
論文の要旨

題目 Efficient GPU Implementations for Bulk Computations

(バルク計算のための効率的な GPU実装手法)

氏 名 藤田 徹

A GPU (Graphics Processing Unit) is a specialized circuit designed for

manipulating images and video encoding. Latest GPUs are designed for

general purpose computing and can perform computation in applications

traditionally handled by the CPU. Hence, GPUs have recently attracted the

attention of many application developers. The bulk computation is to perform

the same algorithm for a lot of instances. The bulk computation has many

applications and can be implemented in the GPU very efficiently. This

dissertation shows efficient GPU implementations of bulk computations.

In Chapter 1, we show the introduction of the dissertation which includes

the research background and contributions. We introduce GPUs and CUDA

in Chapter 2. CUDA is a general purpose parallel computing platform and

programming model. We develop programs running on GPUs using CUDA.

In Chapter 3, we describe the bulk execution of sequential algorithms and

performance analysis. We show the obliviousness and semi-obliviousness of

sequential algorithms. We also show that the bulk execution of these

algorithms can be implemented very efficiently in CUDA-enabled GPUs.

In Chapter 4, we implement the bulk computation of a Euclidean algorithm

computing the Greatest Common Divisor (GCD) of two large numbers in a

GPU. We present a new efficient Euclidean algorithm that we call the

approximate Euclidean algorithm. The idea of the approximate Euclidean

algorithm is to compute a good approximation of quotient by just one 64-bit

division and to use it for reducing the number of iterations of the Euclidean

algorithm. We also present an implementation of the approximate Euclidean

algorithm optimized for CUDA-enabled GPUs. The experimental results

show that our parallel implementation of the approximate Euclidean

algorithm for 1024-bit integer running on GeForce GTX TITAN X GPU is 90

times faster than the Intel Xeon CPU implementation.

We present Bitwise Parallel Bulk Computation (BPBC) technique for

accelerating the bulk computation in Chapter 5. The idea of the BPBC

technique is to simulate a combinational logic circuit using bitwise logic

operations. Bitwise logic operations compute logical OR, AND, NOT, and XOR

operations for the individual bits of 32-bit word. In the BPBC technique, we

store 32 inputs for the combinational logic circuit into a particular bit of the

words and we apply the bitwise logic operations corresponding to the

combinational logic circuit to the words. Thus, we can compute 32 circuits for

32 inputs at the same time. As an example of application of the BPBC

technique, we show the pairwise sums of integers can be accelerated if the

value of integers are small. We apply the BPBC technique to two

computations, the simulation of Conway's Game of Life and the CKY parsing.

In Chapter 6, we implement the simulation of Conway’s Game of Life on

the GPU using the BPBC technique. Conway's Game of Life is the most well-

known cellular automaton. The universe of the Game of Life is a 2-

dimensional array of cells, which takes two possible states, alive or dead. The

state of every cell is repeatedly updated according to those of eight neighbors.

A cell will be alive if exactly three neighbors are alive, or it is alive and two

or three neighbors are alive. This dissertation shows several acceleration

techniques for simulating the Game of Life using a GPU as follows: (1) the

states of 32/64 cells are stored in 32/64-bit words (integers) and the next

states are computed by the BPBC technique, (2) the states of cells stored in 2

words are updated at the same time by a thread, (3) warp shuffle instruction

is used to directly transfer the current states stored in registers, and (4)

multiple-step simulation is performed to reduce the overhead of data transfer

and invoking CUDA kernel. Using these technique, we have obtained

extremely fast GPU implementation for simulating the Game of Life using

GPUs. The experimental results show that our GPU implementation using

GeForce GTX TITAN X performs 1350 × 109 updates per second for 16K-step

simulation of 512K×512K cells stored in the SSD. Since Intel Core i7 CPU

using the same technique performs 13.4 × 109 updates per second, our GPU

implementation for the Game of Life achieves a speedup factor of 100.

In Chapter 7, we apply the BPBC technique to the CKY parsing and

implement it on the GPU. The CKY parsing determines whether the context-

free grammar derives an input string. The idea of the CKY parsing is to

compute a 2-dimentional table called CKY table by the dynamic programming

technique. Each element of the CKY table stores a subset of non-terminal

symbols. Our idea to apply the BPBC technique to the CKY parsing is to

compute 32 CKY tables for 32 input strings at the same time. Since the CKY

parsing can be done by iterative simulation of the combinational logic circuit,

the BPBC technique can be applied to it. We show that the CKY parsing can

be implemented in the GPU efficiently using the BPBC technique. The

experimental results using Intel Core i7 CPU and GeForce GTX TITAN X

GPU show that the GPU implementation for the CKY parsing runs more than

400 times faster than the CPU implementation.

We conclude the dissertation in Chapter 8.

