金属イオンーカリックスアレーン錯体の 極低温気相レーザー分光

(広大院理)

〇井口佳哉,曽我和毅,平井健太, 木田 基,江幡孝之

Outline

- Introduction
 Why ion guest-host complexes?
 Why cold gas-phase spectroscopy?
- 2. Construction of instrument Estimation of T_{ion} by UVPD spectroscopy
- 3. Application to ion complexes
 K⁺•calix[4]arene complex
 Electronic and geometric structure
- 4. Future prospects

Guest selectivity of hosts

Relation between *K*, Δ *G*, Δ *H*, and Δ *S*

$$K = \exp\left(-\frac{\Delta G}{RT}\right)$$

$\Delta G = \Delta H - T \Delta S$

Complex properties reflect selectivity?

Cold gas-phase spectroscopy is useful

sharp vibronic bands ----> conformer-specific experiment

Inokuchi et al., J. Phys. Chem. A, 116, 4057 (2012).

This study

• Construction of instrument Estimation of T_{ion} by UVPD spectroscopy

Application to ion complexes
 K⁺•calix[4]arene complex
 Electronic and geometric structure

UV photodissociation spectroscopy

UV photodissociation spectroscopy

Laser spectroscopy with cold quadrupole Paul trap Jouvet, Zwier, Johnson, Kim, Grégoire, Ishiuchi (3P014)...

Ions in cold Paul trap are not so cold?

Collisional activation (heating) of ions in RF ion trap?

^aChoi et al., Chem. Phys. Lett., 593, 150 (2014).
^bInokuchi et al., J. Phys. Chem. A, 116, 4057 (2012).

Ions can be cooled to ~10 K even in Paul trap

22-pole trap (~6 K)^a $T_{vib} = ~10$ K

Paul trap (~6.5 K)^b T_{vib} = 35 K

Paul trap (~4.3 K)^b T_{vib} = ~10 K

^aInokuchi et al., J. Phys. Chem. A, 116, 4057 (2012). ^bInokuchi et al., J. Phys. Chem. A, 119, 8512 (2015).

Calix[4]arene (C4A)

Four phenols are connected by $-CH_2$ – chains. Four OH groups form a rigid H-bonded ring.

K⁺•C4A shows sharp UV bands

Inokuchi et al., J. Phys. Chem. A, 119, 8512 (2015).

Isomers of K⁺•C4A

exo +97 kJ/mol

KC4A-II

exo +101 kJ/mol

KC4A-III

Gaussian09 M05-2X/6-31+G(d)

K⁺ ion shifts the UV band to the blue

Ebata et al., J. Chem. Phys., 126, 141101 (2007).

UV spectra are similar for K*•C4A and C4A

Weak origin band, followed by strong bands.

KC4A-I reproduces UVPD spectrum

Gaussian09 M05-2X/6-31+G(d), S.F. = 0.843

C4A and K⁺•C4A have high symmetry

C4A and K⁺•C4A have high symmetry

C4A in K⁺•C4A is highly distorted

Future prospects

 Cold gas-phase spectroscopy Host-guest complexes
 Organometallic complexes
 Hypervalent compounds

Inokuchi et al., J. Phys. Chem. A, 119, 8512 (2015).

SEIRA spectroscopy on metal surface

Inokuchi et al., Chem. Phys. Lett., 592, 90 (2014). Inokuchi et al., New J. Chem., 2015, DOI: 10.1039/c5nj01787d .

Summary

We have constructed a mass spectrometer for UVPD spectroscopy with a cold, quadrupole Paul ion trap.

■ We have estimated T_{vib} in the trap to be ~10 K by the UVPD spectrum of K⁺•B18C6.

The UVPD spectrum of K⁺•C4A was measured; it shows sharp vibronic bands.

• The spectral features and theoretical results suggest that K^+ •C4A has an *endo* form with C₂ symmetry.