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Abstract 
 

Agro-Environmental Study on Grazing System: Sensing Grazing Behavior and Spatial 
Modeling 

 
Spatio-temporal information on the grazing behavior of animals provides insights 

into pasture and animal conditions, allowing for improved pasture management and animal 

care. Various sensors and analytic tools have been developed to assist with the collection and 

analysis of data regarding the activities of animals at pasture. However, most of these devices 

cannot be used by farmers because they are only capable of taking measurements for a few 

days, due to their high energy consumption, or because they are expensive and require 

extensive experience to correctly attach them to animals. Moreover, the data obtained by such 

sensing devices are complex, and the grazing behaviors are strongly influenced by 

surrounding environments.  

The objectives of this study were (1) to develop a simple tool for determining cattle 

grazing behavior in the pasture (chapters 2 and 3), and (2) to predict spatial distribution of 

cattle excrement, one of the main sources of greenhouse gas (GHG) emission from pasture, 

using Bayesian approach (chapters 4 and 5) and unmanned aerial vehicle (UAV) on-boarded 

camera images (chapter 6). 

The global positioning system (GPS) data sometimes contains many missing values. 

In chapter 2, thus, the author tried to determine the minimum requirement of GPS recording 

rate (100% = 1,440 GPS points per day) that is sufficient to know the spatial distribution of 

livestock (especially, distance traveled). Using 1,000 simulations of random sampling method 

between 75 (1,080 GPS points per day) to 100% recording rate, daily distance (m) traveled by 
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cow was calculated. The results indicated that there is no significant difference between 

91−100% GPS recording rate on the distance (t-test, p > 0.05). The 1,459 days from five-year 

data set were greater than 91% of the GPS recording rate in one day and used for appropriate 

in determining the spatial distribution of cattle. The distance traveled tended to have similar 

trends that younger cows walked longer distance. During the daytime, the cows mostly stayed 

in the lower-altitude area of the paddock, while during the nighttime, the cows spent most of 

their time in the higher-altitude area of the paddock. 

In chapter 3, the author evaluated the feasibility of an accelerometry-based activity 

monitor, the Kenz Lifecorder Ex (LCEX; Suzuken Co. Ltd., Nagoya, Japan), combined with a 

GPS, in order to differentiate between foraging and other activities of beef cows in a steeply 

sloping pasture. The grazing trial was conducted in a mixed sown pasture (0.85 ha) and four 

cows from the 20 cows were fitted LCEX-GPS collars in four days (June 14–18, 2010). 

During the period, three researchers recorded the animal activities (eating, resting and 

ruminating) and postures in every minute for 15 hours. Logistic regression (LR) and linear 

discriminant analysis (LDA) – two of the most widely used techniques for distinguishing 

animal activities based on sensing device information – were applied to the dataset (LCEX 

and observation data) to distinguish eating and other activities (resting, ruminating, etc.). The 

LDA results showed a higher correct discrimination percentage for all cows (90.6–94.6%) 

than that of the LR results (80.8–91.8%). Applying the LDA function over the whole period 

of LCEX data, the time spent eating averaged 443–475 min day–1 (30.7–33.0%). Combining 

with the GPS locations, the spatial distribution patterns of eating and other activities of cattle 

were compared between daytime and nighttime. During the daytime, the cows mostly grazed 

in the lower-altitude area of the sloped paddock, covering a wider area than that at nighttime. 
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Meanwhile, at the nighttime, the cows spent most of their time in the higher-altitude area of 

the paddock, without eating activity. These results are in agreement with the results of chapter 

2 and other previous researches. 

In chapters 4 and 5, the spatial distribution of cattle dung was estimated based on 

Bayesian approach using generalized linear mixed models (GLMM) with an added intrinsic 

conditional autoregressive (CAR) term. The predicted herbage green biomass (GBM) with 

rising plate meter (RPM) and distance from a water trough (Dw), which can be controlled by 

farmers, were considered as predictors in the models. The field experiments was conducted in 

three mixed sown pastures (I and II, 1.02 ha; III, 0.85 ha) in Hokkaido, Japan. After a 

four-day grazing trial using 20 Japanese Black cows (Bos taurus L.), the paddocks were 

divided into 10 m × 10 m grid cells (I and II, 102 cells; III, 85 cells) and for each grid cell the 

number of dung deposits (Nd) was counted and the mean values of the GBM and Dw were 

computed using geographical information system (GIS). First, the spatial distribution of cattle 

dung was estimated using single paddock data (chapter 4). Then, the model was improved to 

be more general and used three paddocks data (chapter 5). The results of a Markov Chain 

Monte Carlo (MCMC) simulations indicated that a higher Nd tend to be associated with a 

higher GBM and locations closer to the water trough. The Nd showed spatial autocorrelation 

and it is likely that the grid cells that have large residual values could be affected by the 

difference between cattle activities in the daytime and nighttime. These results suggested that 

the spatial distribution of cow dung can be predicted from two controllable factors in short 

term grazing trials. Ideally, farmer use this knowledge to control the excrement position by 

managing grass condition and changing a water trough location.  
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In chapter 6, the author tried to detect the position of cattle dung in pasture using a 

very high resolution image acquired by a UAV on-boarded camera. In a grazed paddock (1.0 

ha), two control plots A and B (20 m × 20 m, protected from cow by electronic fence) were 

installed, and UAV images were acquired on June 20, 2014. The spatial resolutions on ground 

level in plot A and B images were 1.4 cm (1891 × 1929 pixels) and 2.2 cm (1222 × 1228 

pixels), respectively. After the UAV flight, the position of cattle dung were recorded using 

differential GPS (DGPS) and ground survey. Image processing was done using random forest 

regression (RFR) analysis to determine cattle dung from RGB image values. The results 

indicated that the fresh dung could be detected with high accuracy from the image using RGB 

values with their size and shape information. Meanwhile, old dried dung is difficult to 

distinguish from soil due to similarity of RGB values. The subject of a future study could be 

look for a characteristic wavelength to distinguish between old dung and soil. It is necessary 

to consider the short-wavelength (ultra violet) and near-infrared (NIR) not just the visible 

region (RGB colors) and investigate whether it is possible to distinguish how many days after 

excretion the fresh dung looks like old dung. The author also detect the dung position with 

other photographic images provided by the UAV at different altitudes and verified the size 

estimate precision. 

Limitation of this study is that the actual amount of GHG emissions resulting from 

livestock excrement in the pasture were not quantified. Future study requires to examine the 

actual GHG emissions from a grazing pasture in order to establish precise GHG mitigation 

techniques. Nevertheless, the knowledge of livestock excrement position could be useful for 

farmers to minimize environmental pollution. The result of this thesis could contribute to do 

precision agriculture that can minimize environmental effects and enhance productivity.  
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－Chapter 1－ 
 

General introduction 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

“Learn from yesterday, live for today, hope for tomorrow.  
The important thing is not to stop questioning” 

 
Albert Einstein (1879–1955) 
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Chapter 1: General introduction 

1.1. Background 

1.1.1. Utilization of grazing systems 

 

Livestock grazing systems are techniques that have been used at various times and 

places. Those benefits includes: saving livestock food, litter cost and human power because 

feeding and excreta removal work is unnecessary, improvement of reproductive performance 

and group feeding is possible, having a great impact on the vegetation (Perevolotsky and 

Etienne, 1999). Further, these have pleiotropic effects such as farmland restoration, 

environmental protection, species and community diversity (Collins et al., 1998; Sternberg et 

al., 2000), landscape (Hartnett et al., 1996; Adler et al., 2001), regional activation and 

effective utilization of abandoned farmland. Grazing is an important technology in narrow 

land such as Japan where workers have been reduced. Disadvantages in grazing systems were; 

increasing nutrient concentrations (Day and Detling, 1990; Rietkerk et al., 2000; Augustine 

and Frank, 2001); difficulties of health and nutritional management of individual because of 

excreta and concentration of utilization rate in pasture; and increasing risks of erosion due to 

the amount of bare ground, and soil compaction 

 

1.1.2. Precision agriculture 
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In grazing pasture, the dispersion of productivity is caused by the presence of grass, 

livestock and excrement. Therefore, in order to produce a high-quality grass it is necessary 

that management and analysis of spatial information about the growth, soil and the livestock 

used by the geographical information system (GPS), global positioning system (GIS) and 

remote sensing (RS). Recently, as the alternatives of conventional agriculture, there is 

significant change to shift toward precision management. It is generally called precision 

agriculture (PA) or precision farming (PF). The principal concept of PA was initiated in the 

middle of 1980s, using newly available technologies, to improve the application efficiencies 

of fertilizers by varying rates and blends as needed within fields (Robert, 2002). PA is defined 

as the agricultural method using advanced technologies such as GPS, GIS and RS (McBratney 

et al., 2005). Using the RS and GPS, the present status of target, such as position of livestock, 

crop growth and soil fertilities were sensed with spatial information. The data are evaluated, 

analysed and mapped by GIS. Based on the evaluation map, optimized management strategies 

are planned and applicated such as pesticide spraying or fertilization (Gebbers and Adamchuk, 

2010). Here, the RS is the acquisition of in situ information about an object or phenomenon 

without making physical contact with the object, which is a key technology of timely 

assessment on present target status. Also, these site specific optimization technologies can be 

expected to minimize environmental impacts and enhance productivity. Nowadays, the RS 
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technology is being used for environmental monitoring in various field; forest, water, bare 

soil and urban area. Unmanned aerial vehicles (UAV) are the one of the RS technologies and 

using of UAV is growing rapidly (Blyenburgh, 1999). UAV have advantages; executing 

dangerous or difficult tasks safely and efficiently, saving time, saving money and lives. In 

recently, private use of UAV has been increased because of developing of high-performance 

camera and software, weight lighted and miniaturization. 

 

1.1.3. Animal behavior in grazing pasture 

 

Spatio-temporal information on animal activities, such as grazing and resting in a 

pasture, provides insights into pasture and animal conditions, allowing for improved pasture 

management and animal care (Turner et al., 2000). Therefore, various studies on animal 

behavior have long been conducted. Earlier studies indicate that cattle select patches with 

higher levels of crude protein (CP) concentration (Hirata et al., 2006). Gillen et al. (1984) 

found that slope steepness was the only physical factor consistently associated with cattle 

grazing distribution on mountain rangeland and cattle preference shifted to the lower distance 

classes during late grazing. Okamoto et al. (1994) investigated utilization of a pasture 

consisting of an improved area (high herbage allowance) and a native area (low herbage 

allowance) by Japanese Brown cows. They found that the cows find the advantage on the 
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herbage of the improved area as the acceptable canopy structure of the community for grazing, 

the high dry matter digestibility etc. under the severe quantitative condition of herbage. Cattle 

rested at night on the upper half of the slope in extensive settings, regardless of the season 

(Ohno and Tanaka, 1966). Arnold et al. (1978) reported that cattle rested on the higher ground 

in the nighttime. Moreover, Yause et al. (1997) found that cattle shifted the resting site to the 

lower elevation zones in daytime and in the higher elevation zone in the nighttime, and during 

nighttime resting, cattle preferred to rest on relatively gentle slopes (0–15°) and avoided 

resting on steep slopes (>25°). When temperatures were over 21°C cattle rested most of the 

time in places where wind was relatively strong, and when temperatures were below 20°C, 

cattle rested most of the time in places where wind was relatively weak through a grazing 

season (Kurosaki et al., 1956). Many environmental and management variables affect the 

distribution of grazing cattle on pasture. Several animal attributes affect distribution 

including: species or breed (Bailey et al., 2001), prior experience with a landscape (Bailey et 

al., 1996), age (Wells, 2004), and reproductive status (Bailey et al., 2001). Environmental 

characteristics affecting distribution include: proximity and/or relative elevation of drinking 

water (Roath et al., 1982); degree of slope (Ganskopp et al., 1987); density of woody 

vegetation (Holechek et al., 1998); presence of trails (Ganskopp et al., 2000); location of 

mineral (Kruelen, 1985) or protein supplements (Bailey et al., 1999); grazing history of the 

landscape and its attending effects on herbage (Ganskopp et al., 2006); fertilizer and fire 
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effects (Hooper et al., 1969; Bondini et al., 1999); plant community composition and its 

associated effects on forage quantity (Smith et al., 1992) and quality (Pinchak et al., 1991); 

diurnal temperature dynamics of the landscape (George et al., 2007). 

Livestock select the place where indicates high quality and nutritious grass, which 

cause the deviation of grazed pasture and the productivity decline. To maximize efficiency of 

pasture systems, it is important to understand the spatial distribution of livestock and impact 

of management variables on cattle behavior and subsequent performance. 

 

1.1.4. Livestock grazing systems and environmental issues 

 

Livestock excrement is not only a source of soil nutrients but are also a major source 

of global greenhouse gas (GHG) emission in grazed pasture. GHG such as carbon dioxide 

(CO2), methane (CH4) and nitrous oxide (N2O) emissions due to human activities have grown 

since pre-industrial times, with an increase of 70% between 1970 and 2004. It is very likely 

that the observed increase in CH4 concentration is predominantly due to agriculture and fossil 

fuel use. The increase in N2O concentration is also primarily due to agriculture (IPCC, 2007). 

Thus, with increasing pressure coming on to farmers to minimize environmental pollution 

from their farming operations, mitigation strategies are required.  
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Many researches on GHG emission from grazing systems have widely been 

conducted. Nitrogen (N), phosphorous (P) and faecal microbes are pollutants of major 

concern, where N can be leached as nitrate or emitted as ammonia or nitrous oxide, whereas 

organic N, inorganic P and faecal microbes move in water, predominantly in overland flow 

(McDowell et al., 2005, 2007, 2009; McDowell, 2012). A critical source area (CSA) is an 

area of land with a large source of nutrient or faecal contaminants that intersects with a 

transport mechanism – usually hydrological activity like surface runoff (McDowell et al., 

2009). Defecation and urination by grazers have direct effects on the spatial distribution of 

soil nutrients (Day and Detling, 1990; Rietkerk et al., 2000; Augustine and Frank, 2001; 

Orwin et al., 2009). Where only urine is involved, each urine patch, but typically an 

aggregation of urine patches such as in a gateway or stock camp, is nutrient rich and can be a 

CSA of N (CSAN) with losses emitted as ammonia, nitrous oxide or as nitrate in leachate to 

groundwater. Toolboxes of potential mitigation strategies exist (Monaghan et al., 2007, 2008; 

Monaghan, 2009), but unless these small CSA areas are targeted with the mitigation, the cost 

of mitigation may to be too high for whole-paddock treatment (McDowell et al., 2009; 

Betteridge et al., 2011). Farmers will need to know where these are located. Also, a regulatory 

body may need independent verification that such areas have been correctly identified and 

treated.   



 

20 
 

1.2. Objectives 

 

Better understanding of spatial information in grazing pasture is crucial to maximize 

efficiency of pasture systems and to minimize environmental pollution. In this thesis, the 

author focused on animal activities based on PA to improve productivity of forages and 

animals, and reduce environmental impact from grazed systems. The author aims for 

developing monitoring technology of grazed cattle using IT technologies. This study consists 

of two main objectives; (1) to develop a simple, cost-effective method for monitoring 

spatio-temporal changes in the eating activities of grazing cows in conjunction with GPS 

collar placement (chapters 2 and 3), and (2) to estimate spatial distribution of livestock 

excrement in the grazing systems with a Bayesian approaches (chapters 4 and 5) and UAV 

images (chapter 6). 
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1.3. Overview of the study site 

 

This study conducted in two experimental sites; the National Agriculture and Food 

Research Organization (NARO) Hokkaido Agricultural Research Center, Japan (chapters 

2–5) and the Setouchi Field Science Center (Saijo Station), Hiroshima University, Japan 

(chapter 6).  

In the NARO Hokkaido Agricultural Research Center, two experimental paddocks 

(No. 35 in chapter 2 and No. 37 in chapters 3–5) were used in this study. The paddock No. 35 

(7.6 ha), established in 1967 with five temperate species (Figure 1.1a) consisted of three 

paddocks (almost identical sizes) differing in terrain, vegetation and renovation history: 

paddock I, a relatively flat section renovated by over-sowing in 2002; paddock II, a sloped 

section (no renovation); and paddock III, a sloping section partially covered with trees (no 

renovation). All of the paddocks were established by sowing orchardgrass (Dactylis 

glomerata L.), Kentucky bluegrass (Poa pratensis L.), meadow fescue (Festuca pratensis 

Huds.), perennial ryegrass (Lolium perenne L.) and white clover (Trifoliumrepens L.) in 1967. 

Ten Japanese Black breeding cows (Bos taurus L.) and their calves have been stocked during 

the period from early May to late October for the past 10 years in this pasture and they were 

able to move freely among the three paddocks.  

Paddock No. 37 locates on a northeast slope (115–135 m above sea level, 7.95° 

average slope degree) (Figure 1.1b). The pasture was established in the 1960s by sowing 
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orchardgrass (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.), meadow 

fescue (F. pratensis Huds.), Kentucky bluegrass (Poa pratensis L.), timothy (Phleum pratense 

L.), redtop (Agrostis alba L.) and white clover (Trifolium repens L.). The pastures have long 

been used as grazing land for Japanese Black cattle (Bos taurus L.) without fertilizer 

application for the last decade. Three paddocks were delimited using electric fences (I and II, 

1.02 ha [60 m × 170 m]; III, 0.85 ha [50 m × 170 m]) and a water trough was located. Twenty 

breeding Japanese Black cows and their five calves were stocked.  

In chapter 6, the study conducted at the Setouchi Field Science Center Saijo Station, 

Hiroshima University, in a grazing paddock No.4 (Figure 1.2). This pasture was dominated by 

bahiagrass (Paspalum notatum), white clover (Trifolium repens L.), Kentucky bluegrass (Poa 

pratensis L.) and dallisgrass (Paspalum dilatatum).The annual precipitation is 1,503 mm, 

annual temperature is 13.2°C, annual minimum temperature is 8.3°C and annual maximum 

temperature is 18.6°C. 

  



 

23 
 

 

 

 

 

Figure 1.1 Locations of the experimental paddocks at the NARO Hokkaido Agricultural 
Research Center, Japan: (a) stationary pasture (No.35), (b) mixed sown pasture (No.37). 
  
  

(a) 

(b) 
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Figure 1.2 Location of the experimental paddock No. 4 in the Setouchi Field Research Center, 
Hiroshima University, Japan. 
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1.4. The structure of the thesis 

 

The thesis is composed of seven chapters, as shown in Figure 1.3. Chapter 1 clarifies 

the background and the objectives of the present study, as mentioned above. In chapter 2, 

affecting of GPS recording rate on the grazing behavior and spatial distribution of cattle was 

mentioned. In chapter 3, a statistical method for classifying the eating activity from other 

activities using an accelerometry-based activity monitor and GPS was developed. In chapter 4, 

the spatial distribution of cattle’s dung was estimated using single paddock data. In chapter 5, 

the model used in chapter 4 was improved to be more general and used three paddock data. In 

chapter 6, the author tried to detect the position of cattle dung using UAV image. In chapter 7, 

general discussions were described. 
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Figure 1.3 Flow and contents of this study.
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－Chapter 2－ 
 

GPS recording rate effect on cattle grazing behavior 
and their spatial distribution on grazed hill pasture 

 
 
 
 
 
 
 
 

 
 
 

“No man becomes rich unless he enriches others.” 
 

Andrew Carnegie (1835–1919) 
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Chapter 2: GPS recording rate effect on cattle grazing behavior and their 

spatial distribution on grazed hill pasture 

2.1. Introduction 

 

Spatio-temporal information on animal activities in a pasture, provides insights into 

pasture and animal conditions, allowing for improved pasture management and animal 

management (Turner et al., 2000). Previous research focused on tracking animals using data 

gathered by observation. Observation of animal activities is ideal to be conducted 24 hours 

continuously which is time consuming and difficult with human eyes at nighttime or foggy 

condition. Even though in daytime, observers requires patience and great difficulty. When 

there are plural observers, the possibility that a personal subjective element is included. By 

using remote observation equipment, we could record the grazing activities automatically and 

grasp the details of the action that it was hard to understand with visual method (Langbein et 

al., 1996; Scheibe et al., 1998). GPS have increasingly been used to monitor spatial 

distribution and track routes (Ganskopp et al., 2000; Ganskopp, 2001; Barbari et al., 2006) 

and are often combined with sensing devices to monitor animal activities, especially grazing 

behavior.  

Although GPS collars are useful tool for tracking animal movements, they often loss 

the satellite signals and the data sometimes contains many missing values. To draw the daily 

movement, the distance of each successive point straight line has been used (Heezen and 

Tester, 1967; Harris et al., 1990; Reynolds and Laundre, 1990; Breitenmoser et al., 1992; 

Musiani et al., 1998; Johnson et al., 2002). However, if the GPS data cannot be recorded time 
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interval, the calculation of distance traveled by the cattle is reduced. What GPS recording rate 

is sufficient when the time interval is set? In this chapter, the author tried to determine the 

minimum rate using simulation. Although, there is a report about GPS location accuracy 

(Pépin et al., 2004), the analysis using the GPS data for the long term like this study 

(five-year) has not been performed. In addition, the study site consists of relatively new 

paddock and sloping old paddock and the utilization rate of old paddock from cattle does not 

be known. It is need for performing pasture management effectively to indicate the 

availability of new paddock and old paddock. The objective of this chapter is to clarify the 

seasonal change of the spatial distribution pattern of cattle using GPS data. 

  



 

30 

 

2.2. Material and methods 

2.2.1. Study site 

 

The study was conducted in a mixed sown pasture (No.35, 7.6 ha) at the NARO 

Hokkaido Agricultural Research Center, as mentioned in section 1.3 (Figure 1.1a). The 

pasture consisted of three three paddocks differing in terrain, vegetation and renovation 

history: paddock I, a relatively flat section renovated by over-sowing in 2002; paddock II, a 

sloped section (no renovation); and paddock III, a sloping section partially covered with trees, 

in which Betula platyphylla var. japonica and Quercus spp. were dominant at the canopy 

height of 20–30 m (no renovation). 

 

2.2.2. Methods 

 

Ten breeding Japanese Black cows and their calves have been stocked during the 

period from early May to late October for the past 10 years in this pasture and they were able 

to move freely among the three subunits. The grazing trial was conducted from May 15 to 

November 2 in 2006 (172 days), from May 10 to November 5 in 2007 (180 days), from May 

2 to October 31 in 2008 (183 days), from April 28 to July 29 in 2009 (93 days) and from May 

5 to October 27 in 2010 (176 days). Each year between 3 and 6 cattle were fitted with GPS 

units (Figure 2.1) and the data was collected five minute interval. The cattle fitted GPS units 

information was mentioned on Table 2.1.  
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Figure 2.1 Photographs showing a cattle fitted GPS collar (above) and inner structure of the 
GPS collar (below). 
(Photographs are provided by Dr. Nariyasu Watanabe of the NARO Hokkaido Agricultural 
Research Center, Japan) 
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Table 2.1 Age and body weight information of cattle attached GPS collar.  
 

Cattle No. Year Age (Year) Weight (kg) 
1 2006 12 560 
2  9 524 
15  4 554 
22  3 504 
40  1 408 
1 2007 13 556 
2  10 606 
42  2 433 
46  2 443 
1 2008 14 638 
2  11 622 
23  5 672 
24  5 652 
49  2 522 
52  2 467 
24 2009 6 646 
49  3 576 
52  3 504 
24 2010 7 614 
44  4 514 
49  4 610 
52  4 526 
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2.2.3. Preprocessing and random sampling 

 

At first, the GPS data from fewer than five satellites (2D precision) were removed 

and the GPS recording rate per one day were calculated. Over the five year period, 256 days 

had 100% data (Table 2.2). Let compute the number of samples in a 100% day, it has 288 data 

points per day ([60 min / 5 min] × 24 hour = 288). In case of the recording rate was 95%, the 

number of data points per day was computed as 288 × 0.95 = 274 points per day. Similarly, 

1,000 simulations of random sampling between 75 to 100% recording rate were performed. 

Based on the simulations, the walking distances of cow (m) were calculated, and t-test was 

performed to compare the walking distance in case of 100% recording rate against 75–99% 

recording rate (Figure 2.2). All data handling was performed using R statistical software ver. 

2.15.2 (R Core Team, 2012). The distance traveled in one day were calculated based on R 

software using functions of “spDistsN1” version 0.4–19 in “SpatialKernel” package and 

determined as the integrated value of the distance between two points obtained in five minute 

intervals. Individual differences in distance traveled in one day were performed multiple 

comparison with Tukey-Kramer test after one-way ANOVA based on R software using 

functions of “TukeyHSD” and “anove”. 
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Table 2.2 Cattle number (No.) and number of days that recorded 100% GPS recording rate 
per day in 2006–2010. 
 

Year Cattle No. 100% (the number of date) 
2006 1 30 
 15 22 
 22 17 
 40 6 
2007 1 24 
 2 13 
 42 10 
 46 16 
2008 1 8 
 24 8 
 49 10 
 52 13 
2009 24 7 
 49 11 
 52 14 
2010 24 6 
 44 19 
 49 19 
 52 3 
Sum  256 
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Figure 2.2 Schematic chart of the 1,000 simulations for t-test with random sampling (e.g. GPS recording rate is 95%). 
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2.3. Results 

2.3.1. t-tests 

 

Figure 2.3 shows the relationship between GPS recording rate and the distance 

traveled after 1,000 simulations of random sampling. The higher GPS recording rate, the 

fewer the difference traveled with 100% data. If the recording rate is fewer, the distance 

traveled in the day is calculated to be less than actually traveled. The result from the t-tests is 

shown in Figure 2.4. As data recording rate is fewer, a p-level goes down and the GPS 

recording rate that was greater than 91%, p-value was higher than 0.05. Data of 1,459 days 

indicated greater than 91% of the GPS recording rate, and can be used for further analysis in 

this chapter (Table 2.3). 
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Figure 2.3 GPS recording rate in 100–75% and their distance traveled by cattle.  

 
Figure 2.4 Significance (p-value) in GPS recording rate between 75% and 99% (t-test for 
100%). 
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Table 2.3 Number of days in total and greater than 91% of GPS recording rate. 
 

Year Cattle No. All data >91% deleted 
2006 1 76 76 0 

 
2 49 25 24 

 
15 77 71 6 

 
22 32 32 0 

 
40 31 30 1 

2007 1 95 88 7 

 
2 139 136 3 

 
42 138 86 52 

 
46 77 62 15 

2008 1 146 144 2 

 
2 6 6 0 

 
23 15 14 1 

 
24 121 108 13 

 
49 95 92 3 

 
52 88 68 20 

2009 24 90 84 6 

 
49 47 27 20 

 
52 56 49 7 

2010 24 106 86 20 

 
44 76 53 23 

 
49 109 75 34 

 
52 69 47 22 

Sum 
 

1738 1459 279 
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2.3.2. Distance traveled 

 

Figure 2.5 shows the distance traveled by cattle per one day over five years, giving 

similar change patterns of distance traveled for each cattle. In 2006, the distance travelled by 

cattle tended to increase from summer season. In 2007 and 2008, however, the distance 

decreased from summer season.  

Table 2.4 shows the mean values of distance traveled of each cattle. Younger cows 

(cow No. 40, 42, 44, 49, 52) walked longer than older cows (cow No. 1, 2, 15) in the most 

years. The distance traveled by cows tended to show similar behavior among cows in same 

age. It is fact that cattle moved in a group, and thus, the older cattle followed younger cattle. 

Otherwise, older cattle might graze at same areas after leading the way. 
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Figure 2.5 Daily distance traveled of cattle in 2006–2010.  
DOY: day of year. 
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Table 2.4 Mean and standard deviation (SD) values of distance traveled for each cattle. 
 

Cattle No. Year 
The number of 

date 
Distance traveled (m) 

Mean ± SD† 
1 2006 76 3569.0 ± 553.5abc 

2 
 

25 3409.2 ± 579.1ade 

15 
 

71 3766.2 ± 562.2bdf 

22 
 

32 3844.2 ± 806.8cefg 

40   30 4387.0 ± 1114.4g 

1 2007 88 3464.0 ± 509.0h 

2 
 

136 3418.1 ± 509.0h 

42 
 

86 4238.5 ± 556.6i 

46   62 4224.4 ± 820.6i 

1 2008 144 2998.7 ± 542.7jk 

2 
 

6 2541.5 ± 190.9ji 

23 
 

14 3629.2 ± 485.0mno 

24 
 

108 3331.1 ± 617.9klmp 

49 
 

92 3454.1 ± 617.9np 

52   68 4084.6 ± 643.6o 

24 2009 84 3610.1 ± 589.4q 

49 
 

27 3661.3 ± 498.9q 

52   49 4219.1 ± 694.7r 

24 2010 86 3430.6 ± 650.4s 

44 
 

53 3995.0 ± 769.4t 

49 
 

75 3397.0 ± 730.8s 

52   47 4156.0 ± 797.8t 

†SD, standard deviation. Values with different letters show significant differences among different cattle in 
the year (Tukey-Kramer tests). 
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2.3.3. Monthly changes in utilization rate of the paddocks 

 

Figure 2.6 shows the monthly changes in utilization rate of the three paddocks. 

Paddock I, where locates flat area including a small renovated area, was mainly used by cattle 

for their grazing over the five years grazing trial. The utilization in paddock I tended to 

decrease after August, while the utilization of paddock II and II were increased. It is 

considered that cattle moved to the west wide paddocks (II and III), which is a relatively fast 

location of sunlight strikes because the temperature was lower after August. Particularly, in 

August, the utilization of paddock III (a sloping section partially covered with trees) was 

increased. 
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Figure 2.6 Monthly changes of utilization rate for three paddocks by cattle in 2006–2010.
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2.3.4. Changes in utilization rate with the time of day 

 

To compare the utilization rate with the time of day, the author divided the daily GPS 

data into four periods of each six hour period as 3:00–9:00, 9:00–15:00, 15:00–21:00 and 

21:00–3:00, and computed their monthly changes. The results showed; (i) In the early 

morning (3:00–9:00), the cattle uqually used for all of the paddocks (Figure 2.7a); (ii) In the 

daytime (9:00–15:00), the cattle spent the majority of their time in paddock I (Figure 2.7b); 

(iii) In the late afternoon and evening (15:00–21:00), the utilization rate of paddocks II and III 

were increased (Figure 2.7c); and (iv) At nighttime (21:00–3:00), it seems that cattle rested in 

paddocks II and III (Figure 2.7d). Overall, these results suggested that the cows mostly stayed 

in the lower-altitude area of the paddock during the daytime, while the cows spent most of 

their time in the higher-altitude area of the paddock during the nighttime. 
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Figure 2.7 Utilization rate of three paddocks in four equal size periods based on the time of 
day (2006–2010). 
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2.4. Discussion 

 

The results of this chapter indicated that the paddock I, a relatively flat section 

renovated, was mainly used by cattle for their grazing over the five years grazing trial, 

especially in daytime. Moreover, the utilization of paddocks II and III were decreased in hot 

summer season (August). In the summer season, cattle often prefer to spend riparian areas, 

and spend a disproportionate amount of time in these areas as compared to uplands (Smith et 

al., 1992). In this experiment, the water trough was located in paddock I. Cattle selected 

patches with higher levels of CP concentration and sward bulk density (Hirata et al., 2006). 

Moreover, Okamoto et al. (1994) investigated utilization of a pasture consisting of an 

improved area (having high herbage allowance) and a native area (having low herbage 

allowance). The paddock I had more CP content than paddocks II and III (Watanabe et al., 

2010). It is likely that cattle concentrated in paddock I that had high quality grass and the 

amount of grasses were increased there, and cattle began to disperse from summer. It could be 

related to the change of distance traveled from summer. However, there were not the 

significant differences in herbage mass between paddocks. The sloping level was related to 

increase the utilization of paddocks II and III. Slope steepness was the only physical factor 

influencing cattle distribution on mountain rangeland (Gillen et al., 1984).  

The sloping areas, paddocks II and III in this study were mainly used at nighttime. 

The result confirmed previous finding that cattle rested at nighttime on the upper half of the 

slope in extensive settings, regardless of the season (Ohno and Tanaka, 1966). Arnold and 

Dudzinski (1978) also reported that cattle rested on the higher area in the nighttime. Moreover, 



 

47 

 

Yause et al. (1997) found that cattle shifted the resting site to the lower elevation zones in 

daytime and in the higher elevation zone in the nighttime. Similar to previous studies, cattle 

tended to move to sloping area (paddocks II and III) in this study. In the early morning, the 

sloping area was mostly used by cattle. It was related that the increasing utilization rate in the 

paddocks II and III in the nighttime. During nighttime resting, cattle preferred to rest on 

relatively gentle slopes (0–15°) and avoided resting on steep slopes (>25°) (Yasue et al., 

1997). In the present study, the sloping degree in paddock II and III were 9.0° and 8.2°, 

respectively. Although, several areas in the paddocks showed steep land surface (>15°), it is 

easily for cattle to move to another place. It is believed that cattle move to higher position at 

nighttime in order to ensure a wider field of view, which becomes easy to find the enemy for 

cattle. 

Based on the results, it is necessary to increase the utilization of paddock II to 

prevent premature degradation of the paddocks I and III. Grassland renovation is one of the 

solutions, but it is hard to use machines in paddock II due to the slope. Thus, it is need to 

consider the other solutions, such as an installation of supplements and water tank. In 

previous study, water developments, salting, and fencing have been used successfully to 

improve livestock grazing distribution on both private and public lands (Bailey et al., 2001). 

Moreover, earlier studies suggested that the location of cattle was related to a particular area 

and their activities in that area, which can be affected by grazing management and pasture 

topography (Yamada et al., 2011), concentrations and sward bulk densities (Senft et al., 1985; 

Ganskopp and Bohnert, 2009), and distance from water (Roath and Krueger, 1982; Ganskopp, 

2001).  
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－Chapter 3－ 
 

Monitoring grazing behavior of cattle with an 
accelerometry-based activity monitor and GPS 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

“Everything should be made as simple as possible, but not simpler.” 

Albert Einstein (1879–1955) 
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Chapter 3: Monitoring grazing behavior of cattle with an 

accelerometry-based activity monitor and GPS 

3.1. Introduction 

 

Spatio-temporal information on the grazing behavior of animals can help farmers do 

the efficient management of the pasture and animals. Thus, the development of simple, 

cost-effective tools for timely monitoring of grazing cows would benefit herders and 

researchers.  

An increasing number of analysis tools have been developed to aid the collection of 

data on spatio-temporal changes in grazing behaviors. GPS which record animal locations 

with high temporal frequency, have increasingly been used to monitor spatial distribution and 

track routes (Ganskopp et al., 2000; Ganskopp, 2001; Barbari et al., 2006) and are often 

combined with sensing devices for monitoring animal activities, especially grazing behavior. 

Information on grazing behavior can be acquired from these devices by measuring the 

electrical resistance of jaw opening (Penning, 1983; Matsui et al., 1991; Rutter, 2000) or by 

pendulum pedometers fitted around the neck (Phillips and Denne, 1988; Umemura et al., 

2009), tilt sensors attached to a commercial GPS collar (Ganskopp, 2001), devices that record 

the sounds of bites and chews in grazing (Ungar and Rutter, 2006) and accelerometers fitted 

on the jaw or neck (Wark et al., 2007; Watanabe et al., 2008; Moreau et al., 2009). However, 

most of these devices cannot be used by farmers because they are capable taking 

measurements for only a few days due to their high energy consumption or because they are 

expensive and require extensive experience to attach them to animals (Ungar and Rutter, 
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2006). Moreover, the data obtained by such sensing devices are complicated, and the 

classification of grazing behavior requires specific analysis software, such as the “Graze” 

program (Rutter, 2000). 

Recently, simple accelerometry-based activity monitors have been developed for 

studies of human health (Kumahara et al., 2004; McClain et al., 2007). Although these 

devices convert raw accelerometer data into an activity level and output by the criteria 

considered in each proprietary subtly different human activity, they can be used for animal 

behavior studies that include data processing and analysis. Ueda et al. (2011) developed a 

simple method for identifying the eating activity of dairy cows in flatland pasture using the 

Kenz Lifecorder EX (LCEX; Suzuken Co. Ltd., Nagoya, Japan), which has recently been 

developed into a commercially available tool for management of and research on human 

health at a relatively low price (approximately 430 US dollars per unit). Ueda et al. (2011) 

processed the data obtained from the device with linear discriminant analysis (LDA) and 

succeeded in identifying the eating activity of cows in pasture with a correct discrimination 

score of 94.5%. The results suggest that an accelerometry-based activity monitor is a useful 

tool for identifying the activities of cows in pasture and that the LCEX system allows for the 

easy measurement of eating time and facilitates determining the pattern of eating activity of 

cows grazing on pasture. However, for the further development of cow activity monitoring 

using the device, we needed to test the LCEX system and LDA in a pasture with a 

heterogeneous environment, especially slope pasture, because most grazed pasture in Japan is 

located on mountainous or hilly land. Moreover, in conjunction with GPS location 
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information, it is expected that spatial information on cow grazing behavior can be obtained 

easily and cost-effectively. 

The aim of this study was to develop a statistical method for classifying the eating 

activity from other activities using the data obtained by LCEX and to monitor spatio-temporal 

changes in the eating activities of grazing cows in conjunction with GPS collar placement. In 

the present study, logistic regression (LR) and an LDA function analysis (Fisher, 1936) were 

attempted for the classification, which have been frequently used for animal activity pattern 

classification (Schleisner et al., 1999; Ungar et al., 2010). And using the estimated eating 

activity data and the GPS location data, the spatial pattern map of eating or other in the 

paddock was created. 
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3.2. Material and methods 

3.2.1. Study site 

 

The study was conducted in a mixed sown pasture (No.37, paddock III, 0.85 ha) at 

the NARO Hokkaido Agricultural Research Center, as mentioned in section 1.3 (Figure 1.1b). 

In this paddock, 20 Japanese Black breeding cows and their five calves were stocked for four 

days during the period from 10:00 June 14 to 10:00 June 18, 2010. 

 

3.2.2. Kenz lifecorder EX (LCEX) 

 

The LCEX (weight, 60 g; width, 72.5 mm; height, 41.5 mm; thickness, 27.5 mm) is a 

single-axis accelerometer that measures acceleration at a rate of 32 samples per second and 

records a step count for humans and an intensity of physical activity at 11 scaled magnitudes, 

including 0 (no movement), 0.5 (subtle) and 1–9 (1: light; 9: vigorous) at four-second 

intervals for five weeks (Figure 3.1). According to Kumahara et al. (2004) and McClain et al. 

(2007), an activity level of 0 (AL_0) indicates that the acceleration values are always less than 

0.06 G during the four-second sampling interval. However, AL_0.5 indicates that, although 

acceleration values above the minimum threshold (0.06 G) exist, these values were found for 

fewer than three pulses during the four-second sampling interval. When the sensor detects 

three or more acceleration pulses in the four-second interval, the activity is categorized from 

AL_1 (0.06 G) to AL_9 (1.94 G). The collected data can be easily downloaded to a computer 
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for analysis using Kenz Physical Activity Analysis software ver. 1.0 (Suzuken Co. Ltd., 

Nagoya, Japan).  

  



 

54 

 

 
 
 
 
 
 
 

 
 
 

 

  

Figure 3.1 Diagrammatic representation of location of GPS tracking collar and LCEX 
accelerometer on the neck of grazing cattle evaluating the utility of accelerometers for 
quantifying the foraging times of cattle. 
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3.2.3. Fitting GPS and LCEX to cattle 

 

Four cows (cow 1: 596 kg, 16 years old; cow 36: 516 kg, 6 years old; cow 50: 588 kg, 

4 years old and cow 63: 395 kg, 2 years old) were selected from the 20 cows based on the 

balance for age and body weight. Each cow was fitted with a GPS collar (CM-10kx, Furuno 

Electric Co. Ltd., Nishinomiya, Japan) that had a 12-channel GPS receiver that allowed the 

simultaneous use of signals from up to 12 satellites and a collar attached to a small fabric bag 

containing an LCEX. The LCEX was wrapped in a vinyl bag for waterproofing and placed 

within the small fabric bag (Figure 3.1). During four-day grazing periods, the positions of the 

cows were recorded every minute by the GPS collars. 

 

3.2.4. Field observation of cattle’s grazing behavior 

 

The author recorded the behavior of four cows with attached LCEX and GPS 

monitors from June 16 to 18, 2010. In the three-day field observation period, a total of 15 

hours of grazing behavior data were obtained. Three observers monitored, and recorded cow’s 

behavior (eating, ruminating or resting) every minute. The weather during this experiment 

was clear except for day three; it rained a total of 26.5 mm between 14:00 June 16 and 4:00 

June 17. The mean air temperature was 18.1ºC, and the maximum and minimum temperatures 

were 24.5ºC and 15.2ºC, respectively. The sunrise, meridian passage, and sunset times at the 

experimental paddock were 3:52, 11:35 and 19:18, respectively. 
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3.3. Discriminant analysis for estimating animal activity 

 

In this study, logistic regression (LR) and linear discriminant analysis (LDA) were 

used to estimate animal activities. All data handling and discriminant analyses were 

performed using R statistical software, version 2.12.1 (R Development Core Team, 2010). 

 

3.3.1 Logistic regression (LR) 

 

LR model arises from the desire to model the posterior probabilities of the K classes 

via linear functions in x, while at the same time ensuring that they sum to one and remain in 

[0,1]. According to Hastie et al (2008), the model has the form 

    
           

           
       

   [3.1]  

    
           

           
       

   [3.2]  

  

    
             

           
             

   [3.3]  

The model is specified in terms of K−1 log-odds or logit transformations (reflecting 

the constraint that the probabilities sum to one). Although the model uses the last class as the 

denominator in the odds-ratios, the choice of denominator is arbitrary in that the estimates are 

equivariant under this choice. A simple calculation shows that 

             
          

   

             
      

   

           [3.4]  
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 [3.5]  

and they clearly sum to one. To emphasize the dependence on the entire parameter set 

         
               

  , we denote the probabilities                    . 

When K = 2, this model is especially simple, since there is only a single linear 

function. It is widely used in bio-statistical applications where binary responses (two classes) 

occur quite frequently. For example, patients survive or die, have heart disease or not, or a 

condition is present or absent. 

 

3.3.2. Linear discriminant analysis (LDA)  

 

Discriminant analysis, which is developed by R.A. Fisher in 1936 (Fisher, 1936), is a 

classic method of classification. This analysis is used to determine variables discriminate 

between two or more naturally occurring groups. The model has form 

                                      [3.6]  

Coefficient    is obtained by maximizing the ratio of the variance for between-groups and 

within-groups under the assumption of equal variances for the group. 

                                     [3.7]  

 

                                                                  

  
 

   
   

 

   

   
       

       [3.8]  
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 [3.9]  

 

3.3.3. Data treatment and comparison of LR and LDA 

 

The LCEX data were summed every minute to match the 1-min interval used for 

field observations. To distinguish between foraging and all other recorded activities, the 

1-min interval data from LCEX and the observations were subjected to LR and LDA. 

 To validate the accuracy of the LR and LDA functions, a bootstrap procedure with 

10,000 iterations was applied, based on an independent test data set, as in Watanabe et al. 

(2008). For each iteration process, the data were randomly divided into training and test 

subsets in a proportion of two to one, respectively. Then, the training subset data were used to 

develop the LR and LDA functions. Finally, using the functions, classification accuracies of 

eating activities in the test subset data were calculated based on R software using functions of 

“glm” version 1.0 and “lda” version 1.3.2. 
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3.4. Results 

3.4.1. Eating activity 

 

All LCEX and GPS collars successfully acquired scheduled records during the 

four-day grazing periods. From the 15 hours of behavioral observation, 906 minutes of data 

were obtained for each cow, giving a total of 3,624 minutes of data (eating, ruminating, 

resting and others data were 1,123, 1,615, 757 and 126 minutes, respectively). The overall 

mean activity level (AL min-1) values and standard deviations (SD) were 15.1 ± 7.2 for 

foraging and 2.7 ± 5.9 for other activities (Figure 3.2 and Table 3.1). For each cow, the mean 

activity level for foraging and for other activities ranged from 13.9 to 16.4 AL min-1 and 1.4 

to 4.5 AL min-1, respectively.  

Figure 3.3 shows the histograms of the percent correct discrimination scores for 

eating in 10,000 bootstrap replicates using the LR and LDA functions. The threshold values in 

the LR results for each cow were larger (8.5–16.6 AL min-1) than the LDA threshold values 

(7.8–10.4 AL min-1) (Table 3.1). For the pooled data set, the mean LR and LDA values (± 

SD) were 10.8 ± 0.2 and 8.9 ± 0.1, respectively. Overall, the LDA results showed a higher 

correct discrimination percentage for all cows (90.6 to 94.6%) than did the LR results (80.8 to 

91.8%). Similarly, the correct discrimination percentages for LDA and LR on the whole data 

sets were 92.4% and 85.6%, respectively. The proportion of true non-foraging observations 

using LDA in pooled data set was resting (6.8%) and ruminant activities (0.8%) that were 

misclassified as foraging activity.  
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Figure 3.2 Distributions of the LCEX activity levels (AL min-1) for eating activity and other 
activities in total of four cows during 15 hours behavioral observation. 
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Figure 3.3 Histogram showing the percentage of correct answers obtained in the feeding 
activity of bootstrapping 10,000 times using logistic regression (LR) and linear discriminant 
analysis (LDA). 
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Table 3.1 Activity level (AL min-1) in eating activity and other activities, threshold value and percent correct discrimination using logistic 
regression (LR) and linear discriminant analysis (LDA).  
 
  Activity level (AL min-1)†  Logistic regression (LR)‡  Linear discriminant analysis (LDA) 

Data set 
Eating 
activity 

Other 
activities   

Threshold 
value 

Percent correct 
discrimination (%)   

Threshold 
value 

Percent correct 
discrimination (%) 

Cow 1 14.1 ± 7.1 1.4 ± 4.0   8.5 ± 0.4 91.2 ± 1.4   7.8 ± 0.2 94.6 ± 0.8 
Cow 36 16.4 ± 8.8 4.5 ± 7.8   16.6 ± 0.7 80.8 ± 1.9   10.4 ± 0.2 90.6 ± 1.9 
Cow 50 16.2 ± 7.3 2.3 ± 5.0   10.1 ± 0.4 88.8 ± 1.5   9.3 ± 0.2 93.5 ± 0.8 
Cow 63 13.9 ± 5.1 2.6 ± 5.3   8.5 ± 0.3 91.8 ± 1.3   8.2 ± 0.1 94.3 ± 1.0 
Total 15.1 ± 7.2 2.7 ± 5.9   10.8 ± 0.2 85.6 ± 0.9   8.9 ± 0.1 92.4 ± 0.4 
† Activity levels are means ± standard deviation for each cow (n = 906) or for total cow (n = 2436) in eating activity and 
other activities. 
‡ Threshold values (median efficient level) of activity level and percent correct discrimination values (%) in LR and LDA 
are means ± standard deviation (n = 10,000). 
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3.4.2. Eating time 

 

Applying the LDA function, the hourly pattern of eating activity (eating time per 

hour) was obtained for each cow (Figure 3.4), and Table 3.2 summarizes the cow eating time 

per day (min day-1) and the percentage of time spent eating. Each cow primarily grazed during 

the daylight period, which started at sunrise and ended at sunset. The main periods of time 

that the cows spent on eating activity were after sunrise (4:00 to 5:00), before noon (10:00 to 

12:00), and before sunset (16:00 to 20:00). Over the course of a day, the cows spent on 

average 443 to 475 minutes (30.7 to 33.0% per day) eating (Table 3.2). 
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Figure 3.4 Hourly distributions of cow eating activity obtained from LCEX during a four-day 
grazing experiment. 
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Table 3.2 The daily eating time for the results of LDA and the percentage per one day for each 
cow. 
 

Cow no. 
Eating time by LCEX (min d-1) and the percent per day (%)1 
Day 1 Day 2 Day 3 Day 4 

1  366 (25.4%) 324 (22.5%) 381 (26.5%) 405 (28.1%) 
36  437 (30.3%) 456 (31.7%) 503 (34.9%) 459 (31.9%) 
50  496 (34.4%) 503 (34.9%) 445 (30.9%) 513 (35.6%) 
63  479 (33.3%) 488 (33.9%) 503 (34.9%) 521 (36.2%) 
Mean 445 (30.9%) 443 (30.7%) 458 (31.8%) 475 (33.0%) 
1 Eating time was predicted by using LDA functions.    
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3.4.3. Spatial distribution of eating time and other activities during the daytime and 

nighttime 

 

Figure 3.5 shows the spatial distributions of the four cows during their time spent 

eating and in other activities during the daytime (9:00 to 15:00) and nighttime (21:00 to 3:00). 

During the daytime (Figure 3.5a), the cows mostly grazed in the lower-altitude area of the 

paddock, covering a wider area than at night. During the nighttime (Figure 3.5b), the cows 

spent most of their time in the higher-altitude area of the paddock, with less eating activity. 
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Figure 3.5 Spatial distributions of the cows’ time spent eating and other activities during the (a) 
daytime (9:00 to 15:00) and (b) nighttime (21:00 to 3:00). 
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3.5. Discussion 

 

This study demonstrates that LCEX can be used to determine eating activity in 

grazing beef cows. The LCEX device was originally developed for research on human health 

and human health management (Kumahara et al., 2004; McClain et al., 2007) and was 

recently used by Ueda et al. (2011) for monitoring the eating activity of dairy cows. Ueda et al. 

(2011) showed that eating activity can be identified with less than 5.5% misclassification 

using AL_1 as a threshold value based on the four-second data set, which corresponds to an 

activity level of 15 when simply calculated on a per-minute basis. Compared to this finding, 

our results based on the accumulated values of one-minute intervals indicated that results 

using the threshold values of 10.8 min-1 for LR and 8.9 min-1 for LDA obtained similar 

misclassification rates. Some previous studies have indicated that discriminant analysis is a 

useful method for identifying accelerometer variables that classify series of successive cow 

jaw movements into rumination and eating behaviors (Schleisner et al., 1999; Watanabe et al., 

2008). In the present study, the author found that LDA results showed a higher correct 

discrimination percentage for all cows (90.6 to 94.6%) than did the LR results (80.8 to 91.8%) 

(Figure 3.3). 

The accelerometry-based activity monitor data using the LDA function was used to 

characterize the temporal organization of the cows’ eating activities in the pasture and 

allowed calculation of the hourly and daily time the cows spent eating (Table 3.2 and Figure 

3.5). The diurnal pattern of the cows observed in the present study confirmed previous reports 

that cows graze more during daylight hours than at night (Ueda et al., 2011). There were two 

major grazing periods during the day: a long afternoon period and a shorter morning period, 

which were in accordance with the results of Schlecht et al. (2004) and Lin et al. (2011). By 

combining the cow GPS locations and the spatial distributions of eating and other activities 
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during the daytime and nighttime, the author can conclude that the cows preferred to graze on 

the lower-altitude areas of the paddock during the day and, in contrast, spent most of in the 

night in the higher-altitude area with little eating activity (Figure 3.5). These results are in 

agreement with a previous study of bovine spatial distribution during grazing and resting in a 

hilly paddock (Yasue et al., 1997; Watanabe et al., 2010). 
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－Chapter 4－ 
 

A methodology for determining cattle dung position 
 

 
 
 
 
 
 
 
 
 

 
 
 

“Without ambition one starts nothing. Without work one finishes nothing.  

The prize will not be sent to you. You have to win it.” 

Ralph Waldo Emerson (1803–1882)  
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Chapter 4: A methodology for determining cattle dung position 

4.1. Introduction 

 

Cattle plays an important role in the nutrient cycling in pasture ecosystems (Hirata et 

al., 2011). They remove nutrients from the plants and return the nutrients to the pasture 

through their urine and dung (Betteridge et al., 2010). However, cattle urine and dung (feces) 

in the ecosystems provide not only a source of soil nutrients but are also a major source of 

greenhouse gas (GHG) emissions (Holter, 1997; Sordi et al., 2014). With the increasing 

pressure on farmers to minimize environmental pollution from farming operations, better 

understanding of the spatial distribution of excreta from grazing cattle is required.  

Knowledge of the sites where livestock excrete will contribute to ensuring that GHG 

palliatives such as dicyandiamide and 3,4-dimethylpyrazole phosphate are used economically 

and efficiently. However, the excreta research of domestic animals by observation is laborious. 

Consequently, urine sensors that detect and log each urination event of female sheep and 

cattle have been developed. In addition, in combination with a global positioning system 

(GPS), these devices can detect livestock urinary event frequency and location (Betteridge et 

al., 2010). Using the device, the distribution of cattle and sheep urinary events in target fields 

is predictable (Betteridge et al., 2008), whereas useful equipment to detect dung position has 

not yet been developed. Previous research has suggested that the position of dung is related to 

grazing management and pasture topography. Excretal clumps are influenced by the effects of 

grazing equipment, such as drinking stations and salt racks (Hakamata and Hirashima, 1978). 

The proportion of an area occupied by fresh dung pats was considerably greater in a gently 

sloping site used for resting and decreased with an increase in the slope angle of inclination 

(Ide et al., 1998). Furthermore, earlier studies suggested that the location of cattle dung was 

related to the time spent by cattle in a particular area and their activities in that area, which 
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can be affected by grazing management and pasture topography (Yamada et al., 2011), 

including crude protein (CP) concentrations and sward bulk densities (Senft et al., 1985; 

Ganskopp and Bohnert, 2009), plant species composition and forage quantity (Smith et al., 

1992), geographical factors (e.g. slope, aspect) (Yasue et al., 1997), and distance from water 

(Roath and Krueger, 1982; Ganskopp, 2001). Excretion frequency is influenced by the 

quantity and quality of forage, outside temperature, humidity, milk yield and individual 

differences between cattle (Hafetz, 1975).  

To improve upon previous knowledge obtained in field studies, considerable effort 

has been made to predict and understand the spatial distribution of cattle dung in grazing 

systems using a multiple linear regression (MLR) approach (Yamada et al., 2011). However, 

Wang et al. (2005) noted that the basic premise that the residual variance of response variable 

is constant (homoscedasticity) is violated, and the MLR approach is deemed inappropriate. 

Moreover, failure to account for auto-correlation prevents in-depth interpretation of almost all 

geographical analyses (Jetz et al., 2005) and can lead to incorrect conclusions. A generalized 

linear model (GLM) is a framework for statistical models that includes linear and logistic 

regression as special cases (Gelman and Hill, 2006) and allows for response variables that 

have error distribution other than a normal distribution. However, a GLM cannot express an 

individual difference that a researcher cannot measure and did not observe. Variability of the 

data obtained in the investigation cannot be explained well by a simple Poisson or binomial 

distribution.  

In heterogeneous environments, such as grazed pastures and especially hill country 

pastures, the variation of parameter values will often occur in unison and therefore show 

auto-correlation (Fukasawa et al., 2009). We usually anticipate that adjacent locations are 

more similar than those further apart (Besag et al., 1991). An extension to GLM, GLMM, can 

account for non-normal data when random effects are present (Bolker et al., 2009). A CAR 

https://en.wikipedia.org/wiki/Normal_distribution
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term is added to the GLMM to account for spatial heterogeneity in the data that the simpler 

GLM does not account for. The CAR term allows us to express the spatial non-independency 

between adjacent locations by introducing a spatial effect to model some of the random 

variation. In this way it is possible to infer the unknown factors affecting the subject by 

estimating the pattern of spatial random effects (Fukasawa et al., 2009). 

Moreover, the application of a Bayesian approach provides a more flexible strategy 

that expresses parameters as a probability distribution (Kubo, 2009). One advantage of 

Bayesian estimation is the ease of including the CAR term in the analysis. Therefore, the use 

of Bayesian approaches to modeling spatial data is becoming increasingly popular (Clark, 

2005).  

In this study, the GLMM and the addition is the CAR term model on a Bayesian 

approach were employed to predict the spatial distribution of cattle dung in a slope pasture. 

As a first step, herbage green biomass (GBM) and the distance from a water trough (Dw) were 

used as explanatory variables. Based on a simple model involving only two parameters, we 

discuss the influence of these parameters and the spatial autocorrelation of the cattle dung 

distribution. The author has not linked urine distributions to these models although the 

distribution patterns of faeces are likely to be similar (White et al., 2001). 
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[4. 1] 

4.2. Material and methods 

4.2.1 Dataset for modeling 

 

The study site was same in chapter 3. After the four-day grazing experiment, the 

experimental paddock was divided into 10 m × 10 m grid cells (5 × 17 = 85 cells), and the 

number of dung deposits (Nd) in each cell was counted (Figure 1.1b, paddock III). The 10 m × 

10 m grid size was based on our previous study estimating the spatial distribution of GBM 

and CP concentration using a hyperspectral radiometer over the same paddock (Lee et al., 

2011), and this study suggested that the appropriate sampling grid size for GBM and CP 

concentration in the pasture should be <15 m × 15 m. Moreover, considering the vegetation 

survey and labor required to count Nd, the grid cells (10 m × 10 m) were used. Two 

parameters, GBM and Dw, were used in the current study as explanatory variables. GBM was 

estimated using a rising plate meter (RPM) prior to the grazing trial and was defined as: 

                                             

in which x is the value of the RPM reading. Dw was computed using ArcGIS ver. 10 (ESRI, 

Redlands, CA, USA). The mean values of the parameters for each cell were calculated based 

on the grid. 

 

4.2.2. Generalized liner model (GLM), generalized linear mixed model (GLMM) and 

Bayesian model 

 

Figure 4.1 shows the method to extend the model from linear model to hierarchical 

Bayesian model. GLMs are flexible generalization of ordinary linear regression and allow for 

response variables that have error distribution models not only a normal distribution but also 

Poisson, binomial, categorical, etc. By allowing the linear model to be related to the response 

http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/Normal_distribution
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variable via a link function and by allowing the variance of each measurement to be a 

function of its predicted value, linear model is generalized to GLM. R function name is “glm” 

version 1.0. 

GLMMs are an extension to the generalized linear models to allow in which the 

linear predictor contains random effects in addition to the usual fixed effects. These random 

effects are usually assumed to have a normal (or Gaussian) distribution. R function name is 

“glmmML” version 0.82-1. 

The basis for Bayesian inference is Bayes’ rule, also called Bayes’ theorem, which is 

a simple result of conditional probability. Bayes’ rule describes the relationship between the 

two conditional probabilities p (A|B) and p (B|A): 

         
             

     
  [4.2] 

p (A|B) is the conditional probability of A given B and p (B|A) is the conditional probability 

of B given A. The equation [4.2] is an undisputed fact and can be proven from simple axioms 

of probability. However, what used to be more controversial, and partly still is (e.g. Dennis, 

1996; de Valpine, 2009; Lele and Dennis, 2009; Ponciano et al., 2009), is how Bayes used 

Bayes’ rule. He used it to derive the probability of the parameters θ, given the data x, this is 

the posterior distribution p(θ|x): 

         
             

     
  [4.3] 

p (θ) is the prior distribution for θ. p (θ|x) is the posterior distribution for θ. The conditional 

distribution p (x|θ) is likelihood and describes how the data depend on the parameter values. 

To make this product a genuine probability distribution function, with an integral equal to 1, a 

normalizing constant p (x) is needed as a denominator; this is the probability of observing 

one’s particular data set x. To ignore the denominator, Bayes’ theorem essentially states that  

                                                       

http://en.wikipedia.org/wiki/Generalized_linear_model
http://en.wikipedia.org/wiki/Random_effects
http://en.wikipedia.org/wiki/Fixed_effects
http://en.wikipedia.org/wiki/Normal_distribution
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where   reads as “is proportional to”. Thus, Bayesian inference works by using the lows of 

probability to combine the information about parameter θ contained in the observed data x, as 

quantified in the likelihood function p(x|θ), with what is known or assumed about the 

parameter before the data are collected or analyzed.  

A Markov Chain Monte Carlo (MCMC) is a general method based on drawing from 

the posterior distribution p (θ|x) given a model, a likelihood p (θ|x), and data x, using 

dependent sequences of random variables. That is, MCMC yields a sample from the posterior 

distribution of a parameter. One of the most widely used MCMC techniques is Gibbs 

sampling (Geman and Geman, 1984). The author expended GLMM to Bayesian model using 

R and OpenBUGS, a software package for performing Bayesian inference using Gibbs 

sampling. R function name is “R2OpenBUGS” version 3.2–2.1.  

Reference: Kéry, 2010 
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Figure 4.1 Schematic chart of the method to extend the model from linear model to hierarchical 
Bayesian model (Kubo online: IwanamiBook.html). 

 
  



 

78 
 

[4. 5] 

[4. 4] 

[4. 6] 

4.2.3. Modeling methodology 
 

Hirata et al. (1990) reported that the dispersion pattern of dung pats within 

rectangular areas within a pasture is generally well described by a Poisson distribution. 

Because the response variable Nd was count data, it was assumed to follow a Poisson 

distribution with mean λi where λi includes random effects with spatial correlation. The author 

assumed a Poisson GLMM defined as: 

 

               

                               

                                                         

                   
 

     
                  

 

where b1 is the intercept; b2 and b3 are coefficients; and ri represents random effects for grid 

number i = 1, 2, …, 85 with mean of zero and variance of τ1. Similarly, the author assumed 

GLMM with the CAR term defined by 

 

                                 

                                                         

      AR  d      eight  , Num        

    
 

     
                  

 

where rho represents the spatial random effects for each grid position. The CAR term was 

used to specify the intrinsic Gaussian CAR prior distribution (Thomas et al., 2004), Adj[] is a 

vector listing the ID numbers of the adjacent areas for each grid cell; Weight[] is a vector the 

same length as Adj[] giving unnormalised weights associated with each pair of areas. Taking 

Wij = 1 if areas i and j are neighbors gives a vector of 1's for Weight[] and implies a weight of 
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0 if areas i and j are not adjacent. Num[] is the number of sites adjacent to each grid cell, and 

τ2 is the precision or inverse variance parameter for the Gaussian  AR prior, where σ is 

assumed to follow a uniform (0, 10) distribution. All of the explanatory variables were 

standardized (mean = 0, standard deviation = 1) before use. 

MCMC simulation is used for estimation and inference (Zhao et al., 2006). The 

length of the MCMC chain for this model was 100,000 cycles after 30,000 burn-in cycles, 

with samples saved every 100 cycles. The number of chains was three. All data handling and 

modeling analyses were performed using R statistical software ver. 2.15.2 (R Core Team, 

2012) and OpenBUGS ver. 3.2.2. (Lunn et al., 2009). 
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4.3. Results 

 

The mean, maximum and minimum values of Nd were 12.7, 35.0 and 1.0, 

respectively. The posterior means, standard deviation (SD) and 95% posterior probability 

intervals (PPIs) obtained through MCMC simulation are presented in Table 4.1. The R-hat 

values, which are an indicator of the convergence assessment (data are not shown), for all 

parameters achieved 1.0, and the effective sample size was sufficient for MCMC sampling. In 

the GLMM, the posterior means for b1, b2 and b3 were 2.365 (95% PPI = 2.232–2.492), 0.363 

(0.227–0.504) and −0.061 (−0.194–0.072), respectively. In the CAR model, the posterior 

means for b1, b2 and b3 were 2.361 (95% PPI = 2.283–2.438), 0.219 (0.085–0.351) and −0.367 

(−1.018–0.270), respectively. Deviance information criterion (DIC) in the GLMM and added 

CAR term were 502.6 and 291.5, respectively. 

The predictive accuracies of the GLMM and added CAR term model between the 

observed and predicted values of Nd were evaluated using a validation plot (Figure 4.2) and a 

spatial distribution map (Figure 4.3). The predicted values of Nd were the median of the 

posterior distribution. Increased Nd values were primarily identified in two areas (the upper 

area and the lower area near the water trough), whereas larger random effects were obtained 

exclusively in the upper area. 
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Table 4.1 Posterior means (Mean) and standard deviations (SD) and quartiles (2.5, 50.0 and 
97.5%) obtained in the generalized linear mixed model (GLMM) and added the intrinsic 
conditional autoregressive (CAR) term through Markov Chain Monte Carlo (MCMC) 
simulation. b1 is the intercept, b2 is the coefficient of herbage green biomass and b3 is the 
coefficient of the distance from a water trough. σ are the standard deviations. 
 

Model Coefficient  Mean  SD  2.5%† 50.0%† 97.5%† 

GLMM b1  2.365 0.066 2.232 2.367 2.492 

b2  0.363 0.070 0.227 0.362 0.504 

b3  –0.061 0.068 –0.194 –0.062 0.072 

σ1 0.497 0.057 0.393 0.494 0.619 

GLMM + 

CAR term 

b1  2.361 0.039 2.283 2.367 2.438 

b2  0.219 0.067 0.085 0.234 0.351 

b3  –0.367 0.327 –1.018 –0.365 0.270 

σ2 0.597 0.079 0.455 0.592 0.764 

† The values from 2.5% to 97.5% indicate the 95% posterior probability intervals. 
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Figure 4.2 Predicted and observed number of cattle dung deposits (n) in each grid (10 × 10 
m) from the generalized linear mixed model (GLMM) (a) and added the intrinsic conditional 
autoregressive (CAR) term (b) based on the herbage green biomass (GBM) and distance from 
the water trough (Dw). 
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Figure 4.3 The 10 m × 10 m grid cells in the paddock and spatial distributions of the 
observed and predicted number of dung deposits per cattle (a) and the predicted random 
effects (b) in each cell (10 m grid) based on added the intrinsic conditional autoregressive 
(CAR) term for the experimental paddock. 
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4.4. Discussion 

 

Our results indicated that the distribution of cattle dung can be estimated using 

GLMM and added CAR term model that consider random effects. DIC in the GLMM and 

added CAR term model were 502.6 and 291.5, respectively. Adding a CAR term, that has 

advantages in cases where there are missing values coverage because it restricts the variance 

of prediction values and can predict missing values. In this study, the small σ2 value obtained 

indicated that spatial autocorrelation was not strongly influenced (Kubo, 2009); hence, 

GLMM was also applicable for this dataset.  

The GBM and Dw were selected as explanatory variables to predict Nd because 

several studies show the relationship between cattle use of pasture, the distance from water 

(Martin and Ward, 1973; Beck, 1978) and the location of watering points was the major factor 

influencing forage utilization by cattle (Hodder and Low, 1976). Moreover, livestock prefer to 

graze in areas with higher forage quality and quantity (Senft et al., 1985; Bailey et al., 2001). 

Ganskopp and Bohnert (2009) indicated that cattle could simultaneously be responding to 

nutritional characteristic (CP, neutral detergent fiber, forage digestibility and standing crop) as 

they select areas to graze. Furthermore, the GBM and water troughs can be easily managed. 

The GBM can be trimmed, the data can be obtained by remote sensing (Kawamura et al., 

2010; Watanabe et al., 2014), and the land manager can control the location of the water 

troughs. The posterior distribution between the GLMM and added CAR term model showed 

similar estimates generated through MCMC simulation (Table 4.1), with positive values 

observed for GBM and negative values for Dw. These values suggested that increased Nd 
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values were spatially distributed in areas with a higher GBM and those situated closer to the 

water trough (Figure 4.3a). In previous studies, the relationship between the position of a 

drinking station and excretion was described (Roath and Krueger, 1982; Ganskopp, 2001). 

Excretal clumps are influenced by the effects of grazing equipment, such as drinking stations 

and salt racks (Hakamata and Hirashima, 1978). Although there is none of study in terms of 

the relationship between GBM and excretion, it might be explained indirectly from cattle 

grazing behavior. Feces tend to increase in places where the time spent is longer, and the time 

spent correlated with GBM. Cattle simultaneously respond to more than one nutritional 

attribute as they select foraging locales (Ganskopp and Bohnert, 2009). As can be seen from 

Table 4.1, no zero values were included within the 95% PPI for GBM and the mean value was 

positive. These mean that Nd values were spatially distributed in areas with a higher GBM. 

However, cattle tend to avoid grazing in the vicinity of dung pats (Edwards and Hollis, 1982). 

In this study, we used GBM before grazing and took no account of relationship of dung 

position and GBM after grazing. Thus, to further verify the results, future work should take 

into consideration about these relationships. 

In the upper area of the paddock, however, the distribution of feces could not be 

explained using these parameters (Figure 4.3b), and it could be related to the time spent by the 

cows in the pasture. Hirata et al. (1990) reported that the resting sites of animals are related to 

dung pat deposits. These authors also found that the percentage of dung pats per rectangle was 

explained by the distance from the resting area and the fence on the opposite side of the 

resting area. Furthermore, the increase observed in the upper area could be related to time 

spent there at night, as cattle generally rest on the higher grounds at nighttime (Arnold and 
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Dudzinski, 1978). The percentage of the area occupied by fresh dung pats was shown to be 

much greater within a gentle sloping site used for resting and to decrease with an increase in 

the slope angle of inclination (Ide et al., 1998). Thus, the selection of parameters (e.g. the 

distance from fences, relative elevation, angle of inclination and shape of the slope) that affect 

resting activity in particular will be necessary to evaluate more robust model.  

Because the models evaluated in this study were constructed using data from a single 

paddock, it is necessary to validate other paddocks in different seasons. A truly robust model 

must recognize physical features within a paddock that are likely to entice animals to excrete 

disproportionate amounts of feces within a close proximity. In chapter 5, the model was 

improved to be more general. 
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－Chapter 5－ 
 

Spatial modeling for estimating cattle dung position 
(multiple paddocks) 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

“ s I grow older, I pay less attention to what men say.  
I  ust watch what they do” 

 
Andrew Carnegie (1835–1919) 
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Chapter 5: Spatial modeling for estimating cattle dung position (multiple 

paddocks) 

5.1. Introduction 

 

Patches of cattle dung (feces) in grazing systems are not only a source of soil 

nutrients but also a major source of GHG emissions (Sordi et al., 2014). GHG emissions are 

different varies according to the difference of the place, such as soil condition and vegetation 

state. Knowledge of the sites where livestock excrete will contribute to ensuring that GHG 

palliatives such as dicyandiamide and 3,4-dimethylpyrazole phosphate are used economically 

and efficiently.  

To predict the spatial distribution of cattle dung, in chapter 4, the author used GLMM 

and the addition is the CAR term on a Bayesian approach using herbage green biomass 

(GBM) and the distance from a water trough (Dw) as explanatory variables (chapter 4). The 

results of chapter 4 suggested that the distribution of cattle dung was related to GBM and the 

position of the water trough. However, because the models evaluated in the previous study 

were constructed using data from a single paddock in one season, it is necessary to validate 

the models using other paddocks during different seasons. Furthermore, the results suggested 

that GLMM model including a CAR term is more flexible than the ordinary GLMM because 

of advantages when the data includes missing values. A lower deviance information criterion 

(DIC) value was obtained for the model with the added CAR term (DIC = 291.5) compared to 

that for the ordinary GLMM (DIC = 502.6), so the author concluded that the GLMM with the 

CAR term was better.  
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In this chapter, therefore, was to predict the position of cow dung using manageable 

factors, and to generalize the modeling framework using data from three paddocks. Although 

topographical factors are related to cow dung position, it is difficult to control the topography 

of a pasture (e.g. angle of inclination and slope shapes). Thus, the author examined 

parameters that can be easily managed by farmers, and below the influence of these 

parameters and the differences between the paddocks were discussed. 
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5.2. Material and methods 

5.2.1. Dataset for modeling 

  

The study was conducted in a mixed sown pasture (No.37) at the NARO Hokkaido 

Agricultural Research Center, as mentioned in chapter 1.3 (Figure 1.1b). Three paddocks 

were delimited using electric fences (I and II, 1.02 ha [60 m × 170 m]; III, 0.85 ha [50 m × 170 

m]) and twenty breeding Japanese Black cows and their five calves were stocked for four days 

(paddock I, from 10 am May 17 to 10 am May 21, 2010; paddock II, from 10 am May 31 to 10 

am June 4, 2010; paddock III, from 10 am June 14 to 10 am June 18, 2010). Six cows were 

selected (cow 1: 596 kg, 16 years old; cow 36: 516 kg, 6 years old; cow 50: 588 kg, 4 years 

old; cow 54: 458 kg, 3 years old; cow 62: 407 kg, 2 years old; and cow 63: 395 kg, 2 years 

old) from the 20 cows, based on a balance between age and body weight. Each cow was fitted 

with a GPS collar (CM-10kx, Furuno Electric Co. Ltd., Nishinomiya, Japan). For paddocks I, 

II and III, the mean air temperatures were 14.0°C, 11.9°C and 17.6°C; the minimum air 

temperatures were 6.4°C, 2.6°C and 14.8°C; and the maximum air temperatures were 22.9°C, 

21.0°C and 24.5°C, respectively. After each paddock was grazed for four days, it was divided 

into 10 m × 10 m grid cells (I and II, 6 × 17 = 102 cells; III, 5 × 17 = 85 cells). In Chapter 4, 

the dataset of paddock III was only used. In this chapter, three paddocks dataset were used to 

estimate the position of cattle dung. The methodology of getting dataset was mentioned in 

chapter 4.2.1. 

 

5.2.2. Modeling methodology 
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[5. 2] 

[5. 1] 

Because the response variable Nd was ‘count’ in nature, it was assumed to follow a 

Poisson distribution with mean λi, where λi includes a spatial correlation random effect. The 

number of grid cells which contained zero values of Nd were three, one and zero, in the three 

paddocks, respectively. The corresponding variances of Nd were 36.0, 76.1 and 64.6, 

respectively. This indicated that these data cannot be explained well by a Poisson distribution. 

Therefore, GLMM with a CAR term was used to incorporate the location difference. The 

resulting Bayesian model was defined as: 

 

               

                                               

                                                                    

                                                             

    
 

       
                       

 

       
                     

    
 

       
                   

      AR                 ,             
 

   
                 

 

where b1 is the intercept, b2 and b3 are coefficients, j is the paddock number, rho represents 

the spatial random effects for each grid position. The CAR term was used to specify the 

intrinsic Gaussian CAR prior distribution (Thomas et al., 2004), Adj[] is a vector listing the 

ID numbers of the adjacent areas for each grid cell; Weight[] is a vector the same length as 

Adj[] giving unnormalised weights associated with each pair of areas. Taking Wij = 1 if areas i 

and j are neighbors gives a vector of 1's for Weight[] and implies a weight of 0 if areas i and j 

are not adjacent. Num[] is the number of sites adjacent to each grid cell, and τ is the precision 
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or inverse variance parameter for the Gaussian  AR prior, where σ is assumed to follow a 

uniform (0, 10) distribution. All of the explanatory variables were standardized (mean = 0, 

standard deviation = 1) before use.  

MCMC simulation was performed to estimate the posterior distribution. The length 

of the MCMC chain for this model was 30,000 cycles after 10,000 burn-in cycles, with 

samples saved every 10 cycles. The number of chains was three. All of the data handling and 

modeling analyses were performed using R statistical software ver. 2.15.2 (R Core Team, 

2012) and OpenBUGS ver. 3.2.2. (Lunn et al., 2009). 
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5.3. Results and discussion 

5.3.1. MCMC results 

 

SD and 95% PPIs obtained with MCMC simulation are presented in Table 5.1, and 

Figure 5.1 depicts box plots of the 95% PPIs for each parameter. The R-hat values, which are 

indicators of the convergence assessment, achieved 1.0 for all of the parameters, and the 

effective sample size was sufficient for MCMC sampling. Based on the results of the 

posterior distribution generated by MCMC, we found similar estimates in all of the paddocks, 

i.e., positive values for GBM and negative values for Dw (Table 5.1, Figure 5.1). This 

indicated that a higher Nd tended to be associated with a higher GBM and a location closer to 

the water trough. The 95% PPI for μb1 did not include zero. The means for μb2 and μb3 were 

0.208 and 0.212 respectively and the signs are as would be expected intuitively. The PPIs for 

both included 0 and the probability that they were above or below 0 respectively were 87.2% 

and 91.7%. A small value of σ (the posterior mean was 0.631) was obtained, which indicated 

that there was the weak spatial autocorrelation (Kubo, 2009). 

Although no studies have been conducted on the relationship between GBM and 

excretion, this relationship might be indirectly explained based on cattle grazing behavior. 

The dung count tended to be higher in places where more time was spent, and the time spent 

by the cattle correlated with GBM. Previous studies have shown that grazing cattle move to 

areas with high forage quantity and quality attributes (Okamoto et al., 1994; Ganskopp and 

Bohnert, 2009). In this study, the author used the GBM measured prior to grazing to predict 

the location of dung deposits. Previous research revealed that cattle tend to avoid grazing in 



 

94 
 

the vicinity of dung pats (Edwards and Hollis, 1982). Weeda (1967) found that herbage close 

to dung pats was usually between three and five cm higher than the herbage of the 

surrounding pasture. The author did not identify a relationship between dung position and 

GBM after grazing. 

The relationship between Nd and Dw found here, is in agreement with previous 

studies (Nakamura and Fukuoka, 1974; Yoshitoshi et al., 2015). Hirata et al. (1990) reported 

that the animal resting sites are related to dung pat deposits. In addition, these authors 

observed that the percentage of dung pats per grid cell could be explained by the distance 

from the resting area and the distance from the fence on the opposite side of the resting area. 

Dung events frequently occurred immediately before and after moving and just after resting 

(Sugimoto et al., 1987). Yamada et al. (2011) suggested that dung was frequently found in the 

vicinity of fences because cattle tracks tend to develop near fences (Oikawa et al., 1981), 

which results from the cattle spending longer periods in these locations. However, the current 

grazing experiment was conducted for only four days in each paddock, indicating that it is 

likely that these factors had little effect on the time spent by the cattle in a particular location. 

Because a water trough was located on the lower slope near the fence in all of the paddocks, 

the influence of water trough position should to be examined in more detail. Furthermore, Nd 

could be affected by geographical features since the water trough was located at the bottom of 

the slope. 
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Table 5.1 Posterior means (Mean), standard deviations (SD) and quartiles (2.5, 50.0 and 
97.5%) obtained from the Markov Chain Monte Carlo (MCMC) simulation. μ is the hyper 
parameter of b1, b2 and b3. b1 is the intercept, b2 is the coefficient of herbage green biomass 
and b3 is the coefficient of the distance from a water trough. σ are the standard deviations. 
 

Coefficient  Mean  SD  2.5%† 50.0%† 97.5%† 
μb1 2.140  0.522  1.397  2.157  2.808  
μb2 0.208 0.634 −0.753 0.209 1.129 
μb3 −0.212 0.485 −0.855 −0.211 0.389 
σb1 0.389 0.853 0.006 0.146 2.567 
σb2 0.519 0.997 0.010 0.211 3.433 
σb3 0.339 0.790 0.005 0.120 2.329 
σ 0.631 0.048 0.541 0.630 0.730 

† The values from 2.5% to 97.5% indicate the 95% posterior probability intervals. 

 
 



 

 
 

96 

 
 
 
 
 
 
 

 
Figure 5.1 Box plot of the 95% credible interval for each parameter. b1 is the intercept, b2 and b3 are coefficients for log green biomass (GBM) 
and log distance from water trough (Dw). 
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5.3.2. Spatial distribution of cow dung 

 

The GPS collars recorded cow velocity data during the four-day grazing periods in 

each paddock, and this was used to determine the time spent by six cows in each grid. The 

GPS data was recorded in ‘one-minute’ intervals during the four-day grazing period. The 

number of intervals spent by the six cows in each grid cell was summed for the four-day 

grazing period, and the descriptive statistics and spatial distributions of Nd, GBM and the time 

spent in each grid are shown in Table 5.2 and Figure 5.2. The location of cattle dung was 

related to the time spent by the cattle in a particular location similar to previous studies 

(Yamada et al., 2011).  

Figure 5.3 shows the predicted versus observed values of Nd. The predicted values 

were the medians from the posterior distributions of Nd for each grid cell. It is believed that 

the bias on these plots was related to cattle activities. Furthermore, we could not separate out 

cattle activities between daytime and nighttime. Previous studies indicated that cattle prefer to 

graze on the lower-altitude areas of the paddock during the day and, in contrast, spend most of 

the night time in higher-altitude areas with little eating activity (Yasue et al., 1997; Watanabe 

et al., 2010). There were two major grazing periods during the day, in the current study: a 

long afternoon period and a shorter morning period, which were in accordance with previous 

observations (Schlecht et al., 2004; Lin et al., 2011). It is likely that the grid cells that have 

large model residual values could be affected by these differences. 

A previous study collected data from a single paddock (Yoshitoshi et al., 2015, 

chapter 4); therefore, the author generalized the modeling framework using data from three 
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paddocks in this study. Present results confirmed that the spatial distribution of cattle dung 

could be estimated using a Bayesian approach in conjunction with a GLMM model 

incorporating CAR terms with two parameters that the farmer can control (Figure 5.3). 

Furthermore, the main finding is that dung deposits tended to be distributed in areas with 

higher herbage green biomass and those located closer to the water trough. 
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Table 5.2 The descriptive statistics of the number of dung deposits (Nd), herbage green 
biomass (GBM) and the time spent in each grid. 
 

  
Paddock 

No. 
Mean SD Minimum Maximum 

Nd I 8.7 6.0 0 30 

 
II 11.6 8.7 0 47 

  III 12.7 8.0 1 35 
GBM (g DM m−2) I 198.3 36.6 141.3 309.0 

 
II 323.7 61.0 204.9 455.6 

  III 373.0 82.8 220.9 658.0 
Time spent (minute) I 174.8 163.1 0 787 

 
II 197.4 226.7 12 1389 

  III 224.1 187.4 26 715 
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Figure 5.2 The distributions of the number of dung deposits (Nd), herbage green biomass 
(GBM) and the time spent by cattle in each grid. 
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Figure 5.3 Predicted and observed number of cattle dung deposits (n) in each grid (10 × 10 m) in paddocks I (a), II (b) and III (c) using 
Bayesian model based on the herbage green biomass (GBM) and distance from the water trough (Dw).
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－Chapter 6－ 
 

Detecting cattle dung position with UAV image 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

“The more I learn the more I realize I don’t know.  
The more I realize I don’t know the more I want to learn” 

 
Albert Einstein (1879–1955) 
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Chapter 6: Detecting cattle dung position with UAV image 

6.1. Introduction 

 

In RS technologies, UAVs are understood as uninhabited and reusable motorised 

aerial vehicles, which are remotely controlled, semi-autonomous, autonomous, or have a 

combination of these capabilities. The UAVs can catty various types of pay loads, making 

them capable of performing specific tasks within the earth’s atmosphere, or beyond, for a 

duration, which is related to their missions (Blyenburgh, 1999). Although the UAVs were 

used by the military in early stages, use of other purposes is increasing rapidly (Blyenburgh, 

1999). For example; natural disaster response (Zhou and Wu, 2006), mapping grass species 

(Hardin and Jackson, 2005) and forest fires (Hinkleya and Zajkowski, 2011), traffic 

surveillance and management (Mirchandani et al., 2003) and scientific research in 

archaeological prospecting (Eisenbeiss, 2004). In agriculture, UAV have been used for field 

trails and research, determination of the biomass, crop growth and food quality (Herwitz et al., 

2004). Moreover, UAVs have been developed and applied to support precision agriculture 

(Huang et al., 2013); for monitoring crop biomass (Hunt, 2005; Swain et al., 2010), for 

examining the results of various nitrogen treatments on crops (Hunt 2005; Swain et al., 2007). 

The aim of this study was to develop a methodology to detect the cattle dung position 

using high-resolution image from UAV on-boarded camera. To densify the evaluation of 

GHG emissions from the pasture, the model to predict the spatial distribution of dung in 

chapters 4 and 5, and in this chapter, the dung position has been detected directory.  
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6.2. Material and methods 

6.2.1. Study site 

 

This study was conducted in grazing paddock No. 4 at the Setouchi Field Research 

Center, Hiroshima University, Japan, as mentioned in section 1.3 (Figure 1.2). From four to 

six Japanese Black breeding cattle have been grazed between June and October. In order to 

protect by the cattle during field/UAV observation, three plots (20 m × 20 m) were installed 

inside the paddock. The plots were protected by cattle using electric fence. UAV images were 

taken and dung position were recorded using GPS (Geo7X, Trimble) in these plots one time 

per every month. Raw image was taken by UAV (four multirotor, motor axis distance was 45 

cm, 1 kg) attached with camera (DSC-RX100, SONY, 20.2 million pixel, 240 g) using 

interval function (every 5 sec) (Figure 6.1). Flight altitude was about 50 m, and a flight time 

was approximately five minute.  
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Figure 6.1 Photographs for unmanned aerial vehicle (UAV), differential GPS (DGPS) and 
camera. 
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6.2.2. Image processing 

 

First, the raw image was converted to Tagged Image File Format (TIFF) data using 

Dcraw ver 9.26 (Coffin, 2015), an open-source computer program which is able to read 

numerous raw image formats, typically produced by high-end digital cameras. Second, 

because the TIFF image did not have location information, geometric correction (UTM zone 

53N, JGD2000) was performed using QGIS (Quantum GIS software ver. 2.6.1). In the 

geometric correction process, from four to six ground control points (GCPs) were used by 

georeferencer tool (change type = thin-plate spline; resampling method = cubic spline) in 

QGIS. Figure 6.2 shows the original TIFF image (prior geometric correction) and the 

GeoTIFF image (post geometric correction). Third, RGB image and training image were 

created using region of interest (ROI) tool of ENVI software ver. 5.1 (Exelis VIS, USA). 

Using DGPS locations and RGB color information, the dung pixels on image were manually 

selected as a training data (pixel value: 1 = dung, 0 = others, and 2 = outside of the target plot 

area) (Figure 6.3).  

In this study, images taken by two plots (A and B) on June 20, 2014 were used in the 

analysis due to low quality of image in one of three plots. Spatial resolutions at ground level 

in Plot A (1,891 × 1,929 pixels) and Plot B (1,222 × 1,228 pixels) were 1.4 cm and 2.2 cm, 

respectively. The number of dung deposits in plot A and B were 45 and 56, respectively.  

Random forest regression (RFR) (Breiman, 2001) was used for detecting dung pixel 

using the training image data and RGB color information including normalized red, green and  

blue values as explanatory variables. The RFR was performed using functions of 
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“randomForest” version 4.6–7 on R software. To equalize the number of pixel in dung and 

others, selected 3,970 pixels (dung: 1985 pixels, other: 1985 pixels) in plot A and 5,300 pixels 

(dung: 2,630, other: 2,630 pixels) in plot B were used.   
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Figure 6.2 Original TIFF image (prior geometric correction) and the GeoTIFF image (post 
geometric correction). 
 
 

 

Figure 6.3 RGB image (a) and training image (b). 
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6.2.3. Random forest regression (RFR) 

 

RFR builds a large number of regression trees based on bootstrap samples together 

with a random subset of predictor variables. Tree models are grown without pruning and the 

final prediction is an ensemble of predictions from all trees. Details of making regression trees 

are listed below (Hastie et al., 2008). 

1. For b = 1 to B: 

(a) Draw a bootstrap sample Z*of size N from the training data. 

(b) Grow a random-forest tree Tb to the bootstrapped data, by re-cursively repeating the 

following steps for each terminal node of the tree, until the minimum node size nmin is 

reached. 

i. Select m variables at random from the p variables. 

ii. Pick the best variable/split-point among the m. 

iii. Split the node into two daughter nodes. 

 

2. Output the ensemble of trees     
 . 

To make a prediction at a new point x: 

Regression:     
     

 

 
       

    

Classification: Let        be the class prediction of the bth random-foresttree.  

Then     
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6.3. Results 

6.3.1 The correct discrimination percentages from the RFR analysis 

 

Table 6.1–4 shows the cross tabulation of predicted values and observed values from 

the RFR analysis. The vertical axis shows the number of predicted values (no dung 0 or dung 

0) and the horizontal axis shows the number of observed values (no dung 0 or dung 0). The 

red numbers show the number of correctly predicted pixels. The correct discrimination 

percentages for plot A on the same data was 88.9% (= (1,752 + 1,779) / 3,970 × 100) (Table 

6.1). The correct discrimination percentages for plot B on the same data was 85.1% (= (2,244 

+ 2,267) / 5,300 × 100) (Table 6.2). The results of validation using these data also had similar 

percentages (Tables 6.3 and 6.4). Figure 6.4 shows the predicted the location of dung in whole 

paddock using plot A model. White colors represented the predicted dung position, and the 

number of predicted dung pixel was 21,460. These results indicated that it is difficult to 

distinguish dung from only RGB color information, especially between dung and soil. 
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Table 6.1 The cross tabulation of predicted values and observed values from the random 
forest regression analysis for plot A data on the same data. 
 
  no dung (0) dung (1) 
no dung (0) 1752 233 
dung (1) 206 1779 

 
 
Table 6.2 The cross tabulation of predicted values and observed values from the random 
forest regression analysis for plot B on the same data. 
 
  no dung (0) dung (1) 
no dung (0) 2244 406 
dung (1) 383 2267 

 
 
Table 6.3 The cross tabulation of predicted values and observed values from the random 
forest regression analysis for plot B on the plot A data.  
 
  no dung (0) dung (1) 
no dung (0) 1692 293 
dung (1) 173 1812 

 
 
Table 6.4 The cross tabulation of predicted values and observed values from the random 
forest regression analysis for plot A on the plot B data.  
 
  no dung (0) dung (1) 
no dung (0) 2368 282 
dung (1) 519 2059 
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Figure 6.4 RGB image (left) and predicted dung positions (right) in the target paddock (plot 
A).  
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6.3.2 Threshold processing 

 

The predicted image (Figure 6.4) had a lot of independent pixel (e.g. one-pixel). The 

author tried to detect the dung position using threshold with Matlab ver. 2014b (MathWorks 

Inc., Sherborn, MA, USA). The predicted dung pixels were done binarization processing and 

clusters of pixels which were too small and too large were removed (100 ≤ Area ≤ 330). After 

this processing, the relatively round clusters were selected (MajorAxisLength ≤ 35 and 

Perimeter ≤ 130). Figure 6.5 shows the step of threshold processing of predicted image from 

plot A data and red points shows the results. The number of clusters was 89 after these 

processing. It seems that the position of most of the dung could be detected from its size and 

shape. 

 

  



 

 
 

114 

 

 

 
Figure 6.5 The step of threshold processing of predicted image; (a) the predicted dung position in whole paddock using plot A model; (b) After 
removing clusters of pixels which were too small or too large; (c) After selecting the relatively round objects. 
 

(a) (b) (c) 
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6.4. Discussion 

 

In this chapter, the author tried to detect the cattle dung position in pasture using a 

very high resolution image taken by a camera attached to a UAV. The result indicated that the 

fresh dung could be detected from its size and shape. However it is difficult to distinguish 

between old dried dung and soil. Figure 6.6 shows the spectrum of fresh, middle and old dung. 

The fresh dung had characteristic spectrum (green was low and blue was high), but when the 

dung became dry, the spectrum was similar to soil. The distinguishing of old dung and soil is 

difficult only using RGB information. Figure 6.7 shows the light reflectance of fresh dung 

(passed three days), dry soil and wet soil measured by FieldSpec (ASD Inc., Boulder, CO, 

USA). The author considered the ultra violet and near-infrared wavelengths not just the 

visible region. It is necessary to consider the short-wavelength (ultra violet) and near-infrared 

(NIR) not just the visible region (RGB). 

The subject of a future study could be to look for a characteristic wavelength to 

distinguish between old dung and soil. The author would also like to investigate whether it is 

possible to distinguish how many days after excretion the fresh dung looks like old dung. The 

author have also detected the dung position with other photographic images provided by the 

UAV at different altitudes and verified the size estimate precision.  

UAV technologies are relatively new and there are limitations of current agricultural 

UAVs. Although the costs of the aircraft and the camera could be minimized, the assembly 

and integration require significant labor and time even for highly skilled technicians and 

engineers (Huang et al., 2013).   
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Figure 6.6 The RGB image of new, moderate and old dung (above), and their spectrum 
(bottom). 
 
 

 
Figure 6.7 Spectral characteristics in relative reflectance for fresh dung (passed three days), 
dry soil and wet soil. 
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－Chapter 7－ 
 

General discussion 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

“People do not lack strength, they lack will.” 
 

Victor Hugo (1802–1885) 
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Chapter 7: General discussion 

 

Spatio-temporal information on the grazing behavior of animals provides insights 

into pasture and animal conditions, allowing for improved pasture management and animal 

care. To date, various sensors and analytic tools have been developed to assist the data 

collection and analysis regarding the animal activities in pasture. However, most of these 

devices cannot be used by farmers because they are only capable of taking measurements for 

a few days, due to their high energy consumption, or because they are expensive and require 

extensive experience to correctly attach them to animals. Moreover, the data obtained by such 

sensing devices are complex, and the grazing behaviors are strongly influenced by 

surrounding environments. In this study, therefore, the objectives of this study were (1) to 

develop a simple tool for determining cattle grazing behavior in the pasture (chapters 2 and 3), 

and (2) to predict spatial distribution of cattle excrement using Bayesian approaches (chapters 

4 and 5) and UAV images (chapter 6) 

In chapter 2, the results of this study indicated that during the daytime, the cows 

mostly stayed in the lower-altitude area of the paddock (Figure 2.7b). During the nighttime, 

the cows spent most of their time in the higher-altitude (Figure 2.7d). Earlier studies 

suggested that the weight of the device attached to the animal affects the activity pattern 

(Rutter et al., 1997). The device to attach to the animal should be less than 5% of body weight 

of the animal (Cuthill, 1991). For example, grazing activity of red deer (Cervus elaphus) 

attached a device of the weight of 3.5% decreased remarkably (Blanc and Brelurut, 1996), and 

16 Scotish Blackface ewes did not have influence as weight of 2.2% (Hulbert et al., 1998). As 
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upon previous knowledge, it is clear that attached device was preferred smaller and lighter. 

The GPS collar used in this study were 0.5% of the weight (the mean of 22 cattle weight was 

556.9 kg, GPS collar was 2.8 kg). Thus, it is considered that there is not the influence of the 

any behaviors of cattle by the GPS collar in this study.  

Recent advances in both sensor and hardware (downsizing, power saving, etc.) are 

able to observe the grazing behavior of cattle more simply and longer period. GPS also have 

been continuously improved, and GPS guidance systems are the most commonly adopted PA 

technique. 

In chapter 3, a statistical method for classifying the eating activity from other 

activities using simple equipment was developed. LR and LDA were applied to distinguish 

eating and other activities (resting and ruminating). The results confirmed that the LCEX 

accelerometry-based activity monitor can be used to distinguish between foraging and other 

activities of grazing beef cows on a hilly pasture. Some previous studies have indicated that 

discriminant analysis is a useful method for identifying accelerometer variables that classify 

series of successive cow jaw movements into rumination and eating behaviors (Schleisner et 

al., 1999; Watanabe et al., 2008). While in this study, the results indicate that linear 

discriminant (90.6 to 94.6%) analysis yields better discrimination accuracy than logistic 

regression (80.8 to 91.8%) when using minute-based data, which is a time interval suitable for 

integrated use with GPS location information. The combination of the activity timeline and 

GPS tracking data can determine the spatio-temporal distribution of cow foraging activity on 

pasture or rangeland. In the future, it is expected that we get a lot of knowledge about 

livestock behaviour in pasture because of improvement of the identification method and 
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increasing the recording capacity of the accelerometer. In addition, LCEX is a simple, 

low-cost device. Thus, general dissemination to farmers is expected and LCEX could 

cooperates with the RS technology. By combining the cattle GPS locations and the spatial 

distributions of livestock, it may give important information to management of grass and 

livestock. LCEX can be used to distinguish between foraging and other activities, but this 

could not be used to determine cattle ruminating activity, important information to manage 

health of grazing cattle because this is a single-axis accelerometer. Using a three-axis 

microelectromechanical systems accelerometer, eating, ruminating and resting activities of 

cattle could be classified (Watanabe et al., 2008), though this equipment is expensive. In the 

future, it is needed to develop a simple tool for determining cattle grazing as well as 

ruminating activity toward the establishment of precise grazing management techniques.  

In chapters 4 and 5, distribution of cattle dung in pasture was estimated using a 

Bayesian approach. It is important for farmers to understand the mechanisms of these gases 

production from agricultural fields and the factors that control these mechanisms because 

much anthropogenic N2O and CH4 are produced by agricultural activities. Betteridge et al. 

(2010) developed urine sensor that detects and logs each urination event of female sheep and 

cattle. In contrast, the place of dung has not been specified. Then, to develop the GHG 

mitigation technologies from agriculture sector, intensive grazing team at NARO Hokkaido 

Agricultural Research Center in Japan has investigated, which has conducted joint research 

with us. The results indicated; (1) the distribution of dung indicates non-uniform pattern, and 

the number of dung are increased around water trough when they set a water trough on the 

lower slope (Watanebe et al., 2011); (2) the number of dung tends to increase at the place 
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used for rest (Watanebe et al., 2011). These result are analysed using multiple liner regression 

model. An underlying assumption of the MLR method is that the relationship under study is 

spatially constant and that the estimated parameters remain constant over space. Thus, it is 

needed to consider the spatial dependence because the number of dung per adjacent grid has 

spatial information. In order to estimate spatial patterns of cattle dung position, the present 

study used a Bayesian model based on GLMM and added CAR term using GBM and Dw as 

explanatory variables in 100 m2 grid cells. For estimating dung position, data is insufficient 

and it is needed for improvement and adaptation of the model. In chapter 4, the spatial 

distribution of cattle dung was estimated using single paddock data. In chapter 5, the model 

used in chapter 4 was improved to be more general and used three paddock data. The results 

of MCMC simulations indicated that a higher Nd tended to be associated with a higher GBM 

and locations closer to the water trough. Nd had spatial autocorrelation and it was likely that 

the grid cells that have large residual values could be affected by the difference between cattle 

activities in the daytime and nighttime. Based on our results, it is suggested that the spatial 

distribution of cow dung can be predicted from two controllable factors in short term grazing 

trials. 

In chapter 6, the author tried to detect the dung position using a very high resolution 

image taken by a camera attached to a UAV. The results indicated that the fresh dung could 

be detected with high accuracy using RGC color values combined with their size and shape in 

image. However, there are a lot of subjects; looking for the characteristic wavelength to 

distinguish between old dried dung and soil; detecting the dung position with other 
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photographic images provided by the UAV at different altitudes and verifying the size 

estimate precision. 

Although many studies have been made on spatial distribution of feces from the 

viewpoint of nitrogen cycle, it is relatively new in Japan, from the viewpoint of GHG 

discharge source. There is a few, limited number of studies conducted for GHG emissions 

from pasture in Tochigi prefecture and Hokkaido, Japan. Particularly, in western Japan, there 

is none of report have been found sort of the research.  

In future study, the actual GHG emissions from grazing pasture should be measured 

to establish precise GHG mitigation techniques. Actually, the trial measured GHG emission 

from cattle dung was conducted twice from June 23 to July 10, 2014 and from September 13 

to 29, 2014 in two grazed pastures at Hiroshima University using closed chamber method 

(Akiyama et al. 2010). Collected 1,000 g of fresh dung by cattle in the field was separated 

into 0 (control), 200, 350 and 500 g and put to each frame (50 cm × 50 cm) on the pastures 

(Figure 7.1). Then, filed observations were carried out in day 1–6, 9, 12, 15 and 18. The airs 

were gotten in three times (1, 11 and 21 min after closed the chamber) (Figure 7.2). 

Temperature and soil water contents were also recorded at the same time. Concentrations of 

CH4 and N2O were determined at NARO Hokkaido Agricultural Research Center. Figures 7.3 

and 7.4 show CH4 and N2O emissions from dung, respectively. However, this trial had two 

problems. First, the measurers have not done these experiments. Second, there were many 

insects in the experiment paddocks. It is expected to be possible to reduce effectively GHG 

emissions by GHG palliatives such as dicyandiamide and thiourea are used economically and 

efficiently. In the future, the amount of GHG emissions from whole pasture could be 
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estimated by measuring the occurrence of GHG emission from one dung and it could be 

possible to simulate the effect of inhibitors by varying the parameters. 

In Japan, the food self-sufficiency ratio is about 40% (food self-sufficiency ratio 

based on the total calorific value supplied), and about 60% of food supplies in Japan depends 

on supplies from abroad on a caloric-value-supplied basis (Ministry of agriculture, forestry 

and fisheries in Japan, 2015). It is important for both sides of the food security and 

environmental protection to ensure the highest possible the food self-sufficiency rate. 

Furthermore, the feed self-sufficiency ratio is about 27%, 88% of the concentrated feed and 

24% of the roughage depends on import from abroad. It is important for safe and secure food 

supply, healthy rural society and good land conservation to produce livestock products stably. 

In this thesis, the author have developed monitoring technology of grazed cattle using IT 

technologies. Determining changes in spatial distribution and feeding behavior of grazing 

animals provides knowledge that can support to understand the relationship between their 

internal state (i.e., nutrition, health, etc.) and their environment (i.e., sward state, climate, etc.) 

(Penning, 1983). This knowledge would provide optimum resource management and 

forecasting to support decision making. The results of this study are converted to the general 

technique and modified and improved by practicing the test operation, and are expected to 

develop into PA which enables the simultaneous achievement of improvement productivity 

and reducing environmental impact. Improvements in production efficiency, saving of input 

resources and practicing the reduction of pollution through precise control could contribute 

greatly to both sustainable food production and environmental conservation. 
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Required for future Japanese agricultural technology is considered to be a production 

system that could do best use of spatial information and robotic automation technology by RS, 

GIS and GPS. Along with these research and development, it is thought to be necessary that 

trains farmers to increase productivity by actively introducing a new technology. 
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Figure 7.1 Photograph showing set up for fresh dung with 500, 350, 200 and 0 g. 
 
 
 

 
Figure 7.2 The equipment to measure greenhouse gas emissions. 
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Figure 7.3 Methan (CH4) emission from dung in two paddocks (4 and 9) in 2014. 
 
 

 

Figure 7.4 Nitrous oxide (N2O) emission from dung in two paddocks (4 and 9) in 2014. 
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Appendix A: The utilization rate of cattle in three paddocks between 3:00–9:00 (chapter 2). 
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Appendix B: The utilization rate of cattle in three paddocks between 9:00–15:00 (chapter 2). 
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Appendix C: The utilization rate of cattle in three paddocks between 15:00–21:00 (chapter 2). 
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Appendix D: The utilization rate of cattle in three paddocks between 21:00–3:00 (chapter 2). 
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Appendix E: R code on MCMC for analyzing Bayesian model (chapter 5). 
 
model{ 
#Priors 
for (k in 1:3){ 
b1 [k] ~ dnorm (mu.b1,tau.b1) 
b2 [k] ~ dnorm (mu.b2,tau.b2) 
b3 [k] ~ dnorm (mu.b3,tau.b3) 
} 
mu.b1 ~ dunif (-10,10) #Hyperprior for b1 
mu.b2 ~ dunif (-10,10) #Hyperprior for b2 
mu.b3 ~ dunif (-10,10) #Hyperprior for b3 
tau.b1 <- 1 / (sig.b1*sig.b1) 
tau.b2 <- 1 / (sig.b2*sig.b2) 
tau.b3 <- 1 / (sig.b3*sig.b3) 
sig.b1 ~ dunif (0,10) 
sig.b2 ~ dunif (0,10) 
sig.b3 ~ dunif (0,10) 
 
#CAR prior distribution for spatial random effects 
rho [1, 1:102] ~ car.normal (Adj1[], Weights1[], Num1[], tau1) #Paddock I 
rho [2, 1:102] ~ car.normal (Adj2[], Weights2[], Num2[], tau2) #Paddock II 
rho [3, 1:85] ~ car.normal (Adj3[], Weights3[], Num3[], tau3) #Paddock III 
tau1 <- 1 / (sig.r1*sig.r1)  
tau2 <- 1 / (sig.r2*sig.r2)  
tau3 <- 1 / (sig.r3*sig.r3)  
sig.r1 ~ dunif (0,10) 
sig.r2 ~ dunif (0,10) 
sig.r3 ~ dunif (0,10) 
    
#Likelihood 
for (i in 1:289){ 
Nd [i] ~ dpois (lam [i]) 
log (lam [i]) <- mu [i] + rho [PaddockNo. [i], GridNo. [i]] 
mu [i] <- b1 [PaddockNo. [i]] + b2 [PaddockNo. [i]]*log(GBM [i]) + b3 [PaddockNo. 
[i]]*log(Dw[i]) 
} 
} 
 
All of the data handling and modeling analyses were performed using R statistical software 
ver. 2.15.2 (R Core Team 2012) and OpenBUGS ver. 3.2.2. (Lunn et al. 2009). 


