 

[35], almost every kind of available molecules have been tested to synthesize novel 

zeolites. Then actually, lots of novel structures have been discovered with the help of 

OSDAs [17,18,36-38]. Along with the discoveries, the role of OSDA in zeolites 

synthesis process has been also studied. Moor and coworkers proposed that in the 

Si-tetrapropylammonium-MFI (Si-TPA-MFI) synthesis system, TPA interacts with 

soluble silicates, forming hydrophobic hydration spheres. Then, overlapped these 

spheres (primary units) aggregates and leads to the nucleation of MFI phase (Figure 

1-5) [39]. 
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1.2.4. Isomorphous substitution of trivalent metals in zeolites 

 Trivalent aluminium atoms in the framework of zeolites act as “acid sites” 

when protons exist as charge compensating cations. If the acid strength of zeolites is 

controllable by substituting aluminium atoms with other metals, it is expected to expand 

its applications in catalysis [40]. In addition to varying acid strength, detached metals 

from the framework, as isolated ions, clusters or particles, can be active sites for 

catalytic reactions. Kharitonov reported that the ferrisilicate analogs of ZSM-5 zeolite 

show good catalytic activity for one-step oxidation of benzene to phenol [41]. 

Isomorphous substitution of aluminosilicate zeolites has been investigated for the 

metals such as B, Fe, Ga, V, Zn, Cr, In, Ti, Sn, and Zr among others (see Table 1-3). Ti, 

Figure 1-5 A scheme of the function of OSDA in the Si-TPA-MFI system [39]. 
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Sn, and Zr are tetravalent cations in the framework and therefore do not generate 

Brønsted acid sites. 

Table 1-3 Examples of isomorphously substituted zeolites. 

 

Metals Structures References 

B ZSM-5 (MFI) 

ZSM-11 (MEL) 

Beta (*BEA) 

Mordenite (MOR) 

SSZ-33 (CON) 

42, 43 

43 

44 

45 

46 

Fe Beta (*BEA) 

ZSM-5 (MFI) 

Mordenite (MOR) 

Ferrierite (FER) 

Theta-1 (TON) 

47 

48,49 

50 

51 

52 

Ga ZSM-5 (MFI)) 

Beta (*BEA) 

Sodalite (SOD) 

42 

53 

54 

V Beta (*BEA) 

ZSM-5 (MFI) 

ZSM-48 (*MRE) 

55 

56 

57 

Zn VPI-7 (VSV) 

VPI-9 (VNI) 

CIT-6 (*BEA) 

58 

59 

60 

Cr ZSM-5 (MFI) 61 

In Beta (*BEA) 62 

Ti TS-1 (MFI) 

TS-2 (MEL) 

Beta (*BEA) 

63 

63 

63 

Sn Beta (*BEA) 64 

Zr Beta (*BEA) 65 

 

 Experimentally, isomorphously substituted zeolites (hereinafter also called 

“metallosilicate”) are obtained by post-treatment or hydrothermal synthesis. An example 

of the post-treatment method is dealumination of the zeolites and following insertion of 

metals into the defect site [55]. The hydrothermal synthesis of metallosilicate is 
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basically the same as that of aluminosilicate zeolites. However, sometimes there are 

difficulties in synthesizing metallosilicates due to their stricter crystallization conditions, 

such as the use of fluoride and prolonged crystallization time [40,64]. This arises from 

that the metal ions used as raw materials often deposit in basic media as insoluble 

hydroxides. In addition, the ionic radii of the other metals (e.g. 0.067 nm for Fe3+) are 

not as close to Si4+ (0.039 nm) as Al3+ (0.057 nm), leading to more distortions in the 

framework. Tetraethylorthosilicate (TEOS), silica sol or sodium silicate are often used 

as silica source to avoid generating the insoluble hydroxides by making them react with 

metal ions during raw materials mixing. Using F− is also an effective way to synthesize 

metallosilicates [44,64]. 

 

1.2.5. Intergrowth (disordered) zeolites 

 The structure code of zeolite beta is *BEA, in which asterisk means the 

structure is disordered. The actual structure of beta is made of two similar but 

distinguished polymorphs named BEA and BEB (such structures are called 

“end-member structures”), inter-layered in one direction [66]. Figure 1-6 describes the 

structure of beta (*BEA), BEA, and BEB [66]. As shown for beta, intergrowth zeolites 

contain in their structure the “stacking disorder (fault)” and show no periodicity at least 

in one direction. Unlike the physical mixture of different zeolites, the channel system of 

each end-member structure in intergrowth zeolites is interconnected, forming one 

combined channel system. This is expected to exhibit a unique function in adsorption 

and catalysis use. 
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 In many cases intergrowth structures have been synthesized unintentionally, 

because the constituting end-member structures are similar and often crystallize under 

the same synthetic conditions. *BEA is a good example of it because *BEA is always 

obtained as an intergrowth zeolite. Under general synthetic conditions, the ratio of BEA 

and BEB phase is constant (A:B = 60:40). However, Corma et al. reported highly 

polymorph B enriched beta (A:B = 15:85) by controlling the kinetics of transformation 

from polymorph B to polymorph C [67]. Nobody has succeeded to synthesize pure BEA 

or BEB phase. On the contrary, to synthesize an intergrowth zeolite that has never been 

synthesized, it is necessary to identify the common synthesis condition for both 

end-member structures. If they are synthesized with different OSDAs, one promising 

Figure 1-6 (010)-Projections of *BEA related end-members. (a) BEA (polymorph A), 

(b) BEB (polymorph B) [66]. (c) BEC (polymorph C) is not contained in *BEA 

structure. 
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approach is using both OSDAs (dual-SDA synthesis). However, this is not as simple as 

it seems to be. The synthetic conditions other than OSDAs have to be overlapped for 

both structures. In addition, the structure-directing effect of the OSDAs should be 

independent from each other, not conflicting when interacting with the silicates. Cao et 

al. synthesized AFX/CHA intergrowth of silicoaluminophosphate by using 

N,N-dimethylcyclohexylamine and N,N,N’,N’-tetramethyl-1,6-hexanediamine as 

OSDAs [68]. 

 

1.3. Characterization 

 Variety of analytical techniques are available to characterize basic properties, 

fine structure, OSDAs inside the pores and incorporated metals of zeolites. Some 

representative techniques and those used in this research are listed in Table 1-4. The 

most fundamental analyses to characterize zeolites are X-ray diffraction (XRD), 

scanning electron microscopy (SEM), and elemental analysis. N2 adsorption is also a 

common method to evaluate the microporosity of zeolites through the analysis of 

adsorption-desorption isotherm. 

 

Table 1-4 Analytical techniques of zeolites. 

 

Techniques Abbreviation Information obtained 

Powder X-ray 

diffraction 

XRD 

(PXRD) 

Crystalline phase, crystallite size, unit 

cell parameter 

Scanning electron 

microcopy 

SEM Crystal morphology 

Inductively-coupled 

plasma emission 

spectroscopy 

ICP-AES Elemental composition 
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N2 adsorption - BET surface area, micropore volume, 

total pore volume, average pore diameter 

Ammonia-temperature 

programmed 

desorption 

NH3-TPD NH3 adsorption capacity, amount of acid 

sites, acid strength 

27Al / 29Si magic-angle 

spinning nuclear 

magnetic resonance 

27Al MAS NMR 
29Si MAS NMR 

Coordination structure of Al and Si, 

distribution of Al site 

Fourier transform 

infrared spectroscopy 

FT-IR Acid strength, silanols, catalyst 

characteristics (with probe molecules) 

X-ray photoelectron 

spectroscopy 

XPS Surface elemental composition, chemical 

state, electronic state 

Diffuse reflectance 

ultraviolet-visible 

absorption 

spectroscopy 

Diffuse 

reflectance 

UV-Vis 

Coordination structure of metal cations, 

quantification of metal cations with 

different polymerization degree (isolated, 

clusters, and particles) 

Electron paramagnetic 

resonance 

EPR Environment symmetry of transition 

metal ions with unpaired electron 

X-ray absorption fine 

structure spectroscopy 

XAFS 

(XANES, 

EXAFS) 

Electronic state, coordination structure of 

metal cations, distance to neighboring 

atoms, number of neighboring atoms 

Electron diffraction - Symmetry of crystal 

High-resolution 

transmission electron 

microscopy 

HRTEM Crystal structure, dislocations, grain 

boundaries 

Solid-state 13C dipolar 

decoupled 

magic-angle-spinning 

nuclear magnetic 

resonance 

13C DD/MAS 

NMR 

Identification and quantification of 

organic molecules 

Thermogravimetric 

and differential 

thermal analysis 

TG/DTA Amount and state of organic molecules 

in zeolites, silanols, thermal stability 

CHN analysis - Elemental composition of organic 

molecules in zeolites 

 

2. Zeolites for vehicle emission control 

2.1. Worldwide diesel emissions standards 

 Any engines driven by fossil fuels generate pollutants when combusting fuels. 

Major pollutants from gasoline engines are nitrogen oxides (NO, NO2, and N2O, also 
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called NOx), carbon monoxide (CO), and unburned hydrocarbons (HC). For diesel 

engines, soot, or particulate matter (PM) is added as pollutants. Since the development 

of the three-way catalyst [69], which reduces NOx, CO, and HC with high efficiency in 

stoichiometric fuel gas, gasoline emissions have been relatively well-controlled. In 

contrast, there are inherent difficulties for diesel emission control, despite the diesel 

technology is gathering attentions for its better fuel economy. Diesel engines are 

normally operated under “lean” environment, in which the three-way catalyst cannot be 

used due to the excess of oxygen in the exhaust. For the NOx and PM reduction, 

trade-off problem arises when it is to be controlled by engines only [70]. 

However, recent regulations for diesel emissions have been strictly tightened in 

many countries to minimize the negative impact on the environment and protect public 

health. North America, Europe, and Japan are at the leading position in this field, with 

the background that they have huge automotive industries with state-of-the-art 

technologies. China and India, which are both suffering from serious air pollution, are 

gathering much attention recently, because they are to introduce strict regulations 

comparable to those of the above leading regions. Figure 1-7 summarizes the current 

and future regulations for each region until 2025. In the most tightened regulations, 

emissions from diesel vehicles are required to be close or the same level as those from 

gasoline engines. Well-harmonized worldwide and real-emission based testing methods 

are also in discussions. To meet these regulations, various catalyst systems have been 

developed as shown in Figure 1-8 for example. Zeolites are mainly used for the 

abatement of NOx, HC, and CO. PM is removed from the exhaust by filtration using 
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ceramics filter called DPF (Diesel Particulate Filter). To improve the system efficiency 

and minimize overall converter units, the combination of the SCR catalysts on DPF 

filter substrate has been investigated. 

 

2.2. Diesel emission control technologies using zeolites 

2.2.1. NOx 

 NOx is a harmful component in emissions which causes smog, acid rain, and 

respiratory diseases and so on [71]. The amount of it increases when N2 and O2 

containing fuel gas combusts at high temperature. For the abatement of NOx, several 

techniques, that is, EGR (Exhaust Gas Recirculation), LNT (Lean NOx Trap), and SCR 

(Selective Catalytic Reduction) are often used [70]. The SCR, also called Urea-SCR or 

NH3-SCR, is a promising technique that utilizes NH3 from the decomposition of urea as 

a reductant, showing superior NOx conversion and N2 selectivity in the wide range of 

temperature (e.g. 150–500 °C) [70]. The SCR is beneficial especially for 

low-temperature NOx reduction; however, further reduction at lower temperature is 

strongly desired. One reason for that is that the cold-start NOx (NOx emitted during the 

engine/catalyst warming-up) should be reduced under the stricter regulations. Another 

reason is the improvement of fuel economy, which results in lower exhaust temperature 

[72]. 
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Figure 1-8 Examples of the catalytic system for (top) light-duty diesel and (bottom) 

heavy-duty diesel (from the website of Johnson Matthey). “SCRF” indicates the 

SCR catalyst on soot filter (DPF). 

 

 As catalysts for the SCR, vanadium-based catalysts have been commonly used 

especially for the stationary use such as power plants [73]. They can also be used for 

automobile catalysts, however, zeolite-based catalysts show much advantage for their 

greater low-temperature catalytic activity. Iron-exchanged beta and copper-exchanged 

SSZ-13 (CHA structure) are the well-known catalysts for the SCR [70]. Especially, 
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copper-exchanged CHA has attracted much attention and been intensively studied as 

promising catalyst due to its excellent catalytic activity, hydrothermal stability, and 

hydrocarbon-resistance [74-77]. CHA belongs to the structural group of “small-pore” 

zeolites, which contain 8MR pores as maximum openings. Lobo et al. proposed that 

these small-pores prevent Al atoms in the cages of CHA structure from migrating 

outside the cages, resulting in re-insertion of Al atoms into the framework at low 

temperature [78]. Copper ions are considered to be stabilized outside the plane of 

six-membered ring of CHA structure based on Rietveld refinements of synchrotron 

XRD (Figure 1-9) [79]. Other copper-exchanged small-pore zeolites, e.g. SSZ-16 

(AFX) [79], SSZ-39 (AEI) [80], and LTA [81], have been also gathering attention for 

the reason that they are also expected to have the abovementioned microstructure 

(Figure 1-10). The reaction mechanism of the SCR of NOx is complex [82], but 

simplified reactions are described as follows: 

1) 4NO + 4NH3 + O2 → 4N2 + 6H2O  Slow 

2) NO + NO2 + 2NH3 → 2N2 + 3H2O Very fast 

The reaction proceeds without NO2 in reaction 1), whereas equimolar amount of NO 

and NO2 are involved in reaction 2). Because the kinetics of reaction 2) is very fast, 

controlling NO/NOx ratio as it is close to 0.5 is important to achieve higher NOx 

conversion at low-temperature. This is more the case for iron-exchanged zeolites due to 

the higher sensitivity of catalytic activity for the NO/NOx ratio, compared to 

copper-exchanged zeolites [70]. In general, iron-exchanged zeolites are suitable for 

high-temperature SCR, however, its low-temperature catalytic activity can be improved 
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drastically by taking advantage of the reaction 2) by oxidizing a part of NO to NO2 on 

oxidation catalysts. 

 

 

Figure 1-9 Location of copper ions in copper-exchanged SSZ-13 [76]: (a) side view, (b) 

entire cage, and (c) copper-exchanged SSZ-16. 

 

 
 

Figure 1-10 Location of copper ions in LTA structure [78]. 
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2.2.2. HC and CO 

 HC emitted in the atmosphere is considered to be the cause for harmful smog 

by photochemical reaction with NOx. CO is also known as highly toxic compound for 

humans. In diesel emissions, HC and CO are removed by DOC (Diesel Oxidation 

Catalyst), which typically consists of zeolites with platinum group metals loaded on a 

substrate [83]. The important function of zeolites here is the adsorption of hydrocarbons 

in the micropores to prevent HC slip during cold-start. DOC also converts NO to NO2, 

improving the NOx reduction on the SCR catalyst and helping PM oxidation on the 

DPF. 

 

3. Objectives of the research 

 The overall objective of this research is to develop novel and highly-functional 

zeolites which are suitable for vehicle emission control. Zeolites for this application 

have been required to be stable in severe, hydrothermal conditions under which they are 

actually used. With the recent development of more complex and integrated exhaust 

systems, more hydrothermally stable zeolites are desired. At the same time, such 

zeolites are expected to show greater catalytic activity and/or characteristic 

adsorption-desorption properties in their applications based on their acidity, 

metal-promoted functions, unique micropore systems and so on. 

 In Chapters 2–4, I investigated the metal-promoted functions of zeolites (*BEA 

zeolite with iron) by the isomorphous substitution. Synthesized zeolites which contain 

iron atoms in the framework were evaluated mainly on the NH3-SCR reaction. Their 
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material properties and the state of iron were characterized in detail by various 

analytical techniques. In Chapter 5, I tried to develop a novel intergrowth zeolite with 

AFX/CHA structures (ZTS-1 and ZTS-2) by dual-SDA approach. Other than the 

functional evaluation as SCR catalysts, the determination of the AFX/CHA ratio of 

ZTS-1 and ZTS-2 is also the major theme in this chapter. 
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Chapter 2 

 

Synthesis of Fe-based BEA zeolites in fluoride media 

and their catalytic performance in the NH3-SCR of NOx 

 

1. Introduction 

 As the regulations concerning waste gases from various sources are getting 

stricter worldwide, there are increasing demands for improved efficiency in the removal 

of pollutants such as NOx, particulate matter, hydrocarbons, and CO. The selective 

catalytic reduction of NOx with ammonia (NH3-SCR) is an effective technique for 

purifying exhaust gases from internal combustion engines [1-3]. This technique has 

been used in mainly stationary sources like power plants, wherein a V2O5-WO3/TiO2 

catalyst is widely employed. However, this catalyst has exhibited poor thermal stability, 

low space velocity, and a narrow temperature window in diesel engine applications. 

Recently, NH3-SCR systems with Fe- and Cu-based zeolite catalysts have been widely 

used to control automobile emissions because they have a wider temperature window 

and higher thermal stability than the vanadia catalyst systems [1,2]. Moreover, for NOx 

reduction under lean-burn conditions, excellent deNOx activity in the low-temperature 

range of 150 to 350 ºC as well as the operating temperature window is required. 

 Fe-based zeolites have been intensively studied as suitable catalysts for the 

NH3-SCR because the active Fe component is less toxic than V [1,2.4-8]. Fe-based 
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zeolite catalysts can remove NOx effectively in the broad temperature range of 200-500 

ºC, especially for equimolar amounts of NO and NO2 (“fast” SCR). The Fe-based 

zeolite catalysts are prepared by several methods, such as liquid or solid ion-exchange, 

incipient wetness impregnation (IWI), chemical vapor deposition (CVD), and 

isomorphous substitution (direct hydrothermal synthesis) [9-12]. The liquid 

ion-exchange method is most commonly used and isolated metal ions are incorporated 

into zeolite pores without agglomeration. However, the extent of metal ion 

incorporation depends on the number of Al centers in the zeolite framework used. 

Although the IWI and CVD methods are also effective, and a Fe content higher than 

that incorporated by the ion-exchange method can be easily achieved, it is difficult to 

keep the incorporated Fe species isolated [11,13,14].  

 It is well known that the isomorphous substitution method is very effective for 

synthesizing zeolites with highly dispersed, tetrahedrally coordinated Fe in the 

framework [15,16], and this feature is expected to be useful for various catalytic 

reactions [17]. Many types of Fe-substituted zeolite frameworks have been reported so 

far, including MFI [16,17], BEA [15], MOR [18], FER [19], and TON [20] among 

others. In the field of deNOx catalysts, the Fe-MFI zeolite has been particularly 

investigated [9,10]. In contrast, although the Fe-based BEA zeolite is also widely 

recognized as an excellent catalyst for the NH3-SCR [5,12,14,21], there are few reports 

on the catalytic performance of isomorphously substituted Fe-BEA zeolite. Frey et al. 

investigated the NH3-SCR activities of several Fe-based zeolite catalysts, and concluded 

that the Fe-BEA zeolite had the lowest activity among all of Fe-based zeolite catalysts 
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evaluated [22]. However, the low catalytic activity appears to be due to the poor 

crystallinity of the prepared Fe-BEA zeolite, which suggests that the full potential of the 

Fe-BEA zeolite was not realized. 

 Here, I hydrothermally synthesized highly crystalline Fe-based BEA zeolites 

with various Si/Al and Si/Fe ratios to develop a novel catalyst with improved 

low-temperature activity in the NH3-SCR reaction. The influence of the chemical 

composition of the Fe-based BEA zeolites was systematically investigated. Furthermore, 

the catalytic activity of the Fe-based BEA zeolites was compared with that of the 

conventional Fe-loaded zeolite prepared by IWI. As a result, I found that the 

low-temperature activity can be improved using the isomorphous substitution method. 

Also, the synthesized Al-free Fe-BEA zeolite exhibited excellent catalytic activity even 

after hydrothermal aging at 700 ºC for 20 h, indicating its high hydrothermal durability. 

 

2. Experimental 

2.1. Synthesis of Fe-based BEA zeolite 

 To synthesize Fe-based BEA zeolites with a wide range of Si/Al and Si/Fe 

ratios, fluoride anions were used as a mineralizer. In general, addition of fluoride anions 

to the starting hydrogel can broaden the range of zeolite chemical compositions 

obtained. Camblor et al. reported that even a pure silica beta can be synthesized in 

fluoride media [23]. Although Fe-based BEA zeolite can also be obtained in OH- media, 

highly crystalline zeolites with sufficiently wide composition ranges cannot always be 

readily prepared [15,24-26]. In this study, Fe-based BEA zeolite was hydrothermally 
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synthesized according to the method reported by Pérez-Ramírez et al [27]. 

Fe(NO3)3·9H2O and Al(NO3)3·9H2O were added to an aqueous solution of 

tetraethylammonium hydroxide (35%TEAOH, Sachem) and stirred until the solids were 

completely dissolved. Then, tetraethylorthosilicate (TEOS, 98%, Kishida) was added to 

the solution, which was stirred at room temperature. After complete hydrolysis of TEOS, 

the ethanol generated was removed by evaporation. Finally, aqueous HF solution (47%, 

Hirota) was added to the solution dropwise, and then the resulting hydrogel was 

homogenized using a mortar. The molar composition of the hydrogel was SiO2 : 

xAl2O3 : yFe2O3 : 0.61TEAOH : 0.50HF : 7.5H2O, where x and y varied independently 

(x: 0-0.0625, y: 0.0066-0.0286). The hydrogel was heated at 150 ºC under static 

conditions in a Teflon-sealed stainless-steel autoclave (80 mL). After the crystallization 

was complete, the crystalline solid of the Fe-based BEA zeolite was filtered, washed, 

and dried overnight at 110 ºC. The dried product was calcined in air at 600 ºC for 2 h to 

eliminate TEA cations in the zeolitic pores. 

 The conventional Fe-loaded beta zeolite, Fe/beta(Si/Al), was also prepared by 

incipient wetness impregnation. Commercial beta zeolites with Si/Al ratios of 19 and 

250 (beta(19) and beta(250) from TOSOH Co.) were used as catalyst supports. First, an 

aqueous Fe(NO3)3 solution having volume equivalent to the micropore volume of the 

support zeolite was prepared. Then, the aqueous Fe solution was added to the zeolite, 

and the resulting powder was mixed homogeneously and dried overnight at 110 ºC. 

Finally, the sample was calcined in air at 500 ºC for 2 h. The amounts of Fe loaded were 

3.4 and 3.0 wt% for Fe/beta(19) and Fe/beta(250), respectively. 
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2.2. Characterization 

 Powder X-ray diffraction patterns of the products were measured on a 

diffractometer (MXP-3, MAC Science, Japan) using Cu Kα radiation. The scanning 

range (2θ) was 3º-43º. Elemental analysis was carried out by ICP-AES (OPTIMA 3000 

DV, Perkin Elmer). The morphology of the zeolite crystals was studied using a scanning 

electron microscope (SEM; JSM-6390LV, JEOL). Nitrogen adsorption isotherms were 

measured at -196 °C with a volumetric apparatus (BELSORP-max, MicrotracBEL 

Corp.). Samples (~0.05 g) were evacuated at 350 °C for 2 h prior to the measurement.  

The acidic properties of the Fe-based BEA zeolites were measured by the 

temperature programmed desorption of ammonia (NH3-TPD). Prior to measurements, 

the samples (0.100 g) were heated in a flow of He at 500 ºC for 1 h. NH3 adsorption was 

conducted in a flow of 10% NH3/He (60 mL/min) at 100 ºC for 30 min, followed by 

flushing with He to remove excess NH3. The temperature was then gradually increased 

from 100 to 700 ºC in a flow of He (60 mL/min), ramping at 10 ºC/min, and the 

desorbed NH3 was measured by a thermal conductivity detector. To eliminate 

interference from the dehydration of silanol groups on the crystal surfaces above 500 ºC, 

a blank measurement was performed separately in a flow of He and the desorption curve 

was subtracted from that observed in the NH3 desorption process. 

Ultraviolet-visible absorption spectra were recorded on a diffuse reflectance 

UV-Vis spectrometer (UV-Vis 3100, Shimadzu, Japan) in the range of 220–700 nm 

using BaSO4 as a blank, and subjected to the Kubelka-Munk conversion. 

2.3. Catalytic test 
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 NH3-SCR reaction was performed using a fixed-bed flow reactor under 

atmospheric pressure in the 150-500 ºC temperature range. The catalyst was pelletized, 

crushed, and sieved to 0.85-1.4 mm, and 1.5 mL of the sieved sample was placed in a 

quartz tube. The gas composition was 200 ppm NO, 200 ppm NH3, 10 vol% O2, 3 vol% 

H2O, and the balance made up with N2. The total flow rate was set to 1.5 L/h and the 

gas hourly space velocity (GHSV) was 60,000 h-1. During the experiments, the 

temperature was reduced from 500 to 150 °C in steps of approximately 50 °C, and the 

NOx conversion was calculated as follows: 

 

where NOin represents the NO inlet concentration (200 ppm) and NOout and NO2out 

represent the NO and NO2 outlet concentrations, respectively. In order to assess the 

long-term hydrothermal durability of the catalyst, I investigated the catalytic 

performance after hydrothermal treatment at 700 °C for 20 h in a flowing gas containing 

10 vol% H2O and 90 vol% air with a GHSV of 6,000 h-1 (300 mL/min flow, 3 mL 

catalyst). To evaluate the steady state catalytic activity, the concentrations of NH3, NO, 

and NO2 in the outlet gas after 10 min of time-on-stream at each reaction temperature 

were analyzed by an FT-IR spectrometer (FT/IR-6100, JASCO, Japan) equipped with a 

gas cell (LPC-12M-S, 12m) and a mercury cadmium telluride detector cooled by liquid 

nitrogen. The concentrations were determined by the intensities of the peaks at 1033, 

1875, and 2917 cm-1 for NH3, NO, and NO2, respectively. Thirty scans were averaged 

NOx conversion (%) = 
NOin – NOout – NO2out 

NOin 
 100 
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for each normalized spectrum. 

 

3. Results and discussion 

3.1. Synthesis and characterization of Fe-based BEA zeolite 

 Table 2-1 lists the hydrothermal synthesis conditions and characteristics of 

Fe-based BEA zeolites (Al,Fe-BEA and Al-free Fe-BEA) with various Si/Al and Si/Fe 

ratios. Although the time for complete crystallization was dependent on the chemical 

composition of the starting hydrogel, highly crystalline BEA type zeolites could be 

obtained within 2 weeks. The as-prepared Al,Fe-BEA and Al-free Fe-BEA zeolites were 

white in color, suggesting that the Fe present in the BEA zeolite is incorporated into the 

framework structure. However, Al,Fe-BEA and Al-free Fe-BEA zeolites with higher Fe 

contents turned light brown after calcination, indicating that some of the Fe present 

detached from the framework and formed iron oxide species.
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Table 2-1 

Synthesis conditions and characteristics of Fe-based BEA zeolites. 

 
aH2O/SiO2 = 7.5, TEAOH/SiO2 = 0.61, HF/SiO2 = 0.50, Temperature = 150 ºC, Static conditions. 
bMeasured by ICP. 
cCalculated by the BET method.  
dCalculated by the t-plot method. 

 

Sample Synthesis conditionsa  Product (Fe-BEA)     

Si/Al Si/Fe Si/(Al + Fe) Reaction 

time [d] 

 Si/Alb Si/Feb Si/(Al + Fe)b Fe [wt%]b BET surface 

area [m2/g]c 

Micropore 

volume [cm3/g]d 

1 16 90 13.6 13.5  17 84 14.1 1.0 540 0.25 

2 16 152 14.5 10.0  15 140 13.9 0.6   

3 20 44 13.8 10.5  19 40 13.0 2.2 510 0.24 

4 20 88 16.3 10.5  21 83 16.6 1.1   

5 20 152 17.7 6.5  19 138 16.6 0.6   

6 36 35 17.8 10.5  36 33 17.2 2.7 470 0.23 

7 36 44 19.8 10.5  36 41 19.2 2.1 470 0.22 

8 36 74 24.3 10.5  35 69 23.4 1.3   

9 36 152 29.1 11.5  35 140 27.7 0.6   

10 - 44 - 10.0  2400 31 30.7 2.9 480 0.22 
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The representative XRD patterns of as-prepared Fe-BEA zeolites (samples 1, 3, 

7 and 10) are displayed in Figure 2-1. The XRD patterns of all samples show the typical 

diffraction patterns of BEA zeolites containing no impurities from a co-crystallized 

phase. The lattice spacing calculated from the main peak (2θ = 22.46 º) of sample 7 

(Si/Al = 36, Si/Fe = 41, Si/(Al+Fe) = 19.2) was 0.396 nm, while that of the commercial 

beta (Si/Al = 19) used in this study was 0.393 nm. Given the ionic radii of Si4+ (0.039 

nm), Al3+ (0.057 nm), and Fe3+ (0.067 nm), incorporation of Fe into the framework 

clearly expands the lattice spacing in BEA zeolites. Figure 2-2 shows the SEM images 
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Figure 2-1 XRD patterns of as-prepared Al,Fe-BEA 

and Al-free Fe-BEA zeolites. (a) sample 1, (b) sample 

3, (c) sample 7 and (d) sample 10. 
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of these zeolites, revealing large crystals with truncated square bipyramidal morphology. 

This is typical of beta zeolites crystallized from fluoride media [28], and fewer defects 

are present when they are synthesized in this manner.  

The chemical compositions of as-prepared Fe-based BEA zeolites are summarized in 

Table 2-1. The Si/Al and Si/Fe ratios were almost the same as those of the starting 

hydrogels. Figure 2-3 shows the number of Fe atom per unit cell in as-prepared samples 

plotted against the number of Al atom. For the Al,Fe-BEA zeolite with a Si/Al ratio of 

 

 

Figure 2-2 SEM images of as-prepared Al,Fe-BEA and Al-free Fe-BEA zeolites. 

(a) sample 1, (b) sample 3, (c) sample 7 and (d) sample 10. 

 

 

(a) (b) 

(c)  (d) 
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ca. 35 (approximately 1.7 Al atom per unit cell), the number of Fe atom per unit cell 

could be varied from 0.4 to 1.8. However, I have not succeeded in simultaneously 

incorporating large amounts of both Al and Fe atoms (e.g. 4.0 Al/u.c. and 1.5 Fe/u.c.) at 

present. 

 

Figure 2-3 Numbers of Al and Fe atoms per unit cell of Al,Fe-BEA and Al-free 

Fe-BEA. 

 

Figure 2-4 NH3-TPD profiles of various Fe-based BEA zeolites and the conventional 

beta(19). 

Figure 2-4 shows the NH3-TPD curves of Fe-based BEA zeolites (samples 
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7-10) and commercial beta(19). Samples 7-9 have Si/Al ratios of ca. 35 but different 

Si/Fe ratios (41 for the sample 7, 69 for the sample 8, and 140 for the sample 9). The 

NH3-TPD curve of the beta(19) showed two distinct peaks, viz. l-peak (ca. 190 ºC) and 

h-peak (ca. 360 ºC), which reflect the strength of NH3 adsorption on acidic zeolite sites. 

Physisorbed NH3 inside micropores desorbs at low temperature, giving the l-peak. In 

general, the h-peak is attributed to NH3 desorbed from Brønsted acid sites [27]. As there 

are various kinds of acid sites in zeolites with different acid strengths, the h-peak 

position changes depending on the sites involved. Multiple h-peaks are observed in 

some cases [14]. The Al-free Fe-BEA zeolite (sample 10) also had two peaks, and the 

h-peak was shifted to a lower temperature (ca. 280 ºC) compared to beta(19). This 

probably means that sample 10 has weaker Brønsted acid sites caused by Fe in the 

framework. In the case of Al,Fe-BEA zeolites (samples 7-9), the amount of desorbed 

NH3 increased with increasing Fe content. Based on the h-peak position for sample 10, 

the increase in the amount of desorbed NH3 for samples 7-9 indicates the formation of 

highly crystalline Fe-based Brønsted acid sites. This suggests simultaneous 

incorporation of Al ad Fe atoms into the zeolite framework. A small peak was also 

observed around 500 ºC for samples 7-9. It is known that AlO+ and Al(OH)2
+ species 

generated by dealumination treatment act as Lewis acid sites [29]. Given that the 

intensity of the peak around 500 ºC for beta(19) is lower than that for the Al-free 

Fe-BEA zeolite (sample 10), the corresponding peaks for samples 7-9 seem to be due to 

NH3 desorbing from the Lewis acid sites of extra-framework Fe species. 

The amounts of NH3 desorbed from various Fe-BEA zeolites are summarized 
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in Table 2-2. The NH3 desorption in the temperature range from 220 to 700 °C was 

regarded as the h-peak. The amount of desorbed NH3 for sample 7, with a Si/(Al + Fe) 

ratio of 19.2, was 0.57 mmol/g, which was larger than the 0.49 mmol/g found for 

beta(19) with Si/Al ratio of 19.0. If all of the Al or Fe atoms present in the zeolite are 

incorporated into the framework, the numbers of acid sites calculated from the 

framework compositions for the sample 7 and the beta(19) are 0.83 mmol/g and 0.84 

mmol/g, respectively. Therefore, it is clear that some Al or Fe atoms are detached from 

the framework. From their NH3 desorption profiles, it seems that the difference in the 

amount of NH3 desorption between both samples is mainly due to the NH3 desorption 

above 450 °C (0.09 mmol/g for the sample 7). This suggests that the detached Fe atoms 

in the sample 7 are present in the zeolitic pores as the Lewis acid FeO+, whereas 

complete removal of Al from the framework hardly occurs in the beta(19), resulting in 

no formation of Lewis acid AlO+. In the case of sample 10, the amount of desorbed NH3 

(0.19 mmol/g) was considerably smaller than expected from the Si/Fe ratio, indicating 

the formation of extra-framework Fe species. The Brunauer–Emmett–Teller (BET) 

surface area, and the micropore volume (calculated from the N2 adsorption 

measurement), of the sample 10 were 480 m2/g and 0.22 cm3/g, respectively, almost the 

same as for other samples measured (Table 2-1). The small amount of desorbed NH3 of 

the sample 10 is thus not due to its crystallinity. The sample 10 exhibited a smaller peak 

for temperatures over 450 °C compared to the sample 7, even though the amount of Fe 

in the sample 10 is slightly higher. This strongly indicates that the extra-framework Fe 

species in the sample 10 do not contribute to the formation of Lewis acid sites and the 
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chemical state is somewhat different. As shown in Figure 2-5(a), in the UV-Vis 

spectrum of the sample 10 the strong absorption was observed below 300 nm, indicating 

most part of the Fe species is present as isolated Fe3+ [27]. 

 

Table 2-2 

Amounts of NH3 desorbed from Fe-based BEA zeolites with various Si/Fe ratios, 

evaluated by NH3-TPD. 

 

Samplea Si/Fe ratio 

(Fe wt%) 

Si/(Al+Fe) ratio  Amount of NH3 desorbed 

[mmol/g]b 

7 41 (2.1) 19.2 0.57 

8 69 (1.3) 23.4 0.47 

9 140 (0.6) 27.7 0.42 

10 31 (2.9) 30.7 0.19 

beta(19) - 19.0 0.49 
aSi/Al ratios of samples 7, 8 and 9 are 35 – 36 (see Table 2-1) 
bAmount of NH3 desorbed at the temperature range of 220-700 °C. 

 

 

Figure 2-5 Diffuse reflectance UV-Vis spectra of Al-free Fe-BEA zeolites (sample 10) 

before and after hydrothermal treatment at 700 ºC for 20 h. (a) before hydrothermal 

treatment (b) after hydrothermal treatment 
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3.2. Catalytic test 

Figure 2-6 shows the relationship between the reaction temperature and NOx 

conversion for the Al,Fe-BEA zeolite (Si/Al ratio = 21; Fe 1.1wt% (sample 4)) and the 

Fe/beta(19) ( Si/Al ratio = 19; Fe 3.4 wt%), before and after hydrothermal treatment at 

700 °C for 20 h. The fresh Al,Fe-BEA zeolite exhibited higher NOx conversion in the 

low to middle temperature range (200-300 ºC) compared to the Fe/beta(19), despite 

having one third of the Fe content. The NOx conversion at 200 ºC for the Al,Fe-BEA 

was 74%, but 48% for the Fe/beta(19). Although the NOx conversion was reduced by 

the hydrothermal treatment at 700 ºC for 20 h, higher NOx conversion was still 

observed for the Al,Fe-BEA zeolite. I have now rationalized the difference in the 

catalytic performance as follows. The presence of highly dispersed Fe species 

contributes to excellent catalytic performance in the low to middle temperature range. 

Such Fe species are mainly generated by the isomorphous substitution method. In 

contrast, the Fe/beta(19) showed better catalytic performance in the high-temperature 

range (400-500 ºC). This is probably due to the formation of agglomerated Fe species, 

which are considered to be active in NH3-SCR at high-temperatures [30]. It is also 

likely that the Al,Fe-BEA have less agglomerated Fe species compared to the 

Fe/beta(19), even though the NH3-TPD results suggest that there are some 

extra-framework Fe species in the Al,Fe-BEA zeolite. 
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Figure 2-6 Conversion of NOx over (■) Al,Fe-BEA(sample 4) and (△) Fe/beta(19) 

before and after hydrothermal treatment at 700 ºC for 20 h. Solid line, fresh (before 

hydrothermal treatment); dotted line, after hydrothermal treatment. 

 

 To clarify the effect of the Si/Fe ratio on the NH3-SCR activity, the catalytic 

performance of Al,Fe-BEA zeolites with various Si/Fe ratios was investigated. The 

Si/Al ratio of all these zeolites was approximately 35. Figure 2-7 illustrates the NOx 

conversion before and after hydrothermal aging at 700 ºC for 20 h. For fresh catalysts, 

before hydrothermal treatment, the NOx conversion in the low-temperature range 

(150-200 ºC) increased with an increase in the Fe content, or a decrease in the Si/Fe 

ratio. This suggests that a highly dispersed and isolated Fe species increases the 

low-temperature activity of NH3-SCR. The role of Fe species has been discussed in 

many previous reports concerning NH3-SCR over conventional Fe ion-exchanged 

zeolite catalysts [1,2.4-8]. The Fe species contributes to the oxidation of NO to NO2, 

which is the rate-determining step of the NH3-SCR reaction [4,21,31]. Although the 

NOx conversions decreased for all zeolites after hydrothermal treatment, the zeolites 

with higher Fe content demonstrated higher NOx conversion. 
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Figure 2-7 Conversion of NOx over Al,Fe-BEA zeolites with various Si/Fe ratios (a) 

before and (b) after hydrothermal treatment at 700 ºC for 20 h. ● sample 6 (Si/Fe = 33), 

△ sample 7 (Si/Fe = 41), ■ sample 8 (Si/Fe = 69), × sample 9 (Si/Fe = 140). 
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the corresponding results for zeolites with greater amounts of Fe, i.e. Si/Fe ratios of 

31-33, (samples 6 and 10). A similar trend is observed in both Figures. For fresh zeolites, 

the NOx conversion in the low-temperature range increased with increasing Al content, 

or acidity. Brandenberger et al. reported that Brønsted acidity has no significant effect 

on NH3-SCR activity [32]. Shwan et al. also showed that little change in NH3-SCR 

activity was observed even by a 40% decrease in NH3 storage capacity [33]. The effect 

of the Si/Al ratio observed in my study may be explained thus. An increase in the 

number of framework Al atoms enhances the anchoring of Fe species by ion-exchange. 

When extra-framework Fe species are formed by a thermal/hydrothermal treatment, this 

prevents the Fe species from agglomerating. Among all fresh zeolites, the Al,Fe-BEA 

zeolite with the highest Al content (sample 1, Si/Al = 17) exhibited the best catalytic 

activity over the temperature range studied. However, the activity dropped drastically 

after hydrothermal treatment. As the relative crystallinities of the zeolites after 

hydrothermal treatment, evaluated by XRD, were 92% for sample 1, 89% for the  

sample 4, and 96% for the sample 9, structural collapse would not seem to be the main 

reason for the large reduction in activity after hydrothermal treatment. It may be due to 

severe dealumination, resulting in agglomeration of the extra-framework Fe species 

anchored on the framework Al sites by ion-exchange. It is known that the dealumination 

rate is dependent upon the amount of framework Al [34].  
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Figure 2-8 Conversion of NOx over Al,Fe-BEA zeolites with various Si/Al ratios (a) 

before and (b) after hydrothermal treatment at 700 ºC for 20 h. ● sample 1(Si/Al = 17), 

△ sample 4 (Si/Al = 21), □ sample 8 (Si/Al = 35) 
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Figure 2-9 Conversion of NOx over Al,Fe-BEA zeolites with different Si/Al ratios (a) 

before and (b) after hydrothermal treatment at 700 ºC for 20 h. △ sample 6 (Si/Al = 36), 

● sample 10 (Si/Al = 2400) 

 

 From the above investigation of the effects of the Si/Al ratio, it was found that 
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conversions at 200 ºC before and after hydrothermal treatment were 82% and 68%, 

respectively, indicating high hydrothermal stability. The high hydrothermal stability was 

also confirmed by UV-Vis measurement. In the UV-Vis spectrum of the sample 10 after 

hydrothermal treatment at 700 ºC for 20 h (Figure 2-5(b)), the strong absorption 

assigned to isolated Fe3+ species was still observed below 300 nm, although the weak 

absorption assigned to Fe clusters was observed above 300 nm. To my knowledge, the 

hydrothermal stability of the sample 10 is the highest among Fe-based zeolite catalysts 

reported so far, although there are slight differences in the catalyst test conditions 

[5,6,8,22,33]. From Figure 2-9, it was also found that the fresh Al-free sample 10 

showed a comparable performance to the sample 6 with a Si/Al ratio of 36, especially in 

the low to middle temperature range. This is not consistent with the result in Figure 2-8, 

where Al-richer zeolites show greater low-temperature activity. I now believe that the 

active Fe species is dispersed within the zeolite crystals in a different way. The proposed 

mechanism will be discussed later. In the high-temperature range (400-500 ºC), the NOx 

conversion with sample 6 was slightly higher than that with the sample 10. This 

difference in the NOx conversion may be due to the difference in the Si/(Al + Fe) ratio 

(17.2 for the sample 6 and 30.7 for the sample 10), namely the number of Brønsted acid 

sites, which is related to adsorption of NH3 [35,36]. However, there was no difference in 

the NOx conversion between both samples after hydrothermal treatment. There was also 

no difference in NOx conversion over the sample 10 before and after hydrothermal 

treatment. These results strongly suggest that considerable numbers of catalytically 

active Fe species are present even after hydrothermal treatment. 
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Figure 2-10 Conversion of NOx over the Al,Fe-BEA zeolite(■; sample 10) and (△) 

Fe/beta(250) before and after hydrothermal treatment at 700 ºC for 20 h. Solid line, 

fresh (before hydrothermal treatment); dotted line, after hydrothermal treatment. 

 

 To clarify the reason for the high hydrothermal stability of the sample 10, the 

catalytic performance of Fe-loaded beta (Fe/beta (250)) was investigated as a reference. 

In the preliminary experiments, there was no difference in the catalytic performance 

between Al,Fe-BEA zeolites with Si/Al ratios of 2400 and 200 (data not shown). 

Therefore, I compared the Al,Fe-BEA (Si/Al = 2400) with the Fe/beta(250). As shown 

in Figure 2-10, the NOx conversion of Fe/beta(250) in the lower-temperature range was 

considerably lower than that of the sample 10. As the silica-rich beta (Si/Al = 250) has 

few ion-exchange sites, hardly any highly dispersed Fe species are incorporated into the 

zeolite crystals by incipient wetness impregnation. Consequently, this is why Al-free 

Fe-BEA zeolite synthesized by the direct hydrothermal synthesis is very effective in the 

NH3-SCR reaction. 
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In general, the active species in Fe-based zeolite catalysts for the NH3-SCR in 

the low-temperature range is considered to be isolated Fe species. These include 

tetrahedrally coordinated framework Fe, non-framework Fe species (where the Fe atom 

is connected to the framework only by one, two or three remaining chemical bonds), 

and extra-framework Fe species (FeO+). Figure 2-11 shows my putative mechanism for 

the formation of FeO+ species during the calcination process [37]. For the Al,Fe-BEA 

zeolite, a framework Fe species is attacked by a proton from neighboring framework Al 

sites (Brønsted acid sites) resulting in formation of an extraframework FeO+ species. 

The FeO+ species is stabilized by the Al sites, and is active in NH3-SCR as a Lewis acid 

site. This probably produces the h-peak around 500 ºC in the NH3-TPD profiles. When 

dealumination occurs by hydrothermal treatment, however, the Fe species can move 

within zeolite pores and easily form agglomerates. Conversely, I believe, in the case of 

the Al-free Fe-BEA, the first neighboring proton attack step hardly occurs because the 

Si(OH)Fe group is a weaker acid than the conventional Si(OH)Al group. Consequently, 

complete removal of framework Fe and agglomeration of the generated 

extra-framework Fe species are greatly suppressed for Fe-BEA zeolites. 
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Figure 2-11 Scheme of formation of extraframework FeO+ species in Al,Fe-BEA and 

Fe-BEA zeolites during calcination process. 

  

 

4. Conclusions 

 I synthesized isomorphously substituted Fe-based BEA zeolites (Al,Fe-BEA 

and Al-free Fe-BEA) with various Si/Al and Si/Fe ratios to develop a novel catalyst 

with improved low-temperature activity in the NH3-SCR of NOx. The resulting 

Al,Fe-BEA and Fe-BEA zeolites were highly crystalline, showing the large bipyramidal 

morphology that is typical of beta zeolites synthesized with fluoride. Their colors and 

XRD patterns indicated that the Fe present had been successfully incorporated into the 

BEA zeolite framework. For the fresh Al,Fe-BEA zeolites, the catalytic activity in the 
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low-temperature range (150-200 ºC) increased with a decrease in Si/Al and Si/Fe ratios. 

However, after hydrothermal treatment of the zeolites at 700 ºC for 20 h, a considerable 

reduction in the NOx conversion was observed. For the Al-free Fe-BEA zeolites, 

however, the NOx conversions at 200 ºC before and after hydrothermal treatment were 

82% and 68%, respectively, indicating high hydrothermal stability. It was also found 

that the low-temperature activity of Al,Fe-BEA zeolite was higher than that of the 

Fe/beta catalysts. This strongly suggests that the incorporation of Fe into the zeolite 

framework is very effective for forming active species for the NH3-SCR reaction. 
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Chapter 3 

 

Fe species in isomorphously substituted Fe-based BEA 

zeolites for low-temperature selective catalytic 

reduction of NOx 

 

1. Introduction 

Use of Fe-based zeolite catalysts for reducing the amount of NOx in automobile 

emissions by selective catalytic reduction with ammonia (NH3-SCR) has been widely 

investigated [1-8]. This technique is especially effective for helping heavy-duty diesel 

vehicles meet environmental regulations, because zeolite catalysts are highly active and 

able to remove NOx in a broad temperature range (150–500 °C). Generally, Fe-based 

zeolites are used for high-temperature (~500 °C) NH3-SCR [9]. However, the 

low-temperature (150–250 °C) activity is also important owing to cold-start emission 

control and decrease in the emission gas temperature due to increased combustion 

efficiency. It is also well known that the catalytic activity of Fe-based zeolites is very 

sensitive to the NO/NO2 relative amount, with the best performance observed at an 

equimolar ratio of NO and NO2 [10]. Therefore, a better understanding of the nature of 

the active species in Fe-based zeolites is needed for developing de-NOx catalysts with 

higher low-temperature activity. Moreover, the hydrothermal stability of Fe-based 

zeolites must also be improved for application in harsh environments and long-term use 

of the catalyst converter.  
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As I showed in Chapter 2, I found that an isomorphously substituted Fe-based 

BEA zeolite synthesized in fluoride media shows high catalytic activity in NH3-SCR, 

and the Al-free Fe-based BEA zeolite has excellent hydrothermal stability compared to 

that of the conventional Fe-loaded BEA zeolite [11]. To clarify the difference in the 

catalytic performance, in this chapter, I investigated the chemical states of Fe species in 

Fe-BEA zeolites before and after hydrothermal treatment using various analytical 

techniques such as 27Al magic-angle spinning nuclear magnetic resonance (MAS NMR), 

29Si MAS NMR, X-ray photoelectron spectroscopy (XPS), diffuse reflectance 

ultraviolet-visible absorption spectroscopy (UV-Vis), and electron paramagnetic 

resonance (EPR). On the basis of results obtained, the nature of the active species in 

NH3-SCR catalyzed by the Fe-based BEA zeolite is discussed.  

 

2. Experimental 

2.1. Synthesis of Fe-based BEA zeolites 

 Fe-based BEA zeolites were hydrothermally synthesized according to the 

method reported by Pérez-Ramírez et al. [12]. Fe(NO3)3·9H2O and Al(NO3)3·9H2O 

were added to an aqueous solution of tetraethylammonium hydroxide (35 wt. %, 

TEAOH, Sachem) and the reaction mixture was stirred until the solids completely 

dissolved. Then, tetraethylorthosilicate (TEOS, 98%, Kishida Chemical Co., Ltd.) was 

added to the solution, which was stirred at room temperature. After complete hydrolysis 

of TEOS, the generated ethanol was removed by evaporation. Finally, aqueous HF (47 

wt. %, Hirota Chemical Industry Co., Ltd.) was added dropwise, and the resulting 
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hydrogel was homogenized using a mortar. The molar composition of the hydrogel was 

SiO2:xAl2O3:yFe2O3:0.61TEAOH:0.50HF:7.5H2O, where x = 0–0.05 and y = 

0.0114–0.0308. The hydrogel was heated at 150 ºC under static conditions in a 

Teflon-sealed stainless steel autoclave (80 mL). After the crystallization was complete, 

the solid Fe-based BEA zeolite was filtered, washed, and dried overnight at 110 ºC. The 

dried product was calcined in air at 600 ºC for 2 h to remove the TEA cations occupying 

the zeolite pores. 

 

2.2. Preparation of Fe-loaded BEA and Cu-loaded CHA zeolites 

 The conventional Fe-loaded BEA zeolite, Fe/beta(Si/Al), was also prepared by 

the incipient wetness impregnation method. Commercial beta zeolite with a Si/Al ratio 

of 14 (beta(14) from TOSOH Co.) was used as catalyst support. First, an aqueous 

Fe(NO3)3 solution was prepared, with the volume equal to the micropore volume of the 

support zeolite. Then, this solution was added to the zeolite, and the obtained wet 

powder was mixed to homogeneity and dried overnight at 110 ºC. Finally, the obtained 

solid product was calcined in air at 500 ºC for 2 h. The amount of Fe loading for 

Fe/beta(14) was 3.2 wt. %. A commercial H+ type beta zeolite with a Si/Al ratio of 19 

(beta(19) from TOSOH Co.) was also used as a non-Fe-loaded BEA zeolite for 

comparison. 

 For a better understanding the catalytic activity of Fe-based BEA zeolites 

compared to the state of the art catalysts, a Cu-loaded CHA (SSZ-13) zeolite (Cu/CHA) 

was prepared by the incipient wetness method. The CHA zeolite (Si/Al = 11) was 
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synthesized according to the literature [13]. Deionized water, sodium hydroxide (48 

wt. %, Kaname Chemicals Co., Ltd.), and an aqueous solution of 

N,N,N-trimethyl-1-adamantylammonium hydroxide (13.3 wt. %, TMAdaOH, Sachem) 

were mixed, followed by the addition of aluminum hydroxide (Wako Pure Chemical 

Industries, Ltd.). Next, fumed silica (Aerosil 300, Nippon Aerosil Co., Ltd.) was added 

and mixed uniformly. The molar composition of the resulting hydrogel was 

28SiO2:Al2O3:0.20TMAdOH:0.20NaOH:44H2O. The hydrogel was then heated at 150 

ºC under static conditions in a Teflon-sealed stainless steel autoclave (80 mL) for 4 d. 

After the crystallization was complete, the obtained solid was filtered, washed, and 

dried overnight at 110 ºC. The dried product was calcined in air at 600 ºC for 2 h to 

remove the TMAda cations occupying the zeolite pores. Prior to the catalytic tests, the 

Na cations in the calcined zeolite were exchanged with NH4
+ in an aqueous solution of 

NH4Cl (ca. 20 wt. %) at 40 °C for 0.5 h. Ion-exchange was repeated three times, and the 

resulting NH4
+-form zeolite was thus obtained. Cu loading was carried out by the same 

procedure as that employed for Fe/beta(14), except for the use of aqueous Cu(NO3)2 as 

Cu source and performing calcination at 550 ºC for 2 h. The Cu loading for Cu/CHA 

was 4.5 wt. %. 

 

2.3. Characterization 

 Powder X-ray diffraction patterns of the products were measured on a 

diffractometer (X’pert PRO MPD, Spectris, Japan) using Cu Kα radiation. The scanning 

range (2θ) was 3–43º. Elemental analysis was carried out by ICP-AES (OPTIMA 3000 
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DV, Perkin Elmer). Solid-state 29Si and 27Al MAS NMR spectra were measured on an 

NMRS-400 spectrometer (Varian, USA) using tetramethylsilane and Al(NO3)3 as 

internal standards, with resonance frequencies of 79.4 MHz and 104.2 MHz, 

respectively. The valence state of Fe was probed by XPS (ESCA-3400, Shimadzu, 

Japan) using Al Kα radiation. UV-Vis spectra were recorded on a diffuse reflectance 

UV-Vis spectrometer (UV-Vis 3100, Shimadzu, Japan) in the range of 220–700 nm 

using BaSO4 as a blank, and subjected to the Kubelka-Munk conversion. EPR spectra 

were measured on JES-TE200 (JEOL, Japan) operating in X-band frequency (9.4 GHz) 

at –196 °C and room temperature. Nitrogen adsorption isotherms were measured at 

–196 °C with a volumetric apparatus (BELSORP-max, MicrotracBEL Corp., Japan). 

Samples (~0.05 g) were kept under vacuum at 350 °C for 2 h prior to the measurement. 

 The NH3-SCR reaction was performed in a fixed-bed flow reactor under 

atmospheric pressure in the 150–500 ºC temperature range. The catalyst was pelletized, 

crushed, and sieved to 0.85–1.4 mm, and 1.5 mL of the sieved sample was placed in a 

quartz tube. The gas composition used was 200 ppm NO, 200 ppm NH3, 10 vol. % O2, 3 

vol. % H2O, with the rest being N2. The total flow rate was set to 1.5 L/h, and the gas 

hourly space velocity (GHSV) was 60,000 h–1. During the experiments, the temperature 

was lowered from 500 to 150 °C in steps of approximately 50 °C, and the NOx 

conversion was calculated as follows: 

 

  

Here, NOin represents the NO inlet concentration (200 ppm) and NOout and NO2out 

NOx conversion (%) = 
NOin – NOout – NO2out 

NOin 
 100 
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represent the NO and NO2 outlet concentrations, respectively. In order to assess the 

long-term hydrothermal durability of the catalyst, I also investigated its performance 

after hydrothermal treatment at 700 °C for 20 h in a stream of gas containing 10 vol. % 

H2O and 90 vol. % air with a GHSV of 6,000 h-1 (300 mL/min flow, 3 mL catalyst). To 

evaluate the steady state catalytic activity, the concentrations of NH3, NO, and NO2 in 

the outlet gas after 10 min of time-on-stream at each reaction temperature were 

analyzed by an FT-IR spectrometer (FT/IR-6100, JASCO, Japan) equipped with a gas 

cell (LPC-12M-S, 12m) and a mercury cadmium telluride detector cooled by liquid 

nitrogen. The concentrations were determined based on the intensities of the peaks at 

1033, 1875, and 2917 cm–1 for NH3, NO, and NO2, respectively. Averaging over 30 

scans was performed for each normalized spectrum. 

 

3. Results and discussion 

3.1. Synthesis and characterization of Fe-based BEA zeolites 

Table 3-1 lists the hydrothermal synthesis conditions and characteristics of 

Fe-based BEA zeolites. Their XRD patterns were typical of *BEA zeolites containing no 

impurities from a co-crystallized phase, indicating that highly crystalline and pure-phase 

*BEA-type zeolites were obtained. All of the as-prepared samples were white, 

suggesting that Fe present in the zeolite was successfully incorporated into its 

framework. However, all of the prepared samples, with the exception of sample 3 

(having the lowest Fe content of 1.1 wt. %), turned light brown after calcination. This 

change of color suggests a possible partial removal of Fe from the zeolite framework. 
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The good agreement of the Brunauer–Emmett–Teller (BET) surface area and the 

micropore volume calculated from the N2 adsorption isotherm with those reported in 

literature [12] also confirmed that a highly crystalline BEA-type zeolite was obtained. 
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Table 3-1 Synthetic conditions and characteristics of Fe-based BEA zeolites. 

Sample Synthetic conditionsa  Product (Fe-based BEA)     

Si/Al Si/Fe Synthesis 

time [d] 

 Si/Alb Si/Feb Fe [wt. %]b BET surface 

area [m2/g]c 

Micropore volume 

[cm3/g]d 

1 – 44 10.0  2400 31 2.9 480 0.22 

2 250 33 10.0  200 26 3.5 – – 

3 36 35 10.5  36 33 2.7 470 0.23 

4  20 88 10.5  21 83 1.1 – – 

aH2O/SiO2 = 7.5, TEAOH/SiO2 = 0.61, HF/SiO2 = 0.50, Temperature = 150 ºC, under static conditions. 
bMeasured by ICP. 
cCalculated by the BET method.  
dCalculated by the t-plot method. 
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3.2. Catalytic tests 

 Figure 3-1 shows the NOx conversions at 200 °C over various Fe-based BEA 

zeolites, i.e., Fe/beta(14), beta(19), and Cu/CHA, before and after hydrothermal 

treatment at 700 °C for 20 h. All of the Fe-based BEA samples exhibited catalytic 

activity greater than that of Fe/beta(14). After hydrothermal treatment, however, NOx 

conversions over the Fe-based zeolites with a higher Al content (samples 3 and 4) 

considerably decreased, almost reaching the conversion values of Fe/beta(14), i.e., 

38–42%. In contrast, the Fe-based zeolites with a lower Al content (samples 1 and 2) 

still showed high catalytic activity, with 68% conversion for sample 1 and 73% for 

sample 2. However, no linear correlation between Al content and NOx conversion after 

hydrothermal treatment was found. The catalytic activity of beta(19) was much lower 

than that of other Fe-containing zeolites, indicating that Fe is the catalytically active 

component in the SCR reaction. 

 

Figure 3-1 Conversion of NOx at 200 °C over Fe-based BEA zeolites, Fe/beta(14), 

beta(19), and Cu/CHA before (blue) and after (orange) hydrothermal treatment at 

700 °C for 20 h. 
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 It is well known that Cu-loaded CHA zeolites show excellent performance in 

the low temperature NH3-SCR since their sensitivity to the NO/NO2 relative amount is 

much lower than that of Fe-based catalysts [1]. In this study, it was also confirmed that 

Cu/CHA exhibited the highest catalytic activity before and after hydrothermal aging. 

Surprisingly, the Fe-based BEA zeolites demonstrated high catalytic activity and 

hydrothermal stability even in the absence of NO2. 

 

Figure 3-2 27Al MAS NMR spectra of (a) Fe-based BEA zeolite (sample 3) and (b) 

Fe/beta(14) before (blue) and after (orange) hydrothermal treatment at 700 °C for 20 h. 

 

3.3. 27Al and 29Si MAS NMR 

Figure 3-2 shows 27Al MAS NMR spectra of sample 3 (Si/Al = 36, Fe = 2.7 

wt. %) and Fe/beta(14) (Si/Al = 14, Fe = 3.2 wt. %). Both samples had a peak at around 

52 ppm, which was assigned to tetrahedrally coordinated Al [14]. The peak around 0 

ppm, attributable to octahedrally coordinated Al [14], was not observed for sample 3. 

For sample 3, no decrease in the intensity of the peak at 52 ppm was observed after 

hydrothermal treatment, indicating absence of dealumination. For Fe/beta(14), however, 

the reduction in the peak intensity was clearly observed (33%). The differing behavior 

of sample 3 and Fe/beta(14) is probably due to the differences in the number of 
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structural defects [15] and the framework Al content [16]. 

 

Figure 3-3 29Si MAS NMR spectra of Fe-based BEA zeolites and Fe/beta(14) before 

(blue) and after (orange) hydrothermal treatment at 700 °C for 20 h. (a) sample 1, (b) 

sample 3, and (c) Fe/beta(14). 

 

The 29Si MAS NMR spectra of sample 1, sample 3, and Fe/beta(14) before and 

after hydrothermal treatment are shown in Figure 3-3. The observed chemical shift 

reflects the coordination environment of Si, varying from approximately −103 to −117 

ppm for Si(4Si) and from −97 to −106 ppm for Si(2Si, 2Al), Si(2Si, 1Al, 1Fe), Si(2Si, 

2Fe), Si(3Si, 1Al), Si(3Si, 1Fe), or Si(3Si, 1OH) [14, 17]. In the spectrum of freshly 

prepared sample 1 (before hydrothermal treatment), the main peaks were detected at 

−111 and −115 ppm, characteristic of Si surrounded by 4 Si. A very weak broad peak 

was observed between −97 and −106 ppm. Taking into account the fact that the Si/Al 
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ratio of sample 1 is 2400, and the peak of the Si(3Si,1Fe), Si(2Si, 2Fe), or Si(2Si, 1Al, 

1Fe) species is broadened by spin interaction with Fe3+, the presence of Si in a 

Si(3Si,1OH) environment (structural defect) can be inferred. However, the intensity of 

the broad peak slightly decreased after hydrothermal treatment, suggesting detachment 

of framework Fe and the occurrence of dehydration between neighboring silanols 

during the hydrothermal treatment process. 

On the other hand, the spectrum of freshly prepared sample 3 displayed a broad 

peak between −97 and −106 ppm. Even after hydrothermal treatment, the peak was 

clearly visible, although its intensity decreased. Since dealumination of framework Al 

hardly occurred for sample 3 (Figure 3-2), the difference between sample 1 and sample 

3 in the intensity of the abovementioned broad peak suggests that the removal of 

framework Fe in sample 3 takes place easier than in sample 1. Subsequently, 

dehydration between the generated neighboring silanols occurs, resulting in the 

reduction of the number of Si(3Si, 1OH) species. The formation of Si(4Si) species was 

confirmed by an increase in peak intensity between −103 and –117 ppm. Since there is 

no difference in the Si/Fe ratio between sample 1 and sample 3, this phenomenon is 

probably due to the presence of strongly acidic sites, like Si(OH)Al, in sample 3, which 

accelerate the removal of framework Fe. 

In the 27Si MAS NMR spectrum of Fe/beta(14), the observed peak appeared to 

be broader compared to samples 1 and 3. As Fe/beta(14) was prepared by the incipient 

wetness impregnation method, most of the Fe species introduced were located in the 

zeolite pores, not in the framework. As a result, peak broadening occurred due to spin 
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interaction between the Fe species and the framework Si. The spectrum of sample 3 was 

also more broadened compared to sample 1, suggesting that more Fe exists as an 

extra-framework species. 

 

3.4. XPS 

The valence states of Fe in sample 3 were probed by XPS measurements 

(Figure 3-4). Fe3O4 and Fe2O3 were used as references for Fe2+ and Fe3+. Roosendaal et 

al. reported that Fe 2p spectra show Fe2+ and Fe3+ binding energies of approximately 

710 and 711 eV, respectively [18]. As shown in Figure 3-4, Fe2O3 showed a peak at 

711.2 eV, whereas Fe3O4 showed a shoulder peak at 709.2 eV together with a peak at 

711.2 eV, indicating the existence of Fe2+ in Fe3O4. Freshly prepared sample 3 had a 

Fe3+ peak at 711.2 eV and no apparent Fe2+ peak at 709.2 eV. However, the spectrum of 

this sample after hydrothermal treatment (aged) showed a weak shoulder peak around 

709.2 eV. These results suggest that iron in the freshly prepared Fe-based BEA zeolite is 

mostly present as Fe3+, but a minor part of it is reduced to Fe2+ during the hydrothermal 

treatment. The shoulder peak at 709.2 eV, assigned to Fe2+, was not observed for the 

same sample after several months of storage (data not shown). Therefore, it was 

concluded that the Fe2+ species generated by hydrothermal treatment exists as 

extra-framework Fe that can be easily re-oxidized by atmospheric oxygen due to greater 

redox state stability of the Fe in the zeolite framework than that of the extra-framework 

Fe [19]. 
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Figure 3-4 Fe 2p XPS spectra of (a) Fe-based BEA( sample 3) and (b) Fe2O3 and 

Fe3O4. 

 

3.5. Diffuse reflectance UV-Vis 

 Diffuse reflectance UV-Vis spectra were measured to investigate the dispersion 

state of Fe (Figures 3-5 and 3-6). In previous UV-Vis studies of isomorphously 

substituted Fe zeolites, two different types of absorption bands were observed [12, 

20-22]. The intense absorption band typically observed in the range of approximately 

200–500 nm is attributed to charge transfer (CT) from the O2- ligand to Fe3+ [12,21]. 

Isolated Fe3+ species, either tetrahedral or octahedral, absorb between 200 and 300 nm, 

and the Fe3+
xOy cluster shows absorption at longer wavelengths (ca. 300–400 nm) [12, 

23]. For larger Fe2O3 particles, absorption bands appear above 400 nm [12, 23]. 

Although definitive discrimination of Fe species is difficult, this grouping is useful for 

quantitative understanding of the transformation of Fe species during hydrothermal 

treatment [12]. Another type of absorption is observed between 350 and 550 nm, 

attributable to the d-d transitions of Fe3+ [12, 20-22]. Because the d-d transitions are 
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symmetry- and spin-forbidden, the absorption peak intensity is more than three orders 

of magnitude less than that of CT transitions. However, the absorption due to d-d 

transitions gives us useful information on the coordination environment of Fe3+. For 

example, Goldfarb et al. reported that Fe-substituted SOD zeolite has four absorption 

lines at 373, 410, 436, and 480 nm, indicating tetrahedral coordination of Fe3+ [22]. 

Similar assignments were also found in other sources [20, 24]. 

 

 
 

Figure 3-5 Diffuse reflectance UV-Vis spectra of the as-prepared sample 1 in (a) CT 

and (b) d-d transition regions. 

 

 Figure 3-5 shows the UV-Vis spectrum of the as-prepared sample 1. In the 

region of the d-d transitions, four absorption peaks were observed at 375, 413, 439, and 

480 nm (very broad). These peaks were consistent with the results of Goldfarb et al. 

[22], suggesting that Fe3+ in sample 1 was successfully incorporated in the framework 

with tetrahedral coordination. The absorption in the CT region was observed only below 

300 nm, confirming that the Fe species in the as-prepared sample 1 is exclusively 

isolated Fe3+. 
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 The spectra of all samples before and after hydrothermal treatment are 

compared in Figure 3-6. Li et al. [25] and Perez-Ramirez et al. [12] reported that 

absorption spectra can be deconvoluted to subbands by a Gausian curve. The amounts 

of Fe species calculated from the deconvoluted subbands are summarized in Table 3-2, 

where the absorption subbands of <300 nm, 300–400 nm, and >400 nm were regarded 

as isolated Fe3+, Fe3+
xOy clusters, and Fe2O3 particles, respectively. Freshly prepared 

Fe-based BEA samples showed similar absorption spectra, mainly consisting of the 

subbands at 211 and 272 nm, and having some weak subbands above 300 nm. Therefore, 

most of the Fe3+ (>89%) exists as isolated Fe3+ in fresh samples, although the 

coordination environment of Fe3+ (framework or extra-framework) is not clear at the 

present time. In contrast, the Fe/beta(14), prepared by the incipient wetness 

impregnation method, had a broader absorption spectrum compared to Fe-based BEA 

samples. The higher proportion of the subbands above 300 nm indicates that Fe/beta(14) 

contains considerable amounts of Fe3+
xOy clusters and Fe2O3 particles (17.2 wt. % and 

3.1 wt. %, respectively), even when fresh. Unfortunately, the absorption due to d-d 

transitions was masked by the CT peak, which extended to longer wavelengths (>300 

nm) for all samples. Therefore, no information concerning the coordination environment 

could be derived from this region. 
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Figure 3-6 Diffuse reflectance UV-Vis spectra of Fe-based BEA zeolites and 

Fe/beta(14) before and after hydrothermal treatment at 700 °C for 20 h. (a) sample 1 

(fresh), (b) sample 1 (aged), (c) sample 2 (fresh), (d) sample 2 (aged), (e) sample 3 

(fresh), (f) sample 3 (aged), (g) sample 4 (fresh), (h) sample 4 (aged), (i) Fe/beta(14) 

(fresh), and (j) Fe/beta(14) (aged). 

 

 Another feature was observed for the intensity of the subbands at 211 and 272 

nm (denoted as Sb1 and Sb2, respectively) shown in Figure 3-6. The Fe-rich samples 

(samples 1, 2, and 3; Si/Fe < Si/Al) had nearly equivalent Sb1 and Sb2 subbands. In 

contrast, the Al-rich samples (sample 4 and Fe/beta(14)) had an apparently stronger Sb2 

subband. Perez-Ramirez et al. found that the subband at 285 nm in calcined and 

hydrated Fe-ZSM-5 disappeared after thermal treatment at 500 °C, demonstrating that it 

is due to octahedral Fe3+ [12]. Therefore, it can be assumed that the formation of 

octahedral (extra-framework) Fe3+ contributes to the increase in the intensity of the Sb2 

subband in Fe/beta(14), where the Fe species should be in an extra-framework position. 

I can therefore assume that sample 4 has more extra-framework Fe3+ than that of other 

Fe-rich zeolites; in other words, the detachment of framework Fe occurs more easily in 

Al-rich zeolites. As listed in Table 3-2, however, the percentage of isolated Fe3+ in fresh 

samples increases concomitantly with the Al content (decrease in the Si/Al ratio). This 
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can be explained by Al acidic sites anchoring the detached Fe3+ and preventing its 

agglomeration. Obviously, Fe acidic sites could also be considered anchoring sites. Such 

detached Fe3+ species anchored on Fe acidic sites could be recognized as binuclear 

clusters, since the anchored Fe3+ species coordinate to the oxygen atoms next to the 

framework Fe. Based on the definition used in this study, Fe binuclear clusters should 

exhibit absorption in the 300–400 nm range in the UV-Vis spectrum; however, 

Pirngruber et al. reported that Fe binuclear clusters could absorb below 300 nm [26]. 

Thus, at the present time, I cannot determine the region where the binuclear clusters 

exhibit their absorption bands. However, considering the 29Si MAS NMR results 

showing that the detachment of Fe in sample 1 (Si/Al = 2400) was more suppressed 

than that in sample 3 (Si/Al = 36), it can be concluded that the amount of Fe binuclear 

clusters was so small that it would lead to no major change in the UV-Vis spectrum. 

Therefore, combining these characterization results with the catalytic test data in Figure 

3-1, it can be concluded that the isolated Fe3+ (both framework and extra-framework) is 

the catalytically active species in the low-temperature NH3-SCR.
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Table 3-2 Fe species content calculated from the deconvoluted UV-Vis subbands. 

Sample  Isolated Fe3+ Fe3+
xOy clusters Fe2O3 particles 

[%]a [wt%] [%]a [wt%] [%]a [wt%] 

1 fresh 89.5 2.6 10 0.29 0.5 0.02 

 aged 58.8 1.7 34.2 0.99 7.0 0.20 

2 fresh 91.0 3.1 8.8 0.30 0.2 0.01 

 aged 51.9 1.8 40.2 1.38 8.0 0.27 

3 fresh 94.2 2.5 4.6 0.12 1.1 0.03 

 aged 50.4 1.3 41.9 1.12 7.7 0.20 

4 fresh 98.4 1.0 1.4 0.01 0.2 0.00 

 aged 74.4 0.8 22.9 0.24 2.7 0.03 

Fe/beta(14) fresh 79.6 2.5 17.2 0.55 3.1 0.10 

 aged 63.2 2.0 30.7 0.98 6.1 0.20 
aCalculated from integrated subbands. 

Isolated Fe3+: λ < 300 nm 

Fe3+
xOy clusters: 300 nm < λ < 400 nm 

Fe2O3 particles: λ > 400 nm 
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 After hydrothermal treatment, the intensities of subbands above 300 nm 

increased for all samples (Figure 3-6), indicating further formation of Fe3+
xOy clusters 

and Fe2O3 particles. Among Fe-based BEA samples, only sample 4 showed a higher 

percentage of isolated Fe3+. Probably, the low amount of Fe (1 wt. %) in sample 4 is 

beneficial for preserving isolated Fe3+. Among the other samples (1–3), there was no 

significant difference in the Fe3+ species content, despite the wide variation of the Si/Al 

ratio. However, a large difference in NOx conversion of the NH3-SCR reaction was 

observed among Fe-based BEA zeolites with different Si/Al ratios after hydrothermal 

treatment (Figure 3-1). This inconsistency implies the existence of several isolated Fe3+ 

species with different chemical environments. To confirm the characterization, EPR 

measurements were performed to elucidate the chemical environment of isolated Fe3+, 

which is most relevant to catalytic activity. 
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3.6. EPR 

EPR spectra were measured at both room temperature and –196 °C to further 

investigate the environment of isolated Fe3+. Although many researchers have already 

investigated the chemical states of Fe species present in zeolites using this technique, 

the interpretation of the measurement results is not straightforward [21-24, 27-31]. The 

major g values observed in Fe zeolites are ca. 2.0 and 4.3. The peak at g ≈ 4.3 has 

sometimes been assigned to framework Fe3+ in zeolites [27, 32, 33]. However, the peak 

at g ≈ 2.0 has also been attributed to framework Fe3+ [21, 24, 29]. Since the positions of 

EPR peaks depend solely on the Fe3+ environment symmetry (highly symmetric or 

distorted), EPR alone cannot discriminate between tetrahedrally or octahedrally 

coordinated Fe3+ [12, 23]. Therefore, elucidation of the Fe3+ environment is possible 

only in combination with analytical results obtained using several other methods. 

Figure 3-7 shows the EPR spectrum of the as-prepared sample 1, measured at 

–196 °C. Several signals were observed at g ≈ 2.0, g ≈ 4.3, and g ≥ 4.3. Since the 

UV-Vis data confirmed the presence of tetrahedrally coordinated Fe3+ in sample 1, these 

signals can be attributed to tetrahedral Fe3+ with different symmetries. The signal at g ≈ 

2.0 is assigned to highly symmetric tetrahedral Fe3+ [12, 23]. As the signals at g ≈ 4.3 

and g ≥ 4.3 are known to correspond to Fe3+ in a distorted tetrahedral or octahedral 

environment [12, 23], I can assign them to distorted tetrahedral Fe3+. The as-prepared 

sample contains TEA+ in its micropores, which may lead to the distortion of some 

tetrahedral Fe3+ by the interaction between Si-O–-Fe and TEA+. The lattice expansion 

caused by TEA+ may also affect the distortion of the coordination environment. 
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Figure 3-7 EPR spectrum at –196 °C of the as-prepared sample 1. 

 

Before EPR measurements at –196 °C, the temperature dependence of the 

signal intensity was investigated. Figure 3-8 shows the comparison of the spectra of 

sample 1 (before and after hydrothermal treatment) measured at room temperature and 

–196 °C. The signal at g ≈ 2.0 appeared to be dominant after calcination, suggesting that 

the distortion of Fe3+ disappears after removal of TEA+. Bordiga et al. reported that Fe 

clusters and oxide particles exhibit stronger g ≈ 2.0 signals at 25 °C than at –196 °C, 

disobeying the Curie law due to mutual magnetic interaction [21]. In Figure 3-8, the 

intensity of the signal at g ≈ 2.0 was enhanced by decreasing the measurement 

temperature (in agreement with the Curie law), suggesting that the signal at g ≈ 2.0 can 

be assigned to isolated Fe3+ in a highly symmetric environment. Presently, 

discrimination between tetrahedral or octahedral Fe3+ is not possible. After 

hydrothermal aging, the signal intensity at g ≈ 2.0 (measured at room temperature) 

slightly increased. This is due to an increase in the amounts of Fe clusters and oxide 

particles, as confirmed by UV-Vis measurements. However, no difference in signal 

temperature dependence between fresh and aged samples was observed, and the 
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dominant Fe3+ species having a signal at g ≈ 2.0 would still be isolated Fe3+ in a highly 

symmetric environment, even after hydrothermal aging. 

 

  

Figure 3-8 EPR spectra of (a) sample 1 (fresh) and (b) sample 1 (aged) measured at 

room temperature (red) and –196 °C (blue). 

 

Figure 3-9 shows the EPR spectra of all samples measured at –196 °C before 

and after hydrothermal treatment. The fresh samples are discussed first. EPR signals of 

g ≈ 2.0, g ≈ 4.3, and g ≥ 4.3 were observed for every sample. Samples 1, 2, and 3 had 

considerably larger signals at g ≈ 2.0 compared to Fe/beta(14). Sample 4 exhibited a 

smaller signal at g ≈ 2.0, due to its low Fe content (1.1 wt. %). It was also found that 

although there was no difference in the amount of Fe loading between sample 1, sample 

3, and Fe/beta(14), sample 1 with low Al content showed a considerably stronger signal. 

The dominant Fe3+ species for sample 1 and 2 was the isolated Fe3+ in a highly 

symmetric environment (g ≈ 2.0). In contrast, the relatively stronger signals at g ≈ 4.3 

were observed for samples 3 and 4. Similar signals were observed for Fe/beta(14) 

prepared by the incipient wetness impregnation method, being consistent with signals of 

the Fe ion-exchanged zeolites in previous reports [21, 30]. Therefore, it is speculated 
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that a part of framework Fe3+ in samples 3 and 4 detached during calcination process, 

yielding an extra-framework Fe3+ species, e.g. FeO+. This speculation seems to be 

supported by the results of 29Si MAS NMR and UV-Vis measurements. 

 

 

 
 

Figure 3-9 EPR spectra at –196 °C of Fe-based BEA zeolites and Fe/beta(14) before 

(black) and after (red) hydrothermal treatment at 700 °C for 20 h. (a) sample 1, (b) 

sample 2, (c) sample 3, (d) sample 4, and (e) Fe/beta(14). 
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For aged samples, an interesting result was obtained for the signals at g ≈ 2.0. 

The signal intensity of sample 1 was hardly changed by the hydrothermal treatment. The 

signal intensity for the aged sample 2 was nearly half of that of the fresh sample. On the 

other hand, sample 3, sample 4, and Fe/beta(14) exhibited almost identical spectra with 

weak signals. Since highly asymmetric Fe species are known to be EPR-silent [31], I 

assume a high degree of asymmetry for the Fe species in the above samples with weak 

signals. Figure 3-10 shows the relationship between the degree of signal retention at g ≈ 

2.0 before and after hydrothermal treatment [(signal height of aged sample / signal 

height of fresh sample) × 100%], and the Fe/Al ratio. Clearly, the retention degree 

increased with increasing Fe/Al ratio in the range of Fe/Al > 1. This means that the 

decrease in the number of highly symmetric Fe3+ species is suppressed more when the 

number of framework Fe atoms exceeds that of the framework Al. More specifically, I 

believe that during hydrothermal treatment, framework Fe (tetrahedral or octahedral) is 

easily attacked by protons from Brønsted acidic sites (Si(OH)Al), resulting in 

detachment of Fe from the zeolite framework if the Fe/Al ratio is below 1. Such 

detached Fe3+ species are more likely to move and form clusters and particles during 

hydrothermal treatment. The proposed scheme for Fe detachment is illustrated in Figure 

3-11. In samples with Fe/Al > 1, the probability of the occurrence of a neighboring Fe 

and Al pair in the zeolite framework decreases, because of which Fe3+ stays within the 

framework. The signal behavior at g ≈ 2.0 during hydrothermal treatment strongly 

suggests that the isolated Fe3+ species responsible for this signal is most relevant to the 

catalytic activity in the low-temperature NH3-SCR. Such isolated Fe3+ species can be 

assigned to both framework Fe3+ with tetrahedral coordination and non-framework Fe3+ 
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with tetrahedral or octahedral coordination, where the Fe atom is connected to the 

framework only by one, two, or three remaining chemical bonds. 

 

 

Figure 3-10 Relationship between the degree of signal retention at g ≈ 2.0 before and 

after hydrothermal treatment at 700 °C for 20 h, and the Fe/Al ratio of Fe-based BEA 

zeolites. Degree of signal retention at g ≈ 2.0 = (signal height of aged sample / signal 

height of fresh sample) × 100 (%). 

 

 

 

Figure 11 Proposed scheme of Fe detachment in Fe-based BEA zeolites. 
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4. Conclusions 

 Isomorphously substituted and highly crystalline Fe-based BEA zeolites with 

various Si/Al and Si/Fe ratios were synthesized in fluoride media, and the relationship 

between the chemical states of the Fe species and catalytic activity in the NH3-SCR 

reaction was investigated. The 27Al and 29Si MAS NMR measurements show that 

dealumination hardly occurred in Fe-based BEA zeolites, but structural defects 

(silanols) were generated by the detachment of framework Fe for Al-rich samples. 

UV-Vis measurements confirmed that the majority of Fe species in the fresh samples 

was isolated Fe3+. These results therefore indicate that isolated Fe3+ is the active species 

for the low-temperature NH3-SCR. EPR measurements at –196 °C also revealed that the 

Fe species with a signal at g ≈ 2.0 is most relevant to the high catalytic activity at low 

temperatures. For samples with Fe/Al ratios > 1, such Fe3+ species were mostly 

preserved after hydrothermal aging. In contrast, the signal at g ≈ 2.0 significantly 

decreased for samples with Fe/Al ratios < 1 due to the detachment of framework Fe by 

protonation via neighboring acidic sites (Si(OH)Al). The high catalytic activity and 

stability of the Fe-based BEA zeolites with Fe/Al ratios > 1 is probably due to the high 

content of isolated Fe3+ and the suppression of framework Fe detachment due to fewer 

Al acidic sites. 
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Chapter 4 

 

An isomorphously substituted Fe-BEA zeolite with high 

Fe content: facile synthesis and characterization 

 

1. Introduction 

Fe-based zeolites are attractive catalysts due to their broad applicability and the 

abundance of iron in nature [1-5]. Having attracted attention in the field of automobile 

emission technology, these materials have been widely investigated, particularly as 

catalysts for the selective catalytic reduction of NOx with ammonia (NH3-SCR) [6-10]. 

As the emission regulations become stricter, low-temperature (150–250 °C) catalytic 

activity becomes indispensable for practical applications. Currently, Cu-based 

small-pore zeolites such as CHA and AEI are often used for low-temperature NH3-SCR 

due to their excellent catalytic activity and hydrothermal stability [6,11-13]. Fe-based 

zeolites can also effectively catalyze the NH3-SCR reaction, exhibiting the advantage of 

greater resistance to sulfur poisoning. However, a drawback of Fe-based zeolite 

catalysts is that their NH3-SCR activity is very sensitive to the NO/NO2 ratio, with the 

best performance achieved only at an equimolar ratio of NO and NO2 [14]. 

Isomorphous substitution method is a well-known technique for giving highly 

dispersed and tetrahedrally coordinated hetero-atom in the framework structure. Also, it 

has been extensively studied to control acidity of zeolite catalysts in acid-base reactions 

because the strength of Brønsted acid sites decreases by substitution of Al in the 
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framework with other trivalent cations (e.g., B, Fe, Ga, and In) [15,16]. In Chapter 2 

and Chapter 3, I reported that an isomorphously substituted Al-free Fe-based BEA 

zeolite (Fe-BEA) synthesized in a fluoride medium exhibited high catalytic activity and 

hydrothermal stability in the NH3-SCR reaction in the absence of NO2 [17,18]. From an 

industrial point of view, however, the use of fluoride in zeolite production is a challenge, 

because it causes serious corrosion. Kumar et al. and Borade et al. reported that an 

isomorphously substituted Fe-BEA zeolite with a high Fe content could be synthesized 

without the addition of fluoride [19,20]. The described method, however, required a 

long crystallization time of more than 10 days and a significant amount of 

tetraethylammonium cations (TEA+) as an organic structure-directing agent (OSDA), 

with a TEA+/SiO2 ratio of 0.48–1.4. Raj et al. also reported the synthesis of an 

isomorphously substituted Fe-BEA zeolite using a TEA+/SiO2 ratio of 0.05 and an 

OH−/SiO2 ratio of 0.165 [21]. However, this synthesis also required a long 

crystallization time (15 days). 

Therefore, in this chapter, I tried to synthesize an isomorphously substituted 

Al-free Fe-BEA zeolite with a high Fe content by adopting a more industrially friendly 

approach. When an excess amount of sodium hydroxide was used, the amount of 

tetraethylammonium hydroxide (TEAOH) could be reduced, and a highly crystalline 

Fe-BEA zeolite was obtained after only 90 h of crystallization time. The obtained 

zeolite was unique due to its extremely high Fe content (~7 wt.%) and bipyramidal 

crystal morphology that is typically observed for beta zeolites synthesized in a fluoride 

medium [22]. The obtained zeolite was characterized using various analytical 

techniques such as diffuse reflectance ultraviolet-visible (UV-Vis) absorption 
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spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, and X-ray 

absorption fine structure (XAFS) spectroscopy. To gain further insights into the 

application of this material as a catalyst and adsorbent, its hydrothermal stability, 

NH3-SCR activity, and dynamic toluene adsorption-desorption behavior were 

investigated. 

 

2. Experimental 

2.1. Synthesis of Fe-BEA zeolites 

Fe-BEA zeolites were synthesized as follows. Sodium silicate (SiO2 30 wt.%, 

Na2O 9.1 wt.%, Al2O3 0.01 wt.%, Fuji Chemical), sulfuric acid (98 wt.%, Kishida 

Chemical Co., Ltd.), deionized water, and Fe(NO3)3·9H2O (Kishida Chemical Co., Ltd.) 

were used to prepare the precursor gel. A diluted sodium silicate solution (ca. 14 wt.% 

SiO2) and an aqueous solution of Fe(NO3)3 with sulfuric acid were mixed dropwise in 

deionized water under vigorous stirring to promote the dispersion of Fe atoms in the 

precursor gel. After the gel was filtered and washed with deionized water, an aqueous 

solution of TEAOH (35 wt.%, Sachem), sodium hydroxide (48 wt.%, Kaname 

Chemicals Co., Ltd.), deionized water, and commercial beta seeds (1 wt.% of the total 

solid, HSZ-940NHA (SiO2/Al2O3 ratio of 38), Tosoh Corporation) were added to the gel 

under vigorous stirring. The representative molar composition of the obtained hydrogel 

was 65 SiO2 : Fe2O3 : 13 Na2O : 9.8 TEAOH : 650 H2O. The hydrogel was transferred 

into a Teflon-sealed stainless steel autoclave (80 ml) and heated at 150 or 170 °C under 

rotation. After the reaction was complete, the solid was filtered, washed, dried at 110 °C 

overnight, and finally calcined in air at 600 °C for 2 h to remove TEA cations occupying 
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zeolite pores. Prior to catalytic tests, the Na cations in the calcined zeolite were 

exchanged with NH4
+ in an aqueous solution of NH4Cl (~20 wt.%) at 40 °C for 0.5 h. 

The ion-exchange was repeated three times, furnishing the NH4
+-form zeolite. 

 For comparison, the synthesis of Fe-BEA zeolites in a fluoride medium 

(Fe-BEA-F) was also carried out, according to procedures described in literature [17]. 

Fe(NO3)3·9H2O was added to an aqueous solution of 35 wt.% TEAOH, and the mixture 

stirred until the solids completely dissolved. Then, tetraethylorthosilicate (TEOS, 98 

wt.%, Kishida Chemical Co., Ltd.) was added to the above solution under stirring at 

room temperature. After the complete hydrolysis of TEOS, the generated ethanol was 

removed by evaporation. Finally, an aqueous HF solution (47 wt.%, Hirota Chemical 

Industry Co., Ltd.) was dropwise added, and the resulting hydrogel, with a molar 

composition corresponding to 88 SiO2 : Fe2O3 : 53.7 TEAOH : 44 HF : 660 H2O, was 

homogenized in a mortar. The above hydrogel was heated at 150 °C under static 

conditions in a Teflon-sealed stainless steel autoclave (80 ml). After crystallization was 

complete, the solid was filtered, washed, and dried overnight at 110 °C. 

 

2.2. Preparation of Fe-loaded beta and Fe-loaded ZSM-5 zeolites 

Conventional Fe-loaded beta and Fe-loaded ZSM-5 zeolites were prepared by 

an incipient wetness impregnation method. A commercial beta zeolite (Tosoh 

Corporation, SiO2/Al2O3 ratio of 28) and a ZSM-5 zeolite (Tosoh Corporation, 

SiO2/Al2O3 ratio of 40) were used as catalyst supports. An aqueous solution of Fe(NO3)3 

was prepared, with its volume equaling the micropore volume of the zeolite support. 

This solution was used to treat the zeolites, and the obtained wet powders were mixed to 
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homogeneity and dried overnight at 110 °C. The obtained solid products were calcined 

in air at 500 °C for 2 h, yielding Fe-loaded beta and Fe-loaded ZSM-5 zeolites with Fe 

contents of 3.2 and 2.5 wt.%, respectively. 

 

2.3. Characterization 

Powder X-ray diffraction (XRD) patterns were recorded on a diffractometer 

(X’pert PRO MPD, Spectris, Japan) using Cu Kα radiation and a scanning range (2θ) of 

3–43°. Elemental analysis was carried out by inductively coupled plasma atomic 

emission spectroscopy (ICP-AES) (OPTIMA 3000 DV, Perkin Elmer), and crystal 

morphology was characterized by scanning electron microscopy (SEM; JSM-6390LV, 

JEOL). UV-Vis spectra were recorded on a diffuse reflectance UV-Vis spectrometer 

(UV-Vis 3100, Shimadzu, Japan) in the range of 220–700 nm using BaSO4 as a blank 

and subjected to the Kubelka-Munk (K-M) conversion. EPR spectra were recorded at 

–196 °C on a JES-TE200 instrument (JEOL, Japan) operating in the X-band frequency 

(9.4 GHz). Fe K-edge XAFS spectra were measured at BL15 (SAGA-LS, Tosu, Japan) 

in transmission mode at room temperature, employing a double-crystal Si (111) 

monochromator. Fe2O3 (hematite) and FePO4 (redolicoite) were used as references. 

 To assess the long-term hydrothermal durability of zeolites, they were 

hydrothermally treated at 850, 900, and 1000 °C for 5 h in a stream of gas containing 10 

vol.% H2O and 90 vol.% air with a gas hourly space velocity (GHSV) of 6000 h–1 (300 

ml/min flow, 3 ml of catalyst). The durability of the catalyst in the NH3-SCR reaction 

was evaluated by hydrothermal treatment at 700 °C for 20 h. Micropore volumes of 

samples were calculated by the t-plot method based on nitrogen adsorption isotherms 
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measured at –196 °C using a volumetric apparatus (BELSORP-max, MicrotracBEL 

Corp., Japan). Prior to measurements, samples (~0.05 g) were kept under vacuum at 

350 °C for 2 h. 

The NH3-SCR reaction was performed in a fixed-bed flow reactor under 

atmospheric pressure between 150 and 500 °C. The catalyst was pelletized, crushed, and 

sieved to 0.85–1.4 mm, and 1.5 ml of the sieved sample was placed in a quartz tube. 

The composition of the used gas corresponded to 200 ppm NO, 200 ppm NH3, 10 vol.% 

O2, 3 vol.% H2O, and N2 as balance. The total flow rate was set to 1.5 L min-1, and the 

GHSV was set to 60000 h–1. During the experiments, the temperature was lowered from 

500 to 150 °C in steps of ~50 °C, and the NOx conversion was calculated as follows: 

 

 

where NOin represents the NO inlet concentration (200 ppm), and NOout and NO2out 

represent the NO and NO2 outlet concentrations, respectively. To evaluate steady-state 

catalytic activity, the outlet concentrations of NH3, NO, and NO2 after 10 min of 

time-on-stream at each reaction temperature were analyzed by an FT-IR spectrometer 

(FT/IR-6100, JASCO, Japan) equipped with a gas cell (LPC-12M-S, 12 m) and a 

mercury cadmium telluride detector cooled by liquid nitrogen. The concentrations of 

NH3, NO, and NO2 were determined based on the intensities of their peaks at 1033, 

1875, and 2917 cm–1, respectively. Averaging over 30 scans was performed for each 

normalized spectrum. 

 Dynamic adsorption-desorption of toluene was characterized in a fixed-bed 

flow reactor under atmospheric pressure, similarly to the NH3-SCR reaction. The 

NOx conversion (%) = 
NOin – NOout – NO2out 

NOin 
 100% 

 



96 

 

sample was pelletized, crushed, and sieved to 0.85–1.4 mm, and 0.10 g of the sieved 

sample was placed in a quartz tube. The used gas stream contained 3000 ppm toluene 

(carbon basis), 3 vol.% H2O, and N2 as balance. After pre-treatment in a flow of N2 at 

500 °C for 1 h and cooling to 50 °C, the temperature was linearly increased to 600 °C at 

10 °C min-1, with the model gas flow equaling 200 ml min-1. The concentration of 

hydrocarbons in the outlet gas was continuously measured using a flame ionization 

detector. The amount of adsorbed toluene was calculated from the difference in the 

concentration between the outlet gas and the bypass flow (3000 ppm, carbon basis). 

 

3. Results and discussion 

3.1. Synthesis and characterization of Fe-BEA zeolites 

 Table 4-1 summarizes the hydrothermal synthesis conditions and the 

characteristics of obtained products. Pure *BEA phase was obtained only for starting 

hydrogel OH−/SiO2 ratios above 0.50. The influence of this ratio on the relative 

crystallinity of Fe-BEA zeolites, as determined from the XRD peak intensity at 2θ = 

22.4°, is shown in Figure 4-1, where the peak intensity of sample 9 is set to 100%. 

When crystallization was performed at 150 °C, the product obtained at an OH−/SiO2 

ratio of 0.50 was amorphous. However, a highly crystalline Fe-BEA zeolite was 

obtained at a ratio of 0.55, corresponding to maximum relative crystallinity (sample 6), 

whereas the crystallinity decreased as the OH−/SiO2 ratio was increased to 0.60 (sample 

7). This suggests that the crystallization conditions of the Fe-BEA zeolite in this system 

are fairly limited. On the other hand, a similar OH−/SiO2 ratio dependence was observed 

for treatment at 170 °C utilizing 1 wt.% seeds and a lower TEA+/SiO2 ratio. However, 
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the pure *BEA phase was observed even at an OH−/SiO2 ratio of 0.60 (sample 10). It is 

interesting that a similar high OH−/SiO2 ratio in the starting gel is required for syntheses 

of Ti-beta [23] (TEAOH/(SiO2 + TiO2) = 0.50–0.54), Sn-beta [24] (TEAOH/(SiO2 + 

SnO2) = 0.50), and OSDA-free beta [25] (NaOH/SiO2 = 0.48–0.60). Taking into account 

the fact that the conventional Al-beta can be synthesized without such high OH−/SiO2, 

the high OH−/SiO2 ratio may be a critical factor for the crystal growth of these zeolites 

including Fe-BEA. The XRD patterns of Fe-BEA (sample 9) and Fe-BEA-F (sample 11) 

zeolites are shown in Figure 4-2. In general, zeolites synthesized in a fluoride medium 

exhibit less defects and larger crystal sizes, showing very sharp and strong XRD peaks 

[22,26]. The peak intensity of the Fe-BEA zeolite was comparable to that of the 

Fe-BEA-F zeolite, even though the former was synthesized in a hydroxide medium. The 

full width at half maximum (FWHM) of the peak at 2θ = 22.4° equaled 0.18° for 

samples 9 and 11. The SiO2/Fe2O3 ratios of the obtained Fe-BEA zeolites equaled 22–25, 

corresponding to 7.5–6.7 wt.% Fe. Despite the large amount of Fe, the zeolite powder 

was white, suggesting that Fe atoms were successfully incorporated into the zeolite 

framework. The amount of Fe incorporated in the zeolite framework is influenced by 

the framework structure and the synthesis condition. Shamzhy et al. succeeded in 

synthesizing Fe-substituted UTL zeolite. However, the color of the obtained zeolite was 

not white but brown when an excess amount of Fe was used in the starting gel ((SiO2 + 

GeO2)/Fe2O3 ratio < 65) [27]. Figure 4-3 shows the SEM images of both samples, with 

the Fe-BEA zeolite exhibiting a truncated square bipyramidal crystal shape that is 

typically observed for beta zeolites synthesized in fluoride media, as exemplified by the 

Fe-BEA-F zeolite. This morphology can also be observed for beta zeolites synthesized 
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in the absence of an OSDA [25]. 

 

 
 

Figure 4-1 Influence of the OH−/SiO2 ratio of the starting hydrogel on the 

relative crystallinity of Fe-BEA zeolites prepared at ◆ 150 °C and ● 170 °C. 

 

 

Figure 4-2 XRD patterns of (a) sample 9 (Fe-BEA) and (b) sample 11 (Fe-BEA-F). 
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Table 4-1. Hydrothermal synthesis conditions and characteristics of Fe-based BEA zeolites. 

 

Sample Synthesis condition  Product 

SiO2 

/Fe2O3 

H2O 

/SiO2 

TEA+ 

/SiO2 

Na+ 

/SiO2 

OH− 

/SiO2 

F− 

/SiO2 

Seed 

[wt.%] 

Temp. 

[°C] 

Time  

[h] 

 Phasea SiO2 

/Al2O3
b 

SiO2 

/Fe2O3
b 

Fe 

[wt. %]b 

Micropore 

volume 

[cm3/g]c 

1 65 10 0.20 0.05 0.25 0 0 150 90  Am     

2 65 10 0.20 0.12 0.32 0 0 150 90  Am     

3 65 10 0.20 0.20 0.40 0 0 150 90  Am     

4 65 10 0.20 0.25 0.45 0 0 150 90  Am      

5 65 10 0.20 0.30 0.50 0 0 150 90  Am     

6 65 10 0.20 0.35 0.55 0 0 150 90  *BEA 880 25 6.7  

7 65 10 0.20 0.40 0.60 0 0 150 90  *BEA + Am     

8 65 10 0.15 0.35 0.50 0 1 170 90  MTW + *BEA 1500 36 4.8  

9 65 10 0.15 0.40 0.55 0 1 170 90  *BEA 1100 23 7.3 0.24 

10 65 10 0.15 0.45 0.60 0 1 170 90  *BEA 1000 22 7.5  

11(Fe-BEA-F) 88 7.5 0.61 0 0.11 0.50 0 150 240  *BEA 4800 62 2.9 0.22 
a Am: amorphous 
b Measured by ICP. 
c Calculated by the t-plot method.  
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Figure 4-3 SEM images of (a) sample 9 (Fe-BEA) and (b) sample 11 (Fe-BEA-F). 

 

 Next, the chemical states of Fe present in Fe-BEA zeolites were investigated to 

understand whether the Fe-BEA zeolites synthesized in hydroxide and fluoride media 

exhibit any differences. The Fe-BEA-F zeolite has already been extensively 

characterized by various methods (including UV-Vis and EPR) in Chapter 3 [18]. In the 

present study, I additionally performed XAFS measurements to directly analyze 
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tetrahedrally coordinated Fe3+ and emphasize the comparison of zeolites synthesized in 

hydroxide and fluoride media. 

The existence of tetrahedral Fe3+ in the zeolite framework of the as-prepared 

(not calcined) sample was first confirmed by measuring absorption in the d-d transition 

region of its UV-Vis spectrum (Figure 4-4). The Fe-BEA zeolite showed four absorption 

peaks at 375, 414, 439, and 479 nm, which were well consistent with the results of 

Goldfarb et al. [28]. who reported that an Fe-substituted SOD zeolite showed four 

absorption peaks at 373, 410, 436, and 480 nm, indicating the presence of tetrahedrally 

coordinated Fe3+. Unfortunately, this technique cannot be applied to calcined samples, 

because the signal intensity of d-d transitions is much weaker than that of CT transitions, 

mostly being masked. Figure 4-5 shows the diffuse reflectance UV-Vis spectra of 

Fe-BEA (sample 9) and Fe-BEA-F (sample 11) zeolites before and after hydrothermal 

treatment at 700 °C for 20 h. As Fe species with different dispersion states (isolated Fe3+, 

Fe3+
xOy clusters, and Fe2O3 particles) exhibited different absorption subbands in their 

UV-Vis spectra, the dispersion state of Fe in zeolites could be quantitatively analyzed by 

deconvoluting absorption curves [18,29,30], with the relative amounts of Fe species 

calculated in this way summarized in Table 4-2, where the absorption subbands of < 300 

nm, 300–400 nm, and > 400 nm were regarded as isolated Fe3+, Fe3+
xOy clusters, and 

Fe2O3 particles, respectively [18,29,30]. Gaussian curve was assumed for deconvolution 

in Figure 4-5, with two deconvoluted absorption curves corresponding to each subband. 

A more detailed description of this technique can be found elsewhere [31-33]. The 

Fe-BEA zeolite retained more than 95% of Fe as isolated Fe3+ in its fresh (calcined) 
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state, whereas the corresponding value of the Fe-BEA-F zeolite was 89.5%. The latter 

zeolite exhibited more intense subbands in the 300–400 nm region compared to its 

Fe-BEA counterpart (Figure 4-5 (a) and (b)). Surprisingly, the Fe-BEA zeolite retained a 

higher fraction of isolated Fe3+ than its Fe-BEA-F counterpart, despite containing more 

than twice as much Fe. After aging at 700 °C, both samples showed similar spectra, 

indicating similar dispersion states of Fe species. 

 

 

Figure 4-4 Diffuse reflectance UV-Vis spectrum of the as-prepared Fe-BEA (sample 9) 

in the d-d transition region. 

 

 

Table 4-2. Fractions of Fe species calculated from deconvoluted UV-Vis subbands. 

 

Sample  Isolated Fe3+ Fe3+
xOy clusters Fe2O3 particles 

[%]a [%]a [%]a 

9 (Fe-BEA) fresh 95.8 4.1 0.1 

 aged 61.4 32.6 6.0 

11 (Fe-BEA-F) fresh 89.5 9.9 0.5 

  aged 58.9 34.1 7.0 
a Calculated from integrated subbands. 

Isolated Fe3+: λ < 300 nm 

Fe3+
xOy clusters: 300 nm < λ < 400 nm 

Fe2O3 particles: λ > 400 nm 
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Figure 4-5 Diffuse reflectance UV-Vis spectra of Fe-BEA (sample 9) and 

Fe-BEA-F (sample 11) before and after hydrothermal treatment at 700 °C for 20 h. 

(a) Fe-BEA (fresh), (b) Fe-BEA-F (fresh), (c) Fe-BEA (aged), and (d) Fe-BEA-F 

(aged). 
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retained after hydrothermal treatment and was attributed to isolated Fe3+ in a highly 

symmetric environment (tetrahedral Fe3+ in the framework or tetrahedral/octahedral Fe3+ 
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of Fe-BEA and Fe-BEA-F zeolites recorded at –196 °C before and after hydrothermal 

treatment at 700 °C for 20 h. The Fe-BEA zeolite had a very strong signal at g ≈ 2.0, 

similarly to the Fe-BEA-F zeolite, retaining a high peak intensity after hydrothermal 

treatment. This result supports my proposed mechanism, in which the detachment of 

Fe3+ from the zeolite framework is suppressed at Fe/Al molar ratios greater than unity 

due to the decreased acidity of Al sites. Moreover, this mechanism can operate 

regardless of the preparation method of Fe-BEA zeolites. 

 

 

 

Figure 4-6 EPR spectra recorded at –196 °C for (a) Fe-BEA (sample 9) and (b) 

Fe-BEA-F (sample 11) before (black) and after (red) hydrothermal treatment at 700 °C 

for 20 h. 

 

The above UV-Vis and EPR spectra provided me with useful information 

concerning the chemical states of Fe species in Fe-BEA zeolites. However, since the 

coordination state of Fe3+ was still ambiguous, XAFS measurements were additionally 
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peak is known to be high for tetrahedrally coordinated Fe and low for octahedrally 

coordinated Fe [34]. Figure 4-7 shows pre-edge peaks of Fe-BEA (sample 9) and 

Fe-BEA-F (sample 11) zeolites in their Fe K-edge XAFS spectra, with Fe2O3 and FePO4 

used as references for octahedrally and tetrahedrally coordinated Fe3+, respectively. All 

spectra were normalized with respect to the intensity of the Fe K-edge peak (Fe 

concentration). The valence state of Fe in these samples was determined as Fe3+, since 

the K-edge energies of all samples equaled ~7125 eV. FePO4 (tetrahedral Fe3+) showed a 

large pre-edge peak at 7113 eV, whereas that of Fe2O3 (octahedral Fe3+) was relatively 

small, indicating different Fe3+ coordination environments. Fe2O3 showed weak 

absorption around 7116 eV between the pre-edge and K-edge peaks. Takahashi et al. 

presumed that the intensity in the region from 7114 to 7120 eV, characterized by tailing 

of the Fe K-edge, reflects Fe-Fe interactions between Fe species and can be used to 

quantitatively evaluate the dispersion of Fe in zeolites [35,36]. The large pre-edge peaks 

observed for both as-prepared samples (confirmed to have tetrahedrally coordinated 

Fe3+ by UV-Vis) are shown in Figure 4-7 (a) and (b) together with the data for FePO4, 

indicating that the Fe species in these samples mostly correspond to tetrahedrally 

coordinated Fe3+. The larger pre-edge peak of as-prepared samples compared to that of 

FePO4 might imply that the Fe species in the former are in a highly symmetric Td state. 

The pre-edge peak intensity decreased for fresh (calcined) samples, but was still larger 

than that of Fe2O3, suggesting that a part of tetrahedrally coordinated Fe3+ (59–66%) 

was still preserved. Interestingly, the pre-edge peak height of the aged sample did not 

change after hydrothermal treatment, with the peak intensity in the 7114–7120 eV 



106 

 

region (reflecting Fe-Fe interactions between Fe species) increasing instead. This 

strongly suggests that the additional detachment of framework Fe3+ was suppressed, and 

the non-framework Fe3+ already detached by the first calcination underwent 

agglomeration during aging. Table 4-3 lists the relative amounts of tetrahedrally 

coordinated Fe3+ in Fe-BEA and Fe-BEA-F zeolites based on pre-edge peak area, 

assuming a value of 100% for the as-prepared sample and 0% for Fe2O3. 

 

 

Figure 4-7 Comparison of pre-edge peaks in XAFS spectra of (a) Fe-BEA (sample 9) 

and (b) Fe-BEA-F (sample 11). Light blue, as-prepared; green, fresh; red, aged; grey, 

Fe2O3; and blue, FePO4. 

 

Table 4-3. Fractions of tetrahedrally coordinated Fe3+ calculated from XAFS spectra. 

 

Sample Tetrahedrally coordinated Fe3+ [%] 

As-prepared Fresh (calcined) Aged 

9 (Fe-BEA) 100 59 53 

11 (Fe-BEA-F) 100 66 63 
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moisture-rich atmosphere. The small XRD peak FWHM values and the well-facetted 

crystal morphology of Fe-BEA zeolites suggest that they can exhibit excellent 

hydrothermal stability. Figure 4-8 shows the micropore volume of the Fe-BEA zeolite 

(sample 9) after various hydrothermal treatments. Even after treatment at 1000 °C for 5 

h, the Fe-BEA zeolite maintained more than 88% of its micropore volume, indicating 

high hydrothermal stability. 

 

Figure 4-8 Micropore volume of the Fe-BEA zeolite (sample 9) before and after 

hydrothermal treatment at various temperatures for 5 h. 

 

3.3. NH3-SCR activity 

 The NH3-SCR catalytic activities of Fe-BEA (sample 9), Fe-BEA-F (sample 

11) and Fe-loaded zeolites are compared in Figure 4-9. Surprisingly, the fresh Fe-BEA 

zeolite exhibited better NOx conversion over the whole temperature range than the 

Fe-BEA-F zeolite, despite the absence of major differences between the chemical states 

of Fe in both samples (see Section 3.1). The high content of Fe3+ (7.3 wt.%) and the 

large fraction of isolated Fe3+ in the Fe-BEA catalyst probably contributed to its greater 
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zeolites can only be achieved by isomorphous substitution, because Fe3+ ions 

incorporated in the Fe-BEA zeolite above a certain ion-exchange capacity easily 

undergo agglomeration. After hydrothermal treatment at 700 °C for 20 h, the Fe-BEA 

zeolite still showed higher activity than its Fe-BEA-F counterpart, being obviously 

superior to conventional Fe-loaded beta and ZSM-5 zeolites, particularly in the 

low-temperature region (150–250 °C). 

  

 

Figure 4-9 NOx conversion on various zeolite catalysts (a) before and (b) after 

hydrothermal treatment at 700 °C for 20 h. Red circles, Fe-BEA (sample 9); blue 

squares, Fe-BEA-F (sample 11); green triangles, Fe-loaded beta zeolite; and orange 

diamonds, Fe-loaded ZSM-5. 
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3.4. Dynamic adsorption-desorption of toluene 

 Hydrocarbon adsorption-desorption characteristics are important for the use of 

zeolites as diesel oxidation catalysts and hydrocarbon traps for cold-start emission 

control. Toluene is a major hydrocarbon component of gasoline engine emissions. 

Figure 4-10 and Table 4-4 show the results of dynamic toluene adsorption-desorption 

measurements for the Fe-BEA zeolite (sample 9), with a commercial beta zeolite 

(SiO2/Al2O3 ratio of 38, Tosoh Corporation) also characterized for comparison. The 

measurement performed in the present study was designed to evaluate the 

adsorption-desorption behavior in an environment close to the actual cold-start 

environment in automobiles. In a typical measurement, adsorption initially occurs at 

low temperature, followed by desorption as the temperature increases. If the 

hydrocarbons do not undergo any reactions on zeolites, their adsorbed and desorbed 

amounts should be the same. However, the amount of hydrocarbons desorbed from the 

Fe-BEA zeolite was reduced to 66% of the adsorbed quantity, whereas that of adsorbed 

hydrocarbons was almost the same as for the beta zeolite. Ogura et al. proposed their 

“hydrocarbon reformer trap” concept based on the results obtained for an Fe 

ion-exchanged beta zeolite able to retain hydrocarbons at higher temperatures than 

H-beta and oxidize them in an oxygen-containing gas stream [37,38]. Taking into 

account the facts that no oxygen was present in my gas stream and no coke deposition 

in the used Fe-BEA zeolite was detected by thermogravimetric and differential thermal 

analysis measurements, the obtained results suggest that toluene was probably oxidized 

by oxygen stored in Fe3+
xOy clusters or Fe2O3 within the Fe-BEA zeolite. The above 
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concept is similar to the one proposed by Yang et al., who used zeolites and metal 

oxides for adsorption and oxidation of hydrocarbons, respectively [39]. Since the 

Fe-BEA zeolite prepared in this study exhibited toluene adsorption and oxidation by one 

material and high hydrothermal stability, it is a promising automobile hydrocarbon 

adsorbent. However, my investigation of the adsorption and oxidation of hydrocarbons 

on Fe-BEA zeolites is currently quite limited, with a further study in progress to clarify 

the high potential of Fe-based BEA zeolites. 

 

 

Figure 4-10 Dynamic adsorption-desorption curves of fresh Fe-BEA (sample 9, red) 

and commercial beta zeolites (SiO2/Al2O3 = 38, blue). 

 

Table 4-4. Amounts of adsorbed and desorbed toluene calculated by dynamic 

adsorption-desorption measurements. 

 

Sample Amount of toluene [μmol/g] 

Adsorbed Desorbed Adsorbed – Desorbed Oxidizeda 

9 (Fe-BEA, fresh) 326 215 (66%b) 111 175 

Beta (fresh) 299 288 (96%b) 11 16 
a Calculated from the negative amounts of toluene desorbed above 200 °C in dynamic 

 adsorption-desorption curves. 
b Based on the amount of adsorbed toluene. 
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4. Conclusions 

A highly crystalline and Fe-rich (~7 wt.%) isomorphously substituted Al-free 

Fe-BEA zeolite was synthesized. The synthetic range of the *BEA phase in this study 

was very narrow (OH−/SiO2 > 0.50). An excess of NaOH was used instead of TEAOH 

as an alkali source (e.g., NaOH/SiO2 ratio of 0.40 and TEAOH/SiO2 ratio of 0.15). The 

obtained Fe-BEA zeolite showed excellent hydrothermal stability, retaining more than 

88% of its micropore volume after aging at 1000 °C. The chemical state of Fe species in 

the Fe-BEA zeolite was similar to that of the one synthesized in a fluoride medium 

(Fe-BEA-F). Considering its high Fe content, it was surprising that the Fe-BEA zeolite 

contained above 90% of Fe as isolated Fe3+. XAFS measurements revealed that the 

Fe-BEA zeolite retained 53% of tetrahedrally coordinated Fe3+ after hydrothermal 

treatment at 700 °C for 20 h. The Fe-BEA zeolite exhibited greater catalytic activity 

than the Fe-BEA-F zeolite in the NH3-SCR reaction. The larger amount of isolated Fe3+ 

in the former zeolite is thought to contribute to its high performance. Dynamic 

adsorption-desorption measurements showed that only 66% of the adsorbed toluene was 

desorbed from the Fe-BEA zeolite (96% for beta zeolite), although the gas stream did 

not contain oxygen, suggesting that the hydrocarbons were oxidized by oxygen stored in 

the Fe-BEA zeolite. With these results, the Fe-rich Fe-BEA zeolite synthesized in a 

hydroxide medium is expected to be useful for various automotive applications. 
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Chapter 5 

 

ZTS-1 and ZTS-2: Novel intergrowth zeolites with 

AFX/CHA structure 

 

1. Introduction 

Among more than 230 known zeolite structures exist some able to generate 

disordered structures. Ordered structures exhibit three-dimensional framework 

periodicity, whereas disordered ones lack periodicity in at least one crystallographic 

direction. Well-known examples of disordered structures are intergrowths of FAU/EMT 

[1], BEA/BEB (beta) [2], MFI/MEL (pentasils) [3], etc. [4-11]. The disordered 

structures of the ABC-6 family have also been well described, e.g., the intergrowths of 

CHA/GME (partially random stacking) [12, 13], OFF/ERI [14], and babelite 

(completely random stacking) [15]. The ABC-6 family structures can be described as 

stacked six-membered rings (6MRs) in the ab plane of the hexagonal crystal system. 

This structural similarity allows a variety of framework types in this group and enables 

me to envision disordered structures that have never been synthesized. The structural 

properties of zeolites, e.g., crystal shape, size, dimensions, and connectivity of 

micropores affect their catalytic, sorption, and ion-exchange behavior. Novel disordered 

structures may provide me with new application insights, since the different channel 

systems in these structures are reciprocally connected on the nanometer scale, forming 
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new microporous systems. 

In this study, I tried to synthesize an intergrowth zeolite with AFX/CHA 

structures using the dual structure-directing agent (dual-SDA) approach. The AFX 

zeolite structure belongs to the ABC-6 family, exhibiting a three-dimensional eight-ring 

pore system just as the CHA zeolite. The 6MR stacking sequences of AFX and CHA 

structures are AABBCCBB and AABBCC, respectively. As a result, the AFX 

framework contains aft cages, which are larger than the cha cages in the corresponding 

framework (Figure 5-1), suggesting the high potential of the unique AFX pore structure 

for various reactions [16-19]. The first aluminosilicate AFX zeolite, SSZ-16, was first 

synthesized by S. I. Zones [20]. A typical organic SDA (OSDA) used in the synthesis of 

SSZ-16 is the 1,1’-(1,4-butanediyl)bis(1-azonia-4-azabicyclo[2,2,2]octane) dication 

(Dab-42+), which is a relatively large molecule that fits inside the aft cage [20]. 

CHA-type zeolites are originally known as natural chabazite [21], with a silica-rich 

CHA zeolite synthesized as SSZ-13 using the N,N,N-trimethyl-1-adamantylammonium 

cation (TMAda+) [22]. The dual-SDA method is a promising approach for obtaining an 

intergrowth of intended end-member structures, since each SDA (not necessarily 

OSDA) is exclusively selected for each structure [23]. The intergrowth design gets 

harder if all end-member structures are obtained from the same SDA system, e.g., the 

tetraethylammonium cation for beta-zeolite [2]. As SAPO materials, the AFX/CHA 

intergrowth (SAPO-56/34) was reported in a patent literature [23]. The dual-SDA 

approach was employed to obtain the intended intergrowth materials. In this study, I 

report the synthesis of a novel AFX/CHA intergrowth aluminosilicate zeolite (ZTS-1: 
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zeolite of Tosoh 1) using Dab-42+ and TMAda+ as OSDAs for AFX and CHA phases, 

respectively. However, the limited synthesis conditions of ZTS-1 made control of the 

AFX/CHA ratio (80:20–85:15) difficult, unless the hydrothermal synthesis conditions 

were drastically changed. ZTS-2, a CHA-rich AFX/CHA intergrowth (15:85–20:80), 

could only be obtained under completely different synthetic conditions, using K+ instead 

of TMAda+ as an SDA for CHA phase. 

 

 

Figure 5-1 Structural models of cha and aft cages. 
 

2. Experimental 

2.1. Zeolite synthesis 

 The 1,1’-(1,4-butanediyl)bis(1-azonia-4-azabicyclo[2,2,2]octane) dication 

(Dab-42+) was synthesized according to a literature procedure [20]. 

1,4-Diazabicyclo[2.2.2]octane (20.00 g) was dissolved in methanol (19.77 g) to produce 

solution A, while 1,4-dibromobutane (12.83 g) was added to methanol (6.6 g) and 

stirred for 15 min to prepare solution B. Solution B was dropwise added to solution A 

cha cage aft cage
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under cooling. After stirring for 2 h, a white precipitate was obtained, which was 

washed and separated by decantation with diethyl ether, vacuum-dried at 50 °C, and 

dissolved in water to obtain 40 wt.% Dab-4Br2. 

 The hydrothermal synthesis conditions were carefully investigated in 

preliminary experiments, as both AFX and CHA zeolites would crystallize from the 

same starting synthesis gel. As a result, the synthesis was carried out in a highly alkaline 

medium using a Y-type zeolite as an Al source to ensure crystallization of the AFX 

phase [20]. The starting synthesis gels were prepared by mixing sodium silicate (SiO2 

30 wt.%, Na2O 9.1 wt.%, Al2O3 0.01 wt.%, Fuji Chemical), deionized water, 40 wt.% 

Dab-4Br2, 25 wt.% N,N,N-trimethyl-1-adamantylammonium hydroxide (TMAdaOH, 

Sachem), 48 wt.% sodium hydroxide (Kaname Chemicals Co., Ltd.), and a commercial 

Y-type zeolite (HSZ-320NAA; SiO2/Al2O3 = 5.5; Tosoh Corp.). The representative 

molar composition of the mixture used for ZTS-1 synthesis was as follows: 29.7 SiO2 : 

Al2O3 : 11.5 Na2O : 1.43 Dab-4Br2 : 0.37 TMAdaOH : 843 H2O. The obtained mixture 

was sealed in an 80-mL stainless steel autoclave and heated at 140 °C for 37 h under 

rotation. After the crystallization was complete, the obtained solid product was filtered, 

washed, and dried overnight at 110 °C. The pure AFX zeolite was also synthesized by 

replacing TMAdaOH with NaOH.  

 The CHA zeolite (SiO2/Al2O3 = 23) was synthesized according to a literature 

procedure [24]. Deionized water, 48 wt.% sodium hydroxide, and 25 wt.% TMAdaOH 

were mixed, followed by the addition of aluminum hydroxide (Wako Pure Chemical 

Industries, Ltd.). Next, fumed silica (Aerosil 300, Nippon Aerosil Co., Ltd.) was added 
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and uniformly mixed. The molar composition of the resulting hydrogel was 28 SiO2 : 

Al2O3 : 5.6 TMAdaOH : 5.6 NaOH : 1232 H2O. The hydrogel was then heated at 

150 °C under static conditions in a Teflon-sealed stainless steel autoclave (80 mL) for 

six days. 

 In the synthesis of ZTS-2, the potassium cation (K+) was employed instead of 

TMAda+, and a Y-type zeolite was used as a Si and Al source. The starting synthesis gel 

was prepared by mixing the Y-type zeolite, deionized water, 40 wt.% Dab-4Br2, 48 

wt.% NaOH, and 48 wt.% KOH. The molar composition of the mixture used to prepare 

ZTS-2 was as follows: 5.4 SiO2 : Al2O3 : 1.59 Na2O : 0.32 K2O : 0.52 Dab-4Br2 : 86 

H2O. The obtained mixture was sealed in an 80-mL stainless steel autoclave and heated 

at 100 °C for 72 h under rotation. 

For a reference, a physical mixture of AFX and CHA zeolites was prepared by 

mixing weighed zeolite powders in a mortar for 10 min. SEM observation was 

performed to confirm that the zeolite powders were sufficiently mixed with each other. 

 

2.2. Characterization 

Powder X-ray diffraction (XRD) patterns of the products were recorded on an 

X’pert PRO MPD diffractometer (Spectris, Japan) using Cu Kα radiation and a scanning 

range (2θ) of 3–43°. The obtained XRD patterns were compared to the ones simulated 

by the DIFFaX software. Elemental analysis was carried out using inductively coupled 

plasma atomic emission spectroscopy (ICP-AES; OPTIMA 3300 DV, Perkin Elmer). 

The morphology of zeolite crystals was characterized using scanning electron 
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microscopy (SEM; JSM-6390LV, JEOL). Lattice images and electron diffraction 

patterns were obtained using a transmission electron microscope (TEM; 

JEM-ARM200F, JEOL). To confirm the presence of OSDA molecules in the zeolitic 

pores, solution 13C NMR and solid-state 13C DD/MAS NMR spectra were measured on 

a Varian VNMRS-400 NMR spectrometer at 100.5 MHz. In the solution NMR 

measurements, deuterium oxide (D2O) was used as the lock-solvent, with 

trimethylsilylpropanoic acid (TSP) as an internal chemical shift reference. In the 

solid-state NMR measurements, hexamethylbenzene (HMB) was used as an external 

reference for the 13C chemical shifts, and a recycle delay of 30 s was employed for 

quantitative comparison of peak intensities. Thermogravimetric and differential thermal 

analysis (TG/DTA) measurements were carried out using a thermal analyzer (TG-DTA 

6300, Seiko Instruments, Inc.) to compare the decomposition behavior of OSDA 

molecules in zeolitic pores. The C/N ratio of organic molecules in micropores was 

calculated based on CHN analysis results provided by an organic elemental analyzer 

(2400 II, PerkinElmer). Nitrogen adsorption isotherms were measured at –196 °C using 

a volumetric apparatus (BELSORP-max, MicrotracBEL Corp.). Samples (~0.05 g) were 

evacuated at 350 °C for 2 h prior to the measurements.  

 

2.3. Catalytic test 

 Cu-loaded ZTS-1, ZTS-2, and AFX zeolite catalysts for the NH3-SCR reaction 

were prepared by the incipient wetness impregnation method [25]. The as-synthesized 

zeolite samples were calcined in air at 600 °C for 2 h to remove the OSDA cations 
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occupying the zeolite pores. Then, the Na cations in the calcined zeolite were 

exchanged for NH4
+ in an aqueous solution of NH4Cl (ca. 20 wt.%) at 40 °C for 0.5 h. 

This ion exchange was repeated three times, furnishing the NH4
+-form of the zeolite. An 

aqueous Cu(NO3)2 solution was prepared, with its volume equal to the micropore 

volume of the support zeolite. This solution was added to the NH4
+-zeolite, and the 

obtained wet powder was mixed to homogeneity and dried overnight at 110 °C. Finally, 

the obtained solid product was calcined in air at 550 °C for 2 h. The degree of Cu 

loading was 3 wt.% for all zeolites. 

 The NH3-SCR reaction was performed using a fixed-bed flow reactor under 

atmospheric pressure between 150 and 500 °C. The catalyst was pelletized, crushed, and 

sieved to 0.85–1.4 mm, and 1.5 mL of the sieved sample were placed in a quartz tube. 

The gas composition used was 200 ppm NO, 200 ppm NH3, 10 vol.% O2, 3 vol.% H2O, 

the rest being N2. The total flow rate was set to 1.5 L/h, and the gas hourly space 

velocity (GHSV) was 60,000 h–1. During the experiments, the temperature was reduced 

from 500 to 150 °C in steps of approximately 50 °C, and the NOx conversion was 

calculated as follows: 

NOx conversion (%) = [(NOin – NOout – NO2out)/ NOin] × 100% 

where NOin represents the NO inlet concentration (200 ppm) and NOout and NO2out 

represent the NO and NO2 outlet concentrations, respectively. I also investigated the 

catalytic performance after hydrothermal treatment at 700 or 750 °C for 20 h in a flow 

of gas containing 10 vol.% H2O and 90 vol.% air with a GHSV of 6,000 h–1 (300 

mL/min flow, 3 mL catalyst). To evaluate the steady-state catalytic activity, the 
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concentrations of NH3, NO, and NO2 in the outlet gas after 10 min of time-on-stream at 

each reaction temperature were analyzed by an FT-IR spectrometer (FT/IR-6100, 

JASCO, Japan) equipped with a gas cell (LPC-12M-S, 12 m) and a mercury cadmium 

telluride detector cooled by liquid nitrogen. The NH3, NO, and NO2 concentrations were 

determined from their peak intensities at 1033, 1875, and 2917 cm–1, respectively. 

Thirty scans were averaged for each normalized spectrum. 

 

3. Results and discussion 

3.1. Synthesis and characterization of ZTS-1 

 The hydrothermal synthesis conditions and characteristics of ZTS-1, AFX, and 

CHA zeolites are listed in Table 5-1, with the corresponding XRD patterns shown in 

Figure 5-2. All runs except AC-5, AFX-1, and CHA-1 produced an intergrowth phase 

(ZTS-1) supposedly consisting of AFX and CHA phases. Generally, the XRD pattern of 

intergrowth zeolites shows a mixture of sharp and broad peaks based on the direction of 

stacking faults in their structures [11, 13]. The peak positions of ZTS-1 were similar to 

those of AFX, with broadening of specific peaks observed. Assuming the AFX 

framework for ZTS-1, the sharp XRD peaks of this zeolite can all be indexed as parallel 

or perpendicular to the c direction (e.g., 2θ = 12.88° (110) and 17.86° (004)), suggesting 

the existence of stacking faults in this direction. The d-spacing of the AFX (004) plane 

corresponds to the spacing between double 6MRs (D6R) stacking layers. However, the 

CHA phase also exhibits the same d-spacing based on the same D6R stacking layers. 

Therefore, this is the reason for the sharpness of the XRD peak indexed as 
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perpendicular to the c direction, albeit ZTS-1 may exhibit stacking faults in this 

direction. The unit cell parameter a was calculated as 13.76 Å. This value varies 

depending on the ratio of single and double 6MRs in the framework of the ABC-6 

family zeolites, e.g., being equal to 13.8 Å for GME and CHA (all-D6R), 13.1 Å for 

OFF (partially D6R), and 12.5 Å for CAN (all single 6MRs) [11]. Therefore, ZTS-1 was 

found to consist of all-D6R end-member structures. The overall XRD pattern of ZTS-1 

was hardly changed by the hydrothermal synthesis conditions, leading to only a single 

CHA-phase byproduct or a pure AFX phase. Controlling the intergrowth ratio by simply 

adjusting the synthesis conditions seems to be difficult. The crystal morphologies of 

ZTS-1(AC-3) and ZTS-1 with a CHA byproduct (AC-1) are shown in Figure 5-3. 

ZTS-1 exhibits disk-like morphology, which is also observed for the disordered CHA 

phase [13]. Crystals with well-grown facets were considered as CHA crystals, and were 

all observed on the edge of ZTS-1, indicating that the single CHA phase crystallizes 

after completion of the intergrowth phase crystallization. 
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Table 5-1. Hydrothermal synthetic conditions and characteristics of ZTS-1, AFX, and CHA zeolites. 

Sample 

 

Chemical composition of starting synthesis gel Temp. 

[°C] 

Time 

[h] 

Products 

SiO2/Al2O3 H2O/Si Dab-42+/Si TMAda+/Si Na+/Si OH/Si Phase SiO2/Al2O3 

AC-1 29.7 28.4 0.096 0.045 0.755 0.800 140 96 ZTS-1a + CHA 9.0 

AC-2 29.7 28.4 0.096 0.025 0.775 0.800 140 96 ZTS-1 + CHA 8.4 

AC-3 29.7 28.4 0.096 0.015 0.785 0.800 140 96 ZTS-1 8.0 

AC-4 29.7 28.4 0.020 0.025 0.775 0.800 140 96 CHA + ZTS-1 8.4 

AC-5 29.7 28.4 0.096 0.025 0.800 0.850 140 96 AFX - 

AC-6 29.7 28.4 0.096 0.025 0.725 0.750 140 96 CHA + ZTS-1 - 

AC-7 35.0 28.4 0.096 0.025 0.775 0.800 140 96 ZTS-1 + CHA - 

AC-8 25.0 28.4 0.096 0.025 0.775 0.800 140 96 ZTS-1 7.6 

AFX-1 29.7 28.4 0.096 - 0.800 0.800 140 96 AFX 8.0 

CHA-1 28.0 44.0 - 0.200 0.200 0.400 150 144 CHA 23 
aAFX/CHA intergrowth phase. 
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Figure 5-2 XRD patterns of as-synthesized samples. (a)–(h) AC-1 to AC-8, (i) AFX-1, and (j) 

CHA-1.  
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Figure 5-3 SEM images of as-synthesized ZTS-1, AFX, and CHA zeolites. (a), (b) AC-3, (c) AC-1, 

(d) AFX-1, and (e) CHA-1. Faceted CHA crystals were observed on the edge of the disk-like 

particles of ZTS-1 in (c), as indicated by white circles. 
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 The crystallization behavior of AC-2 was investigated in detail to determine 

how both the intergrowth and single CHA phases are produced from the initial gel. 

Figures 5-4 and 5-5 show the changes in XRD patterns and SEM images of the obtained 

products, respectively. For a 13 h crystallization, the FAU phase of the Y-type zeolite 

used as an Al source was mainly observed. However, the presence of a small broad peak 

around 2θ = 8.5° and the corresponding SEM image indicated that the intergrowth phase 

had already appeared. The crystallization of this phase was completed at 37 h, after the 

disappearance of the FAU phase, with no single CHA phase observed at this point. This 

result was consistent with the SEM characterization of AC-1 in Figure 5-3, which shows 

that CHA crystals grew at the end of the crystallization period. The N2 adsorption 

isotherm of AC-2 obtained at 37 h showed a type I, indicating microporosity of the 

material (Figure 5-6). The micropore volume of AC-2 obtained at 37 h calculated from 

the N2 adsorption isotherm was 0.26 cm3/g, being comparable to that of AFX-1 (0.27 

cm3/g). The change in the chemical composition (SiO2/Al2O3 and Na/Al ratios) during 

crystallization is shown in Figure 5-7. The SiO2/Al2O3 ratio of ZTS-1 obtained at 37 h 

was ~8, slightly increasing after a prolonged crystallization time, probably due to the 

formation of a CHA byproduct. The fact that the Na/Al ratio of 0.63 at 13 h was lower 

than unity suggests that the Y-type zeolite included OSDA molecules in its micropores 

(about 2.4 OSDA cation charges per supercage). Taking into account that the Na/Al 

ratio (OSDA cation/Al) was almost constant until 96 h, ZTS-1 was considered to 

crystallize utilizing OSDAs in the micropores of the Y-type zeolite. If this speculation is 

correct, I may be able to control the ratio of the intergrowth phase by controlling the 
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ratio of OSDAs inside the Y-type zeolite. The electron diffraction pattern of ZTS-1 

(AC-2 (37 h)) on the [100] zone axis is shown in Figure 5-8. Streaks along the c*-axis 

were observed, suggesting stacking faults along the c-axis, as expected from the 

corresponding XRD pattern. In addition, Figure 5-9 shows the lattice image by the 

low-dose TEM. The image verified the existence of AFX/CHA intergrowth structure. 

 

 

Figure 5-4 XRD pattern changes during the crystallization of ZTS-1. Asterisks indicate 

the pure CHA phase.
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Figure 5-5 Crystal morphology changes during crystallization of ZTS-1. Crystallization time: (a) 13 

h, (b) 16 h, (c) 21 h, and (d) 37 h. 

 

 

Figure 5-6 N2 adsorption isotherm of ZTS-1. 
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Figure 5-7 Changes in SiO2/Al2O3 and Na/Al ratios during crystallization of ZTS-1. 

 

  

 

Figure 5-8 Electron diffraction pattern of ZTS-1 for the [100] zone axis. 
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Figure 5-9 Lattice image of ZTS-1. 

 

3.2. Determination of the AFX/CHA ratio 

 DIFFaX is a program developed by M. M. J. Treacy [26] to calculate the 

diffraction patterns of zeolites having stacking faults. I used this program to verify that 

ZTS-1 was composed of AFX and CHA end-member structures, and determine their 

ratio. Figure 5-10 shows the simulated XRD patterns of an AFX/CHA intergrowth 

zeolite with different AFX/CHA ratios (shown as AFX:CHA based on the number of 

unit cells). A pure silica composition was assumed for the simulation. Several peaks are 

useful to determine the AFX/CHA ratio, e.g., the position of the peak around 2θ = 

8.5–9.5° shifts depending on this ratio. The peak at 2θ = 11.7° can only be observed for 

the AFX-rich phase, broadening with increasing CHA phase content. The XRD pattern 

of calcined ZTS-1 (AC-2 obtained at a crystallization time of 37 h) was different from 

AFX

[100]
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that of a physical mixture of AFX-1 and CHA-1 (80:20 based on the number of unit 

cells), and well fitted by the simulated pattern with an AFX/CHA ratio of 80:20, as 

shown in Figure 5-11. As described above, the AFX/CHA ratio of ZTS-1 could not be 

changed by varying the hydrothermal synthesis conditions in the present study (Table 

5-1 and Figure 5-2). As for the simulation of XRD patterns of intergrowth zeolites, a 

new approach to obtain more precise description of the structures has been proposed; 

Slawinski et al. reported that the XRD patterns for SAPO-18/34 intergrowth vary 

depending on the different stacking fault type (Displacement and Growth) [27]. The 

simulated XRD patterns of AFX/CHA intergrowth in my study could be based on the 

Displacement stacking fault, because the direction of crystal growth was fixed on the 

DIFFaX simulation. Such an approach would be useful for the further refinement of the 

structure of ZTS-1.
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Figure 5-10 XRD patterns of AFX/CHA intergrowth zeolites simulated by DIFFaX software. 

 

Figure 5-11 Comparison of the experimental XRD pattern of calcined ZTS-1 (AC-2 obtained at a 

crystallization time of 37 h) with the simulated XRD pattern of an AFX/CHA intergrowth zeolite and 

the physical mixture of AFX and CHA (AFX/CHA ratio = 80:20). 
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 13C NMR spectra were recorded to confirm that ZTS-1 incorporates two kinds 

of OSDAs without decomposition, namely Dab-42+ and TMAda+. Figure 5-12 shows the 

solution 13C NMR spectra of the OSDA cations and the solid-state 13C DD/MAS NMR 

spectrum of ZTS-1 (AC-2 obtained at a crystallization time of 37 h). Peak assignments 

in the solution NMR spectra (a) and (b) were based on the spectra simulated using the 

ACD/C NMR prediction software. The ZTS-1 peaks in the solid-phase spectrum (c) 

were assigned to the carbon atoms of both OSDAs based on the order/value of the 

chemical shifts in their solution NMR spectra as well as the comparison of the relative 

peak intensities and number of carbon atoms in their molecules. Apparently, ZTS-1 

contained both Dab-42+ and TMAda+ in its micropores. The shoulders observed for 

peaks 2A and 3A suggest that the molecular mobility and/or conformation is less 

restricted for a part of Dab-42+ molecules, since the positions of the shoulder peaks were 

close to those in the solution-phase NMR spectrum. Using the peak area ratio of 2A 

(including the shoulder peak) for Dab-42+ and 2B for TMAda+, the molar ratio of 

Dab-42+ to TMAda+ was calculated as 72:28. In this analysis, I hypothesized that 

Dab-42+ and TMAda+ exclusively function as OSDAs for AFX and CHA phases, 

respectively, and all cages (aft cage in AFX and cha cage in CHA) are filled with these 

OSDAs as one molecule per cage, except for the gme cage in AFX due to its small void 

space. Based on the obtained OSDA molar ratio and the number of cages per unit cell 

(two cages for AFX and three for CHA), I calculated the AFX/CHA ratio of ZTS-1 as 

80:20 (number of unit cells, Table 5-2). This estimation was consistent with the above 

DIFFaX simulation result. 
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Figure 5-12 Solution 13C NMR spectra of (a) Dab-42+ and (b) TMAda+, and (c) 

solid-state 13C DD/MAS NMR spectrum of ZTS-1 (AC-2 obtained at a crystallization 

time of 37 h).
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Table 5-2. Calculated AFX/CHA ratio based on the 13C DD/MAS NMR spectrum of ZTS-1. 

Sample Phase 
Peak of 13C DD/MAS NMR 

spectrum in Fig. 12 

Relative peak 

area [%] 

Number of carbon 

atoms 

Molar ratio of 

OSDAs [mol.%] 

Number of unit cells 

[%] 

AC-2 (37 h) ZTS-1 
2A 29.2 6 72 (Dab-42+) 80 (AFX) 

2B 5.6 3 28 (TMAda+) 20 (CHA) 
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 To obtain further information on OSDA cations occluded in zeolite crystals, 

TG/DTA measurements were carried out. Figure 5-13 shows the TG/DTA curve of the 

as-synthesized ZTS-1. For comparison, TG/DTA curves of CHA-1, AFX-1, and the 

physical mixture of these zeolites (50:50, w/w) are also shown. The physical mixture 

sample showed two peaks corresponding to each of the mixed zeolites, but the position 

of the CHA zeolite peak shifted toward lower temperature. Unexpectedly, only a single 

DTA peak was observed for ZTS-1, although it contained two kinds of OSDA cations, 

as confirmed by 13C DD/MAS NMR. Moreover, this DTA peak was found at the lowest 

temperature compared to the other samples. Therefore, it seems obvious that the 

environment of OSDAs in ZTS-1 is somewhat different from that of OSDAs present in 

the physical mixture, resulting in a characteristic DTA peak. The sequential layers of 

certain phases in intergrowth zeolites are expected to be several nanometers thick, since 

the phase change should occur frequently enough (every several layers) to obtain the 

zeolite exhibiting the XRD pattern simulated by DIFFaX. From the viewpoint of 

OSDAs in the zeolite micropores, it is reasonable to consider that zeolite layers 

containing one OSDA are placed between ones containing another OSDA, which is 

reciprocally continued. Such close packing of different OSDAs might lead to their 

decomposition as if they were a single molecular entity, resulting in a single DTA peak. 

The low-temperature decomposition shift may also be explained by considering the 

above model, that is, the small domain or crystallite size of each zeolite phase, resulting 

in a weak stabilization of OSDA molecules in the zeolitic pores. 
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Figure 5-13 TG/DTA curves of various as-synthesized zeolites. ZTS-1 (red), AFX-1 

(blue), CHA-1 (purple), and a physical mixture of 50 wt.% AFX-1 and 50 wt.% CHA-1 

(orange). 
 

 Another estimation of the AFX/CHA ratio of ZTS-1 was carried out by CHN 

analysis, based on the C/N ratio of the organic compounds inside the micropores, with 

the results summarized in Table 5-3. The C/N ratio of AC-2 obtained at a crystallization 

time of 37 h was 4.6, slightly higher than that of Dab-42+ (theoretical C/N = 4.0), 
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ZTS-1 is obtained as 4.8, and the calculated molar ratio of Dab-42+ and TMAda+ would 

be 72:28. Interestingly, the corrected molar ratio is the same as that determined by 13C 

DD/MAS NMR. The C/N ratio increased to 5.2 when the CHA byproduct appeared for 

AC-2 obtained at a crystallization time of 96 h (AC-2 (96 h)), corresponding to the 

incorporation of TMAda+ (theoretical C/N = 13). Taking all these results into account, I 

can conclude that ZTS-1 is an intergrowth zeolite exhibiting AFX/CHA phases in a ratio 

estimated as 80:20–85:15 with high probability. 

 

Table 5-3. CHN analysis results and calculated AFX/CHA ratios. 

Sample Phase 
C/N 

[mol/mol] 

Molar ratio of OSDAs 

[mol.%] 

 Number of unit cells [%] 

Dab-42+ TMAda+ AFX CHA 

AC-2(37 h) ZTS-1 4.6 79 21 
 

85 15 

AC-2(96 h) 
ZTS-1 + 

CHA 
5.2 63 37 

 
71 29 

 

 

3.3. NH3-SCR of NOx activity test 

 The catalytic performance of Cu-loaded ZTS-1 in the NH3-SCR reaction was 

evaluated and compared to that of the Cu-loaded AFX (AFX-1) catalyst, which exhibits 

a SiO2/Al2O3 ratio (8.0) close to that of ZTS-1 (7.9). Fickel et al. reported the high 

catalytic activity of SSZ-16 (AFX) in this reaction [16]. Figure 5-14 shows the NOx 

conversion over the Cu-loaded ZTS-1 and the Cu-loaded AFX catalysts before 

hydrothermal treatment (fresh). The NOx conversion of the Cu-loaded ZTS-1 catalyst 

was almost equal to that of the corresponding AFX catalyst in the whole reaction 
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temperature range. No specific effect of the intergrowth phase was observed. However, 

after hydrothermal treatment at 700 or 750 °C for 20 h, the Cu-loaded ZTS-1 catalyst 

showed higher stability for low-temperature (150 °C) activity (Figure 5-15). In contrast, 

it was suggested from N2 adsorption isotherms and the calculated micropore volumes 

(0.19 cm3/g for Cu-loaded ZTS-1 and 0.28 cm3/g for Cu-loaded AFX-1) by the t-plot 

method after hydrothermal treatment at 750 °C for 20 h that the crystals of ZTS-1 had 

more damage than SSZ-16(AFX) by the hydrothermal treatment (Figure 5-16). As 

shown in the TEM image (Figure 5-9), the crystallites, or domains, of intergrowth 

zeolites are intrinsically small, resulting in the less stability of a part of the crystals. Any 

major changes in the composition were not observed for both samples before and after 

hydrothermal treatment. Therefore, the improvement of hydrothermal stability of 

Cu-loaded ZTS-1 may be due to the CHA domain inserted between AFX phases. The 

typical SiO2/Al2O3 ratio of the AFX zeolite (AFX-1) synthesized using Dab-42+ is less 

than 10, since Dab-42+ is a divalent cation, with additional cations (e.g., alkali metal 

cations) needed to stabilize the gme cage that cannot be occupied by Dab-42+. On the 

other hand, the TMAda+ cation used in the case of the CHA zeolite is a bulky 

monovalent cation, making higher SiO2/Al2O3 ratios more preferable compared to the 

case of Dab-42+. If the CHA domain in ZTS-1 has a higher SiO2/Al2O3 ratio than the 

AFX one, the CHA domain in ZTS-1 is expected to show improved hydrothermal 

stability. Since the bulk SiO2/Al2O3 ratios of ZTS-1 and AFX are almost the same, the 

difference in the SiO2/Al2O3 ratios between AFX and CHA domains is expected to be 

small even if it exists. 
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Figure 5-14 Conversion of NOx over (◆) Cu-loaded ZTS-1 (AC-2 (37 h)) and (○) 

Cu-loaded AFX (AFX-1) catalysts before hydrothermal treatment. 

 

Figure 5-15 Conversion of NOx at 150 °C over Cu-loaded ZTS-1 (red) and Cu-loaded 

AFX (AFX-1) (blue) catalysts after hydrothermal treatment at 700 or 750 °C for 20 h. 
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Figure 5-16 N2 adsorption isotherms of Cu-loaded ZTS-1 and Cu-loaded AFX-1 after 

hydrothermal treatment at 750 °C for 20 h. 

 

Table 5-4. Synthetic condition for ZTS-2. 

aAFX/CHA intergrowth phase (CHA rich). 
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the synthesis conditions of ZTS-2, with potassium cations (K+) used instead of TMAda+. 

The former is known to exhibit a structure-directing effect for CHA, especially for 

low-silica synthetic chabazite [28]. After 72 h of crystallization at 100 °C, an AFX/CHA 

intergrowth phase was obtained. The XRD pattern of calcined ZTS-2 was compared to 

that simulated by DIFFaX (AFX/CHA ratio of 20:80, Figure 5-17). It was also 

compared to that of the physical mixture of AFX and CHA zeolites (20:80 based on the 

number of unit cells), and I confirmed that ZTS-2 was not just a physical mixture of 

AFX and CHA phase. Compared to the simulated pattern, an apparent peak shift to 

lower angles was observed for ZTS-2 due to the lattice expansion caused by a higher Al 

content (SiO2/Al2O3 = 4.2). The relatively large shift for 2θ = 17.6° may indicate the 

difference in the local structure of ZTS-2, since the simulation was based on a pure 

silica composition. Some intergrowth clues can be found in this pattern. The tiny peak at 

2θ = 7.7° can only be observed for the intergrowth phase as opposed to the pure CHA 

phase. In contrast, the peak at 2θ = 14.1° clearly exists in the CHA phase, immediately 

disappearing with increasing AFX/CHA ratio (Figure 5-10). ZTS-2 showed no peak at 

this position, unlike the simulated pattern. The relative peak intensities are different in 

the experimental and simulated data, with peak broadening probably responsible for 

such weak intensity. The peak at 2θ = 16.0° is broadened, in accordance with the 

simulated pattern. Based on XRD pattern matching, the AFX/CHA ratio of ZTS-2 was 

estimated as 20:80. Figure 5-18 shows the SEM image of ZTS-2. The crystals of ZTS-2 

had irregular shape and were agglomerated compared to ZTS-1 (Figure 5-5). The 

AFX/CHA ratio was also estimated from the amount of OSDA measured by TG/DTA 
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analysis. The decrease of weight from 300 to 800 °C was 2.9 wt.%, implying about 19 

wt.% of the AFX phase in ZTS-2, assuming a 15.6 wt.% decrease for a purely AFX 

composition. The AFX/CHA ratio of ZTS-2 was calculated as 15:85 based on the 

number of unit cells. This estimation was quantitative and was considered to be more 

accurate than obtained by XRD pattern matching. 

 

 

Figure 5-17 Comparison of the experimental XRD patterns of calcined ZTS-2 with the 

simulated XRD pattern of an AFX/CHA intergrowth zeolite and the physical mixture of 

AFX and CHA (AFX/CHA ratio = 20:80). 
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Figure 5-18 SEM image of as-synthesized ZTS-2. 

 

 

Figure 5-19 Conversion of NOx over Cu-loaded ZTS-2 catalyst before hydrothermal 

treatment. 
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crystal of ZTS-1 had more damage than SSZ-16 (AFX) by hydrothermal treatment 

(Figure 5-16). Therefore, the lower hydrothermal stability of ZTS-2 is probably due to 

its low SiO2/Al2O3 ratio and poor crystallinity. Further discussion about an effect of 

AFX/CHA ratio on the catalytic activity and hydrothermal stability will be possible if 

ZTS-1 and ZTS-2 with close SiO2/Al2O3 ratio are synthesized. 

 

4. Conclusions 

 Novel AFX/CHA intergrowth aluminosilicate zeolites ZTS-1 and ZTS-2 were 

synthesized by the dual-SDA approach. ZTS-1, an AFX-rich intergrowth, was obtained 

using Dab-42+ and TMAda+ as OSDAs for the AFX and CHA phases, respectively. The 

existence of AFX/CHA intergrowth structure was directly confirmed by low-dose TEM. 

The AFX/CHA ratio of ZTS-1 was determined as 80:20–85:15 by XRD pattern 

matching with DIFFaX simulation, 13C DD/MAS NMR, and CHN analysis. TG/DTA 

measurements also indicated that the environment of OSDAs in ZTS-1 is different from 

that in the physical mixture of zeolites. The AFX/CHA ratio of ZTS-1 was hardly 

changed by variation of its synthetic parameters. Although the Cu-loaded ZTS-1 had 

more damage in its crystal structure by hydrothermal treatment compared to the 

Cu-loaded AFX catalyst, the Cu-loaded ZTS-1 showed high catalytic activity in the 

NH3-SCR reaction and exhibited better hydrothermal stability than the Cu-loaded AFX 

catalyst, suggesting a contribution of the silica-rich CHA domain in ZTS-1. 

 ZTS-2, a CHA-rich intergrowth, was synthesized using K+ instead of TMAda+ 

for the CHA phase, under synthetic conditions completely different from those of ZTS-1. 
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The AFX/CHA ratio of ZTS-2 was estimated as 15:85–20:80 using XRD pattern 

matching and the amount of Dab-42+ obtained by TG/DTA analysis. 
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Chapter 6 

 

Summary 

 

 Chapter 1 is an overview of the entire research. First, the fundamentals of the 

material focused in this research, zeolites, was shortly described: their structural 

characteristics, chemical compositions, and chemistry (adsorption, molecular sieving, 

ion exchange, and catalysis). Then, the synthesis of zeolites was explained with the 

specific interest on the isomorphous substitution and intergrowth zeolites, which are the 

main features in the thesis. Finally, another interest of this research, the vehicle emission 

control was simply reviewed to understand the expected applications of the developed 

materials. 

 In Chapters 2–4, I tried to develop a novel catalyst with improved 

low-temperature activity in the selective catalytic reduction of NOx with ammonia 

(NH3-SCR). Highly dispersed active metal (Fe) in zeolite beta framework was the key 

concept to achieve the goal. To make Fe atoms be well dispersed, isomorphously 

substituted Fe-BEA zeolites were hydrothermally synthesized. One possible drawback 

of this strategy was that they could result in low crystallinity due to narrower synthetic 

conditions than those of aluminosilicate beta zeolite. Therefore, fluoride was first used 

to ensure the synthesis of Fe-BEA zeolites. These Fe-BEA zeolites, especially Al-free 

Fe-BEA zeolite, showed superior performance in the NH3-SCR compared to 



151 

 

conventional Fe-loaded beta zeolites. With the results of various characterization 

techniques e.g. UV-Vis, EPR, and XAFS, I showed that the isolated and tetrahedrally 

coordinated Fe3+ species is the most relevant for the NH3-SCR activity. Finally, I 

succeeded to synthesize highly crystalline Fe-BEA zeolite without using fluoride, by 

replacing TEAOH by excess amount of NaOH. 

 In Chapter 5, another approach was investigated for the development of 

zeolites for vehicle emission control. Novel AFX/CHA aluminosilicate intergrowth 

zeolites ZTS-1 and ZTS-2 were synthesized using the dual structure-directing agent 

(dual-SDA) approach. Control of the AFX/CHA ratio by simple variation of the 

hydrothermal synthetic parameters proved to be challenging. Cu-loaded ZTS-1 showed 

higher hydrothermal stability compared to Cu-loaded AFX catalyst. Characterization to 

verify the intergrowth structure and determine AFX/CHA ratio was also the highlight of 

the chapter. 

 In the field of vehicle emission control, functional and hydrothermally stable 

materials have been always desired and seeking new materials will continue in the 

future. The works in this thesis should be a part of this movement. The functional 

evaluation of the zeolites in this thesis has been mostly done on the NH3-SCR, however, 

I also expect that these zeolites still have undiscovered and useful functions as catalysts 

and adsorbents. The results and knowledge of the main features investigated in this 

thesis, that is, isomorphous substitution and dual-SDA synthesis of intergrowth zeolites 

will be of use in developing future new materials. 

  



152 

 

List of publications 

1. Y. Naraki, K. Ariga, T. Sano, “Synthesis of Fe-Based BEA Zeolites in Fluoride 

Media and Their Catalytic Performance in the NH3-SCR of NOx”, Adv. Porous Mater. 4, 

125 (2016). 

2. Y. Naraki, K. Ariga, H. Oka, H. Kurashige, T. Sano, “Fe Species in 

Isomorphously Substituted Fe-Based BEA Zeolites for Low-Temperature Selective 

Catalytic Reduction of NOx”, Adv. Porous Mater. 4, 91 (2016). 

3. Y. Naraki, K. Ariga, H. Oka, H. Kurashige, T. Sano, “An isomorphously 

substituted Fe-BEA zeolite with high Fe content: facile synthesis and characterization”, 

J. Nanosci. Nanotechnol. in press. 

4. Y. Naraki, K. Ariga, K. Nakamura, K. Okushita, T. Sano, “ZTS-1 and ZTS-2: 

Novel intergrowth zeolites with AFX/CHA structure” Microporous Mesoporous Mater. 

in press. 

 

Presentations in domestic / international conference 

1. Y. Naraki, K. Ariga, H. Ogawa, “Iron-Substituted *BEA Zeolite for Reduction 

of NO with NH3”, 8th International Conference on Environmental Catalysis (ICEC), 

EC-P-88, August in the US (Asheville, NC) (2014). 

2. 楢木祐介、有賀耕、小川宏、『高結晶性 Fe 骨格置換βゼオライトの合

成とその機能』、第 30 回ゼオライト研究発表会、東京都 (2014) 

3. 楢木祐介、有賀耕、『新規アルミノシリケートの合成とその同定』、第

31 回ゼオライト研究発表会、鳥取県 (2015) 



153 

 

4 Y. Naraki, K. Ariga, “ZTS-1: Novel intergrowth zeolite with AFX/CHA 

structure”, 18th International Zeolite Conference (IZC), OP-150, June in Brazil (Rio de 

Janeiro) (2016). 

 

List of patents 

1. 楢木祐介、有賀耕、青山英和、『窒素酸化物浄化触媒及び窒素酸化物浄

化方法』、特許第 4957176 号 (2012) 

2. 楢木祐介、有賀耕、青山英和、『窒素酸化物浄化触媒及び窒素酸化物浄

化方法』、特許第 5169779 号 (2013) 

3. 楢木祐介、有賀耕、青山英和、『窒素酸化物浄化触媒及び窒素酸化物浄

化方法』、特許第 5309936 号 (2013) 

4 Y. Naraki, K. Ariga, H, Aoyama, “Nitrogen Oxide-Reducing Catalyst and 

Method for Reducing Nitrogen Oxide”, US Pat. 7,794,680 (2010). 

5 Y. Naraki, K. Ariga, H, Aoyama, “Nitrogen Oxide-Reducing Catalyst and 

Method for Reducing Nitrogen Oxide”, KR Pat. 101,473,007 (2009). 

6. 楢木祐介、有賀耕、『新規メタロシリケート』、特許第 5609620 号 (2014) 

7 楢木祐介、徳永敬介、有賀耕、『新規メタロシリケート及び窒素酸化物

浄化触媒』、特許第 5594121 号 (2014) 

8 Y. Naraki, K. Tokunaga, K. Ariga “Novel Metallosilicate, Production Method 

Thereof, Nitrogen Oxide Purification Catalyst, Production Method Thereof, and 

Nitrogen Oxide Purification Method Making Use Thereof”, WO 2011/078149 A1 

(2011). 



154 

 

9 楢木祐介、有賀耕、『β 型鉄シリケート組成物及び窒素酸化物浄化触媒』、

特許第 5958070 号 (2016) 

10 Y. Naraki, K. Ariga, “B-Type Iron Silicate Composition And Method For 

Reducing Nitrogen Oxides”, US Pat. 9,539,565 (2017). 

11 Y. Naraki, K. Ariga, “B-Type Iron Silicate Composition And Method For 

Reducing Nitrogen Oxides”, KR Pat. 101,512,263 (2015). 

12 Y. Naraki, K. Ariga, “B-Type Iron Silicate Composition And Method For 

Reducing Nitrogen Oxides”, CN Pat. 103,534,210 (2015). 

13 楢木祐介、『新規結晶性アルミノシリケート』、特開 2017-65943 号 (2017) 

  



155 

 

Acknowledgements 

 

 I would like to express my gratitude to all people who have helped me with the 

preparation of this doctoral thesis. Especially, I am deeply indebted to my supervisor 

Prof. Dr. Tsuneji Sano for his advice, support, encouragement and invaluable 

suggestions concerning science. Without his patient guidance, it is almost impossible to 

finish my study. I also gratefully acknowledge Mr. Hiroshi Ogawa and Mr. Ko Ariga 

(Tosoh Corporation) for teaching me laboratorial techniques and work as well as 

valuable suggestions, giving me opportunities to pursue the investigation of the unique 

materials in this thesis, and allowing me to publish them. I must express special 

gratitude to the people in TOSOH Analysis and Research Center, Mr. Hideyuki Oka, Mr. 

Hirokazu Kurashige, Mr. Kazuto Nakamura, and Dr. Keiko Okushita for the valuable 

characterization data and generous help on interpretation. 

 I am grateful to all of the members in Zeolite Group, Tosoh Inorganic Materials 

Research Laboratory for their cooperation to my work. 

 Finally, I dedicate this thesis to my wife and children for their love, patience, 

and great encouragement. 

September 2017 

Yusuke Naraki 


