Formation of Intermolecular Covalent Bonds Observed with IR Photodissociation Spectroscopy

Yoshiya Inokuchi, Ryoko Matsushima, Yusuke Kobayashi, and Takayuki Ebata Department of Chemistry, Graduate School of Science, Hiroshima University Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan.

ABSTRACT

The formation of covalent bonds between ions and molecules is a primary process in a variety of chemical reactions such as nucleophilic substitution/addition and ion polymerization reactions. In this study, we have observed the intermolecular bond formation in cluster ions of CO₂, CS₂, OCS, N₂O, H₂O, methanol, and acetone with IR photodissociation (IRPD) spectroscopy in the 1000–4000 cm⁻¹ region. In the $(CO_2)_n^{+1}$ cluster ions, a covalent bond is formed between CO_2^+ and CO_2 , and this structure is retained in larger size clusters; there is a $C_2O_4^+$ dimer ion core, and the other CO_2 components are solvated to the ion core. The dimer ion core structure is found also for the homo-cluster ions of $(CS_2)_n^+$, $(OCS)_n^+$, $(N_2O)_n^+$, and $(acetone)_n^+$. The introduction of one H₂O molecule to the $(CO_2)_n^+$ and $(N_2O)_n^+$ cluster ions drastically changes the characteristics of the intermolecular bond. In the $[H_2O(CO_2)_n]^+$ clusters, the positive charge is localized on the H₂O component, and the CO₂ molecules are bonded to the H_2O^+ ion electrostatically. On the contrary, the $[H_2O(N_2O)_n]^+$ ions show the formation of a covalent bond between the oxygen atoms of H₂O and N₂O, producing the $[H_2O-ON_2]^+$ ion. For the hetero-cluster ions of CS₂ and OCS, the intermolecular covalent bond is also formed between the two OCS and one CS₂ molecules, and the positive charge is delocalized over the three molecules.