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Chapter 1 

The down-regulation of connexin 43 expressions 

 in spinal astrocytes contributes to the  

maintenance of hypersensitivity of neuropathic pain 

 in mice with partial sciatic nerve ligation 

 

1.1.  Abstract 

  Spinal astrocytes are likely to have key roles in maintaining the chronic pain 

state. One characteristic feature of astrocytes is their high expression levels of 

connexin 43 (Cx43), a protein that forms gap junction channel, which facilitate 

direct intercellular communication. Several recent studies have indicated that the 

change of Cx43 expression level in astrocytes might be associated with the 

induction of various kinds of neuronal disorder such as multiple sclerosis, epilepsy 

or chronic pain, however, it is yet unknown which kinds of endogenous molecule 

could be involved in the change of Cx43 expression, and the mechanism related to 

the induction of neuropathic pain after the change of Cx43 expression. The 

current study examined the relationship between the change of Cx43 expression 

and the regulation of nociceptive responses under neuropathic pain. It was found 

that the expression of Cx43 in spinal dorsal horn in partial sciatic nerve ligation 

(PSNL) model was significantly decreased during the maintenance phase, and 

this response was mediated by tumor necrosis factor-α (TNF-α) dependent 

pathway. Furthermore, the decrease of Cx43 expression could be related in the 

induction of mechanical hypersensitivity. Most importantly, it is possible that the 

enhancement of glutamatergic transmission related in the down-regulation of 

GLT-1 expression might contribute to the mechanical hypersensitivity evoked by 

the decrease of Cx43 expression. 
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1.2.  Introduction 

  Emerging evidence indicates that the enhancement of sensitivity of nociceptive 

primary afferent neurons and hypersensitivity of nociceptive dorsal horn neurons 

in spinal cord are associated with pathological chronic pain1,2. Recent studies have 

demonstrated that spinal glial cells are involved in the initiation of these 

responses, and crucial players in the development and maintenance of chronic 

pain related in neuropathic or inflammatory disorders3-5. Especially, activated 

spinal astrocytes could contribute to the long-lasting of pain hypersensitivity and 

the reduction of astroglial activity by intrathecal (i.t.) treatment with fluorocitrate, 

an inhibitor of astrocytic metabolism, significantly improve abnormal pain 

responses in rodent neuropathic pain models6. There are a number of reports 

regarding change of astrocytic function under neuropathic pain; activation of MAP 

kinases, increase of proinflammatory cytokines and chemokines production, or 

down-regulation of excitatory amino acid transporters (EAATs, Na+-dependent 

glutamate transporters)7-9. Furthermore, it has been demonstrated that these 

responses could contribute to the maintenance of neuropathic pain state. 

  It has been recently shown that astrocytes intercellular communication through 

gap junctions has a crucial role in not only the regulation of astroglial function but 

also the proper maintenance of neuronal network10. Gap junctions have important 

property for molecular exchange and informational communication by passing 

several signal molecules such as glutamate, ATP, and some second messengers, 

buffering extracellular Na+ or K+ spatially, or supplying energy sources between 

neighboring cells11,12. Gap junctions are formed by two connexons expressed in 

distinct cell, which are consisted of a hexamer of connexins (Cxs) protein. It is 

known that 11 of Cxs are detected in mammalian central nervous system, and 

each cell type possess a distinct set of Cxs. In spinal cord, Cx43 is preferentially 
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and mainly expressed in astrocytes13. Several studies have indicated that 

astrocytic Cx43 plays an essential role in the modulation of synaptic transduction 

in central nervous system. In addition, the change of Cx43 expression level in 

astrocytes might be associated with the induction of various kinds of neuronal 

disorder. Especially, it has been demonstrated that the decrease of Cx43 protein 

expression in astrocytes could enhance the neuronal excitability, and this 

response might contribute to the initiation of neuroinflammation such as multiple 

sclerosis14. Emerging evidences have suggested that the up-regulation of Cx43 in 

spinal cord was induced after inflammatory-related pain models, and the 

reduction of Cx43 activity by intrathecal delivery of specific siRNA for Cx43 or gap 

junction inhibitor carbenoxolone could improve the decrease of nociceptive 

threshold15,16. In contrast, Ohara et al. have also indicated that silencing of Cx43 

in the trigeminal ganglion of naïve rat administered by siRNA increased 

mechanical sensitivity. Thus, relationship between the expression level of Cx43 

and the change of nociceptive responses is controversial17. In addition, it is yet 

unknown, which kinds of endogenous molecule could be involved in the change of 

Cx43 expression, and the mechanism related to the induction of neuropathic pain 

after the change of Cx43 expression. 

 To understand the relationship between the change of Cx43 expression and the 

regulation of nociceptive responses under neuropathic pain, the current study 

utilized partial sciatic nerve ligation (PSNL) model, which mimics some of the 

major features observed in clinical neuropathic pain. It was found that the 

expression of Cx43 in spinal dorsal horn following PSNL was significantly 

decreased during the maintenance phase, but not the induction phase of 

neuropathic pain, and this response was mediated by tumor necrosis factor-α 

(TNF-α) dependent pathway. Furthermore, the decrease of Cx43 expression could 
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be related in the induction of mechanical hypersensitivity. In addition, it is 

possible that the enhancement of glutamatergic transmission related in the 

down-regulation of GLT-1 expression might contribute to the mechanical 

hypersensitivity evoked by the decrease of Cx43 expression. 

 

1.3. Materials and Methods 

Animals 

  Male ddy mice, 5 weeks of age, were used for the experiments. Mice were 

maintained at a room temperature of 22±2 0C with a 12h light/dark cycle (light on 

at 8:00 AM), and given access to food and water available ad libitum during the 

experimental period. All experiments by using animals were conducted in 

accordance with the “Guidelines for the Care and Use of Laboratory Animals” 

established by Hiroshima University, and the procedures of all animal 

experiments were approved by the Committee of Research Facilities for 

Laboratory Animal Science of Hiroshima University. 

Construction of partial sciatic nerve ligation model 

  After anesthetization with sodium pentobarbital (50 mg/kg, i.p.), a tight ligation 

of approximately one-third or one-half of the diameters of the left sciatic nerve 

(ipsilateral) was performed with 8-0 silk sutures as described previously18. In 

sham-operated mice, the sciatic nerve was exposed without ligation. 

Knockdown of Cx43 in the spinal cord 

  Knockdown of Cx43 was performed by using the hemagglutinating virus of the 

Japan (HVJ) envelop vector system (HVJ Envelop Vector kit GenomONE-Si, 

Ishihara Sangyo Kaisya, Ltd., Osaka, Japan). This vector was widely used for in 

vivo small interfering RNA (siRNA) transfers. The siRNA targeting mouse Cx43 

(siGENOME SMARTpool, mouse GJA1, Thermo) or the non-targeting siRNA 



 
 

 
 

7 

(siGENOME Non-targeting siRNA pool #2, Thermo) were incorporated into the 

HVJ envelop vector according to the manufacture’s protocol. In brief, after mixing 

HVJ envelop vector with enclosing factor, the mixture was centrifuged at 10,000 g, 

4 0C, 10 min, and the pellet was suspended by the stock solution of each siRNA (10 

µM). Then, this solution was diluted to the concentration used in the current 

study with sterile saline. Diluted siRNA solution was injected into the 

subarachnoid space between the L5 and L6 vertebrate (i.t.) of mice. 

Measurement of hind paws sensitivity to tactile stimulation and drugs 

administration 

 The procedure of measurement of hind paw sensitivity of ipsilateral paw to 

tactile stimulation was described in previous report. In brief, after surgery for 3, 7, 

14, or 21 days, the threshold to tactile stimuli by von Frey monofilaments was 

measured. About drug treatments, etanercept (TNF-α blocker) were i.t. 

administrated four times; immediately after sciatic nerve injury, on the day 2, 4, 

or 6 after the injury. Then, the mechanical sensitivity or the expressions of Cx43 

were measured on the day 14 after surgery. TNF-α (mouse recombinant TNF), 

Carbenoxolone (gap junction blocker) or gap27 (selective Cx43 blocker) was i.t. 

injected to naïve mice. 

  The hind paw sensitivity of spinal cord Cx43 knockdown mice were measured 

after injection of siRNA for 1st, 2nd, 3rd, 5th and 7th day by von Frey monofilaments. 

About drug treatments, MK-801 (N-methyl-D aspartate receptor antagonist), 

CP96345 (neurokinin 1 receptor antagonist), CNQX (AMPA receptor antagonist) 

were i.t. administrated on the day 3 after injected the siRNA. 

Western blot 

  Under anesthesia with ether, mice were decapitated; the lumbar (L4-L6) 

segments of ipsilateral side of the spinal dorsal horn were removed. These were 
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immediately frozen in liquid nitrogen and stored at -80 0C until use. Spinal 

tissues were solubilized in radioimmunoprecipitation assay buffer with inhibitors 

(100 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1% 

sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 20 µg/ml aprotinin, 20 

µg/ml leupeptin, 1 mM phenylmethylsulfonyl fluoride, and phosphatase inhibitor 

cocktail 2 (Nacalai Tesque, Kyoto, Japan)). The lysates were centrifuged at 14,000 

× g for 10 min at 4℃ and the supernatant was added to Laemli’s buffer and boiled 

for 5 min. Equal amounts of protein were separated by 7.5 or 10% 

SDS-polyacrylamide gel electrophoresis and blotted onto nitrocellulose 

membranes. Non-specific binding was reduced with blocking buffer, and the 

membranes were subsequently incubated with a purified polyclonal antibody 

against rat Cx43, or GLT-1 (1:1000, Santa Cruz Biotechnology, Santa Cruz, CA) 

or monoclonal antibody against β-actin (1:10,000; Sigma Chemical Co., St. Louis, 

MO, USA) overnight at 4 0C. After being washed, the membranes were incubated 

with a horseradish peroxidase-conjugated secondary antibody (Santa Cruz 

Biotechnology) for 1 hour at room temperature. Then, membranes were rinsed 

and incubated with Luminescence reagent (Thermo Fisher Scientific, Rockford, IL, 

USA). Finally, the membranes were exposed to X-ray film. For quantification of 

signals, the densities of specific bands were measured with Science Lab Image 

Gauge (Fuji Film, Tokyo, Japan). 

Reagents 

  Recombinant mouse TNF-α was obtained from PeproTech Inc. (Rocky Hill, 

USA) and etanercept was obtained from takeda pharmaceutical co ltd (Osaka, 

japan). MK801 was purchased from Tocris Bioscience (Minneapolis, MN, USA), 

CNQX, CP96345 and Carbenoxolone were purchased from Sigma Chemical, Co. 

(St. Louis, MO, USA). Cabapentin was obtained from Cayman Chemical (A. G. 
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Scientific, USA)          

Statistical analysis 

 Data are expressed as the mean±SE of at least three independent 

determinations. Differences between means for mechanical hypersensitivity after 

PSNL or the knockdown of Cx43 were determined using a one-way analysis of 

variance (ANOVA) with a pairwise comparison by the Tukey-Kramer method. 

Using student’s t-test performed comparison of Cx43, GLT-1, Cx30 or GLAST 

protein level in the spinal dorsal horn. Differences were considered to be 

significant when the P value was less than 0.05. 

 

1.3. Results 

PSNL evokes mechanical hypersensitivity and decreases the 

expression of Cx43 protein expression in spinal dorsal horn 

  It was observed a marked decrease of mechanical threshold of ipsilateral paw to 

tactile stimuli from days 3 to days 21 after PSNL surgery, compared with 

withdrawal threshold of corresponding day after sham operation (Fig. 1-1A). 

About Cx43 expression, three immunopositive bands were detected at 

approximately 39-44 kDa (Fig. 1-1B) by Western blotting using a Cx43 antibody. 

“P0” in Fig. 1-1B indicates the non-phosphorylated Cx43, and P1 and P2 

correspond to phosphorylated Cx43. In the current study, total Cx43 expression 

was derived from the sum of the three bands (P0+P1+P2). The amount of Cx43 

levels was normalized to that of β-actin levels, which was used as an internal 

control, and presented as a ratio to vehicle treatment. Then, the expression level 

of Cx43 protein in spinal dorsal horn was examined on days 3, 7, 14, 21 after 

surgery by Western blot. As shown in Fig. 1-1B, levels of Cx43 expression in 

ipsilateral dorsal horn was significantly reduced on days 7, 14, and 21, but not 



 
 

 
 

10 

days 3, after sciatic nerve injury, compared with levels of Cx43 in dorsal horn 

from sham-operated mice.  

Knockdown of Cx43 by siRNA in the spinal cord induces the 

mechanical hypersensitivity 

  To confirm the specific down-regulation of Cx43 in spinal dorsal horn exerting 

mechanical hypersensitivity, the effect of knockdown of Cx43 by siRNA transfer 

on tactile mechanical threshold was investigated. The significant reduction of 

Cx43 expression in spinal dorsal horn was observed on days 2 or 3 after injection 

with Cx43 siRNA with HJV envelop vector compared with that treated with 

non-targeting siRNA with HJV envelop vector (Fig. 1-2A), and this response was 

returned on days 5. Furthermore, a significant decrease of mechanical threshold 

to tactile stimuli was also observed in mice treated with Cx43 siRNA, compared 

with those in mice treated with non-targeting siRNA. These effects were appeared 

on days 2 after injection with Cx43 siRNA, sustained on days 5, and disappeared 

on days 7 (Fig. 1-2B). In addition, the effects of a gap junction blocker 

(carbenoxolone) on the mechanical threshold were examined. As shown in Fig. 

1-2C, i.t. treatment with either carbenoxolone (1 or 3 nmol) markedly decreased 

the mechanical threshold at 24 h after injection, compared with treatment with 

vehicle (saline). Thus, these results strongly indicate that the decrease of 

Cx43-gap junction could induce mechanical hypersensitivity. 

The change of Cx30 expression in spinal dorsal horn after PSNL 

treatment 

  Previous studies have demonstrated that the enhancement of expression of 

Cx30, which is another types of Cxs expressed in astrocytes, was induced after the 

down-regulation of Cx43 in astrocytes19. Thus, the expression level of Cx30 

protein in spinal dorsal horn was examined on days 7, 14 after surgery that Cx43 
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decreased time pint by Western blot. As shown in Fig. 1-3A, the level of Cx30 

expressions in ipsilateral dorsal horn was not changed after sciatic nerve injury, 

compared with levels of Cx30 in dorsal horn from sham-operated mice. In addition, 

we also examined the effect of knockdown of Cx43 by siRNA transfer on Cx30 

expression in spinal dorsal horn. As shown in Fig. 1-3B, the level of Cx30 

expressions in spinal dorsal horn also not changed after treated with Cx43 siRNA 

with HJV envelop vector (Fig. 1-3B). 

TNF-α  dependent pathway is involved in the PSNL-induced Cx43 down 

regulation 

  Several studies have shown that proinflammatory cytokines such as TNF-α 

released in the spinal cord after nerve injury, and active the astrocyte then 

induced the neuropathic pain20. Thus, the involvement of endogenous TNF-α in 

the down-regulation of Cx43 expression after sciatic nerve injury was investigated. 

As shown in Fig. 1-4A or B, repeat i.t. treatment with etanercept, a TNF-α blocker, 

was significantly reversed the PSNL-induced mechanical hypersensitivity. 

Furthermore, it was also found that blockade of TNF-α’s action could significantly 

prevent the down-regulation of Cx43 expression in spinal dorsal horn of PSNL 

mice (Fig. 1-4C). Treatment of sham-operated mice with etanercept with same 

schedule had no effects on the mechanical threshold and Cx43 expression (Fig. 

1-4B or C). In addition, single i.t. treatment with recombinant TNF (20 ng) for 24 

or 48 hours markedly induced both mechanical hypersensitivity (Fig. 1-4D) and 

the down-regulation of Cx43 expression (Fig. 1-4E).  

The down-regulation of GLT-1 and subsequent enhancement of 

glutamatergic transmission in spinal dorsal horn is involved in the 

Cx43-mediated mechanical hypersensitivity 

  It is speculated that the enhancement of nociceptive transmission at spinal 
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dorsal horn level might be associated with mechanical hypersensitivity triggered 

by the down-regulation of Cx43. Therefore, the involvement of glutamate or 

substance P, which acts as main neurotransmitters of nociceptive transduction in 

dorsal horn, in Cx43 siRNA-induced mechanical hypersensitivity, was examined 

by pharmacological approaches. As shown in Fig. 1-5A and B, i.t. treatment with 

MK-801 (a NMDA receptor antagonist) or CNQX (an AMPA receptor antagonist) 

led to a significant blockade of the Cx43 siRNA-induced mechanical 

hypersensitivity. In contrast, i.t. treatment with CP96345 (an NK1 receptor 

antagonist) did not block the Cx43 siRNA-induced responses (Fig. 1-5C). These 

receptor antagonists had no effects on the mechanical threshold of mice 

transfected with non-targeting siRNA (Fig. 1-5A-C). These observations led us to 

speculate the enhancement of glutamatergic transmission at dorsal level under 

the situation which spinal Cx43 expression is down regulated. In addition we 

investigate the effect of gabapentin that enhancer of glutamate release. As shown 

in Fig. 1-5D, i.t. treatment with gabapentin did not block the Cx43 siRNA-induced 

responses (Fig.1-5D).  

  Thus, we next investigated that the expression of glutamate transporters in 

spinal dorsal horn might be mediated by the change of Cx43 expression level. As 

shown in Fig. 1-6A, the expression of GLT-1, which is one of glial glutamate 

transporters and abundantly expressed in astrocytes, was significantly reduced in 

spinal dorsal horn on days 7, 14 or 21, but not days 3, after peripheral nerve 

injury, compared with those in sham-operated mice. The current observation was 

similar with previous reports. Furthermore, it was found by Western blot that the 

expression of GLT-1 in spinal dorsal horn was dramatically reduced on days 2, 3, 

5 after the intraspinal transfection with Cx43 siRNA, compared with those 

treated with non-targeting siRNA (Fig. 1-6B). This positive relationship between 
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Cx43 and GLT-1 was also confirmed by pharmacological approach. Previous 

report has suggested that the prolonged treatment with carbenoxolone reduced 

not only the function of gap junction but also the expression of connexin43. In the 

current study, both the expression of Cx43 in spinal dorsal horn and mechanical 

threshold were markedly reduced after intrathecal administration with 

carbenoxolone for 24 hours (Fig. 1-6C). In addition, it was found that the 

expression of GLT-1 was also down regulated by the treatment with 

carbenoxolone (Fig. 1-6D). 

  The expression of GLAST, which is another type of glial glutamate transporters, 

in spinal dorsal horn, was also elucidated. Although the expression of GLAST in 

spinal dorsal horn was also significantly reduced by the sciatic nerve injury, that 

was not affected by the knockdown of Cx43 by siRNA (Fig. 1-7A or B). 

 

1.5. Discussion 

The current study demonstrated that the TNF-α-modulated down-regulation 

of Cx43 in spinal dorsal horn could contribute to the PSNL-induced mechanical 

hypersensitivity during the maintenance phase (7, 14, 21 days), but not the 

induction phase (3 days), of neuropathic pain. These results are supported by the 

following observations. The knockdown of Cx43 by transfection with siRNA into 

mice spinal dorsal horn led to a significant decrease of mechanical threshold. 

Furthermore, it was found that the down-regulation of glutamate transporter 

GLT-1 and the subsequent enhancement of glutamatergic transmission in spinal 

dorsal horn might be pivotal events in the Cx43-mediated mechanical 

hypersensitivity under sciatic nerve injury. These results indicate that 

TNF-α-mediated reduction of Cx43 expression in spinal dorsal horn is associated 

with the maintenance of the neuropathic pain state, and modulation of Cx43 
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expression could be a unique therapeutic strategy for relieving neuropathic pain. 

 It has well demonstrated that astrocytic dysfunction could be a crucial 

response observed under neuropathic pain state. Especially, several previous 

reports indicated that the excessive activation or gliosis of astrocytes in dorsal 

horn were observed during the maintenance phase, but not the induction phase, of 

neuropathic pain21,22, suggesting that astrocytes might play an important role in 

the formation of persistent pain. The functions of astrocytes are regulated by the 

activities of various kinds of receptor, ion channel, enzyme, etc. Among them, the 

emerging evidences have shown that Cx-gap junction is indispensable for the 

maintenance of astrocytic function23-25. Therefore, it is speculated that the change 

of Cx43 expression and the subsequent disturbance of gap junction activity might 

be attributed to the various types of neuronal disorders including neuropathic 

pain. In fact, previous studies have suggested that the increase of Cx43 

expression was observed in spinal cord of nerve-injury-induced neuropathic pain 

models, and treatment with gap junction blocker carbenoxolone inhibited the 

nociceptive responses15,16. In the current study, in contrast, the opposite response 

for the expression of Cx43 in spinal dorsal horn was observed, and i.t. treatment 

of naïve mice with either carbenoxolone markedly decreased the mechanical 

sensitivity. In addition, Wu et al. have demonstrated that the reduced astroglial 

communication by the increase of Cx43 phosphorylation was appeared in the 

spinal cord of rat after chronic constriction injury of the sciatic nerve26. Moreover, 

Ohara et al. have also indicated that silencing of Cx43 in the trigeminal ganglion 

of naïve rat administered by siRNA increased mechanical sensitivity17. Although 

there is discrepancy between the up- or down-regulation of Cx43 expression in 

spinal dorsal horn and nociceptive responses under neuropathic pain state, it may 

be based on the differences of neuropathic pain models, pain intensity, or 
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experimental conditions. Previous studies have demonstrated that the 

enhancement of expression of Cx30 was induced after the down-regulation or 

knockdown of Cx43 in astrocytes19. In addition, astrocytic Cx30 plays an 

important function in neuronal transmission in hippocampus11,27. Therefore, these 

observations suggest the possibility that the up-regulation of Cx30 expression in 

spinal dorsal horn might be associated with the Cx43-mediated mechanical 

hypersensitivity in the PSNL mice. However, this possibility might be excluded, 

because the current observation revealed that the expression of Cx30 was not 

changed after the sciatic nerve injury. Thus, the reduction of spinal Cx43 

expression from basal level might be one of key responses to induce the 

mechanical hypersensitivity under neuropathic pain state. 

 TNF-α is well known to contribute to the induction of neuropathic pain through 

the activation of astrocytes20. Therefore, we specially focused the role of TNF-α in 

the regulation of spinal Cx43 expression in PSNL mice. In the current study, the 

observations obtained by pharmacological approaches using the TNF-α related 

reagents indicated that the TNF-α might have a crucial role in the reduction of 

Cx43 expression in spinal dorsal horn under neuropathic pain state. Previous 

reports demonstrated that the high amount of TNF-α is produced from activated 

microglia in spinal cord of neuropathic pain models20. It was demonstrated that 

increased TNF-α could affect synaptic nociceptive transduction via the regulation 

of various kinds of astrocytic function28. The current observation strongly 

suggests the relationship between the potential roles of TNF-α as a nociceptive 

modulator and the regulation of Cx43 expression in spinal astrocytes. 

 Previous studies have indicated that the down-regulation of GLT-1 in spinal 

dorsal horn might be involved in the PSNL-induced mechanical hypersensitivity29. 

Furthermore, it is well known that the enhancement of glutamatergic 
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transmission in spinal dorsal horn might be pivotal in the nerve-injury-induced 

hypersensitivity30. However, the molecular mechanism initiating the 

down-regulation of GLT-1 is unknown until now. The current observations 

indicate the positive relationship between Cx43 and GLT-1, but not GLAST, and 

the involvement of the down-regulation of GLT-1 expression in the Cx43-mediated 

mechanical hypersensitivity by the following reasons. 1) i.t. treatment with 

antagonists of either NMDA or AMPA receptor, but not gabapentin, which 

inhibits the release of glutamate from presynaptic nerve, significantly reversed 

the mechanical hypersensitivity induced by the knockdown of Cx43. 2) The 

expression of GLT-1 in dorsal horn was observed in not only the PSNL mice but 

also the Cx43-knockdown mice. Together, these current results revealed that the 

down-regulation of spinal Cx43 would contribute to the increase of glutamate in 

synaptic cleft by down-regulation of GLT-1, but not enhancement of presynaptic 

release, and the following induction of NMDA receptor-dependent glutamatergic 

transmission in spinal dorsal horn. Then, these responses could affect the nerve 

injury-induced mechanical sensitivity. Previous study indicated that the 

expression of GLT-1, but not GLAST, is reduced in cultured cortical astrocytes 

treated with gap junction blockers or transfected with Cx43 siRNA31. 

Furthermore, the enhancement of glutamatergic current by the decrease of 

glutamate transporter’s activity was observed in hippocampus slice of 

Cx43/30-double knockout mice27. The molecular mechanisms involving the 

down-regulation of GLT-1 after the reduction of Cx43 are yet unclear. Although 

further investigation is necessary, emerging evidences have indicated that Cx43 

could also function to provide regulatory crosstalk with other proteins located on 

cell membranes or cytoskeletons, beside the formation of gap junction to pass 

several molecules between cells32,33. Furthermore, it was demonstrated that 
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Cx43-gap junction might be involved in the regulation of other multiple gene 

expression. In fact, it is reported that the alteration of various kinds of gene is 

caused in Cx43-null astrocytes34. In addition, Ai et al. have suggested that Cx43 is 

co-localized with β-catenin in cell membranes; the expression of Cx43 might 

sequester β-catenin and negatively mediates β-catenin-dependent gene 

transcription in cardiac myocytes35. The current observation indicated that the 

blockade of gap junction function by the intrathecal treatment with gap27 did not 

affect the expression of GLT-1 in cultured spinal dorsal astrocyte. Therefore, it is 

possible that the down regulation of Cx43 expression might affect the activities of 

intracellular signal molecules and the following regulation of various gene 

expressions. 

 Here, we have provided new information about the mechanisms of neuropathic 

pain. Under neuropathic pain, Cx43 was decreased via TNF and then induced the 

GLT-1 down regulation in the spinal dorsal horn. Furthermore, these responses 

were contribute to the mechanical hypersensitivity via enhanced the 

glutamatergic transmission. 
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Chapter 2 

Spinal astrocytes stimulated by 

 tumor necrosis factor-α  (TNF-α) and/or interferon-γ  (IFN-γ) 

 attenuates connexin 43-gap junction 

 

2.1. Abstract 

  Spinal astrocytes have important mechanistic contributions to the initiation 

and maintenance of various neuropathic diseases such as neuropathic pain. 

Under inflammatory conditions, spinal astrocytes are exposed to cytokines such 

as tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) and these cytokines 

could alter astrocytic function by modulating connexin (Cx43), subunits that form 

channels that modulate intercellular communication in astrocytes. The current 

study investigated the alteration of Cx43-gap junction in rat primary cultured 

spinal astrocytes stimulated with cytokines by real-time PCR and Western 

blotting. The transcriptional and translational levels of Cx43 were significantly 

but partially reduced 24 and 48 h treatment with either TNF-α or IFN-γ. A 

mixture of TNF-α and IFN-γ led to a robust decrease of Cx43 expression, 

moreover, a moderate reduction of gap junction intercellular communication 

(GJIC), which was evaluated by a scrap loading/dye transfer assay. Both the 

decrease of Cx43 expression and the reduction in GJIC induced by the mixture of 

TNF-α and IFN-γ were prevented by blocking c-jun terminal kinase (JNK), but 

not by blocking extracellular signaling molecules ERK and p38 kinase, indicating 

a specific role of astrocytic JNK in the response to cytokines. In addition, 

treatment with cytokines potently induced the phosphorylation of JNK and c-jun 

in a time-dependent manner. Furthermore, the involvement of 

ubiquitin-proteasome system on the TNF-α and IFN-γ-induced down-regulation of 
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Cx43-gap junction in spinal cultured astrocytes also invested. TNF-α and IFN-γ 

mixture accelerated Cx43 degradation by used cycloheximide plus assay in rat 

primary cultured spinal astrocyte. Moreover, proteasome inhibitors MG132 or 

epoxomicin blocked both the decrease of Cx43 expression and gap junction 

function. Furthermore, a mixture of TNF-α and IFN-γ let to a significantly 

increase of proteasome activity in rat primary cultured spinal astrocytes by 20s 

proteasome activity assay, and the increase of proteasome activity ware prevented 

by blocking JNK signaling. In addition, mixture of JNK inhibitor and proteasome 

inhibitor were not observed additive inhibitory effect on Cx43 degradation 

induced by the mixture of TNF-αand IFN-γ. These results indicate that 

intercellular communication of astrocytes is significantly disrupted in the 

inflammatory state, and stimulation of spinal astrocytes with inflammatory 

cytokines led to the significant inhibition of Cx43-GJIC through the activation of 

JNK signaling pathway and proteasome pathway. 

 

2.2. Introduction 

   Astrocytes are one of the major non-neuronal cell types in the central nervous 

system (CNS). One characteristic feature of astrocytes is their high expression 

levels of connexin 43 (Cx43), a protein that forms two types of channels: gap 

junction channels, for direct intercellular communication, and hemichannels, for 

sampling of the extracellular milieu 36-39. It is known that the change in cell 

coupling resulting from tissue injury and pathological conditions is attributed to 

alterations in connexin expression and the subsequent modulation of gap junction 

intercellular communication (GJIC) 36,40. In terms of brain astrocyte function, 

while previous finding highlights the crucial role of Cx43 in the normal 

physiological state, Cx43 also appears to be crucial in pathological states. For 
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example, Pu et al. showed that Cx43 expression level was inversely correlated 

with high-grade astrocytic tumors 41 and Xu et al. showed that astroyctic gap 

junction coupling may contribute to epileptogenesis and other neurological 

deficits in Tuberous Sclerosis Complex 42. The modulation of Cx43 and GJIC in 

astrocytes had been shown to play important roles in the pathology of Parkinson's 

disease 43. To elucidate mechanisms of neuropathological states and, in turn, to 

develop effective therapeutics, understanding the mechanism of communication 

between astrocytes could be as crucial as understanding inter neuronal 

communication. 

  Recently, several studies have reported expression of Cx43 in spinal astrocytes 

in pathological states. Connexin 43 in spinal astroyctes has been shown to be 

significantly down-regulated in inflamed spinal white matter of mice with an 

experimental autoimmune encephalomyelitis compared with healthy controls 14. 

Lee et al. demonstrated that Cx43 is up-regulated in the spinal cord after spinal 

cord injury 44. Furthermore, prior chapter showed Cx43 of spinal cord astrocyte 

was involved the neuropathic pain. While changes in Cx43 expression in the 

pathological state are clearly evident, the mechanism mediating the changes in 

either expression or function of Cx43 in spinal astrocytes remains unclear.  

  Studies in brain astrocytes have reported that proinflammatory cytokines 

released from activated microglia inhibit gap junction activity in brain astrocytes 

24,45, Of these cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β 

(IL-1β) were identified as most responsible for disrupting astrocytic GJIC 24. 

Furthermore, prior chapter also showed Cx43 of spinal cord astrocyte was down 

regulated by TNF in neuropathic pain. Significant release of these particular 

cytokines in the spinal cord have also been reported following spinal cord injury 

and peripheral tissue injury (e.g. sciatic nerve injury), which also results in 
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significant changes in glial function and proliferation 46,47. Whether a similar 

cascade occurs in spinal astrocytes, involving cytokines, Cx43 and ultimately 

GJIC, has yet to be clarified. 

  The current study examined whether proinflammatory cytokines, such as 

TNF-α, IL-1β and interferon-γ (IFN-γ), could cause an alteration of Cx43 

expression and a subsequent functional modulation of GJIC in cultured rat spinal 

astrocyte. Mitogen-activated protein kinase (MAPK) is well known to be activated 

after stimulation with cytokines in astrocytes and could be important in initiating 

the cascade of intracellular events that leads to various neurological disorders 

following injury or disease 48,49. Recently, several researches have focused on the 

role of ubiquitin proteasome system on Cx43 degradation in several cells such as 

human corneal fibroblasts or rat liver epithelial cell line IAR20 50,51. The 

ubiquitin-proteasome system is widely known for its role in intracellular protein 

degradation, that the proteins after labeled with ubiquities were degradation by 

proteasome which a large multi-subunit protease 52. There are a number of 

signaling molecules that are activated following cytokine stimulation. Thus, the 

specific signaling cascade involved in the expression of Cx43 in astrocytes 

following cytokine stimulation was also elucidated.    

 

2.3. Materials and Methods 

Reagents 

  Recombinant rat TNF-α and IFN-γ were obtained from Wako (Tokyo, Japan) 

and IL-1β from PeproTech (Rocky Hill, NJ, USA). Lucifer yellow CH di-potassium 

salt, H89, N-acetylcysteine (NAC) and Thiazolyl Blue Tetrazolium Bromide 

(MTT) were purchased from Sigma Chemical, Co. (St. Louis, MO, USA). U0126, 

SB202190, SP600125, PP1, Epoxomicin and genistein were purchased from Tocris 
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Cookson (Bristol, UK). Gö6983 and AG490 were obtained from Calbiochemical Co. 

(La Jolla, CA, USA). MG132 and 20s proteasome activity assay kit were obtained 

from Cayman Chemical (A. G. Scientific, USA). Epoxomicin was purchased from 

Calbiochemical Co. (La Jolla, CA, USA).  

Primary culture of neonatal rat spinal cord astrocytes 

  Primary spinal astrocytes were prepared from spinal cords of neonatal Wistar 

rats (1–2 days old) according to a previously reported method 53. In brief, the 

isolated spinal cords were minced and then incubated with trypsin and DNase I. 

Dissociated cells were suspended in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% heat-inactivated fetal calf serum and 

penicillin/streptomycin (100 U/ml and 100 µg/ml, respectively). Then, cell 

suspensions were plated in 75 cm2 tissue culture flasks (7.5~10×106 cells/flask) 

precoated with poly-L-lysine (10 µg/ml). Cells were maintained in a 10% CO2 

incubator at 37 °C. After 8~15 days, the mixed glial cells were shaken vigorously 

and washed with PBS in order to remove other cells such as microglia. Cells were 

then replanted onto 35 mm diameter dishes (3.2×105 cells) for use in the following 

experiments. The current method yielded a purity of > 95% astrocytes, as 

determined by glial fibrillary acidic protein (GFAP) immunoreactivity (Data not 

shown). 

Real-time PCR analysis 

  According to a previously reported method 54, total RNA derived from astrocytes 

was prepared by a method involving acid guanidinium thiocyanate–phenol–

chloroform extraction 55 and used to synthesize cDNA with moloney murine 

leukemia virus reverse transcriptase (Applied Biosystems, Foster City, CA, USA) 

and a random hexamer primer. The cDNA synthesized using 1 µg of total RNA in 

each sample were subjected to real-time PCR assays with specific primers and 
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EXPRESS SYBER® Green ERTM qPCR SuperMix (Invitrogen, Carlsbad, CA, USA). 

The sequences of primers were used: Cx43, 5’ - CGTGCAGATGCACTGAA -3 

(forward); 5’ - CCACTGGATGAGCAGGAA -3 (reverse) and 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 5’ - 

AGCCCAGAACATCATCCCTG -3 (forward); 5’ - CACCACCTTCTTGATGTCATC 

-3 (reverse). Thereafter, real-time PCR assays were conducted using a DNA 

engine real-time PCR detection system CFX96 (Bio-Rad Laboratories, Tokyo, 

Japan). A three-step amplification protocol was applied: 3 min at 95 °C followed 

by 40 cycles of 95 °C for 15 s, 60 °C for 30 s, and 72 °C for 30 s. RNA quantities of 

target genes were calculated by the Ct method. Ct values of Cx43 amplification 

were normalized to those of GAPDH amplification.  

Western blot analysis and antibodies 

  Western blot analysis was performed for the detection of Cx43, phospho-JNK 

and phospho-c-jun in rat spinal astrocytes. After treatment with the various drugs, 

the cells were solubilized in radioimmunoprecipitation assay buffer with 

inhibitors (100 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton 

X-100, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 20 µg/ml 

aprotinin, 20 µg/ml leupeptin, 1mM phenylmethylsulfonyl fluoride, and 

phosphatase inhibitor cocktail 2 (Sigma Chemical, Co.)). The lysates were 

centrifuged and the supernatant was added to Laemli’s buffer and boiled at 95°C 

for 5 min. Equal amounts of protein were separated by 7.5% (for Cx43 or β-actin) 

or 10% (for phosphor- or total JNK or phospho-c-jun) SDS–polyacrylamide gel 

electrophoresis and blotted onto nitrocellulose membranes. The membranes were 

incubated with blocking solution, and subsequently incubated with a purified 

polyclonal antibody against rat Cx43 (1:1000, Cell Signaling Technology, Beverly, 

MA, USA)), phospho-JNK (1:1000, Cell Signaling Technology), total-JNK (1:1000, 
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Cell Signaling Technology), phospho-c-jun (1:1000, Cell Signaling Technology) or 

with a monoclonal antibody against β-actin (1:10,000, Sigma Chemical, Co.) 

overnight at 4 °C. After being washed, the membranes were incubated with the 

horseradish peroxidase-conjugated secondary antibody for 1 h at room 

temperature. Thereafter, membranes were rinsed and incubated with 

Luminescence reagent (Thermo Fischer Scientific, Rockford, IL, USA). Finally, 

the membranes were exposed to X-ray film. For quantification of signals for 

proteins, the densities of specific bands were measured with Science Lab Image 

Gauge (Fuji Film, Tokyo, Japan).  

Scrape loading/dye transfer assay 

  Several assays are currently available to determine the GJIC in cultured cells 

56-58. Among these, the scrap loading/dye transfer (SLDT) assay is based on 

monitoring the transfer of the fluorescent dye Lucifer yellow from one cell into 

adjacent cells and has been extensively used to analyze the functional status of 

gap junction in cell culture systems. The SLDT assay utilizing Lucifer yellow was 

performed to examine the effect of cytokines on GJIC between spinal astrocytes 

according to a previously described method 59. Briefly, cells were incubated in 

HEPES-buffered salt solution for 10 min containing the following (in mM): 140 

NaCl, 5.5 KCl, 1.8 CaCl2, 1 MaCl2, 10 glucose, 10 HEPES, pH 7.35. Cells were 

then washed in Ca2+-free HEPES solution for 1 min, and then scrape loading was 

achieved with a razor blade in the same Ca2+-free solution containing Lucifer 

yellow CH (1 mg/ml; Sigma Chemical, Co). After 1 min, cells were washed several 

times with the HEPES-buffered salt solution. After scrap loading for 8 min, 

fluorescent images were captured using an inverted fluorescent microscope 

equipped for epifluorescence (Olympus, Tokyo, Japan) and images were analyzed 

using image-analysis software image J (National Institutes of Health, USA). For 
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each trial, determining the fluorescence area and intensity in time consecutive 

fields performed quantification of the change in GJIC induced by different 

treatments. 

Proteasome activity 

  The proteasome activity was analyzed by using a 20s proteasome assay kit 

according to the manufacturer’s instructions. Briefly, seed astrocytes in a 96-well 

plate at a density of 3×105 cell/well. After treatment, astrocytes were lysate by 20s 

proteasome lysis buffer, then add 20s proteasome substrates SUC-LLVY-AMC to 

incubate for 1 h at 37 °C. Finally, read the fluorescence intensity of AMC using an 

excitation and emission wavelengths of 360nm and 480nm filter set in a 

fluorometer (Perkin Elmer, New York, USA) epifluorescence (Olympus, Tokyo, 

Japan). The AMC standard curve was generated with a dilution series of purified 

Statistical analysis 

  Data are expressed as the mean ± SEM of at least three independent 

experiments. Differences between means were statistically analyzed by one-way 

analysis of variance (ANOVA) followed by post-hoc multiple comparison analysis 

using the Tukey–Kramer method. The differences between vehicle and cytokines 

treatment in the JNK and c-jun phosphorylation studies were analyzed using 

Student’s t-test. A probability value (p) of less than 0.05 was considered to be 

statistically significant. 

 

2.4.  Results 

TNF-α  and IFN-γ  induced a down regulation of Cx43 expression in 

spinal astrocytes 

  To elucidate the effects of TNF-α, IFN-γ and IL-1β on Cx43 expression in spinal 

astrocytes, changes in Cx43 mRNA and protein expression were quantified. As 
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shown in Fig. 2-1A, Cx43 expression was significantly decreased with TNF-α 

treatment at 24 h and 48 h post-treatment and with IFN-γ. Moreover, 

co-treatment with TNF-α and IFN-γ induced a marked decrease in Cx43 mRNA 

expression at both 24 and 48 h post-treatment. By contrast, treatment with IL-1β 

for either 24 or 48 h did not result any significant change in Cx43 mRNA (Fig. 

2-1A).  

  A decrease in Cx43 protein expression was observed with treatment with either 

TNF-α or IFN-γ at both 24 h and 48 h. Similar to the effect observed in Cx43 

mRNA expression, a robust reduction of Cx43 protein expression was obtained by 

a mixture TNF-α and IFN-γ at both 24 and 48 h post-treatment (Fig. 2-1B). By 

contrast, treatment with IL-1β did not result in any significant change in Cx43 

protein expression at either 24 h or 48 h post-treatment (Fig. 2-1C). As a mixture 

of TNF-α and IFN-γ appeared to yield a greater effect on both Cx43 transcription 

and translation than either cytokine alone, the effect of co-incubation with both 

cytokines on Cx43 expression over time was evaluated. A significant decrease in 

Cx43 mRNA expression in spinal astrocytes was apparent as early as 3 h 

post-incubation with the cytokine mixture (Fig. 2-2A). Twelve h following cytokine 

mixture treatment, Cx43 mRNA expression was reduced to approximately 

one-third of that of vehicle treated astrocytes. In addition, the subsequently 

reduction of Cx43 protein expression was obtained by a mixture TNF-α and IFN-γ 

at 6 h post-treatment (Fig.2-2B).  

TNF-α  and IFN-γ  induced an inhibition of GJIC in spinal astrocytes 

  Next, gap junction permeability in cultured spinal astrocytes was determined 

using the SLDT assay. As shown in Fig. 2-3A, Lucifer yellow was transferred 

through GJIC in vehicle-treated astrocytes, indicating functional gap junctions. 

After treatment with either TNF-α or IFN-γ for 48 h, a slight reduction of gap 
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junction permeability was observed but this was not statistically significant 

compared to vehicle-treated astrocytes (p>0.05). By contrast, after co-incubation 

with the cytokine mixture for 48 h, gap junction permeability between spinal 

astrocytes was significant reduced (61.5 ± 9.1%, n=7; p<0.01 vs. vehicle-treated; 

Fig. 2-3B).  

JNK plays a critical role in the inhibitory effect of TNF-α  and IFN-γ  on 

Cx43-GJIC in spinal astrocytes 

  The involvement of MAPK in the down-regulation of Cx43-gap junction induced 

by a mixture of TNF-α and IFN-γ was elucidated by pharmacological approaches. 

Treatment with SP600125, a potent inhibitor of JNK, significantly blocked the 

cytokine mixture-induced decrease of both Cx43 mRNA (Fig. 2-4A) and protein 

levels (Fig. 2-4B and Table 1). In contrast, treatment with either U0126 or 

SB202190, which are the inhibitors of ERK and p38 MAPK, respectively, had no 

effect on either Cx43 mRNA (Fig. 2-4A) or protein expression (Fig. 2-4B and Table 

1). Moreover, the SLDT assay results demonstrated that treatment with 

SP600125 reversed the cytokine mixture-induced down-regulation of gap junction 

function in spinal astrocytes (Fig. 2-5). In contrast, treatment with either U0126 

or SB202190 had no effect on GJIC (data not shown). 

  These findings suggest that the JNK signaling pathway could be involved in the 

TNF-α and IFN-γ induced down-regulation of both Cx43-gap junction expression 

and function. Thus, phosphorylation levels of JNK were measured to determine 

whether JNK was actually activated by both cytokines in cultured spinal 

astrocytes. Co-treatment with both cytokines markedly induced the 

phosphorylation of JNK after 30 min, and this response was significantly elevated 

for at least 12 h (Fig. 2-6A). Thirty minutes pretreatment with SP600125 

significantly suppressed cytokine mixture-induced JNK phosphorylation (Fig. 
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2-6B). In addition, the phosphorylation of c-jun was also analyzed to elucidate a 

potential effect of JNK activity. Phosphorylation of c-jun was also significantly 

increased after co-treatment with both cytokines beginning 30 min after 

incubation, and this response was sustained for at least 12 h (Fig. 2-6C). The 

cytokine mixture-induced up-regulation of phospho-c-jun (3 h) in spinal astrocytes 

was reversed by SP600125 (Fig. 2-6D). 

TNF-α  and IFN-γ  promote the degradation of Cx43 expression in 

spinal astrocytes 

  Furthermore, to investigate the detail mechanism of Cx43 down-regulation, 

next elucidate the effect of TNF-α and IFN-γ on degradation of Cx43 in spinal 

astrocyte used cycloheximide plus assay. As shown in Fig. 2-7, treated with 

cycloheimide (1µm) alone, that a protein synthesis inhibitor caused a 

time-dependent decrease in Cx43 level, after 6 h the Cx43 protein levels were 

decreased by 50% compared to the 0 h. However, this effect was accelerated by 

TNF-α and IFN-γ. In addition, co-treatment with TNF-α and IFN-γ induced a 

marked acceleration in Cx43 degradation (Fig 2-7). This suggests that TNF-α and 

IFN-γ induced the Cx43 degradation in spinal astrocytes.  

Proteasome plays a critical role in the inhibitory effect of TNF-α  and 

IFN-γ  on Cx43-GJIC in spinal astrocytes 

  Next, the involvement of proteasome in the down-regulation of Cx43-gap 

junction induced by a mixture of TNF-α and IFN-γ was elucidated by 

pharmacological approaches. Treatment with MG132, a reversible proteasome 

inhibitor or epoxomicin, an irreversible proteasome inhibitor, respectively, 

significantly blocked the cytokine mixture-induced decrease of both Cx43 protein 

level (Fig. 2-8A) and gap junction function (Fig. 2-8B) in spinal astrocytes.  These 

findings suggest that the proteasome pathway could be involved in the TNF-α and 
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IFN-γ induced down-regulation of both Cx43-gap junction expression and function. 

Thus, proteasome activities were measured by used 20s proteasome assay kit to 

determine whether proteasome was actually activated by both cytokines in 

cultured spinal astrocytes. Co-treatment with both cytokines significantly 

increases the activity of proteasome after 4 h, and this response was significantly 

elevated for at least 12 h. In addition, the cytokine mixture-induced up-regulation 

of proteasome activity in spinal astrocytes was reversed by SP600125 (Fig. 2-9A). 

Furthermore, the inhibited role of co-treatment both JNK and proteasome 

inhibitors on Cx43 down regulation induced by TNF-α and IFN-γ also 

investigated. As shown in Fig. 2-9B, after co-incubation with the inhibitors 

mixture did not result any significant change in Cx43 down regulation induced by 

cytokines-mixture compared the inhibitor single treatment in spinal astrocytes 

(Fig. 2-9B). These results suggest that TNF-α and IFN-γ induce the proteasome 

activation via JNK activation and then decrease the Cx43-GJIC in spinal 

astrocyte.  

  The involvement of other signaling cascades in the regulation of Cx43 

expression which have been reported to be activated after incubation with TNF-α 

and IFN-γ or regulated the Cx43 expression was investigated by pharmacological 

approaches. None of the other inhibitors had a significant effect on Cx43 protein 

expression (Table 2). 

 

2.4.  Discussion 

  The current study demonstrated that TNF-α and IFN-γ, both alone and in 

combination, caused a significant down-regulation of Cx43 in spinal astrocytes, 
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leading to decreased gap junction function, as demonstrated by the SLDT assay, 

which in turn was mediated by JNK-proteasome activation. These results are in 

accordance with a previous report that demonstrated that lipopolysaccharide 

(LPS) treatment of rat cortical astrocytes led to a decrease of Cx43, which was 

mediated by Toll-like receptor 4 60,61. Although LPS is known to produce 

proinflammatory cytokines such as TNF-α and IL-1β 60-62, there are no reports, 

which directly demonstrated that TNF-α and IFN-γ trigger the reduction of Cx43 

expression. In fact, this study suggests that the cytokine IL-1β has no role in the 

reduction of Cx43 expression in spinal astrocytes. Thus, the current study 

suggests that specific cytokines are involved in the down-regulation of Cx43 

following spinal tissue pathology. Furthermore, based on the pharmacological 

effects, the current study indicates that a specific signaling pathway is involved in 

the down-regulation of Cx43 expression and function. The findings in total 

suggest a rational approach to developing treatments for spinal pathologies 

involving astrocytic dysfunction.  

  It is known that a network of astrocytes linked by gap junctions could play an 

important role in maintaining the homeostatic environment of the CNS 63. 

Several cytokines have been reported to contribute to the regulation of Cx43 

expression and GJIC in brain astrocytes but these may differ from those that 

regulate spinal astrocyte Cx43 expression and GJIC. For example, although 

treatment of mouse cortical astrocytes with TNF-α, IFN-γ and IL-1β alone did not 

affect Cx43 and GJIC, co-treatment with TNF-α and IL-1β markedly reduced the 

expression of Cx43 and GJIC 24,59,64. By contrast, in this study, although IL-1β was 

ineffective on Cx43 expression in spinal astrocytes, both TNF-α and IFN-γ alone 

and in combination in particular exhibited prominent inhibitory effects on Cx43 

expression. Furthermore, co-treatment with TNF-α and IL-1β did not exhibit 
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additional decrease of Cx43 expression in spinal astrocytes (data not shown). 

Certainly, it is possible that astrocytes in different region of CNS could have 

distinct properties and responses to various neurochemical stimuli. A differential 

effect between brain and spinal astrocytes of cytokines could form the basis of 

targeted treatment for specific CNS pathologies. Currently, however, there has 

not been extensive differentiation of phenotypes, between brain and spinal 

astrocytes, to confirm such a possibility. 

  The current study is the first to demonstrate that IFN-γ could induce an 

inhibitory effect on Cx43 function. IFN-γ is produced mainly by T-cells and 

natural killer cells, and mediates various immune responses to tissue injury. 

Recently, IFN-γ was shown to be unregulated in the spinal cords of rats with a 

painful peripheral neuropathy 65, in the CNS in a mouse model of amyotrophic 

lateral sclerosis (ALS) 66, and traumatic brain injury 67. The expression of IFN-γ 

in the CNS under various pathological states indicates that it is a ubiquitous 

cytokine and functional in both brain and spinal cord. Spinal astrocytes in 

particular can express the IFN-γ receptor, and are therefore sensitive to the effect 

of IFN-γ 68. Thus, it is concluded that IFN-γ alone has an important role in 

regulating Cx43 expression in spinal cord astrocytes. 

  Interestingly, this study found that co-treatment of TNF-α with IFN-γ further 

suppressed the expression of Cx43 in spinal astrocytes as well as further 

suppressing GJIC. It should be apparent that not one but several cytokines maybe 

found in the CNS under pathological conditions. To better conceptualize the 

clinical effect of cytokines on CNS tissues, the use of combinations of cytokines 

may be more useful rather than individual cytokines. The levels of both TNF-α 

and IFN-γ have been shown increased in the spinal cord under pathological 

situations, such as a model of familial ALS 66,69,70. The onset of symptoms 
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following experimental autoimmune encephalomyelitis correlates with increased 

TNF-α and IFN-γ in spinal cord 71. Thus, in clinical spinal neurodegenerative 

disorders, both TNF-α and IFN-γ are crucial in triggering astrocytic dysfunction.  

  Although it has been reported that cytokines can reduce Cx43 expression in 

various cells types, it is yet unclear, which signaling mechanism underlies the 

cytokine-mediated reduction of Cx43 expression. In the current study, both the 

dysfunction of Cx43 synthesis and Cx43 degradation were involved the Cx43-gap 

junction down-regulation induced by TNF-α and IFN-γ. The main focus was on 

the involvement of MAPK in the TNF-α and IFN-γ induced down-regulation of 

Cx43, because MAPK is known to be activated after stimulation with cytokines in 

spinal astrocytes 48,49. The current results indicated that JNK, but not ERK or p38, 

plays a pivotal role in the TNF-α and IFN-γ induced decrease the mRNA and 

protein levels of Cx43 and GJIC in spinal astrocytes. Furthermore, treatment 

with both cytokines markedly induced the phosphorylation of JNK and c-jun, 

which precedes the down-regulation of Cx43 mRNA expression. The 

phosphorylation of JNK has been observed under various pathological situations 

such as neuropathic or inflammatory pain 72,73, suggesting that activation of this 

kinase in astrocytes is important step in the molecular process that leads, in this 

case, to a chronic pain state. These observations, combined with the current 

findings, indicate that JNK is a crucial factor in the cytokine-mediated regulation 

of Cx43 in spinal astrocytes. Interestingly, in current study suggested that JNK 

also involved the TNF-α and IFN-γ induced Cx43 degradation via proteasome 

activity. It is supported by several recent study that TNF-α or IFN-γ mediated 

astrocyte activity was mediated by proteasome pathway 74,75. Furthermore, C43 

degradation in human corneal fibroblasts or rat BWEM cell was also prevented by 

proteasome inhibitors 36,51. The proteasome system also has been observed under 
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various pathological situations such as chronic pain 76. These observations, 

combined with the current findings, indicate that proteasome is also a crucial 

factor in the cytokine-mediated regulation of Cx43 in spinal astrocytes. However, 

it is also shown that Cx43 ubiquitin was significantly increased in human corneal 

fibroblasts51. Thus, the ubiquitin level of Cx43 in spinal astrocyte after 

treatments with both cytokines are future must be examined.   

  As multiple signaling molecules are involved in the regulation of brain 

astrocytic Cx43, such could also be the case for spinal astrocytes. Previous studies 

indicated that LPS-induced inhibitory effect on Cx43-GJIC in cortical astrocytes 

was mediated through a down-regulation of membrane protein caveolin-3 61. 

NF-κB and the phosphoinositide 3-kinase pathway activated by Toll-like receptor 

3 were implicated in the down-regulation of astrocytic Cx43 expression in human 

fetal brain 77. The molecular mechanism of the reduction of Cx43 synthesis 

combined with JNK activation remains to be clarified, involving either a direct or 

an indirect mechanism. It is possible that JNK could directly activate a 

transcriptional repressor to block the expression of Cx43 mRNA, or via an 

epigenetic mechanism to initiate gene silencing. Indeed, accumulating evidence 

has shown that epigenetic modulation is associated with Cx43 gene expression 

78-80. One possible indirect mechanism is that JNK contributes to the production of 

inhibitory molecules to block Cx43 transcription, thereby reducing Cx43 protein 

expression. Several studies have indicated that cytokines utilize a pathway that is 

highly dependent on treatment with TNF-α and IFN-γ leads to the activation of 

multiple signaling molecules, including PKA, PKC, JAK, src tyrosine kinase and 

ROS 81-84. However, the current study excluded the possibility of involvement of 

these molecules by pharmacological approaches. Thus, our data indicate that 

cytokines utilize a pathway that is highly dependent on JNK phosphorylation, 
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thereby modulating Cx43-GJIC in spinal astrocyte.   

  In conclusion, the current study demonstrated that TNF-α and IFN-γ, 

separately and in combination induced a down-regulation of Cx43 expression in 

spinal astrocytes, which led to decreased gap junction function and that the 

down-regulation is critically dependent on JNK activation and proteasome 

activity. As a consequence of diminished functioning of gap junctions, there is a 

failure of intercellular communication and sensing of the synaptic milieu. Under 

neurodegenerative or neuroinflammatory conditions, JNK appears to have an 

essential transcriptional role in dysfunctional spinal astrocytes. Indeed, JNK 

appears to be involved in a number of processes in both glia and CNS neurons 

following injury 73,85. In addition, the proteasome activities have an important role 

on protein degradation. Further elaborating the molecular mechanism that 

down-regulates the expression of Cx43 might lead to new strategies to rescue CNS 

tissue in diverse neurological disorders.   
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Summary  

  In chapter 1 demonstrated that after nerve injury spinal astrocytic 

Cx43 was decreased via TNF-α  and then induced GLT-1 down 

regulation. These responses induced neuropathic pain via 

glutamatergic transmission. 

  In chapter 2 demonstrated that treatment of spinal astrocyte with 

mixture of cytokines (TNF-α ,  IFN-γ) led to a decrease of Cx43 

expression via JNK and proteasome pathway. 

 

 

Schematic illustration of the role of Cx43 on neuropathic 

pain (in vivo) and the signaling pathway of Cx43 down 

regulation in spinal astrocyte (in vitro). 
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Table.2-1. Effect of MAPK on the cytokines-mediated down-regulation on 

Cx43 protein expression in spinal astrocytes. 

inhibitor           Cx43 protein expression 
TNF-α + IFN-γ +Inhibitors      Inhibitors 

U0125 (10 µM, P38 inhibitor) 
SB202125 (10 µM, ERK inhibitor) 
SP600125 (10 µM, JNK inhibitor) 

0.294 + 0.048  
0.294 + 0.048 
0.294 + 0.048 

0.414 + 0.091   0.940 + 0.095 
0.214 + 0.085   0.847 + 0.183 
0.667 + 0.052++ 1.083 + 0.105 

 The levels of Cx43 protein in spinal astrocytes incubated with or without inhibitors are 
expressed as a ratio of protein levels from vehicle-treated astrocytes. Astrocytes were 
pretreated for 30 min with inhibitor before treatment with the cytokine mixture (TNF-α 
10 ng/ml and IFN-γ 5 ng/ml). Data represent the mean + SEM for 3 independent 
experiments. ++P<0.01 vs. TNF-α + IFN-γ. 
 

Table.2-2. Effect of several kinds of inhibitors on the cytokines-mediated 

down-regulation on Cx43 protein expression in spinal astrocytes.  

Inhibitor Cx43 protein expression 

TNF-α + IFN-γ + Inhibitors  
H89 (10 µM, PKA inhibitor)  0.362 + 0.012  0.357 + 0.088 
Go6983 (3 µM, PKC inhibitor)  0.366 + 0.021  0.322 + 0.092 
PP1 (20 µM, tyrosine kinase inhibitor)  0.357 + 0.017  0.411 + 0.137 
Genistein (50 µM, tyrosine kinase 
inhibitor) 

 0.380 + 0.015  0.464 + 0.129 

NAC (1 mM, Ros inhibitor)  0.385 + 0.111  0.459 + 0.106 
AG490 (10 µM, JAK inhibitor)  0.300 + 0.027  0.338 + 0.016 
  The levels of Cx43 protein in spinal astrocytes incubated with or without inhibitors are 
expressed as a ratio of protein levels from vehicle-treated astrocytes. Astrocytes were 
pretreated for 30 min with inhibitor before treatment with the cytokine mixture (TNF-α 
10 ng/ml and IFN-γ 5 ng/ml). Data represent the mean + SEM for at least 3 independent 
experiments. 
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Figure1-1. PSNL induced change of tactile mechanical threshold and Cx43 
expression in spinal dorsal horn.  
  After PSNL treatment, the withdrawal thresholds of the ipsilateral hind (A) and 
expression of Cx43 in ipsilateral hind spinal dorsal horn were measured by von Frey test 
and Western blotting, respectively for the periods indicated (3, 7, 14 or 21 day). (A) The 
values are expressed as the weight of von-Frey filament. (B) In Western blots Cx43 
protein levels were normalized to that of β-actin, which served as an internal control, and 
expressed as ratio of the level of sham group at the corresponding time point. The data 
represent the mean + SEM (bar) of at least three independent experiments. **P < 0.01 vs. 
sham group.  
 

 
Figure1-2. Cx43 downregulation in spinal cord induced change of tactile 
mechanical threshold. 
  After intreathecal injected siRNA (5 pg), expressions of Cx43 in spinal dorsal horn and 
mechanical thresholds were measured by western blotting (A) and von-Frey test (B), 
respectively for the periods indicated (1, 2, 3, 5 or 7 day). After intreathecal injection of 
carbenoxolone (CBX, 5 pg), the mechanical thresholds were measured by von-Frey test 
(C). The data represent the mean + SEM (bar) of at least three independent experiments. 
**P < 0.01 vs. control siRNA group or saline group.  
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Figure1-3. PSNL induced change of tactile mechanical threshold and Cx43 
expression in spinal dorsal horn.  
  The change of Cx30 expression in ipsilateral hind spinal dorsal horn at 7 and 14 days 
after PSNL treated mice (A) and in spinal dorsal horn at 3 days after Cx43 siRNA treated 
mice (B) were measured by Western blotting. The Cx30 protein levels were normalized to 
that of β-actin, which served as an internal control, and expressed as ratio of the level of 
sham group or control siRNA group. The data represent the mean + SEM (bar) of at least 
three independent experiments. 
 

 
Figure1-4. TNF-α  involves the PSNL induced down regulation of Cx43 in spinal 
dorsal horn. 
  The protocol of repeated-intrathecal injected with etanercept for PSNL mice (A). The 
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expression of Cx43 in the spinal dorsal horn in PSNL mice (B) or TNF-α treated mice (D) were 
measured by western blotting. The change of withdrawal thresholds after etanercept 
treatment mice (C) or TNF-α treated mice (E) was measured by von Frey test. The data 
represent the mean + SEM (bar) of at least three independent experimens. **p<0.01 vs. 
sham-saline group or saline group. 
 

 
Figure1-5. Glutamate receptors antagonists attenuate the Cx43 siRNA-induced 
mechanical hypersensitivity  
  After treated several antagonists including MK801 (A), CNQX (B), CP96345 (C) or 
cabapentin (D), the change of mechanical hypersensitivity induced by Cx43 siRNA were 
measured by von Frey test.  Values are expressed as the weight of von-Frey filament. The 
data represent the mean + SEM (bar) of at least three independent experiments. *p<0.05, 
**p<0.01 VS. sicon-saline group. +p<0.05, ++p<0.01 VS. siCx43-saline group. 
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Fig.1-6. The down-regulation of Cx43 expressions were related GLT-1 decreasing 
in spinal dorsal horn. 
  After treatment with PSNL (a) or Cx43 siRNA (b), the expression levels of GL-1 in spinal 
dorsal horn were measured by Western blotting. After treatment with carbenoxolone (CBX) 
the Cx43 expression (c) and GLT-1 expression (d) were also measured by Western blotting. 
The data represent the mean + SEM (bar) for at least three independent experiments, 
**P<0.01 vs. sham group, control-siRNA group or saline group.  
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Figure1-7. The expression of GLAST in spinal dorsal horn not changed following 
Cx43 down regulation. 
  The expression of GLAST in the ipsilateral hind spinal dorsal horn at PSNL mice (A) and in 
spinal dorsal horn in Cx43 siRNA treated mice (B) were measured by Western blotting. The 
GLAST protein levels were normalized to that of β-actin, which served as an internal control, 
and expressed as ratio of the level of sham group or control siRNA group. The data represent 
the mean + SEM (bar) of at least three independent experiments. **P<0.01 vs. sham group. 
 

 

Fig.2-1. Effect of cytokines on the expression of Cx43 in cultured rat spinal 
astrocytes.  
  After treatment of spinal astrocytes with either TNF-α (TNF, 10 ng/ml), IFN-γ (IFN, 5 
ng/ml), IL-1β (10 ng/ml) or a mixture of TNF-α and IFN-γ (TNF+ IFN) for 24 or 48 h, the 
expression levels of Cx43 mRNA (A) and protein (B) were analyzed by real-time PCR and 
Western blotting, respectively. (A) The expression of Cx43 mRNA was normalized to that of 
GAPDH mRNA, used as an internal control. Data are expressed as a ratio of the level of 
vehicle-treated astrocytes. (B) In Western blots Cx43 protein levels were normalized to that of 
β-actin, which served as an internal control, and expressed as ratio of the level of 
vehicle-treated astrocytes. The data represent the mean + SEM (bar) of at least 3 independent 
experiments, *P < 0.05, **P < 0.01 vs. vehicle-treated. 
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Fig.2-2. Time dependent effects of co-treatment with TNF-α  and IFN-γ  on Cx43 
mRNA and protein levels.  
  Spinal astrocytes were treated with a mixture of TNF-α (TNF, 10 ng/ml) and IFN-γ (IFN, 5 
ng/ml) for the periods indicated (0.5, 1, 3, 6, 9 or 12 h). The expressions level of Cx43 mRNA 
(A) and protein (B) were measured by real-time PCR and Western blotting, respectively. Data 
represent the mean + SEM (bar) at least 3 independent experiments, **P < 0.01 vs. 
vehicle-treated. 
 

 
Fig.2-3. Effect of co-treatment with TNF-α  and IFN-γ  on the function of GJIC in 
cultured spinal astrocytes.  
  Spinal astrocytes were treated with either TNF-α (TNF, 10 ng/ml), IFN-γ (IFN, 5 ng/ml) or 
both for 48 h. After incubation, cells were cut with a razor blade in the presence of Lucifer 
yellow. (A) Spreading of the dye was taken as an indicator for intercellular junction coupling. 
Scale bar, 100 µm. (B) The graph represents the quantitation of the spreading fluorescent 
area × intensity. The values are expressed as a ratio of vehicle-treated astrocytes. The data 
represent the mean + SEM (bar) for at least 3 independent experiments, **P<0.01 vs. 
vehicle-treated. 
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Fig.2-4. Effect of MAP kinase inhibitors on cytokine-mediated down-regulation 
of Cx43 in cultured spinal astrocytes. 
After treatment with U0126 (U, 10 µM), SB202190 (SB, 10 µM) or SP600125 (SP, 10 µM) for 
30 min, spinal astrocytes were stimulated with a mixture of cytokines (TNF-α 10 ng/ml, IFN-γ 
5 ng/ml) for 48 h. The expression levels of Cx43 mRNA and protein were measured by 
real-time PCR (A) and Western blotting (B), respectively. The data represent the mean + 
SEM (bar) for at least 3 independent experiments, **P<0.01 vs. vehicle-treated. +P<0.05 vs. 
TNF-α + IFN-γ. ++P<0.01 vs. TNF-α + IFN-γ. 
 

 
Fig.2-5. Effect of JNK inhibitors on cytokine-mediated down-regulation of GJIC 
in cultured spinal astrocytes 
  After incubation with SP600125 (SP, 10 µM) for 30 min, cells were stimulated with a 
mixture of TNF-α (TNF, 10 ng/ml) and IFN-γ (IFN, 5 ng/ml) for 48 h. Then, GJIC between 
spinal astrocytes was measured by the SLDT assay. Upper panels indicate representative 
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results. Scale bar, 100 µm. The graph in the lower part of figure 6 is quantitation of the 
spreading fluorescent area × intensity. The values are expressed as a ratio of vehicle-treated. 
The data represent the mean + SEM (bar) for at least 3 independent experiments, **P<0.01 
vs. vehicle-treated. ++P<0.01 vs. TNF-α + IFN-γ. 
 

 
Fig.2-6. Effect of co-treatment with TNF-α  and IFN-γ  on JNK and c-jun 
phosphorylation levels in cultured spinal astrocytes. 
  The time-courses (hours) of JNK phosphorylation (A) and c-jun phosphorylation (C) after 
co-incubation with TNF-α (TNF, 10 ng/ml) and IFN-γ (IFN, 5 ng/ml) are shown. Upper panel 
are representative blots. The graph in the lower part of the figure represents quantitative 
data for each blot. Each level of JNK phosphorylation was normalized for total JNK and c-jun 
phosphorylation was normalized for β-actin and expressed as a ratio of vehicle-treated levels. 
The effect of SP600125 on the phosphorylation levels of JNK (B) after stimulation with both 
cytokines for 30 min and phosphorylation levels of c-jun (D) after stimulation with both 
cytokines for 3 h are shown. Data represent the mean + SEM (bar) for at least 3 independent 
experiments, *P < 0.05, **P < 0.01 vs. vehicle-treated, +P<0.05 vs. TNF-α + IFN-γ, ++P<0.01 vs. 
TNF-α + IFN-γ. 
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Figure2-7. Effect of TNF-α  and IFN-γ  on the Cx43 degradation in spinal 
astrocytes. 
  Spinal astrocytes treated with cycloheximide (1µM) for the periods indicated (0, 2, 4 or 6 h) 
after 3 h treated TNF-α (TNF, 10 ng/ml), IFN-γ (IFN, 5 ng/ml) or TNF-α+IFN-γ (TNF+IFN) 
(A). The expression levels of Cx43 protein were measured by Western blotting (B). Data 
represent the mean + SEM (bar) at least 3 independent experiments, *P < 0.05 vs. 
vehicle-treated at respectively h. 
 

 
Fig.2-8. Effect of proteasome inhibitors on cytokine-mediated down-regulation of 
Cx43-gap junction in cultured spinal astrocytes. 
  After treatment with either MG132 (MG, 5 µM) or epoxomicin (epoxo, 25 nM) for 1 h, spinal 
astrocytes were stimulated with a mixture of cytokines (TNF-α, TNF 10 ng/ml, IFN-γ, IFN 5 
ng/ml) for 24 h. The expression levels of Cx43 protein and gap junction function were 
measured by Western blotting (A) and SLDT assay (B), respectively. The data represent the 
mean + SEM (bar) for at least 3 independent experiments, **P<0.01 vs. vehicle-treated. 
+P<0.05 vs. TNF-α + IFN-γ. ++P<0.01 vs. TNF-α + IFN-γ 
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Fig.2-9. The JNK activity plays an important role in the cytokines-induced 
proteasome activity. 
  After treatment with SP600125 for 30 min, astrocytes were treated a mixture of cytokines 
(TNF-α, TNF 10 ng/ml, IFN-γ, IFN 5 ng/ml) for 4, 8 or 12 h. the proteasome activity was 
measured by using 20s proteasome assay kit (A). After treatment with either SP600125 (SP, 
10 µM), MG132 (MG, 5 µM), epoxomicin (epoxo, 25 nM), a mixture of SP600125+MG132 or a 
mixture of SP600125+epoxomicin for 1 h, cells were stimulated with a mixture of cytokines 
for 24 h. Data represent the mean + SEM (bar) for at least 3 independent experiments, *P < 
0.05, **P < 0.01 vs. vehicle-treated, +P<0.05 vs. TNF-α + IFN-γ, ++P<0.01 vs. TNF-α + IFN-γ. 

 

 


