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Summary

A GPU (Graphics Processing Unit) is a hardware specialized for graphics processing.

Since GPUs have a lot of cores and very high memory bandwidth, we can accelerate

graphics processing using GPUs. Modern GPUs are designed for general purpose com-

puting and can perform computations in various applications. Thus, a GPU attracts a

lot of attention as a computational accelerator and many studies have been devoted to

implement parallel algorithms using GPUs. The GPU has two types of memories: the

global memory and the shared memory. The latency of memory access is longer than

that of arithmetic operations. Hence, the efficient usage of the global memory and the

shared memory is a key to accelerate applications using GPUs.

Applications require arithmetic operations on integer numbers which exceed the

range of processing by a CPU directly is called multiple-length numbers or multiple-

length precision numbers and hence, computation of these numbers is called multiple-

length arithmetic. More specifically, application involving integer arithmetic opera-

tions for multiple-length numbers with size longer than 64 bits cannot be performed

directly by conventional 64-bit CPUs, because their instruction supports integers with

fixed 64 bits. To execute such application, CPUs need to repeat arithmetic operations

for those numbers with fixed 64 bits which increase the execution overhead. Suppose

that a multiple-length number is represented by w words, that is, a multiple-length num-

ber is 64w bits on conventional 64-bit CPUs. The addition of such two numbers can

be computed in O(w) time. However, the multiplication generally takes O(w2) time.

Multiple-length multiplication is widely used in various applications such as crypto-

graphic computation, and computational science. Since multiple-length numbers of size

thousands to several tens of thousands bits are used in such applications, the accelera-



tion of the computation of their multiplications is in great demand. Also, considering

practical cases, a large number of multiplications are usually computed. Therefore,

the acceleration of a lot of multiple-length multiplications is necessary. Because of

the above background, this dissertation shows a GPU implementation for bulk execu-

tion of multiple-length multiplication. In addition, this dissertation shows GPU imple-

mentations for exhaustive verification of the Collatz conjecture which needs to perform

multiple-length multiplications.

We present a GPU implementation for a large number of multiple-length multipli-

cations. The idea of our GPU implementation is to adopt a warp-synchronous program-

ming technique. We assign each multiple-length multiplication to one warp that consists

of 32 threads. In warp-synchronous programming technique, execution of threads in a

warp can be synchronized instruction by instruction without any barrier synchronous op-

erations. Also, inter-thread communication can be performed by warp shuffle functions

without accessing shared memory. We propose 1024-bit multiple-length multiplication

method using warp-synchronous programming technique. Our GPU implementation for

1024-bit multiple-length multiplications runs 52 times faster than the sequential CPU

implementation. Moreover, we use this 1024-bit multiplication method for larger size

of bits as a sub-routine. The GPU implementation attains a speed-up factor of 21 for

65536-bit multiple-length multiplications.

Consider the following operations on an arbitrary positive number: if the number

is even, divide it by two, and if the number is odd, triple it and add one. The Collatz

conjecture asserts that, starting from any positive number, repeated iteration of the oper-

ations eventually produces the value 1. We propose GPU implementations of exhaustive

verification of the Collatz conjecture. Our GPU implementation attains a speed-up fac-



tor of 249 over the sequential CPU implementation. Additionally, the number of the

above operations until a number reaches 1 is called delay that is one of the mathemat-

ical interests for the Collatz conjecture. Using similar ideas, our GPU implementation

counting the delay achieves a speed-up factor of 73.
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Chapter 1

Introduction

1.1 Background and motivation

Since general processors do not support instructions of integers larger than 64 bits, arith-

metic operations of these integers cannot be performed directly. The integer which ex-

ceed the range of processing by a CPU directly is called multiple-length number and the

arithmetic operations of these numbers are called multiple-length arithmetic. However,

in cryptographic computation and computational science, multiple-length arithmetic op-

erations are necessary. If we use r-bit integers to represent a R-bit multiple-length num-

ber, w = ⌈R
r ⌉ words are necessary and multiple-length operations for such numbers are

performed by repearing arithmetic operations with r-bit. Although the computational

cost of the addition of such two numbers is O(w), the cost of the multiplication is O(w2)

in general. Therefore, the acceleration of multiple-length multiplication is a key of the

acceleration of computations in cryptographic computation and computational science.

Many multiple-length multiplication algorithms are developed. School method is

the most popular algorithm. This method multiplies the multiplicand by each word
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of the multiplier and then add up all the properly shifted results. If we apply School

method to multiple-length multiplication A · B, where A and B have w words, the com-

putation cost is O(w2). Comba method [4] is a multiplication algorithm which takes

into account a characteristic of computers. In general, the latency of memory access is

longer than that of arithmetic operations. Hence, Comba method reduces the number

of memory access. Although the computation cost of Comba method is also O(w2), the

number of memory access of this method is less than that of School method. Toom-

Cook method [28] has lower complexity than School and Comba methods. This method

is based on the principles of polynomial multiplication and divides input numbers into

several smaller numbers to reduce the number of multiplications. As far as we know,

Fürer method [10] used FFT (Fast Fourier Transform) has lowest complexity among

multiplication methods. When input numbers are very large, Fürer method is fastest in

multiplication methods. Although the computation cost of School and Comba methods

is O(w2), when input numbers are not quite large, these methods are faster than other

methods. Hence, it is important to use the algorithm which is suited to the length of

input numbers.

A GPU (Graphics Processing Unit) is a hardware specialized for image processing

and has a lot of cores and very high memory bandwidth. Modern GPUs are designed for

general purpose computing and can perform various computations traditionally handled

by the CPU. NVIDIA provides a parallel computing architecture called CUDA (Com-

pute Unified Device Architecture) [5] for NVIDIA GPUs. Using CUDA, we can de-

velop parallel processing programs to be implemented in GPUs. Since GPUs have a lot

of cores and very high memory bandwidth, a GPU can handle multiple tasks simultane-

ously, the GPU has a high energy efficiency which denotes performance per watt. Thus,
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a GPU attracts a lot of attention as a computational accelerator for high performance

computing [7, 15, 18, 24, 27, 29]. GPUs are also used to accelerate computations of

applications in cryptographic computation and computational science. Since large in-

tegers of size thousands to several tens of thousands bits are used in such applications,

the acceleration of the computation of their multiplications on GPUs is in great demand.

In addition, a large number of multiple-length multiplications with different inputs are

performed in cryptographic computation and computational science, e.g. vector mul-

tiplication and matrix multiplication. Therefore, in this work, we consider an efficient

algorithm for bulk execution of multiple-length multiplication on a single GPU. This

dissertation shows GPU implementations for bulk execution of multiple-length multi-

plication and exhaustive verification of the Collatz conjecture which needs to perform

multiple-length multiplications.

1.2 Contributions

1.2.1 A GPU implementation for a large number of multiple-length

multiplications

We present a GPU implementation for bulk execution of multiple-length multiplication.

The idea of our GPU implementation is to adopt a warp-synchronous programming

technique. We assign each multiple-length multiplication to one warp that consists of 32

threads. In parallel processing using multiple threads, usually, it is costly to synchronize

execution of threads and communicate within threads. In warp-synchronous program-

ming technique, however, execution of threads in a warp can be synchronized instruction

by instruction without any barrier synchronous operations. Also, inter-thread commu-
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nication can be performed by warp shuffle functions without accessing shared memory.

We propose 1024-bit multiple-length multiplication method using warp-synchronous

programming technique. The experimental results show that our GPU implementation

on NVIDIA GeForce GTX 980 attains a speed-up factor of 52 for 1024-bit multiple-

length multiplications over the sequential CPU implementation. Moreover, we use this

1024-bit multiplication method for larger size of bits as a sub-routine. In addition, we

use Toom-Cook method to reduce the number of multiplications. The GPU implemen-

tation attains a speed-up factor of 21 for 65536-bit multiple-length multiplications.

1.2.2 GPU implementations of exhaustive verification of the Collatz

conjecture

We propose GPU implementations of exhaustive verification of the Collatz conjecture.

Consider the following operations on an arbitrary positive number: if the number is

even, divide it by two, and if the number is odd, triple it and add one. The Collatz

conjecture asserts that, starting from any positive number, repeated iteration of the op-

erations eventually produces the value 1. We use a CPU-GPU cooperative approach,

efficient memory access for the GPU memory, and optimization of multiplication to ac-

celerate the verification. We have implemented on NVIDIA GeForce GTX TITAN X

and evaluated the performance. The experimental results show that, our GPU imple-

mentation can verify 1.31 × 1012 64-bit numbers per second. While the sequential CPU

implementation on Intel Core i7-4790 can verify 5.25 × 109 64-bit numbers per second.

Thus, our implementation on the GPU attains a speed-up factor of 249 over the sequen-

tial CPU implementation. Additionally, we accelerated the computation of counting the

number of the above operations until a number reaches 1, called delay, that is one of the
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mathematical interests for the Collatz conjecture by the GPU. Using similar ideas, we

achieved a speed-up factor of 73.

1.3 Dissertation organization

The doctoral dissertation is organized as follows. In Chapter 2, we show the details of

the GPU and CUDA. We present a GPU implementation for bulk execution of multiple-

length multiplication in Chapter 3. In Chapter 4, we show GPU implementations of

the exhaustive verification of the Collatz conjecture. Finally, Chapter 5 concludes this

dissertation.
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Chapter 2

GPU and CUDA

NVIDIA provides GPUs which are hardware specialized for image processing. Re-

cent GPUs are designed for general purpose computing. NVIDIA GPUs consist of

DRAM (Dynamic Random Access Memory) and Streaming Multiprocessors (SMs).

Each SM contains many cores and on-chip memory. Hence, it can execute multiple

threads in parallel. In addition, GPUs have high memory bandwidth. Therefore, a lot

of data can be processed simultaneously by multiple threads on the GPU. Since 2006,

NVIDIA has provided a parallel computing architecture, called CUDA, on NVIDIA

GPUs. CUDA provides a comprehensive development environment for C and C++.

CUDA includes a compiler for NVIDIA GPUs, many libraries and tools for debugging

and optimizing of applications. Hence, we can develop parallel algorithms implemented

on NVIDIA GPUs using CUDA. Figure 2.1 illustrates the CUDA hardware architec-

ture. CUDA uses three types of memories in the NVIDIA GPUs: the global memory,

the shared memory, and the register [21]. The global memory is implemented as an

off-chip DRAM of the GPU, and has large capacity, say, 1.5-12 Gbytes, but its access

latency is very long. The shared memory is an extremely fast on-chip memory with
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lower capacity, say, 16-112 Kbytes. The registers in CUDA are placed on each core in

SM and the fastest memory, that is, no latency is necessary. However, the size of the

registers is the smallest during them. The efficiency usage of the global memory and the

shared memory is a key for CUDA developers to accelerate applications using GPUs.
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Figure 2.1: CUDA hardware architecture

2.1 CUDA parallel programming model

CUDA parallel programming model has a hierarchy of thread groups, called grid, block,

and thread as shown in Figure 2.2. A single grid is organized by multiple blocks, each

of which has an equal number of threads. When a program is executed on the GPU,

a grid is assigned to a GPU. The blocks are allocated to SMs such that all threads in

a block are executed by the same SM in parallel. All threads can access to the global

memory. However, as we can see in Figure 2.1, threads in a block can access to the
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shared memory of the SM to which the block is allocated. Since blocks are arranged to

multiple SMs, threads in different blocks cannot share data in the shared memories.

Grid

Block Block Block

Block Block Block

Block

Thread0 Thread1 Thread2 Thread31…
Warp

Warp

Warp

Thread32 Thread33 Thread34 Thread63…

Thread64 Thread65 Thread66 Thread95…

Figure 2.2: Hierarchy of thread groups

The latency of the global memory access is several hundreds clock cycles. Since a

thread stalls when one of the operands is not ready, the global memory access tends to

stall threads. To accelerate the computation, the coalesced access to the global memory

is a key issue. Suppose that there is 2-dimensional array in the global memory. The

2-dimensional array is actually represented as 1-dimensional array. All elements of

the array are stored row by row in the global memory. Hence, horizontal neighboring

elements are continuous locations in address space. As illustrated in Figure 2.3, when

threads access to continuous locations in a row of a 2-dimensional array (horizontal

access), the continuous locations in address space of the global memory are accessed

at the same time (coalesced access). The access to the same elements of the array are

also coalesced access. However, if threads access to continuous locations in a column

(vertical access), the distant locations are accessed at the same time (stride access).

From the structure of the global memory, the coalesced access maximizes the bandwidth

of memory access. On the other hand, the stride access needs a lot of clock cycles. Thus,
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we should avoid the stride access (or the vertical access) and perform the coalesced

access (or the horizontal access) whenever possible.

!
!,!

!
!,#

!
!,$

!
!,%

!
!,&

!
!,'

!
!,(

!
!,)

!
#,!

!
#,#

!
#,$

!
#,%

!
#,&

!
#,'

!
#,(

!
#,)

!
$,!

!
$,#

!
$,$

!
$,%

!
$,&

!
$,'

!
$,(

!
$,)

!
%,!

!
%,#

!
%,$

!
%,%

!
%,&

!
%,'

!
%,(

!
%,)

!
&,!

!
&,#

!
&,$

!
&,%

!
&,&

!
&,'

!
&,(

!
&,)

!
',!

!
',#

!
',$

!
',%

!
',&

!
','

!
',(

!
',)

!
(,!

!
(,#

!
(,$

!
(,%

!
(,&

!
(,'

!
(,(

!
(,)

!
),!

!
),#

!
),$

!
),%

!
),&

!
),'

!
),(

!
),)

!"#$%&'($)'*+,*--*.

/0-&*#,1 /0-&*#,2 /0-&*#,! /0-&*#,3

/0-&*#,1

/0-&*#,2

/0-&*#,!

/0-&*#,3

⋯ !
!,%

!
!,&

!
!,'

!
!,(

!
!,)

!
#,!

⋯

4)*+&(5&#,*55&((

⋯ !
&,)

⋯ !
',)

⋯ !
(,)

⋯ !
),)

⋯

67-$#&,*55&((

/0-&*#,1 /0-&*#,2 /0-&*#,! /0-&*#,3

/0-&*#,1 /0-&*#,2 /0-&*#,! /0-&*#,3

Figure 2.3: Coalesced and stride access

The shared memory is a sort of on-chip memory and which is located within each

SM. It has almost no access latency and only visible to the block which is executed by

the corresponding SM. The shared memory is divided into 32 equally-sized modules of

32 (or 64)-bit width, called banks (Figure 2.4). In the shared memory, the successive 32

(or 64)-bit words are assigned to successive banks. To achieve maximum throughput,

concurrent threads of a block should access different banks. If concurrent threads access

to different addresses in the same bank, bank conflicts occur and these memory access

are executed sequentially. However, CUDA supports broadcast access. Therefore, when

concurrent threads access to the same address in the same bank, bank conflict does not

occur. In practice, the shared memory can be used as a cache to hide the access latency

of the global memory.

In CUDA, we use CUDA C to implement parallel algorithms on GPUs. CUDA C

extends C language by allowing the programmer to define C functions, called kernels.
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Figure 2.4: The structure of the shared memory

A kernel is a function which is executed on the GPU. By invoking a kernel, all blocks

in the grid are allocated in SMs, and threads in each block are executed by processor

cores in a single SM. In the execution, threads in a block are split into groups of threads

called warps. A warp is an implicitly synchronized group of threads. Each of these

warps contains the same number of threads and is executed independently. When a warp

is selected for execution, all threads execute the same instruction. This characteristic

is called SIMT (Single Instruction Multiple Threads). SIMT is an execution model

used in parallel computing which combines SIMD (Single Instruction Multiple Data)

with multithreading. Any flow control instruction (e.g. if-statements in C language)

can significantly impact the effective instruction throughput by causing threads of the

same warp to diverge, that is, to follow different execution paths. If this happens, the

different execution paths have to be serialized. When all the different execution paths

have completed, the threads back to the same execution path. For example, for an if-else

statement, if some threads in a warp take the if-clause and others take the else-clause,

both clauses are executed in serial. On the other hand, when all threads in a warp branch

in the same direction, all threads in a warp take the if-clause, or all take the else-clause.

Therefore, to improve the performance, it is important to make branch behavior of all
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threads in a warp uniform.

There is a metric, called occupancy, related to the number of active warps on an

SM. The occupancy is the ratio of the number of active warps per SM to the maximum

number of possible active warps. It is important in determining how effectively the

hardware is kept busy. There is a measure, called ILP (Instruction-level Parallelism),

of how many instructions in a program can be executed simultaneously. If ILP is low,

a warp cannot fill instruction pipeline since there is dependence between instructions

and a warp frequently stalls. Therefore, to keep hardware busy, the occupancy should

be high. If the occupancy is high, when several warps are stalled, other warps can

hide latencies. On the other hand, when ILP is high, a single warp can fill instruction

pipeline. In this case, it is not necessary that the occupancy is high. The occupancy

depends on the numbers of threads and blocks, utilization of the register per thread and

the size of the shared memory used in a block. Namely, utilizing too many resources per

thread or block may limit the occupancy. There is the trade-off between the occupancy

and the utilization of resources per thread and block. To obtain good performance with

the GPUs, the occupancy should be considered.

The kernel calls terminate, when threads in all blocks finish the computation. Since

all threads in a single block are executed by a single SM, the barrier synchronization

of them can be done by calling CUDA C syncthreads() function. However, there is

no direct way to synchronize threads in different blocks. One of the indirect methods

of inter-block barrier synchronization is to partition the computation into kernels. Since

continuous kernel calls can be executed such that a kernel is called after all blocks of

the previous kernel terminate, execution of blocks is synchronized at the end of kernel

calls. On the other hand, all threads of a warp perform the same instruction at the same
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time. More specifically, any synchronizing operations are not necessary to synchronize

threads within a warp. Warp-synchronous programming technique [22] is a parallel pro-

gramming technique such that one warp is used as an execution unit. The characteristic

of this technique is that any synchronous operations are not necessary. Namely, we can

parallelize computations without any synchronous operations using warp-synchronous

programming technique.

Inter-thread communication is generally performed via shared memory. First, each

thread writes data to shared memory. After that, threads read data from shared mem-

ory. Therefore, inter-thread communication using shared memory needs memory ac-

cess. However, in CUDA, warp shuffle functions allow the exchange of 32-bit data

between threads within a warp, which become available on relatively recent GPUs with

compute capability 3.0 and above [21]. Threads in the warp can read other threads’

registers without accessing the shared memory. The exchange is performed simultane-

ously for all threads within the warp. Of particular interest is the shfl() function, that

is one of the warp shuffle functions. This function takes as parameters a local regis-

ter variable x and a thread index id. As an example, consider the following function

call shfl(x,4). The shfl(x,4) allows to transfer the data stored in the local register

variable x from a thread whose id is 4 (Figure 2.5). This function call corresponds to

broadcasting a register variable in a thread to the other threads in a warp. We note that

each thread has its own local register x, that is, each x cannot be accessed from other

threads. As another example, consider the function call shfl(x, (id + 1)%w), where w

is the number of threads in a warp. The function call performs data transfer like right

circular shift between threads as illustrated in Figure 2.6. In the similar way, the shfl(x,

(id + w − 1)%w) allows to transfer data like left circular shift (Figure 2.7). The above

12



data exchange can be performed via shared memory. However, the latency of shared

memory access is longer than that of the warp shuffle functions. Since the use of shared

memory may cause for decreasing occupancy, if the warp shuffle functions can be used,

they should be used.

!" 7 6 5 4 3 2 1 0

+ , - . / " 0 1 2

+ / / / / / / / /

! " shfl'!, 4*;

Figure 2.5: Example of intra-warp data exchange like broadcast using a warp shuffle

function

!" 7 6 5 4 3 2 1 0

+ , - . / " 0 1 2

+ 2 , - . / " 0 1

! " shfl'!, )* + 1 %./;

Figure 2.6: Example of intra-warp data exchange like right circular shift using a warp

shuffle function
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!" 7 6 5 4 3 2 1 0

+ , - . / " 0 1 2

+ 2 , - . / " 0 1

! " shfl'!, )* + , - 1 %,0;

Figure 2.7: Example of intra-warp data exchange like left circular shift using a warp

shuffle function
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Chapter 3

A GPU implementation for a large

number of multiple-length

multiplications

In this chapter, we present an implementation of multiple-length multiplication opti-

mized for CUDA-enabled GPUs. The idea of our GPU implementation is to adopt

warp-synchronous programming technique [22]. We assign each multiple-length multi-

plication to one warp that consists of 32 threads. In parallel processing using multiple

threads, usually, it is costly to synchronize execution of threads and communicate within

threads. In warp-synchronous programming technique, however, execution of threads in

a warp can be synchronized instruction by instruction without any barrier synchronous

operations. Also, inter-thread communication can be performed by warp shuffle func-

tions without accessing shared memory. Using these ideas, we propose a warp syn-

chronous implementation of 1024-bit multiplication on the GPU. In addition, we show

multiple-length multiplication methods for more than 1024 bits using the 1024-bit mul-
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tiplication method as a sub-routine. To reduce the number of multiplications, we use

Toom-Cook method [28].

3.1 Related work

There are GPU implementations to accelerate multiple-length multiplications. In pa-

pers [8, 3], GPU implementations of very large integer multiplications using FFT are

shown. FFT-based multiplication methods have a small time complexity, however, it is

efficient for quite large numbers that consists of more than several hundred thousand

bits [9]. Zhao et al. proposed multiple-length multiplication only for 512 to 2048-bit

integers on the GPU as one of library functions [31]. Since this implementation is based

on School method that is a naive multiplication method, it is not efficient for more than

several thousand-bit numbers. Kitano et al. proposed a GPU implementation of parallel

multiple-length multiplication also based on School method [16]. In the implementa-

tion, load of each thread is equalized by reordering the computation of partial products.

However, since warp divergence occurs frequently to perform this reordering, its parallel

algorithm is not suitable for GPU architecture. Although several GPU implementations

including the above implementations have been proposed, as far as we know, there is no

GPU implementation that focuses on bulk execution of multiple-length multiplication.

More specifically, many researchers have been devoted to develop and implement par-

allel algorithms for one input. Although we can obtain outputs for many different inputs

by repeating them, their efficiency is not discussed. For example, the aim of the above

works [8, 3, 16] is to accelerate the computation of one multiplication for quite large

integers by many threads on the GPU. By repeating these methods for many inputs, the

bulk execution can be performed. However, there is no research that is premised on the

16



bulk execution.

3.2 Multiple-length multiplication

In the following, we will represent multiple-length numbers as arrays of r-bit words. In

general, r = 32 or 64 for conventional CPUs. Let R denote the bit-length of numbers

and w be the number of r-bit words. Therefore, w = ⌈R
r ⌉. If r = 32, a 1024-bit integer

consists of 32 (= ⌈1024
32 ⌉) words. Next, we will introduce several multiplication methods

for such multiple-length numbers.

3.2.1 School method

Suppose A and B represent two multiple-length numbers. We are multiplying A by B

and the result is stored in C, that is C = AB. To compute this multiplication, School

method is often used. The algorithm of School method is shown in Algorithm 1. For

simplicity, in the algorithm, the sizes of the multiplicand and the multiplier are the same

and {x, y} denotes a concatenation of x and y. School method multiplies the multiplicand

by each word of the multiplier and then adds up all the properly shifted results illustrated

in Figure 3.1. As illustrated in the figure, calculation of School method is preformed in

the row order and some storage needs to be allocated to store intermediate results that

are partial products. In School method, intermediate data that are partial products need

to be stored to the memory as described at line 6 in Algorithm 1 is necessary.
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Algorithm 1 School method
Input: A = (aw−1, ..., a1, a0), B = (bw−1, ..., b1, b0)

Output: C = AB

1: C ← 0

2: for j← 0 to w − 1 do

3: {u, v}← 0

4: for i← 0 to w − 1 do

5: {u, v}← aib j + ci+ j + u

6: ci+ j ← v

7: end for

8: cw+ j ← u

9: end for
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Figure 3.1: The order of word-wise multiplication of School method for multiple-length

numbers C = A · B
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Table 3.1: The number of multiplications and memory read/write for multiplying two

w-word numbers using School and Comba methods

method multiplication memory read memory write

School w2 2w2 w2 + w

Comba w2 2w2 − 2 2w

3.2.2 Comba method

To avoid storing the partial products, Comba method [4] is used. The algorithm of

Comba method is shown in Algorithm 2. According to the algorithm, the readers may

think that it is more complicated than School method. However, the difference is only

the order of multiplications of words and the number of multiplications of words is the

same as illustrated in Figure 3.2. More specifically, calculation of Comba method is

preformed in the column order. In Comba method, intermediate data also has to be

stored. However, the data corresponds to carry data for the next column. Since the

size of the carry data does not depend on the size of numbers and it is only one or two

words, its storage can be placed to the register. Table 3.1 shows the number of word-

wise multiplications and memory access of School and Comba methods. From the table,

the number of memory access, especially memory write, of Comba method is greatly

reduced.

3.2.3 Toom-Cook method

Toom-Cook method [28] is an algorithm for multiplying two numbers that reduce the

number of multiplications compared with School and Comba methods. Toom-Cook
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Algorithm 2 Comba method
Input: A = (aw−1, ..., a1, a0), B = (bw−1, ..., b1, b0)

Output: C = AB

1: {t, u, v}← 0

2: for i← 0 to w − 1 do

3: for j← 0 to i do

4: {t, u, v}← ajbi− j + {t, u, v}

5: end for

6: ci ← v

7: v← u, u← t, t ← 0

8: end for

9: for i← w to 2w − 2 do

10: for j← i − w + 1 to 2 − 1 do

11: {t, u, v}← ajbi− j + {t, u, v}

12: end for

13: ci ← v

14: v← u, u← t, t ← 0

15: end for

16: c2w−1 ← v

20
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Figure 3.2: The order of word-wise multiplication of Comba method for multiple-length

numbers C = A · B

method splits each number into multiple parts of equal length. A k-way Toom-Cook

method (called Toom-k) can do a multiplication by dividing an integer into k parts.

Toom-3 reduces the number of multiplications to from 9 to 5.

For simplicity, we will explain how to perform Toom-3 as follows. Let us consider

two numbers A and B to be multiplied are split into three parts of size R
3 bits each such

that A = A2 · 2
2R
3 + A1 · 2

R
3 + A0 and B = B2 · 2

2R
3 + B1 · 2

R
3 + B0. The product C (= A× B)

is also divided such that C4 · 2
4R
3 + C3 · 2

3R
3 + C2 · 2

2R
3 + C1 · 2

R
3 + C0. In Toom-Cook

method, these formulae are considered as polynomials by replacing 2 R
3 with a variable

x, as follows:

A(x) = A2x2 + A1x + A0,

B(x) = B2x2 + B1x + B0,
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C(x) = C4x4 +C3x3 +C2x2 +C1x +C0.

If the coefficients C0,C1,C2,C3 and C4 are determined, the product A × B can be com-

puted from C(2 R
3 ). Since the number of coefficients is 5, we can determine them by

solving 5 equations obtained by assigning 5 distinct values to x in C(x). For example,

the following 5 equations are produced by x = 0, 1,−1, 2,∞;

C(0) = C0,

C(1) = C4 +C3 +C2 +C1 +C0,

C(−1) = C4 −C3 +C2 −C1 +C0,

C(2) = 16C4 + 8C3 + 4C2 + 2C1 +C0,

C(∞) = C4.

Note that C(∞) is equivalent to limx→∞
C(x)

x4 , that is, C(∞) equals to the value of the

highest-degree coefficient of C(x). By solving these equations, we have the following

values of coefficients:

C0 = C(0),

C1 =
1
6

(−3C(0) + 6C(1) − 2C(−1) −C(2) + 12C(∞)),

C2 =
1
2

(−2C(0) +C(1) +C(−1) − 2C(∞)),

C3 =
1
6

(3C(0) − 3C(1) −C(−1) +C(2) − 12C(∞)),

C4 = C(∞).

On the other hand, from the definition we have

C(0) = A0B0,

C(1) = (A2 + A1 + A0)(B2 + B1 + B0),
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C(−1) = (A2 − A1 + A0)(B2 − B1 + B0),

C(2) = (4A2 + 2A1 + A0)(4B2 + 2B1 + B0),

C(∞) = A2B2.

Using these formulae, C(0),C(1),C(−1),C(2), and C(∞) are computed from A and B.

After that, by computing C0,C1,C2,C3, and C4, the final result of the product can be ob-

tained. According to the result, the number of multiplications excluding small constant

numbers to be multiplied is reduced from 9 to 5. For k ≥ 2, we can perform Toom-k

multiplication in a similar way.

3.3 Parallel multiple-length multiplication for the GPU

First, we propose a parallel 1024-bit multiple-length multiplication method, called Sum-

rotate multiplication. After that, we show Toom-k multiplication methods for more than

1024 bits with the 1024-bit multiple-length multiplication method as a sub-routine.

3.3.1 Sum-rotate multiplication

We propose a parallel 1024-bit multiple-length multiplication method using a warp.

The method is based on warp-synchronous programming technique. In the following, w

threads, which correspond to one warp, are used and work in parallel without any bar-

rier synchronize operations since threads within a warp execute the same instruction and

synchronize for each instruction. Also, the proposed parallel multiple-length multiplica-

tion does not use any shared memory. It is a parallel algorithm that parallelizes School

method basically, called Sum-rotate multiplication. To achieve this, we employ warp

shuffle functions as described in Chapter 2. More specifically, data exchange methods,
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broadcast and right/left circular shift, as shown in Figures 2.5, 2.6 and 2.7 using warp

shuffle function shfl() are utilized. The detail of the parallel algorithm is presented

next.

In our approach, a product C = (c2w−1, ..., c1, c0) of two w-word numbers A =

(aw−1, ..., a1, a0) and B = (bw−1, ..., b1, b0) is computed, where the size of each word

is 32 bits. Since w = 32 unless the value of w is not changed for changing the GPU

architecture in the future, this algorithm supports a multiplication of two 1024-bit num-

bers.

Let us consider how to perform the computation using multiple threads. A simple

idea is to assign threads column by column as illustrated in Figure 3.3. In the figure,

threads are assigned to two columns to balance the computation load of each threads.

However, since threads have to switch columns in distinct timings during the compu-

tation, warp divergence, described in Chapter 2, occurs. This parallel approach is not

suitable for GPUs.

On the other hand, in the proposed approach, w threads, that correspond to one

warp, are used. Each thread is assigned to one of the partial products in each row. More

specifically, when w threads (thread 0, thread 1,..., thread w − 1) are launched, thread i

computes partial products aib0, aib1,..., aibw−1 for each row as illustrated in Figure 3.4.

Using this assignment of threads, almost all operations are the same between threads,

that is warp divergence can be avoided mostly.

In the proposed approach, since each thread takes partial products shifting to the

upper digits row by row, it is necessary to obtain the partial products, except the carry,

from a thread assigned to the upper digits. To achieve this, we use the inter-thread right

circular shift described in Chapter 2. In each row, thread 0 obtains the final product
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Figure 3.3: Parallel column-based multiplication
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Figure 3.4: Sum-rotate multiplication
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of c j. According to Figure 3.4, a thread assigned to the lowest digits can obtain the

lower words of the final product c0, ..., cw−1 for each row. On the other hand, the upper

words of cw, ..., c2w−1 are finally computed by thread 0, ..., thread w − 1, respectively.

After completing the multiplication, 2w words of the final results are placed such that

thread i has two words ci and ci+w to store the results to consecutive address of the global

memory using coalescing access in parallel.

The details of sum-rotate multiplication are shown in Algorithm 3. Each step of the

algorithm is executed by w threads in parallel. First of all, in lines 3 and 4, each thread

loads one word of each from A and B stored in the global memory and stores them to

its own registers a and b. After that, the multiplication is performed row by row as

illustrated in Figure 3.4. In line 6, thread j broadcasts bj to local register b′ using the

warp shuffle function to compute the product a · b′ in the next step. In line 7, partial

products are computed including the addition of the carry from the upper digits. Each

thread obtains the partial products except the carry from a thread assigned to the upper

digits as the carry for the next digits by right circular shift of register v in line 8. In

line 9, product ci of the final product computed by thread 0 is transferred to the right

thread using right circular shift of register c′. Next, thread w − 1, that is assigned to the

leftmost thread in Figure 3.4, set registers c′ and v to v and 0, respectively. This is for the

right circular shift operations in lines 8 and 9. Since this operation is performed only by

thread w−1, warp divergence occurs, but the effect to the performance seems to be very

small. After that, each thread obtains the value of the next digits in line 14. After for

loop, each thread has the lower digits of the final products c0, ..., cw−1, respectively. At

that time, the upper digits cw, ..., c2w−1 has not been computed yet since each thread still

has the carry. Therefore, the while loop in lines 16 to 19, carry propagation is performed
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using left circular shift until any threads have no carry. In order to check whether any

threads have no carry, we use warp vote function any() that evaluates truth values given

from all threads of the warp and return non-zero if any of the truth values is non-zero

[21]. This while loop is iterated at most w − 1 times. After the loop, since thread i has

two words ci and ci+w , they are stored to the global memory with coalesced access in

lines 20 and 21.

3.3.2 Toom-k multiplication with sum-rotate multiplication

In our GPU implementation, we use Toom-k multiplication method for more than 1024-

bit numbers. For simplicity, we explain our GPU implementation with Toom-3 as fol-

lows. The GPU implementation consists of two kernels. In the first kernel, five blocks

that consist of one warp, that is five warps in total, are assigned to each multiplication.

Each warp computes one value of C(0), C(1), C(−1), C(2), and C(∞) shown in Sec-

tion 3.2 with sum-rotate multiplication. When the size of multiplication is more than

1024 bits, each warp sequentially performs Comba method by repeating sum-rotate mul-

tiplication. In the second kernel, one block consisting of one warp is assigned to every

32 multiplications. Each thread computes one multiplication using the values obtained

in the first kernel. Namely, one thread computes the values of C0, ...,C4 in serial and

then, the final result of the multiplication is computed. In the second kernel, each thread

runs for individual multiplications, but warp divergence does not occur since all threads

execute the same instructions. In the above two kernels, each block is composed of only

one warp so that the occupancy is increased by reducing the number of warps in a block.

Moreover, all the data stored in the global memory is arranged so that the memory ac-

cess can be performed with coalesced access, without going into detail. For k ≥ 2, the
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Algorithm 3 Sum-rotate multiplication using a warp
Input: A = (aw−1, ..., a1, a0), B = (bw−1, ..., b1, b0)

Output: C = AB

1: i← id(= 0, 1, ...,w − 1)

2: u← 0, v← 0, c′ ← 0

3: a← ai

4: b← bi

5: for j← 0 to w − 1 do

6: b′ ←shfl(b, j) ◃ Broadcast b from thread j

7: {t, u, v}← a · b′+{u, v}

8: v←shfl(v, (i + 1)%w) ◃ Right circular shift v

9: c′ ←shfl(c′, (i + 1)%w) ◃ Right circular shift c′

10: if id = w − 1 then

11: c′ ← v

12: v← 0

13: end if

14: {u, v}←{t, u}+v

15: end for

16: while any(u)! 0 do

17: u← shfl(u, (i + w − 1)%w) ◃ Left circular shift u

18: {u, v}← u + v

19: end while

20: ci ← c′

21: ci+w ← v
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GPU implementation performs Toom-k multiplication in a same way.

Let us evaluate the number of multiplications and memory access in the above meth-

ods that are important factors for the computing time. Table 3.2 shows a comparison of

the number of multiplications and memory read/write for multiplying two w-word num-

bers in our implementation. Regarding as the number of multiplication, School and

Comba methods are the largest among them. In Toom-k, when k is larger, the number

of multiplications is smaller. Although every memory access is performed by coalesced

access, memory access time is much longer than the other instructions such as arith-

metic operations including multiplication and addition. Therefore, the computing time

does not always become shorter for larger k. Hence, we should find the best parameter

k that minimizes the computing time for the bit size of numbers.

3.3.3 Optimization of the code for arithmetic

As mentioned in the above, arithmetic with larger integers having more than 64 bits is

necessary. In C language, however, there is no efficient way of doing such arithmetic

because C language does not support operations with the carry bits. To optimize the

arithmetic with more than 64-bit integers, therefore, a part of the code is written in PTX

[20] that is an assembly language for NVIDIA GPUs and can be used as inline assembler

in CUDA C language. PTX supports arithmetic operations with the carry bits.

3.4 Experimental results

The main purpose of this section is to show the experimental results. In order to evaluate

the computing time for multiple-length multiplication, we have used NVIDIA GeForce
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Table 3.2: The number of multiplications and memory read/write for multiplying two

w-word numbers in our implementation

method multiplication memory read memory write

School w2 2w2 w2 + w

Comba w2 2w2 − 2 2w

Toom-2 3
4w2 3

2w2 + 17
2 w − 2 15

2 w + 4

Toom-3 5
9w2 + 44

3 w + 21 10
9 w2 + 82

3 w + 32 44
3 w + 36

Toom-4 7
16w2 + 26w + 55 7

8w2 + 41w + 76 17w + 60

Toom-5 9
25w2 + 188

5 w + 105 18
25w2 + 54w + 136 92

5 w + 84

Toom-6 11
36w2 + 148

3 w + 171 11
18w2 + 200

3 w + 212 58
3 w + 108

Toom-7 13
49w2 + 428

7 w + 253 26
49w2 + 554

7 w + 304 20w + 132

Toom-8 15
64w2 + 73w + 351 15

32w2 + 183
2 w + 412 41

2 w + 156

Toom-9 17
81w2 + 764

9 w + 465 34
81w2 + 934

9 w + 536 188
3 w + 180
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Table 3.3: The computing time of GPU implementations for 100000 1024-bit multipli-

cations

method execution unit for one multiplication time[ms]

School single thread 8.43

Comba single thread 5.06

parallel one warp with shared memory 1.73

column-based one warp with warp shuffle functions 1.43

parallel one warp with shared memory 1.43

sum-rotate one warp with warp shuffle functions 0.82

GTX 980, which has 2048 cores running 1.216GHz [6]. The source program of the GPU

implementation is compiled by nvcc version 6.5.13 with -O2 and -arch=sm 50 options.

In the following, the computing time is average of 10 times execution and the computing

time of the GPU does not include data transfer time between the main memory in the

CPU and the device memory in the GPU. The reason that data transfer time between

the main memory in the CPU and the device memory in the GPU is excluded is that

in practical case this execution of multiplication is performed before and/or after some

process on the GPU. Therefore, input and output data is not always located in the main

memory.

First, we evaluate the performance of sum-rotate multiplication based on warp-

synchronous programming technique. We have implemented the single thread imple-

mentation such that each thread computes one multiplication. This implementation is

based on the idea proposed in [26]. In the implementation, there is no warp divergence
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since all threads execute the same instructions, that is, this implementation is also based

on warp-synchronous programming technique. In addition, to evaluate the effect of the

use of warp shuffle function, we have implemented a multiplication method with the

shared memory instead of the warp shuffle function. Table 3.3 shows the computing

time when 100000 multiple-length multiplications of 1024 bits are computed. In the

above implementations, every block has 32 threads, that is, one warp. According to

the table, we can find that one warp implementation is faster than the single thread im-

plementation. For data communication within threads, use of warp shuffle functions is

more effective than that of shared memory.

Table 3.3 also shows the computing time of the sequential School method and par-

allel column-based multiplication with shared memory. These two methods are mainly

used in the existing methods proposed by Zhao [31] and Kitano [16]. As a result, the

proposed method is 10.2 and 2.1 times faster than the existing two methods, respectively.

Figure 3.5 shows the computing time of the GPU implementations of Comba, Toom-

k (k = 2, ..., 9) when 10240 multiplications are computed. Recall that each implemen-

tation uses sum-rotate multiplication with warp shuffle functions as a sub-routine for

1024-bit multiplication. Although the graph may be unclear, Comba method is faster

for less than 10240 bits. For 10240 or more bits, Toom-k is faster than Comba method.

Also, when the number of bits is larger, Toom-k for larger k (k ≤ 8) is faster. However,

Toom-9 is not the fastest for any number of bits because the overhead such as memory

access cannot be ignored even though the number of multiplication is less than the other

methods from Table 3.2.
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We have also used Intel PC using Xeon X7460 running on 2.6GHz to compare the

performance of the GPU implementation with sequential algorithms on the CPU. In the

CPU implementation, we have utilized GMP version 6.1.0. The source program is com-

piled by gcc version 4.8.3 with -O2 option. Table 3.4 shows the comparison between

CPU and GPU implementations for the computing time in milliseconds when 10240

multiple-length multiplications are computed. The table also shows the multiplication

methods that have been used. In the CPU implementation, when the GMP library was

installed, the best method has been selected according to the execution environment.

On the other hand, the best method shown in Figure 3.5 has been used in the GPU im-

plementation. We note that in 64-, 128-, 256-, and 512-bit multiplications, we cannot

directly use the sum-rotate multiplication shown in Section 3.3 since 32 threads in one

warp compute one 1024-bit multiplication. Therefore, in such smaller size of bits, sev-

eral multiplications are concurrently computed by one warp to use all the threads in a

warp. For example, in 256-bit multiplications, four 256-bit multiplications are simul-

taneously computed by assigning 8 threads in a warp to each 256-bit multiplication.

According to the table, using the proposed GPU implementation, the computing time

can be reduced by a factor of 19.65 to 52.14.

Table 3.4 also shows the computing time of GPU implementation using CUMP li-

brary version 1.0.1 [19] that supports multiple-length multiplication on the GPU. Since

CUMP uses the local memory whose size is limited, 65536-bit multiplication could not

be executed. Also, in the GPU implementation with CUMP, each multiplication is com-

puted with School method by one thread sequentially. As a result, the proposed method

can compute multiplication 1.6 to 50 times faster than CUMP.
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3.5 Concluding remarks

We have presented a GPU implementation of bulk multiple-length multiplications. The

idea of our GPU implementation is to adopt warp-synchronous programming technique.

Using this idea, we have proposed Sum-rotate multiplication of two 1024-bit integers.

We assign each multiple-length multiplication to one warp that consists of 32 threads.

The experimental results show that our GPU implementation on NVIDIA GeForce GTX

980 attains a speed-up factor of 52 for 1024-bit multiple-length multiplications over the

single CPU implementation using GNU multiple precision arithmetic library. More-

over, we use this 1024-bit multiple-length multiplication for larger size of bits as a

sub-routine. The GPU implementation attains a speedup factor of 21 for 65536-bit

multiple-length multiplication.
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Chapter 4

GPU implementations of exhaustive

verification of the Collatz conjecture

The main contribution of this chapter is to further accelerate the exhaustive verification

for the Collatz conjecture using a GPU. The ideas of our GPU implementation are

• a GPU-CPU cooperative approach,

• efficient memory access for the global memory and the shared memory, and

• optimization of the code for arithmetic with larger integers.

4.1 The Collatz conjecture

The Collatz conjecture is a well-known unsolved conjecture in mathematics [17, 23, 25,

30]. Consider the following operations on an arbitrary positive number;

even operation: if the number is even, divide it by two, and

odd operation: if the number is odd, triple it and add one.
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The Collatz conjecture asserts that, starting from any positive number, repeated iteration

of the operations eventually produces the value 1. For example, starting from 3, we have

the following sequence to produce 1;

3→ 10→ 5→ 16→ 8→ 4→ 2→ 1.

The exhaustive verification of the Collatz conjecture is to perform the repeated opera-

tions for numbers from 1 to the infinite as Algorithm 4. Clearly, if the Collatz conjecture

Algorithm 4 Exhaustive verification algorithm of Collatz conjecture
1: for m← 1 to +∞ do

2: n← m

3: while n > 1 do

4: if n is even then

5: n← n
2

6: else

7: n← 3n + 1

8: end if

9: end while

10: end for

is not true, then the while-loop in the program above never terminates for a counter ex-

ample m. Working projects for the Collatz conjecture are currently checking 61-bit

numbers [23] and 72-bit numbers [1]. The project in [1] only shows the number of

odd/even operations until the 72-bit number reaches 1. On the other hand, regarding the

mathematical interest for the Collatz conjecture, not only whether numbers converge to

1, called convergence, but also the number of the odd/even operations until a number

reaches 1, called delay, interests the working project in [23]. Let D(n) denote a delay
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of a positive integer n. For example, starting from 3, 1 is produced by 2 odd operations

and 5 even operations, that is, D(3) = 2 + 5 = 7. In [23], delay is used to compute a

delay record. A delay record is defined such that a positive integer n is a delay record

if for all positive integers m (m < n) we have D(m) < D(n). For example, 3 is a delay

record since D(1) = 0, D(2) = 1 and D(3) = 7.

4.2 Related work

There are several researches for accelerating the exhaustive verification of the Collatz

conjecture. It is known [2, 12, 13, 14] that series of even and odd operations for n can

be done in one step by computing n ← B[nL] · nH + C[nL] for appropriate tables B and

C, where the concatenation of nH and nL corresponds to n.

In [2, 12, 13, 14], FPGA implementations have been proposed to repeat the op-

erations of the Collatz conjecture. These implementations perform the even and odd

operations for some fixed size of bits of interim numbers. However, in [2], the imple-

mentation ignores the overflow. Hence, if there exists a counter example number m for

the Collatz conjecture such that, infinitely large numbers are generated by the opera-

tions from m, their implementation may fail to detect it. On the other hand, in [12], the

implementation can verify the conjecture for up to 23-bit numbers. This is not suffi-

cient because a working project for the Collatz conjecture is currently checking 61-bit

numbers [23].

In [13], a software-hardware cooperative approach to verify the Collatz conjecture

for 64-bit numbers n has been shown. This approach supports almost infinitely large

interim numbers m. The idea is to perform the while-loop for interim values with up to

78 bits using a coprocessor embedded in an FPGA. If an interim value m has more than
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78 bits, the original value n is reported to the host PC. The host PC performs the verifi-

cation for such n using a quite large number of bits by software. This software-hardware

cooperative approach makes sense, because the hardware implementation on the FPGA

is fast and low power consumption, but the number of bits for the operation is fixed, and

the software implementation on the PC is relatively slow and high power consumption,

but the number of bits for the operation is quite large. Additionally, in [14], an efficient

implementation of a coprocessor that performs the exhaustive search to verify the Col-

latz conjecture using embedded DSP slices on a Xilinx FPGA has been proposed. By

effective use of embedded DSP slices instead of multipliers used in [13], the coprocessor

can perform the exhaustive verification faster than the above FPGA implementations.

4.3 Accelerating the verification of the Collatz conjec-

ture

The main purpose of this section is to introduce algorithms for accelerating the verifi-

cation for the convergence and the delay of the Collatz conjecture. The basic ideas of

acceleration are shown in [17, 30] and the details of them are shown, as follows.

4.3.1 Verification algorithm for the convergence

In the verification of the convergence, we use the following techniques. The first tech-

nique is to terminate the operations before the iteration produces 1. Suppose that we

have already verified that the Collatz conjecture is true for numbers less than n, and

we are now in position to verify it for number n. Clearly, if we repeatedly execute the

operations for n until the value is 1, then we can confirm that the conjecture is true for
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n. Instead, if the value becomes n′ for some n′ less than n, then we can guarantee that

the conjecture is true for n because it has been proved to be true for n′. Thus, it is not

necessary to repeat this operation until the value is 1, and we can terminate the iteration

when, for the first time, the value is less than n.

The second technique is to perform several operations in one step. Consider that we

want to perform the operations for n and let nL and nH be the least significant two bits

and the remaining bits of n. In other words, n = 4nH + nL holds. Clearly, the value of nL

is either (00)2, (01)2, (10)2, or (11)2. We can perform the several operations for n based

on nL as follows:

nL = (00)2: Since two even operations are applied, the resulting number is nH.

nL = (01)2: First, odd operation is applied and the resulting number is (4nH+1) ·3+1 =

12nH + 4. After that, two even operations are applied, and we have 3nH + 1.

nL = (10)2: First, even operation is performed and we have 2nH+1. Second, odd opera-

tion is applied and we have (2nH +1) ·3+1 = 6nH +4. Finally, by even operation,

the value is 3nH + 2.

nL = (11)2: First, odd operation is applied and we have (4nH + 3) · 3 + 1 = 12nH + 10.

Second, by even operation, the value is 6nH+5. Again, odd operation is performed

and we have (6nH + 5) · 3 + 1 = 18nH + 16. Finally, by even operation, we have

9nH + 8.

For example, if nL = (11)2 then we can obtain 9nH + 8 by applying 4 operations, odd,

even, odd, and even operations in turn. Let B and C be tables as follows:
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B C

(00)2 1 0

(01)2 3 1

(10)2 3 2

(11)2 9 8

Using these tables, we can perform the following table operation, which emulates sev-

eral odd and even operations:

table operation For least significant two bits nL and the remaining most significant bits

nH of the value, the new value is B[nL] · nH +C[nL].

Let us extend the table operation for least significant two bits to d bits. For an integer

n ≥ 2d, let nL and nH be the least significant d bits and the remaining bits, respectively.

Namely, n = 2dnH + nL. We call d is the base bits. Suppose that, the even or odd

operations are repeatedly performed on n = 2dnH+nL. We use two integers b and c such

that n = b · nH + c to denote the current value of n. Initially, b = 2d and c = nL. We

repeatedly perform the following rules for b and c;

even rule: If both b and c are even, then divide them by two, and

odd rule: If b is even and c is odd, then triple b, and triple c and add one.

These two rules are applied until no more rules can be applied, that is, until b is odd. It

should be clear that, even and odd rules correspond to even and odd operations of the

Collatz conjecture. If i even rules and j odd rules applied, then the value of b is 2d−i3 j.

Thus, exactly d even rules are applied until the termination. After the termination, we

can determine the value of elements in tables B and C such that B[nL] = b and C[nL] = c.

Using tables B and C, we can perform the table operation for d bits nL, which involves
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d even operations and zero or more odd operations. In this way, we can accelerate the

operation of the Collatz conjecture. In this chapter, we have implemented for various

numbers of bits of nL.

The third technique to accelerate the verification of the Collatz conjecture is to skip

numbers n such that we can guarantee that the resulting number is less than n after the

table operation. For example, suppose we are using two bit table and nH > 0. If nL =

(00)2 then the resulting value is nH, which is less than n. Thus, we can skip the table

operation for n if nL = (00)2. If nL = (01)2 then the resulting value is 3nH + 1, which is

always less than n = 4nH+1, and we can skip the table operation. Similarly, if nL = (10)2

then we can skip the table operation. On the other hand nL = (11)2 then the resulting

value is 9nH + 8, which is always larger than n. Therefore, the Collatz conjecture is

guaranteed to be true whenever nL ! (11)2, because it has been verified true for numbers

less than n. Consequently, we need to execute the table operation for number n such that

nL = (11)2. We can extend this idea for general case. For least significant d bits nL, we

say that nL is not mandatory if the value of b is less than 2d at some moment while even

and odd rules are repeatedly applied. We can skip the verification for non-mandatory

nL. The reason is as follows: Consider that for number n, we are applying even and odd

rules. Initially, b = 2d and c ≤ 2d − 1 hold. Thus, while even and odd rules are applied,

b > c always holds. Suppose that b ≤ 2d − 1 holds at some moment while the rules are

applied. Then, the current value of n is bnH + c < bnH + b ≤ (2d − 1)nH + b < 2dnH ≤ n.

It follows that, the value is less than n when the corresponding even and odd operations

are applied. Therefore, we can omit the verification for numbers that have no mandatory

least significant bits. We note that this technique cannot be applied to the computation

for the delay because every number has its own value of the delay and cannot be skipped.
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For least significant d bit number, we use table S to store the mandatory least sig-

nificant bits. Let sd be the number of such mandatory least significant bits. Using these

tables, we can write a verification algorithm in Algorithm 5. For the benefit of read-

Algorithm 5 Verification algorithm for convergence of Collatz conjecture
1: for mH ← 1 to +∞ do

2: for i← 0 to sd − 1 do

3: mL ← S [i]

4: n← m← 2dmH + mL

5: while n ≥ m do

6: Let nL be the least significant d bits and nH be the remaining bits.

7: n← B[nL] · nH +C[nL]

8: end while

9: end for

10: end for

ers, we show tables B, C, and S for 4 base bits in Table 4.1. From s4 = 3, we have 3

mandatory least significant bits out of 16.

For the reader’s benefit, Table 4.2 shows the necessary word size for each of tables

B and C for each base bit. It also shows the expected number of odd/even operations

included in one step operation n ← B[nL] · nH + C[nL]. Table 4.3 shows the size of

table S . It further shows the ratio of the mandatory numbers over all numbers. Later,

we set base bit 18 for tables B and C, and base bit 37 for table S in our proposed GPU

implementation. Thus, in our implementation, one operation n ← B[nL] · nH + C[nL]

corresponds to expected 27.0 odd/even operations. Also, we skip approximately 99.3%

of non-mandatory numbers.
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Table 4.1: Tables B, C, and S for least significant 4 bits.

B C S

(0000)2 1 0 (0111)2

(0001)2 9 1 (1011)2

(0010)2 9 2 (1111)2

(0011)2 9 2 -

(0100)2 3 1 -

(0101)2 3 1 -

(0110)2 9 4 -

(0111)2 27 13 -

(1000)2 3 2 -

(1001)2 27 17 -

(1010)2 3 2 -

(1011)2 27 20 -

(1100)2 9 8 -

(1101)2 9 8 -

(1110)2 27 26 -

(1111)2 81 80 -
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Table 4.2: The size of tables B and C

base bit words operation

4 16 6.0

5 32 7.5

6 64 9.0

7 128 10.5

8 256 12.0

9 512 13.5

10 1k 15.0

11 2k 16.5

12 4k 18.0

13 8k 19.5

14 16k 21.0

15 32k 22.5

16 64k 24.0

17 128k 25.5

18 256k 27.0
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Table 4.3: The size of table S

base bit words ratio base bit words ratio

3 2 0.2500 21 46611 0.0222

4 3 0.1875 22 93222 0.0222

5 4 0.1250 23 168807 0.0201

6 8 0.1250 24 286581 0.0171

7 13 0.1016 25 573162 0.0171

8 19 0.0742 26 1037374 0.0155

9 38 0.0742 27 1762293 0.0131

10 64 0.0625 28 3524586 0.0131

11 128 0.0625 29 6385637 0.0119

12 226 0.0552 30 12771274 0.0119

13 367 0.0448 31 23642078 0.0110

14 734 0.0448 32 41347483 0.0096

15 1295 0.0395 33 82694966 0.0096

16 2114 0.0323 34 151917639 0.0088

17 4228 0.0323 35 263841377 0.0077

18 7495 0.0286 36 527682754 0.0077

19 14990 0.0286 37 967378591 0.0070

20 27328 0.0261
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4.3.2 Verification algorithm for the delay

In the following, we show an algorithm of counting delay of Collatz conjecture. In the

computation of delay, the above idea for convergence that several odd/even operations

are skipped by tables B and C can be used. It is necessary to count the number of

odd/even operations skipped by applying a table operation. For example, when table

operation uses tables B and C for least significant 2 bits, if nL = (11)2 then 4 operations,

odd, even, odd, and even operations are applied in turn. Let J be a table as follows:

J

(00)2 2

(01)2 3

(10)2 3

(11)2 4

On the other hand, the idea for the convergence that if the value becomes n′ for some

n′ less than n by applying table operations, then we can guarantee that the conjecture

is true for n cannot be applied to the computation of the delay because the number of

operations needs to be counted until the value is 1. Therefore, in the computation of the

delay, we introduce table A that stores the delays which have been pre-computed for all

numbers less than t. Each element of table A[i] (0 ≤ i ≤ t − 1) stores the delay of i.

Namely, if the value becomes n′ for some n′ less than t, then we can obtain the delay

of n′ to refer A[n′]. After that, we add A[n′] to the number of operations necessary to

produce n′ and the delay of n is obtained. In our GPU implementation, we use table A

for t = 212. Algorithm 6 shows an algorithm to count delay of Collatz conjecture using

the above ideas.
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Algorithm 6 Count algorithm for delay of Collatz conjecture
1: for n← t to +∞ do

2: n′ ← n

3: D(n)← 0

4: while n′ ≥ t do

5: Let n′L be the least significant d bits and n′H be the remaining bits.

6: D(n)← D(n) + J[n′L]

7: n′ ← B[n′L] · n′H +C[n′L]

8: end while

9: D(n)← D(n) + A[n′]

10: end for

4.4 GPU implementation

The main purpose of this section is to show GPU implementations of verifying the

Collatz conjecture. The ideas of our GPU implementation are

(i) a GPU-CPU cooperative approach,

(ii) efficient memory access for the global memory and the shared memory, and

(iii) optimization of the code for arithmetic with larger integers.

In this section, we explain the details of our GPU implementation of the verification

for the convergence using these ideas first. After that, our GPU implementation of the

computation for the delay which is an extension of it is provided.
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4.4.1 A GPU-CPU cooperative approach

In the following, we show a GPU-CPU cooperative approach that is similar to the idea

of a hardware-software cooperative approach in [13]. We assume that 64-bit numbers

are verified. This assumption is sufficient because a working project for the Collatz

conjecture is currently checking 61-bit numbers [23]. We note that the verified numbers

can be extended easily since the interim numbers in the verification can be larger than

64-bit numbers. In the verification of the Collatz conjecture, therefore, arithmetic with

larger integers having more than 64 bits is necessary to compute B[nL] · nH + C[nL].

Depending on an initial value, the size of the interim value may become very large

during the verification. If larger interim value is allowed in the computation on the GPU,

the values cannot be stored on the registers, that is, they have to be stored on the global

memory whose access latency is very long. In our implementation, the maximum size

of interim values is limited to 96 bits, which consists of three 32-bit integers, to perform

the computation only on the registers. By limiting the maximum size, the computation

can be performed as fixed length computation without overhead caused by arbitrary

length computation. Suppose that a thread finds that the interim value is overflow for

the initial value m. The thread reports m through the global memory if the overflow is

detected. After all the threads finish the verification, the host program checks whether

there are overflows or not. If overflows are found, the host verifies the Collatz conjecture

for the values using a quite large number of bits by software on the CPU. The number

of bits for the verification on the host is only limited by the memory size of the host.

Recent PCs have several GBytes memory. Therefore, we can verify a number even if

the interim value becomes several thousands bits. In our implementation, the number

of bits for the verification on the host is 960 bits. There was no 64-bit number that the
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maximum size of the interim value was largar than 960 bits in our experiment.

The reader may think that if the number of overflows is larger, the verification time

is longer. However, the number of overflows is small enough for the limitation of 96

bits [14]. Therefore, it is reasonable to perform the verification for overflow numbers on

the host. In Section 4.5, we will evaluate the number of overflows and the verification

time for them.

4.4.2 Efficient memory access for the GPU memory

To make memory access for the GPU memory efficient, we perform the broadcast ac-

cess as possible using the following technique. In our GPU implementation, we arrange

initial values verified by threads in a block such that the least significant bits of them

are identical. More specifically, the data format of initial values is shown in Figure 4.1.

In the figure, thread ID denotes a thread index within a block, block ID denotes a block

index within a kernel, and M is a constant. In each block, S [block ID] and M are com-

mon values for threads and each thread in a block verifies the Collatz conjecture for

28(= 256) initial values. Namely, threads in a block concurrently verify the conjecture

for values that are identical except thread ID. Using this arrangement, until the bits de-

pending on the thread ID are included into nL, threads in a block can refer the identical

address of tables B and C at the same time. For each iteration of the while-loop in Al-

gorithms 5 and 6 in Section 4.3, the interim value is divided into the least significant d

bits and the remaining bits, that is, the value is d-bit-right-shifted. Therefore, using the

data format in Figure 4.1, threads can refer the same address ⌊8+(45−b)+b
d ⌋ = ⌊53

d ⌋ times

for each verification. For example, when d = 11, threads can refer the same address at

least 4 times for each initial value.
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Since compared with the global memory, the access time of the shared memory is

faster, but the size of the shared memory is much smaller, it is important to find the

optimal size of base bits for tables B and C and the optimal location in which these

tables are stored in the global memory or the shared memory. Therefore, we evaluate

the computing time for various cases to find the optimal ones beforehand. On the other

hand, since a value in table S is read only once for each 256 numbers to be verified,

compared with the total time of the computation, the access time of table S is small

enough to be ignored.

!1#
!

thread_ID !00000000#
!

M S[block_ID]

10 bits 8 bits b bits45-b bits

!1#
!

thread_ID !11111111#
!

M S[block_ID]

256

!

!1#
!

thread_ID !00000001#
!

M S[block_ID]

1 bit

Figure 4.1: The data format of 64-bit numbers verified by each thread in a block, where

thread ID denotes a thread index within a block, block ID denotes a block index within

a kernel, and M is a constant.

4.4.3 Optimization of the code for arithmetic with larger integers

As mentioned in the above, arithmetic with larger integers having more than 64 bits is

necessary to compute B[nL] · nH + C[nL]. In C language, however, there is no efficient

way of doing such arithmetic because C language does not support operations with the

carry flag bit. In a common way to perform the arithmetic with larger integers, 32-bit

operations are performed on 64-bit operations by extending the bit-length. However,
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the overhead of type conversion for the extension of the bit-length cannot be ignored.

To optimize the arithmetic with larger integers, therefore, a part of the code is written

in PTX [20] that is an assembly language for NVIDIA GPUs and can be used as inline

assembler in CUDA C language. PTX supports arithmetic operations with the carry

flag bit. Concretely, we use mad and madc that are 32-bit arithmetic operations in PTX

to compute B[nL] · nH + C[nL]. These operations multiply two 32-bit integers and add

one 32-bit integer excluding and including the carry flag bit, respectively. Applying

the optimization of the code, in the preliminary experiment, the result shows that the

optimized implementation can verify the Collatz conjecture approximately 1.8 times

faster than the non-optimized implementation.

4.4.4 GPU implementation of the computation for the delay

Our GPU implementation of the computation for the delay that counts the number of

odd/even operations for a number, is very similar to that for the convergence described

in the above. The delay computation shown in Algorithm 6 additionally uses table

J and table A is used instead of table S . Also, since the condition of the while-loop is

difference, compared with the verification of the convergence, there is an increase on the

number of iterations of the while-loop. In the GPU implementation for the delay, it is

also important to find the optimal size of base bits for tables B, C, and J and the optimal

location in which these tables are stored in the global memory or the shared memory.

In addition, the size of table A is also an important factor since the size determines the

number of iterations of the while-loop in Algorithm 6. Besides, a value in table A is

read once for each number to be verified though a value of table S for the convergence

computation is referred once for each 256 numbers. Thus, we evaluate the computing
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time for various cases to find the optimal parameters of the tables beforehand.

4.5 Performance evaluation

We have implemented two GPU implementations of verifying the Collatz conjecture.

One is for the convergence and the other is for the delay. We use CUDA C with

NVIDIA GeForce GTX TITAN X with 3072 processing cores (24 streaming multi-

processors which have 128 processing cores each) running in 1075 MHz and 12 GB

memory. For the purpose of estimating the speed up of our GPU implementation, we

have also implemented a sequential implementation of verifying the Collatz conjecture

using GNU C. In the sequential implementation, we can apply the idea of accelerating

the verification described in Section 4.3. For example, in the CPU implementation, the

maximum size of interim values is limited to 96 bits, which consists of three 32-bit in-

tegers, to avoid the overhead caused by arbitrary length computation just as the GPU

implementation. Suppose that when an interim value is overflow for the initial value m,

m is stored to the memory as an overflowed value. After all the computation is finished,

the program checks whether there are overflows or not. If overflows are found, the ver-

ification is performed for the values using a quite large number of bits. We have used

in Intel Core i7-4790 running in 3.6GHz and 32GB memory to run the sequential CPU

implementation.

For the computation of the convergence and the delay, we have evaluated the com-

puting time of the GPU implementation by verifying the Collatz conjecture for the 64-bit

numbers whose data format is shown in Figure 4.1. For this purpose, we have randomly

generated integers as a constant M.

Regarding the size of verified numbers, our GPU implementation computes interim
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Table 4.4: The number of verified 64-bit numbers (×109) per second for various size of

base bit of tables B and C for the convergence

size of bits 10 11 12 13 14 15 16 17 18 19 20

GPU(shared memory) 677 697 763 — — — — — — — —

GPU(global memory) 566 583 611 698 739 747 872 931 983 371 160

CPU 3.70 3.92 4.29 4.02 3.75 3.03 3.08 2.85 3.07 3.12 2.05

values using 96 bits. On the other hand, the verification on the host also supports 960-bit

numbers. This is sufficient at the present time because working projects for the Collatz

conjecture are currently checking 61-bit numbers [23] and 72-bit numbers [1].

4.5.1 Performance for the verification of the convergence

To find the optimal size of bits for tables B and C, we evaluated the computing time of

the verification for the convergence in the GPU and CPU implementations for 250 and

235 64-bit numbers, respectively. Table 4.4 shows the number of verified 64-bit numbers

per second for various size of base bit of tables B and C when the size of base bit of table

S is 32. Note that tables B and C of base bit more than 12 cannot be stored in the shared

memory due to the size limitation. According to the table, in the GPU implementation,

we can find that the optimal size of bits is 18 when they are stored in the global memory.

Also, in the CPU implementation, the optimal size of bits is 12. In the following, we

use these parameters in the GPU and CPU implementation.

Next, we find the optimal size of bits for table S . Figures 4.2 and 4.3 show the

number of verified numbers per second for various base bit of table S in the GPU and
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Figure 4.2: The number of verified 64-bit numbers per second for various size of base

bit of table S in the GPU implementation for the convergence of the Collatz conjecture

CPU implementations, respectively. According to the both graphs, when the base bit

is larger, the number is larger because the number of non-mandatory numbers is larger

for larger base bit as shown in Table 4.3. Due to the size limitation, more than 37 bits

for table S cannot be stored in the global memory in the GPU and the main memory

in the CPU, respectively. For table S with base bit 37, our GPU implementation can

verify the convergence for 1.31 × 1012 numbers per second. On the other hand, in the

CPU implementation, when the base bit is larger, the verified number per second is also

larger. For table S with base bit 37, the CPU implementation can verify the convergence

for 5.25 × 109 numbers per second.

We note that in the GPU implementation, the computing time of the verification for
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Figure 4.3: The number of verified 64-bit numbers per second for various size of base

bit of table S in the CPU implementation for the convergence
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overflow numbers by the CPU is included as described in Section 4.4. For example,

when the convergence for table S with base bit 37 is verified, 22932 overflow numbers

were found, that is, the size of interim values for 22932 numbers became more than

96 bits. After that, the host program verified the conjecture for these numbers using a

quite large number of bits by software. The verification time in the CPU was 100 ms

including the time of data transfer between the GPU and CPU. Since the total computing

time was 853881 ms, the verification time for overflow numbers by the CPU is much

shorter. Thus, our GPU implementation for the verification of the convergence of the

Collatz conjecture attains speed-up factors of 249 over the CPU implementations.

There are several researches for accelerating the exhaustive verification of the con-

vergence of Collatz conjecture using FPGAs [2, 12, 13, 14]. All of them are imple-

mentations and the basic idea of them are using table operation as same as that of our

implementations. However, their implementations verify the Collatz conjecture only for

the convergence. Also, as far as we know, the FPGA implementation in [14] has been

the fastest implementation. However, our GPU implementation can verify the conver-

gence of the Collatz conjecture 7.98 times faster than the FPGA implementation.

4.5.2 Performance for the verification of the delay

For the delay of the Collatz conjecture, we also find the optimal size of bits for tables

B, C and J by evaluating the computing time of the GPU and CPU implementations

for 230 and 227 64-bit numbers, respectively. Table 4.5 shows the number of verified

64-bit numbers per second for various size of tables B, C and J when the size of base

bit of table A is 25. We note that tables B, C and J of base bit more than 12 cannot be

stored in the shared memory due to the size limitation. In the GPU implementation, the
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Table 4.5: The number of verified 64-bit numbers (×106) per second for various size of

base bit of tables B, C and J for the delay

size of bits 8 9 10 11 12 13 14 15 16 17 18 19 20

GPU (shared memory) 939 951 946 936 922 — — — — — — — —

GPU (global memory) 924 933 870 851 407 360 383 375 397 413 393 218 134

CPU 9.26 11.2 11.2 12.6 12.4 11.5 12.3 9.05 8.09 7.97 7.85 6.08 2.97

optimal size of bits is 9 when they are stored in the shared memory. On the other hand,

the optimal size of bits is 11 in the CPU implementation.

Next, we find the optimal size of bits for table A. Figures 4.4 and 4.5 show the

number of verified numbers per second for various size of table A in the GPU and

CPU implementations for 230 and 227 64-bit numbers, respectively. Unlike the table

S in the convergence, when the size of table A is larger, the verified numbers is not

larger. This is because the memory access time to the table cannot be ignored since

the number of access for the delay is 256 times more than that for the convergence as

described in Section 4.4. Therefore, in the delay computation, the size of table A affects

a trade-off between the hit ratio of the cache memory and the number of iterations of

the while-loop. When the size of table A is larger, the hit ratio of the cache memory

is lower and the number of iterations of the while-loop is less. On the other hand,

when the size of the table is smaller, the hit ratio of the cache memory is higher and

the number of iterations of the while-loop is more. This trade-off also exists in the

CPU implementation. According to the graph, we can find a peak and it shows a well-

balanced trade-off point between them. Thus, we can find that the optimal size of table

A in the GPU and CPU implementations is 212 and 223, respectively.
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Figure 4.4: The number of verified 64-bit numbers per second for various size of base

bit of table A in the GPU implementation for the delay
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Using the above optimal parameters, we evaluated the computing time of the GPU

and CPU implementations for 230 64-bit numbers. The results show that our GPU im-

plementation can compute the delay for 1.01 × 109 numbers per second. It includes

the computing time of the verification for overflow numbers by the CPU. On the other

hand, in the CPU implementation, the CPU implementation can compute the delay for

1.39 × 107 numbers per second. Thus, our GPU implementation for the computation of

the delay of the Collatz conjecture attains speed-up factors of 73 over the CPU imple-

mentation.

4.6 Concluding remarks

We have presented GPU implementations that perform the exhaustive search to verify

the Collatz conjecture for the convergence and the delay. In our GPU implementation,

we have considered programming issues of the GPU architecture such as the coalescing

of the global memory, the shared memory bank conflict, and the occupancy of the mul-

ticore processors. We have implemented them on NVIDIA GeForce GTX TITAN X.

The experimental results show that they can verify 1.31 × 1012 and 1.01 × 109 64-bit

numbers per second for the convergence and the delay, respectively. On the other hand,

the sequential CPU implementations verify 5.25×109 and 1.39×107 64-bit numbers per

second for the convergence and the delay, respectively. Thus, our GPU implementations

attain a speed-up factor of at most 249.
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Chapter 5

Conclusion

In this dissertation, we proposed GPU implementations for bulk execution of multiple-

length multiplication and exhaustive verification of the Collatz conjecture. We consid-

ered programming issues of the GPU architecture including warp divergence, coalesced

access of the global memory, bank conflict of the shared memory, etc.

In Chapter 3, we presented a GPU implementation for bulk execution of multiple-

length multiplication. We proposed Sum-rotate multiplication which is 1024-bit multiple-

length multiplication method. We used one warp to perform 1024-bit multiple-length

multiplication in this method and adopted warp-synchronous programming technique

to avoid any synchronize operations. Also, inter-thread communication is performed

by warp shuffle functions without accessing shared memory. The experimental results

show that our GPU implementation on NVIDIA GeForce GTX 980 attains a speed-up

factor of 52 for 1024-bit multiple-length multiplications over the sequential CPU im-

plementation. In addition, we use sum-rotate multiplication for larger size of bits as a

sub-routine. We also use Toom-Cook method to reduce the number of multiplications.

Using Toom-Cook method, our GPU implementation attains a speed-up factor of 21 for
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65536-bit multiple-length multiplications over the sequential CPU implementation.

In Chapter 4, we presented GPU implementations to accelerate exhaustive verifica-

tion of the Collatz conjecture. We used three ideas which are a CPU-GPU cooperative

approach, efficient memory access of the GPU memory, and optimization of multi-

plication. The experimental results show that our GPU implementations on NVIDIA

GeForce GTX TITAN X can verify 1.31 × 1012 and 1.01 × 109 64-bit numbers per sec-

ond for the convergence and the delay, respectively. On the other hand, the sequential

CPU implementations on Intel Core i7-4790 verify 5.25 × 109 and 1.39 × 107 64-bit

numbers per second for the convergence and the delay, respectively. Thus, our GPU

implementations for the convergence and the delay attain a speed-up factor of 249 and

73, respectively.
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