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CHAPTER 1 

GENERAL INTRODUCTION 

 

Human movement is controlled by the central nervous system consisting of the brain 

and spinal cord. The central nervous system is a complex, sophisticated system that 

regulates our body movements and has the ability to change itself during development 

and throughout life to support the acquisition and maintenance of motor behaviors. This 

ability to change is called activity-dependent neuroplasticity. Previously, it was believed 

that this plasticity occurs in only a few very specific locations, such as the cortex, 

cerebellum, and closely related brain regions, and that the spinal cord is a hard-wired 

organ without plastic properties (Wolpaw, 2007). However, recent evidence suggests 

that activity-dependent neuroplasticity can occur throughout the central nervous system 

from the cortex to the spinal cord, and that spinal cord neuroplasticity is likely to 

contribute to the mastery of motor skills (Wolpaw, 2010; Thompson & Wolpaw, 2014). 

In support of this concept, several studies have reported that spinal reflex responses (e.g., 

stretch reflex and cutaneous reflex) are modulated by motor learning and physical 

training (Nielsen et al., 1993a; Nadler et al., 2000; Meunier et al., 2007). Nielsen et al., 

(1993) showed that the excitability of the H-reflex, an electrical analogous of spinal 

stretch reflex, is different in athletes and non-athletes and among different kinds of 

athletes. Also, Nadler et al., (2000) demonstrated that learning a new motor skill 

produces changes in the cutaneous reflex response. These findings suggest that the 

changes in spinal cord function are an important process in the acquisition of new motor 

skills.  
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Automatic movements, such as reflex responses and locomotion, are generally 

considered to be governed by neural circuits in the brain stem and spinal cord, while 

voluntary movements, such as skilled reaching and grasping, are considered to be 

governed by neural circuits in the primary motor cortex (M1) (Alstermark & Isa, 2012). 

Although the skilled movement is mainly controlled by the motor areas in the cerebral 

cortex, the output from these areas eventually reaches the spinal cord. Therefore, it is 

conceivable that spinal cord neuroplasticity could affect all motor behaviors, and 

exploring this plasticity will lead to a better understanding of the functional role of the 

central nervous system in motor control. Moreover, recent studies have shown that 

promoting spinal cord neuroplasticity might be a useful strategy for inducing motor 

recovery after spinal cord injury (Edgerton et al., 2004; Bunday & Perez, 2012; 

Thompson et al., 2013b; McPherson et al., 2015). For these reasons, understanding the 

mechanisms underlying spinal cord neuroplasticity will likely be vital in developing 

effective rehabilitation approaches for people with central nervous system disorders.  

 

Activity-dependent spinal cord neuroplasticity has been shown to be driven by 

supraspinal descending and peripheral ascending inputs associated with physical 

activities (Wolpaw, 2007). The neuroplastic changes in the spinal cord are postulated to 

be the result of altered synaptic strength, axonal sprouting, altered motor neuron 

property, or increase in the number of spinal inhibitory interneurons due to the repetitive 

inputs from descending and ascending pathways (Wolpaw, 2010; Carmel & Matrin, 

2011; Wang et al., 2012; Ueno et al., 2012; Ethier et al., 2015). Moreover, it is 

suggested that no matter what factors lead to spinal cord neuroplasticity, ongoing 

descending input from corticospinal tracts is essential both for producing and 
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maintaining plasticity (Chen & Wolpaw, 2002; Chen et al., 2006a; Chen et al., 2006c). 

Although there are several studies relating to activity-dependent spinal cord 

neuroplasticity in humans (Crone et al., 1985; Nielsen et al., 1993a; Thompson et al., 

2009, 2013a; Thompson et al., 2013b), the mechanisms by which corticospinal 

descending inputs influence the activity of spinal neural circuits are not well understood. 

In addition, although several studies reported the effects of motor skill training on 

changes in spinal neural circuits (Perez et al., 2005a; Roche et al., 2011a), the factors 

that influence the induction of changes in spinal neural circuits are not clarified. To 

answer these questions, in this thesis, I carried out several experiments involving 

healthy subjects. The function of neural circuits in the spinal cord involving limb 

movement and the main experimental techniques used in the present study (i.e., 

Hoffmann reflex, transcranial magnetic stimulation) will be outlined in the following 

sections of this chapter. 

 

1.1 Spinal neural circuits 

The spinal cord receives descending inputs from the supraspinal centers and ascending 

inputs from peripheral sensory receptors. Movement-related signals generated in the 

brain converge on the M1, located in Brodmann area 4, and are conveyed to the spinal 

cord via descending pathways (Porter & Lemon, 1992). Additionally, movement related 

signals generated by peripheral sensory receptors are conveyed to the spinal cord via 

sensory nerves. This incoming information is coordinated by spinal neural circuits and 

then ultimately transmitted to the alpha motor neurons, located in the ventral horn of the 

spinal cord. Therefore spinal neural circuits are linked directly to the activation of 

muscles, the effectors of movement, because the axons of alpha motor neurons project   
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Figure 1. Illustration of a circuit diagram of the spinal cord. The right side shows neural 

circuits within the spinal cord. The left side indicates the influence of supraspinal 

descending pathways on spinal interneurons. Closed black circles indicate spinal 

interneurons and their terminals. Closed triangles indicate excitatory synaptic terminals. 

Ext, extensor; Flex, flexor; IN, interneuron; MN, motor neuron; PI, presynaptic 

inhibition. 

.  
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to the muscles of the body. A circuit diagram of the spinal cord is shown in Figure 1. 

 

Moving our limbs produces time-varying sensory signals arising from cutaneous 

and proprioceptive receptors. Some sensory nerve fibers form synapses with neurons in 

the spinal cord and constitute a reflex arc that contribute to coordinated patterns of 

muscle contraction, while others continue up to the brain and provide feedback 

information needed for management of the state of muscle contraction and limb 

positions in order to execute controlled limb movements (Gardner & Johnson, 2012). 

Because sensory inputs to the spinal cord vary depending on motor tasks (e.g., 

movement type, task difficulty level, and movement speed) (Poppele & Bowman, 1970; 

Kakuda et al., 1997; Bosco & Poppele, 1999; Jones et al., 2001), and are likely to 

influence the activity level of muscle during voluntary movement (Nielsen & Sinkjaer, 

2002; Seki et al., 2003), modification of sensory signals at the spinal level appears to be 

a critical factor in executing skilled motor tasks (Doemges & Rack, 1992; Dun et al., 

2007). Presynaptic inhibition is a neural mechanism for controlling these sensory 

signals. Presynaptic inhibition is induced by gamma aminobutyric acid (GABA)ergic 

interneurons forming axo-axonic contacts with sensory afferent terminals. Activation of 

GABAergic interneurons produces primary afferent depolarization (PAD) of sensory 

afferent fibers, which leads to a reduction in the release of neurotransmitters from 

sensory afferents (Rudomin, 2009). Interneurons constituting Ia presynaptic inhibitory 

circuit are activated by inputs from sensory receptors or supraspinal centers (Jankowska, 

1992). The reflex responses produced by sensory inputs, such as the stretch reflex 

and/or cutaneous reflex, might interfere with active voluntary movements due to the 

unpredictable activation of agonist muscles. Therefore, changes in the sensory inputs at 
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preneuron level contribute to the control of these spinal reflexes and have a potential 

effect on the control of limb movement and sensory perception (Sinkjaer & Hayashi, 

1989; Bawa & Sinkjaer, 1999; Seki et al., 2003). In addition to the presynaptic 

inhibitory circuit, the activity of muscles is also controlled by other spinal neural 

circuits exerting excitatory or inhibitory synaptic inputs on alpha motor neurons. This is 

accomplished through the interaction of excitatory postsynaptic potentials (EPSPs) and 

inhibitory postsynaptic potentials (IPSPs) at the level of the motor neurons. Reciprocal 

Ia inhibition is one of the neural mechanisms providing inhibitory synaptic inputs to 

motor neurons. The reciprocal Ia inhibitory pathway is composed of glycinergic Ia 

inhibitory interneurons projecting monosynaptically onto antagonistic muscle motor 

neurons (Fyffe, 1991). The Ia inhibitory interneurons are activated by Ia afferent inputs 

from agonist muscle spindles, and the activation of Ia interneurons contributes to the 

hyperpolarization of target motor neurons (Eccles et al., 1956; Geertsen et al., 2011). 

This inhibition prevents the activation of antagonist muscles during voluntary 

contraction of agonist muscles. This is why, reciprocal Ia inhibition is an important 

neural mechanism for controlling the coordinated contraction of opposing muscle 

groups (Geertsen et al., 2011). Recurrent inhibition and Ib inhibition/facilitation are also 

important spinal neural mechanisms for regulating the activity of the alpha motor 

neurons (Knikou, 2008). Recurrent inhibition is provided by Renshaw cells that are 

excited by axon collaterals from motor neurons and make inhibitory synaptic 

connections with several populations of spinal neurons, including the motor neurons 

that excite them and Ia inhibitory interneurons (Pearson & Gordon, 2012). This 

inhibitory mechanism acts to stabilize the firing rate of motor neurons and to regulate 

the strength of inhibition of antagonist motor neurons (Katz & Pierrot-Deseilligny, 
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1999; Baret et al., 2003). Golgi tendon organs are force-sensitive receptors that respond 

to muscle force, and group Ib afferents arising from this receptors make synaptic 

connections with inhibitory interneurons projecting to motor neurons of synergistic 

muscles (Ib inhibition) (Knikou, 2008). This inhibitory effect is usually observed in a 

resting condition and switches from inhibition to excitation during walking (Ib 

facilitation) (Pearson & Gordon, 2012). These inhibitory or facilitatory mechanisms are 

an integral part of the regulation of motor neuron activity during walking (Knikou, 

2008). Although there are many spinal neural circuits that control the excitability of 

alpha motor neurons, this thesis is focused on Ia presynaptic inhibitory and reciprocal Ia 

inhibitory circuits, because these inhibitory circuits are speculated to play important 

roles in the control of joint movement (Geertsen et al., 2011; Fink et al., 2014). 

 

The supraspinal descending pathways involved in motor control influence the 

activity levels of interneurons constituting these spinal neural circuits (Fig.1) 

(Jankowska, 1992). Previous studies have shown that presynaptic inhibition of soleus 

(SOL) muscle Ia afferents is increased before and during contraction of ankle 

dorsiflexor muscles (Nielsen & Kagamihara, 1993), and that blockade of afferent inputs 

does not affect Ia presynaptic inhibition during ankle dorsiflexion (Nielsen et al., 1992). 

In a cat study, Rudomin et al., (1983) reported that presynaptic inhibition of Ia afferents 

is tonically controlled by several descending pathways, such as the reticulospinal, 

rubrospinal, and corticospinal pathways, by acting on interneurons mediating Ia 

presynaptic inhibition. The same study also indicated that in the hind limbs, the main 

descending control on these interneurons is depression. Meunier and Pierrot-Deseilligny 

(1998) showed descending control of presynaptic inhibition of Ia afferents in humans, 
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as revealed by increase or decrease in Ia presynaptic inhibition following stimulation of 

the motor cortex. Moreover, long-term stimulation of the sensorimotor cortex has been 

shown to produce increase in GABAergic interneurons in the ventral horn and decrease 

in GABAergic terminals of alpha motor neurons (Wang et al., 2012). Likewise, during 

Ia presynaptic inhibition, central facilitation of reciprocal Ia inhibition was observed 

before the contractions of agonist muscles (Crone et al., 1987; Kasai & Komiyama, 

1988). Jankowska et al., (1976) reported that neurons in the motor cortex make 

monosynaptic connections not only with alpha motor neurons, but also with Ia 

inhibitory interneurons, and that descending inputs from corticospinal tracts activate Ia 

inhibitory interneurons that project to antagonist alpha motor neurons, as well as agonist 

motor neurons. Additionally, in a rat study, Chen et al., (2006) showed that reciprocal 

inhibition could be changed by operant conditioning training, and that the corticospinal 

tract was fundamental to these changes. These findings strongly support the concept that 

changes in Ia presynaptic inhibition and reciprocal Ia inhibition are due to the central 

control of the spinal interneurons contributing to these spinal neural circuits. 

Furthermore, several studies have reported that patients with central nervous system 

disorders, such as strokes or spinal cord injuries, displayed abnormal activation of Ia 

presynaptic inhibition and/or reciprocal Ia inhibition (Crone et al., 1994; Morita et al., 

2001; Okuma et al., 2002; Crone et al., 2003; Kagamihara & Masakado, 2005; Lamy et 

al., 2009; Bhagchandani & Schindler-Ivens, 2012). In these patients, descending inputs 

modulating the activity of spinal neural circuits are deficient, indicating that the loss of 

descending control of spinal interneurons results in an abnormal activation of spinal 

neural circuits (Field-Fote, 2000). It is suggested that the loss of descending control of 

supinal neural circuits is involved in the symptoms of upper motor neuron syndromes, 
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such as hyperreflexia, clonus and spasticity (Crone et al., 2003; Kagamihara & 

Masakado, 2005), resulting from hyperexcitability of the stretch reflex. Moreover, the 

degree of Ia presynaptic inhibition or reciprocal Ia inhibition observed in patients has 

been shown to be related to their functional recovery and walking capacity (Okuma et 

al., 2002; Bhagchandani & Schindler-Ivens, 2012; Nardone & Trinka, 2015). Therefore, 

although the extent to which spinal neural circuits are affected depends on the type of 

diseases and the degree of damage to the motor system above the level of alpha motor 

neurons, a better understanding of the role of spinal neural circuits in the control of 

movement is crucial for developing rehabilitative strategies in patients with central 

nervous system disorders (Field-Fote, 2000; Edgerton et al., 2004). 

 

1.2 Hoffmann reflex 

The Hoffmann reflex (H-reflex), an electrical analogous of the monosynaptic stretch 

reflex, was originally described by Paul Hoffmann (1910). Because, the H-reflex is a 

valuable tool for non-invasively measuring spinal neural activity, this reflex has been 

used widely in the research field of clinical neurophysiology and applied physiology 

(Zehr, 2002; Palmieri et al., 2004; Knikou, 2008). The stretch reflex arc is comprised of 

muscle spindles, axons of sensory neurons (muscle spindle afferent fibers; group Ia and 

II afferents), alpha motor neurons, axons of alpha motor neurons, and muscles. The 

H-reflex arc is almost the same as the stretch reflex arc, and the only difference between 

the two reflex arcs is that the H-reflex bypasses the muscle spindles (Palmieri et al., 

2004). The H-reflex is evoked by electrical stimulation of a mixed peripheral nerve 

which consists of both sensory and motor axons. Because the diameter of Ia afferent 

fibers is larger than that of efferent fibers of motor neurons, low-intensity stimulation of 
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the peripheral nerve initially produces Ia afferent depolarization (Palmieri et al., 2004; 

Piscione et al., 2012). Action potentials induced by electrical stimulation travel to the 

spinal cord along Ia afferent fibers. If the terminal of Ia afferents are sufficiently 

depolarized, the neurotransmitters are released into the synaptic cleft, and EPSPs are 

evoked in alpha motor neurons. The motor neurons will then fire action potentials if the 

membrane potential of motor neurons is above a threshold level. The action potentials 

of motor neurons travel down to the neuromuscular junction along the axons and 

produce muscle twitches. This twitch response is recorded as an H-reflex in the 

electromyography (EMG) (Zehr, 2002; Palmieri et al., 2004; Knikou, 2008). Electrical 

stimulation of a mixed peripheral nerve can also produce motor axon depolarization due 

to the simultaneous stimulation of efferent nerve fibers. The stimulation directly causes 

the activation of muscle fibers, which are recorded as motor responses (M-wave) in the 

EMG (Zehr, 2002; Palmieri et al., 2004; Knikou, 2008). As mentioned above, the 

diameter of efferent nerve fibers is smaller than that of Ia afferent fibers, thus, the 

threshold for the M-wave (motor threshold: MT) is higher than that for the H-reflex 

(Palmieri et al., 2004; Piscione et al., 2012). Therefore, the H-reflex can be observed 

without an M-wave at low stimulation intensity levels. The amplitude of the H-reflex is 

increased with increments of stimulation intensity, until reaching the maximum 

amplitude of the H-reflex (Hmax), and then gradually decreasing with further 

increments of stimulation intensity. The amplitude of the M-wave is also increased with 

increments of stimulation intensity, but the maximum value remains stable regardless of 

further increases in stimulation intensity. The maximum amplitude of the M-wave 

(Mmax) represents the activation of all motor neurons axons and provides an estimate 

of the response given by the aggregate of alpha motor neurons (Pierrot-Deseilligny & 
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Mazevet, 2000). These H-reflex and M-wave recruitment characteristics can be 

observed by plotting the amplitude of the H-reflex and M-wave at each stimulation 

intensity, which is referred to as the H-reflex and M-wave recruitment curve. Figure 2 

shows the H-reflex and M-wave curve obtained from a SOL muscle. 

 

The ascending part of the H-reflex recruitment curve reflects the increase in the 

number of recruited alpha motor neurons activated by Ia afferent inputs. Alpha motor 

neurons are recruited in order of increasing size; recruitment occurs from smallest motor 

neurons because they are more easily depolarized by Ia afferent inputs according to the 

size principle (Henneman et al., 1965). Thus, small motor neurons innervating slow 

motor units are recruited first in the H-reflex (Piscione et al., 2012). By contrast, the 

M-wave recruitment curve reflects the recruitment order of axons of motor neurons 

induced by electrical stimulation. As large motor neurons innervating fast motor units 

have axons with a larger diameter, fast motor units are recruited first in the M-wave 

(Knikou, 2008). This implies that the H-reflex and M-wave do not represent the 

response of same motor units. Moreover, the action potentials evoked by electrical 

stimulation travel to axons of motor neurons not only orthodromically, but also 

antidromically. These antidromic volleys block the orthodromic volleys generated by Ia 

afferent depolarization, resulting in a partial cancelation of the H-reflex; the collision of 

antidromic motor volleys with orthodromic afferent volleys (Palmieri et al., 2004; 

Knikou, 2008). This is why the H-reflex decreases after reaching maximal values (Fig. 

2).  

 

The H-reflex has been utilized as a probe to study spinal neuronal circuits in human   



 

12 

 

 

 

Figure 2. (A) The recruitment curves for a soleus H-reflex (○) and M-wave (●) 

measured in a healthy subject. Data were obtained during a resting condition. The 

abscissa shows the stimulation intensity expressed in multiples of motor threshold 

(×MT). The ordinate shows the amplitude of the H-reflex or M-wave (mV). (B) Typical 

averaged wave forms of H-reflexes and M-waves (n=5) at each stimulation intensity. 

The vertical dot line indicates the position of the artifact of electrical stimulation. 
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subjects (Pierrot-Deseilligny & Mazevet, 2000; Knikou, 2008). One method for 

investigating spinal neural circuits is to assess the effects of conditioning volleys in 

peripheral afferents or descending tracts on the H-reflex. In this method, the size of the 

H-reflex is compared in the presence or absence of the conditioning stimulation. 

Theoretically, eliciting the test H-reflex in a certain percentage of the maximum 

M-wave amplitude in each subject allows for the evaluation of almost same proportion 

of MN pools (Palmieri et al., 2004). However, if the H-reflex elicited from the 

descending portion of the recruitment curve is used, the effects of conditioning on the 

H-reflex will be influenced by Ib and recurrent inhibition which are activated by high 

stimulation intensity (Knikou, 2008). Moreover, the susceptibility of the H-reflex to 

conditioning inputs has been shown to depend upon the size of the reflex itself (Crone et 

al., 1990). Therefore, using the same size of test H-reflex (20–30% of Mmax) in the 

ascending portion of the H-reflex recruitment curve is more appropriate for assessing 

the effects of conditioning on the H-reflex. The H-reflex amplitude following exposure 

to conditioning stimuli can be changed by either postsynaptic or presynaptic 

mechanisms (Pierrot-Deseilligny & Mazevet, 2000; Knikou, 2008). The former is 

induced by excitatory or inhibitory synaptic inputs into alpha motor neurons, whereas, 

the latter is induced by presynaptic inhibition of Ia afferents. 

 

The method for studying presynaptic inhibition and reciprocal Ia inhibition in 

humans was first described by Mizuno et al., (1971), and are summarized as follows; in 

the lower limb, presynaptic inhibition was determined using long-latency 

[Conditioning-Test (C-T) intervals of 6–30 ms] suppression of the SOL H-reflexes by 

conditioning stimuli to the common peroneal nerve (CPN) that innervates the tibialis 
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anterior (TA) muscle (antagonistic muscle of SOL). This long-latency SOL H-reflex 

suppression, known as D1 inhibition (Mizuno et al., 1971), is correlated with the 

presynaptic inhibition of monosynaptic reflexes observed in animal studies in terms of 

the onset latency and the slow development of H-reflex suppression (Eccles et al., 1962). 

Reciprocal Ia inhibition was determined by a short-latency (C-T intervals of 2–3 ms) 

suppression of the SOL H-reflex using a conditioning stimulus to the CPN. H-reflex 

suppression is believed to reflect reciprocal Ia inhibition (Crone et al., 1987), as the 

onset latency and response threshold (e.g., strength of the conditioning stimuli) of the 

H-reflex suppression is comparable with the future of reciprocal Ia inhibition in cats 

(Eccles et al., 1956). A representative diagram of the neural circuit and the time interval 

between the conditioning and test stimulation is shown in Figure 3.  

 

1.3 Transcranial magnetic stimulation 

TMS was developed by Barker and colleagues in 1985 as a non-invasive method for 

studying the human brain (Barker et al., 1985; Barker, 1999). They showed that a pulsed 

magnetic field creates electrical current flow in the brain and can temporarily stimulate 

a specific area without painful sensations. Since that time, TMS has been widely used as 

a research tool to study aspects of human brain physiology, including motor function, 

vision, language and the pathophysiology of brain disorders (Hallett, 2000).  

 

TMS is based on the principle of electromagnetic induction, discovered by Faraday. 

In this method, a magnetic coil is used to stimulate cortical cells. When a brief high 

electric current pulse is produced in the electromagnetic coil, which is placed above the 

scalp, a magnetic field is generated perpendicular to the magnetic coil. The magnetic   
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Figure 3. (A) A schematic diagram of the experimental paradigm for Ia presynaptic 

inhibition and time interval of condition to test stimulation. Conditioning stimulation of 

the common peroneal nerve (CPN) is applied 6–30 ms before the test stimulation. (B) A 

schematic diagram of the experimental paradigm for reciprocal Ia inhibition and time 

interval of condition to test stimulation. Conditioning stimulation of the CPN is applied 

2–3 ms before the test stimulation. White circle indicates excitatory interneuron, gray 

circle indicates presynaptic inhibitory interneuron, and black circle indicates Ia 

inhibitory interneuron. Lightning bolts indicate electrical stimulation. CS, conditioning 

stimulation; IN, interneuron; MN, motor neuron; PI, presynaptic inhibition; RI, 

reciprocal Ia inhibition; TS, test stimulation. 
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field passes through bone and soft tissue without being affected by the electrical 

characteristics of a living body, and produces eddy current, which flows in the opposite 

direction to the electric current of the coil (Barker, 1999). In TMS, cortical cells are 

stimulated non-invasively by this eddy current, leading to the depolarization of the 

neuronal membrane (Fig. 4A). Magnetic stimulation is particularly effective for 

stimulating the human brain because the skull has high levels of electrical resistivity 

(Barker et al., 1985). The magnetic field produced by TMS is up to 1.5–2.0 Tesla at the 

face of the magnetic coil, and the induced electric field in the cortex is up to 150 V/m 

approximately. The most commonly used magnetic coil forms two overlapping loops of 

wire in a ‘figure of eight’ arrangement (Fig. 5), which produces a more focased and 

shallower stimulation, within a range of 1 to 2 cm
2
, whereas a double-cone coil is used 

to stimulate deeper cortical areas (Ridding & Rothwell, 2007; Rossi et al., 2009). TMS 

can stimulate cortical neurons at a depth of 1.5–3.0 cm beneath the scalp, depending on 

the stimulation intensity (Rossi et al., 2009). 

 

When TMS is applied over the M1, corticospinal neurons are activated and muscle 

twitch responses are observed. The EMG response induced by TMS, namely the motor 

evoked potential (MEP), can be recorded in the contralateral limb muscle (Fig. 4B) 

(Hallett, 2000). The corticospinal pathway provides a direct monosynaptic route from 

the M1 to the spinal motor neurons (Petersen et al., 2010). TMS can directly activate 

corticospinal neurons or indirectly activate corticospinal neurons via horizontally 

oriented interneurons which supply synaptic inputs to the corticospinal neurons 

(Petersen et al., 2003). The responses evoked by TMS would be influenced by changes 

in the cortical excitability, and the alpha motor neurons receive multiple EPSPs after the   



 

17 

 

 

 

 

Figure 4. The principles of transcranial magnetic stimulation. In TMS, based on the 

principle of electromagnetic induction discovered by Faraday, cortical cells are 

stimulated non-invasively by eddy current (A). When TMS is applied over the primary 

motor cortex (M1), an EMG response (motor evoked potential) is recorded from the 

contralateral target muscle (B). MNs, motor neurons; MEP, motor evoked potential. 
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Figure 5. The device used for transcranial magnetic stimulation. (A) A Magstim 200 

stimulator. (B) A figure of eight-shaped coil and double cone coil. For magnetic 

stimulation, a magnetic coil is connected to a Magstim 200 stimulator, and a brief, high 

current pulse is produced in the coil of wire. 
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TMS, leading to discharge of motor neurons (Petersen et al., 2010). 

 

Previous studies have shown that TMS can be used for investigating the influence 

of corticospinal descending inputs to spinal neural circuits by utilizing the H-reflex 

conditioning-test paradigm (Nielsen et al., 1993b; Meunier & Pierrot-Deseilligny, 1998). 

In this method, the H-reflex was conditioned by subthreshold TMS at various C-T 

intervals. It has been reported that conditioning TMS produced a short-latency 

facilitation of the test H-reflex (Nielsen et al., 1993b; Nielsen & Petersen, 1995a). The 

timing of short-latency facilitation of the H-reflex corresponds with that of the 

simultaneous arrival of the both the descending (TMS) and ascending (test H-reflex) 

volleys at the alpha motor neurons, which is inferred by the conduction time of the 

stimulation site to S1 spinal level (Herdmann et al., 1991; Meunier et al., 1994). 

Therefore, this facilitation is considered to reflect monosynaptic excitation from 

corticospinal neurons with fast-conducting fibers (Nielsen & Petersen, 1995a). 

Electrophysiological investigation revealed that, the increased membrane potential 

gradually returns toward the resting membrane potential over a few tens of milliseconds 

(Landgren et al., 1962) due to the activation of Na
+
/K

+
 pomps and K

+
 leak channels 

(Koester & Siegelbaum, 2012). Because the subthreshold TMS induces an increase in 

the membrane potential of motor neurons, the duration of the facilitation of the H-reflex 

should be expected to follow changes in the membrane potentials. In other words, the 

facilitation of the H-reflex should last for over a few tens of milliseconds. However, this 

facilitation was followed by inhibition, which always occurred after a 1–2 ms 

(short-latency inhibition) (Iles & Pisini, 1992; Nielsen et al., 1993b). Therefore, the 

rapid termination of facilitation is likely caused by an IPSPs at the motor neurons 
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(Cowan et al., 1986). Several studies have reported that the alpha motor neurons and Ia 

inhibitory interneurons that mediate disynaptic reciprocal inhibition are controlled in 

parallel by the corticospinal tract (Jankowska et al., 1976; Crone et al., 1987; Kasai & 

Komiyama, 1988). Intracellular recording from alpha motor neurons in baboons 

demonstrated that motor cortex stimulation produced EPSPs and IPSPs in motor 

neurons, and that IPSPs always started ~ 1.2 ms later than EPSPs (Landgren et al., 

1962). The timing of short-latency inhibition of the H-reflex corresponds with the 

timing of the late arrival of inhibitory inputs at motor neurons. Therefore, the 

short-latency inhibitory effect of conditioning TMS on the H-reflex is considered to 

reflect disynaptic inhibition from Ia inhibitory interneurons (Iles & Pisini, 1992; Nielsen 

et al., 1993b). Moreover, another facilitation of the H-reflex was also observed 

approximately 10 ms after the short-latency inhibition. This late facilitation is assumed 

to represent the activation of different polysynaptic pathways or corticospinal neurons 

with slow-conducting velocity (long-latency facilitation) (Nielsen & Petersen, 1995b). 

On the other hand, the effect of corticospinal descending inputs on the presynaptic 

inhibition of Ia afferents was determined by comparing the amount of D1 inhibition in 

the presence and absence of TMS (Meunier & Pierrot-Deseilligny, 1998). It has been 

demonstrated that interneurons mediating Ia presynaptic inhibition are controlled by 

supraspinal inhibitory and excitatory pathways (Jankowska, 1992), and that stimulation 

of the corticospinal tract decreases PAD in muscle afferents of lower limbs, generated 

by the stimulation of group I muscle afferents (Rudomin, 1990). In support of this 

finding, a previous study has shown that motor cortical stimulation significantly 

decreases the D1 inhibition of SOL Ia afferents when applied 5–10 ms before CPN 

stimulation. In these inter-stimulus intervals, cortical conditioning volleys reach the S1 
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spinal level before the arrival of CPN conditioning volleys because the conduction time 

to reach the S1 spinal level is approximately the same for the cortical and CPN 

stimulation (Herdmann et al., 1991; Meunier et al., 1994). Therefore, the reduction of Ia 

presynaptic inhibition is believed to be the result of activity changes in interneurons 

interposed in the presynaptic inhibitory pathway. A representative circuit diagram as 

well as the experimental protocol are shown in Figure 6. 

 

1.4 Summary of the aim of this thesis 

The main goal of this thesis is to elucidate the mechanisms underlying spinal cord 

neuroplasticity induced by motor training, and to provide useful information about how 

this plasticity may be used for medical treatments. In chapter 2, I investigate the extent 

to which corticospinal descending inputs delivered to Ia inhibitory interneurons are 

related to the strength of reciprocal Ia inhibition. In chapter 3, I examine the 

corticospinal descending control of the Ia presynaptic inhibitory pathway by comparing 

the effect of motor skill training and non-skilled training on Ia presynaptic inhibition. In 

chapter 4, I hypothesized that the movement speed of a motor task is one of the 

important factors for producing changes in spinal neural circuits. To test this hypothesis, 

I examined whether the movement speed of a motor task alters neuroplasticity in spinal 

neural circuits. In chapter 5, to reveal the effect of peripheral afferent inputs on 

neuroplasticity in spinal neural circuits, I investigated whether sensory inputs induced 

by electrical nerve stimulation could produce changes in spinal neural circuits, and 

examined the neural mechanisms underlying these changes using TMS conditioning 

H-reflex techniques. Finally, I summarized the present findings and the conclusions of 

this thesis in chapter 6. The findings of this study promote a better understanding of   
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Figure 6. Schematic diagram of experimental paradigm in TMS conditioned Ia 

presynaptic inhibition (D1 inhibition) and time intervals of condition to test stimulation. 

The common peroneal nerve (CPN) stimulation is applied 21 ms before the test 

stimulation, and TMS stimulation is applied 5 ms before the stimulation of the CPN. 

White circle indicates excitatory interneuron, gray circle indicates presynaptic inhibitory 

interneuron, and black circle indicates inhibitory interneuron. Thunder indicates 

electrical stimulation or TMS stimulation. CPN. common peroneal nerve; CS, condition 

stimulation; IN, interneuron; MN, motor neuron; PI, presynaptic inhibition; TS, test 

stimulation.  
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activity-dependent spinal cord neuroplasticity and may lead to the development of 

effective rehabilitation approaches for improving motor function after trauma or 

disease. 
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CHAPTER 2 

EFFECTS OF CORTICOSPINAL DESCENDING INPUTS ON THE ACTIVITY 

OF RECIPROCAL IA INHIBITION 

 

2.1 Introduction 

Reciprocal Ia inhibition is a spinal neural mechanism that is considered to play an 

important role in the control of joint movement (Petersen et al., 1999; Kido et al., 2004; 

Geertsen et al., 2011). Reciprocal Ia inhibition has been studied extensively in human 

subjects using the H-reflex technique (Mizuno et al., 1971; Iles, 1986; Crone et al., 

1987; Shindo et al., 1995), and several studies have reported that interneurons 

mediating reciprocal Ia inhibition are controlled by supraspinal motor centers (Kasai & 

Komiyama, 1988; Kudina et al., 1993; Nielsen et al., 1993b). Crone et al., (1987) 

reported that the agonist alpha motor neurons and Ia interneurons that project to 

antagonist alpha motor neurons are controlled in parallel by the brain. Also, in a rat 

study, Chen et al., (2006) showed that reciprocal Ia inhibition could be operantly 

conditioned, and that the corticospinal tract was fundamental to the changes in 

reciprocal Ia inhibition induced by operant conditioning. These results suggested that 

the corticospinal tract modulates the activity of Ia interneurons that are responsible for 

reciprocal Ia inhibition. In human subjects, inter-individual variations in the amount of 

reciprocal Ia inhibition are observed in the resting state (Mizuno et al., 1971; Crone et 

al., 1987). This variability might reflect the amount of reciprocal Ia inhibition which is 

regulated by the corticospinal descending inputs to Ia interneurons. However, the 

relationship between the amount of reciprocal Ia inhibition and the strength of 

corticospinal inputs on Ia inhibitory interneurons is unknown. 
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The purpose of this study was to investigate the extent to which the corticospinal 

inputs delivered to Ia inhibitory interneurons influence the strength of disynaptic 

reciprocal Ia inhibition. To investigate this issue, I examined the conditioning effect of 

TMS on the SOL muscle H-reflex at different conditioning-test intervals. It has been 

reported that conditioning TMS produced short-latency facilitatory and inhibitory 

effects on the test H-reflex, which may be due to direct or indirect corticospinal 

mediated connections to the spinal motor neurons (Nielsen et al., 1993b; Nielsen & 

Petersen, 1995a, b). Hence, I used this method to investigate the influence of 

corticospinal neurons on the spinal cord. Then, I determined the relationship between 

the degree of reciprocal Ia inhibition and the strength of corticospinal inputs on Ia 

inhibitory interneurons. I also carried out a similar experiment in tonic dorsiflexion 

condition to reveal whether this relationship is modulated by descending inputs related 

to voluntary motor commands. 

 

2.2 Methods 

2.2.1 Subjects 

Seventeen healthy subjects, who were aged 21 to 29 years [23.4 ± 1.9 years; mean ± 

standard deviation (SD)], participated in our study after providing written informed 

consent. Our study was approved by the Human Ethics Committee of the Graduate 

School of Integrated Arts and Sciences of Hiroshima University, and all procedures 

conformed to the Declaration of Helsinki.  

 

2.2.2 Electromyography recording 

Subjects were seated in an armchair with the examined leg semi-flexed at the hip (120) 
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and the knee (120) and plantar-flexed at the ankle (110). The right lower leg was 

secured with a metal double upright ankle-foot orthosis (Fig. 7).  

 

EMG activity was recorded with bipolar surface electrodes (9-mm diameter 

Ag/AgCl surface cup electrodes; 20 mm distance between electrodes) placed on the 

right SOL and TA muscle belly. The electric resistance between the two electrodes was 

less than 5 kΩ. Raw EMG signals were amplified at 1000 times and band-pass filtered 

between 5 and 3000 Hz, using an amplifier (model 7S12; NEC San-ei Co., Ltd., Tokyo, 

Japan). The EMG signals were digitized by an analog/digital (AD) converter with a 

sampling rate of 10 kHz (PowerLab System Scope version 3.7.6; AD Instruments Pty. 

Ltd., Dunedin, New Zealand) and stored on a personal computer (PC) for subsequent 

analyses. The recording period was 200 ms including the pre-stimulus period of 100 ms. 

 

2.2.3 H-reflex 

The Sol H-reflex and M-wave were evoked by stimulating the posterior tibial nerve 

through a monopolar stimulating electrode (1 ms rectangular pulse) using a constant 

current isolator (SS-102J, Nihon Koden Co., Ltd., Tokyo, Japan) coupled with an 

electrical stimulator (SEN7203, Nihon Koden Co., Ltd., Tokyo, Japan). A ball cathode 

electrode was placed at the popliteal fossa, and the anodal electrode was placed on the 

anterior aspect of the thigh just above the patella. The H-reflex and M-wave response 

were measured as the peak-to-peak amplitude of the non-rectified reflex. The stimulus 

intensity was increased gradually from the threshold of the H-reflex to supramaximal 

value of the M-wave response. After M-wave response was saturated, I recorded five 

Mmax. As the sensitivity of the H-reflex to facilitatory or inhibitory conditioning inputs   
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Figure 7. Experimental posture. All measurements were performed in this posture (hip 

flexed 120 degree, knee flexed 120 degree, and ankle plantar-flexed 110 degree). The 

right lower leg was secured with an ankle-foot orthosis. 

  



 

28 

 

was changed by the test H-reflex size, the size of the control SOL H-reflex was adjusted 

to 20–30% of Mmax in all conditions (Crone et al., 1990). 

 

2.2.4 Conditioning stimulation 

The conditioning stimulus was applied to the CPN (condition 1) or M1 (condition 2). 

The experimental schema is shown in Figure 8A. The CPN was stimulated with 

rectangular electric pulse (duration: 1 ms) using a bipolar electrode, which was placed 

distal to the head of the fibula. The stimulation electrode was positioned carefully so as 

to avoid activating the peroneus muscles. The strength of the conditioning stimulus was 

adjusted so that it was slightly higher than the MT of the TA muscle, and the resultant 

M-waves were monitored throughout the experiment using an online monitor to ensure 

that they remained constant. This procedure ensured the consistency of the conditioning 

afferent volley. The motor cortex was stimulated using TMS. The TMS was delivered 

with a double-cone coil connected to a magnetic stimulator (model 200, Magstim, 

Whitland, UK). The coil was placed on the scalp to induce a posterior-anterior current 

flow in the left M1. An optimal stimulus position for evoking MEPs in the right SOL 

muscle was assessed by moving a coil around the leg motor area. The site at which 

stimulation with slightly suprathreshold TMS intensity consistently evoked the largest 

MEP in the right Sol muscle was regarded as the optimal position (approximately 1–2 

cm left from Cz). This position was marked with a pen on a swimming cap worn by the 

subject. Active MT was defined as the minimal stimulus intensity required to induce 

MEPs of at least 200 µV in the SOL muscle in three of five trials (Rothwell et al., 1999). 

While measuring the active MT, special care was given to maintain constant EMG 

activity levels of the SOL muscle (range, 100–150 µV).  
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Figure 8. (A) Experimental schema. The soleus (SOL) H-reflex was conditioned by 

stimulating the common peroneal nerve (CPN) (condition 1) or the motor cortex 

(condition 2). The H-reflex was evoked at 0 ms by stimulating the posterior tibial nerve 

(test). Negative conditioning-test intervals (C-T intervals) indicate that the conditioning 

stimulus was applied after the test stimulus. (B) and (C): Time course of the effects of 

CPN stimulation (B) or motor cortex stimulation (C) on the SOL H-reflex, which were 

recorded from one subject. The ordinate shows the amplitude of the conditioned 

H-reflex expressed as a percentage of the unconditioned H-reflex. The abscissa shows 

the interval between the conditioning stimulus and test stimulus in milliseconds. Each 

point represents the mean and standard deviation of seven H-reflexes at each C-T 

interval. MN, motor neuron; TA, tibialis anterior; TMS, transcranial magnetic 

stimulation  
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2.2.5 Study design 

Experiment 1 

Seventeen healthy subjects participated in experiment 1. Seven subjects were tested 

twice on different days, in order to ensure the reproducibility of the results. All the 

experiments were carried out with the subjects in a resting state. 

 

The amount of reciprocal Ia inhibition was determined via conditioning stimulation 

of the CPN to induce short-latency suppression of the Sol H-reflex. The C-T interval; 

i.e., the interval between the CPN stimulation and the posterior tibial nerve stimulation, 

was varied from 0 to 5 ms in 1 ms steps. Figure 8B shows the time course of the effects 

of CPN stimulation on the amplitude of the Sol H-reflex. In order to estimate the 

amount of Ia inhibition in each subject, I measured the inhibitory effect at the maximal 

depression of the H-reflex around 2 ms. The latency of 2 ms indicates a disynaptic 

linkage (Eccles et al., 1956). The Sol H-reflex was evoked every 3 seconds. The 

conditioned or unconditioned H-reflexes were applied at random. Seven conditioned 

and seven unconditioned Sol H-reflexes were recorded at each C-T interval. 

 

To examine the effect of corticospinal inputs on reciprocal Ia inhibitory circuit, the 

Sol H-reflex was conditioned by subthreshold TMS at different C-T intervals. It is 

possible that TA muscle response is evoked by the high stimulus intensity, since the MT 

of MEP in TA muscle was lower than that in Sol muscle (Bawa et al., 2002). Thus, the 

stimulus intensity was set at 0.95–1.0 × active MT in order to avoid concomitant 

activation by afferent volleys induced by TA muscle contraction. The Sol H-reflex was 

conditioned using various C-T intervals (−4, −3, −2, −1, 0, 1, and 10 ms). Negative 
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C-T intervals indicate that the conditioning stimulus was applied after the test 

stimulation. Figure 8C shows the time course of the effects of motor cortex stimulation 

on the amplitude of the Sol H-reflex. The TMS-conditioning effect on the test H-reflex 

observed around −2 ms is considered to be due to monosynaptic connections from 

corticospinal neurons (short-latency facilitation) (Nielsen et al., 1993b; Nielsen & 

Petersen, 1995a, b). This facilitation is followed by inhibition around 0 ms 

(short-latency inhibition), which is probably mediated by Ia inhibitory interneurons 

(Kudina et al., 1993; Nielsen et al., 1993b). On the other hand, the TMS-conditioning 

effect on the test H-reflex observed around 10 ms is assumed to be the activation of 

different polysynaptic pathways or the slow-conducting pyramidal tract cells 

(long-latency facilitation) (Nielsen & Petersen, 1995b). Thus, in each subject I 

measured the change in the conditioned H-reflex amplitude from short-latency 

facilitation to inhibition in order to estimate the activity of Ia interneurons. The Sol 

H-reflex was evoked every 6 seconds. The conditioned or unconditioned H-reflexes 

were applied at random. Seven conditioned and seven unconditioned Sol H-reflexes 

were recorded at each C-T interval. 

 

Experiment 2 

Eleven subjects took part in experiment 2. In this experiment, recordings were 

performed at rest and during tonic voluntary dorsiflexion at 10% of maximum voluntary 

contraction (MVC). To ensure a constant muscle contraction level, the integrated EMG 

(iEMG) value of the TA muscle (as a percentage of the value observed at MVC) was 

monitored during the 100 ms prior to the stimulation trigger being delivered. Also, 

feedback auditory signals that depended on the degree of EMG activity were delivered 
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to the subjects to ensure that a constant EMG level was maintained. Since the size of the 

H-reflex changed during muscle contraction, I tried to adjust the stimulus intensity to 

obtain similarly sized control H-reflexes in each condition (20–30% Mmax). Seven 

conditioned and seven unconditioned Sol H-reflexes at each C-T interval were 

randomly evoked in the same manner as in experiment 1. 

 

2.2.6 Data analysis 

The distributions of all variables were tested for normality using the Shapiro-Wilk test. 

Test H-reflex size was compared using the paired t-test (experiment 1) or one-way 

repeated-measures analysis of variance (ANOVA) (experiment 2). If significant effects 

were detected, the Bonferroni post-hoc test was used for multiple comparisons. The 

relationship between the amount of reciprocal Ia inhibition and the change in the 

TMS-conditioned H-reflex was analyzed using Pearson’s correlation coefficient. iEMG 

values were compared between the conditions using the paired t-test. Also, the changes 

in reciprocal Ia inhibition and the TMS-conditioned H-reflex during tonic dorsiflexion 

were analyzed using the paired t-test. P values of < 0.05 were considered significant in 

all statistical analyses. The data values are presented as the mean ± standard error of 

mean (SEM) except for some cases in which the mean ± standard deviation or the 

median value (interquartile range) was used. 

 

2.3 Results 

The amplitude of the test H-reflex (% of Mmax) was not statistically different in 

experiment 1 (condition 1: 23.73 ± 0.95%; condition 2: 24.70 ± 0.98%; P = 0.069) and 

experiment 2 (condition 1: rest 23.48 ± 1.26%, 10% MVC 23.12 ± 1.38%; condition 2: 
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rest 24.07 ± 1.16%, 10% MVC 24.41 ± 0.92%; F3,30 = 0.233, P = 0.872). The mean 

TMS stimulus intensity was 45.17 ± 2.96 [% of maximum stimulator output (SO)] in 

experiment 1 and 46.72 ± 3.15 in experiment 2. 

 

In experimental 1, the median value of reciprocal Ia inhibition was 15.07% 

(interquartile range: 3.95–25.90) and the median value of change in the amplitude of the 

TMS-conditioned H-reflex was 16.67% (interquartile range: 10.09–34.08). 

Inter-individual variations certainly existed in the amount of reciprocal Ia inhibition and 

the change in the amplitude of the TMS-conditioned H-reflex. Figure 9 depicts the 

positive relationship observed between the amount of reciprocal Ia inhibition and the 

change in the amplitude of the TMS-conditioned H-reflex from short-latency facilitation 

to inhibition. The scatter plot shows the results for total number of the experimental 

trials (n = 24) in experiment 1 including the data from repeated trials. The correlation 

coefficient for the relationship was 0.769 (P < 0.01). The strength of the reciprocal Ia 

inhibition tended to increase as the change in the amplitude of the TMS-conditioned 

H-reflex became greater. Figure 10 shows the effect of tonic dorsiflexion on the amount 

of reciprocal Ia inhibition and the change in the amplitude of the TMS-conditioned 

H-reflex in eleven subjects in experiment 2. The background EMG level did not differ 

significantly between condition 1 and condition 2 (condition 1: 9.78 ± 0.39%; condition 

2: 10.02 ± 0.49%; P = 0.48). Figure 10A-B represents the mean effects of CPN 

stimulation and motor cortex stimulation, respectively, on the amplitude of the Sol 

H-reflex. The amount of reciprocal Ia inhibition did not differ significantly between the 

resting and tonic dorsiflexion condition (78.99 ± 4.81% vs 70.28 ± 7.23%; P = 0.13) 

(Fig. 10C). In contrast, the amount of change in the amplitude of the TMS-conditioned   
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Figure 9. Correlation between the degree of reciprocal Ia inhibition and the change in 

the amplitude of the TMS-conditioned H-reflex. The total number of experimental trials 

(n) was 24.  
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Figure 10. (A) and (B): Time course of the effects of common peroneal nerve 

stimulation (A) or motor cortex stimulation (B) on the SOL H-reflex in eleven subjects. 

The abscissa shows the C-T interval in milliseconds. The ordinate shows the normalized 

amplitude of the conditioned H-reflex. The open circles and closed circles show data 

obtained at rest and tonic dorsiflexion at 10%MVC conditions, respectively. Each point 

represents the mean and SEM. (C) and (D): The amount of reciprocal Ia inhibition (C) 

and the change in the TMS-conditioned H-reflex (D) at rest and during tonic 

dorsiflexion. The amount of reciprocal Ia inhibition was measured at the interval that 

produced the largest inhibition (either 2 or 3 ms). The change in the TMS conditioned 

H-reflex was measured at the intervals that produced the facilitation (around −2 ms) and 

the inhibition (around 0 ms). Each line represents one subject. Asterisk (*) indicates 

statistically significant differences (*P < 0.05). 
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H-reflex was increased during dorsiflexion, and the difference between the resting and 

the tonic dorsiflexion condition was statistically significant (32.12 ± 7.97% vs 57.27 ± 

11.55%; P < 0.01) (Fig. 10D). The amplitude of the TMS-conditioned H-reflex at 10 ms 

did not differ significantly between the resting and the tonic dorsiflexion condition 

(145.23 ± 10.18% vs 131.74 ± 14.54%; P = 0.15). 

 

2.4 Discussion 

This study showed that the amount of reciprocal Ia inhibition and the change in the 

amplitude of the TMS-conditioned H-reflex were strongly correlated in the resting state. 

In addition, the change in the amplitude of the TMS-conditioned H-reflex tended to 

increase during muscle contraction. These results suggest that Ia inhibitory interneurons 

are influenced by corticospinal descending inputs, which might explain the 

inter-individual variation in the amount of reciprocal Ia inhibition. 

 

A number of studies have reported that Ia inhibitory interneurons receive 

descending inputs from supraspinal centers (Jankowska et al., 1976; Kasai & 

Komiyama, 1988; Kudina et al., 1993; Nielsen et al., 1993b). Nielsen et al., (1993)
 

reported that the short-latency inhibitory effect of conditioning TMS on the H-reflex 

was due to Ia inhibitory interneuron-mediated disynaptic reciprocal Ia inhibition. Also, 

in a previous study, Bawa et al., (2002) showed that TMS-induced corticospinal 

descending volleys are monosynaptically delivered to the motor neurons innervating the 

TA and Sol muscles. Thus, I consider that the conditioning effect of TMS on the Sol 

H-reflex reflects the effects of descending inputs from corticospinal neurons on spinal 

motor neurons or Ia interneurons.  
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In this study, I found that the strength of reciprocal Ia inhibition was well correlated 

with the change in the amplitude of the TMS-conditioned H-reflex. In an earlier study, it 

was shown that the distribution of synaptic strength within neuron populations is 

affected by activity-dependent changes (Charpier et al., 1995). Indeed, Crone et al., 

(1985) reported that the degree of reciprocal Ia inhibition tended to increase with the 

amount of physical activity. These results imply that activity-dependent neuroplasticity 

develops at the spinal level (Wolpaw, 2007). Furthermore, it was suggested that 

reciprocal Ia inhibition can be operantly conditioned and that the excitability of Ia 

interneurons is controlled by corticospinal descending inputs (Chen et al., 2006b). 

Because the present study was conducted in a resting state without muscle contraction, 

and the strength of the stimulus intensity of TMS was relatively same level (i.e., 

0.95–1.0  active MT), it is conceivable that the degree of descending input is affected 

by the synaptic strength of the corticospinal tract that communicate with Ia interneurons. 

Thus, observed results may indicate that the variation in the amount of reciprocal Ia 

inhibition is relevant to the inter-individual differences in the excitability of Ia 

inhibitory interneurons, which is controlled by the corticospinal descending inputs.  

 

In addition to changes in synaptic plasticity, inter-individual differences in the 

amount of reciprocal Ia inhibition might be influenced by the motoneuron firing 

threshold level (Carp & Wolpaw, 1994) and the motoneuron pool background 

excitability (Funase & Miles, 1999) which affect the amplitude of the H-reflex (Zehr, 

2002). Although the amplitude of the test H-reflex was carefully adjusted in the present 

study (i.e., the constant number of motor neurons recruited within individual subjects), 

the effects of the intrinsic property of motor neurons (e.g., changes in receptors) cannot 
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be completely eliminated.  

 

The amount of reciprocal Ia inhibition did not differ significantly between the 

resting and tonic dorsiflexion condition, which is consistent with the findings of 

previous studies (Iles, 1986; Crone et al., 1987). Moreover, in the tonic dorsiflexion 

condition reciprocal Ia inhibition displayed a large degree of variability. These 

variations might have been explained by contamination of the other spinal inhibitory 

inputs or saturation of Ia inhibitory interneurons activity, resulting from muscle 

contraction (Shindo et al., 1995). On the other hand, at a short-latency inhibition phase, 

I observed a greater change in the amplitude of the TMS-conditioned H-reflex during 

dorsiflexion. These results indicate that Ia inhibitory interneurons are influenced by the 

corticospinal descending inputs involved in muscle contraction. Nielsen & Petersen, 

(1994) investigated the relationship between the corticospinal descending inputs and 

peripheral afferent inputs and suggested that the corticospinal tract is free from 

presynaptic control and regulates motor neurons independently of peripheral afferent 

feedback (Nielsen & Petersen, 1994). Taking these results into account, it is considered 

that the TMS-conditioned short and long-latency facilitation on the Sol H-reflex are not 

affected by contaminating inputs derived from muscle contraction and that the activity 

of Ia inhibitory interneurons is modulated by the corticospinal descending inputs. 

 

2.5 Conclusion 

In this study, I confirmed that the strength of reciprocal Ia inhibition is affected by the 

corticospinal descending inputs delivered to Ia inhibitory interneurons, which may 

explain the observed inter-individual variation in reciprocal Ia inhibition. These results 
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indicate that the descending input from corticospinal tracts associated with physical 

activity is an important factor for producing changes in the reciprocal Ia inhibitory 

circuit.  
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CHAPTER 3 

THE MECHANISMS OF CHANGES IN THE IA PRESYNAPTIC INHIBITION 

FOLLOWING SKILLED MOTOR TASK 

 

3.1 Introduction 

Neuroplastic changes in the cortical areas induced by motor skill training have been 

investigated, and results suggest they are related to the acquisition of motor skills (Karni 

et al., 1995; Pascual-Leone et al., 1995; Muellbacher et al., 2001; Muellbacher et al., 

2002; Perez et al., 2004). The activity-dependent neuroplasticity develops not only at 

the cortical level but also at the spinal level (Wolpaw, 2007). In support of this concept, 

previous studies showed that motor skill training could induce the reorganization of the 

spinal cord, which might also account for the improvement of motor performance 

(Perez et al., 2005a; Mazzocchio et al., 2006; Meunier et al., 2007; Roche et al., 2011a). 

In these studies, supraspinal descending inputs to the spinal cord associated with the 

control of limb movements are regarded as an important factor in developing spinal 

cord neuroplasticity because the changes in spinal neural circuits are only observed 

following motor skill training.  

 

 Spinal reflex responses might interfere with an active voluntary movement due to 

the unpredictable activation of agonist muscles, and thus spinal reflexes need to be 

controlled in order to achieve smooth coordinated movement. Several studies have 

reported that the spinal reflex responses are modulated by motor learning and physical 

training (Nielsen et al., 1993a; Nadler et al., 2000; Meunier et al., 2007). The 

modifications have been shown to be accompanied by changes in presynaptic inhibition 
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(Perez et al., 2005a; Roche et al., 2011a). It has been suggested that descending inputs 

delivered via the corticospinal tract communicate with interneurons constituting Ia 

presynaptic inhibitory circuit (Jankowska, 1992). Therefore, the corticospinal 

descending inputs may play an important role in driving the changes in Ia presynaptic 

inhibition following the skilled motor task. Although some studies showed that the 

changes in Ia presynaptic inhibition are induced by motor skill training, how the 

corticospinal descending inputs influences the activity of Ia presynaptic inhibitory 

circuit is not well understood. To clarify the mechanisms involved in the modification of 

Ia presynaptic inhibitory circuit following skilled motor task, the effects of corticospinal 

descending inputs on the Ia presynaptic inhibitory pathway were examined using TMS 

conditioning techniques (Meunier & Pierrot-Deseilligny, 1998).  

 

3.2 Methods 

3.2.1 Subjects 

Sixteen healthy subjects (age, 23.1 ± 2.0 years; mean ± SD) participated in this study 

after providing written informed consent. Baseline characteristics of participants are 

shown in Table 1. All experimental procedures were carried out in accordance with the 

Declaration of Helsinki and were approved by the Human Ethics Committee of the 

Graduate School of Integrated Arts and Sciences of Hiroshima University.  

 

3.2.2 Electromyography recording 

Experimental posutre and EMG recording set up were the almost same as that used in 

chapter 2. It is summarized here, with several minor modifications noted. 
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Table 1. Baseline characteristics of subjects (mean ± SD) 

 

 

 

 

 

 

 

 

 

Mmax, maximum amplitude of M-wave; Hmax, maximum amplitude of H-reflex; 

MT, motor threshold; nVM, non-visuomotor; SO, stimulator output; SOL, soleus; 

VM, visuomotor. 

  

 VM group nVM group 

Age 22.37±1.59 23.75 ± 2.25 

Sex (Male/Female) 6/2 6/2 

SOL Mmax (mV) 16.42 ± 5.53 14.71 ± 4.23 

Hmax/Mmax 0.48 ± 0.13 0.48 ± 0.17 

active MT (% of SO) 46.5 ± 10.11 48.25 ± 6.18 

Stimulus intensity (% of SO) 38.37 ± 7.11 40.87 ± 4.67 
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In chapter 3, all experimental measurements were taken while in a resting condition. 

EMG activity was recorded with bipolar surface electrodes placed on the right SOL and 

TA muscle belly and the recording period was set to 200 ms including the pre-stimulus 

period of 50 ms. SOL H-reflex and M-wave were evoked by stimulating the posterior 

tibial nerve through a monopolar stimulating electrode. An anode was placed above the 

patella, and a ball cathode was placed at the popliteal fossa. At the beginning of the 

experiment, the Hmax and Mmax were recorded in all participants. Ten conditioned and 

ten unconditioned H-reflexes were recorded at each C-T interval, and the conditioned 

H-reflex amplitude was expressed as a percentage of the unconditioned H-reflex 

amplitude. 

 

3.2.3 Presynaptic inhibition  

The amount of Ia presynaptic inhibition was determined from long latency (C-T 

intervals of 6–30 ms) suppression of the SOL H-reflexes, by conditioning stimuli to the 

CPN that innervates the TA muscle. The CPN was stimulated through a bipolar 

stimulation electrode (1 ms rectangular pulse) placed distal to the head of the fibula. 

The electrode was carefully positioned to avoid activating the peroneus muscles, and TA 

M-waves were monitored to ensure constancy of stimulation throughout the experiment. 

The intensities of the conditioning stimulus was set to just above the MT intensity of the 

TA muscle (1.1 × MT). The CPN was stimulated with a train of three single pulses at 

333Hz. The time interval between CPN stimulation (first shock of a train of three 

shocks) and test stimulation was kept constant at 21 ms. Conditioned and unconditioned 

H-reflexes were randomly evoked at 0.33 Hz. 
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3.2.4 Transcranial magnetic stimulation 

A previous study has shown that motor cortical stimulation significantly decreases the 

D1 inhibition of SOL Ia afferents when applied 5–10 ms before the CPN stimulation 

(Meunier & Pierrot-Deseilligny, 1998). In these interstimulus intervals, cortical 

conditioning volleys reach the S1 spinal level before the arrival of CPN conditioning 

volleys. Therefore, it is assumed that corticospinal descending inputs produce the 

depressive effect on the interneurons constituting Ia presynaptic inhibitory pathways in 

the lumber spinal cord (Rudomin et al., 1983). Moreover, it has been demonstrated that 

a conditioning TMS produces short and long latency facilitation of the H-reflex, due to 

monosynaptic and polysynaptic connections from corticospinal neurons (Nielsen & 

Petersen, 1995b). Therefore, it is conceivable that these facilitation indirectly reflect the 

excitability of the corticospinal tract. In this study, I investigated the effects of 

corticospinal descending inputs on the Ia presynaptic inhibitory pathway using TMS 

conditioning techniques. 

 

Magnetic stimulation was delivered to the M1 through a double-cone coil 

connected to a magnetic stimulator (model 200; Magstim, Whitland, UK). The coil was 

placed on the scalp to induce a posterior-anterior current flow in the left M1. The coil 

was attached to the subject’s head and fixed at the optimal position for inducing 

responses in the right Sol muscle with weak contraction. The site at which stimulation 

with slightly suprathreshold TMS intensity consistently evoked the largest MEP in the 

right Sol muscle was regarded as the optimal position. This position was marked with a 

pen on a swimming cap worn by the subject. The active MT was defined as the lowest 

stimulus intensity that produced MEPs of at least 200 µV in the Sol in three out of five 
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trials (Rothwell et al., 1999). The intensity of conditioning TMS was set to 80–90% of 

the active MT, so that they had minor facilitation effects on the test H-reflex in a resting 

condition. To examine the effect of corticospinal descending inputs on the Ia 

presynaptic inhibitory pathway, I compared the amount of D1 inhibition in the presence 

and absence of TMS. The time interval between TMS and CPN stimulation was set at 5 

ms. Moreover, to study the effects of TMS conditioning on the test H-reflex, the 

amplitude of TMS conditioned H-reflex was evaluated at C-T intervals of 26 ms (21 ms 

plus 5 ms is 26 ms). For measurement of the excitability of the corticospinal tracts, the 

intervals between the conditioning stimulation and H-reflex stimulation were set at −3, 

−2, and −1 ms. The interval that produced the first facilitation effects on the H-reflex 

(short latency facilitation) was regarded as a suitable C-T interval and was used 

throughout the experiment. Negative C-T intervals indicated that the conditioned 

stimulus was applied after the test stimulation. Conditioned and unconditioned 

H-reflexes were randomly evoked at 0.2 Hz.  

 

3.2.5 Visuomotor task 

A custom made program (Labview 2012; National Instruments Co., Tokyo, Japan) was 

used to set up a visuomotor task. The subjects were allowed free movement of the ankle 

joint when performing the motor task. For a visuomotor task, subjects repeatedly moved 

their ankle between target lines according to auditory beep sounds delivered at a 

frequency of 2.67 Hz (Fig. 11A). In this task, subjects required precise control of joint 

movement. The movement speed was defined as the time of one cycle of ankle 

movement (it was set to 750 ms). The target lines representing the point of 10° angle of 

ankle dorsiflexion and of 10° angle of plantarflexion from the neutral position were   
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Figure 11. Schematic of the motor task. (A) Experimental set-up. (B) Example of raw 

electromyography (EMG) activity of tibialis anterior (TA) muscle and soleus (SOL) 

muscles during isometric maximum voluntary contraction (MVC) and each motor task. 

(C) Training procedure. 
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displayed on a monitor (26-inch size), which was set at approximately 1 m in front of 

the subjects. The subjects were instructed to execute the ankle movement as precisely as 

possible between the target lines. Ankle angular displacements were measured with a 

goniometer (SG 100; Biometrics Ltd., Newport, UK) that was mounted on the lateral 

side of the leg (located at the fifth metatarsal and the fibula) and the goniometer signals 

were amplified by an amplifier (model 6L01; NEC San-ei Co. Ltd). The signals were 

recorded on a PC at a sample rate of 100 Hz via an A/D converter (USB6212; National 

Instruments Co.), and also displayed as a cursor with line trajectory on the display 

monitor, to control ankle movement. The cursor automatically moved from the left to 

the right at 15 s (1 trial). Also, during ankle plantarflexion, the cursor moved to the top 

of the screen, whereas during dorsiflexion, the cursor moved to the bottom of the screen. 

A single trial example of raw EMG activity of the TA and SOL muscle during isometric 

MVC and motor task is shown in Figure 11B. MVC was performed before the motor 

task and measured by pushing against a foot plate or pulling against a non-elastic band 

which was secured around the foot plate. The subjects performed the motor task for 20 

min. The task session consisted of six blocks with five trials (Fig. 11C). In order to 

minimize muscle fatigue, 15 s resting periods occurred between trials, and each block 

was separated by 1 min. All subjects were familiarized with the motor task before 

starting the task session. Motor performance was quantified by subtracting the target 

degree from the actual degree (10° angle of dorsi- and planter-flexion) at each inflection 

point (Fig. 11A). The difference was defined as an error and averaged for 16 cycles at 

each trial (task performance time 12 s). The error data were averaged for each block 

(mean error) and normalized by the value of the first block in order to confirm the rate 

of change.  
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3.2.6 Experimental procedures 

Sixteen subjects were randomly allocated to two different groups. Eight subjects 

performed the visuomotor task (visuomotor group), and the remaining eight subjects 

performed the control task (non-visuomotor group). The non-visuomotor group subjects 

performed a control task for 20 min. For the control task, the subjects repeatedly moved 

their ankle according to auditory beep sounds delivered at a frequency of 2.67 Hz 

without visual feedback of ankle movement. In this task, the subjects were not required 

precise control of joint movement. Other task procedures used the same visuomotor task. 

The amount of D1 inhibition, the amount of TMS conditioned D1 inhibition, the 

amplitude of TMS conditioned test H-reflex, the amplitude of TMS conditioned 

H-reflex amplitude at short facilitation phase were measured before and after the task 

sessions. I also tested the ratio of Hmax vs. Mmax (Hmax/Mmax), which was used as 

an indicator of motor neuron pool excitability, before and after the task sessions. Hmax 

and Mmax were evoked every 3 s and calculated from the average of five Hmax and 

five Mmax values. 

 

3.2.7 Statistical analysis 

The baseline characteristics of groups (age, SOL Mmax, Hmax/Mmax, active MT, and 

stimulation intensity of conditioning TMS) were analyzed using the unpaired t-test. The 

performance data compared among the task sessions used the one-way repeated 

measure of ANOVA for each group. Test H-reflex size was compared using two-way 

repeated measures of ANOVA with the factors “time” and “group.” The amount of D1 

inhibition, the amount of TMS conditioned D1 inhibition, the difference in the amount 

of D1 inhibition in the presence and absence of TMS, the amplitude of TMS 
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conditioned test H-reflex, and the amplitude of TMS conditioned H-reflex at short 

latency facilitation phase were analyzed by two-way repeated measures of ANOVA with 

factors “time” and “group.” For multiple comparisons, if significant effects were 

detected, the Bonferroni post hoc test was used. Mauchley's test was used to examine 

for sphericity. The Greenhouse-Geisser correction was used for non-spherical data. The 

amount of D1 inhibition was compared with the amount of TMS conditioned D1 

inhibition within the group, using the paired t-test. The amplitude of TMS conditioned 

H-reflex at short latency facilitation phase was also compared with the unconditioned 

H-reflex, using the one-sample paired t-test. Moreover, the differences in the 

Hmax/Mmax and SOL Mmax were compared between before and after the task within 

the group, using the paired t-test. P values of < 0.05 were considered significant in all 

statistical analyses. Data were analyzed using SPSS version 22 software (IBM SPSS, 

IBM Japan, Ltd., Tokyo, Japan). The data values are presented as the means ± SEM.  

 

3.3 Results 

Baseline characteristics of subjects among groups were well-matched in the Experiment 

groups (Table 1), and there were no significant differences between all baseline 

measures (age: t14= 1.41, P = 0.18; SOL Mmax: t14 = 0.69, P = 0.50; Hmax/Mmax, t14 = 

0.06, P = 0.94; active MT: t14 = 0.41, P = 0.68; stimulation intensity: t14 = 0.83, P = 

0.42).  

 

3.3.1 Changes in the task performance  

The mean times of one cycle of ankle movement are almost matched the pre-setting 

times, indicating that the task movement speeds were well controlled throughout the 
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experiment (visuomotor group = 712.49 ± 19.73, non-visuomotor group = 708.83 ± 

23.95). Figure 12 shows an example of ankle joint movement during each motor task 

and the time course of the mean errors in the motor task. A one-way repeated measures 

of ANOVA revealed a significant effect of blocks for visuomotor group (F5,35 = 27.8, P 

< 0.01). In post hoc tests, a significant reduction in the mean errors was observed 

between the first block and the following blocks (P < 0.01). These results indicate that 

the task performance was certainly improved in the visuomotor task. There were no 

significant differences in the mean errors across the blocks in the non-visuomotor group 

(F5,30 = 2.31, P = 0.07). 

 

3.3.2 Effect of corticospinal descending inputs on the Ia presynaptic inhibitory 

pathway 

The mean amplitudes of the test H-reflex (% of Mmax) for all conditions are 

summarized in Table 2. The values show the average of test H-reflex amplitudes 

calculated from the mean amplitude of test H-reflex in all subjects. The test H-reflex 

amplitude was almost the same size throughout the experimental procedures. There 

were no significant effects of “time” (D1 inhibition: F1,14 = 0.39, P = 0.54; TMS 

conditioned D1 inhibition: F1,14 = 4.07, P = 0.06; TMS conditioned H-reflex at short 

latency facilitation phase: F1,14 = 3.85, P = 0.07) and “group” (D1 inhibition: F1,14 = 

0.54, P = 0.47; TMS conditioned D1 inhibition: F1,14 = 1.45, P = 0.25; TMS conditioned 

H-reflex at short latency facilitation phase: F1,14 = 2.03, P = 0.18) on the test H-reflex 

amplitude. There was also no significant “time” × “group” interaction (D1 inhibition: 

F1,14 = 0.19, P = 0.67; TMS conditioned D1 inhibition: F1,14 = 0.31, P = 0.59; TMS 

conditioned H-reflex at short latency facilitation phase: F1,14 = 0.55, P = 0.47).   
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Figure 12. The changes in the motor performance in visuomotor and non-visuomotor 

groups. 

(A) Typical ankle joint movement during each motor task recorded from two 

representative subjects who performed a visuomotor or a control task. Each line 

trajectory represents the subject's performance in a first and sixth block. (B) The time 

course of the changes in the motor performance in the visuomotor and non-visuomotor 

groups. The ordinate shows mean error values normalized by the value of the first block. 

The abscissa shows each block. The double asterisks (**) represents a significant 

difference (
**

P < 0.01) between the first and other blocks in the visuomotor group. Error 

bar indicates SE. deg, degree; VM, visuomotor; nVM, non-visuomotor. 
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Table 2. Summary of test H-reflex amplitude (% of Mmax: mean ± SEM) 

VM, visuomotor; nVM; non-visuomotor; Mmax, maximum amplitude of M-wave; Pre, before the task 

sessions; Post, after the task sessions; TMS, transcranial magnetic stimulation. 

 

  

 D1 inhibition TMS conditioned D1 

inhibition 

TMS conditioned H-reflex  

(short latency facilitation) 

 Pre Post Pre Post Pre Post 

VM group 25.11 ± 0.94 24.98 ± 0.99 25.53 ± 1.38 24.72 ± 1.01 25.54 ± 0.81 24.12 ± 0.71 

nVM group  26.39 ± 1.16 25.68 ± 1.15 27.41 ± 0.48 25.99 ± 0.94 26.42 ± 0.54 25.77 ± 0.81 
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Figure 13 shows the typical averaged waveforms (n = 10) of the control and 

conditioned H-reflexes induced by CPN stimulation and TMS stimulation, recorded 

from one representative subject in each group. Figure 14 A–C show the amount of D1 

inhibition, the amount of TMS conditioned D1 inhibition, and TMS conditioned test 

H-reflex amplitude before and after the visuomotor task or control task, respectively. 

Because the conditioning stimulation of TMS produced minor facilitation effects on the 

test H-reflex amplitude (Fig. 14C), the net difference in the amount of D1 inhibition was 

calculated by subtracting this facilitation effect from the changing amount of D1 

inhibition in the presence and absence of TMS [(graph B − graph A) − (100 − graph 

C)], which is shown in Fig. 14D. A two-way repeated measures of ANOVA for D1 

inhibition showed a significant effect of the “time” (F1,14 = 71.43, P < 0.01), but not of 

“group” (F1,14 = 0.03, P = 0.84). There was significant “time” × “group” interaction 

(F1,14 = 34.44, P < 0.01). Post hoc analysis indicated that compared to pre, in the 

visomotor group, the amount of D1 inhibition was significantly increased at post (P < 

0.01). A two-way repeated measures of ANOVA for TMS conditioned D1 inhibition 

showed a significant effect of the “time” (F1,14 = 31.19, P < 0.01), but not of “group” 

(F1,14 = 0.02, P = 0.89). There was significant “time” × “group” interaction (F1,14 = 

31.39, P < 0.01). Post hoc analysis indicated that compared to pre, in the visuomotor 

group, the amount of TMS conditioned D1 inhibition was significantly increased at post 

(P < 0.01). In the visuomotor group, the amount of TMS conditioned D1 inhibition was 

significantly greater than the amount of D1 inhibition at pre (t7 = 4.17 P < 0.01), but not 

at post (t7 = 0.55, P = 0.59). In the non-visuomotor group, the amount of TMS 

conditioned D1 inhibition was significantly greater than the amount of D1 inhibition at 

the same period of time (pre: t7 = 3.56, P < 0.01; post: t7 = 9.16, P < 0.01). However,   
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Figure 13. Typical averaged waveforms of H-reflex (n = 10) in each stimulus condition 

were recorded from two representative subjects who performed a visuomotor task (A) or 

a control task (B). 
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Figure 14. The effect of visuomotor task and control task on the transcranial magnetic 

stimulation (TMS) conditioned inhibitory effects on the Ia presynaptic inhibitory 

pathway. The graphs show the mean values of the D1 inhibition (A), TMS conditioned 

D1 inhibition (B), TMS conditioned test H-reflex amplitude (C), and the net difference 

in the amount of D1 inhibition (D) in the visuomotor and non-visuomotor group. In 

(A–C), the ordinate shows the conditioned H-reflex amplitude expressed as a percentage 

of the test H-reflex amplitude. The dashed line indicates the test H-reflex amplitude 

(100%). Values below 100% indicate inhibition and values above 100% indicate 

facilitation. In (D), the ordinate shows the degree of changes in the D1 inhibition which 

is calculated by subtracting the minor facilitation effect of TMS conditioned test 

H-reflex amplitude (conditioned H-reflex − test H-reflex) from the changing amount of 

D1 inhibition in the presence and absence of TMS (difference between graph A and B), 
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expressed as a percentage of the test H-reflex amplitude. Open and closed bars represent 

the time at which measurements were taken before (pre) and after (post) the motor task, 

respectively. The double asterisks (**) represent significant difference (**P < 0.01). 

Error bar indicates SEM. 
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there were no significant effects of “time” (F1,14 = 0.52, P = 0.48) and “group” (F1,14 = 

0.19, P = 0.66) on the TMS conditioned test H-reflex amplitude, and there was no 

significant “time” × “group” interaction (F1,14 < 0.01, P = 0.96). Moreover, a two-way 

repeated measures of ANOVA for the net difference in the amount of D1 inhibition 

showed a significant effect of “time” (F1,14 = 7.31, P = 0.02) but not of “group” (F1,14 = 

0.22, P = 0.64). There was significant “time” × “group” interaction (F1,14 = 10.35, P < 

0.01). Post hoc analysis indicated that compared to pre, in the visuomotor task group, 

the net difference in the amount of D1 inhibition was significantly decreased at post (P 

< 0.01). The inhibitory effect of D1 inhibition induced by TMS is decreased following 

the visuomotor task.  

 

Figure 15A shows the typical averaged waveforms (n = 10) of the control and 

conditioned H-reflexes induced by TMS stimulation with the C-T intervals at short 

latency facilitation phase, recorded from one representative subject in each motor task. 

The mean amplitudes of TMS conditioned H-reflex at short latency facilitation phase 

before and after the motor tasks are shown in Figure 15B. The amplitude of the TMS 

conditioned H-reflex was significantly larger than that of the unconditioned H-reflex in 

all conditions (pre: t7 = 22.21, P < 0.01 in the visuomotor group, t7 = 23.11, P < 0.01 in 

the non-visuomotor group; post: t7 = 17.77, P < 0.01 in the visuomotor group, t7 = 14.18, 

P < 0.01 in the non-visuomotor group). There were no significant effects of “time” (F1,14 

= 1.47, P = 0.25) and “group” (F1,14 = 0.59, P = 0.46) on the TMS conditioned H-reflex 

amplitude, and there was also no significant “time” × “group” interaction (F1,14 = 0.03, 

P = 0.87). The short latency facilitation effects on the H-reflex amplitude did not show 

any significant difference between pre and post in both groups.   
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Figure 15. The effect of visuomotor task and control task on the transcranial magnetic 

stimulation (TMS) conditioned H-reflex at short latency facilitation phase. (A) Typical 

averaged waveforms of H-reflex (n = 10) in each stimulus condition were recorded from 

two representative subjects who performed a visuomotor task (left) or a control task 

(right). The arrows indicate the artifact of TMS stimulation. The conditioning 

stimulation of TMS was applied after the test H-reflex stimulation. (B) The graphs show 

the mean values of the TMS conditioned H-reflex amplitude at short latency facilitation 

phase in the visuomotor and non-visuomotor group. The ordinate shows the conditioned 

H-reflex amplitude expressed as a percentage of the test H-reflex amplitude. Values 

below 100% indicate inhibition and values above 100% indicate facilitation. Open and 

closed bars represent the time at which measurements were taken before (pre) and after 

(post) the motor task, respectively. The daggers (†) represent significant differences (
†
P 
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< 0.05) between conditioned H-reflex and baseline test H-reflex, which is shown by the 

dashed line. Error bar indicates SEM.  
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Following the motor tasks, the mean SOL Mmax was 16.68 ± 1.99 mV in the 

visuomotor group and 14.44 ± 1.38 mV in the non-visuomotor motor task group, and 

the mean Hmax/Mmax was 0.45 ± 0.04 in the visuomotor group and 0.49 ± 0.06 in the 

non-visuomotor group. There were no significant changes in the SOL Mmax (t7 = 0.99, 

P = 0.35 in the visuomotor group; t7 = 0.96, P = 0.37 in the non-visual group), and  

Hmax/Mmax (t7 = 2.10, P = 0.07 in the visuomotor group; t7 = 0.29, P = 0.78 in the 

non-visuaomotor group). 

 

3.4 Discussion 

The main findings of this study are that TMS conditioned inhibitory effects on the Ia 

presynaptic inhibitory pathway are changed following visuomotor tasks. These results 

may indicate that the changes in Ia presynaptic inhibition are attributed to the activity 

changes in the inhibitory interneurons that produce inhibitory effects on the Ia 

presynaptic inhibitory pathway. 

 

3.4.1 Methodological consideration associated with TMS conditioning techniques 

In this study, the effects of corticospinal descending inputs on the Ia presynaptic 

inhibitory pathway were investigated using TMS conditioning techniques. It has been 

demonstrated that conditioning TMS produces long latency facilitation (observed 

around 10–20 ms C-T intervals) of the H-reflex (Nielsen et al., 1993b). Because the 

sensitivity of the H-reflex to the conditioning inputs depends on its size (Crone et al., 

1990), the difference in the test H-reflex size is likely to affect the changes in D1 

inhibition. Thus, to avoid this test size effect, I adjusted TMS stimulus intensity to 

evoke minor facilitation on the test H-reflex when TMS was given alone. Moreover, I 
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observed that TMS conditioned H-reflex amplitude was not changed before and after 

the motor task, suggesting that test size effects could be negligible. By contrast, it is 

possible that the decrement of stimulation intensity might be inadequate to produce 

corticospinal descending volleys to the spinal cord. However, the short latency 

facilitation effects on the H-reflex amplitude in the adjusted stimulation intensity were 

observed in this study (Fig. 15). Therefore, it is reasonable to infer that corticospinal 

descending inputs induced by TMS would reach the spinal cord. Taking these results 

into account, it is considered that our procedures for measuring the effect of 

corticospinal descending inputs on the Ia presynaptic inhibitory pathway were 

appropriate.  

 

3.4.2 Consideration of the muscle fatigue effects  

Because muscle fatigue enhances central excitability at the supraspinal levels and 

changes Ia presynaptic inhibition (Duchateau & Hainaut, 1993), it is conceivable that 

observed results might be attributed to muscle fatigue. In human studies, muscle 

responses evoked by supramaximal peripheral nerve stimulation have been used as the 

index of muscle fatigue following exercise or electrical stimulation (Cupido et al., 1996; 

Lentz & Nielsen, 2002). In this study, any significant changes in the SOL Mmax were 

not found before and after the motor task in any task conditions. The lack of changes in 

the Mmax suggests that muscle fatigue did not take place after the motor tasks. 

Moreover, the changes in Ia presynaptic inhibition were only observed after visuomotor 

task, although demanding muscle activity levels were almost the same for the control 

task (Fig. 11B). Therefore, it is argued that the observed modulations of Ia presynaptic 

inhibition are not caused by muscle fatigue.  
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3.4.3 Effects of corticospinal descending inputs on Ia presynaptic inhibition  

In the present study, it is observed that Ia presynaptic inhibition was increased following 

a visuomotor task, but was unchanged by a control task. To determine the influence of 

descending inputs on the changes in Ia presynaptic inhibition following a visuomotor 

task, the TMS conditioning effect of Ia presynaptic inhibition were examined. The 

results showed that the inhibitory effect of Ia presynaptic inhibition induced by TMS 

was decreased following the visuomotor task, but not following the control task. This 

disinhibition was not caused by the excitability changes in the corticospinal tract or 

motoneuron pool; the short latency facilitation effect of TMS stimulation on the SOL 

H-reflex (Fig. 15) and Hmax/Mmax were not changed by the visuomotor task or the 

control task. These results suggest that the changes in Ia presynaptic inhibition observed 

in the present study are attributed to the activity changes in the interneurons that 

produce inhibitory effects on the Ia presynaptic inhibitory pathway.  

 

 Figure 16 shows an illustration of a circuits diagram that represents the possible site 

of changes induced by a visuomotor task. It has been shown that the corticospinal tract 

can inhibit the PAD of group Ia afferents by acting on the first order interneurons in the 

Ia presynaptic inhibitory pathways. This inhibition is accomplished by inhibitory 

interneurons which receive excitatory inputs from the corticospinal tracts. The 

reticulospinal tract, on the other hand, would inhibit the PAD of group Ia afferents by 

acting on the last order interneurons (Rudomin et al., 1983). In skilled motor task, the 

corticospinal excitability is increased to control joint movements (Fromm & Evarts, 

1977; Perez et al., 2004), which might be essential both for producing neuroplastic 

changes in the spinal cord and for maintaining its changes (Wolpaw, 2007). Thus, the   
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Figure 16. Illustration of a circuit diagram that shows the proposed site of changes 

induced by a visuomotor task. Interneurons, which produce inhibitory effects on the first 

order interneurons constituting Ia presynaptic inhibitory pathways, receive excitatory 

inputs from the corticospinal tract, rubrospinal tract, and the cutaneous afferents. 

Interneurons, which produce inhibitory effects on the last order interneurons 

constituting Ia presynaptic pathways, receive excitatory inputs from the reticulospinal 

tract. White circle indicates excitatory interneuron, gray circle indicates presynaptic 

inhibitory interneuron, and black circles indicate inhibitory interneurons. Open triangles 

indicate excitatory synaptic terminals. The red dashed circle indicates the proposed site 

of changes induced by a visuomotor task. IN, interneuron; MN, motor neuron; PI, 

presynaptic inhibition. 
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activity of Ia presynaptic inhibition is presumed to be inhibited during skilled motor 

task. In fact, however, Ia presynaptic inhibition is increased following a visuomotor task. 

Although the detailed mechanisms related to the changes in Ia presynaptic inhibition 

remain unknown, the increased Ia presynaptic inhibition could conceivably be explained 

by the reduction of inhibitory effects of interneurons activated by the corticospinal tract. 

However, those interneurons receive inputs from a number of other sources, such as 

rubrospinal fibers and cutaneous fibers (Rudomin et al., 1983), and might show 

neuroplastic changes independent of corticospinal inputs.  

 

3.5 Conclusion 

The results of this study suggest that the reduction of corticospinal descending 

inhibitory effects on the Ia presynaptic inhibitory pathway are responsible for the 

changes in Ia presynaptic inhibition following skilled motor task.  
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CHAPTER 4 

CHANGES IN THE SPINAL NEURAL CIRCUITS ARE DEPENDENT ON THE 

MOVEMENT SPEED OF THE VISUOMOTOR TASK 

 

4.1 Introduction 

Motor skill training has been shown to promote the reorganization of the spinal cord, 

which is driven by supraspinal descending and peripheral ascending inputs associated 

with motor tasks. In humans, spinal cord neuroplasticity has been inferred from 

modifications in the size of the H-reflex that is the electrical analog of the monosynaptic 

stretch reflex (Thompson & Wolpaw, 2014), and Ia presynaptic inhibition has been 

suggested to be related to changes in the H-reflex following motor skill training (Perez 

et al., 2005a; Roche et al., 2011a). Although several studies showed that Ia presynaptic 

inhibition is modulated by motor skill training, the effects of task movement speed on 

the changes in Ia presynaptic inhibition have not been clarified. Based on the fact that 

muscle spindle is sensitive to the velocity of muscle stretch (Poppele & Bowman, 1970; 

Cronin et al., 2009), it is conceivable that Ia presynaptic inhibition of primary sensory 

fibers of the muscle spindle (group Ia afferent) is differently modulated, dependent on 

the task movement speed. Moreover, with increments of task movement speed, 

agonist/antagonist muscles have to switch their activity as quickly as possible to execute 

an alternating joint movement. Hence, in this situation it may be necessary to facilitate 

the spinal reciprocal Ia inhibitory circuit, because this circuit coordinates the contraction 

and relaxation of opposing sets of muscles (Geertsen et al., 2011). Therefore, it appears 

reasonable to assume that the changes in these spinal neural circuits are dependent on 

the task movement speed, and it is hypothesized that Ia presynaptic inhibition and 
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reciprocal Ia inhibition will be increased following motor skill training performed at a 

fast movement speed. 

 

The aim of this research is to investigate whether changes in spinal neural circuits 

are affected by task movement speed. To address this question, the amount of Ia 

presynaptic inhibition and reciprocal Ia inhibition were examined before and after the 

visuomotor task that was set to either slow or fast movement speed.  

 

4.2 Methods 

4.2.1 Subjects 

Twenty-seven healthy subjects (age, 23.1 ± 3.1 years; mean ± SD) participated in this 

study after providing written informed consent. Baseline characteristics of participants 

are shown in Table 3. All experimental procedures were carried out in accordance with 

the Declaration of Helsinki and were approved by the Human Ethics Committee of the 

Graduate School of Integrated Arts and Sciences of Hiroshima University. 

 

4.2.2 Electromyography recording 

Experimental posutre and EMG recording set up were the same as that used in chapter 

3.  

 

4.2.3 Ia presynaptic inhibition and reciprocal Ia inhibition 

The method for measuring Ia presynaptic inhibition and reciprocal Ia inhibition were the 

almost same as in chapter 2 & 3. It is summarized here, with several minor 

modifications noted. The amount of reciprocal Ia inhibition was determined from a   
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Table 3. Baseline characteristics of subjects (mean ± SD) 

 

 

 

 

 

 

 

Mmax, maximum amplitude of M-wave; Hmax, maximum amplitude of H-reflex; SOL, soleus 

  

 Slow speed  

group 

Fast speed  

group 

Control  

group 

Age  23.77 ± 2.86 23.0 ± 4.24 22.55 ± 2.45 

Sex (Male/Female) 6/3 6/3 7/2 

SOL Mmax (mV)  13.54 ± 3.31 14.75 ± 6.42 14.05 ± 4.32 

Hmax/Mmax 0.53 ± 0.18 0.60 ± 0.19 0.59 ± 0.17 
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short latency suppression of the SOL H-reflex by a conditioning stimulus to the CPN. 

The intensity of the conditioning stimulus was set to just above the MT intensity of the 

TA muscle (1.1 × MT). The CPN stimulus preceded the test stimulus at C-T intervals of 

2 or 3 ms and the interval that produced the largest inhibition (either 2 or 3 ms) was 

used throughout the experiment. Conditioned and unconditioned H-reflexes were 

randomly evoked at 0.33 Hz. 

 

4.2.4 Visuomotor task 

The task program and the set up were the same as that used in chapter 3. Some 

modification points describe here. For a visuomotor task, subjects repeatedly moved 

their ankle between target lines according to auditory beep sounds delivered at a 

frequency of 1 Hz or 2.67 Hz (Fig. 17A). The target lines representing the point of 10° 

angle of ankle dorsiflexion and of 10° angle of plantarflexion from the neutral position 

were displayed on a monitor. The subjects were instructed to execute the ankle 

movement as precisely as possible between the target lines. Ankle angular 

displacements were measured with a goniometer that was mounted on the lateral side of 

the leg, and displayed as a cursor with line trajectory on the display monitor, to control 

ankle movement. The cursor automatically moved from the left to the right at 15 s. For a 

control task, subjects repeatedly moved their ankle according to auditory beep sounds 

delivered at a frequency of 2.67 Hz (fast movement speed) without visual feedback of 

ankle movement. Other task procedures used the same visuomotor task. The movement 

speed was defined as the time of one cycle of ankle movement; slow movement speed 

was set to 2000 ms, and fast movement speed was set to 750 ms. A single trial example 

of raw EMG activity of the TA and SOL muscle and ankle movement during each motor  
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Figure 17. (A) Schematic of the visuomotor task at each rhythm 1 Hz and 2.67 Hz. (B) 

Example of raw electromyography (EMG) activity of tibialis anterior (TA) muscle and 

soleus (SOL) muscles during each motor task. (C) Example of the angle joint movement 

during each motor task, which corresponded to electromyography (EMG) activity of TA 

and SOL muscles. (D) Training procedure. 
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task is shown in Figure 17B–C. The subjects performed the motor task for 20 min. The 

task session consisted of six blocks with five trials (Fig. 17D). In order to minimize 

muscle fatigue, 15 s resting periods occurred between trials, and each block was 

separated by 1 min. All subjects were familiarized with the motor task before starting 

the task session. Motor performance was quantified by subtracting the target degree 

from the actual degree (10° angle of dorsi- and planter-flexion) at each inflection point 

(Fig. 17A). The difference was defined as an error and averaged for each trial. As the 

number of inflection points was different between the slow movement speed condition 

and fast movement speed condition, the average value was determined from six cycles 

in the slow and 16 cycles in the fast movement condition at each trial, respectively, 

which matched the task performance time (12 s). The error data were averaged for each 

block (mean error) and normalized by the value of the first block in order to confirm the 

rate of change in each task condition. 

 

4.2.5 Experimental procedure 

Twenty-seven subjects were randomly allocated to three different groups: slow speed 

group (n = 9), fast speed group (n = 9), and control group (n = 9). The subjects who 

were assigned to slow and fast speed groups performed a visuomotor task, and the 

control group subjects performed a control task for 20 min. The amount of D1 inhibition 

and reciprocal Ia inhibition were measured before (pre), 5 min after (post 5), 15 min 

after (post 15) and 30 min after (post 30) the task sessions. The Hmax/Mmax, which 

was used as an indicator of motor neuron pool excitability, were also tested before and 

immediately after the task session. Hmax and Mmax were evoked every 3 s and 

calculated from the average of five Hmax and five Mmax values. 
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4.2.6 Statistical analysis 

The baseline characteristics of groups (age, SOL Mmax, and Hmax/Mmax) were 

analyzed using one-way ANOVA. The performance data compared among the task 

sessions used the one-way repeated measure of ANOVA for each group. Test H-reflex 

size was compared using two-way repeated measures of ANOVA with the factors “time” 

and “group.” The two-way repeated measures of ANOVA with the factors “time” and 

“group” were used to evaluate the effects of movement speed of the visuomotor task on 

the D1 inhibition and reciprocal Ia inhibition. In addition, the amounts of D1 inhibition 

and reciprocal Ia inhibition were compared using one-way repeated measure of ANOVA 

in the control group. For multiple comparisons, if significant effects were detected, the 

Bonferroni post hoc test was used. Mauchley's test was used to examine for sphericity. 

The Greenhouse-Geisser correction was used for non-spherical data. Moreover, the 

differences in the Hmax/Mmax and SOL Mmax were compared between before and 

after the task within the group, using the paired t-test. P values of < 0.05 were 

considered significant in all statistical analyses. Data were analyzed using SPSS version 

22 software (IBM SPSS, IBM Japan, Ltd., Tokyo, Japan). The data values are presented 

as the means ± SEM.  

 

4.3 Results 

Baseline characteristics of subjects among groups were well-matched (Table 3), and 

there were no significant differences between all baseline measures (age: F2,24 = 0.32, P 

= 0.73; SOL Mmax: F2,24 = 0.13, P = 0.87; Hmax/Mmax: F2,24 = 0.36, P = 0.69).  

 

4.3.1 Changes in the task performance  
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The mean times of one cycle of ankle movement almost matched the pre-setting times 

in each group, indicating that the task movement speeds were well controlled 

throughout the experiment (Slow speed group = 1946.43 ± 5.97 ms; Fast speed group = 

742.37 ± 2.36 ms; Control group = 733.77 ± 5.54 ms). Figure 18 shows the time course 

of the mean errors of motor tasks. A one-way repeated measures of ANOVA revealed a 

significant effect of blocks for slow and fast speed groups (Slow: F5,40 = 9.08, P < 0.01; 

Fast: F5,40 = 21.84, P < 0.01). In post hoc tests, a significant reduction in the mean errors 

was observed between the first block and five (P = 0.04) and sixth (P = 0.01) blocks in 

the slow speed group. Similarly, a significant reduction in the mean errors was observed 

between the first and fourth blocks (P = 0.01), between the first and fifth (P = 0.02) and 

sixth (P < 0.01) blocks in the fast-speed groups. These results indicated that the task 

performance was certainly improved in both groups. However, there were no significant 

differences in the mean errors across the blocks in the control group (F5,40 = 1.49, P = 

0.21).  

 

4.3.2 Effects of task movement speed on D1 inhibition and reciprocal Ia inhibition 

The mean amplitudes of the test H-reflex (% of Mmax) for all conditions are 

summarized in Table 4–5. The test H-reflex amplitude was almost the same size 

throughout experiment procedures. There were no significant effects of “time” (D1 

inhibition: F3,72 = 0.95, P = 0.41; reciprocal Ia inhibition: F3,72 = 1.48, P = 0.23) and 

“group” (D1 inhibition: F2,24 = 0.78, P = 0.46; reciprocal Ia inhibition: F2,24 = 0.35, P = 

0.71) on the test H-reflex amplitude. Likewise, there was also no significant “time”  
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Figure 18. The changes in the motor performance in slow-speed, fast-speed, and control 

groups 

The graph shows the time course of the changes in the motor performance in the slow, 

fast, and control groups. The ordinate shows mean error values normalized by the value 

of the first block. The abscissa shows each block. The dagger (†) represents significant 

difference (
†
P < 0.05) between the first block and fifth block, and the double dagger (‡) 

represent significant difference (
‡
P < 0.01) between the first block and six block in the 

slow-speed group. The asterisks (*) represents significant difference (
*
P < 0.05) 

between the first block and fourth and fifth blocks, and the double asterisks (**) 

represent significant difference (
**

P < 0.01) between the first block and sixth block in 

the fast-speed group. Error bar indicates SEM. 
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Table 4. Summary of test H-reflex amplitude in D1 inhibition (% of Mmax) 

 

 

 

 

 

 

Values: mean ± SEM. Mmax, maximum amplitude of M-wave; Pre, before the task sessions;  

Post 5, 5 min after the task sessions; Post 15, 15 min after the task sessions; Post 30, 30 min  

after the task sessions. 

 

 

 

Table 5. Summary of test H-reflex amplitude in reciprocal Ia inhibition (% of Mmax) 

 

 

 

 

 

 
Values: mean ± SEM. Mmax, maximum amplitude of M-wave; Pre, before the task sessions;  

Post 5, 5 min after the task sessions; Post 15, 15 min after the task sessions; Post 30, 30 min  

after the task sessions. 

  

 D1 inhibition  

 Pre Post 5 Post 15 Post 30 

Slow speed group 26.79 ± 0.85 25.27 ± 1.04 27.11 ± 1.07 25.28 ± 0.56 

Fast speed group 25.76 ± 0.92 25.31 ± 1.12 24.35 ± 1.47 25.19 ± 0.85 

Control group 25.99 ± 0.92 25.16 ± 0.91 25.15 ± 0.65 24.54 ± 1.16 

 Reciprocal Ia inhibition 

 Pre Post 5 Post 15 Post 30 

Slow speed group 25.17 ± 0.60 25.69 ± 0.85 25.83 ± 1.01 25.40 ± 0.78 

Fast speed group 25.43 ± 0.97 25.59 ± 1.05 23.34 ± 0.8 25.19 ± 0.85 

Control group 25.37 ± 0.92 25.97 ± 0.74 24.67 ± 0.68 23.71 ± 1.09 
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×“group” interaction (D1 inhibition: F3,72 = 0.54, P = 0.78; reciprocal Ia inhibition: F3,72 

= 1.18, P = 0.33). 

 

4.3.3 Visuomotor task 

The effects of the movement speed of a visuomotor task on the D1 inhibition and 

reciprocal Ia inhibition are shown in Figure 19. The D1 inhibition increased after 

visuomotor task irrespective of task movement speed. Meanwhile, the reciprocal Ia 

inhibition was affected by the movement speed of the visuomotor task and only 

increased after performing the visuomotor task in the fast movement speed condition. A 

two-way repeated measures of ANOVA for D1 inhibition showed a significant effect of 

the “time” (F2.06,32.99 = 14.84, P < 0.01), but not of the “group” (F1,16 < 0.01, P = 0.97). 

There was no significant “time” × “group” interaction (F2.06,32.99 = 1.16, P = 0.33). Post 

hoc analysis of the “time” factor indicated that compared to pre, the amount of D1 

inhibition was significantly increased in post 5 min (P < 0.01) and in post 15 min (P < 

0.01). A two-way repeated measures of ANOVA for reciprocal Ia inhibition showed a 

significant effect of the “time” (F3,48 = 4.82, P < 0.01), but not of the “group” (F1,16 = 

2.01, P = 0.18). Moreover, there were also significant “time” × “group” interactions 

(F3,48 = 3.49, P = 0.02). Post hoc analysis indicated that, in the fast-speed group, the 

amount of reciprocal inhibition was significantly increased in post 5 min—there were 

significant difference between pre and post 5 min (P = 0.01), post 5 min and post 15 

min (P < 0.01), and post 5 min and post 30 min (P = 0.01). The amount of reciprocal Ia 

inhibition was also significantly different between slow and fast speed groups in the 

post 5 min time period (P = 0.03).  
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Figure 19. Effects of the movement speed of visuomotor task on the D1 inhibition and 

reciprocal Ia inhibition. The graphs show the mean values of the D1 inhibition (A) and 

reciprocal Ia inhibition (B) in the slow- and fast-speed groups. The ordinate indicates 

the conditioned H-reflex amplitude expressed as a percentage of the test H-reflex 

amplitude. The abscissa shows the times at which measurements were taken [before 

(pre), 5 min after (post 5), 15 min after (post 15), and 30 min after (post 30) the 

visuomotor task]. Open circles represent the slow-speed group and closed circles 

represent the fast-speed group. Values below 100% indicate inhibition and values above 

100% indicate facilitation. The asterisks (*) and the double asterisks (**) represent 

significant differences (*P < 0.05) and (**P < 0.01), respectively. The section marked 

(§) represents a significant difference (P < 0.05) between slow- and fast-speed group in 

the post 5 time period. Error bar indicates SEM. 
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The mean SOL Mmax after the motor task was 13.86 ± 1.18 mV in the slow-speed 

group and 14.84 ± 2.09 mV in the fast-speed group. There were no significant 

differences in the SOL Mmax between pre and post in both groups (t8 = 1.22, P = 0.26 

in slow-speed group; t8 = 0.40, P = 0.69 in fast-speed group). The mean Hmax/Mmax 

after the motor tasks was 0.51 ± 0.07 in the slow-speed group and 0.58 ± 0.07 in the 

fast-speed group. There were also no significant differences in the Hmax/Mmax 

between pre and post in both groups (t8 = 1.45, P = 0.19 in the slow-speed group; t8 = 

1.07, P = 0.32 in the fast-speed group). 

 

4.3.4 Control task 

The effects of the control task on the D1 inhibition and reciprocal Ia inhibition are 

shown in Figure 20. There were no significant differences in the amount of D1 

inhibition (F3,24 = 0.64, P = 0.57) and reciprocal Ia inhibition (F3,24 = 1.10, P = 0.37). 

The mean SOL Mmax after the control task was 14.02 ± 1.33 mV and the mean 

Hmax/Mmax after the control task was 0.55 ± 0.05. There were also no significant 

changes in the SOL Mmax (t8 = 0.08, P = 0.94), and Hmax/Mmax (t8 = 1.66, P = 0.14) 

following the control task. 

 

4.4 Discussion 

The main findings of this study suggest that, (i) the amount of Ia presynaptic inhibition 

is increased after visuomotor tasks irrespective of task movement speed, (ii) changes in 

reciprocal Ia inhibition are affected by task movement speed, and are increased in fast 

movement speed conditions, but unchanged in slow movement speed conditions, (iii) 

control tasks do not induce any changes in Ia presynaptic inhibition and reciprocal Ia   
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Figure 20. Effects of the control task on the D1 inhibition and reciprocal Ia inhibition. 

The graphs show the mean values of the D1 inhibition (A) and reciprocal Ia inhibition 

(B) in the control group. The ordinate shows the conditioned H-reflex amplitude 

expressed as a percentage of the test H-reflex amplitude. The abscissa shows the time at 

which measurements were taken [before (pre), 5 min after (post 5), 15 min after (post 

15), and 30 min after (post 30) the visuomotor task]. Values below 100% indicate 

inhibition and values above 100% indicate facilitation. Error bar indicates SEM. 
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inhibition. 

 

4.4.1 Effects of task movement speed on presynaptic inhibition  

The present study observed that Ia presynaptic inhibition was increased following a 

visuomotor task irrespective of task movement speed, but was unchanged by a control 

task. Moreover, it was also observed the improvement of the task performance among 

the trials in the slow and fast movement speed conditions. The increase in the 

presynaptic inhibition of SOL Ia afferent terminals following a visuomotor task was 

consistent with the results of a previous investigation which demonstrated that Ia 

presynaptic inhibition was increased after visuomotor tracking tasks involving 

alternating ankle movement (Perez et al., 2005a). Ia presynaptic inhibition is a neural 

mechanisms dedicated to the adjustment of proprioceptive sensory gain during the 

execution of movement. It has been reported that excessive proprioceptive inputs arising 

from muscle spindle afferents result in deficits in smooth limb movement and elicit 

motor oscillation (Fink et al., 2014). Thus, because muscle spindle response increases 

with increasing the velocity of muscle stretch (Poppele & Bowman, 1970; Bosco & 

Poppele, 1999), it is hypothesized that Ia presynaptic inhibition will be increased 

following motor training performed at a fast movement speed, but not in a slow 

movement state. However, contrary to my hypothesis, the speed-dependent modulation 

of Ia presynaptic inhibition was not observed in this study. Therefore, the changes in Ia 

presynaptic inhibition have little to do with the task movement speed. Previous studies 

have shown that Ia presynaptic inhibition is decreased after performing visoumotor 

force tracking tasks with thumb and index finger in isometric condition (Roche et al., 

2011a) or after isometric strength training on the ankle dorsiflexor muscles (Jessop et al., 

2013). The fact that Ia presynaptic inhibition was increased following only the 
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visuomotor tasks involving dynamic joint movement indicates that descending inputs 

from corticospinal tract for controlling joint movement might be one of the essential 

factors to induce the potentiation of Ia presynaptic inhibition. It has been demonstrated 

that interneurons mediating Ia presynaptic inhibition are controlled by supraspinal 

centers (Jankowska, 1992), and that the stimulation of the corticospinal tract increases 

or decreases PAD in muscle afferents (Rudomin, 1990; Meunier & Pierrot-Deseilligny, 

1998). Therefore, as mentioned in chapter 3, it is speculated that the changes in the Ia 

presynaptic inhibition observed herein probably result from modifications of the 

inhibitory interneurons that produce inhibitory effects on the Ia presynaptic inhibitory 

pathway, and corticospinal descending inputs play a major role in driving neuroplastic 

changes in the interneurons.  

 

Several studies have reported that H-reflex amplitude is decreased following skilled 

motor tasks (Perez et al., 2005a; Mazzocchio et al., 2006; Lungu et al., 2010). However, 

in this study any changes in the H-reflex amplitude were not observed before and after 

the visuomotor task. The discrepancy between the changes in the H-reflex observed by 

this study and the previous studies is probably due to the difference in the motor task 

used in the study. In the previous studies, the muscle that assessed H-reflex was 

activated as an agonist during the task. By contrast, in this study, the subjects performed 

alternating ankle dorsal and plantarflexion movements against gravity so that the ankle 

dorsiflexion muscles acted as the prime movers for controlling ankle joints. Thus, the 

antagonist muscle was activated mainly, and the activation of the test muscle was minor 

(Fig. 17B). Previous studies have reported that homosynaptic depression that reduces 

synaptic efficacy at the synapse between Ia afferent and motor neurons may be 
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responsible for the decrease of the H-reflex after the skilled motor task (Mazzocchio et 

al., 2006; Meunier et al., 2007). Because homosynaptic depression has been suggested 

to be influenced by the pattern and magnitude of the incoming proprioceptive inputs 

(Meunier et al., 2007), the difference in the performing task might be attributed to the 

different results found in the present and previous studies. 

 

4.4.2 Effects of task movement speed on reciprocal Ia inhibition  

Training-related changes in reciprocal Ia inhibition have been studied extensively in 

human subjects, and these studies have shown that there is also task dependency of 

changes in reciprocal Ia inhibition. For example, the facilitation effect of the reciprocal 

Ia inhibitory pathway at the onset of ankle dorsiflexion was increased following 4 

weeks of explosive isometric dorsiflexion strength training (Geertsen et al., 2008). 

However, short-term isometric or isotonic strength training on ankle dorsal and planter 

flexor muscles decreased the reciprocal Ia inhibition (Jessop et al., 2013). Similar 

results were reported after performing force tracking tasks that required exerting an 

isometric force between the thumb and index finger (Roche et al., 2011a). Moreover, 

reciprocal Ia inhibition did not change after visuomotor tracking tasks involving 

alternating ankle movement (Perez et al., 2005a). In this study, the amount of reciprocal 

Ia inhibition directed from TA to SOL was only increased when subjects performed a 

visuomotor task in the fast movement speed condition, but remained unchanged when 

the subjects performed a visuomotor task in the slow movement speed condition and the 

control task. These findings suggest that changes in reciprocal Ia inhibition on the ankle 

muscles have something to do with the task movement speed. 
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 The Ia inhibitory interneurons receive descending inputs from the corticospinal 

tracts that are likely to influence the Ia inhibitory interneuron excitability (Jankowska et 

al., 1976; Kasai & Komiyama, 1988; Kubota et al., 2014). Therefore, it could be 

hypothesized that the increase of reciprocal Ia inhibition observed in this study is due to 

the modification of the excitability of Ia inhibitory interneurons induced by 

corticospianl descending inputs. Previous studies showed that the responses of 

corticomotoneuronal cells vary depending on type of movement (Fromm & Evarts, 

1977), and that the activities of these cells are strong during controlled ramp-and-hold 

movement, compared with their activities during rapid alternating movement (Cheney 

& Fetz, 1980). However, the results in this study also showed that performing the 

skilled motor task, itself, could not induce the increment in the strength of reciprocal Ia 

inhibition. Therefore, the enhancement of the reciprocal Ia inhibition could not be 

explained solely by the difference in the descending inputs from the corticospinal tract. 

The activation of Ia interneurons contributes to the hyperpolarization of target motor 

neurons (Geertsen et al., 2011), suggesting that Ia inhibitory interneurons play an 

important role in determining the coordination of intralimb flexor-extensor activity 

(Cowley & Schmidt, 1995). This may be because the reciprocal Ia inhibitory pathway 

needs to be facilitated in order to achieve alternating rapid movement. In support of this 

concept, the increase of reciprocal Ia inhibition was only observed following a 

visuomotor task in the fast movement speed condition. Taking these results into account, 

it is considered that both the central descending drive for controlling joint movement 

and task movement speed are important in driving activity changes in reciprocal Ia 

inhibition.  
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4.4.3 Time course effects of the visuomotor task on spinal neural circuits 

The changes in the Ia presynaptic inhibition and reciprocal Ia inhibition observed in this 

study were short lasting after the end of a visuomotor task; the increase in Ia presynaptic 

inhibition lasted up to 15 min and the increase in reciprocal Ia inhibition lasted up to 5 

min after the motor task. These temporary modifications of spinal neural circuits almost 

consist with the previous reports (Perez et al., 2005a; Roche et al., 2011a). Previous 

studies have shown that structural change in the spinal cord (e.g., axonal sprouting or 

neurogenesis) occurs gradually over weeks (after 10–12 sessions) (Thompson et al., 

2009; Thompson et al., 2013b). Therefore, it is speculated that the observed changes in 

this study may reflect the early process of activity dependent neuroplasticity in the 

spinal cord (e.g., changes in the efficacy of synaptic transmission or changes in the 

supraspinal descending influences), but not the structural changes. 

 

4.5 Conclusion 

The results of this study suggest that the supraspinal descending inputs to the spinal 

cord for controlling joint movement are responsible for changes in Ia presynaptic 

inhibition, and that task movement speed is one of the critical factors for inducing 

activity changes in reciprocal Ia inhibition. These results indicate that spinal neural 

circuits are differentially modulated, dependent on motor tasks, for achieving the task 

demands. These task-dependent modulations might be related to the precise control of 

our limb movements. 
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CHAPTER 5 

PATTERNED SENSORY NERVE STIMULATION ENHANCES THE 

REACTIVITY OF SPINAL IA INHIBITORY INTERNEURONS 

 

5.1 Introduction 

Reciprocal Ia inhibition has been established as an important neural mechanism for 

controlling the coordinated contraction of an agonist muscle and relaxation of an 

antagonist muscle, and the activity of this spinal circuit was shown to be cyclically 

modulated in phase-dependent manners (Petersen et al., 1999; Pyndt et al., 2003). The 

reciprocal Ia inhibition from the ankle flexor to the extensor during walking was 

suggested to be higher in the swing phase than in the stance phase (Petersen et al., 1999). 

A previous study using cats reported that flexor-coupled Ia inhibitory interneurons, 

which convey reciprocal Ia inhibition to the extensor muscle, were more active when 

their target motor neurons were silent, and suggested that activation of Ia interneurons 

contributed to the hyperpolarization of target motor neurons (Geertsen et al., 2011). 

These findings indicated that Ia inhibitory interneurons play a crucial role in switching 

from the extension phase to flexion phase during locomotion.  

 

Patterned electrical nerve stimulation (PES) resembling sensory feedback from the 

ankle flexor muscle while walking has been suggested to reinforce the reciprocal Ia 

inhibitory circuit (Perez et al., 2003; Fujiwara et al., 2011). Since increments in 

corticospinal excitability induced by non-invasive brain stimulation, such as repetitive 

TMS or transcranial direct current stimulation, did not increase the strength of 

reciprocal Ia inhibition (Perez et al., 2005b; Roche et al., 2011b), afferent input from the 
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ankle flexor muscle is critical for reinforcing this circuit. Although PES has been 

reported to induce changes in the reciprocal Ia inhibitory circuit, the mechanisms 

remain largely unknown. Activity-dependent changes in the efficacy of the synaptic 

transmission (long-term potentiation and long-term depression) are known to develop at 

the spinal level (Pockett & Figurov, 1993); therefore, it has been hypothesized that 

changes in the reciprocal Ia inhibitory circuit may be attributed to long-lasting increases 

in the efficacy of synaptic transmission on Ia afferents to Ia interneurons (i.e., 

enhancement of transmitter release at the synapse). To address this question, the present 

study aimed to determine whether changes in the reactivity of supraspinal descending 

inputs to Ia interneurons could be induced by PES. A previous study reported that motor 

cortex stimulation produced EPSPs and IPSPs in the spinal motor neurons, and IPSPs 

always started approximately 1.2 ms later than EPSPs (probably mediated by Ia 

inhibitory interneuron) (Landgren et al., 1962). In support of this finding, conditioning 

TMS was shown to produce short-latency facilitation of the test H-reflex (Nielsen et al., 

1993b). This facilitation was followed by decrements in the H-reflex (Nielsen et al., 

1993b; Kato et al., 2002). Hence, I used the TMS-conditioned H-reflex method to 

evaluate the influence of supraspinal descending inputs to Ia interneurons. 

 

5.2 Methods 

5.2.1 Subjects 

Ten (nine males, one female) healthy right-handed individuals (25.1 ± 2.9 years; mean ± 

SD) participated in our study after providing written informed consent. Nine out of ten 

participants reported that they preferred to kick a ball with their right foot. Our study 

was approved by the Human Ethics Committee of the Graduate School of Integrated 
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Arts and Sciences of Hiroshima University, and the experimental procedures were in 

accordance with the Declaration of Helsinki.  

 

5.2.2 Electromyography recording 

Experimental posutre and EMG recording set up were the same as that used in chapter 

2.  

 

5.2.3 Experimental procedures 

In order to induce activity changes in the reciprocal Ia inhibitory circuit, patterned 

electrical stimulation was applied to the CPN every 1 sec for 15 min. An electrical 

current was delivered using another constant current isolator coupled with an electrical 

stimulator through a bipolar electrode placed 1–3 cm distal to the head of the fibula. The 

stimulus pattern comprised a train of five pulses at 100 Hz. The pulse width was 1 ms in 

duration, and the stimulus intensity was the MT intensity of the TA muscle (Fig. 21). 

The stimulation electrode was positioned carefully in order to avoid activating the 

peroneus muscles. Reciprocal Ia inhibition, the TMS-conditioned SOL H-reflex 

amplitude, and the Hmax/Mmax were recorded before (pre), immediately after (post), 

and 15 minutes (post15) after PES.  

 

5.2.4 Conditioning stimulation 

The method for measuring reciprocal Ia inhibition, Ia presynaptic inhibition, and TMS 

conditioning effect on the H-reflex were the almost same as in chapter 2 & 3. It is 

summarized here, with several minor modifications noted. The SOL H-reflex was   
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Figure 21. Patterned electrical nerve stimulation (PES). (A) Stimulation pattern of 

common peroneal nerve (CPN). (B) The typical waveform of tibialis anterior (TA) 

M-wave. Five representative M-waves are shown in red, with the average M-wave trace 

in black. 
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assessed by conditioning stimulation of CPN. The conditioning stimulus strength was 

set at 1.0 × MT. The amount of reciprocal Ia inhibition was determined via conditioning 

stimulation of CPN to induce short-latency suppression of the SOL H-reflex. The C-T 

interval for assessing reciprocal Ia inhibition was varied from 1 to 3 ms in 1-ms steps. 

The interval that produced the largest inhibition (either 2 or 3 ms) was used throughout 

the experiment. Also, the amount of Ia presynaptic inhibition was determined via 

conditioning stimulation of CPN to induce long-latency suppression of the SOL 

H-reflex. The CPN was stimulated with a train of three single pulses at 333 Hz. The 

time interval between CPN stimulation (first shock of a train of three shocks) and test 

stimulation was kept constant at 21 ms. Conditioned and unconditioned H-reflexes were 

randomly evoked at 0.33 Hz. Ten conditioned and ten unconditioned H-reflexes were 

recorded at each C-T interval, and the conditioned H-reflex amplitude was expressed as 

the percentage of the unconditioned H-reflex amplitude.  

 

In order to examine the effects of corticospinal descending inputs on Ia inhibitory 

interneurons, the test H-reflex was conditioned by TMS. TMS was delivered through a 

double-cone coil connected to a magnetic stimulator. The optimal stimulus position for 

eliciting MEPs in the right SOL muscle with a weak contraction was determined as the 

area in which TMS at a slightly suprathreshold intensity regularly produced the largest 

MEPs. The active MT was defined as the lowest stimulus intensity that produced MEPs 

of at least 200 μV in the SOL in three out of five trials (Rothwell et al., 1999). The 

intensity of TMS was adjusted to 0.95 × active MT in order to avoid muscle responses 

in the SOL and TA. The SOL H-reflex was conditioned using various C-T intervals (−3, 

−2, −1, and 0 ms). Negative C-T intervals indicated that the conditioning stimulus was 
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applied after the test stimulation. The SOL H-reflex was evoked every 6 seconds. 

 

In order to determine whether changes in reciprocal Ia inhibition occurred at Ia 

inhibitory interneurons, Hmax/Mmax was used as an indicator of motoneuron pool 

excitability. Hmax/Mmax was recorded in nine subjects. Hmax and Mmax were evoked 

every 3 seconds and calculated from the average of five Hmax and five Mmax. 

 

5.2.5 Statistical analysis 

The test H-reflex size was compared using a one-way repeated-measures ANOVA. In 

reciprocal Ia inhibition, the conditioned H-reflex was compared to the unconditioned 

H-reflex using a one-sample paired t-test. A one-way repeated-measures ANOVA was 

used to analyze the effects of PES on reciprocal Ia inhibition, D1 inhibition, and 

Hmax/Mmax. A two-way repeated-measures ANOVA with factors of “C-T interval” and 

“Time” was used to evaluate the effects of PES on the TMS-conditioned H-reflex 

amplitude. If significant effects were detected, the Bonferroni post-hoc test was used for 

multiple comparisons. Mauchley's test was used to examine for sphericity. The 

Greenhouse-Geisser correction was used for non-spherical data. P values of < 0.05 were 

considered significant in all statistical analyses. Data are presented as the mean ± SEM. 

 

5.3 Results 

The amplitude of the test H-reflex (% of Mmax) was shown in Table 6. No significant 

differences were observed in the test H-reflex amplitude between the CPN stimulation 

(F2,18 = 0.59, P = 0.59) and TMS stimulation (F2,28 = 1.04, P = 0.37). The mean TMS 

stimulus intensity was 44.54 ± 4.67 (% of the maximum SO). 
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The degree of reciprocal Ia inhibition and TMS-conditioned H-reflex are shown in 

Figure 22 A–B. Although the conditioned H-reflex amplitude was weaker than that of 

the unconditioned H-reflex, a significant difference was only observed between the 

conditioned H-reflex and unconditioned H-reflex at post (P < 0.01) and post15 (P = 

0.02). Consistent with previous findings, reciprocal Ia inhibition was increased by PES 

(pre: 92.88 ± 4.52, post: 81.06 ± 3.76, post15: 87.90 ± 2.92 % of test H-reflex, F2,18 = 

3.65, P = 0.04). Post-hoc tests revealed a significant difference between pre and post (P 

= 0.04). Furthermore, PES down-regulated the amplitude of the TMS-conditioned 

H-reflex at the −1 ms interval (pre: 110.85 ± 7.64, post: 99.33 ± 6.32, post15: 110.84 ± 

6.82 % of Mmax) in the absence of changes in the other C-T intervals. The two-way 

repeated measures ANOVA showed a significant main effect of the H-reflex amplitude 

for the “C-T interval” (F3,81 = 6.29, P < 0.01). In addition, there was no significant “C-T 

interval” ×“Time” interaction (F6,81 = 0.49, P = 0.81). The Post hoc test revealed that the 

H-reflex amplitude at −1 ms was significantly different between pre and post (P = 0.03) 

and post and post15 (P = 0.03). Figure 23 shows the effects of PES on the D1 inhibition 

and Hmax/Mmax. No significant differences were observed in the D1 inhibition (pre = 

77.15 ± 5.0, post: 77.97 ± 6.72, post15: 67.23 ± 6.36 % of test H-reflex, F2,18 = 1.67, P = 

0.21) and Hmax/Mmax (pre: 0.54 ± 0.06, post: 0.51 ± 0.06, post15: 0.51 ± 0.5, F2,16 = 

1.35, P = 0.28). 

 

5.4 Discussion 

In the present study, it was confirmed that PES increased the amount of reciprocal Ia 

inhibition, which is consistent with previous findings (Perez et al., 2003; Fujiwara et al., 

2011). In addition to increments in reciprocal Ia inhibition, it was found that the  
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Table 6. Summary of test H-reflex amplitude (% of Mmax: mean ± SEM) 

 Pre Post Post15 

CPN stimulation 25.81 ± 1.14 24.75 ± 1.26 26.10 ± 0.96 

TMS stimulation 27.96 ± 1.16 26.75 ± 1.24 26.26 ± 0.83 

CPN, common peroneal nerve; Mmax, maximum amplitude of M-wave; Pre, before the task sessions; 

Post , after the task sessions; Post 15, 15 min after the task sessions; TMS: transcranial magnetic 

stimulation 
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Figure 22. Effects of patterned electrical nerve stimulation (PES) on Ia inhibitory 

interneurons. The graphs show the effect of PES on reciprocal Ia inhibition (A) and the 

TMS-conditioned H-reflex (B) from all subjects (n = 10). The ordinate shows the 

conditioned H-reflex amplitude expressed as a percentage of the test H-reflex amplitude. 

In A, the abscissa shows the time at which measurements were taken [before (pre), 

immediately after (post), and 15 minutes (post15) after PES]. In B, the abscissa shows 

the intervals between the conditioning stimulation and test stimulation in milliseconds 

(C-T interval). Open circles, closed circles, and triangles indicate pre, post, and post15 

conditions, respectively. The asterisks (*) represent significant differences (
*
P < 0.05) 

between pre and post conditions and the daggers (†) represent significant differences (
†
P 

< 0.05) between post and post15 conditions. The double daggers (‡) represent 

significant differences (
‡
P < 0.05) between the conditioned H-reflex and the baseline 

test H-reflex which is shown by the dashed line. Error bar indicates SEM.  
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Figure 23. Effects of patterned electrical nerve stimulation (PES) on the D1 inhibition 

(A) and the ratio of the maximum H-reflex amplitude versus maximum M-wave 

(Hmax/Mmax) (B). The graph shows group mean values (n = 9). In A, the ordinate 

shows the conditioned H-reflex amplitude expressed as a percentage of the test H-reflex 

amplitude. In B, the ordinate shows the values of Hmax/Mmax. The abscissa shows the 

time at which measurements were taken [before (pre), immediately after (post), and 15 

minutes after PES (post15)]. No significant effect of PES was found for D1 inhibition 

and Hmax/Mmax. Error bar indicates SEM. 
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amplitude of the TMS-conditioned H-reflex at the −1 ms C-T interval was decreased by 

PES, and this was not concomitant with changes in D1 inhibition and Hmax/Mmax. 

Therefore, the results indicate that sensory inputs induced by PES can not cause changes 

in the Ia presynaptic inhibition. It was hypothesized that the TMS-conditioned H-reflex 

may not be changed by PES because changes in reciprocal Ia inhibition were attributed 

to the modulation of synaptic transmission on Ia afferents to Ia interneurons. However, 

contrary to the hypothesis, the TMS-conditioned H-reflex amplitude was decreased by 

PES. This result suggested that short-latency facilitation of the H-reflex evoked by TMS 

reflected monosynaptic excitatory inputs from corticospinal neurons (Nielsen et al., 

1993b), and subsequent decrements in the H-reflex amplitude may have reflected 

inhibitory inputs from Ia inhibitory interneurons (Nielsen et al., 1993b; Kato et al., 

2002). Therefore, the results of this study indicate that PES-induced changes in 

reciprocal Ia inhibition are due to overall changes in the excitability of Ia inhibitory 

interneurons, but not the changes in either the synaptic modulation of Ia afferents to Ia 

interneurons or the excitability of postsynaptic motor neurons. Figure 24 shows an 

illustration of a circuit diagram that represents the proposed site of changes induced by 

PES. 

 

Several possible mechanisms may have contributed to the changes in reciprocal Ia 

inhibition and TMS-conditioned H-reflex observed in this study. One possible 

explanation is that the synaptic efficacy of Ia interneuron terminals may be responsible 

for these changes. Previous studies reported that tetanic stimulation of the dorsal horn 

led to long-term potentiation and depression in the ventral horn neurons of the spinal 

cord in rats (Pockett & Figurov, 1993), and that high-frequency stimulation of afferent  
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Figure 24. Illustration of a circuit diagram that shows the proposed site of changes 

induced by patterned electrical nerve stimulation (PES). The Ia inhibitory interneurons, 

which produce inhibitory postsynaptic potentials (IPSPs) in soleus motor neurons, 

receive excitatory inputs from the corticospinal tract and the Ia afferents from tibialis 

anterior muscle. Open triangles indicate excitatory synaptic terminals and close circle 

indicates inhibitory synaptic terminal. The dashed circle indicates the proposed site of 

changes induced by PES. The dotted circle indicates another possible site of changes 

induced by PES. MN; motor neurons. 
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fibers led to the post-tetanic facilitation of the H-reflex in both animals (Wolpaw et al., 

1989) and humans (Kitago et al., 2004). In the present study, I periodically stimulated Ia 

muscle afferents originating from the ankle flexor muscle at a frequency of 100 Hz 

every 1 s (1 Hz) for 15 min. The 1 Hz cycle was approximately matched to that of the 

average gait cycle duration in human self-selected walking speed (Byrne et al., 2007), 

and 100 Hz was close to the firing rate of Ia afferents of ankle flexor muscles in the 

early swing phase of locomotion (Geertsen et al., 2011). Therefore, the repetitive 

activation of Ia inhibitory interneurons evoked by PES that resembled the Ia afferent 

firing pattern during locomotion may have reinforced the synaptic efficacy of Ia 

interneuron terminals in targeting motor neurons. Another possible mechanism is the 

modification of corticospinal excitability. Ia inhibitory interneurons receive descending 

inputs from the motor cortex through the corticospinal tract (Jankowska et al., 1976), 

and the excitability of interneurons is controlled by corticospinal descending inputs 

(Kubota et al., 2014). Fujiwara et al., (2011) showed that the effects of PES on 

reciprocal Ia inhibition were modulated by supraspinal descending inputs. However, a 

higher stimulus intensity (approximately 2–3 × MT) than the intensity used in this study 

appeared to be necessary for increasing TA motor cortex excitability (Khaslavskaia et 

al., 2002). In support of this finding, the MEPs of the TA muscle could not be changed 

by PES (Perez et al., 2003). Thus, corticospinal descending inputs to Ia interneurons 

remained unchanged by PES and did not play a role in the changes observed in 

reciprocal Ia inhibition. Although the possibility that other mechanisms (e.g., an 

intrinsic property of Ia interneurons) (Wolpaw, 2007) are also involved cannot be ruled 

out, it appears reasonable to assume that PES can modulate sensory transmission at the 

synapse between Ia interneuron terminals and target motor neurons. To the best of our 
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knowledge, the present study is the first to identify the primary factor involved in 

changes in the reciprocal Ia inhibitory circuit. These results may lead to a clearer 

understanding of the spinal cord synaptic plasticity produced by repetitive sensory 

inputs. 

 

5.5 Conclusion 

The results of this study demonstrated that patterned sensory nerve stimulation could 

modulate the activity of Ia inhibitory interneurons, and these changes may have been 

caused by synaptic modifications to Ia inhibitory interneuron terminals.  
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CHAPTER 6 

GENERAL DISCUSSION AND CONCLUSION 

 

The most important advance in the field of neuroscience over the past half-century is the 

finding that the central nervous system has the ability to change itself during 

development and throughout life, which has lead to a breakthrough in our understanding 

of the neural mechanisms underlying motor control and cognitive processing. In the last 

few decades, many studies were conducted investigating activity-dependent 

neuroplasticity, and the results demonstrate that neuroplasticity is an important factor 

mediating the acquisition of new motor skills (Karni et al., 1995; Pascual-Leone et al., 

1995; Nudo et al., 1996; Classen et al., 1998; Kleim et al., 1998; Muellbacher et al., 

2001; Remple et al., 2001; Muellbacher et al., 2002; Perez et al., 2004; Perez et al., 

2005a; Jackson et al., 2006; Mazzocchio et al., 2006; Meunier et al., 2007; Wolpaw, 

2007; Roche et al., 2011a; Thompson & Wolpaw, 2014). Recent studies suggest that 

neuroplasticity is a major physiological mechanism mediating functional recovery after 

damage to the central nervous system (Nudo, 2003, 2006; Caemel & Martin, 2011; 

Ueno et al., 2012; Murata et al., 2015). Therefore, the investigation of neuroplasticity 

has become an important research topic for clinicians and neuroscientists (Dimyan & 

Cohen, 2011; Wang & Sun, 2011; Nahum et al., 2013).  

 

In the study of neuroplasticity, many researchers focused on changes in the upper 

central nervous system in the brain, because the spinal cord was often regarded as a 

hard-wired organ with no plastic properties. However, recent studies have shown that 

activity-dependent neuroplasticity occurs not only in the brain but also in the spinal cord 
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(Wolpaw, 2007, 2010; Thompson & Wolpaw, 2014). Considering that the brain and 

spinal cord work together during movement execution, it is conceivable that changes in 

their neural properties will interact with each other. In fact, abnormal descending 

activity caused by spinal and/or supraspinal lesions has been shown to result in an 

abnormal activation of spinal neural circuits (Crone et al., 1994; Morita et al., 2001; 

Okuma et al., 2002; Kagamihara & Masakado, 2005; Lamy et al., 2009; Bhagchandani 

& Schindler-Ivens, 2012). Therefore, without appropriate recognition of the spinal cord 

neuroplasticity, neural mechanisms underlying motor control and motor skill acquisition 

cannot be fully understood (Wolpaw, 2007). In addition, the lack of information about 

neuroplasticity in the spinal cord may lead to the wrong conclusions about how central 

nervous system works. For the above reasons, neuroplasticity in the spinal cord needs to 

be explored; however, to date, little attention has been given to neuroplastic changes in 

the spinal cord. The main aim of this thesis is to contribute to a better understanding of 

the neural mechanisms of activity-dependent neuroplasticity in the spinal cord. In 

particular, this thesis explored the extent to which corticospinal descending inputs 

influence the activity of spinal neural circuits (Chapter 2–3), and what factors influence 

the induction of neuroplasticity in the spinal neural circuits (Chapter 4–5).  

 

In chapter 2, I investigated the extent to which corticospinal descending inputs onto 

Ia inhibitory interneurons influence the degree of reciprocal Ia inhibition, using a TMS 

conditioning H-reflex technique. The relationship between the amount of reciprocal Ia 

inhibition and the strength of corticospinal descending inputs to Ia inhibitory 

interneurons were found to be highly correlated during a resting condition. In addition, 

the corticospinal descending influence appeared to increase when agonist muscles 
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contracted. These findings suggest that the activity of Ia inhibitory interneurons is 

modified by corticospinal descending inputs, which may explain the observed 

inter-individual variation in reciprocal Ia inhibition.  

 

In chapter 3, I investigated the influence of corticospinal descending inputs on the 

Ia presynaptic inhibitory pathway by comparing the effect of skilled motor task and 

non-skilled motor task on TMS conditioning of Ia presynaptic inhibition. The aim of 

this chapter is to clarify the mechanisms involved in the modification of Ia presynaptic 

inhibition following skilled motor task. The results showed that Ia presynaptic inhibition 

was only increased following a skilled motor task, and that the inhibitory effect of Ia 

presynaptic inhibition induced by TMS was decreased following a skilled motor task, 

but not following a non-skilled motor task. The increased Ia presynaptic inhibition may 

be explained by the reduction of inhibitory effects of interneurons activated by the 

corticospinal tract. These results suggest that modulation of corticospinal descending 

inhibitory effects on the Ia presynaptic inhibitory pathway may be responsible for the 

changes in Ia presynaptic inhibition.  

 

Previous studies have shown that spinal neural circuits are modulated by motor skill 

training. However, the effects of task movement speed on changes in spinal neural 

circuits have not been clarified. Sensory inputs to the spinal cord vary depending on the 

task movement speeds (Poppele & Bowman, 1970; Bosco & Poppele, 1999), and are 

speculated to influence changes in spinal neural circuits. Therefore, in order to find the 

mechanisms responsible for changes in spinal neural circuits, the effect of task 

movement speed on changes in spinal neural circuits was examined in chapter 4. The 
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findings showed that Ia presynaptic inhibition increased following a skilled motor task, 

irrespective of task movement speed. Reciprocal Ia inhibition was increased by fast 

movement speed conditioning, but not affected by slow movement speed conditioning. 

A non-skilled motor task did not induce changes in Ia presynaptic inhibition and 

reciprocal Ia inhibition. These findings suggest that supraspinal descending inputs 

controlling joint movement are responsible for changes in Ia presynaptic inhibition and 

reciprocal Ia inhibition, and that the task movement speed is a critical factor for 

inducing changes in reciprocal Ia inhibition. It is conceivable that spinal neural circuits 

are differentially modulated, depending on the motor task, for achieving the demands of 

the task. 

 

In chapter 5, I investigate whether the sensory inputs induced by electrical 

stimulation produce changes in spinal neural circuits. Also, although sensory inputs are 

speculated to be a critical factor in driving changes in spinal neural circuits, the 

mechanisms underlying these changes are not fully elucidated. Changes in the efficacy 

of the synaptic transmission develop at the spinal level (Pockett & Figurov, 1993), thus, 

I hypothesized that changes in spinal neural circuits might result from synaptic 

modification of excitatory synapses between sensory afferent terminals and interneurons 

constituting spinal neural circuits. To test this hypothesis, I investigate the neural 

mechanisms underlying changes in spinal neural circuits induced by sensory nerve 

stimulation, using a TMS-conditioning H-reflex technique. The sensory nerve 

stimulation increased reciprocal Ia inhibition and the effect of TMS conditioning on Ia 

inhibitory interneurons, but did not change Ia presynaptic inhibition. These findings 

suggest that repetitive sensory inputs can modulate the activity of Ia inhibitory 
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interneurons. The changes may be caused by synaptic modifications to Ia inhibitory 

interneuron terminals. The findings of this chapter will help our understanding of spinal 

cord neuroplasticity produced by sensory inputs, specifically, the location where it 

occurs. 

 

In summary, the main findings of this thesis are as follows; 1) The activity of Ia 

inhibitory interneurons is modified by corticospinal descending inputs. 2) Changes in Ia 

presynaptic inhibition following a skilled motor task are caused by the modulation of 

corticospinal descending inhibitory effects on the Ia presynaptic inhibitory pathway. 3) 

Supraspinal descending inputs controlling joint movement are important for producing 

changes in spinal neural circuits. 4) Task movement speed is a critical factor for 

inducing changes in reciprocal Ia inhibition, as well as supraspinal descending inputs. 5) 

Repetitive sensory inputs could modulate the reactivity of Ia inhibitory interneurons. 

These findings indicate that the changes in spinal neural circuits following motor skill 

learning result from modulation of interneuron excitability in spinal neural circuits, by 

corticospinal descending inputs. On the other hand, giving that repetitive sensory nerve 

stimulation can modulate reciprocal Ia inhibition, it is speculated that reciprocal Ia 

inhibition is also modulated by non-skilled motor tasks because the activation timing of 

TA muscle in non-skilled motor task is almost the same as the timing of sensory inputs 

induced by electrical stimulation. However, a difference was noted, likely due to the 

effect of the interaction between flexor-coupled Ia interneurons and extensor-coupled Ia 

interneurons. It has been reported that Ia inhibitory interneurons receive disynaptic 

IPSPs from antagonist Ia interneurons (mutual inhibition) (Hultborn et al., 1974; Tanaka, 

1974). Therefore, during rapid alternating movements, opposing muscles are stretched 
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in a phasic manner, and then each Ia inhibitory interneuron receives disynaptic IPSPs 

from each antagonist Ia interneuron. Although the underlying mechanisms are unknown, 

facilitation elicited by sensory inputs might be offset by these mutual inhibitory effects. 

 

During the learning of new motor skills, a short-lasting changes in spinal neural 

activity is thought to reflect the change in the supraspinal descending influence on the 

spinal cord and/or transient changes in the efficacy of synaptic transmission (long-term 

potentiation and long-term depression) at the spinal level (Bunday & Perez, 2012), 

while a long-lasting changes in spinal neural activity is thought to reflect structural 

changes, such as the formation of new synapses (e.g., axonal sprouting, and 

synaptogenesis) (Carmel & Martin, 2011; Ueno et al., 2012), by the long-term 

continuation of the descending influence (Wolpaw, 2007). The long-lasting change takes 

a long time to occur. Therefore, the observed changes in spinal neural circuits may 

reflect the initial stage of activity dependent neuroplasticity in the spinal cord.  

 

As already mentioned above, rehabilitation methods based on the principles of 

neuroplasticity are likely to be critical for promoting the recovery of motor function in 

patients with central nervous system disorders, such as stroke and spinal cord injury. 

These patients have poor control of limb movements and abnormal activation of Ia 

presynaptic inhibition and/or reciprocal Ia inhibition (Crone et al., 1994; Morita et al., 

2001; Okuma et al., 2002; Crone et al., 2003; Kagamihara & Masakado, 2005). It has 

been suggested that the modulation of such abnormal spinal function will lead to 

improvement of impaired motor function (Edgerton et al., 2004; Bhagchandani & 

Schindler-Ivens, 2012; Thompson et al., 2013b). In this thesis, I described various 
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factors that influence changes in spinal neural circuits. For example, as repetitive 

sensory inputs induced by electrical stimulation might change the overall reactivity of Ia 

inhibitory interneurons, sensory nerve stimulation may be useful for improving the 

abnormal activation of the reciprocal Ia inhibitory circuit. In addition, when producing 

changes in the spinal neural circuits by motor task, it is important to consider what type 

of motor task to use. 

 

The spinal cord processes ensembles of information derived from the supraspinal 

centers and peripheral sensory receptors and generates motor outputs in a precise and 

highly coordinated manner in response to changes in the environment. The 

physiological state of the spinal cord is affected by the nature, intensity and duration of 

physical activities in later life, and by specific motor training, which influences our 

motor behavior (Wolpaw, 2007). Therefore, I end this thesis with the conclusion that 

understanding neuroplasticity in the spinal cord is essential for understanding how the 

central nervous system controls our body movements and how the system changes with 

motor skill acquisition.  
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