
Efficient GPU Implementations for Bulk Computations
(バルク計算のための効率的なGPU実装手法)

by

Toru Fujita

A dissertation submitted

in partial fulfillmen of the requirements for the degree of

Doctor of Engineering

in Information Engineering

Under Supervision of

Professor Koji Nakano

Department of Information Engineering,
Graduate School of Engineering,

Hiroshima University

March, 2017

Summary

A GPU(Graphics Processing Unit) is a specialized circuit designed for manipulating

images and video encoding. Latest GPUs are designed for general purpose computing

and can perform computation in applications traditionally handled by the CPU. Hence,

GPUs have recently attracted the attention of many application developers. The bulk

computation is to perform the same algorithm for a lot of instances. The bulk compu-

tation has many applications and can be implemented in the GPU very efficiently. This

dissertation shows efficient GPU implementations of bulk computations.

First, we implement the bulk execution of Euclidean algorithms computing the

Greatest Common Divisor (GCD) of two large numbers in a GPU. We present a new

efficient Euclidean algorithm that we call the approximate Euclidean algorithm. The

idea of the approximate Euclidean algorithm is to compute an approximation of quo-

tient by just one 64-bit division and to use it for reducing the number of iterations of the

Euclidean algorithm. The experimental results show that our parallel implementation

of the approximate Euclidean algorithm for 1024-bit integer running on GeForce GTX

TITAN X GPU is 90 times faster than the Intel Xeon CPU implementation.

Second, we present Bitwise Parallel Bulk Computation (BPBC) technique for accel-

erating the bulk computation. The idea of the BPBC technique is to simulate a combi-

national logic circuit using bitwise logic operations. Bitwise logic operations compute

logical OR, AND, NOT, and XOR operations for the individual bits of 32-bit word. In

this technique, we store 32 inputs for the combinational logic circuit into a particular

bit of the words. And we apply the bitwise logic operations corresponding to the com-

binational logic circuit to the words. Thus, we can compute 32 circuits for 32 inputs at

the same time. We apply the BPBC technique to two computations, the simulation of

Conway’s Game of Life and the CKY parsing.

Conway’s Game of Life is the most well-known cellular automaton. The universe

of the Game of Life is a 2-dimensional array of cells, which takes two possible states,

alive or dead. The state of every cell is repeatedly updated according to those of eight

neighbors. A cell will be alive if exactly three neighbors are alive, or it is alive and two

or three neighbors are alive. This dissertation shows several acceleration techniques

for simulating the Game of Life using a GPU as follows: (1) the states of 32/64 cells

are stored in 32/64-bit words (integers) and the next states are computed by the BPBC

technique, (2) the states of cells stored in 2 words are updated at the same time by a

thread, (3) warp shuffle instruction is used to directly transfer the current states stored

in registers, and (4) multiple-step simulation is performed to reduce the overhead of

data transfer and invoking CUDA kernel. The experimental results show that our GPU

implementation using GeForce GTX TITAN X performs 1350×109 updates per second

for 16K-step simulation of 512K × 512K cells stored in the SSD. Since Intel Core

i7 CPU using the same technique performs 13.4 × 109 updates per second, our GPU

implementation for the Game of Life achieves a speedup factor of 100.

The CKY parsing determines whether a context-free grammar derives an input string.

The idea of the CKY parsing is to compute a 2-dimentional table called CKY table by

the dynamic programming technique. The CKY parsing can be done by iterative sim-

ulation of the combinational logic circuit. In this dissertation, we show that the CKY

parsing can be implemented in the GPU efficiently using the BPBC technique. The ex-

perimental results using Intel Core i7 CPU and GeForce GTX TITAN X GPU show that

the GPU implementation for the CKY parsing runs more than 400 times faster than the

CPU implementation.

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Contributions . 2

1.2.1 GCD computation for large numbers 2

1.2.2 The simulation of Conway’s Game of Life 6

1.2.3 The CKY parsing . 8

1.3 Dissertation Organization . 10

2 GPUs and CUDA 12

3 Bulk execution of sequential algorithms and performance analysis 20

3.1 The obliviousness of sequential algorithms and the bulk execution . . . 20

3.2 Semi-obliviousness of a sequential algorithm and the bulk execution . . 24

3.3 Oblivious sequential algorithms with synchronization 25

4 Bulk computation of Euclidean algorithms on the GPU 29

4.1 Euclidean algorithms for computing the GCD 29

4.2 The approximate Euclidean algorithm for computing the GCD 36

4.3 Further acceleration using PTX instructions 45

i

4.4 Semi-oblivious implementation of the approximate Euclidean algorithm 47

4.5 Experimental results . 50

5 Bitwise Parallel Bulk Computation technique 54

5.1 Bitwise summing technique . 55

5.2 The BPBC on the UMM and performance analysis 59

5.3 Experimental results of pairwise summing 61

6 Efficient GPU implementations of Conway’s Game of Life 63

6.1 Conway’s Game of Life and a conventional implementation 63

6.2 BPBC implementation for the Game of Life 66

6.3 Bitwise summing technique for two words 70

6.4 Multiple-step simulation using the shared memory 72

6.5 Further acceleration using warp shuffle 77

6.6 Simulation of a very large universe . 78

6.7 Experimental results . 80

7 BPBC implementation of the CKY parsing on the GPU 85

7.1 The CKY parsing . 85

7.2 Bitwise Parallel Bulk Computation for CKY parsing 88

7.3 The performance analysis of the CKY parsing using the BPBC tech-

nique on the UMM . 91

7.4 GPU implementation . 92

7.5 Experimental results . 93

8 Conclusions 98

ii

References 99

Acknowledgment 105

List of publications 106

iii

List of Figures

1.1 One-step simulation of the Game of Life 6

2.1 GPU architecture . 13

2.2 CUDA programming model . 14

2.3 Stride access and coalesced access to the global memory 16

2.4 Conflic access and conflict-fre access to the shared memory 17

3.1 The UMM with width w = 4 and latency l = 5 22

3.2 Column-wise arrangement for p = 8 arrays of size n = 4 each 23

4.1 Cases for the values of lX and lY . 39

4.2 Illustrating the computation of Z = Y · α using PTX instructions 47

4.3 Implementation of X and Y . 48

5.1 The naive pairwise addition and the BPBC pairwise addition for four

pairs of 4-bit numbers . 57

5.2 The column-wise arrangement of m + s words on the memory 60

6.1 Bit-per-cell arrangement of 256 × 256 universe of 32-bit words with

column-major order arrangement . 65

iv

6.2 The computation of the next states of 4 cells in a 4-bit word by Algo-

rithm SINGLE-WORD . 67

6.3 Illustrating 12 words for computing next states of cells in two words by

Algorithm DOUBLE-WORD . 71

6.4 Clean and dirty cells . 74

6.5 An m × m slice and a d × d block in a large 2-dimensional array 75

6.6 Words accessed by threads executing Algorithm DOUBLE-WORD . . . 76

6.7 Regular arrangement . 77

6.8 Shift arrangement . 77

6.9 Copying words storing cells using a warp shuffle instruction 78

6.10 Partition of a large universe of size
√
N ×

√
N into B sub-universes of

size
√

N
B ×
√

N
B . 79

7.1 The CKY table for Gexample and abaab 87

7.2 The circuit for computing ⊗Gexample . 89

7.3 The computation of ⊗G for four instances 90

7.4 The computation order of the CKY table 93

v

Chapter 1

Introduction

1.1 Background and Motivation

The GPU (Graphics Processing Unit) is designed for accelerating to generate and ma-

nipulate images [23, 31, 36]. Latest GPUs are used for general purpose computing

such as cryptography, natural language processing and so on. NVIDIA provides CUDA

(Compute Unifie Device Architecture) [12, 14], the computing engine for NVIDIA

GPUs. CUDA provides a parallel computing platform and programming model. The

GPU consists of multiple Streaming Multiprocessors (SMs) and the global memory.

Each SM has hundreds of processing cores and the shared memory. Thus, there are a

lot of processing cores and multiple types of memories in the GPU, GPU can accelerate

the computation traditionally handled by the CPU.

The computation of bulk execution is to perform the same algorithm for a lot of

instances in turn on the sequential machine such as CPUs or in parallel on the paral-

lel machine such as GPUs. Bulk computation has many applications such as the FFT

algorithm.

1

1.2 Contributions

In this dissertation, we present the following three GPU implementations of bulk com-

putations.

1.2.1 GCD computation for large numbers

It is well known that the Euclidean algorithm [28] can compute the GCD of two num-

bers very efficiently. The original Euclidean algorithm repeats modulo computation of

two numbers until one of them reaches zero and the other one stores the GCD. However,

modulo computation of large numbers takes a lot of time. Hence, the binary Euclidean

algorithm [42], which does not use modulo computation, is often used to compute the

GCD. Basically, the binary Euclidean algorithm repeats subtraction of two numbers and

arithmetic shifts until one of them reaches zero. The binary Euclidean algorithm needs

more iterations than the original Euclidean algorithm, but the computation of each it-

eration of the binary Euclidean algorithm takes less time than that of the original Eu-

clidean algorithm. Totally, the binary Euclidean algorithm runs faster than the original

Euclidean algorithm, and it is commonly used to compute the GCD.

In this dissertation, we present a new Euclidean algorithm for computing the GCD

that can be implemented in CUDA-enabled GPUs. The idea of our new Euclidean

algorithm that we call the approximate Euclidean algorithm is to compute a good ap-

proximation of quotient by simple 64-bit division and to use it for reducing the number

of iterations of the Euclidean algorithm. It runs much faster than the original Euclidean

algorithm and the binary Euclidean algorithm. We also present an implementation of

the approximate Euclidean algorithm optimized for CUDA-enabled GPUs.

Previous works [43, 44] introduced obliviousness of a sequential algorithm and

2

showed that the bulk execution of an oblivious sequential algorithm can be implemented

very efficiently in CUDA-enabled GPUs. A sequential algorithm is oblivious if an ad-

dress accessed at each time unit is independent of the input. More formally, there exists

a function a such that the algorithm accesses address a(t) or does not access any address

t (≥ 0). For example, let b be an array of size n and we want to determine if there exists

i such that b[i] , 0. In other words, we compute the logical OR of all b[i]’s. This can

be done by reading the value of b[i] from i = 0 to n − 1 one by one. Once it find i

such that b[i] , 0, it terminates and b[i + 1], b[i + 2],... are not accessed. If it accesses

b[n−1] and find b[n−1] = 0, then all b[i]’s are zero. Clearly, this algorithm is oblivious

because at each i-th iteration, it accesses b[i] or does not access the memory. The bulk

execution of a sequential algorithm is to execute it for many different inputs in turn or

at the same time. Suppose that each input of the bulk execution is assigned to a CUDA

thread and each CUDA thread executes the sequential algorithm for an assigned input.

Since each thread accesses the same address at each time unit, memory access to the

global memory is coalesced if the input and the work space is arranged in the CUDA

global memory in column-wise. Hence, this implementation of the bulk execution of a

sequential algorithm runs very fast.

However, unfortunately, our approximate Euclidean algorithm is not oblivious. Hence,

we further introduce semi-obliviousness, and show that our approximate Euclidean al-

gorithm is semi-oblivious in the sense that an address accessed at each of almost all

time units is independent of the input. In other words, semi-oblivious algorithm may

access different addresses in few time units. If each of the CUDA threads executes a

semi-oblivious sequential algorithm for the bulk execution, then they may perform non-

coalesced access to the global memory. However, if the ratio of non-coalesced access

3

is small enough, the bulk execution of a semi-oblivious sequential algorithm still runs

efficiently on the GPU. We will show that the approximate Euclidean algorithm can be

implemented as a semi-oblivious sequential algorithm with sync, and it runs on CUDA-

enabled GPUs efficiently. The implementation results on GeForce GTX TITAN X show

that the GCD of two randomly generated 1024-bit numbers can be computed in 0.482

microseconds per GCD computation. Also, it is 90 times faster than the approximate

Euclidean algorithm on a single processor.

One of the applications of GCD computation is to break RSA keys [39]. Suppose

that we have a lot of RSA moduli collected from the Web. If a pair of two RSA mod-

uli in them shares a prime number, each of them can be decomposed into two prime

numbers easily by computing the GCD. If an RSA modulo can be decomposed into two

prime numbers, the corresponding RSA decryption key can be obtained. Such pairs

of RSA keys are called weak RSA keys. By computing the GCD of all pairs of RSA

moduli collected from the Web, we can fin weak RSA keys if exist. Actually, several

public keys collected from the Web includes weak RSA keys [30]. Several previously

published papers have presented GPU implementations of the binary Euclidean algo-

rithm for breaking weak RSA keys in CUDA-enabled GPU. Fujimoto [19] has imple-

mented the binary Euclidean algorithm using CUDA and evaluated the performance on

GeForce GTX 285 GPU. The experimental results show that the GCDs for 131072 pairs

of 1024-bit numbers can be computed in 1.431932 seconds. Hence, his implementation

runs 10.9 microseconds per one 1024-bit GCD computation. Scharfglass et al. [41]

have presented a GPU implementation of the binary Euclidean algorithm. It performs

the GCD computation of all 199990000 pairs of 20000 RSA moduli with 1024 bits in

2005.09 seconds using GeForce GTX 480 GPU. Thus, their implementation performs

4

each 1024-bit GCD computation in 10.02 microseconds. Quite recently, White [47]

has showed that the same computation can be performed in 631.417 seconds on Tesla

K20Xm. It follows that it computes each 1024-bit GCD in 3.15 microseconds.

On the other hand, it has been presented [22] that a sequential algorithm can fin

a weak RSA keys much faster than the pairwise GCD computation for all pairs of two

RSA moduli. The idea is to compute, for each RSA modulo, the GCD with the product

of all other RSA moduli. If an RSA modulo shares a prime number with one of all

other RSA moduli, then the GCD is the prime number. The computing time can be

reduced by creating a remainder tree of all RSA moduli by repeating complicated but

efficient modulo computation [4]. This sequential algorithm runs faster than a parallel

implementation of pairwise GCD computation using the GPU. Hence it makes no sense

to use the pairwise GCD computation for breaking weak RSA keys. However, our GPU

implementation of pairwise GCD computation is still significan in the area of GPU

computation. The efficient sequential algorithm uses very complicated remainder tree

technique and fast modulo computation, and it just find a pair of RSA moduli sharing

a prime number in a large set of RSA moduli. It works only for the case that most of

pairs of RSA moduli are coprime, and very few pairs share a prime number. Hence,

the sequential algorithm using the remainder tree technique cannot be used to compute

the GCD for all pairs. Since we want to compute the GCD of all pairs, the efficient

sequential algorithm for breaking RSA moduli using a remainder tree cannot be used

for this purpose. Our GPU implementation is the best for this task.

5

1.2.2 The simulation of Conway’s Game of Life

Conway’s Game of Life was created by John Horton Conway, a mathematician at

Gonville and Caius College of the University of Cambridge [1, 20]. The universe of

the Game of Life is an 2-dimensional array of cells, each of which takes one of two

states, 1 (alive) and 0 (dead). The state of every cell is updated by the current states

of the eight neighbors as follows: The next state of a cell is alive if and only if it has

three alive neighbors, or if it is alive and has two alive neighbors. Figure 1.1 shows an

example of one-step simulation of the Game of Life. For simplicity, we assume that

the universe of the Game of Life is square and wrapped around to handle the boundary

cells.

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 1 0
0 0 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 1 1 0
0 0 1 0 0 1
0 1 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0

Figure 1.1: One-step simulation of the Game of Life

We are interested in how we can accelerate the simulation of the Game of Life using

CUDA-enabled GPUs. Sometimes, simulation of the Game of Life means that the states

of all cells of every step is output to a fil or a computer display. However, in such

simulation, the overhead for output of cells is much larger than that for computation of

cells. Since we are interested in computation of states of cells, we ignore the overhead

for output cells. More specificall , we focus on accelerating simulation that computes

the values of all cells in the universe after T steps for a given T .

6

We develop several acceleration techniques for simulating the Game of Life using a

GPU as follows.

1. the states of 32/64 cells are stored in 32/64-bit words (integers) and the next states

are computed by the BPBC technique,

2. the states of cells stored in 2 words are updated at the same time by a thread,

3. warp shuffle instruction is used to directly transfer the current states stored in

registers, and

4. multiple-step simulation is performed to reduce the overhead of data transfer and

invoking CUDA kernel.

It is easy to write a program for simulating the Game of Life if the state of a cell

is stored in a word of data such as an 8-bit character or a 32-bit integer. However, for

accelerating the simulation, it makes sense to use bit-per-cell arrangement [18] in which

the state of a cell is stored as a bit of a word. For example, a 32-bit integer is used to

store the states of consecutive 32 cells. A very sophisticated way to compute the next

states of cells stored in a word by bitwise operations has been presented [45]. Also, the

simulation of the Game of Life can be done by stencil cores, a class of kernels updating

elements in an array according to some fi ed pattern, called stencil. Hence, it is easy to

implement the simulation using a framework of stencil computation. For example, it can

be implemented on GPUs with few codes using stencil operations of MATLAB [33].

As far as we know, there is no published technical paper aiming to accelerate the

simulation. Very few papers presented GPU implementations of the simulation [3, 38],

but their implementations are straightforward and did not aim to accelerate the simula-

tion. On the other hand, there are a lot of web sites that present GPU implementations

7

of the Game of Life. For example, bitwise logical operations for the bit-per-cell ar-

rangement are used to compute the next stats of cells [18]. Our implementations also

use the bit-per-cell arrangement. Moreover, we developed a multiple-step simulation

technique, which reduces memory access to the global memory. Also, we store the

states of cells in registers of threads, and data transfer between registers is performed

by a warp shuffle instruction. Using these techniques, we have obtained extremely fast

GPU implementation for simulating the Game of Life using GPUs. For simulating the

Game of Life with more than 1,000,000,000 cells, the best GPU implementation in [18]

achieved 24.7 × 109 updates per second on GeForce GTX 480 GPU. We will show that

our GPU implementation achieved 1990× 109 updates per second on GeForce GTX TI-

TAN X GPU. Hence, our implementation more than 80 times faster than the previously

published implementation. GeForce GTX 480 and GTX TITAN X have 480 and 3072

processor cores running 1401 MHz and 1000 MHz respectively. Thus, our implementa-

tion is much more efficient even if the difference of computing power of different GPUs

is taking into account. Further, we have implemented fast simulation of a very large

universe stored in the SSD (Solid State Drive). The performance of our simulation on

GeForce GTX TITAN X is 1350 × 109 updates per second for 16K-step simulation of

512K × 512K cells stored in the SSD. Since Intel Core i7 CPU performs 13.4 × 109

updates per second, our GPU implementation for the Game of Life with a very large

universe achieves a speedup factor of 100.

1.2.3 The CKY parsing

Let G = (N,Σ, P, S) denote a context-free grammar [32] such that N is a set of non-

terminal symbols, Σ is a set of terminal symbols, P is a finit production rules, and

8

S (∈ N) is the start symbol. Let f (G, x) be a function such that G is a context-free

grammar, x = x0x1...xn−1 is a string of length n, and f (G, x) returns a Boolean value.

Function f (G, x) returns TRUE if and only if G derives x. It is well-known that the

CKY (Cocke-Kasami-Younger) parsing [2] computes f (G, x) in O(n3) time, where n is

the length of x. The idea of the CKY parsing is to compute a 2-dimensional table T [i, j]

called CKY table by the dynamic programming technique. Each element of T [i, j]

stores a subset of non-terminal symbols that can derive substring xixi+1...x j by repeatedly

applying production rules in P. Usually, each element of T [i, j] is implemented as an

array of size |N| to maintain the subset of N. More specificall , T [i, j][k] = 1 if the k-th

non-terminal symbol in N can derive substring xixi+1...x j by applying production rules.

In most implementations of the CKY parsing, the value of each T [i, j][k] is stored in

a word, such as a 32-bit integer. Since each T [i, j][k] stores 1-bit Boolean value, it is

inefficient to use an array of words to store T [i, j]. Our idea to apply the BPBC technique

to the CKY parsing is to compute 32 CKY tables for 32 input strings at the same time.

Suppose that 32 input strings are given and we want to perform the CKY parsing for

each of them. Let T0,T1, ..., T31 denote 32 CKY tables to be computed. We store 32

values T0[i, j][k],T1[i, j][k], ..., T31[i, j][k] in a 32-bit integer for each i, j, and k. The

CKY parsing can be done by iterative simulation of combinational logic circuit [5, 6],

the BPBC technique can be applied to it.

The parsing of context-free languages has many applications in various areas in-

cluding natural language processing [9, 46], compiler construction [2], informatics [40],

among others. Several studies have been devoted for accelerating the paring of context-

free languages [8, 21, 29, 46]. It has been shown that parsing of a string of length n

can be done in O((log n)2) time using n6 processors on the PRAM [21]. Also, using the

9

mesh-connected processor arrays, the parsing can be done in O(n2) time using n proces-

sors as well as in O(n) time using n2 processors [29]. Later in [8], an algorithm that runs

on a systolic array with n2 finite-stat processors with one-way communication running

in linear time has been presented. In [24], it was shown that parsing can be accom-

plished on a one-way linear array of n2 finite-stat processors in linear time. Since these

parallel algorithms need at least n processors, they are unrealistic for large n. Ciressan

et al. [10, 11] and Bordim et al. [5, 6] have presented hardwares for the CKY parsing

for context-free grammars and have tested them using FPGAs. In [6], it has been shown

that the CKY parsing with 64 non-terminal symbols and 8192 production rules can be

done in 162 microseconds for an input string of length 32 using an APEX20K family

FPGA. Our GPU implementation can do the same task in only 3.68 microseconds per

one input string. Hence our implementation is more than 40 times faster than the FPGA

implementation. Quite recently, GPU implementations of the CKY parsing have been

presented [27, 49]. However, these implementations use the straightforward bottom-up

process, which performs only one CKY parsing.

1.3 Dissertation Organization

This dissertation is organized as follows. In Chapter 2, we describe the GPU architecture

and CUDA programming model. We show the bulk execution of sequential algorithms

and the performance analysis in Chapter 3. In Chapter 4, we show the GPU implemen-

tation of Euclidean algorithms for large numbers. In Chapter 5, we describe Bitwise

Parallel Bulk Computation (BPBC) technique for accelerating the bulk computation.

We show the GPU implementation of the simulation of Conway’s Game of Life using

the BPBC technique in Chapter 6. In Chapter 7, we show the BPBC implementation of

10

the CKY parsing on the GPU. Finally, we conclude this dissertation in Chapter 8.

11

Chapter 2

GPUs and CUDA

This chapter describes the GPU architecture and the CUDA programming model. Fig-

ure 2.1 illustrates an architecture of CUDA-enabled GPUs. A GPU is a single-chip

processor equipped with multiple Streaming Multiprocessors (SMs), each of which has

processor cores, the shared memory and the register file The GPU processor is con-

nected to an off-chip memory. For example, GeForce GTX TITAN X has 24 SMs with

128 processor cores, a 96K bytes shared memory, and a register fil with 64K 32-bit

registers each. The off-chip memory can be accessed by all processor cores in all SMs.

Also, registers in a register fil are assigned processor core. The off-chip memory is

quite large, say 12G bytes, but the memory access latency is quite large, say several

hundred clock cycles. The memory access latency of the shared memory is around

10 cycles [37] and that of registers in the register fil is smaller. Hence, to accelerate

the computation, we should minimize the global memory access. We should also use

registers whenever possible.

CUDA is a general purpose parallel computing platform and programming model

introduced by NVIDIA in 2006. When we develop programs running on GPUs, we can

12

core

shared
memory

Streaming
Multiprocessor

off-chip DRAM

core

core core

core core

core core

core

shared
memory

core

core core

core core

core core

core

shared
memory

core

core core

core core

core core

core

shared
memory

core

core core

core core

core core

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

register file register file register file register file

Figure 2.1: GPU architecture

use CUDA programming model illustrated in Figure 2.2 to support scalability. We as-

sume that CUDA Compute Capability 5.2, which is available for GeForce GTX TITAN

X [13]. Usually, a CUDA program executed on the host computer invokes CUDA ker-

nels one or more times. A CUDA kernel executes one or more CUDA blocks running

on SMs of the GPU. CUDA blocks in a CUDA kernel are identical in the sense that

they have the same number of threads executing the same program. Each CUDA block

can have up to 1024 threads, and is dispatched to one of the SM of the GPU. Since the

number of CUDA blocks can be more than the number of SMs in a single GPU, they

are dispatched to SMs in turn. Also, it is possible that two or more CUDA blocks are

executed in a single SM at the same time. Each SM can handle up to 32 CUDA blocks

with total of 2048 threads at the same time. Since each SM has 128 processor cores, at

most 128 threads among them can be active and work in parallel. In other words, each

13

thread

warp

thread

thread

thread

CUDA block

shared memory

global memory

thread

warp

thread

thread

thread

thread

warp

thread

thread

thread

shared memory

thread

warp

thread

thread

thread

thread

warp

thread

thread

thread

shared memory

thread

warp

thread

thread

thread

thread

warp

thread

thread

thread

shared memory

thread

warp

thread

thread

thread

CUDA block CUDA block CUDA block

Figure 2.2: CUDA programming model

SM can have up to 2048 resident threads and 128 of them can be active on processor

cores. A CUDA block can use the shared memory, which can be accessed by all threads

in it. The shared memory of a CUDA block is implemented in the shared memory of

the SM. Hence, its capacity is up to 96K bytes for CUDA Compute Capability 5.2 [14],

and two or more CUDA blocks can be arranged in the SM at the same time only if the

total shared memory capacity is no more 96K bytes. All threads in all CUDA blocks

can access the global memory, which is arranged in the off-chip DRAM of the GPU.

Note that after all threads in a CUDA block terminate, data stored in the shared memory

are lost, because the shared memory in an SM may be used for another CUDA block. If

data stored in the shared memory must be referred later, it must be copied to the global

memory on developer’s own responsibility.

Threads in a CUDA block are partitioned into groups of 32 threads each called

warps. It is guaranteed that 32 threads in the same warp execute the same instruction at

the same time. Hence, if a CUDA block has at most 32 threads, they are executed syn-

chronously. However, threads in different warps may not be executed at the same time.

14

All threads in a CUDA block can call syncthreads() for barrier synchronization if

necessary. However, the cost of syncthreads() is not negligibly small. Hence, it

makes sense to use a CUDA block with 32 threads for avoiding barrier synchronization

using syncthreads(), if we need to synchronize all threads in a CUDA block fre-

quently. Also, to synchronize all threads in all CUDA blocks, we need to use separate

CUDA kernel calls, because SMs in the GPU execute CUDA blocks in turn. Since the

synchronization of all CUDA blocks are very costly, we should minimize the number of

such synchronization operations.

Efficient usage of the global memory and the shared memory is a key for CUDA

developers to accelerate applications using GPUs. To maximize the throughput between

the GPU and the off-chip memory, the consecutive addresses of the global memory must

be accessed at the same time. For example, in Figure 2.3 (1), threads in a CUDA block

access nonconsecutive addresses of the global memory. Since the global memory access

for nonconsecutive addresses is serialized, the memory access efficiency is decreased.

On the other hand, in Figure 2.3 (2), they access consecutive addresses of the global

memory, and these addresses can be accessed at once. Hence, threads in a CUDA block

should perform coalesced access when they access the global memory [12, 25].

Since the shared memory consists of 32 memory banks, memory access by 32

threads in a warp must be destined for distinct memory banks. In other words, bank

conflict [12, 26, 37] by a warp should be avoided to maximize the shared memory

access performance. For example, in Figure 2.4, we assume that the shared memory

consists of 4 memory banks and a warp has 4 threads. In Figure 2.4 (1), thread 0 and

thread 1 in a warp access the same memory bank. This memory access has a bank con-

flic and the access is serialized. On the other hand, in Figure 2.4 (2), all 4 threads in

15

global memory

Thread 0 Thread 1 Thread 2 Thread 3

global memory

Thread 0 Thread 1 Thread 2 Thread 3

(1) stride access

(2) coalesced access

Figure 2.3: Stride access and coalesced access to the global memory

a warp access distinct memory banks. This access has no bank conflict and it can be

performed at once.

The communication between threads can be done through the global memory or

the shared memory. Note that the communication between threads in different CUDA

blocks in the same CUDA kernel call is not possible, because CUDA blocks may be

dispatched to SMs in an arbitrary order. What threads in a CUDA kernel can do is

to send data to threads in the following CUDA kernel by reading/writing the global

memory.

CUDA Compute Capability 3.0 and later support warp shuffle instructions that per-

mit exchanging of data stored in registers in threads in a warp. The data exchange occurs

16

bank 0 bank 1 bank 2 bank 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Thread 0 Thread 1 Thread 2 Thread 3

shared memory

bank 0 bank 1 bank 2 bank 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Thread 0 Thread 1 Thread 2 Thread 3

shared memory

(1) conflict access

(2) conflict-free access

Figure 2.4: Conflic access and conflict-fre access to the shared memory

at the same time for all active threads in warp. For example, if shfl(a, i) is executed

by a CUDA block with a warp of 32 threads, the value of register a of thread i is returned.

Since the data size for warp shuffle instructions must be 32 bits, two separate invoca-

tions are necessary to exchange 64-bit data. Warp shuffle instructions are more efficient

than a conventional data exchanging method using write/read operations to the shared

memory. Thus, we should use warp shuffle instructions whenever possible. Actually,

appropriate use of warp shuffle instructions can accelerate the computation [7, 48].

17

Listing 2.1 and 2.2 show a standard C code and a parallel C code of SAXPY (Serial-

precision Alpha X Plus Y) [17]. SAXPY is to compute Y[i] = α · X[i] + Y[i] for each

i (0 ≤ i ≤ n), where X and Y are one-dimensional arrays of length n, and α is a real

value. In Listing 2.1, the computation of Y[i] for each i is performed in turn. On the

other hand, in Listing 2.2, the computation of them is performed in parallel. In Listing

2.2, blockIdx.x and threadIdx.x represent the block ID and the thread ID, respec-

tively. blockDim.x represents the number of threads in a block. By computing i =

blockIdx.x*blockDim.x + threadIdx.x, each thread obtains a unique ID over the

GPU. The kernel function call saxpy serial<<<4096,256>>> launches 4096 blocks,

each of which has 256 threads. Hence, 4096 · 256 = 1048576 threads are launched in

total, and all threads perform Y[i] = α · X[i]+ Y[i] for assigned i. Thus, we can perform

the computation in parallel on the GPU.

18

Listing 2.1: Standard C Code of SAXPY

void saxpy_serial(int n,

float a,

float *x,

float *y)

{

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

//Perform SAXPY on 1M elements

saxpy_serial(4096*256, 2.0, x, y);

Listing 2.2: Parallel C Code of SAXPY

__global__

void saxpy_parallel(int n,

float a,

float *x,

float *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

//Perform SAXPY on 1M elements

saxpy_serial <<<4096,256>>>(n, 2.0, x, y);

19

Chapter 3

Bulk execution of sequential

algorithms and performance analysis

In this chapter, we review the obliviousness of sequential algorithms and the bulk exe-

cution of them. We then go on to show that the bulk execution of oblivious sequential

algorithm can be implemented very efficiently in CUDA-enabled GPUs. Please see [44]

for the details. We further defin semi-obliviousness of sequential algorithms. Intu-

itively, a semi-oblivious sequential algorithm is not oblivious, but it is almost oblivious.

3.1 The obliviousness of sequential algorithms and the

bulk execution

A sequential algorithm is oblivious if an address accessed at each time unit is indepen-

dent of the input [44]. More specificall , there exists a function a : {0, 1, ..., t − 1} → N ,

where t is the running time of the algorithm and N is a set of all non-negative integers

such that, for any input of the algorithm, it accesses address a(i) or does not access the

20

memory at each time i (0 ≤ i ≤ t − 1). In other words, at each time i (0 ≤ i ≤ t − 1), it

never accesses an address other than a(i). Suppose that we need to execute a sequential

algorithm for many different inputs on a single CPU in turn or on a parallel machine at

the same time. We call such computation bulk execution.

For theoretical performance analysis of bulk execution of a sequential algorithm

on a GPU, we firs defin the UMM (the Unifie Memory Machine) [34, 35] which

captures the essence of the global memory access of CUDA-enabled GPUs. We then

go on to show that the bulk execution of oblivious algorithms can be implemented very

efficiently on the UMM.

Let us defin the UMM with width w and latency l. The memory of the UMM

is partitioned into address groups A[0], A[1], ..., such that each A[j] (j ≥ 0) involves

j · w, j · w + 1, ..., (j + 1) · w − 1. The reader should refer Figure 3.1 that illustrates the

memory for w = 4. Also, the memory access is performed through l-stage pipeline

registers as illustrated in the figure Let p be the number of threads of the UMM

and T (0), T (1), ..., T (p − 1) be the p threads. We assume that p is a multiple of w.

The p threads are partitioned into p
w groups called warps with w threads each. More

specificall , p threads are partitioned into p
w warps W(0),W(1), ...,W(pw − 1) such that

W(i) = {T (i · w),T (i · w + 1), ..., T ((i + 1) · w − 1)}. Warps are dispatched for memory

access in turn, and w threads in a warp try to access the memory in the same time. More

specificall , W(0),W(1), ...,W(pw − 1) are dispatched in a round-robin manner if at least

one thread in a warp requests memory access. If no thread in a warp needs memory

access, such warp is not dispatched for memory access. When W(i) is dispatched, w

threads in W(i) send memory access requests, one request per thread, to the memory

banks.

21

3 4 6 12

10 11 8 9

8 12 4
9

10 6
11 3

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

2 warps 5-stage pipeline registers memory

Figure 3.1: The UMM with width w = 4 and latency l = 5

For the memory access, each warp sends memory access requests to the memory

through the l-stage pipeline registers. We assume that each stage can store the memory

access requests destined for the same address group. For example, since the memory

access requests by W(0) are separated in three address groups in the figure they occupy

three stages of the pipeline registers. Also, those by W(1) are in the same address

group, they occupy only one stage. In general, if memory access requests by a warp

are destined for k address groups, they occupy k stages. We assume that the memory

access is completed as soon as the request is dequeued from the pipeline. Thus, all

memory access requests by W(0) and W(1) in the figur are completed in 3(address

group) + 1(address group) + 5(latency)−1 = 8 time units. We also assume that a thread

cannot send a new memory access request until the previous memory access request is

completed. Hence, if a thread sends a memory access request, it must wait at least l time

units to send a new memory access request.

We will show that the bulk execution of an oblivious sequential algorithm can be

done efficiently on the UMM. Without loss of generality, we can assume that an obliv-

ious sequential algorithm works on a 1-dimensional array b of size n. If p threads on

the UMM perform the bulk execution, the global memory stores p arrays of b. We use

22

Figure 3.2: Column-wise arrangement for p = 8 arrays of size n = 4 each

column-wise arrangement to allocate p arrays as illustrated in Figure 3.2. More specifi

cally, let b j[i] denote the i-th element of b for thread j. Each b j[i] is allocated in address

j · p + i. If all threads execute a same oblivious algorithm, then they access the same

address at each time unit. In other words, if a sequential algorithm accesses index i at

some time unit, p threads access b0[i], b1[i], ..., bp−1[i] at the same time. Clearly, they

are arranged in addresses i · p + 0, i · p + 1, ..., i · p + (p − 1) in the same row of the

2-dimensional array. Hence, they are in consecutive addresses and memory access by p

threads is always coalesced.

Let us evaluate the computing time for the bulk execution of an oblivious sequential

algorithm on the UMM. Let t be the running time of an oblivious sequential algorithm

and p be the number of inputs and the number of threads. For each memory access of

the oblivious sequential algorithm, p threads perform coalesced memory access. Since

they are in p
w address groups, it can be completed in p

w + l − 1 time units. Since the

oblivious sequential algorithm performs at most t memory access operations, p threads

on the UMM terminate in (pw + l − 1) · t = O(ptw + lt) time units. Thus we have,

Lemma 3.1.1 The bulk execution of an oblivious sequential algorithm runs O(ptw + lt)

time units using p threads on the UMMwith width w and latency l, where t is the running

time of the corresponding oblivious sequential algorithm.

23

In [44], they have proved that Lemma 3.1.1 is time-optimal.

3.2 Semi-obliviousness of a sequential algorithm and the

bulk execution

In this section, we defin semi-obliviousness of a sequential algorithm. Suppose that

a sequential algorithm runs t time units. A sequential algorithm is semi-oblivious with

parameter γ (0 ≤ γ ≤ 1) if it is oblivious in (1 − γ)t time units. More specificall , it

an address accessed at each of (1 − γ)t time units out of t time units is independent of

the input. Hence, an address accessed may be different in γt time units. Clearly, it is

oblivious if γ = 0.

We will prove that the bulk execution of a semi-oblivious algorithm with parameter

γ can be implemented efficiently in the UMM if γ ≤ O(1
w). Again, let t be the running

time of an oblivious sequential algorithm and p be the number of inputs and the number

of threads. From Lemma 3.1.1, the bulk execution of an oblivious sequential algorithm

runs O(ptw + lt) time units on the UMM with width w and latency l. Suppose that γt

memory access operations out of t operations is not oblivious. If this semi-oblivious al-

gorithm is implemented on the UMM, each of such memory access operations occupies

at most p pipeline registers. Hence, the bulk execution of a semi-oblivious sequential

algorithm runs in O(ptw + lt + ptγ) time units. Thus, we have,

Lemma 3.2.1 The bulk execution of a semi-oblivious sequential algorithm with param-

eter O(1
w) runs O(ptw + lt) time units using p threads on the UMM with width w and

latency l, where t is the running time of the corresponding semi-oblivious sequential

algorithm.

24

Regarding performance analysis with the UMM, in [44], they showed the perfor-

mance analysis on the theoretical model including the UMM. Also, its correctness has

also been shown by actually verifying the performance evaluation with the GPU im-

plementations for various problems. Therefore, the performance analysis on the UMM

is reasonable for the global memory access. Moreover, since the latency of the global

memory is 200 to 400 clock cycles [14], if a global memory access is not coalesced,

that is, several memory access requests are issued, the number of clock cycles for the

access becomes constant times more, but the performance is affected much unless the

number of memory access instructions is extremely small. Therefore, the number of

global memory requests is one of the important factors for the performance analysis.

3.3 Oblivious sequential algorithms with synchroniza-

tion

The main purpose of this section is to defin a sequential algorithm with synchroniza-

tion. We also show that bulk execution of a sequential algorithm with synchronization

runs in the UMM efficiently if it is oblivious.

A sequential algorithm with synchronization can execute a synchronize instruction

sync. This instruction is something like NOP (No operation) instruction that does noth-

ing. However, when the bulk execution of a sequential algorithm with synchronization

is performed in parallel, this instruction is used for barrier synchronization. In other

words, if a thread executes sync instruction, it is stalled until all the other threads exe-

cute sync instruction.

We can think that an execution of a sequential algorithm with synchronization is

25

separated into sub-executions by sync instruction. We can say that a sequential algo-

rithm with synchronization is oblivious if every sub-execution is oblivious. Since the

definitio of obliviousness for a sequential algorithm with synchronization is hard to

understand, we explain it using an example.

Let us consider the row-wise OR problem define as follows. Suppose that we have

an integer matrix a of size n × n. We want to compute each element b[i] of an array b

such that

b[i] = 0 if a[i][0] = a[i][1] = · · · = a[i][n − 1] = 0,

= 1 otherwise.

A straightforward algorithm can compute all elements in array b as follows:
[Straightforward row-wise OR algorithm]
for i← 0 to n − 1 do
b[i]← 0;
for j← 0 to n − 1 do

if a[i][j] , 0 then
b[i]← 1;
exit for-loop;

The algorithm firs reads a[0][0]. If it is 0 then it reads a[0][1]. Otherwise, it reads

a[1][0]. Hence, this straightforward algorithm is not oblivious. On the other hand, we

can modify it to be oblivious using sync instruction as follows:
[Row-wise OR algorithm with sync]
for i← 0 to n − 1 do
b[i]← 0;
for j← 0 to n − 1 do

if a[i][j] , 0 then
b[i]← 1;
exit for-loop;

else NOP;
sync;

26

Clearly, this algorithm performs n sync instructions. Hence, its execution is par-

titioned in n sub-executions, each of which computes the value of each b[i]. In each

i-th sub-execution, a[i][0], a[i][1], ... are read until the value is non-zero. Thus, the j-th

iteration of i-th sub-execution reads a[i][j] or does not perform read operation, and so

this algorithm is oblivious.

Let us evaluate bulk execution of this sequential algorithm with synchronization.

Suppose that p threads execute this algorithm on the UMM independently, that is, each

of p threads executes this algorithm in parallel. In the worst case, all values are zero

and all elements are read. Hence, each thread reads n2 elements and the total running

time of the bulk execution on the UMM is (pw + l − 1) · n2 = O(pn
2

w + ln
2). If all elements

a[i][0] (0 ≤ i ≤ n − 1) are non-zero, only these elements are read and each thread reads

n elements. If this is the case, the total running time is (pw + l − 1) · n = O(pnw + ln).

We assume that each element of matrix is a d-bit unsigned integer and the value is

selected form [0, 2d − 1] uniformly at random. We will show that the total running time

is expected O(pnw + ln) under this assumption. Recall that a warp of w threads perform

memory access at the same time. First, each of w threads in the firs warp reads a[0][0]

of the input. Since it is zero with probability 1
2d , at least one of all w threads reads zero

values with probability at most w
2d . This probability is at most 1

2 if w ≤ 2d−1. Since the

number of threads in a warp of CUDA-enabled GPUs is 32, and 32-bit integer are used,

it makes sense to set w = d = 32. Hence, from practical point of view, this condition is

satisfied If this is the case, one or more threads read a[0][2] with probability at most 1
22 .

In general, a[0][j] is read with probability at most 1
2 j . Thus, a warp performs j reading

rounds with probability at most 1
2 j , and so, the expected number of reading rounds is at

27

most

n−1∑
j=0

j
2 j
= O(1).

Hence, each thread performs expected O(1) memory access operations for each sub-

execution and expected O(n) memory access operations for all n sub-executions. Since

the algorithm is oblivious, the total running time is O(pnw + ln). Consequently, we have

Lemma 3.3.1 The bulk execution of the row-wise OR algorithm with sync for an n × n

matrix, each element of which is a d-bit unsigned integer and the value is selected from

[0, 2d − 1] uniformly at random, using p threads on the UMM runs in O(pn
2

w + ln
2) time

units and in expected O(pnw + ln) time units.

28

Chapter 4

Bulk computation of Euclidean

algorithms on the GPU

In this chapter, we describe several previous Euclidean algorithms and approximate

Euclidean algorithm for computing the GCD. Also, we show the GPU implementation

of bulk computation of approximate Euclidean algorithm and the experimental results.

4.1 Euclidean algorithms for computing the GCD

The main purpose of this section is to review a classical Euclidean algorithm for com-

puting the GCD of two numbers X and Y .

Let GCD(X,Y) denote the GCD of X and Y . Euclidean algorithms for computing

the GCD are based on the following fact:

Lemma 4.1.1 For any integer α ≥ 0 such that X > Y ·α, we have GCD(X,Y)=GCD(X−

Y · α, Y).

Proof Suppose that GCD(X,Y) = 1, that is, X and Y are coprime. We will prove that

29

GCD(X−Y ·α,Y) = 1 always holds by contradiction. If Y and X−Y ·α are not coprime,

there exists a common divisor h ≥ 2 such that Y = Y ′ · h and X − Y · α = X′ · h. We have

X = (Y ′ ·α+ X′) · h, and thus X and Y have common divisor h, a contradiction. Suppose

that GCD(X, Y) = g (≥ 2). Clearly, there exists two coprime numbers x and y such that

X = x · g and Y = y · g. Since X − Y · α = (x − y · α) · g, it is sufficient to show that y and

x − y · α are coprime. This can be proved in the same way by contradiction.

Let rshift(X) be the function such that it returns an odd number X′ such that X =

X′ ·2i for some integer i ≥ 0. In other words, it returns the number obtained by removing

consecutive 0 bits from the least significan bit of X. The reader should have no difficulty

to confir that the following lemma is correct.

Lemma 4.1.2 For any even numbers X and Y, GCD(X,Y) = 2 · GCD(X2 ,
Y
2) always

holds. Also, for any odd number X and even number Y, GCD(X,Y) = GCD(X, Y2) =

GCD(X, rshift(Y)) always holds.

For simplicity, we assume that both inputs X and Y are odd and X ≥ Y holds when

we compute GCD(X,Y). From Lemma 4.1.2, it should have no difficulty to modify

all GCD algorithms shown in this dissertation to handle even input numbers. For later

reference, let s denote the number of inputs bits of X and Y .

Let swap(X,Y) denote a function to exchange the values of X and Y . We can write a

standard Euclidean algorithm for computing the GCD of X and Y as follows:
[Original Euclidean algorithm]
gcd(X,Y){

do{
X ← X mod Y; // X < Y always holds
swap(X, Y); // X > Y always holds

} while(Y , 0)
return(X);

}

30

Let α = ⌊XY ⌋. From X mod Y = X − Y · ⌊XY ⌋ and Lemma 4.1.1, this algorithm returns

the GCD correctly. We will show that the original Euclidean algorithm runs no more

than 2s iterations of the do-while loop. If X < 2Y , then X will store X − Y , which is less

than X
2 . Otherwise, X will store the value less than Y , which is no more than X

2 . Hence,

the value of X is halved or smaller and thus the number of bits in X is decreased by one

or more. Since the number of bits of one of the two numbers is decreased by one, the

original Euclidean algorithm performs no more than 2s iterations.

Since modulo computation is costly, the binary Euclidean algorithm, which does not

perform modulo computations, is often used to compute the GCD efficiently:
[Binary Euclidean algorithm]
gcd(X,Y){

do{
if(X is even) X ← X

2 ;
else if(Y is even) Y ← Y

2 ;
else X ← X−Y

2 ; // X − Y is always even
if(X < Y) swap(X,Y);

} while(Y , 0)
return(X);

}

Clearly, when X−Y
2 is computed, both X and Y are odd. Hence, X − Y is even and it

makes sense to compute X−Y
2 . If X (or Y) is even, then the number of bits in X (or in Y) is

decreased by one. If both X and Y are odd, the number of bits in X is decreased by one

or more. Thus, the number of iterations of the do-while loop of the binary Euclidean

algorithm is also no more than 2s.

Note that the binary Euclidean algorithm removes 0 in the least significan bit. We

can reduce the number of iterations of the do-while loop by removing consecutive 0

bits. Using the rshift function, we can accelerate the binary Euclidean algorithm as

follows:

31

[Fast binary Euclidean algorithm]
gcd(X,Y){

do{
X ← rshift(X − Y);
if(X < Y) swap(X,Y);

} while(Y , 0)
return(X);

}

From Lemmas 4.1.1 and 4.1.2, GCD(X,Y) = GCD(X − Y, Y) = GCD(rshift(X −

Y), Y) for all odd X and Y and thus, this algorithm correctly computes the GCD. In each

iteration of the fast binary Euclidean algorithm, X and Y are always odd and the number

of bits in X or in Y can be decreased by one or more. Hence, for any input numbers, the

number of iterations of the do-while loop of the fast binary Euclidean algorithm is no

larger than that of the binary Euclidean algorithm.

For the reader’s benefits we use both the decimal system and the binary system to

represent numbers. For example, a number 223 in the decimal system or 11011111 in

the binary system is denoted by “223”, “1101,1111”, or “1101,1111(223)”. Table 4.1

shows an example of computation performed by the binary Euclidean algorithm and the

fast binary Euclidean algorithm for

X = 1111, 1110, 1101, 1100, 1011(1043915) and,

Y = 1011, 1011, 1011, 1011, 1011(768955).

32

Table 4.1: An example of computation performed by the binary Euclidean algorithm

and the fast binary Euclidean algorithm

Binary Euclidean algorithm Fast binary Euclidean algorithm
1 X 1111, 1110, 1101, 1100, 1011 1111, 1110, 1101, 1100, 1011

Y 1011, 1011, 1011, 1011, 1011 1011, 1011, 1011, 1011, 1011
2 X 1011, 1011, 1011, 1011, 1011 1011, 1011, 1011, 1011, 1011

Y 0010, 0001, 1001, 0000, 1000 0100, 0011, 0010, 0001
3 X 1011, 1011, 1011, 1011, 1011 0101, 1011, 1100, 0100, 1101

Y 0001, 0000, 1100, 1000, 0100 0100, 0011, 0010, 0001
4 X 1011, 1011, 1011, 1011, 1011 0001, 0101, 1110, 0100, 1011

Y 1000, 0110, 0100, 0010 0100, 0011, 0010, 0001
5 X 1011, 1011, 1011, 1011, 1011 1000, 1101, 1001, 0101

Y 0100, 0011, 0010, 0001 0100, 0011, 0010, 0001
6 X 0101, 1011, 1100, 0100, 1101 0100, 0011, 0010, 0001

Y 0100, 0011, 0010, 0001 0001, 0010, 1001, 1101
7 X 0010, 1011, 1100, 1001, 0110 0001, 0010, 1001, 1101

Y 0100, 0011, 0010, 0001 1100, 0010, 0001
8 X 0001, 0101, 1110, 0100, 1011 1100, 0010, 0001

Y 0100, 0011, 0010, 0001 0001, 1001, 1111
9 X 1000, 1101, 1001, 0101 0101, 0100, 0001

Y 0100, 0011, 0010, 0001 0001, 1001, 1111
10 X 0100, 0011, 0010, 0001 0001, 1101, 0001

Y 0100, 0011, 0010, 0001 0001, 1001, 1111
11 X 0100, 0011, 0010, 0001 0001, 1001, 1111

Y 0001, 0010, 1001, 1101 0001, 1001
12 X 0001, 1000, 0100, 0010 1100, 0011

Y 0001, 0010, 1001, 1101 0001, 1001
13 X 0001, 0010, 1001, 1101 0101, 0101

Y 1100, 0010, 0001 0001, 1001
14 X 1100, 0010, 0001 0001, 1001

Y 0011, 0011, 1110 1111
15 X 1100, 0010, 0001 1111

Y 0001, 1001, 1111 0101
16 X 0101, 0100, 0001 0101

Y 0001, 1001, 1111 0101
17 X 0001, 1101, 0001 0101

Y 0001, 1001, 1111 0000
18 X 0001, 1001, 1111

Y 0001, 1001
19 X 1100, 0011

Y 0001, 1001
20 X 0101, 0101

Y 0001, 1001
21 X 0001, 1110

Y 0001, 1001
22 X 0001, 1001

Y 1111
23 X 1111

Y 0101
24 X 0101

Y 0101
X 0101
Y 0000

33

We can confir that the output 0101(5) is equal to the GCD of X and Y . The binary

Euclidean algorithm computes the GCD in 24 iterations, while the fast binary Euclidean

algorithm runs only 16 iterations.

Using the idea of removing consecutive 0 bits used in the fast binary Euclidean

algorithm, we can accelerate the original Euclidean algorithm. Let “div” denote quotient

operator such that X div Y = ⌊XY ⌋, that is, the rounded-down integer of X
Y . Clearly, we

have X mod Y = X−Y ·(X div Y). Thus, we can rewrite the original Euclidean algorithm

as follows:
[Original Euclidean algorithm using div]
gcd(X,Y){

do{
Q← X div Y;
X ← X − Y · Q;
swap(X, Y);

} while(Y , 0)
return(X);

}

If X−Y ·Q is even, then we can reduce the number of bits in X by rshift(X). Since

X and Y are odd, X − Y · Q is even when Q is odd. However, if Q is even then X − Y · Q

is odd and rshift does not remove 0 bits. Hence, it makes sense to decrease Q by one

if Q is even. Using this idea, we can further accelerate the original Euclidean algorithm

as follows:
[Fast Euclidean algorithm]
gcd(X,Y){

do{
Q← X div Y;
if(Q is even) Q← Q − 1;
X ← rshift(X − Y · Q);
if(X < Y) swap(X,Y);

} while(Y , 0)
return(X);

34

}

From Lemmas 4.1.1 and 4.1.2, GCD(X,Y) = GCD(rshift(X − Y ·Q),Y) and thus,

this algorithm correctly computes the GCD. Note that, X may be larger than Y after

executing X ← X − Y · Q. For example, if X = 15 and Y = 7, then X div Y = 2. Hence,

X = 15 − 7 · (2 − 1) = 8 and X > Y holds. Thus, we need to compare X and Y and

exchange them if X < Y , to guarantee that X ≥ Y holds for the next iteration.

Table 4.2 shows an example of computation performed by the original Euclidean

algorithm and the fast Euclidean algorithm for the same input numbers X and Y as

Table 4.1. We can see that they perform fewer iterations than the binary Euclidean

algorithm and the fast binary Euclidean algorithm. Also, the fast Euclidean algorithm

performs fewer iterations than the original Euclidean algorithm. However, for some

input numbers, the fast Euclidean algorithm performs more iterations than the original

Euclidean algorithm. For example, if X = 39 and Y = 9, then the GCD is computed as

follows. The original Euclidean algorithm runs 2 iterations: (39, 9) → (9, 3) → (3, 0).

The fast Euclidean algorithm runs 3 iterations: (39, 9) → (12, 9) → (9, 3) → (3, 0).

Although such examples exist, the fast Euclidean algorithm takes fewer iterations than

the original Euclidean algorithm for most input numbers.

35

Table 4.2: An example of computation performed by the original Euclidean algorithm

and the fast Euclidean algorithm

Original Euclidean algorithm Fast Euclidean algorithm
X&Y Q X&Y Q

1 X 1111, 1110, 1101, 1100, 1011 1 1111, 1110, 1101, 1100, 1011 1
Y 1011, 1011, 1011, 1011, 1011 1011, 1011, 1011, 1011, 1011

2 X 1011, 1011, 1011, 1011, 1011 2 1011, 1011, 1011, 1011, 1011 43
Y 0100, 0011, 0010, 0001, 0000 0100, 0011, 0010, 0001

3 X 0100, 0011, 0010, 0001, 0000 1 0100, 0011, 0010, 0001 9
Y 0011, 0101, 0111, 1001, 1011 0111, 0101, 0011

4 X 0011, 0101, 0111, 1001, 1011 3 0111, 0101, 0011 11
Y 1101, 1010, 0111, 0101 1001, 1011

5 X 1101, 1010, 0111, 0101 1 1001, 1011 1
Y 1100, 1000, 0011, 1100 0101, 0101

6 X 1100, 1000, 0011, 1100 10 0101, 0101 1
Y 0001, 0010, 0011, 1001 0010, 0011

7 X 0001, 0010, 0011, 1001 1 0010, 0011 1
Y 0001, 0010, 0000, 0010 0001, 1001

8 X 0001, 0010, 0000, 0010 83 0001, 1001 5
Y 0011, 0111 0101

9 X 0011, 0111 1 0101 5
Y 0010, 1101 0000

10 X 0010, 1101 4
Y 1010

11 X 1010 2
Y 0101
X 0101
Y 0000

4.2 The approximate Euclidean algorithm for comput-

ing the GCD

The main purpose of this section is to show our new Euclidean algorithm called the

approximate Euclidean algorithm.

The approximate Euclidean algorithm is based on the fast Euclidean algorithm pre-

sented in the previous section. The computation of quotient for large numbers performed

by the fast Euclidean algorithm is costly. Our new idea is to fin a good approximation

36

of quotient by small computing costs. We assume that X and Y are stored in multi-

ple d-bit words, and let D = 2d. The approximate Euclidean algorithm is described as

follows:
[Approximate Euclidean algorithm]
gcd(X,Y){

do{
(α, β)← approx(X,Y);
if(β = 0){

if(α is even) α← α − 1; // α is odd
X ← rshift(X − Y · α); // Y · α is odd

} else X ← rshift(X − Y · α · Dβ + Y); // α · Dβ is even
if(X < Y) swap(X,Y);

} while(Y , 0)
return(X);

}

From Lemma 4.1.1 and 4.1.2,GCD(X,Y) = GCD(X−Y ·α,Y) = GCD(rshift(X−

Y ·α·Dβ+Y),Y) holds, and thus, this algorithm is correct. In this algorithm,approx(X,Y)

is a function to compute a pair (α, β) such that α · Dβ (≤ Q) is a good approximation

of Q = X div Y , and the computing cost of approx(X,Y) is much smaller than that of

X div Y . Also, to guarantee that X is even, X−Y ·(α ·Dβ−1) is computed if α ·Dβ is even.

Note that if α · Dβ is always 1, that is, (α, β) = (1, 0) then the approximate Euclidean

algorithm is the same as the fast binary Euclidean algorithm. Since the value of α · Dβ

can be more than 1, the number of iterations in the approximate Euclidean algorithm

may be smaller than the binary Euclidean algorithms.

We firs show the idea of implementation of approx(X, Y). Suppose that X and Y

are represented by lX and lY d-bit words x1x2 · · · xlX and y1y2 · · · ylY . In other words,

X = x1DlX−1 + x2DlX−2 + ... + xlXD
0

Y = y1DlY−1 + y2DlY−2 + ... + ylYD
0

37

hold. It should be clear that lX ≥ lY always holds from X ≥ Y . Let ⟨x1x2⟩ (= x1 · D + x2)

and ⟨y1y2⟩ (= y1 · D + y2) be integers represented most significan two d-bit words of X

and Y . Basically, approx(X,Y) returns a pair (⟨x1x2⟩ div (⟨y1y2⟩ + 1), lX − lY). Hence,

α · Dβ = ⟨x1x2⟩ div (⟨y1y2⟩ + 1) · DlX−lY is used as an approximation of Q = X div Y .

Also, it is guaranteed that α · Dβ ≤ Q. Thus, X − Y · α · Dβ is always non-negative.

We show an example using 4-bit words, that is, d = 4. Let X = 1101, 1001, 0000, 0011(55555),

and Y = 0100, 1101, 0010(1234). If this is the case, lX = 4, lY = 3, ⟨x1x2⟩ = 1101, 1001(217)

and ⟨y1y2⟩ = 0100, 1101(77). Hence we have, ⟨x1x2⟩ div (⟨y1y2⟩+1) = 217 div (77+1) =

2 and lX−lY = 1. Thus, approx(X, Y) returns (α, β) = (2, 1) and we have α·Dβ = 2·161 =

32, which approximates X div Y = 45. Using this idea, the following function approx

computes a pair (α, β):
approx(X,Y){

if(lX ≤ 2)
return (X div Y, 0); // Case 1

if(lY = 1){
if (x1 ≥ y1)

return (x1 div y1, lX − 1); // Case 2-A
else

return (⟨x1x2⟩ div y1, lX − 2); // Case 2-B
}
if(lY = 2){

if (⟨x1x2⟩ ≥ ⟨y1y2⟩)
return (⟨x1x2⟩ div ⟨y1y2⟩, lX − 2); // Case 3-A

else
return (⟨x1x2⟩ div (y1 + 1), lX − 3); // Case 3-B

}
if(⟨x1x2⟩ > ⟨y1y2⟩)

return (⟨x1x2⟩ div (⟨y1y2⟩ + 1), lX − lY); // Case 4-A
if(lX > lY)

return (⟨x1x2⟩ div (y1 + 1), lX − lY − 1); // Case 4-B
return (1,0); // Case 4-C

}

38

1 2 3 4 5 6
1 1 1 2 2 2 2
2 1 3 3 3 3
3 4 4 4 4
4 4 4 4
5 4 4
6 4

Figure 4.1: Cases for the values of lX and lY

The reader should have no difficulty to confir that operands of “div” have at most

2 words, that is, 2d bits. Also, the resulting value of “div” has at most d bits.

Let us see how approx(X,Y) computes (α, β). It has four cases determined by the

values of lX and lY as illustrated in Figure 4.1. We will show that function approx

outputs a good approximation α · Dβ of X div Y for each cases

Case 1: X has 1 or 2 words.

Clearly, Y also has 1 or 2 words from X ≥ Y . Hence, approx outputs (X div Y, 0) and

we have α · Dβ = X div Y . Example: If X = 1101, 1111(223) and Y = 0010, 1101(45)

then approx outputs (223 div 45, 0) = (4, 0).

Case 2: X has more than 2 words and Y has 1 word.

Case 2 has two sub-cases as follows:

• Case 2-A: If x1 ≥ y1 then approx outputs (x1 div y1, lX − 1).

Example: If X = 1001, 0010, 1001(2345) and Y = y1 = 0100(4) then x1 =

39

1001(9) and x1 ≥ y1 hold. If this is the case, approx outputs (9 div 4, 3 −

1) = (2, 2). We can confir that α · Dβ = 2 · 162 = 512 approximates

X div Y = 2345 div 4 = 586.

• Case 2-B: If x1 < y1 then approx outputs (⟨x1x2⟩ div y1, lX − 2).

Example: If X = 0100, 1101, 0010(1234) and Y = 1100(12) then x1 = 0100(4)

and ⟨x1x2⟩ = 0100, 1101(77) hold. Hence, x1 < y1 is satisfie and approx

outputs (77 div 12, 3− 2) = (6, 1). We can confir that α ·Dβ = 6 · 161 = 96

approximates X div Y = 1234 div 12 = 102.

Case 3: X has more than 2 words and Y has 2 word.

Case 3 has two sub-cases as follows:

• Case 3-A: If ⟨x1x2⟩ ≥ ⟨y1y2⟩ then approx outputs (⟨x1x2⟩ div ⟨y1y2⟩, lX − lY).

Example: If X = 1001, 0010, 1001(2345) and Y = 0011, 1011(59) then ⟨x1x2⟩ =

1001, 0010(146). Hence ⟨x1x2⟩ ≥ ⟨y1y2⟩ is satisfie and approx outputs

(146 div 59, 3 − 2) = (2, 1). We can confir that α · Dβ = 2 · 161 = 32

approximates X div Y = 2345 div 59 = 39.

• Case 3-B: If ⟨x1x2⟩ < ⟨y1y2⟩ then approx outputs (⟨x1x2⟩ div (y1 + 1), lX − 3).

Example: If X = 1001, 0010, 1001(2345) and Y = 1110, 0111(231) then ⟨x1x2⟩ =

1001, 0010(146) and y1 = 1110(14). Since ⟨x1x2⟩ < ⟨y1y2⟩ is satisfied

approx outputs (146 div (14 + 1), 3 − 3) = (9, 0). We can confir that

α · Dβ = 9 · 160 = 9 approximates X div Y = 2345 div 231 = 10.

40

Case 4: Both X and Y have more than 2 words.

Case 4 has three sub-cases as follows:

• Case 4-A: If ⟨x1x2⟩ > ⟨y1y2⟩ then approx outputs (⟨x1x2⟩ div (⟨y1y2⟩+1), lX − lY).

Note that, from ⟨x1x2⟩ > ⟨y1y2⟩, we always have ⟨y1y2⟩ + 1 ≤ D2 − 1. Hence

⟨y1y2⟩ + 1 has at most 2d bits.

Example: If X = 1101, 0100, 0011, 0001(54321) and Y = 0100, 1101, 0010(1234)

then ⟨x1x2⟩ = 1101, 0100(212) and ⟨y1y2⟩ = 0100, 1101(77). Since ⟨x1x2⟩ >

⟨y1y2⟩ is satisfied approx outputs (212 div (77 + 1), 4 − 3) = (2, 1). We can

confir that α ·Dβ = 2 ·161 = 32 approximates X div Y = 54321 div 1234 =

44.

• Case 4-B: If ⟨x1x2⟩ ≤ ⟨y1y2⟩ and lX > lY then approx outputs (⟨x1x2⟩ div (y1 +

1), lX − lY − 1).

Example: If X = 1101, 0100, 0011, 0001(54321) and Y = 1111, 1010, 0000(4000)

then ⟨x1x2⟩ = 1101, 0100(212) and ⟨y1y2⟩ = 1111, 1010(250) hold. Hence,

⟨x1x2⟩ ≤ ⟨y1y2⟩ holds. Since y1 = 1111(15), approx outputs (212 div (15 +

1), 4 − 3 − 1) = (13, 0). We can confir that α · Dβ = 13 · 160 = 13 approxi-

mates X div Y = 54321 div 4000 = 13.

• Case 4-C: If this is the case, ⟨x1x2⟩ ≤ ⟨y1y2⟩ and lX ≤ lY hold. Recall that X ≥ Y

and thus ⟨x1x2⟩ = ⟨y1y2⟩ and lX = lY must be satisfied Hence the values of X and

Y are almost the same and it makes sense to return (1, 0) and α · Dβ = 1 · 160 = 1

if this is the case.

41

Table 4.3 shows an example of computation performed by the approximate Eu-

clidean algorithm for 4-bit words, that is, d = 4 and D = 16. It computes the GCD

for the same inputs used in Tables 4.1 and 4.2 in 9 steps. The values used to compute

α in approx are underlined. We can confir that the approximate Euclidean algorithm

outputs 0101(5), the GCD of X and Y correctly.

Table 4.3: An example of computation performed by the approximate Euclidean algo-

rithm

X & Y CASE (α, β)
1 X 1111 1110 1101 1100 1011 4-A (1, 0)

Y 1011 1011 1011 1011 1011
2 X 1011 1011 1011 1011 1011 4-A (2, 1)

Y 0100 0011 0010 0001
3 X 1110 0110 1010 1111 4-A (3, 0)

Y 0100 0011 0010 0001
4 X 0100 0011 0010 0001 4-B (7, 0)

Y 0111 0101 0011
5 X 0111 0101 0011 4-A (1, 0)

Y 0011 1111 0111
6 X 0011 1111 0111 3-B (3, 0)

Y 1101 0111
7 X 1101 0111 1 (1, 0)

Y 1011 1001
8 X 1011 1001 1 (11, 0)

Y 1111
9 X 1111 1 (3, 0)

Y 0101
X 0101
Y 0000

Recall that the fast Euclidean algorithm computes the exact value of quotient Q =

X div Y . On the other hand, the approximate Euclidean algorithm uses an approximation

α · Dβ of quotient Q. Hence, the approximate Euclidean algorithm may take more

iterations than the fast Euclidean algorithm. Actually, from Table 4.2 and 4.3, we can

see that the fast Euclidean algorithm and the approximate Euclidean algorithm performs

8 and 9 iterations, respectively, for the same input numbers.

42

Table 4.4 shows the average number of iterations of do-while loops performed by

the Euclidean algorithms, (A) the original Euclidean algorithm, (B) the fast Euclidean

algorithm, (C) the binary Euclidean algorithm, (D) the fast binary Euclidean algorithm,

(E) the approximate Euclidean algorithm when pairs of two randomly generated s-bit

unsigned odd integers for s = 1024, 2048, 4096, 8192, and 16384, respectively. We

have generated integers with 2 Gbytes totally and evaluated the number of iterations.

For example, when s = 1024, we have generated 8 Mega pairs of 1024-bit odd integers

in [21023, 21024).

Table 4.4: The average number of iterations performed by the Euclidean algorithm,

(A) the original Euclidean algorithm, (B) the fast Euclidean algorithm, (C) the binary

Euclidean algorithm, (D) the fast binary Euclidean algorithm, (E) the approximate Eu-

clidean algorithm

1024 2048 4096 8192 16384
(A) Original Euclidean algorithm 598.5 1196.7 2393.1 4785.8 9571.5
(B) Fast Euclidean algorithm 380.9 761.7 1523.1 3046.0 6091.6
(C) Binary Euclidean algorithm 1444.8 2890.6 5782.3 11565.6 23132.2
(D) Fast binary Euclidean algorithm 723.4 1446.4 2892.2 5783.8 11567.1
(E) Approximate Euclidean algorithm 380.9 761.7 1523.2 3046.0 6091.7
(E)-(B) 0.0059 0.0120 0.0227 0.0457 0.0923

Each iteration of (A) and (B) is costly, because they compute quotient/modulo of

two s-bit numbers. On the other hand, (C) and (D) involves no division/multiplication

operations. Further, each iteration of (E) involves one division of two 64-bit numbers,

and s
32 repetitions of 32-bit multiplications. Hence, the computation of each iteration

takes more time than that of (C) and (D). However, they perform the same memory

access operations to X and Y . Thus, if memory access latency is large like GPUs, the

computing time of each iteration of (E) is just little larger than that of (C) and (D).

43

Hence, it makes sense to evaluate and compare the number of iteration of (C), (D), and

(E).

From Table 4.4, we can see that

1. the number of iterations is proportional to the number of input bits,

2. the number of iterations of (E) is about half of (D) and about a quarter of (C), and

3. the number of iterations of (B) is the same as that of (E).

To see the small difference of (B) and (E), the table also show that the average value

of (E)-(B), that is, the number of iterations of (E) minus that of (B). Quite surprisingly,

their difference is only 0.001%-0.002%. Recall that (B) computes the exact quotient by

division of two large numbers, while (E) computes an approximation by 64-bit division.

Hence, we can say that approximated quotient is sufficient for computing the GCD.

We should also note that the value of β computed by function approx in the ap-

proximate Euclidean algorithm is zero with very high probability. In the experiments to

obtain Table 4.4, we have recorded the value of β for each call of function approx. From

the record, we have obtained Table 4.5, which shows the probability that β > 0. We can

see that the probability is very small and it is very rare that X ← rshift(X−Y ·α·Dβ+Y)

is executed.

Table 4.5: The probability that β > 0 when the approximate Euclidean algorithm is

executed

1024 2048 4096 8192 16384
4.38099 × 10−9 5.63433 × 10−9 6.88731 × 10−9 5.00944 × 10−9 5.94903 × 10−9

44

4.3 Further acceleration using PTX instructions

PTX is a low-level parallel thread execution virtual machine and instruction set archi-

tecture of GPU [15]. We can embed PTX instructions in CUDA C program as inline

assembly codes. The 128-bit product of two 64-bit unsigned integers cannot be ob-

tained directly by a C language program. On the other hand, PTX includes instructions

for computing the 128-bit product. We note that the PTX instructions are the most

fundamental instructions on CUDA and cannot be divided into smaller instructions. If

some libraries are provided to compute 128-bit or more product, they consists of several

PTX codes. Therefore, we have used PTX instructions including the multiplication of

two 64-bit unsigned integers to accelerate the computation of rshift(X − Y · α) and

rshift(X − Y · α · Dβ + Y).

Let lo(X) and hi(X) denote the least significan 64-bit and the most significan 64-bit

unsigned integers of 128-bit unsigned integer X. More specificall , lo(X) = x63x62 · · · x0

and hi(X) = x127x126 · · · x64, where X = x127x126 · · · x0.

For 64-bit unsigned integer variables a, b, c, and d, we use the following PTX in-

structions for multiplications.

mul.lo.u64 d, a, b: d ← lo(a · b) is performed.

mul.hi.u64 d, a, b: d ← hi(a · b) is performed.

mad.lo.u64 d, a, b, c: d ← lo(a · b + c) is performed.

mad.hi.u64 d, a, b, c: d ← hi(a · b + c · 264) is performed.

For 64-bit unsigned integer variables d, a, and b, and 32-bit signed integer variable c,

we use the following PTX instructions to handle carry propagation:

setp.lo.s32.u64 c, a, b: c← (a < b)? − 1 : 0 is performed. In other words, if a < b then

d ← −1 is performed. Otherwise, d ← 0 is performed.

45

slct.u64.s32 d, a, b, c: d ← (c ≥ 0)?a : b is performed. In other words, if c is non-

negative then d ← a is performed. Otherwise, d ← b is performed.

We use these two PTX instructions as follows:

setp.lo.s32.u64 c, a, b // c← (a < b)? − 1 : 0

slct.u64.s32 d, 0, 1, c // d ← (c ≥ 0)?0 : 1

Clearly, by these two PTX instructions, d ← (a < b)?1 : 0 is performed.

We will show an example that uses these PTX instructions. Let Y = y1y2y3y4 be four

64-bit unsigned integer variables that constitute a 256-bit unsigned integer and α be a

64-bit unsigned integer variable. We can compute Z = Y · α, where Z = z0z1z2z3z4 be

f ve 64-bit unsigned integer variables, by the following PTX program.

(1) mul.lo.u64 z4, y4, α // z4 ← lo(y4 · α)
(2) mul.hi.u64 c, y4, α // c← hi(y4 · α)
(3) mad.lo.u64 z3, y3, α, c // z3 ← lo(y3 · α + c)
(4) setp.lo.s32.u64 t, z3, c // t ← (z3 < c)? − 1 : 0
(4) slct.u64.s32 c, 0, 1, t // c← (t ≥ 0)?0 : 1
(5) mad.hi.u64 c, y3, α, c // c← hi(y3 · α + c · 264)
(6) mad.lo.u64 z2, y2, α, c // z2 ← lo(y2 · α + c)
(7) setp.lo.s32.u64 t, z2, c // t ← (z2 < c)? − 1 : 0
(7) slct.u64.s32 c, 0, 1, t // c← (t ≥ 0)?0 : 1
(8) mad.hi.u64 c, y2, α, c // c← hi(y2 · α + c · 264)
(9) mad.lo.u64 z1, y1, α, c // z1 ← lo(y1 · α + c)
(10) setp.lo.s32.u64 t, z1, c // t ← (z1 < c)? − 1 : 0
(10) slct.u64.s32 c, 0, 1, t // c← (t ≥ 0)?0 : 1
(11) mad.hi.u64 z0, y1, α, c // z0 ← hi(y1 · α + c · 264)

In this PTX program, c is a 64-bit unsigned integer variable to store the carry and

t is a 32-bit signed integer variable. Figure 4.2 illustrates the Z = Y · α by the PTX

program. This PTX program computes the values of Z from the least significan 64-bit

digit one by one. Although the computation of X ← rshift(X − Y · α) and X ←

rshift(X − Y · α · Dβ + Y) are much more complicated, they can be done by a similar

way using these PTX instructions.

46

Figure 4.2: Illustrating the computation of Z = Y · α using PTX instructions

4.4 Semi-oblivious implementation of the approximate

Euclidean algorithm

This section shows that the approximate Euclidean algorithm can be implemented as a

semi-oblivious sequential algorithm introduced in Section 3.2.

We assume that all numbers are stored in d-bit words. Hence, a number with s bits

is stored in s
d words. For example, a 512-bit number is stored in sixteen 32-bit words.

Since the approximate Euclidean algorithm operates large numbers stored in multiple

words, naive implementations perform a lot of redundant memory access operations.

We will show how we implement fundamental operations used in the binary Euclidean

algorithm, the fast binary Euclidean algorithm, and the approximate Euclidean algo-

rithm. We will show that, with high probability, 3 s
d + O(1) memory access operations

are performed in each iteration if X and Y with s bits are stored in d-bit words. More

specificall , each iteration essentially performs three operations, reading from X, read-

ing from Y , and writing in X, each of which involves s
d memory access operations. Also,

47

additional O(1) reading operations are performed for X and Y .

Figure 4.3 illustrates how X and Y are implemented. Two s-bit numbers X and Y are

stored in arrays of s
d words. Two registers are used to store pointers that specify arrays

for X and Y . Also, the values of lX, lY , α, and β are stored in registers.

00 1 00 1 01 0 00 1

register

4

3

7 0

00 0 11 1 01 1 00 1

Figure 4.3: Implementation of X and Y

We will show that, the approximate Euclidean algorithm can be implemented as a

semi-oblivious algorithm with sync. For this purpose we show how each statement of

the approximate Euclidean algorithm can be implemented. We assume that synchro-

nization is executed after each statement.

approx(X,Y): The value of approx(X,Y) can be determined by those of lX, lY , x1, x2, y1,

and y2. Hence, approx(X,Y) accesses at most four words x1, x2, y1 and y2 in the

memory. Since addresses of these four words may change, the computation of

approx(X,Y) is not oblivious.

X ← rshift(X − Y · α): This operation can also be done by reading words of X and

Y and writing words of X from the least significan word. For example, this op-

eration for X with four 32-bit words x1, x2, x3, x4 and Y for three 32-bit words

48

y1, y2, y3 as illustrated in Figure 4.3 can be performed using a 64-bit temporary

register variable z and a 16-bit temporary register variable r as follows:

z← x4 + (x3 << 32) − y3 · α

r ← the number of consecutive 0 bits in z from the LSB

x4 ← (z >> r)&0xFFFFFFFF

z← (z >> 32) + (x2 << 32) − y2 · α

x3 ← (z >> r)&0xFFFFFFFF

z← (z >> 32) + (x1 << 32) − y1 · α

x2 ← (z >> r)&0xFFFFFFFF

x1 ← z >> (r + 32)

Clealy, each word in X and Y is read once, each word in X is written once. Note

that this algorithm works only if r ≤ 32. The reader should have no difficulty

to modify this algorithm that works correctly even if r > 32. Since the memory

access are performed from the LSB of X and Y , it is oblivious.

X ← rshift(X − Y · α · Dβ + Y): This can be done in a similar way to “X ← rshift(X−

Y ·α)”. Note that we need to perform additional reading operations from Y to com-

pute “+Y”.

X < Y: If lX < lY then X < Y is true and if lX > lY then X < Y is false. Thus, access

to the memory is not necessary if lX , lY . If lX = lY then we need to compare

the values of X and Y from the most significan word. More specificall , x1 and

y1 are read from the memory. If x1 < y1 then X < Y is true and if x1 > y1 then

X < Y is false. If x1 = y1 then x2 and y2 are read from the memory and they are

compared in the same way. If x2 and y2 takes 32-bit random values, then x2 , y2

with probability 1 − 2−32. Hence, the result of X < Y can be determined without

49

reading x3 and y3 with very high probability. If this is the case, only four words

x1, x2, y1 and y2 in the memory are accessed. Consequently, this condition can be

determined by accessing these four words with probability 1 − 2−32. Also, by a

similar analysis as Lemma 3.3.1, we can prove that expected O(1) memory access

operations are performed. Since the position of each of these four words may

change, the memory access may not be oblivious.

swap(X, Y) : This can be done by exchanging the pointer variables for X and Y . Hence,

swap(X,Y) can be done by access to registers.

We can see that X ← rshift(X − Y · α) can be done in 3 s
d memory access opera-

tions, reading from Y , reading from X, and writing in X. Similarly, X ← rshift(X −

Y · α · Dβ + Y) can be done in 4 s
d memory access operations, because additional s

d read-

ing operations are necessary to compute “+Y”. The other operations performs at most

O(1) non-oblivious memory access with very high probability. Hence, the approximate

Euclidean algorithm is semi-oblivious with parameter d
s with high probability. Thus, if

d
s ≤

1
w , that is, s ≥ wd, then the approximate Euclidean algorithm runs on the UMM ef-

ficientl . If we use 32-bit unsigned integers on CUDA-enabled GPUs, then w = d = 32.

Thus, this condition is satisfie if s ≥ 1024.

4.5 Experimental results

This section shows the running time of the Euclidean algorithms. We have used Xeon

X7460 (2.66 GHz) CPU for executing the sequential Euclidean algorithms and GeForce

GTX TITAN X GPU for evaluating the CUDA implementations. In our CUDA imple-

mentations, we have used CUDA blocks with 64 threads in which each thread computes

50

GCDs of a pair of two large numbers. We have used local memory arranged in the

global memory to store X and Y .

Table 4.6 shows the time for computing one GCD in microseconds when pairs of

two randomly generated s-bit unsigned odd integers for s = 1024, 2048, 4096, 8192,

and 16384. We have generated integers with 2 Gbytes totally for each s, and evaluated

the running time on the GPU. For example, when s = 1024, we have generated 8 Mega

pairs of 1024-bit integers. Basically, we use 32-bit unsigned integers to store large

unsigned integers. When we compute the GCD using PTX instructions, we use 64-bit

unsigned integers to compute rshift(X − Y · α) and rshift(X − Y · α · Dβ + Y).

Table 4.6: The performance of the Euclidean algorithms, (C) the binary Euclidean al-

gorithm, (D) the fast binary Euclidean algorithm, (E) the approximate Euclidean algo-

rithm, and (F) the approximate Euclidean algorithm with PTX: one GCD computing

time in microseconds

1024 2048 4096 8192 16384
(C) Binary Euclidean algorithm 82.0 282 1050 3990 15500

CPU (D) Fast binary Euclidean algorithm 49.9 166 607 2330 8800
(E) Approximate Euclidean algorithm 43.7 140 494 1830 7090
(C) Binary Euclidean algorithm 5.34 23.2 90.2 400 1680

GPU (D) Fast binary Euclidean algorithm 1.02 4.13 15.7 64.5 257
(E) Approximate Euclidean algorithm 0.530 2.21 8.50 34.8 138
(F) Approximate Euclidean algorithm with PTX 0.482 1.96 7.85 30.5 120
(C) Binary Euclidean algorithm 15.3 12.2 11.6 9.98 9.23

CPU
GPU (D) Fast binary Euclidean algorithm 48.8 40.3 38.6 36.1 34.2

(E) Approximate Euclidean algorithm 82.5 63.3 58.2 52.6 51.2
(F) Approximate Euclidean algorithm with PTX 90.6 71.6 63.0 60.1 59.1

From the table, we can see that the approximate Euclidean algorithm is faster than

the others. Since the Euclidean algorithms are semi-oblivious, the speedup ratio CPU/GPU

is enough large. However, the execution time ratio CPU/GPU of the binary Euclidean

algorithm is rather smaller than the others. This is due to the branch divergence of

51

a CUDA C program for the binary Euclidean algorithm. Since CUDA architecture is

based on SIMT (Single Instruction Multiple Threads), all threads in a warp must execute

the same instruction in each clock cycle. Hence, if CUDA C program has a branch us-

ing an if-else statement, then the instructions for the true case are executed firs and then

those for the false case are executed. Note that, if all threads execute the instructions for

the same case, those for the other case are not executed. The binary Euclidean algorithm

has an if-else statement to select one of the three cases: (X,Y) is (even, odd), (odd, even),

and (odd,odd). Since the instructions for these three cases are executed sequentially, and

the branch divergence degenerates the performance of the binary Euclidean algorithm.

On the other hand, we can ignore the branch divergence of the approximate Euclidean

algorithm. The approximate Euclidean algorithm has if-else statement to select two

cases: β = 0 or β > 0, where β is the value computed by function approx. However,

β > 0 with probability less than 10−8 from Table 4.5. Hence all threads execute in-

structions for the case of β = 0 with very high probability, and those for β > 0 are not

executed. Further, the 64-bit division operation for function approx and 32-bit multi-

plications for rshift(X−Y ·α) takes a lot of time on the CPU. On the other hand, on the

GPU, time for these operations are hidden by large memory access latency. Hence, the

GPU implementation for the approximate Euclidean algorithm achieves much higher

speedup ratio over the CPU. Also, we can see that the GCD computation can be about

10% faster if we use 64-bit PTX instructions.

We have also evaluated the difference of the performance between oblivious and

semi-oblivious executions for the GCD computation. To evaluate the oblivious execu-

tion, we have executed the GPU implementation such that every thread performs the

identical GCD computation using common two numbers instead of the input used in

52

Table 4.6. Namely, all instructions and addresses of memory access executed at the

same time within a warp are identical. Table 4.7 shows the running time of the approx-

imate Euclidean algorithm with PTX for oblivious and semi-oblivious executions. The

oblivious execution runs at most 31% faster than the semi-oblivious one.

Table 4.7: The performance of the approximate Euclidean algorithm with PTX for semi-

oblivious and oblivious executions on the GPU: one GCD computing time in microsec-

onds

1024 2048 4096 8192 16384
semi-oblivious 0.482 1.96 7.85 30.5 120

oblivious 0.369 1.67 6.58 26.2 103
semi-oblivious

oblivious 1.31 1.17 1.19 1.16 1.17

53

Chapter 5

Bitwise Parallel Bulk Computation

technique

The main purpose of this chapter is to show the idea of Bitwise Parallel Bulk Computa-

tion (BPBC) technique. This idea works well not only for a multi-core machine but also

for a single CPU.

Let f : {0, 1}m → {0, 1}n be a function with m input bits and n output bits. Since f is

a function, there exists a combinational logic circuit that computes f . Let X0, X1, ..., Xd−1

be d inputs of m bits each. Suppose that we want to compute f (X0), f (X1), ..., f (Xd−1).

We can evaluate these values one by one using a single CPU. Also, we can use d proces-

sor cores and compute f (Xi) for each Xi (0 ≤ i ≤ d − 1) using one processor each. The

Bitwise Parallel Bulk Computation (BPBC) technique can perform this computation

much faster than these straightforward sequential and parallel algorithms simulating the

combinational logic circuit independently for all inputs.

Let xi,0xi,1 · · · xi,m−1 denotem bits of each Xi (0 ≤ i ≤ d−1). Further, let x0, jx1, j · · · xd−1, j

beX j (0 ≤ j ≤ m−1). We assume that CPU can handle d-bit word and eachX j is stored

54

in a d-bit word. By bitwise logic operations for X j, we can simulate a combinational

logic circuit for computing f , and can obtain the values of f (X0), f (X1), ..., f (Xd−1) at

the same time. For example, let f (a, b, c) = (y, z) such that y = (a∧ b)∨ (b∧ c)∨ (c∧ a)

and z = a ⊕ b ⊕ c. In other words, f is a function simulating a full adder. Also, let

aibici denote three bits of each Xi (0 ≤ i ≤ d − 1). We assume that we have three d-

bit words A = a0a1...ad−1, B = b0b1...bd−1, and C = c0c1...cd−1. We want to compute

Y = y0y1...yd−1 and Z = z0z1...zd−1 such that (yi, zi) = f (ai, bi, ci) for all i (0 ≤ i ≤ d − 1).

Two words Y and Z can be computed simply by bitwise XOR (⊕), bitwise AND (∧),

and bitwise OR (∨) as follows:

Y ← (A ∧ B) ∨ (B ∧C) ∨ (C ∧ A),

Z ← A ⊕ B ⊕C.

Hence, we can compute Y and Z in 7 bitwise binary operations. For later reference, we

show Y and Z can be computed in 5 bitwise binary operations using a temporal word T

as follows:

T ← A ⊕ B,

Z ← T ⊕C,

Y ← (A ∧ B) ∨ (T ∧C).

5.1 Bitwise summing technique

As an example of application of the BPBC technique, we show the pairwise sums of

integers can be accelerated if the value of integers are small. Suppose that 32 pairs

(A0, B0), (A1, B1), ..., (A31, B31) of 32-bit integers are given, and we want to compute the

55

pairwise sums A0+B0, A1+B1, ..., A31+B31. Clearly, 32 addition operations can complete

the computation of pairwise sums. The BPBC technique for this task simulates thirty

two 32-bit ripple-carry adders by 32-bit bitwise operations, such as bitwise OR, AND,

and XOR. Figure 5.1 illustrates the naive pairwise addition and the BPBC pairwise

addition for four pairs of 4-bit numbers. The naive pairwise addition performs addition

operation four times. On the other hand, the BPBC pairwise addition simulates a 4-bit

ripple-carry adder for (A3,A2,A1,A0) and (B3,B2,B1,B0) to obtain (C3,C2,C1,C0).

In most practical application programs, A’s and B’s do not have full 32 bits. In some

applications, all integers stored in 32-bit integer may have only 10-20 bits. The running

time of a naive pairwise addition cannot be reduced even if these numbers are very small.

On the other hand, the computation of pairwise sums by the BPBC can be accelerated

if values of A’s and B’s are small. For example, if these numbers are less than 216, then

we can compute the pairwise sums by simulating 16-bit ripple-carry adders.

Suppose that we have two sequences of d numbers with d bits each. Let A =

A0, A1, ..., Ad−1 and B = B0, B1, ..., Bd−1 denote these two sequences, and ai, j and bi, j be

the j-th bits of Ai and Bi, respectively. Our goal is to compute sequence C0,C1, ...,Cd−1

of d numbers with d bits each, such that Ci = (Ai + Bi) mod 2d for each i (0 ≤ i ≤ d− 1).

Clearly, we can obtain C by computing the pairwise sums of two sequences A and B

in O(d) time by an obvious sequential algorithm as illustrated in Figure 5.1 (1). Let us

apply the BPBC technique for this problem. LetA j and B j be words of d bits each such

that A j = a0, ja1, j · · · ad−1, j and B j = b0, jb1, j · · · bd−1, j. The goal is to compute the sum

C j = c0, jc1, j · · · cd−1, j such that ci, j is the j-th bit of Ci as illustrated in Figure 5.1 (2). We

can obtain C by simulating a d-bit ripple-carry adder as follows:

C0 ← A0 ⊕ B0

56

� �

� �

� �

� �

� �

� �

� �

� �

(1) the naive pairwise addition

(2) the BPBC pairwise addition

Figure 5.1: The naive pairwise addition and the BPBC pairwise addition for four pairs

of 4-bit numbers

T ← A0 ∧ B0

C1 ← A1 ⊕ B1 ⊕ T

T ← (A1 ∧ B1) ∨ (A1 ∧ T) ∨ (B1 ∧ T)

C2 ← A2 ⊕ B2 ⊕ T

T ← (A2 ∧ B2) ∨ (A2 ∧ T) ∨ (B2 ∧ T)

...

Cd−1 ← Ad−1 ⊕ Bd−1 ⊕ T

In this algorithm, T is a d-bit temporal variable used to store carry bits. Clearly, this

57

algorithm runs O(d) time. Hence, the computing time is the same as the obvious se-

quential algorithm. However, if the numbers stored in A and B are small, we can omit

the computation. More specificall , suppose that all numbers in A and B are less than

K. Since the pairwise sums in C are less than 2K, all Ci’s (logK + 1 ≤ i ≤ d − 1) are

zero. Thus, we can omit the computation for these Ci’s and the computing time can be

decreased to O(logK).

Let us evaluate the computation performed by the BPBC technique. Again, let f :

{0, 1}m → {0, 1}n be a function with m input bits and n output bits. We assume that

f can be computed by a combinational logic circuit with s gates. We have M inputs

X0, X1, ..., XM−1 with m bits each and compute f (Xi) for all i (0 ≤ i ≤ M − 1). Since

f (Xi) can be computed in O(s) time by simulating the combinational logic circuit, we

can evaluate all f (Xi) for all i in O(sM) time.

To apply our bitwise computation technique, we partition the input into M
d groups

of d inputs each. Let xi, j denote the j-th bit of Xi as before. Since the firs group has d

inputs X0, X1, ..., Xd−1, we store each j-th bit (0 ≤ j ≤ d − 1) in a d-bit integer X j such

that X j = x0, jx1, j · · · xd−1, j. Clearly, the values of f (Xi) for all i (0 ≤ i ≤ d − 1) can be

computed in O(s) time by simulating the combinational logic circuit by bitwise logic

operations. The values of f (Xi)’s remaining groups can be computed in the same way.

Thus, we have,

Theorem 5.1.1 The bulk computation of simulating a combinational logic circuit with

s gates for M inputs can be done in O(sMd) time using a single d-bit processor.

58

5.2 The BPBC on the UMM and performance analysis

The main purpose of this section is to show that the BPBC can be implemented in the

GPU very efficiently. For this purpose, we use the Unifie Memory Machine (UMM)

introduced in Section 3.1. We evaluate the performance of algorithms using the BPBC

technique on the UMM to show that they are efficient from the theoretical point of view.

Since the BPBC technique implemented in the GPU does not use the shared memory,

the UMM can be used for the theoretical analysis of the performance.

Let us implement the BPBC technique in the UMM and evaluate the performance.

As before, we have M inputs X0, X1, ..., XM−1 with m bits each and compute f (Xi) for

all i (0 ≤ i ≤ M − 1), where f is a function computed by a combinational logic circuit

with s gates. For this purpose, we partition the inputs into M
d groups of d inputs each

and each thread i (0 ≤ i ≤ M
d − 1) on the UMM computes the value of i-th group by

simulating the combinational logic circuit. For example, thread 0 computes the values

of f (X0), f (X1), ..., f (Xd−1). Each thread also uses s words to store the output of s gates,

and thus, it totally uses m + s words. We arrange m + s words used by M
d threads in a

2-dimensional array of (m + s) × M
d d-bit words as illustrated in Figure 5.2. Each thread

accesses to m + s words in a column and simulates the combinational logic circuit for

d inputs. We call this arrangement the column-wise arrangement. Since words in the

same row are allocated in consecutive addresses, memory access to words in the same

row by w threads in a warp occupies pipeline registers in one stage. Thus, memory

access requests by M
d threads to the same row occupies M

wd stages and the memory access

is completed in at most O(Mwd + l) time units. Since every thread issues O(s) memory

access requests to simulate the combinational logic circuit, we have,

Theorem 5.2.1 The BPBC represented by a combinational logic circuit with s gates for

59

Figure 5.2: The column-wise arrangement of m + s words on the memory

M inputs can be done in O(sMwd + sl) time units using
M
d threads on the UMM with d-bit

words, width w and latency l.

Clearly, at most wd bits in the memory of the UMM can be accessed in a time unit.

To simulate a combinational logic circuit with s gates for M inputs, at least sM memory

requests are necessary. Thus, this task takes at least Ω(sMwd) time on the UMM and it is

time optimal if sl ≤ sM
wd , that is, if M ≥ wdl holds.

Next, let us evaluate the time for pairwise sum of M pairs of two numbers using

Theorem 5.2.1. We assume that all numbers are less than K. As we have discussed,

the combinational logic circuit to compute the pairwise sums has O(logK) gates. Thus,

from Theorem 5.2.1, we have,

Corollary 5.2.2 The pairwise sums of M pairs of two numbers less than K can be com-

puted in O(M logK
wd + l logK) time units using M

d threads on the UMM with d-bit words,

width w and latency l.

Similarly, this computation is optimal if M ≥ wdl.

60

5.3 Experimental results of pairwise summing

The main purpose of this section is to show experimental results using Intel Core i7-

4790 (3.6GHz) CPU and GeForce GTX TITAN X (1GHz) GPU. GeForce GTX TITAN

X has 24 streaming multiprocessors with 128 cores each. Hence, it has totally 24×128 =

3072 processor cores. Since we use the BPBC technique, we have not used the shared

memory of streaming multiprocessors on the GPU. We have evaluated the running time

for pairwise summing for 220 = 1048576 pairs of 32-bit unsigned integers stored in the

global memory of the GPU. We assume that all numbers are less than 2k and evaluated

the performance for every k (1 ≤ k ≤ 32). The implementation of a sequential algorithm

for naive pairwise summing is obvious. It simply computes the sum of two integers one

by one. Bitwise pairwise summing is performed by simulating k-bit ripple-carry adder

circuit for two k-bit integers. In GPU implementations, we invoke 1024 CUDA blocks

with 32 threads each and each thread computes the sums of 32 pairs by the BPBC.

Table 5.1 shows the running time and the speed-up factors. The naive sequential

algorithm runs about 0.676 ms, while GPU performs the same computation in 0.0566

ms. Thus, the GPU implementation is 11.9 times faster than the CPU for the naive al-

gorithm. The running time of bitwise CPU/GPU implementation is almost proportional

to the value of k. Also, the bitwise implementations are faster if k ≤ 19 on the CPU

and k ≤ 29 on the GPU. We can say that, the BPBC is a potent method if the upper

bound of input numbers is limited, and the GPU acceleration works very effectively.

For example, if input numbers are guaranteed to be in the range of 16-bit short integer,

the pairwise sums for 1048576 pairs can be computed only in 0.0223 ms by the BPBC

technique. On the other hand, naive pairwise summing takes 0.0565 ms. The sequential

algorithm for the bitwise summing technique runs 0.562 ms. Hence, the GPU bitwise

61

pairwise summing is the best method among others.

Table 5.1: The running time (in milliseconds) of the pairwise sums for 1048576 pairs

and the speed-up factors

k naive bitwise speed-up factors
CPU GPU CPU GPU GPU over CPU bitwise over naive

naive bitwise CPU GPU
1 0.682 0.0564 0.0475 0.00119 12.1 39.8 14.4 47.2
2 0.676 0.0566 0.109 0.00230 11.9 47.6 6.18 24.6
3 0.676 0.0564 0.149 0.00337 12.0 44.1 4.55 16.7
4 0.677 0.0566 0.196 0.00445 12.0 44.1 3.45 12.7
5 0.676 0.0566 0.221 0.00487 11.9 45.4 3.06 11.6
6 0.676 0.0569 0.250 0.00601 11.9 41.6 2.70 9.46
7 0.676 0.0565 0.278 0.00703 12.0 39.5 2.44 8.04
8 0.676 0.0564 0.310 0.00814 12.0 38.1 2.18 6.93
9 0.676 0.0566 0.340 0.00863 11.9 39.4 1.99 6.56

10 0.674 0.0563 0.376 0.0119 12.0 31.7 1.79 4.75
11 0.676 0.0565 0.403 0.0134 12.0 30.2 1.68 4.23
12 0.675 0.0565 0.434 0.0171 12.0 25.4 1.56 3.31
13 0.675 0.0565 0.464 0.0176 12.0 26.4 1.45 3.22
14 0.676 0.0566 0.496 0.0199 11.9 24.9 1.36 2.85
15 0.676 0.0565 0.529 0.0209 12.0 25.3 1.28 2.70
16 0.680 0.0565 0.562 0.0223 12.0 25.2 1.21 2.54
17 0.676 0.0566 0.592 0.0224 12.0 26.4 1.14 2.52
18 0.676 0.0570 0.623 0.0241 11.9 25.8 1.08 2.36
19 0.676 0.0567 0.657 0.0271 11.9 24.2 1.03 2.09
20 0.676 0.0567 0.691 0.0289 11.9 23.9 0.977 1.96
21 0.676 0.0569 0.726 0.0327 11.9 22.2 0.930 1.74
22 0.676 0.0565 0.761 0.0359 12.0 21.2 0.889 1.57
23 0.676 0.0567 0.796 0.0387 11.9 20.6 0.849 1.47
24 0.677 0.0570 0.830 0.0410 11.9 20.3 0.815 1.39
25 0.676 0.0565 0.865 0.0440 12.0 19.6 0.782 1.28
26 0.676 0.0566 0.902 0.0476 12.0 19.0 0.750 1.19
27 0.675 0.0564 0.936 0.0494 12.0 19.0 0.721 1.14
28 0.676 0.0568 0.973 0.0519 11.9 18.7 0.695 1.09
29 0.676 0.0567 1.01 0.0544 11.9 18.5 0.671 1.04
30 0.676 0.0566 1.04 0.0570 11.9 18.3 0.649 0.993
31 0.676 0.0569 1.08 0.0598 11.9 18.0 0.627 0.951
32 0.675 0.0568 1.41 0.0616 11.9 22.9 0.480 0.923

62

Chapter 6

Efficient GPU implementations of

Conway’s Game of Life

In this chapter, we briefl describe Conway’s Game of Life and the BPBC implementa-

tion. Also, we show several techniques for accelerating the computation and the method

for simulating a very large universe.

6.1 Conway’s Game of Life and a conventional imple-

mentation

The universe of Conway’s Game of Life is a 2-dimensional array of cells, each of which

takes one of two states, 1 (alive) or 0 (dead). For simplicity, we assume that the size of

the array is
√
n×
√
n. Let u0, u1, ... denote the states of the universe such that universe u0

stores the initial states, and each ut (t ≥ 1) is the states after t-step transition. Let ut(i, j)

denote the state of a cell at position (i, j) (0 ≤ i, j ≤
√
n − 1). For simplicity, we assume

that the universe is wrapped around to handle the state of cells outside of the array. For

63

example, the value of ut(i,−1) is that of ut(i,
√
n − 1). Let st(i, j) be the number of alive

cells in eight neighbors of cell (i, j) define as follows:

st(i, j) = ut(i − 1, j − 1) + ut(i − 1, j) + ut(i − 1, j + 1) + ut(i, j − 1)

+ut(i, j + 1) + ut(i + 1, j − 1) + ut(i + 1, j) + ut(i + 1, j + 1). (6.1)

The state ut(i, j) (0 ≤ i, j ≤
√
n − 1) is determined by the following formula:

ut(i, j) = 1(alive) if st−1(i, j) = 3 or

(ut−1(i, j) = 1 and (st−1(i, j) = 2 or st−1(i, j) = 3)),

= 0(dead) otherwise.

Hence, we can compute the value of ut(i, j) by the following Boolean formula:

ut(i, j) = (st−1(i, j) = 3) ∨ (ut−1(i, j) = 1 ∧ st−1(i, j) = 2) (6.2)

We have two arrangements, the word-per-cell and the bit-per-cell arrangements for

simulating the Game of Life not only on the GPU but also on the CPU. The word-per-

cell arrangement is a conventional arrangement in which the state of each cell is stored

in a word of the memory, such as a 32-bit integer or an 8-bit character. For example, we

can store the states u0(i, j) (0 ≤ i, j ≤
√
n−1) of cells in a

√
n×
√
n 2-dimensional array

of 8-bit characters. For more storage-efficient implementation of 2-dimensional array

of cells, we can use the bit-per-cell arrangement, which arranges each cell to a bit of a

word. For example, we use a 32-bit unsigned integer to store the states of consecutive

32 cells. In general, d consecutive cells in the same row are stored in a d-bit word

and thus n cells are stored in a
√
n ×

√
n
d array of d-bit words. As illustrated in Figure

6.1, consecutive 32 cells in the same row is arranged in a 32-bit word. Since a square

block of 32 × 32 cells are arranged in consecutive address, we use column-major order

addressing as shown in the figure

64

0 256 512 768 1024 1280 1536 1792
1 257 513 769 1025 1281 1537 1793
2 258 514 770 1026 1282 1538 1794

… … … … … … … …

253 509 765 1021 1277 1533 1789 2045
254 510 766 1022 1278 1534 1790 2046
255 511 767 1023 1279 1535 1791 2047

32

256

256

Figure 6.1: Bit-per-cell arrangement of 256×256 universe of 32-bit words with column-

major order arrangement

Let us see a straightforward GPU implementation for the Game of Life using the

word-per-cell arrangement. We assume that the initial states of cells are stored in the

global memory of the GPU. We use a CUDA kernel with n threads to compute the next

states u1(i, j). For example, a CUDA kernel invokes n
32 CUDA blocks with 32 threads

each. Each thread is assigned to a cell, and computes the next state u1(i, j) and write it

in the global memory. Note that it is not possible to compute u2(i, j) by the same CUDA

kernel, because threads in different CUDA blocks cannot communicate with each other.

Thus, after a thread computes and writes u1(i, j), it must terminate. A CUDA kernel

terminates when all threads complete the computation of next states of cells. After

that, the same CUDA kernel to compute u2(i, j) is invoked. In other words, one CUDA

kernel call is necessary to simulate one-step transition and thus, T CUDA kernel calls

are performed for T -step simulation.

65

6.2 BPBC implementation for the Game of Life

The main purpose of this section is to show how the BPBC technique can be applied to

simulation of the Game of Life.

To simulate the Game of Life stored in the bit-per-cell arrangements, we can retrieve

the state of an individual cell by bitwise AND operation, compute the sum of neighbors

by formulas 6.1 and 6.2, and write the next state by bitwise OR operation. However,

this straightforward implementation of the bit-per-cell arrangement is not efficient. We

should use the bitwise summing technique, which computes the bitwise sum of words

by the BPBC technique. The original idea using the bitwise summing technique has

been shown in [45].

To compute the next states of d cells stored in a d-bit word, the states of 2d + 6

neighboring cells are necessary. For example, Figure 6.2 shows the computation to

obtain the next states of 4 cells in I. We need 2 · 4 + 6 = 14 neighboring cells for

this computation. We firs store neighboring cells in eight 4-bit words A, B, ...,H as

illustrated in Figure 6.2. After that, we compute the bitwise sums as shown in Figure

6.2 and obtain two words I2 and I3, where each bit of I2 and I3 is 1 if and only if

the number of 1’s in the corresponding position of eight words A, B, ...,H is 2 and 3,

respectively. Clearly, using I2, I3 and the current value of I, we can compute the next

states of all cells in I by evaluating (I ∧ I2) ∨ I3. Next, we will show how I2 and I3

are computed. Let ([A − H]3, [A − H]2, [A − H]1, [A − H]0 denote the bitwise sums of

each bit of A, B, ...,H. Also, let [A − H]23 = [A − H]2 ∨ [A − H]3. Clearly, I2 = 1 if

([A−H]23, [A−H]1, [A−H]0) = (0, 1, 0) and I3 = 1 if ([A−H]23, [A−H]1, [A−H]0) =

(0, 1, 1). Hence, we can compute I2 and I3 from ([A − H]23, [A − H]1, [A − H]0).

66

1 0 0 1 0 0

0 0 0 0 1 1

0 1 0 1 0 1

1 0 0 1 0 0 1 0 0 1 0 0

0 0 1 1

0 1 0 11 0 1 00 1 0 1

0 0 0 0

0 0 0 1

1 0 0 1

0 0 1 0

0 1 0 0

0 0 1 1

0 1 0 1

1 0 1 0

0 1 0 1

0 0 0 0

2 3 3 4

0 0 0 1

1 1 1 0

0 1 1 0

1 0 0 0

0 1 1 0

0 0 0 1

next 0 1 1 0

Figure 6.2: The computation of the next states of 4 cells in a 4-bit word by Algorithm

SINGLE-WORD

We will show Algorithm SINGLE-WORD that computes the next states of I using

this idea. We firs compute the bitwise sums of each of four pairs of two words. For ex-

ample, by computing ([AB]1, [AB]0)← (A∧B, A⊕B), we obtain two bits ([AB]1, [AB]0)

which represent the sum of A and B. Similarly, we can obtain ([CD]1, [CD]0), ([EF]1, [EF]0),

and ([GH]1, [GH]0). After that, we compute the sum of pairs ([AB]1, [AB]0) and ([CD]1, [CD]0),

67

and obtain three bits ([A − D]2, [A − D]1, [A − D]0). This can be done by computing

the sums from the least significan bit. Similarly, we obtain the sum ([E − H]2, [E −

H]1, [E − H]0). Finally, we compute the sum of ([A − D]2, [A − D]1, [A − D]0) and

([E−H]2, [E−H]1, [E−H]0) and obtain three bits ([A−H]23, [A−H]1, [A−H]0). From

these three bits, the values of I2 and I3 can be obtained and then, the next states of I can

be computed. The details of an algorithm, Algorithm SINGLE-WORD that computes

I2, I3, and the next states of I are as follows:

[Algorithm SINGLE-WORD]

1. ([AB]1, [AB]0)← (A ∧ B, A ⊕ B)

2. ([CD]1, [CD]0)← (C ∧ D,C ⊕ D)

3. ([EF]1, [EF]0)← (E ∧ F, E ⊕ F)

4. ([GH]1, [GH]0)← (G ∧ H,G ⊕ H)

// ([A − D]2, [A − D]1, [A − D]0)← ([AB]1, [AB]0) + ([CD]1, [CD]0)

5. [A − D]0 ← [AB]0 ⊕ [CD]0

6. [A − D]1 ← [AB]1 ⊕ [CD]1 ⊕ ([AB]0 ∧ [CD]0)

7. [A − D]2 ← [AB]1 ∧ [CD]1

// ([E − H]2, [E − H]1, [E − H]0)← ([EF]1, [EF]0) + ([GH]1, [GH]0)

8. [E − H]0 ← [EF]0 ⊕ [GH]0

9. [E − H]1 ← [EF]1 ⊕ [GH]1 ⊕ ([EF]0 ∧ [GH]0)

10. [E − H]2 ← [EF]1 ∧ [GH]1

// ([A−H]23, [A−H]1, [A−H]0)← ([A−D]2, [A−D]1, [A−D]0)+ ([E −H]2, [E −

H]1, [E − H]0)

11. [A − H]0 ← [A − D]0 ⊕ [E − H]0

12. X ← [A − D]0 ∧ [E − H]0

13. Y ← [A − D]1 ⊕ [E − H]1

14. [A − H]1 ← X ⊕ Y

15. [A − H]23 ← [A − D]2 ∨ [E − H]2 ∨ ([A − D]1 ∧ [E − H]1) ∨ (X ∧ Y)

68

// (I, I2, I3)← (I, [A − H]23, [A − H]1, [A − H]0)

16. Z ← [A − H]23 ∧ [A − H]1

17. I2 ← [A − H]0 ∧ Z

18. I3 ← [A − H]0 ∧ Z

19. I ← (I ∧ I2) ∨ I3

Note that, when we compute ([A − D]2, [A − D]1, [A − D]0) ← ([AB]1, [AB]0) +

([CD]1, [CD]0), the values of ([AB]1, [AB]0) and ([CD]1, [CD]0) can not be (1, 1). Hence,

[A − D]2 can be computed by formula [AB]1 ∧ [CD]1.

Let us evaluate the total number of binary operations and unary operations per-

formed in this algorithm for bit-per-cell arrangement. For computing ([AB]1, [AB]0) ←

(A∧B, A⊕B), two binary operations are performed. Thus, the sums of four pairs can be

computed by 8 binary operations. Five binary operations are performed for computing

the sum of two bits, ([A − D]2, [A − D]1, [A − D]0) ← ([AB]1, [AB]0) + ([CD]1, [CD]0).

This computation is executed twice, and thus, 10 binary operations are performed. For

computing ([A − H]23, [A − H]1, [A − H]0), 9 binary operations are performed. Finally,

(I, I2, I3) is computed in 5 binary operations and 2 unary operations. Thus, the total

number of operations is 4 × 2 + 2 × 5 + 9 + 5 + 2 = 34. Hence, we have,

Lemma 6.2.1 The next states of cells stored in a word by the bit-per-cell arrangement

can be computed in 34 operations.

Let us implement bitwise summing technique in the GPU. Since CUDA supports

32-bit and 64-bit bitwise operations, it makes sense to use a 32-bit or 64-bit integer to

store 32 or 64 cells. Suppose that we use 64-bit integers to store cells. Each thread is

assigned a word storing 64 cells, and it is responsible for computing the next states of

these cells. We can invoke a CUDA kernel with n
64·32 CUDA blocks with 32 threads

69

each for n cells. Each word with 64 cells and 8 neighboring words are read by a thread

assigned to it. The thread computes 8 words A, B, ...,H from these words, and computes

the next states of I by 34 operations. After that, it writes the resulting next states of

I in the global memory and terminates. After all threads terminate, the CUDA kernel

terminates. In this way, one-step simulation is performed by a single CUDA kernel call.

The same CUDA kernel call is repeatedly performed T times to compute the T -step

simulation.

6.3 Bitwise summing technique for two words

We can reduce the number of operations if next states of cells in two words are com-

puted at the same time. If we just executed Algorithm SINGLE-WORD twice, we need

68 operations. We will show that it can be reduced to 59 operations by sharing the

computation for two words. For this purpose, we partition the cells as illustrated in

Figure 6.3. We compute the next states of cells in two words K and L in the figur

at the same time. For updating K, the sum of words A, B,C,D, E, I, J, L is computed.

Also, the sum of D, E, F,G,H, I, J,K is computed for word L. More specificall , we

compute ([A− EIJL]23, [A− EIJL]1, [A− EIJL]0) and ([D− K]23, [D− K]1, [D− K]0).

Clearly, four words D, E, I, J are included in both sets of words. Hence, by computing

the sum of these words first we can reduce the total number of operations. Once we

have (K, [A− EIJL]23, [A− EIJL]1, [A− EIJL]0), we can compute (K,K2,K3) where K

stores the next states of K, and each bit of K2 and K3 is 1 if and only if the number of 1’s

in the corresponding position of eight words A, B,C,D, E, I, J, L is 2 and 3, respectively.

Similarly, we can obtain (L, L2, L3) using (L, [D − K]23, [D − K]1, [D − K]0).

70

1 0 0 1 0 0

0 0 0 0 1 1

0 1 1 0 0 1

0 1 0 1 0 1

1 0 0 1 0 0 1 0 0 1 0 0

0 0 1 1

1 0 0 1

0 1 0 11 0 1 00 1 0 1

0 0 0 0

0 1 1 0

0 0 0 1

1 1 0 0

Figure 6.3: Illustrating 12 words for computing next states of cells in two words by

Algorithm DOUBLE-WORD

Using this idea, next states of cells in two words can be computed by Algorithm

DOUBLE-WORD as follows:

[Algorithm DOUBLE-WORD]

1. ([DE]1, [DE]0)← (D ∧ E,D ⊕ E)

2. ([IJ]1, [IJ]0)← (I ∧ J, I ⊕ J)

3. ([AB]1, [AB]0)← (A ∧ B, A ⊕ B)

4. ([CL]1, [CL]0)← (C ∧ L,C ⊕ L)

5. ([FG]1, [FG]0)← (F ∧G, F ⊕G)

6. ([HK]1, [HK]0)← (H ∧ K,H ⊕ K)

7. ([DEIJ]2, [DEIJ]1, [DEIJ]0)← ([DE]1, [DE]0) + ([IJ]1, [IJ]0)

8. ([ABCL]2, [ABCL]1, [ABCL]0)← ([AB]1, [AB]0) + ([CL]1, [CL]0)

9. ([FGHK]2, [FGHK]1, [FGHK]0)← ([FG]1, [FG]0) + ([HK]1, [HK]0)

10. ([A − EIJL]23, [A − EIJL]1, [A − EIJL]0) ← ([ABCL]2, [ABCL]1, [ABCL]0) +

([DEIJ]2, [DEIJ]1, [DEIJ]0)

11. ([D−K]23, [D−K]1, [D−K]0)← ([FGHK]2, [FGHK]1, [FGHK]0)+([DEIJ]2, [DEIJ]1, [DEIJ]0)

71

12. (K,K2,K3)← (K, [A − EIJL]23, [A − EIJL]1, [A − EIJL]0)

13. (L, L2, L3)← (L, [D − K]23, [D − K]1, [D − K]0)

Let us evaluate the total number of operations. Each of Lines 1-6 can be done in

two binary operations. Lines 7-9 can be done in 5 binary operations each. Lines 10

and 11 can be performed in 9 binary operations each. Finally, lines 12 and 13 takes

5 binary operations and 2 unary operations. Thus, the total number of operations is

6 × 2 + 3 × 5 + 2 × 9 + 2 × 7 = 59, and we have,

Lemma 6.3.1 The next states of cells stored in two words by the bit-per-cell arrange-

ment can be computed in 59 operations

Similarly to the GPU implementation using the algorithm SINGLE-WORD, we can

implement the algorithm for Lemma 6.3.1 in CUDA programming model. For example,

a CUDA kernel with n
(64·32·2) CUDA blocks with 32 threads each is repeatedly invoked.

Each thread is responsible for computing the next states of two words. Since the memory

access to the global memory can be shared for updating two words, we can further

accelerate the computation.

6.4 Multiple-step simulation using the shared memory

We can accelerate the computation if multiple steps simulation is performed on the

shared memory. More specificall , a CUDA block is assigned to multiple words, say,

32 words. It copies words storing the cell states to the shared memory and simulates

multiple steps on the shared memory. The resulting states are copied to the global

memory.

72

If multiple-step simulation is performed in a block of the universe, cells in the

boundary of the block may not have correct states. More specificall , suppose that

we have a block of d × d cells in a large 2-dimensional array of cells. Since we do not

have the states of cells outside of the block, we simply assume that those cells always

take state 0.

We can say that the boundary cells are dirty after one-step simulation in the sense

that their states may not be correct, because at least one of neighboring cells of each

boundary cell is not taken into account. Also, cells inside the boundary are clean in

the sense that their states are guaranteed to be correct. After another step simulation,

neighboring cells of the dirty cells, that is, the boundary cells of clean cells become

dirty. In general, cells in the distance t from the boundary become dirty after t-step

simulation and m × m cells are clean, where m = d − 2t, as illustrated in Figure 6.4.

To simulate multiple steps of all cells, the
√
n×
√
n 2-dimensional array in the global

memory is partitioned into
√
n
m ×

√
n
m slices of size m×m each as illustrated in Figure 6.5.

Each slice is expanded by t cells for every direction, and we obtain a d × d block. A

CUDA block is assigned to a block and performs t-step simulation using the shared

memory. For this purpose, it copies the states of d × d cells in a block to the shared

memory. Note that each row of d × d cells is stored in one or two d-bit words. Thus,

we read at most 2d words to copy d × d cells from the global memory. In the shared

memory, t-step simulation is performed. After that, the resulting states in the m × m

slice are written in the global memory. Similarly, we need to perform write operations

for at most 2m words to the global memory. Since this t-step simulation for all blocks

must be completed before the next t-step simulation is performed. Hence, each t-step

simulation must be performed by one CUDA kernel call and thus T -step simulation can

73

dirty cells

clean cells

Figure 6.4: Clean and dirty cells

be done by T
t CUDA kernel calls.

We can observe that, we should select an appropriate value of t (1 ≤ t ≤ d
2) for fi ed

n and d that minimizes the running time. For simplicity, we assume that the cost for

computing the next states of d cells stored in a word is one unit. Also, let c be the cost

of miscellaneous overhead for dispatching CUDA blocks and reading/writing the states

of d cells in the global memory. Under this assumption, we can write that the cost of

t-step simulation of a slice of size m × m is t + c. Hence, the cost of T -step simulation

of
√
n ×
√
n cells is:

T
t
× n
m2 × (t + c) =

nT (t + c)
t(d − 2t)2

74

slice

block

Figure 6.5: An m × m slice and a d × d block in a large 2-dimensional array

This cost is minimized when 4t2 + 6ct − dc = 0, that is,

t =
√

9c2 + 4dc − 3c
4

Cleary, t is an increasing function of c and the value of t is in the range [0, d6]. Intuitively,

this is reasonable because the number T
t of CUDA kernel calls should be smaller when

the overhead c is larger.

If Algorithm DOUBLE-WORD is implemented using the shared memory as it is,

memory access to the shared memory has bank conflicts In Algorithm DOUBLE-

WORD, a block of 64 × 64 cells stored in 64 64-bit words are updated by 32 threads

as illustrated in Figure 6.6. For example, thread 1 is responsible for updating 128 cells

75

64

0
1
2
3
4
5
6
7

…

62
63

Thread 0

Thread 1

Thread 2

Thread 3

Thread 31

64

Figure 6.6: Words accessed by threads executing Algorithm DOUBLE-WORD

in rows 2 and 3. For this purpose, it accesses cells in rows 1, 2, 3, and 4. Thus, threads

0, 1, 2, ..., 31 may access words k + 0, k + 2, k + 4, ..., k + 62 at the same time for each

k = −1, 0, 1, 2. Note that dummy rows −1 and 64 can be arranged in the shared memory

to avoid out-of-bound memory access.

The shared memory of Maxwell GPU architecture has 32 memory banks with 32-

bit width [16]. If we store 64-bit data in the shared memory, each of them are stored in

two adjacent banks. In other words, a pair of two adjacent banks are used to store 64-

bit number. Hence, we can think that the shared memory has 16 memory banks, bank

0, 1, ..., 15 with 64-bit width. If 64 cells are arranged as it is, memory access has bank

conflict as illustrated in Figure 6.7. If 32 threads access to rows 2, 4, 6, ..., 32, then two

memory access operations are performed to the same banks as illustrated in the figure

To avoid such bank conflicts we use shift arrangement as illustrated in Figure 6.8, in

76

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Figure 6.7: Regular arrangement

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

31 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

63 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

Figure 6.8: Shift arrangement

which elements are shifted by one in every two rows.

6.5 Further acceleration using warp shuffle

The memory access latency of the shared memory is not small [37]. Hence, if we can

implement words of cells as registers, we can further accelerate the computation. We

will show that t-step simulation can be done using registers without using the shared

memory.

The algorithm is almost the same as in Section 6.4, which uses the shared memory

for t-step simulation. Instead of using the shared memory, we use registers which can

be accessed faster than the shared memory. However, registers are assigned to a thread,

and they can be accessed only by the assigned thread. Hence, we use a warp shuffle

77

registers in threads registers in threads

global memory

warp shuffle

thread

thread

thread

thread

Figure 6.9: Copying words storing cells using a warp shuffle instruction

instruction, which copies registers of threads in the same warp, as illustrated in Figure

6.9. First, each thread copies two words storing cells from the global memory. For

one-step simulation, each thread copies registers of two neighboring threads. After that,

one-step simulation is performed for two words. This operation is repeated t times for

t-step simulation. The resulting states of cells are copied from the registers to the global

memory.

6.6 Simulation of a very large universe

This section shows how we perform simulation of Conway’s Game of Life for a universe

so large that it cannot be stored in the global memory of the GPU and in the main

memory of the host PC. Consider that a very large universe of size
√
N ×

√
N is stored

in the SSD connected to the host PC. Our goal is to simulate the Game of Life for a

large universe and store the resulting states after T -step simulation in the SSD.

78

Figure 6.10: Partition of a large universe of size
√
N ×

√
N into B sub-universes of size√

N
B ×
√

N
B

To complete T -step simulation, we partition the universe into B sub-universes of size√
N
B ×
√

N
B each and perform t-step simulation T

t times, as illustrated in Figure 6.10. For

this purpose, similarly to multiple-step simulation shown in Section 6.4, we extend the

sub-universe by T cells for each direction such that it has (
√

N
B +2T)× (

√
N
B +2T) cells.

Using the GPU, t-step simulation of every sub-universe is performed in turn. More

specificall , each extended sub-universe is copied from the SSD to the main memory

of the host PC. The host PC performs T -step simulation using the GPU. Clearly, the

resulting sub-universe has
√

N
B ×
√

N
B clean cells. These clean cells are copied to the

corresponding sub-universe in the SSD. This operation for every extended sub-universe

is repeated T
t times to complete T -step simulation.

79

6.7 Experimental results

The main purpose of this section is to show the performance of algorithms for Game of

Life. We have used GeForce GTX TITAN X and Intel Core i7-4790 CPU (3.66GHz)

for the experiment. GeForce GTX TITAN X has 24 streaming multiprocessors with 128

cores each.

We have evaluated the running time of straightforward implementations for 1K-

step (210-step) simulation for a 16K × 16K (214 × 214) array. In the word-per-cell, we

have used 8-bit unsigned characters to store the states of cells. In other words, a 2-

dimensional array of 16K × 16K unsigned characters are used and evaluated formulas

6.1 and 6.2 to obtain the next states. The CPU implementation of the word-per-cell is

obvious; the next state of every cell is computed one by one. To implement the word-

per-cell in the GPU, each cell is assigned one thread. More specificall , a CUDA kernel

computing 1-step transition invokes 223 CUDA blocks with 32 threads each. The 2-

dimensional array storing the states of cells are arranged in the global memory. Each

thread reads the current states of cells necessary compute the next state of an assigned

cell. It computes the next state of a cell by formulas 6.1 and 6.2 and writes the resulting

state in the global memory. Note that, a CUDA kernel call can compute only 1-step

transition and thus 1024 CUDA kernel calls are necessary to compute the states after

1024 steps. Table 6.1 shows the performance of these straightforward implementations.

The performance is evaluated by the number of updates per second. For example, the

CPU implementation runs 921.7 seconds for 1K-step simulation for 16K × 16K cells.

Thus, the performance is 1K · 16K · 16K/921.7 ≈ 0.298 × 109 updates per second.

80

Table 6.1: The performance (109 updates per second) of CPU implementation and GPU

implementation (global memory)

word-per-cell bit-per-cell
SINGLE-WORD DOUBLE-WORD

CPU 0.298 7.71 10.9
GPU 14.8 478 398

speed-up 49.7 62.0 36.5

From Table 6.1, we can see that the bit-per-cell arrangement is much more effi-

cient than the word-per-cell arrangement. Since the state of one cell is stored using 8

bits in the word-per-cell, we can expect that an implementation of the bit-per-cell is

8 times faster than that of the word-per-cell. Quite surprisingly, the bit-per-cell im-

plementation can be more than 30 times faster than the word-per-cell implementation.

This is because memory access to 8-bit words is not efficient in 64-bit processor archi-

tecture. Thus, we should not use word-per-cell arrangement and must use bit-per-cell

arrangement for 64-bit words. Further, we can see that Algorithm DOUBLE-WORD

on the CPU is much faster than Algorithm SINGLE-WORD. On the other hand, Al-

gorithm DOUBLE-WORD on the GPU does not achieve an improvement over Algo-

rithm SINGLE-WORD. This is because a straightforward implementation of Algorithm

DOUBLE-WORD involves stride memory access to the global memory, while that of

Algorithm SINGLE-WORD does not.

For further acceleration, we have implemented multiple-step simulation with bit-

per-cell arrangement using the shared memory and the registers on the GPU. Since we

want to avoid barrier synchronization using syncthreads(), we use CUDA blocks

with a single warp of 32 threads each. Also, we implemented simulation of the Game

of Life for a block with 32 × 32 cells and with 64 × 64 cells as follows:

81

32 × 32 block: A block of size 32 × 32 is implemented using 32 32-bit unsigned inte-

gers, each of which stores the states of 32 cells. A CUDA block with 32 threads

is assigned 32× 32 cells. Each thread computes t-step transition of 32 cells stored

in a 32-bit unsigned integer by repeating Algorithm SINGLE-WORD.

64 × 64 block: A block of size 64 × 64 is implemented using 64 64-bit unsigned long

long integers, each of which stores the states of 64 cells. Since a warp of 32

threads is used for 64 words, we execute SINGLE-WORD twice or DOUBLE-

WORD once to compute 1-step transition. Each thread repeats this t times to

complete t-step transition.

To fin the best value of the number t of steps computed by a single CUDA kernel

call, we evaluated the running time for t = 2, 4, 8, and 16. Recall that the 2-dimensional

array of size 16K × 16K is partitioned into 16K
m ×

16K
m slices of size m × m each where

m = d−2t and d = 32 for 32×32 blocks and d = 64 for 64×64 blocks. Hence, it makes

no sense to perform 16-step simulation for 32 × 32 blocks, because m = d − 2t = 0.

Table 6.2 shows the performance (109 updates per second) of 1K-step simulation

of the Game of Life with 16K × 16K cells. In most cases, implementations of 64 × 64

blocks are faster than that of 32×32 blocks, because 64-bit memory access can maximize

the memory access bandwidth for the global memory and the shared memory. Also, in

Algorithm DOUBLE-WORD, warp shuffle implementations are faster than the shared

memory implementations. From the table, the warp shuffle implementation of 8-step

simulation with 64 × 64 block using Algorithm DOUBLE-WORD performs 1990 ×

109 updates per second, which is the maximum over all implementations that we have

developed. Also, the straightforward GPU implementation using the global memory

performs 478 × 109 updates per second (Table 6.1). Hence, multiple-step simulation by

82

the GPU can accelerate the computation by a speedup factor of 3.

Table 6.2: The performance (109 updates per second) of GPU implementations of

multiple-step simulation

GPU(shared memory) GPU(register + warp shuffle)
32 × 32 64 × 64 32 × 32 64 × 64

steps SINGLE SINGLE DOUBLE SINGLE SINGLE DOUBLE
2 451 586 768 489 672 692
4 535 808 1370 659 1330 1510
8 322 720 1560 487 1510 1990

16 - 359 873 - 790 1120

Table 6.3 shows the running time for 16K-step simulation of 512K × 512K cells. The

universe of 256G cells (that is, 32G bytes) are stored in the SSD. We have partitioned the

universe into 16 sub-universes of size 128K × 128K cells each, and T -step simulation for

extended sub-universe is performed using the GPU. Since 16K-step simulation for the

universe is performed, T -step simulation for extended sub-universe is executed 16K·16
T =

256K
T times on the GPU. For T -step simulation of extended sub-universe stored in the

global memory, we have executed warp shuffle, 8-step, 64×64 block, DOUBLE-WORD

algorithm, which is the best configuratio from Table 6.2. Simulation takes more time

for larger T , because extended sub-universe is larger. Also, the time for SSD read/write

is inversely proportional to T . From the table, we can see that the running time is

minimized when T = 8K. We have evaluated the running time for 16K-step simulation

of 512K × 512K cells using a Core i7 CPU for T -step simulation. We found that the

total running time is minimized when T = 128, and the performance is 13.4 × 109

updates per second. Therefore, the speedup of the GPU implementation over the CPU

implementation is about 1350/13.4 ≈ 100.

83

Table 6.3: The running time (in seconds and 109 updates per second) for 16K-step

simulation of 512K × 512K cells using the GPU

T SSD read/write simulation total (sec) total (109 updates)
1K 2470/1390 2360 6230 722
2K 1210/662 2330 4210 1070
4K 591/323 2510 3430 1310
8K 310/170 2860 3340 1350

16K 159/86.0 3550 3800 1190

84

Chapter 7

BPBC implementation of the CKY

parsing on the GPU

In this chapter, we show that the CKY parsing for context-free grammars can be imple-

mented in the GPU efficiently using the BPBC technique.

7.1 The CKY parsing

The main purpose of this section is to briefl describe the CKY parsing and evaluate the

performance.

Let G = (N,Σ, P, S) denote a context-free grammar such that N is a set of non-

terminal symbols, Σ is a set of terminal symbols, P is a finit production rules from N

to (N ∪ Σ)∗, and S (∈ N) is the start symbol. A context-free grammar is said to be in

Chomsky Normal Form (CNF), if every production rule in P is in either form A → BC

(binary rule) or A → a (unary rule), where A, B, and C are non-terminal symbols and

a is a terminal symbol. Note that any context-free grammar can be converted into an

85

equivalent CNF context-free grammar. For later reference, let p2 and p1 denote the

numbers of binary and unary production rules, respectively.

We are interested in the parsing problem for a context-free grammar in CNF. More

specificall , for a given CNF context-free grammar G and a string x over Σ, the parsing

problem is a problem to determine if the start symbol S derives x by applying production

rules in P. For example, let Gexample = (N,Σ, P, S) be a context-free grammar such that

N = {S , A, B},Σ = {a, b}, and P = {S → AB, S → BA, S → S S , A → AB, B →

BA, A → a, B → b}. The context-free grammar G derives abaab, because S derives it

as follows:

S ⇒ AB⇒ ABA⇒ ABAA⇒ ABAAB⇒ · · · ⇒ abaab.

We are going to explain the CKY parsing scheme that determines whetherG derives

x for a CNF context-free grammar G and a string x. Let x = x1x2 · · · xn be a string of

length n, where each xi (1 ≤ i ≤ n) is in Σ. Let T [i, j] (1 ≤ i ≤ j ≤ n) denote a subset

of N such that every A in T [i, j] derives a substring xixi+1 · · · x j. The idea of the CKY

parsing is to compute every T [i, j] using the following relations:

T [i, i] = {A | (A→ xi) ∈ P}

T [i, j] =
j−1∪
k=i

{A | (A→ BC) ∈ P, B ∈ T [i, k], and C ∈ T [k + 1, j]}

A two-dimensional array T is called the CKY table. A grammarG generates a string

x if and only if S is in T [1, n]. Let ⊗G denote a binary operator 2N × 2N → 2N such that

U ⊗G V = {A | (A → BC) ∈ P, B ∈ U, and C ∈ V}. The details of the CKY parsing are

spelled out as follows:

[CKY parsing]

1. T [i, i]← {A | (A← xi) ∈ P} for every i (1 ≤ i ≤ n)

86

1 2 3 4 5
5
4
3
2
1

Figure 7.1: The CKY table for Gexample and abaab

2. T [i, j]← ϕ for every i and j (1 ≤ i < j ≤ n)

3. for j← 2 to n do

4. for i← j − 1 downto 1 do

5. for k ← i to j − 1 do

6. T [i, j]← T [i, j]
∪

(T [i, k] ⊗G T [k + 1, j])

The firs two lines initialize the CKY table, and the next four lines compute the

CKY table. Figure 7.1 illustrates the CKY table forGexample and the string abaab. Since

S ∈ T [1, 5], one can see that Gexample derives abaab.

Clearly, the last four lines are dominant in the CKY parsing. Let t be the computing

time necessary to perform an iteration of the line 6. Then the running time is

n∑
j=2

j−1∑
i=1

j−1∑
k=i

t = t
n∑
j=2

j−1∑
i=1

(j − i) = 1
6
t(n3 − n).

Let us evaluate the computing time t necessary to perform line 6, i.e., necessary to

evaluate the binary operator ⊗G. A straightforward sequential algorithm checks whether

B ∈ U and C ∈ V for every production rule A → BC in P. Clearly, using a reasonable

87

data structure, this can be done in O(1) time. Hence, U ⊗G V can be evaluated in O(p2)

time. Thus, using the above approach, the CKY parsing can be done in O(n3p2) time.

Lemma 7.1.1 The CKY parsing for an input string of length n takes O(n3p2) time,

where p2 is the number of binary rules.

7.2 Bitwise Parallel Bulk Computation for CKY pars-

ing

This section is devoted to show how we apply the BPBC technique to the CKY parsing.

Suppose that a CNF context-free grammar G = (N,Σ, P, S) is given. Let N =

{N1,N2, ...,Nb} be a set of non-terminal symbols, where b is the number of non-terminal

symbols. Recall that the CKY parsing repeatedly computes U ⊗G V = {A | (A→ BC) ∈

P, B ∈ U, and C ∈ V}. We will show that computation of U ⊗G V can be represented

by a combinational logic circuit. Let U and V (∈ 2N) be represented by b-bit binary

vectors u1u2 · · · ub and v1v2 · · · vb, respectively, such that ui = 1 iff Ni ∈ U. Also, let

U ⊗G V = w1w2 · · ·wb. For a particular wk (1 ≤ k ≤ b), we are going to show how

wk is computed. Let Nk → Ni1N j1 ,Nk → Ni2N j2 , ..., and, Nk → NisN js be the binary

production rules in P whose non-terminal symbol in the left-hand side is Nk. Clearly,

we can compute wk by the following formula:

wk ← (ui1 ∧ v j1) ∨ (ui2 ∧ v j2) ∨ · · · ∨ (uis ∧ v js).

This formula corresponds to a combinational logic circuit with s AND gates and s − 1

OR gates and the value of wk can be computed by simulating the circuit. Figure 7.2

illustrates a circuit for Gexample in Section 7.1. Clearly, the combinational logic circuit

for ⊗G has p2 AND gates and less than p2 OR gates.

88

Figure 7.2: The circuit for computing ⊗Gexample

Since the computation of ⊗G can be done by simulating a combinational logic circuit,

we can use the BPBC technique for the CKY parsing, which repeatedly computes ⊗G.

We assume that M input strings X0, X1, ..., XM−1 of length n each are given. Our goal

is to determine if G = (N,Σ, P, S) can generate Xi for all i (0 ≤ i ≤ M − 1) by the

CKY parsing. Similarly to the bitwise summing in Chapter 5, we partition the input

strings into M
d groups of d strings each, because we use a d-bit CPU. Let xi, j denote

the j-th character of Xi. We show how we determine if G can generate Xi for the firs

group. We use |N | d-bit integers to represent subsets of non-terminal symbols N for d

input strings of the firs group. Each bit of d-bit integers corresponds to one of the d

input strings. Using these integers, we can compute ⊗G by the bitwise operations very

efficiently. Figure 7.3 illustrates the computation of ⊗G for an example of a context-free

grammar shown in Section 7.1. It uses three 4-bit integers to represent subsets of non-

89

0 1 2 3
1 0 0 1

0 1 0 1

1 0 1 1

0 1 2 3
1 0 1 0

1 0 0 1

0 1 0 1

0 1 2 3
1 1 0 1

0 1 0 1

1 0 0 1

Figure 7.3: The computation of ⊗G for four instances

terminal symbols. Each of the 4 bits correspond to the following computation in terms

of ⊗G:

0: {S , B} ⊗G {S , A} → {S , B}

1: {A} ⊗G {B} → {S , A}

2: {B} ⊗G {S } → {}

3: {S , A, B} ⊗G {A, B} → {S , A, B}

Since the computation of ⊗G can be represented by a combinational logic circuit,

we can compute ⊗G for d pairs of inputs by bitwise logic operations. For example, the

computation illustrated in Figure 7.3 can be done by bitwise logic operations as follows:

WS ← (UA ∧ VB) ∨ (UB ∧ VA) ∨ (US ∧ VS)

WA ← UA ∧ VB
WB ← UB ∧ VA

90

Using this idea, we can perform the CKY parsing shown in Section 7.1. We perform

the CKY parsing for d input strings at the same time. The computation of ⊗G performed

in line 6 of the CKY parsing can be done by O(p2) bitwise logic operations. Hence, the

CKY parsing for d input strings can be done in O(n3p2) time. Since we have M
d groups,

we have

Theorem 7.2.1 The CKY parsing of M input strings of length n each can be done in

O(Mn
3p2
d) time by the BPBC technique. From Lemma 7.1.1, the CKY parsing for M input

strings of length n can be done in O(Mn3p2). Thus, the BPBC technique can accelerate

it by a speed-up factor of d.

7.3 The performance analysis of the CKY parsing using

the BPBC technique on the UMM

The main purpose of this section is to evaluate the performance of the CKY parsing

using the BPBC technique on the UMM. Let M be the number of input strings of length

n. We use M
d threads on the UMM to perform the CKY parsing. Recall that the CKY

parsing for a context-free grammar G repeatedly computes the function ⊗G, which can

be represented by a combinational logic circuit with O(p2) gates. Let b be the number

of non-terminal symbols. Each thread computes d CKY tables at the same time. Since

each CKY table has O(n2) entries, each thread uses O(bn2) words to store all entries

of d CKY tables. We arrange these O(bn2) words in a column of 2-dimensional array

similarly to the column-wise arrangement shown in Figure 5.2. Using the column-wise

arrangement, memory access is coalesced, and memory access requests by w threads in

a warp occupy only one pipeline stage. Each thread performs O(n3p2) memory access

91

operations and each memory access by M
d threads can be done in O(Mwd + l) time units.

Thus, we have,

Corollary 7.3.1 The CKY parsing for M input strings of length n can be done in O(n
3p2M
wd +

n3p2l) time units on the UMM with d-bit words, width w and latency l.

7.4 GPU implementation

The main purpose of this section is to show the GPU implementation for the CKY

parsing by the BPBC technique. We use the global memory of the GPU to store the CKY

tables. The CKY parsing computes elements of the CKY table in the order illustrated

in Figure 7.4. The elements are computed from bottom row. In each row, they are

computed from right to left. Hence, we use the local memory of CUDA to cache the

value of a row that is being computed. Note that the local memory may be allocated in

registers in the streaming multiprocessor if small, and in the off-chip DRAM if large.

Even if it is allocated in the off-chip DRAM, it may be accessed faster than the global

memory, which is also arranged in the off-chip DRAM. This is because an element of

the local memory is accessed by a particular thread, and cache mechanism may work

efficiently for the local memory. Hence, it makes sense to use the local memory to cache

a row. Also, since the capacity of the local memory is limited, it is not possible to store

all elements of the CKY table in it.

Recall that the CKY parsing by the BPBC on the UMM uses M
d threads for M input

strings. Since we use 32-bit unsigned integers, d = 32 and M
32 threads are invoked. We

arrange 32 threads for each CUDA block, a CUDA kernel for the CKY parsing invokes

M
1024 CUDA blocks with 32 threads each.

92

1 2 3 4 5 6
6
5
4
3
2
1

Figure 7.4: The computation order of the CKY table

7.5 Experimental results

The main purpose of this section is to show experimental results using Intel Core i7-

4790 (3.6GHz) CPU and GeForce GTX TITAN X (1GHz) GPU. GeForce GTX TITAN

X has 24 streaming multiprocessors with 128 cores each. Hence, it has totally 24×128 =

3072 processor cores. Since we use the BPBC technique, we have not used the shared

memory of streaming multiprocessors on the GPU. Although Intel Core i7-4790 has 4

processor cores, we have used only one processor core to evaluate sequential algorithms.

We may accelerate the computation by a speedup factor of up to 4 if we implement a

parallel algorithm that uses all 4 processor cores. Since our goal is not to compare the

computing powers of Intel Core i7-4790 and GeForce GTX TITAN X, we have not

implemented a 4-parallel algorithm on Intel Core i7-4790.

Table 7.1 shows the running time of the bitwise-parallel CKY parsing for M input

strings of length 32. The context-free grammar has 32/64 non-terminal symbols and

8192 production rules. Each thread uses a 32-bit unsigned register to store the current

93

status of 32 non-terminal symbols. Note that, the total number of possible binary pro-

duction rules is 323 = 32768. We have selected 8192 production rules from these rules

at random. We have evaluated the running time for M = 1024 to 2097152 (= 221).

Clearly, the running time of the CKY parsing by the CPU is proportional to M, because

it just repeats the CKY parsing for M input strings. On the other hand, the running time

by the GPU is not. Recall that, from Corollary 7.3.1, the CKY parsing on the UMM

takes O(n
3p2M
wd + n

3p2l) time units. Roughly speaking, from Table 7.1, we can think that

O(n3p2l) ≈ 0.4 for 32 non-terminal symbols. Also, O(n
3p2M
wd) ≈ 3.85 − 0.4 = 3.45 when

M = 2097152. Hence, O(n
3p2
wd) ≈ 3.45

2097152 ≈ 1.65 · 10−6. Thus, we can say that, the la-

tency overhead is 0.4 seconds and the throughput is 1.65 µs per CKY parsing. Further,

M must be so large that M ≥ 262144 to hide the latency overhead.

Table 7.1: The running time (in seconds) of the bitwise-parallel CKY parsing for 32/64

non-terminal symbols and 8192 production rules and the speed-up ratio

32 non-terminal symbols 64 non-terminal symbols
M CPU GPU spd-up CPU GPU spd-up

1024 0.679 0.412 1.65 0.637 0.432 1.47
2048 1.30 0.402 3.25 1.25 0.435 2.87
4096 2.60 0.405 6.40 2.43 0.437 5.56
8192 5.18 0.408 12.7 4.85 0.441 11.0

16384 10.4 0.387 26.8 9.71 0.423 22.9
32768 20.7 0.383 54 19.4 0.425 45.6
65536 41.4 0.399 104 38.7 0.459 84.4

131072 82.8 0.434 191 77.4 0.769 101
262144 166 0.754 220 155 0.989 157
524288 331 0.983 337 310 1.94 159

1048576 663 1.93 344 615 3.87 159
2097152 1330 3.85 344 - - -

Table 7.2 shows the running time per string of the CKY parsing for strings of length

32 using the BPBC technique. The experiment is performed for 32, 64, 128, 256, and

512 non-terminal symbols and 32, 64, ..., 131072 binary production rules. Note that the

94

number p2 of binary production rules must be |N| ≤ p2 ≤ |N|3, where |N | is the number of

non-terminal symbols. If |N| > p2, there exists a non-terminal symbol that are not in the

left-hand side of a binary production rule. Since a binary production rule in form A →

BC includes 3 non-terminal symbols, it is not possible to have more than |N |3 distinct

binary rules. Thus, these tables does not include the experiment for values p2 out of

this range. From the capacity of the global memory of GeForce GTX TITAN X, we can

implement 2097152, 1048576, 524288, 262144, and 131072 CKY tables, respectively,

which occupies 8 Gbytes in the global memory of the GPU. Clearly, the running time

of the CPU implementation is almost proportional to p2, because the number of bitwise

operations performed is O(p2). Also, for the same number of binary production rules,

the CPU implementation for more non-terminal symbols takes more time. For example,

the CKY parsing takes 1310 µs for 32 non-terminal symbols and 16384 binary rules,

while it runs 1740 µs if the context-free grammar has 64 non-terminal symbols. This is

because the locality of memory access. Roughly speaking, each non-terminal symbol is

accessed three times for each binary rule. Hence, we can think that about 16384·3
32 = 1536

memory access operations are performed for each of 32 non-terminal symbols. On the

other hand, if the context-free grammar has 64 non-terminal symbols, each non-terminal

symbols are accessed expected 16384·3
64 = 768 times. If the context-free grammar has

fewer non-terminal symbols, then each of them are accessed more frequently and the

memory cache mechanism work more efficiently.

Similarly, the GPU implementation also takes more time if the context-free grammar

has more non-terminal symbols. In addition to the locality of memory access, fewer

active threads increase the running time. For example, if the context-free grammar has

32 non-terminal symbols, the global memory of the GPU can store 2097152 CKY tables,

95

Table 7.2: The running time (per string in microseconds) of the bitwise-parallel CKY

parsing for strings of length 32

32 non-terminal symbols 64 non-terminal symbols 128 non-terminal symbols
2097152 strings 1048576 strings 524288 strings

p2 CPU GPU spd-up CPU GPU spd-up CPU GPU spd-up
32 4.62 1.24 3.73 - - - - - -
64 7.75 1.22 6.38 8.24 2.25 3.66 - - -

128 12.4 1.13 11.0 13.5 2.16 6.25 16.6 3.34 4.98
256 23.1 0.956 24.2 23.8 1.58 15.0 27.1 2.77 9.78
512 41.0 0.827 49.5 42.0 1.54 27.3 48.1 3.48 13.8

1024 78.1 0.767 102 76.1 1.48 51.6 83.6 3.99 21.0
2048 156 1.35 115 151 1.80 83.7 156 4.65 33.6
4096 310 5.56 55.7 296 3.36 88.3 295 5.02 58.7
8192 626 1.84 341 588 3.68 160 574 6.71 85.5

16384 1310 3.01 436 1740 6.06 288 1910 10.7 178
32768 2730 6.00 454 3510 10.8 325 3850 18.6 207
65536 - - - 7010 20.4 344 7690 34.1 226

131072 - - - 14100 39.5 357 16200 65.1 249

256 non-terminal symbols 512 non-terminal symbols
262144 strings 131072 strings

p2 CPU GPU spd-up CPU GPU spd-up
256 33.5 5.45 6.15 - - -
512 55.2 7.64 7.23 65.6 12.8 5.11

1024 95.0 9.80 9.70 107 16.1 6.63
2048 169 13.1 12.8 184 21.2 8.67
4096 306 18.9 16.2 329 32.7 10.1
8192 588 33.8 17.4 605 54.2 11.2

16384 2010 62.4 32.2 2070 97.6 21.2
32768 4070 125 32.6 4180 188 22.2
65536 8140 248 32.8 8320 370 22.5

131072 16900 501 33.8 16900 736 23.0

which are computed by 2097152
32 = 65536 threads. On the other hand, if the context-

free grammar has 64 non-terminal symbols, the global memory of the GPU can store

1048576 CKY tables, which are computed by 1048576
32 = 32768 threads. In general, to

maximize the memory access bandwidth, more threads must be invoked at the same

time. Hence, the running time per input string is rather increased because fewer CKY

tables are computed using fewer threads.

From Table 7.2, the GPU implementation is more than 400 times faster than the

CPU implementation when the context-free grammar has 32 non-terminal symbols and

96

16384/32768 binary production rules. However, if it has many non-terminal symbols

and the global memory of the GPU can store fewer CKY tables, we cannot attain high

speed-up factor.

97

Chapter 8

Conclusions

In this dissertation, we have presented efficient GPU implementations for bulk compu-

tations, which performs the same algorithm for a lot of instances.

In Chapter 4, we have presented a new Euclidean algorithm for computing the GCD

of all pairs of large numbers. The idea of our new Euclidean algorithm that we call the

approximate Euclidean algorithm is to compute an approximation of quotient by just

one 64-bit division and to use it for reducing the number of iterations of the Euclidean

algorithm. We also present an implementation of the approximate Euclidean algorithm

optimized for CUDA-enabled GPUs. The experimental results show that our implemen-

tation for 1024-bit GCD on GeForce GTX TITAN X runs about 90 times faster than the

Intel Xeon CPU implementation.

In Chapter 5, we have presented Bitwise Parallel Bulk Computation (BPBC) tech-

nique for accelerating the bulk computation. The idea of the BPBC technique is to

simulate a combinational logic circuit using bitwise logic operations. Bitwise logic op-

erations compute logical OR, AND, NOT, and XOR for the individual bits of 32-bit

word. In this method, we store 32 inputs for the combinational logic circuit into a par-

98

ticular bit of the words. And we apply the bitwise logic operations corresponding to the

combinational logic circuit to the words. By this, we can compute 32 circuits for 32

inputs at the same time.

In Chapter 6, we have presented several techniques for accelerating the simulation

of Conway’s Game of Life. In particular, we have presented techniques of (1) the states

of 32/64 cells are stored in 32/64-bit word (integers) and the next states are computed

by the BPBC technique, (2) the states of cells stored in 2 words are updated at the same

time by a thread, (3) warp shuffle instruction is used to transfer the current states, and

(4) multiple-step simulation is performed to reduce the overhead of data transfer and

invoking CUDA kenel. The experimental results show that, the performance of our

GPU implementation is 1350×109 updates per second for 16K-step simulation of 512K

× 512K cells stored in the SSD. Since Intel Core i7 CPU performs 13.4 × 109 updates

per second, our GPU implementation for the Game of Life achieves a speedup factor of

100.

In Chapter 7, we apply the BPBC technique to the CKY parsing. Since the CKY

parsing can be computed by a combinational logic circuit, we can perform it for mul-

tiple input strings at the same time by simulating the combinational logic circuit using

bitwise operations. We also implemented it on the GPU and showed that the GPU im-

plementation can be more than 400 times faster than the CPU implementation.

99

References

[1] A. Adamatzky. Game of Life Celluar Automata. Springer, 2015.

[2] A. V. Aho and J. D. Ullman. The Theory of Parsing Translation and Compiling. Prentice

Hall, 1972.

[3] M. Bailey and S. Cunningham. A hands-on environment for teaching gpu programming.

pages 254–258. ACM, 2007.

[4] D. J. Bernstein. Fast multiplication and its applications. Algorithmic Number Theory,

(44):325–384, 2008.

[5] J. L. Bordim, O. H. Ibarra, Y. Ito, and K. Nakano. Instance-specifi solutions to accelerate

the cky parsing for large context-free grammars. International Journal on Foundations of

Computer Science, 15(2):403–416, April 2014.

[6] J. L. Bordim, Y. Ito, and K. Nakano. Accelerating the cky parsing using fpgas. IEICE

Transactions on Information ans Systems, E86-D(5):811–818, 2003.

[7] N. Brunie, S. Collange, and G. Diamos. Simultaneous branch and warp interweaving for

sustained gpu performance. In International Symposium on Computer Architecture, pages

49–60. ACM, 2012.

[8] J. Chang, O. Ibarra, and M. Palis. Parallel parsing on a one-way array of infinite-stat

machines. IEEE Transactions on Computers, C-36(1):64–75, 1987.

[9] E. Charniak. Satistical Language Learning. MIT Press, 1993.

100

[10] C. Ciressan, E. Sanchez, M. Rajman, and J. C. Chappelier. An fpga-based coprocessor

for the parsing of context-free grammars. In IEEE Symposium on Field-Programmable

Custom Computing Machines, 2000.

[11] C. Ciressan, E. Sanchez, M. Rajman, and J. C. Chappelier. An fpga-based syntactic parser

for real-life almost unrestricted context-free grammars. In International Conference on

Field Programmable Logic and Applications (FPL), pages 590–594, 2000.

[12] N. Corporation. NVIDIA CUDA C best practice guide version 3.1, 2010.

[13] N. Corporation. GeForce GTX TITAN X. http://www.geforce.com/hardware/desktop-

gpus/geforce-gtx-titan-x, 2015.

[14] N. Corporation. NVIDIA CUDA C programming guide version 7.0, March 2015.

[15] N. Corporation. Parallel thread execution ISA ver4.2, March 2015.

[16] N. Corporation. Tuning CUDA applications for Maxwell, 2015.

[17] N. Corporation. CUDA parallel computing platform. http://www.nvidia.co.jp/object/cuda-

parallel-computing-platform-jp.html, 2017.

[18] M. Fisher. Conway’s Game of Life on GPU using CUDA.

http://www.marekfise .com/Projects/Conways-Game-of-Life-on-GPU-using-CUDA,

2013.

[19] N. Fujimoto. High throughput multiple-precision gcd on the cuda architecture. In Inter-

national Symposium on Signal Processing and Information Technology, pages 507–512,

December 2009.

[20] M. Gardner. Mathematical games: The fantastic combinations of john conway’s new

solitaire game ”life”. Scientifi Amerian, (223):120–133, 1970.

[21] A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge University Press,

1988.

[22] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining your ps and qs:

Detection of widespread weak keys in network devices. In the 21st USENIX Security

Symposium, page 35, August 2012.

101

[23] W. W. Hwu. GPU Computing Gems Emerald Edition. Morgan Kaufmann, 2011.

[24] O. H. Ibarra, T. Jiang, and H. Wang. Parallel parsing on a one-way linear array of finite

state machines. Theoretical Computer Science, 85(1):53–74, 1991.

[25] A. Kasagi, K. Nakano, and Y. Ito. Offline Permutation algorithms on the discrete memory

machine, with performance evaluation on the GPU. IEICE Transactions on Information

and systems, E96-D:2617–2625, 2013.

[26] A. Kasagi, K. Nakano, and Y. Ito. Offline Permutation on the cuda-enabled gpu. IEICE

Transactions on Information and systems, E97-D:3052–3062, 2014.

[27] K. H. Kim, S. M. Choi, H. Lee, K. L. Man, and Y. S. Han. Parallel cyk membership test

on gpus. In International Conference on Network and Parallel Computing (LNCS 8707),

pages 157–168, September 2014.

[28] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.

Addison-Wesley, 1997.

[29] S. R. Kosaraju. Speed of recognition of context-free languages by array automata. SIAM

J. on Computers, 4:331–340, 1975.

[30] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachter. Ron was

wrong, whit is right. Cryptology ePrint Archive, 2012. 2012/064.

[31] D. Man, K. Uda, Y. Ito, and K. Nakano. Accelerating computation of euclidean distance

map using the GPU with efficient memory access. International Journal of Parallel, Emer-

gent and Distributed Systems, 28(5):383–406, 2013.

[32] J. C. Martin. Introduction to languages and the theory of computation (2nd Edition).

Mac-Graw Hill, 1996.

[33] MathWorks. Stencil operations on a GPU.

https://www.mathworks.com/examples/parallel-computing/mw/distcomp-ex11684379-

stencil-operations-on-a-gpu, 2015.

102

[34] K. Nakano. Sequential memory access on the unifie memory machine with application to

the dynamic programming. In International Symposium on Computing and Networking,

pages 85–94, December 2013.

[35] K. Nakano. Simple memory machine models for gpus. International Journal of Parallel,

Emergent and Distributed Systems, (29(1)):17–37, 2014.

[36] K. Ogawa, Y. Ito, and K. Nakano. Efficient canny edge detection using a GPU. Proc.

of International Conference on Networking and Computing, pages 279–280, November

2010.

[37] S. Okamoto, Y. Ito, K. Nakano, and J. L. Bordim. Thorough evaluation of GPU shared

memory load and store instructions. In International Symposium on Computing and Net-

working, pages 614–616. IEEE CS Press, December 2015.

[38] K. S. Perumalla and B. G. Aaby. Data parallel execution challenges and runtime perfor-

mance of agent simulations on gpus. In Spring simutation Multiconference, pages 116–

123. Society for Computer Simulation International, 2008.

[39] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21:120–126, 1978.

[40] Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian, K. Sjolander, R. C. Underwood, and

D. Haussler. Stochastic context-free grammars for trna modeling. Nucleic Acids Research,

22:5112–5120, 1994.

[41] K. Scharfglass, D. Weng, J. White, and C. Lupo. Breaking weak 1024-bit rsa keys with

cuda. In International Conference on Parallel and Distributed Computing, Applications

and Technologies, pages 207–212, December 2012.

[42] J. Stein. Computational problems associated with racah algebra. Journal of Computational

Physics, (1(3)), Febrary 1967.

103

[43] D. Takafuji, K. Nakano, and Y. Ito. A cuda c program generator for bulk execution of

a sequential algorithm. In International Conference on Algorithms and Architectures for

Parallel Processing, pages 178–191, August 2014.

[44] K. Tani, D. Takafuji, K. Nakano, and Y. Ito. Bulk execution of oblivious algorithms on

the unifie memory machine, with gpu implementation. In International Parallel and

Distributed Processing Symposium Workshops, pages 586–595, May 2014.

[45] N. Tsuda. Acceleration of Game of Life by the bit operation (bit-board).

http://vivi.dyndns.org/tech/games/LifeGame.html, 2012.

[46] M. P. van Lohuizen. Survey on parallel context-free parsing techniques. Technical Report

IMPACT-NLI-1997-1, Delft University of Technology, 1997.

[47] J. R. White. PARIS: A parallel RSA-prime inspection tool. PhD thesis, California Poly-

technic State University - San Luis Obispo, June 2013.

[48] Y. Yang, Z. Guan, H. Sum, and Z. Chen. Accelerating rsa with fine-graine parallelism

using gpu. In Information Security Practice and Experience (LNCS), volume 9065, pages

454–468. Springer, 2015.

[49] Y. Yi, C. Y. Lai, S. Petrov, and K. Keutzer. Efficient parallel cky parsing on gpus. In

International Conference on Parsing Technologies, pages 175–185, 2011.

104

Acknowledgment

First and foremost, I would like to express my most sincere gratitude to my supervi-

sor, Professor Koji Nakano for his continuous encouragement, advice and support. His

knowledge and research experience has been a great help in my study. Without his en-

couragement and suggestion, this dissertation would not have been completed. As a

supervisor, he taught me skills and knowledges that will provide the value in my career.

I would also express my sincere appreciation to Associate Professor Yasuaki Ito for

his continuous guidance in whole period of my study.

I would express my appreciation to Professor Satoshi Fujita for reviewing my dis-

sertation.

I would express my heartfelt appreciation to Assistant Professor Daisuke Takafuji

for his continuous support in my study.

I thank all members of computer system laboratory. They were very kind and keen to

help. I am deeply grateful to all the faculty members of the Department of Information

Engineering of Hiroshima University.

Last, I wish to express my thanks to my family who always encouraged me.

105

List of publications

Journals

[J-1] Toru Fujita, Koji Nakano, and Yasuaki Ito, Bulk execution of Euclidean algo-

rithms on the CUDA-enabled GPU, International Journal of Networking and Com-

puting, Vol. 6 No. 1, pp. 42–63, January 2016.

[J-2] Toru Fujita, Koji Nakano, and Yasuaki Ito, Fast Simulation of Conway’s Game of

Life using Bitwise Parallel Bulk Computation on a GPU, International Journal of

Foundations of Computer Science, to appear.

International Conferences

[C-1] Toru Fujita, Koji Nakano, and Yasuaki Ito, Bulk GCD Computation Using a GPU

to Break Weak RSA Keys, Proc. of International Parallel and Distributed Process-

ing Symposium Workshops, pp. 385–394, May 2015.

[C-2] Toru Fujita, Daigo Nishikori, Koji Nakano, and Yasuaki Ito, Efficient GPU imple-

mentations for the Conway’s Game of Life, Proc. of International Symposium on

Computing and Networking (CANDAR), pp. 11–20, December 2015.

[C-3] Toru Fujita, Koji Nakano, and Yasuaki Ito, Bitwise Parallel Bulk Computation

on the GPU, with Application to the CKY Parsing for Context-free Grammars,

Proc.of International Parallel and Distributed Processing Symposium Workshops,

pp. 589–598, May 2016.

