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Pressure-Induced Antiferroquadrupole Order in CeTe
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We have discovered that the magnetic phase diagram of CeTe under high pressure becomes
quite similar to that of CeB6, strongly suggesting that an antiferroquadrupolar ordering is
realized. At 1.2 GPa, the transition temperature increases from 3 K at 0.5 T to 6.3 K at 14.5
T. Since the crystal-field ground state of CeTe is the Γ7 doublet without a quadrupolar degree
of freedom, this ordering is considered to be realized through the off-diagonal matrix element
between Γ7 and Γ8 excited state, whose energy level is lowered with increasing the pressure.
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Hybridization between localized 4f and itinerant elec-
trons causes various kinds of intriguing phenomena.
One important effect of hybridization is the Kondo ef-
fect, the screening of the localized magnetic moment by
the conduction electrons. The hybridization also causes
magnetic interaction of Ruderman-Kittel-Kasuya-Yosida
type, usually giving rise to an antiferromagnetic order.
The competition between these two effects have been
one of the main subjects in the field of f -electron mag-
netism.1) For fundamental understanding of the phenom-
ena, studying physical properties of compounds with sim-
ple and well characterized electronic structure is of signif-
icant importance. Ce monochalcogenides, CeXc (Xc=S,
Se, Te), are the typical systems of such importance.

CeXc crystallizes in a NaCl-type structure with the va-
lence states of X2−

c and Ce3+. Two electrons from Ce are
used to occupy the valence p-bands of Xc and one remain-
ing electron enters into the conduction bands composed
of the 5d orbitals of Ce. As a result, all the CeXc’s be-
come metals with one conduction electron per formula
unit. The top of the p band is at the Γ-point of the Bril-
louin zone, the bottom of the 5d band at the X-point, and
the 4f level lies in the energy gap between the p band and
the 5d band. All of these characters have been well estab-
lished by the angle resolved photoemission spectroscopy
and the de Haas-van Alphen effect measurement.2,3)

One of the unsolved problems in the CeXc system is
the small ordered moment in CeTe. All the three com-
pounds exhibit type-II antiferromagnetic (AFM) orders
with q=π

a ( 1
2 , 1

2 , 1
2 ) at TN=2.2 K for CeTe, 5.4 K for CeSe,

and 8.4 K for CeS.4–7) The ordered moment at the low-
est temperature is 0.3 µB for CeTe, 0.56 µB for CeSe,
and 0.57 µB for CeS. It is well established that the crys-
talline electric field (CEF) ground state is the Γ7 doublet
and the Γ8 quartet excited state is located at 32 K for
CeTe, 116 K for CeSe, and 140 K for CeS.6–8) The reduc-
tions of the ordered moment from 0.71 µB expected for
Γ7 may be due to the Kondo effect. However, contrary
to the sequence of the moment reduction, the hybridiza-
tion effect is considered the strongest in CeS and the

weakest in CeTe, which is inferred from the sequence of
the lattice constant and the Néel temperature. CeXc sys-
tem is considered to be located in the low hybridization
regime in the Doniach’s diagram. This interpretation is
actually supported by the change in the spectral width
of the CEF excitation in neutron scattering; CeS has
the broadest width and CeTe the narrowest.9) Although
a possibility of ferromagnetic correlation is theoretically
suggested to be in competition with the AFM order, no
such indication has been observed experimentally.10)

In order to study the hybridization effect in CeTe, we
have performed magnetization measurements under high
pressure. By examining the changes in TN and the satura-
tion moment by pressure, it is expected that more direct
information on the hybridization effect can be extracted
than by comparing the properties among different chalco-
gen compounds. Exceeding what we expected from the
above motivation, we have discovered that the field-
induced phase at an ambient pressure becomes dominant
under high pressure. Although this phase was suggested
to be associated with an antiferroquadrupole (AFQ) or-
der, it remained uncertain and no detailed study has been
performed.3) In this Letter, we report on the unexpected
expansion of this ordered phase, which is quite likely to
be an AFQ order similar to that of CeB6.

The magnetization measurement was performed by a
standard extraction method using a 15 T cryomagnet
system and also by using a SQUID magnetometer (Quan-
tum Design, MPMS, up to 5 T). We used CuBe based
piston-cylinder type high pressure clamp-cells with outer
diameters of 16 mm and 8.7 mm for the measurements in
the 15 T magnet and the SQUID magnetometer, respec-
tively.11) Daphne oil was used as a pressure transmitting
medium. Pressure at low temperature was determined by
measuring the superconducting transition temperature
of Sn. Details of the sample preparation are described in
ref. 3. A cube shaped single crystal with (001) cleaved
surfaces was put in the pressure cell and the magnetic
field was applied along the [001] direction.

Figure 1 shows the temperature dependences of the
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Fig. 1. Temperature dependence of magnetization under high
pressure of 1.2 GPa. Arrows indicate the transition tempera-

tures. Low field region is shown in the bottom figure in the form
of M/H with vertical shifts indicated in the parentheses.

magnetization at 1.2 GPa, the maximum pressure in the
present study, measured in the 15 T magnet. At low
fields below 1 T, two anomalies are clearly observed, in-
dicating phase transitions. One is at around 3 K, below
which M(T ) exhibits an upturn. The other is at around
2 K, where M(T ) exhibits a cusp. The temperatures for
the former and the latter transitions were determined by
taking the second and the first derivatives of the M(T )
curve, respectively, which are indicated by the arrows in
the figure. The anomaly at 2 K is considered as reflect-
ing an AFM order. The transition temperature decreases
with increasing the field. On the other hand, the tem-
perature for the 3 K anomaly at 0.2 T increases with
increasing the field and reaches 6.3 K at 14.5 T. This be-
havior is hardly expected from normal antiferromagnetic
orderings.

This anomalous behavior of M(T ) in Fig. 1 immedi-
ately reminds us that of CeB6, a typical system exhibit-
ing an AFQ and AFM orderings with TQ = 3.3 K and
TN = 2.3 K, respectively. The upturn in M(T ) on en-
tering the AFQ phase and the increase in TQ with in-
creasing the field are quite similar to those of CeB6.12–14)

This close resemblance strongly suggests an AFQ order
in CeTe at 1.2 GPa.

Figure 2 shows the results at 0.45 GPa measured also
in the 15 T magnet. At low fields below 3 T, only the
anomaly corresponding to the AFM order is observed.
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Fig. 2. Temperature dependence of magnetization under high
pressure of 0.45 GPa. Arrows indicate the transition tempera-
tures. Low field region is shown in the bottom figure in the form

of M/H with vertical shifts indicated in the parentheses.

The anomaly corresponding to the AFQ order is observed
clearly only above 5 T. At 3 T, it was difficult to de-
termine the transition temperatures unambiguously be-
cause the anomalies in M(T ) were very weak. The small
arrows in Fig. 2 indicate the weak anomalies which we
consider as the AFQ and AFM orderings from the char-
acteristics of the temperature derivatives.

The experimentally determined transition points are
summarized in the H-T magnetic phase diagram in
Fig. 3.15) The ordered phases are numbered I and II af-
ter ref. 3. The AFM phase at 1.2 GPa is numbered I’
because it is not certain whether its magnetic structure
is the same as that of phase I. The phase I is connected
to the paramagnetic phase, whereas the phase I’ is in-
side the phase II, suggesting that the I-II and the I’-II
transitions are first and second order, respectively. Ex-
perimental data indicating the boundary between phases
I and II for 0 GPa and 0.45 GPa are shown in Fig. 4. The
first derivative of the M(H) curve exhibits a clear peak
when crossing the boundary between phases I and II,
referred to as HI-II

c hereafter.
The Néel temperature initially increases with increas-

ing the pressure. TN at 0.5 T is 2.0 K at 0 GPa, whereas
it increases to 2.35 K at 0.45 GPa. HI-II

c also increases
linearly from 1 T at 0 GPa to 4 T at 0.45 GPa. These
results imply that the antiferromagnetic interaction is
enhanced by the pressure through an increase in the hy-
bridization, which is consistent with the initial conjecture



J. Phys. Soc. Jpn. Letter Y. Kawarasaki et al. 3

�������
� �
	���
�

�

���

��� ���������
� � ��!
"

#%$'&�$
(�) )+* ,-,/.10

2

3
4

3
5

4

5

67 8
9

:;<5
=?>+@�A

BDC E�F�G�H
I�I

JLK

Fig. 3. Magnetic phase diagram of CeTe under high pressures.
Solid and open symbols are from M(T ) and M(H) measure-

ments, respectively. The vertical axes for 0 GPa and 0.45 GPa
are shifted by 10 T and 5 T, respectively. The lines are guides for
the eye. The dashed lines are speculations to T=0. The dotted
lines for 0.45 GPa are the obscure boundaries that were difficult

to determine unambiguously.

that the CeXc system is located in the low hybridization
regime in the Doniach’s diagram. It is intriguing that the
increase in HI-II

c is much larger than the increase in TN.
Above 0.5 GPa, the AFQ interaction seems to over-

come the competition with the AFM interaction. One dif-
ficulty in describing this region stems from the fact that
the M(H) curve does not exhibit a detectable anomaly
at HI-II

c as those in Fig. 4. Nevertheless, if we regard HI-II
c

as the critical field above which the M(T ) curve exhibits
the upturn anomaly at TQ, as is the case below 0.5 GPa,
it is inferred that HI-II

c above 0.5 GPa decreases with
increasing the pressure. Although it is speculated that
the phase II comes down to H=0 around 1 GPa with
TQ > TN, no clear data has been obtained yet. Details of
this crossover region will be a subject in future research.

If the phase II were really the AFQ phase, the Γ8

excited state must be involved because the Γ7 ground
state has no quadrupolar degree of freedom. Since the
phase II is more enhanced by the pressure, the Γ8 level
is expected to be lowered with increasing the pressure.
One evidence is the increase in the saturation moment
estimated at 14.5 T. To demonstrate the Γ8-level low-
ering more clearly, we show in Fig. 5 the temperature
dependences of the inverse magnetization as a function
of pressure. As expected, the deviation from the free
ion curve reflecting the CEF is suppressed with increas-
ing the pressure. The splitting energy, ∆, was estimated
by comparing the data with the calculated curves from
H = ∆(O0

4 + 5O4
4)/360 + gµBJzH, where the first term

represents the CEF for a Ce3+ ion and the second term
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Fig. 4. Magnetic-field dependences of magnetization and their

field derivatives. The M(H) curves were measured in the SQUID
magnetometer for P=0 GPa and in the 15 T magnet for P=0.45
GPa, respectively. The arrows on the peaks in dM/dH represent
the phase boundaries plotted in Fig. 3.
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Fig. 5. Temperature dependences of inverse magnetization at

H=5 T. The solid lines are the calculated curves described in
the text. The dotted line is for a free ion without CEF. The in-
set shows the pressure dependence of the CEF splitting obtained
from the fitting.

the Zeeman effect.16) The obtained parameter ∆ is shown
in the inset. At low temperatures below 5 K, the data de-
viate from the calculated curve because of the inter-ionic
interaction and the orderings, which are not taken into
account in the calculation.

The AFQ ordering with the Γ7 ground state has been
studied previously by Hanzawa.17) The most important
point in this case is that the Eg-type quadrupolar mo-
ments, O20 and O22, have a large diagonal matrix ele-
ment between the Γ8 states, whereas the T2g-type mo-
ments, Oyz, Ozx, and Oxy, have a large off-diagonal
matrix element between the Γ7 and Γ8 states. No ele-
ment exists between the Γ7. As a result, when a Eg-type
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quadrupolar moment orders, the Γ8 splits into two dou-
blets and one of them necessarily becomes the ground
state, resulting in a huge level splitting which would
affect the properties significantly. The ordering is sim-
ply destroyed in magnetic fields by the Zeeman splitting
of the Γ8 quartet. On the other hand, when a T2g-type
quadrupolar moment orders, some of the Γ8 component
is mixed into the Γ7 ground state and the Γ8 splits into
two doublets at the excited level. When a magnetic field
is applied, the ratio of the Γ8 component in the ground
state increases, the order parameter is enhanced through
the off-diagonal matrix element, and the transition tem-
perature increases. This is consistent with the present
experimental results. Therefore, the AFQ order parame-
ter in CeTe under high pressure is likely to be of T2g-type.
The calculated magnetic phase diagram and the M(T )
curves for the Oyz-type order parameter seems to repro-
duce the present experimental result very well.17)

The suppression of the CEF by the pressure is also in-
triguing because this is associated with the hybridization
and the Coulomb interactions with the itinerant p and
d electrons. It should be noted that this is also observed
in Ce monopnictides.18,19) The point charge effect has
nothing to do with this phenomenon because the volume
compression should lead to the increase in the CEF. In
addition, the volume compression is about 1.7 % at 1
GPa,20) which corresponds to the reduction in the inter-
ionic distance by about 0.57 %, giving negligibly smaller
change in the point charge effect than the observation
shown in Fig. 5.

The existence of the p-f mixing in CeTe has been
evidenced by the angle resolved photoemission spec-
troscopy.2) With respect to the contribution of the p-
f mixing to the CEF, previous theoretical study for
Ce monopnictides may be applied.21) In contrast to Ce
monopnictides, it is not necessary to consider the f → p
transfer process (f0 intermediate state) because the va-
lence p-band is fully occupied in CeXc. Only the p → f
transfer process (f2 intermediate state) contributes to
the shift of the CEF level. Fig. 2 of ref. 21 shows that
this process favors the Γ7 to be the ground state. If we
ascribe the Γ8-level lowering to this p-f mixing effect, the
lowering corresponds to the increase in the transfer pa-
rameter (pfπ)/(pfσ). However, it seems unreasonable to
assume (pfπ) increases more than (pfσ) under pressure.

The change in the CEF under pressure is considered
to be associated with the change in the d-f Coulomb
and hybridization effects. However, a quantitative argu-
ment is quite difficult. Since the occupied 5d conduction
band mainly consists of the t2g orbitals, the d-f direct
Coulomb interaction favors the Γ8 to be the ground state
to avoid the Coulomb repulsion energy. On the other
hand, the d-f exchange Coulomb interaction favors the
opposite.21,22) It is also argued that the d-f hybridiza-
tion effect plays a major role.10,23)

In summary, we have found that the field-induced
phase II of CeTe at ambient pressure is stabilized under
high pressure. From the close resemblance of the mag-
netic phase diagram with that of CeB6, this phase is
almost certainly an AFQ ordered phase, which was sug-
gested previously but was uncertain.3) This AFQ order

is considered to be caused by the off-diagonal matrix ele-
ment of Oyz, Ozx, and Oxy between the Γ7 ground state
and the Γ8 excited state. Magnetization measurements
for other field directions to study the anisotropy are in
progress. To prove the AFQ order, microscopic investi-
gation of a field induced antiferromagnetism by neutron
diffraction or NMR is necessary. The moment reduction
at ambient pressure might be associated with the com-
petition with the AFQ order, but it is still an open ques-
tion. It was also shown that the Γ8 energy level is lowered
down by the pressure, which is probably associated with
the d-f Coulomb and hybridization effects. We consider
that the Γ8-level lowering stabilizes the AFQ order. Stud-
ies in more higher pressures will be very interesting from
expectations of further increase in TQ, lowering in the Γ8

energy level, and increase in the Kondo effect.
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