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Abstract

It is extremely important to have clear understanding of resonant beam instability for a better de-
sign of a modern particle accelerator. For this purpose, we have developed “Simulator of Particle
Orbit Dynamics” (S-POD) that enables us to clarify various beam-dynamics issues without relying
on large-scale machines. This unique tabletop experiment is based on an isomorphism between
non-neutral plasmas in a compact Paul trap and charged-particle beams in a linear focusing chan-
nel. S-POD is particularly useful in exploring collective effects in intense hadron beams. This
thesis addresses systematic Particle-In-Cell (PIC) simulations performed to explain experimental
data from S-POD. A possible design of a novel multipole ion trap is also proposed for a future
experiment study of nonlinear beam dynamics. The contents of the present work include the fol-
lowing three main subjects.

(1) Collective resonance instabilities and its lattice-structure dependence [Chapter 4].
Almost all modern particle accelerator systems exploit the principle of strong focusing. Each ac-
celerator has a unique lattice structure optimized for a certain experimental purpose. We here focus
on several standard alternating-gradient (AG) lattices such as doublet, triplet, FDDF, etc. These
AG focusing potentials can readily be reproduced in S-POD. We employ the PIC code Warp
to support S-POD experiments. A number of systematic multi-particle simulations are carried out
to explain the experimentally observed collective instabilities induced by the external AG driving
forces. The excitation of extra resonance bands due to lattice symmetry breaking is also studied in
detail. We confirm that PIC simulation results are consistent to experimental observations as well
as theoretical predictions from the linearized Vlasov analysis.

(2) Theoretical and simulation study of resonance crossing [Chapter 5].
Considerable theoretical and experimental efforts have recently been devoted to design studies of
nonscaling fixed-field alternating gradient (ns-FFAG) accelerators are for various purposes includ-
ing hadron therapy, accelerator-driven reactor systems, a muon collider, and a neutrino factory. In
this type of machines, the bare betatron tunes keep decreasing rapidly while the beam is acceler-
ated by radio-frequency cavities. It is almost inevitable for the operating point to cross resonance
stop bands, some of which may be quite dangerous.

In this chapter, we first investigate fundamental features of collective resonance crossing with
theWarp code and compare simulation results with experimental observations in S-POD. A simple
scaling law is derived for a quick estimate of the emittance growth caused by crossing of an in-
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trinsic space-charge-driven resonance. We then proceed to an extensive study of integer resonance
crossing. A dipole driving field was intentionally added in recent S-POD experiments to excite
integer resonances. We show that experimental results can be well explained by Warp simulations
and predictions from analytic models. The rate of ion losses after consecutive crossing of inte-
ger resonance bands is evaluated as a function of crossing speed and the relative initial phase of
dipole driving forces. An effect of nonlinear external fields, practically unavoidable due to finite
mechanical imperfections and other sources, is also briefly studied.

(3) A modified Paul trap for study of nonlinear beam-dynamics studies [Chapter 6].
Any particle accelerators include weak nonlinear fields generated by mechanical errors and even
nonlinear multipole magnets for beam orbit correction. Nonlinear error fields are also present in
a Paul ion trap, enhancing high-order resonances under certain conditions. The main source of
nonlinearity in a regular trap is the misalignments of the quadrupole rods, which means that the
strength and time structure of the nonlinear fields cannot be controlled independently of the linear
focusing field.

In this chapter, we propose a multipole ion trap that enables us to conduct a systematic ex-
perimental study of nonlinear effects in particle accelerators. The proposed modified Paul trap
has four extra electrodes in between the regular quadrupole rods. It is possible to control low-
order nonlinearities in the plasma confinement potential by applying proper rf voltages to these
electrodes. Simple scaling laws are derived for a quick estimation of low-order nonlinear field
strengths. We perform test numerical simulations to verify the controllability of sextupole and
octupole resonances in the modified trap.
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Chapter 1

Introduction

In a modern particle accelerator, high-intensity and high-quality beams are often demanded by
physics experiments. The intensity of beam is the product of beam kinetic energy and beam
current density. For a high-quality beam, the emittance defined as the volume of the beam in six-
dimensional phase space must be low to preserve focusability. The phase space density of a high
intensity beam inevitably becomes high - regardless of the absolute beam energy. Consequently,
the charged particles composing the beam strongly interact via their repulsive Coulomb fields
giving rise to collective response. This collective effect by Coulomb interaction is called the
“space charge effect” and can be strongly nonlinear. The space charge effect has the possibility of
causing beam instability that leads to the undesirable emittance growth and possible loss of beam
particles. Therefore, we have to know the detail of this effect to respond to above demands.

The space charge effect is one of the dominant theme in accelerator physics from the early
days, and so various theoretical and experimental studies were provided over the past several
decades. However, we still often encounter many problems and tasks requiring analysis of space
charge effect.

In the experimental study, we use real accelerators during the operation, but the accelerator
is quite expensive and it is very difficult to measure the beam motion with close to the speed of
light. Theoretical solutions are also developed, analytical studies are provided from of old but
the external fields in the real machines and the multi-particle distributions of the beam are had to
approximate quit simply. In addition parameters of an accelerator are decided and fixed in design,
the systematic study is also difficult in real machines.

As computational performance advances, numerical simulations are most popular for the de-
sign and problem solving of the accelerators. In the numerical study, we can reproduce the exter-
nal fields with high accuracy and the arbitrary distribution of the beam, but a calculation stress of
Coulomb interactions between particles depends on the squared number of the particles. There-
fore, we have to introduce some of approximations for beam simulations due to the real beam that
consists by too many particles. As a result, the numerical accuracy and the calculating time are
related to the trade-off.

To solve problems within a space charge effect, we developed a tabletop experimental tool
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“Simulator of Particle Orbit Dynamics” (S-POD). S-POD is a non-neutral plasma trap system
based on Ref [1, 2, 3, 4]. for fundamental beam physics studies. This unique experiment is based
on the isomorphism between non-neutral plasmas in a compact trap and charged-particle beams in
a linear focusing channel; namely, S-POD can approximately reproduce the rest-frame motion of a
beam in the laboratory frame, thus enabling us to obtain fundamental beam-dynamics information.
Such a handy, inexpensive model experiment could be a powerful means for future beam-physics
studies just like modern computer simulations.

In this thesis, we study dynamics of non-neutral ion plasma and its application to particle beam
dynamics. It covers various situations of the particle beams and the accelerators by the theoretical
and numerical solutions. Particularly, we investigate stabilities of various focusing systems and
new accelerator principle and new scheme for the stability with the space-charge effect and the
nonlinear fields. The body of this thesis is organized as follows.

In Chap. 2, we describe basic theory and physical analogy between a linear Paul trap (LPT) and
a beam transport system of an accelerator. First, the theory of the LPT is reviewed to understand
experimental and simulation systems. Next, we deal with the beam dynamics theory and connect
to the LPT theory. In Chap. 3, a numerical simulation theory including an integration method,
an area weighting, and initial distributions are described. Chapter 4 is started from a collective
resonance theory, and we recognize it by numerical methods. Moreover, we provide simulation
studies for the lattice structure dependence of the resonance instabilities. In Chap 5, we have
studied the effect of resonance crossing on beam stability systematically. First, we assume the
collective instabilities due to the resonance crossing. Second, investigate integer resonances that
turn into a problem in “EMMA” (Electron Model for Many Applications) accelerator. Chapter 6
shows a new LPT structure for study of nonlinear field effects. In the above studies, the nonlinear
effects are actualized in the S-POD. Therefore, we produce a nonlinear-field controllable trap
system by extra electrodes.
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Chapter 2

Linear Paul trap and Accelerator

2.1 Linear Paul trap

A linear Paul trap (LPT) performs a confinement of non-neutral plasma by a transverse oscillating
electric field and a longitudinal static barrier potential [5]. Figure 2.1 is a schematic of a typical
LPT. In the Paul trap, the non-neutral plasma is trapped by a radio-frequency (rf) quadrupole field
in transverse direction. In addition, we apply static voltages to axial side rods to confine a plasma
in axial direction. The Hamiltonian of a particle evolving in a trap has the non-relativisitic form,

H =
1
2m

(p−qA)2+qφ . (2.1)

Here, m and q are the rest mass and the charge of the particle, and p is the particle canonical
momentum with conjugate spatial coordinate x, A is the magnetic vector potential, and φ is
the electric potential. Generally, we set the rf wavelength much larger than the trap size, and
consequently A is negligible. The scalar potential φ can be written as φ = φext+ φsc where φext

is an external potential associated with the applied focusing field and φsc is an internal potential
generated by the charged particles in the trap and their mirror charges which are induced to the
electrodes.

2.1.1 Quadrupole focusing electrodes

A quadrupole field is generated by applying proper rf voltages to the four electrodes with quadrupole
symmetry. Each pair of the electrodes facing each other across the trap center has the same rf volt-
ages and neighboring electrodes have the reverse polarity.

This external quadrupole potential which is generated by electrodes can be approximated as

φext ≈ 1
2
K̂(t)(x2− y2), (2.2)

where the coefficient K̂(t) is related to the time varying voltage which applied to the electrodes
by K̂(t) =V (t)/R2

0. Here, R0 is the radius of closest approach of the electrodes. In a typical Paul
trap, V (t) =U +Vrf cos(ωrft) is satisfied. Here, U = const. is a direct current (DC) voltage, Vrf is

9
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Figure 2.1: A schematics of a linear Paul trap.

the amplitude of rf voltage, and ωrf is the rf angular frequency. Assuming the plasma distribution
is uniform on the axial direction, the transverse collective motion of confined charged particles
obeys the Hamiltonian

H =
p2x + p2y
2m

+
q
2
K̂(t)(x2− y2)+qφsc. (2.3)

2.1.2 Mathieu equation

If we neglect the space-charge potential φsc, the Hamiltonian (2.3) gives the equations of motion

d2x
dt2

+
2q
mR2

0
(U+Vrf cosωrft)x= 0,

d2y
dt2

− 2q
mR2

0
(U+Vrf cosωrft)y= 0.

(2.4)

Note that the x- and y- equations are decoupled. Define dimensionless parameters

ξ =
ωrft
2

, aM =
8qU

mR2
0ω2

rf
, qM =

4qV
mR2

0ω2
rf
, (2.5)

and Eq. (2.4) becomes

d2x
dξ 2 +(aM+2qM cos2ξ )x= 0,

d2y
dξ 2 − (aM+2qM cos2ξ )y= 0.

(2.6)
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This is the standard form of a “Mathieu equation”, and the x-equation can solve as

x(ξ ) = AeαMξ
+∞

∑
n=−∞

C2ne(2n+βM)iξ +Be−αMξ
+∞

∑
n=−∞

C2ne−(2n+βM)iξ . (2.7)

Here, A and B are the constants determined by the initial condition of the particle and the phase
of the external fields. αM, βM , and C2n are the constants defined by aM and qM . Note that, the
equation for y-direction is the same as x-direction without aM →−aM and qM →−qM, so

y(ξ ) = AeαMξ
+∞

∑
n=−∞

C2ne(2n−βM)iξ +Be−αMξ
+∞

∑
n=−∞

C2ne−(2n−βM)iξ . (2.8)

In order to meet the orbit does not diverge at ξ →±∞, αM = 0 is required. As a result, Eq. (2.7)
can be written as

x(ξ ) = A
+∞

∑
n=−∞

C2ne(2n+βM)iξ +B
+∞

∑
n=−∞

C2ne−(2n+βM)iξ

= (A+B)
+∞

∑
n=−∞

C2n cos(2n+βM)ξ + i(A−B)
+∞

∑
n=−∞

C2n sin(2n+βM)ξ . (2.9)

From this solution, the time variation of the particle sin(ωnt), cos(ωnt), and

ωn = (2n+βM)
ωrf

2
= nωrf+

βMωrf

2
(2.10)

are given. This shows, the frequency spectrum of the particle motion consists of the fundamental
frequency ω0 and high-order frequencies ωn. Generally, the fundamental frequency ω0 has the
largest effect contribute to the particle motion, and it is called the “secular motion”. Fig 2.2 is
an exmaple of a particle orbit with an focusing system. Note that ω0/2π corresponds to the bare
betatron tune ν0 in accelerator physics (see Sec 2.2).

2.1.3 Stability diagram

In the system which the motion is composed different frequencies, there is a possibility to take an
unstable solution which diverges in time and a stable solution which maintains limited amplitude
for all time, and the stability depends on βM . If βM is an integer value, the motion becomes
unstable. For all other values of βM , the motion is stable. Therefore, the particle motion described
by Mathieu equation can be characterized by βM , and it is also called Mathieu’s characteristic
exponent. βM can expressed in terms of aM and qM as

βM =

√
aM− (aM−1)q2M

2(aM−1)2−q2M
− (5aM+7)q4M

32(aM−1)3(aM−4)
−·· ·. (2.11)
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Figure 2.2: (a) The particle orbit (solid line) and the secular motion (dashed line) in a Paul trap.
(b) The rf focusing system.

This shows, the stability of the particle motion is defined by aM and qM . Fig 2.3 (a) shows the
stability region in aM and qM space. These stability regions have an axial symmetry on qM coor-
dinate and overlap partially. If we choose aM and qM within these overlapped regions, the particle
is stable transversely. Fig 2.3 (b) is the closest region to the origin (aM > 0) and it is called “first
stability region”.

A typical LPT uses this first stability region for plasma confinement. This correlates to single
particle phase advance is designed less than 180◦ per lattice period.

2.2 Physical analogy between a Paul trap and a beam transport chan-
nel

2.2.1 Beam transport channel

Beam manipulations in particle accelerators are carried out by using electromagnetic fields. The
relativistic Hamiltonian of a charged particle in electromagnetic fields is given by

H = qφ + c
√

(p−qA)2+m2c2. (2.12)

Here c is the speed of light in vacuo. We introduce the Frenet-Serret coordinate system which is
typically used in accelerator physics. The orbit which has the design energy of the accelerator is
called “design orbit” and it is closed in the circuit of the ring generally [6, 7]. We define the axial
beam position along the design orbit as s, the axial direction within the beam as z, the horizontal
directions orthogonal to z as x (bend-plane), and its vertical (out of bend plane) direction as y.
Then, The s componentCs of an arbitrary vector C is

Cs =Cx
∂x
∂ s

+Cy
∂y
∂ s

+Cz
∂ z
∂ s

=

(
1+

x
ρ

)
Cz, (2.13)
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Figure 2.3: (a) Stability regions (color) of the Mathieu equation. x-coordinate stability region is
shown in red, and y-coordinate is blue. These regions have an axial symmetry to qM < 0. (b)
Mathieu’s first stability region(aM > 0). The boundaries correspond to βM = 0 and βM = 1 lines.
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Figure 2.4: Frenet-Serret coordinate system

where ρ is the local radial curvature in the bend plane. Generally, these x ans y is called transverse
direction and z is called axial direction.

The vector potentials in the new coordinate system are

As =A · ŝ, Ax =A · x̂, Ay =A · ŷ, (2.14)

and the Hamiltonian is

H = qφ + c

√
(px−qAx)2+(py−qAy)2+

(
ps−qAs

1+ x/ρ

)2
+m2c2. (2.15)

The independent variable in H is the time t, but the momentum of the each particle is differ-
ent, so the external potential is not a periodic function of t generally. Therefore, we convert the
independent variable from the time t to the position on the design particle orbit s. The conju-
gate momentum about the time t is −H = −E = const, and the new Hamiltonian Ĥ with the

13



independent variable s is given by H − ps. As a result, by using the total kinetic momentum
p=

√
(E−qφ)2/c2−m2c2, and the new Hamiltonian Ĥ is

Ĥ =−
(
1+

x
ρ

)(
qAs+

√
(px−qAx)2− (py−qAy)2− (E−qφ)2

c2
−m2c2

)
. (2.16)

This new Hamiltonian Ĥ will hereafter be denoted as H. A typical accelerator satisfies |px/p| � 1
and |py/p| � 1 (paraxial approximation), so we can analyse the linearized Hamiltonian

Ĥ ≈−
(
1+

x
ρ

)(
qAs+ p− (px−qAx)

2+(py−qAy)
2

2p

)
. (2.17)

to approximate the motion. Here, the relation between the momentum deviation and the energy
deviation is

δ p≡ p− p0 ≈ ΔE
β0c

− 1
2p0

(
ΔE

β0cγ0

)2
− qφsc

β0c
, (2.18)

and we approximate the Hamiltonian as

H ≈
(
1+

x
ρ

)(
−qAs+

(px−qAx)
2+(py−qAy)

2

2p0

+
qφsc

β0cγ20
− ΔE

β0c
+

1
2p0

(
ΔE

β0cγ0

)2
)
,

(2.19)

where γ0 and β0 are the axial Lorentz factors, p0 is the momentum on the design orbit and φsc is the
self potential of the beam. For the case of the single particle motion with φsc = 0, this Hamiltonian
is expressed with ΔE/(β0cγ0) = pz as

H =

(
1+

x
ρ

)(
−qAs

p0
+

(px−qAx)
2+(py−qAy)

2+ p2z
2

− γ0pz
)
. (2.20)

In this equation, we applied the following normalization,

H → H/p0, px → px/p0, py → py/p0, pz → pz/p0. (2.21)

2.2.2 Quadrupole focusing potential

A quadrupole field in an accelerator is similar to a Paul trap field. In the focusing quadrupole
magnet, the beam is focused in the x-direction and defocused in the y-direction at the same time.
Conversely, the defocusing quadrupole magnet generates focusing force in the y-direction and
defocusing in the x-direction. The “alternating gradient (AG) focusing” is realized by the combi-
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nation of the focusing and defocusing magnets. The Hamiltonian of a charged particle in the ideal
quadrupole magnet is ⎧⎨⎩ A =

(
0,0,±1

2B1
(
x2− y2

))
1/ρ(s) = 0

(2.22)

Hquad =
p2x + p2y + p2z

2
± 1

2
K(x2− y2). (2.23)

Here, B1 is the gradient of the quadrupole field which is defined by K = qB1/p0.

2.2.3 Dipole bending potential

A dipole field is mainly in order to bend a charged particle beam. For example, it is used to
make a closed orbit in a storage ring or introduce a beam to a ring. The vector potential and the
Hamiltonian are written as{

A =
(
0,0,− p0

2q

(
1+ x

ρ

))
1/ρ(s) = const.

(2.24)

Hdipole =
p2x + p2y + p2z

2
+

1
ρ2 x

2−
(
1+

x
ρ

)
γ0pz. (2.25)

In the ideal bending magnet strength is defined by the radial curvature ρ also, and it satisfies
B0ρ = γ0β0mc/q.

2.2.4 Hill’s equation

A single charged particle transverse motion in an accelerator which is consisted by linear fields is

d2x
ds2

+K(s)x= 0 (2.26)

This equation of motion is the same between x-direction and y-direction without the sign of K(s).
K(s) is the quadrupole focusing function in a ring. In the LPT, the independent variable of the
focusing function is the time t, on the other hand, in the accelerator, the independent variable is
the position of the beam. When the focusing function has a periodicity, the particles are oscillated
by the focusing fields and this transverse oscillation is so called “betatron oscillation”. In addition,
this equation concludes the “Hill’s equation”. According to the Floquet theory, the solution of the
Hill’s equation is known as

x(s) =
√

εβ (s)cos(μ(s)+μ0), (2.27)
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where ε and μ0 are the constants which defined by the initial condition of the particle. β (s) and
μ(s) are the beta- and the phase- function following the next formulas,

d2

ds2
√

β +K(s)
√

β − 1√
β 3 , (2.28)

μ(s) =
∫ s

s0

1
β (s)

ds. (2.29)

β (s) is the scaled amplitude, and so it does not depend on the initial distribution of the beam.
Therefore, the beta function is used for the index of the focusing system in the accelerator. The
betatron frequency per one focusing period is called “betatron tune” or simply “tune” and repre-
sented by ν , and also defined as following

ν =
μ(s0+L)−μ(s0)

2π
=

1
2π

∮ 1
β (s)

ds. (2.30)

Here L is lattice period. This tune is correlated to the effective focusing strength of the beam and
important parameter of the accelerator. The frequency is depend on the Coulomb interaction force
also, and so the frequency without the self-interaction force is called “bare tune ν0”.

2.2.5 Twiss parameters and transfer matrix

Eq. (2.27) can be rewritten as

x(s) = A
√

εβ (s)exp[iμ(s)]+B
√

εβ (s)exp[−iμ(s)]. (2.31)

As the initial condition at s= 0, set x0 and x′0 ≡ dx0
ds , and the arbitrary constants A and B are

A =
1
2
[x0X0μ ′

0− ı(x′0X0− x0X ′
0)]exp[−iμ(s)], (2.32)

B =
1
2
[x0X0μ ′

0+ ı(x′0X0− x0X ′
0)]exp[iμ(s)]. (2.33)

Here,
√

εβ (s) = X(s) and X2
0 μ ′

0 = 1.
These linear ordinary differential equations can be rewritten by a matrix. In accelerator

physics, a matrix for a beam focusing system is called “transfer matrix”, and described with a

phase-space vector Q=

(
x
x′

)
,

Q(s) =M(s)Q(s0) (2.34)

Substitute them for Eq. (2.31), and obtain the transfer matrix

M(s|0) =
(

m11 m12

m21 m22

)
(2.35)
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m11 =
X(s)
X0

cos(μ(s)−μ0)−X ′
0X(s)sin(μ(s)−μ0)]

m12 = X0X(s)sin(μ(s)−μ0)

m21 =

(
X ′(s)
X0

− X ′
0

X(s)

)
cos(μ(s)−μ0)−

(
1

X0X(s)
−X ′

0X(s)
)
sin(μ(s)−μ0)

m22 =
X0

X(s)
cos(μ(s)−μ0)−X0X ′(s)sin(μ(s)−μ0)]

. (2.36)

Now, introduce the following parameters,

α(s) =−1
2
dβ (s)
ds

,

γ(s) =
1+α(s)2

β (s)
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.37)

and the transfer matrixM(s) is written as

M(s) =

(
cosσ +α(s)sinσ β (s)sinσ

−γ(s)sinσ cosσ −α(s)sinσ

)
. (2.38)

These parameters are so called “twiss parameter” and depended on only s and its focusing system
[6]. In addition, μ(s+L)−μ(s) has the same meaning as the tune. It is called “phase advance σ”
and given as

σ = μ(s+L)−μ(s) =
∫ s+L

s

1
X(s)2

ds=
∫ s+L

s

1
β (s)

ds. (2.39)

2.2.6 Courant-Snyder invariant and emittance

Using the twiss parameter, the solution of the Hill’s equation is written as

x(s) =
√

εβ (s)cos(μ(s)+μ0),

x′(s) = −
√

ε
β (s)

[α(s)cos(μ(s)+μ0)+ sin(μ(s)+μ0)]

= −
√

εγ(s)sin(μ(s)+μ0). (2.40)

From these equations, we can obtain the constant value as

γx2+2αxx′+βx′2= ε = constant. (2.41)
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Figure 2.5: A particle orbit in phase space.

This ε does not depend on s, and so called “Courant-Snyder Invariant”. Here, ε is determined by
the initial condition of the particles and πε in Fig 2.5 shows the area of the ellipse in the phase-
space. Therefore, we can represent the quality of the beam by using this invariant and it is so call
“emittance”. In other words, the area which is occupied by the constant rate is the emittance, and
so the smaller emittance means high quality beam. The definition of the “constant rate” varies
with the accelerator or the beam species.

2.2.7 Stability condition of linear beam transport

It is known to the determination of the transfer matrix becomes 1,

detM = (cosσ +α sinσ)(cosσ −α sinσ)+βγ sin2 σ (2.42)

= 1. (2.43)

This also shows the particle motion does not attenuate and the emittance is saved in the transfor-
mation. It is known as Liouville’s theorem.

Also, the trace of the transfer matrix shows the stability of the particle orbit. The phase-space
vector Q after n times passed the periodic focusing system is

Qn = MnQ (2.44)

= c1MnQ1+ c2Mnx2 (2.45)

= c1λ n
1Q1+ c2λ n

2Q2, (2.46)

where λ1 and λ2 are the eigenvales, Q1 and Q2 are the eigenvectors. In order not to diverge Qn
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by n→ ∞, |λ1|< 1 and |λ2|< 1 is required. The eigenvalue equation is written as

det(M−λ I) = λ 2−2λ cosσ +detM (2.47)

= λ 2−2λ cosσ +1= 0, (2.48)

and the eigenvalues are given as

λ1+λ2 = 2cosσ ,

λ1λ2 = 1.

⎫⎪⎬⎪⎭ (2.49)

λ1,λ2 = e±iσ (2.50)

As a result, we can obtain the necessary and sufficient condition for the stable particle orbit,

−1< cosσ < 1. (2.51)

Here, using TrM = 2cosσ and the stability condition is written as

|TrM|< 2. (2.52)

This condition is the same meaning as the mathieu’s stability condition.

2.2.8 Analogy between the two dynamical systems

The Hamiltonian of the 2D beam in quadrupole transport system is given by Eq. (2.19) and (2.22),

Hbeam =
p2x + p2y

2
+

1
2
K(s)(x2− y2)+

q
p0β0cγ20

φsc. (2.53)

where ignoring the axial motion of the beam. This Hamiltonian is the same as Eq. (2.3) without
the coefficients [1, 2]. Now we apply the following scaling to Eq. (2.3)

H
mc2

→ Htrap,
px
mc

→ px,
py
mc

→ py, (2.54)

and it is reduced to

Htrap =
p2x + p2y

2
+

1
2
Kp(τ)(x2− y2)+

q
mc2

φsc, (2.55)

where

Kp(τ) =
2qV (τ)
mc2R2

0
, (2.56)
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and the scaled independent variable is τ = ct. Therefore, in this scaling transformation, we can
consider the non-neutral plasma in the trap as the light speed beam in the accelerator ignoring
Lorentz factors.

2.3 Some useful formulas

Charged particles are interacted by their self-potential and consist a Coulomb system. In beam
dynamics, this internal Coulomb interaction is so called the space charge effect. Space charge
effect can ignore in a rarefied beam or close to the speed of light beam like an electron beam.
However, in the modern high intensity beam, it affects to the particle motion and the beam stability.
In this section, we introduce the linear theory including space charge effect.

2.3.1 Vlasov-Poisson model

Here, we assume an longitudinal-uniform (coasting) beam or non-neutral plasma, and so it can
be ignore that the longitudinal collective motion. Therefore, the self potential φsc satisfies the
following 2D Poisson equation with Liouville’s theorem [8],

∇2φsc =− q
ε0

∫
f dpxdpy. (2.57)

In the case of ignoring the Coulomb collision effect in the beam, the phase-space distribution
function f satisfies the Vlasov equation,

∂ f
∂ s

+[ f , H] = 0. (2.58)

Here, [,] denotes the Poisson bracket and assuming the following 2D Hamiltonian,

H =
p2x + p2y

2
+Kx(t)

x2

2
+Ky(t)

y2

2
+qφsc. (2.59)

As an evaluation method of a space charge effect, solve these three simultaneous equations
and obtain a solution of a distribution function. KV distribution is known as a stationary solution
of a Vlasov-Poisson equation in a periodic focusing system [9]. The smoothed KV distribution is
defined as

f (x,y, px, py) =
N

π2εxεy
δ

(
x2

a2
+

y2

b2
+

a2p2x
ε2
x

+
b2p2y
ε2
y

−1

)
. (2.60)

a(s) and b(s) are the beam size of x- and y-directions, and N is the particle line density. This
distribution often uses for analytical solution due to it has linear space-charge force.

However, KV distribution is not a realistic distribution, and it is very hard to obtain the time
evolution of the general distribution by analytically. Accordingly, the multi-particle simulation is
popular to solve the time evolution. In the general numerical simulation, the program does not
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solve Vlasov equation directly, but integrates the equation of motion of the particles [10, 11, 12,
13, 14, 15].

2.3.2 RMS envelope equation

One analytical solution of the space charge effect which based on statical averaged values is given
by Sacherer [16, 17, 18]. This equation is developed from the self-consistent distribution case so
called KV envelope equation to the elliptic symmetry distribution. Start from one particle in the
beam, and it satisfies

x′ = px, (2.61)

p′x = Fext+Fsc, (2.62)

where Fext is the external force and Fsc is the internal (space charge) force. From the Vlasov
equation, 1st order moments are,

x′ = px, (2.63)

px′ = Fext+Fsc =−Kx(s)x+Fsc. (2.64)

Also, 2nd order moments are written as

x2
′

= 2xx′ = 2xpx (2.65)

xpx′ = x′px+ xp′x = p2x −Kx(s)x2+ xFsc (2.66)

p2x = 2pxp′x =−2Kx(s)xpx+2pxFsc. (2.67)

Now, define the rms emittance for the elliptic symmetry distribution beam,

ε rms
x ≡

√
x2p2x − xpx2, ε rms

y ≡
√
y2p2y − ypy2. (2.68)

Assuming the elliptic symmetry distribution function as

f (x, y, px, py ; s) = f
(

x2

x2rms
+

y2

y2rms
, px, py; s

)
. (2.69)

The solution is known as the rms envelope equation and given by

d2xrms

ds2
+Kx(s) xrms− (ε rms

x )2

x3rms
− Ksc

2(xrms+ yrms)
= 0, (2.70)

d2yrms

ds2
+Ky(s) yrms−

(ε rms
y )2

y3rms
− Ksc

2(xrms+ yrms)
= 0, (2.71)

where xrms =
√
x2, yrms =

√
y2, and Ksc = 2Nrp/(β 2

0 γ30 ) is the beam perveance which is propor-
tionally to the beam current. Here, N is the number of particle and rp is the classical radius of the
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particle. The rms beam size satisfies this rms envelope equation. This equation is difficult to solve
without definition of the time evolution of the rms emittance, however, the rms emittance is al-
most constant in the equilibrium state beam. Therefore, it is generally solved with this assumption.
Also, the KV emittance has following relation to the rms emittance

εx(y) = 4ε rms
x(y). (2.72)

In the KV distribution, the particles distribute uniformly and the outermost shell radius is twice as
large as the rms radius. The rms emittance is the effective emittance in the macro scale, and so the
emittance grows up by the resonance instability in the numerical simulation etc.

On the other hand, the rms envelope equation can be rewritten as the time-dependent equations
for the Paul trap [2],

d2xrms

dt2
+ K̂x(t) xrms− (ε rms

x c)2

x3rms
− Kscc2

2(xrms+ yrms)
= 0, (2.73)

d2yrms

dt2
+ K̂y(t) yrms−

(ε rms
y c)2

y3rms
− Kscc2

2(xrms+ yrms)
= 0, (2.74)

and,

K̂x,y(t) =
2q
mR2

0
(U+Vrf cosωrft), (2.75)

where the constants are the same as Eq. (2.4).

2.3.3 Tune shift and tune depression

The effective focusing strength is reduced by the Coulomb repulsion force, therefore the tune
is depressed. This depressed tune is called “incoherent tune ν” and the difference between the
incoherent tune and bare tune is called “tune shift Δν”. The incoherent tune is given by the
periodic solution of the envelope equation,

νx =
εx
2π

∮ 1
a2

ds=
ε rms
x
2π

∮ 1
x2rms

ds, (2.76)

νy =
εy
2π

∮ 1
b2

ds=
ε rms
y

2π

∮ 1
y2rms

ds, (2.77)

where a(s) = 2xrms(s) and b(s) = 2yrms(s).
As an index of a space-charge effect, a tune shift and a tune depression are used. The tune

depression is written by the bare tune and the incoherent tune,

η =
ν
ν0

. (2.78)

In the case of the tune depression close to one, it means the plasma is rarefied.
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Figure 2.6: Overview of the S-POD system. Right picture is the whole control system of the
S-POD. Left picture is the S-POD trap system in the vacuum chamber.

2.4 Simulator of Particle Orbit Dynamics

At Hiroshima University, a unique tabletop tool called “S-POD” (Simulator of Particle Orbit Dy-
namics) has been developed which allows acceleratorfree experiments on diverse beam-dynamics
issues. The S-POD system is based on a compact linear Paul trap in which we can confine a large
number of ions. As we mentioned above, a non-neutral plasma stored in the trap can be made
approximately equivalent to a charged particle beam in an alternating-gradient (AG) transport
channel 1

2.4.1 Overview

Figure 2.6 is the overview of the whole S-POD system and Fig 2.7 is the schematic sideview of
the trap system. The trap system is set up in the vacuum chamber, consisted by the five sections
of the quadrupole electrodes, the electron gun (e-gun), the micro channel plate (MCP), and the
Faradey cup. In the experiments, accumulate the Ar+ ions in the trap mostly. First, we ionize
neutral Ar gas with a low energy electron beam from the e-gun in section A in Fig 2.7. Second,
stop the e-gun and check the stability of the Ar plasma for few msec. We often use 1MHz rf
voltage for the quadrupole. In this case, one msec correspond to one thousand focusing cells.
After that, measure the number of confined ions with a Faraday cup or a MCP by dropping one of
the axial DC potential barriers. The Faraday cup is used for measurement of large number (> 106)
of ions, conversely, The MCP is used for the small number (< 106) of ions. In our trap system, The
vacuum pressure before the ionization procedure is less than 10−7 Pa. These S-POD experiments
process is controlled by a personal computer with an extensive “LabVIEW”-based system. This
system can carry out a large number of systematic measurements quickly and automatically.

1Gilson, Davidson, and their coworkers of Princeton Plasma Physics Laboratory also constructed a linear Paul trap
for beam physics purposes. Their trap geometry is not the most popular four-rod type but a cylinder consisting of four
90-degree azimuthal sectors. The system is referred to as “PTSX” (Paul Trap Simulator Experiment) that has produced
fruitful experimental results for the last decade [19, 20, 21].
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ion plasma
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Cap A Section A Gate Section B

End
Cap B

Faraday CupMCP
e-gun

Axial Potential Configuration
Figure 2.7: A schematic of a typical linear Paul trap for S-POD. The quadrupole rods of the multi-
sectioned LPT for S-POD are divided into five electrically independent pieces [3, 4]. We can form
two axial potential wells simultaneously by applying DC bias voltages to both the “End Caps”
and “Gate” quadrupoles. We mostly confine ions in Section A above which an electron gun is
installed for ionizing neutral gases. Ion plasmas are eventually detected either by a Faraday cup
or by a micro-channel plate sitting on both sides of the trap. In order to use the Faraday cup for
ion number measurements, the DC bias voltage on the Gate quadrupole is dropped to release the
plasma from Section A. Section A is typically biased with a low DC voltage to accelerate ions
toward the detector in the measurement process.

As noted above, the ideal LPT confine the plasma with the quadrupole field, so the electrodes
should have hyperbola surfaces. However, it is difficult to make accurate hyperbola electrodes.
By the practical reason, cylindrical electrodes are used to the S-POD. The electrostatic potential
field F produced by the cylindrical electrodes has high order nonlinearities. F can be expanded in
cylindrical polar coordinates (r,θ),

F(r,θ) =
∞

∑
n=1

Wn

(
r
R0

)n
cos(nθ +ϕn). (2.79)

Here, Wn and ϕn are constant amplitudes defined by the applied voltage and the geometry of the
electrodes. Figure 2.8 is the relation between the transverse bare tune and the rf quadrupole voltage
in our trap system (inner radius R0 = 5 [mm] and rf frequency is 1 MHz). In this case, the operating
point will break out of the Mathieu first stability region at about 90 V.

In addition, it is not negligible that the nonlinear field caused by the electrodes misalignment.
Figure 2.9 shows the multipole field amplitude by the rms electrodes misalignments.

2.4.2 Axial plasma confinement

Figure 2.10 shows the longitudinal barrier potential in the S-POD on central axis. This potential
is calculated with the numerical field solver. We generally choose the trap parameters for R0 = 5
[mm], the length of the Section A is 75 mm, and the length of the End Cap A and the Gate are
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Figure 2.8: The relation between the transverse bare tune ν0 and the applied rf quadrupole voltage
Vrf where the rf frequency is 1 MHz.

17 mm. In this case, the longitudinal potential shapes like square well, and the confined plasma is
able to approximate longitudinal uniform distribution in the middle of the trap.
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Figure 2.9: Multipole field amplitude by the rms electrodes misalignments. The amplitude is
scaled by the 2nd order (quadrupole) field amplitude. Blue symbols are multipole amplitudes
of the cylindrical electrodes without misalignment. Red and green symbols show the multipole
amplitudes with 0.05 mm and 0.10 mm rms misalignment. These results are calculated with the
Warp field solver and averaged for 100 cases.
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Figure 2.10: Longitudinal barrier potential in the S-POD on central axis. The result is calculated
with the Warp field solver. The applied bias voltages are 40 V at the End Cap A and the Gate, and
10 V at the Section A.
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Chapter 3

Numerical simulation of beams

As previously described, the multi-particle simulation is a popular method to solve the time evo-
lution of the arbitrary distribution. In the numerical simulation, it is important that the integration
method of the time evolution and the method to calculate the Coulomb interaction.

3.1 Leapfrog method and Boris method

There are many types of the numerical integration method to calculate the particle motion. For
example, 4th order Runge-Kutta(rk4) method is famous for easy method. However, rk4 method is
not a symplectic advance, so the particle motion overflows by the accumulation of the numerical
errors. Here, the “symplectic” means the particle motion satisfies,(

xi+1

vi+1

)
=M

(
xi
vi

)
and detM = 1. (3.1)

The accelerator simulations require the long term calculation for the beam stability analysis.
Therefore, it requires symplectic and faster method. Generally, high-order integration methods
have high order numerical accuracy, but the calculation cost is trade-off of the number of the or-
der. The leapfrog method is often used for the charged particle as a low-order method. It only
needs to store prior position and velocity and one field-solve per time step.

Figure 3.1 is the schematic of the leapfrog method. The integration cycle is,

(i) m
vi+1/2− vi−1/2

Δt
= Fi(x),

(ii)
xi+1− xi

Δt
= vi+1/2,

where, Δt = ti− ti−1. x and v are not evaluated at the same time, so the initial velocity v0 should
be pushed back a half cycle v−1/2 = v0−F0(x)Δt/2 with the simple approximation.

On the other hand, the previous leapfrog method can not use for the velocity dependent force
as occurs with magnetic field. The Boris method solves this problem [22]. Assuming the electric
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Figure 3.1: Schematic of the leapfrog method. (a) Position is evaluated at integral time steps,
while (b) velocity is evaluated at half times.

field E and the magnetic field B, the force F is

F = q(E+v×B). (3.2)

The velocity advance is modified as following 3 steps.

(i) v− = vi−1/2+
q
m
E

Δt
2
,

(ii)
v+−v−

Δt
=

q
2m

(v++v−)×B,

(iii) vi+1/2 = v++
q
m
E

Δt
2
.

3.2 PIC method

As the electric field in accelerator physics, it is important that not only the external field but also
the internal field generated by the Coulomb interaction of the beam. A charged particle beam
in an accelerator generally contains large number of ions. In this case, it is very expensive to
calculate the Coulomb interaction of the beam, because the number of the calculation increases
proportionally to the square of the number of ions. “Particle-In-Cell (PIC)” method commonly
used to simulate the multi particle motion approximately. The PIC method uses “macro-particles”
to represent the real particles. Generally a macro-particle takes over plural real particles.

3.2.1 Area weighting

In the PIC method, the electrical charges of the macro-particles are scattered to the mesh points in
the real space. Figure 3.2 schematically shows the scattering method so called the “area weight-
ing”. Scattered charges from a macro particle on four nearest mesh points are written as
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Figure 3.2: Schematic of the scattering of the macro-particle (gray circle). The charge of the
macro-particle is scattered to the four nearest mesh points.

qi, j = qm
(xi+1− xm)(yi+1− ym)

ΔxΔy
(3.3)

qi+1, j = qm
(xm− xi)(yi+1− ym)

ΔxΔy
(3.4)

qi, j+1 = qm
(xi+1− xm)(ym− yi)

ΔxΔy
(3.5)

qi+1, j+1 = qm
(xm− xi)(ym− yi)

ΔxΔy
, (3.6)

where xi, j, yi, j, qi, j are the positions and the charges of the mesh point, xm, ym, qm are the positions
and the charges of the macro-particle. The internal electric field is calculated by the mesh points.

3.3 Computational cycle

Summarizing the above, the one step cycle of the PIC simulation is described as

(i) Moving particles: F → v → x.

(ii) Weighting (particles to mesh point): (x,v)→ (ρ ,J).

(iii) Field solver: (ρ,J)→ (E,B).

(iv) Weighting (mesh point to particles): (E,B)→ F .
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Needless to say, the step size, the grid size, and the number of the macro-particles should be set to
appropriate values in the simulation.

3.4 Initial distributions

In 1D or 2D Vlasov-Poisson system, we need to define an initial distribution on a transverse phase
space. Following 3 types distribution are generally used to solve the system [23].

3.4.1 Kapchinskij-Vladimirskij (KV) distribution

KV distribution is known as the only self-consistent solution. Therefore, this distribution is often
used for analytical theories, but the distribution is defined by the delta function in the phase space,
and so it is not realistic. The KV distribution can be expressed as

f (x,y, px, py;s) =
N

π2εxεy
δ

[
x2

a2
+

y2

b2
+

(apx−a′x)2

ε2
x

+
(bpy−b′y)2

ε2
y

−1

]
, (3.7)

where, the symbols are the same as Eq. (2.60).

3.4.2 Waterbag distribution

Waterbag distribution has a sharp edge in a phase space. The distribution is written as

f (x,y, px, py) =
8N

9π2εxεy
Θ

{
1− 2

3

[
x2

a2
+

y2

b2
+

(apx−a′x)2

ε2
x

+
(bpy−b′y)2

ε2
y

]}
, (3.8)

where

Θ(x) =

{
1, x> 0,
0, x< 0.

(3.9)

3.4.3 Gaussian distribution

When we assume the trap or accelerator experiments, Gaussian distribution is the most realistic in
these three distributions. The phase space distribution is the same as Gaussian, and

f (x,y, px, py) =
4N

π2εxεy
Exp

{
−2

[
x2

a2
+

y2

b2
+

(apx−a′x)2

ε2
x

+
(bpy−b′y)2

ε2
y

]}
. (3.10)

3.5 PIC simulation code “Warp”

The Warp code is originally developed for heavy ion fusion researches by David Grote [24, 25,
26, 27, 28, 29]. In this code, the main routines including particle-mover, field-solver, particle-
loading, etc. are written in Fortran90. These Fortran codes are compiled with Forthon (Python
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Grid size (x,y) 0.072 [mm]
Number of macro particles 1×105

Steps per cell 200∼ 1680
Ion Specie 40Ar+

Initial distribution KV, Gaussian, Waterbag
Plasma Temperature 0.1 [eV]

Inner radius 5.00 [mm]
Rod radius 5.75 [mm],
Rf frequency 1 [MHz]

Table 3.1: 2D numerical simulation parameters for the PIC code Warp. The ion specie, the inner
radius, rod radius, and the rf frequency are the same as the experimental parameters.

interface generator for Fortran based codes) as a Python-type module [30]. The Warp code works
on the Python interpreter, and Python have powerful scientific module packages represented by
the NumPy [31]. Using the Python interface with the NumPy, we can be easy to reproduce various
situation not only of the charged-particle beam but also the confined non-neutral plasma without
modifying the source code.

The code supports full 3D, r-z and x-y 2D PIC packages, and with the multi-species PIC
calculation. Moreover, the self-field symmetry, the mesh refinement method, and the parallel
computing system with MPI(Message Passing Interface) are equipped to reduce the calculation
cost. The field solver can also solve electromagnetic field with detailed conducting object using
Dirichlet, Neumann, or periodic boundary conditions. The diagnostics are outputted as CGM
(Computer Graphics Metafiles) with the scientific graphics library; Gist by default, but of course,
we can also use other Python graphics library like matplotlib [32].

The Warp code is continuously and extensively extended, and the source code and the docu-
mentation of the Warp is provided in Ref. [29].

We generally use the Warp code for the 2D multi-particle simulation in the S-POD system,
because systematic 3D simulation requires large computational resources, and as we mentioned
above, uniform longitudinal distribution are produced in the middle of confinement area in the
trap. Table 3.1 is the typical Warp simulation parameters. These numerical parameters are chosen
for converging in the simulation results which studies in old works [33]. The steps per cell is
used various numbers for various focusing systems with converging the statical values. Figure 3.3
shows a simulation area and the confined plasma. The Warp code provides the multi-grid field
solver not only for a space-charge but also conductors. About a square of 20 mm on each side is
chosen for the simulation area, and the side boundary conditions are Dirichlet.

In the 2D (transverse) Warp simulations, the initial “pseudo-equilibrium” distribution matched
to the periodic focusing channel is formed by canonically transforming a root-mean-squared (rms)
equivalent thermal equilibrium distribution which is constructed under the smooth approximation
[23]. Figure 3.4 is a Warp simulation example. The emittance growth is defined by (εx(s) +
εy(s))/(ε ini

x + ε ini
y ). There is no emittance growth for 100 periods in the stable operating point
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Figure 3.4: An example of the 2D slice Warp simulation in two operating points (ν0 = 0.22:dashed
line and ν0 = 0.274:solid line). The tune depression η is 0.90 for both operating point. The
initial distribution is pseudo-equilibriumGaussian matched to the periodic focusing system. Upper
panel shows the emittance growth histories. Lower left panel is the final phase space distribution
at the stable operating point (ν0 = 0.22). Lower right panel is at the unstable operating point
(ν0 = 0.274), and the phase space distribution is blown up widely.

(an example ν0 = 0.22). However, the emittance growth becomes larger in the unstable operating
point (an example ν0 = 0.274). To repeat these simulations for the wide range of bare tunes, we
can obtain the “stop band” which shows the unstable tune region.
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Chapter 4

Collective resonance

With a beam cooling or a beam densification in an accelerator, particles in a beam are connected
each other by a Coulomb interaction (space-charge effect), and a charged particle beam have a
”collective motion”. In addition the Coulomb repulsive forces make weaker the effective focusing
force from the external field to the beam. In addition, a particle motion in a periodic focusing
system has resonance conditions which rely on a tune, so the resonance conditions are changeable
by the space-charge effect. We describe the collective resonance condition by theoretically and
numerically in this chapter.

4.1 Resonance conditions

4.1.1 Resonances in the absence of space charge

At the beginning, assuming the space charge effect is negligible, the resonance condition is the
same single particle theory [7]. It returns to the simple parametric resonance, so the resonance
condition in zero-space-charge limit becomes

Ωk = kν0 = n, (4.1)

where Ωk is the coherent tune of mode number k, and n is an integer. When the coherent tune
satisfies the resonance condition, the beam becomes unstable.

4.1.2 Linearized Vlasov approach

As mentioned in 2.3.1, the arbitrary Vlasov-Poisson model is hard to solve analytically for the
time evolution of the beam distribution. Therefore, the perturbation approach so called “linearized
Vlasov analysis” is employed to study collective resonances [11, 15, 34]. In the linearized Vlasov
analysis, we solve the evolution of the perturbation distribution instead of the whole distribution.
Assuming the equilibrium state distribution function f0 and the perturbation distribution function
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δ f , the Vlasov-Poisson equations are described as

∂ f0
∂ s

+
∂δ f
∂ s

+[ f0, H0]+ [δ f , H0]− q
p0β0cγ20

([δφ sc, f0]+ [δφ sc, δ f ]) = 0, (4.2)

and

Δφ sc
0 +Δφ sc =− 1

ε0

∫
f0dpxdpy− 1

ε0

∫
δ f dpxdpy. (4.3)

Here, H0 is the equilibrium-state Hamiltonian, and it satisfies the following zero-th order Vlasov-
Poisson equations,

∂ f0
∂ s

+[ f0, H0] = 0, (4.4)

Δφ sc
0 =− q

ε0

∫
f0dpxdpy. (4.5)

Disregarding all terms of δ 2 and higher orders, the linearized Vlasov-Poisson equations are derived
from above four equations,

∂δ f
∂ s

+[δ f , H0] =
q

p0β0cγ20
[δφ sc, f0], (4.6)

Δδφ sc
0 =− q

ε0

∫
δ f dpxdpy. (4.7)

In this analysis, derive the equilibrium state from Eq. (4.4) and (4.5) firstly. As we know, only
cognize self-consistent equilibrium solution as the KV distribution. After that, substitute these
results for Eq. (4.6) and (4.7). In the case of diverging the perturbation term after one period, the
state can be said as unstable.

4.1.3 One-dimensional Vlasov theory

One-dimensional analytic study of space-charge dominated beams was established by Sacherer
over 40 years ago [18]. His study has attracted more attention in the modern high-power acceler-
ator design studies. The resonance condition is derived by a Vlasov dispersion relation assuming
a sheet beam with an uniform charge density, and shown as

Ωk = k(ν0−CkΔν)≈ n. (4.8)

Here, Δν is the incoherent tune shift by the space-charge effect, and Ck is a positive constant less
than 1. Sacherer predict that in his study,C1 = 0,C2 = 0.75,C3 = 0.88, andC4 = 0.92. Subsequent
study, the more detailed analytic description is derived from the linearized Vlasov approach with
the perturbed system [35]. In this work, the resonance condition is written as

Ωk = k(ν0−ĈkΔν)≈ n
2
. (4.9)
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Here, Ĉk is similar to Sacherer’sCk, but Ĉ1 = 0.15, Ĉ2 = 0.83, Ĉ3 = 0.93, and Ĉ4 = 0.96 are given.
The resonance condition Eq. (4.9) shows the linear resonance (k = 2) occurs in near the quarter
integer tunes. In addition, the growth rate of this linear-quarter integer resonance gets higher
according as the tune depression close to zero.

4.1.4 Two-dimensional Vlasov analysis

Two-dimensional analysis is also derived from the linearized Vlasov approach, and it is solved
numerically [11]. Assuming the periodic focusing and KV distribution, the total Hamiltonian with
the perturbation potential is written as

H =
1
2
(p2x + p2y)+

1
2
(κx(s)x2+κy(s)y2)+Φ, (4.10)

where

κx = Kx− Q
a(a+b)

, κy = Ky− Q
b(a+b)

. (4.11)

Kx,y(s) are the external periodic focusing force. and the beam envelopes a(s) and b(s) are de-
termined by the envelope equations Eq. (2.70). The perturbation potential Φ can be described
as

Φ =
4πq

mγ30 (β0c)2
δV, (4.12)

where δV is the electrostatic potential function due to perturbations. Using the Courant-Snyder
invariants α(s) and β (s), and the generating function for the Hamiltonian Eq. (4.10),

F =
x

β 1/2
x

(
p̄x− αx

2
x

β 1/2
x

)
+

y
β 1/2
y

(
p̄y− αy

2
y

β 1/2
y

)
. (4.13)

Here, make use of the scaling transformation x̃= x̄/
√

ε , p̃x = p̄x/
√

ε , and the canonical variables
are written as

x̃=
x

(βxε)1/2
, p̃x =

(
βx

ε

)1/2(
px+

αx

βx
x
)

(4.14)

where similarly for ỹ and p̃y. Consequently, the new Hamiltonian is expressed as

H̃ =
1
2βx

(p̃x2+ x̃2)+
1
2βy

(p̃y2+ ỹ2)+
1
ε

Φ. (4.15)
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Now we assume the KV distribution, the infinitely distant self-potential as zero, and the perturba-
tion potential Φ in the inside of the beam satisfies Poisson equation,

∇Φ ≡ 1
a2

∂ 2Φ
∂x2

+
1
b2

∂ 2Φ
∂y2

(4.16)

=
Q

πεab

∫ s
ds′

(
∂

∂Ψ′
x
+

∂
∂Ψ′

y

) [
d

d(p2)

∫ 2π

0
dθΦ(x′,y′;s)

]∣∣∣∣
p2=1−x2−y2

. (4.17)

Here, Ψx,y are the phase advance of the beam. We apply elliptic coordinates (ξ ,ζ ) for the real
space, and obtain

x=
h
a
coshξ cosζ and

h
b
y=

h
b
sinhξ sinζ (4.18)

where h2 = a2−b2, in addition, coshξ = a/h and sinhξ = b/h at the boundary of the beam surface
x2+ y2 = 1. The discontinuity of the self-potential field at the beam boundary can be written as

Δ
∂Φ
∂ξ

=
Q
ε

∫ s
ds′

(
∂

∂Ψ′
x
+

∂
∂Ψ′

y

)
Φ(cosζ cos(Ψ′

x−Ψx),sinζ sin(Ψ′
y−Ψy);s′) (4.19)

Δ∂Φ/∂ξ in Eq. (4.19) is the gap of the self-potential at the beam surface between the perturbation
potential inside the beam and the perturbation potential outside the beam which satisfies Laplace
equation,

∂ 2Φ
∂ξ 2 +

∂ 2Φ
∂ζ 2 = 0. (4.20)

When we obtain the perturbation potential which satisfies Eq. (4.16) and (4.19), it equals to obtain
the self-consistent solution of the linearized Vlasov-Poisson equations.

As a general solution, we assume a perturbation potential can develop as

Φn =
∞

∑
i=0

n−2i

∑
m=0

A(i)
m (s)xn−m−2kym. (4.21)

Here, n is the mode order of the perturbation potential. m shows the normal and the skew com-
ponent of the potential. An even m is the normal and an odd m is the skew. Now we define the
variable for k-th mode perturbation vibration I as

Ik; j,l =
∫ s

Ak(s′)sin[ j(Ψ′
x−Ψx)+ l(Ψ′

y−Ψy)]. (4.22)

Equation (4.16) and (4.19) are rewritten by I, and it satisfies,

Dj,l(s)
d
ds

(
Dj,l(s)

dI
ds

)
+ I =−Dj,l(s)Ai, (4.23)
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Figure 4.1: Stop band of the growth factor of k = 2 in the rf focusing system. By the tune depres-
sion, the peak tune of the growth factor is shifted and the peak value becomes larger.

where

Dj,l =

(
j

βx
+

l
βy

)−1
(4.24)

Ai can be represented by the polynomial expression of I, Eq (4.24) becomes a second-order dif-
ferential equation in terms of I. Therefore, we can get the transfer matrix for I by the numerical
integrations through one period of the cell. The transfer matrixM is written as

I(s0+L) =MI(s0), I = (I1, I′1, I2, I
′
2, ...). (4.25)

Solving the eigenvalue of the matrix, we obtain the stability of the perturbation vibration and the
growth factor of the beam. Figure shows second-order (k= 2) growth factor for various bare tunes
in the rf focusing system. In the case of tune depression η 
= 1, the growth factor becomes larger
than one near the quarter integer tune. In addition, the peak tune of the growth factor moves to left
side. These results are consistent to the resonance condition Eq. (4.9).

4.2 Lattice-dependence of resonance instability bands (stop bands)

4.2.1 Sinusoidal focusing lattice

Figure 4.2 shows the stop band of the emittance growth by the 2D Warp simulations. The initial
distributions are set up to KV (a), Gaussian (thermal-equilibrium) (b), and water bag (c), for each
tune depressions (η = 0.80∼ 0.95). The emittance growth is defined as (εfin

x + εfin
y )/(ε ini

x + ε ini
y ),

and εfin
x,y is the rms emittance after 100 periods. In the each case, we can find three resonance

regions which are ν0 ≈ 1/6, 1/4 and 1/3. The largest peak near ν0 = 1/4 is generated mainly by
the instability of the second-order linear collective mode, and the other two peaks near ν0 = 1/6
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Figure 4.2: Stop band of the each distribution and the effect from the electrodes misalignment.
(a) K-V, (b) thermal equilibrium (Gaussian base), (c) Water bag, (d) thermal equilibrium, no mis-
alignment (solid line), and 0.10 mm rms misalignment (dashed line).

and 1/3 are due to third-order nonlinear resonances. These results are consistent to the previous
analytical theory Eq. (4.9). The resonance widths in KV and waterbag results are narrower than
the Gaussian result, because the Gaussian distribute widely in the phase space, so the frequencies
of the particles spread widely. In the case of Gaussian and waterbag, the linear resonance peak
located left side from the center of the resonance region. The reason is the space-charge effect
becomes weaker by the real-space beam spread on the resonance, and so the tune shift is reduced.
As a result, the resonance condition Eq. (4.9) moves to low tune side.

Since this, we use the initial Gaussian distribution for the Warp simulation in the view of the
experiments. Figure 4.2 (d) shows the misalignment effect (see Fig. 2.9) in the tune depression
η = 0.90. Comparing from the no misalignment case (dashed line), the peak values of the growth
factors near ν0 = 1/4 and 1/3 are increased about 10 ∼ 20 % in 0.1 mm rms misalignment case.
These are result of increasing the external third- and fourth-order nonlinear fields.

The time evolutions of the emittance growth in the resonance regions are shown in Fig. 4.3
(ν0 ≈ 1/4:(a),(c) and 1/3:(b),(d)). (a) and (b) are the tune depression η = 0.90, (c) and (d) are
the tune depression η = 0.95, and plotted for 1000 periods. In the linear resonance region near
ν0 = 1/4;(a) and (c), the time evolution of the emittance growth is slow, and the emittance stops
after about 300 periods;(a) or about 700 periods;(c). These phenomena come from the space-
charge dependence of the collective-instability growth factor, and the tune depression close to one
due to the beam spread in the real space by the resonance instability. On the other hand, the time
evolution by third order resonance near ν0 = 1/3;(b) and (d) is very quickly and then the emittance
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Figure 4.3: Time evolution of the stop band (thermal equilibrium distribution). (a) η = 0.90 2nd
order resonance region, (b) η = 0.90 3rd order resonance region, (c) η = 0.95 2nd order resonance
region, (d) η = 0.95 3rd order resonance region.

grows gently for the long over 1000 periods. This third order resonance does not depend on the
space charge and always exist because of Eq. 4.1.

Comparison between the simulation results and the experimental results

The experimental results by the S-POD are shown in Fig. 4.4 upper panel. Here, Nin is the initial
ion number which confined in the trap. We can recognize three the ion loss peaks like reversal of
the simulation peaks. The experimental resonance peaks also shifted to lower tune side, and this is
the same reason as the simulation results. Comparing the resonance region between these results,
we can estimate the tune depression in the experiments, therefore Nin ≈ 1× 107 corresponds to
η ≈ 0.85 and Nin ≈ 1× 106 is to η ≈ 0.95. The ion loss in third-order resonance is quite large,
because there is a possibility of the large third order component due to the rod misalignment
including the centroid shift in the confinement section of the trap system.

4.2.2 Doublet focusing lattice

The sinusoidal (rf) wave is practically easy to generate in the trap system, but the real accelera-
tor is configured by the axial separated components. Therefore the focusing function is simply
represented as like a step function in Fig. 4.5. The most standard strong focusing system is the
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Figure 4.4: Comparison between the numerical stop band and the experimental stop band. Upper
panel is the experimental stop bands which are shown by the ion loss in the trap. Nin is the initial
ion number in the trap. Lower panel is the Warp simulation result for six tune depressions.
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Doublet Lattice
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Figure 4.5: The doublet focusing lattice (upper figure) and the main Fourier harmonic.

so-called “doublet lattice” in which the beam receives one linear focusing and one defocusing
quadrupole kick alternately within the lattice period. A special case of the doublet lattice with
equal length of focusing and defocusing quadrupoles axially spaced equidistantly within the lat-
tice cell is called a “FODO” lattice. FODO lattices make the most efficient use of the quadrupole
focusing strength, but have short free axial drift space within the lattice for other uses (pumping,
diagnostics, etc). Due to high focusing efficiency, quadrupole doublets are often adopted for beam
transport channels and linear accelerators.

Figure 4.5 also shows the geometric parameter for the doublet lattice. Here, lF and lD are the
width of focusing and defocusing pulses. The amplitudes of the focusing pulse is the same as
defocusing pulse. The gap width is denoted as g, and the one lattice length as L. Using these
parameters, we define the two characteristic factors for later convenience,

Ff =
lF+ lD

L
∈ [0,1], (4.26)

Dr =
g

L−g− lF− lD
∈ [0,1]. (4.27)

Filling factor Ff measures the occupancy of the quadrupole magnets, and Drift ratio Dr measures
the asymmetry of the gaps in the doublet lattice. Dr = 1 corresponds to a symmetric FODO lattice.
Expanding the doublet lattice waveform into Fourier series

K̂(τ) =
∞

∑
n=1

An sin(2πτ/L+αn), (4.28)

where An and αn are the amplitude and phase of n-th Fourier harmonic. Figure 4.6 shows the
n− th order Fourier coefficient An for various filling factors Ff and drift ratios Dr. We can find the
even order coefficients evaluate to zero in the case of Dr = 1, and there are multiple lines which
the coefficients to be zero.
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Figure 4.6: FFT result of the filling factor Ff and the drift ratio Dr dependence of the Fourier
coefficient An (n= 1∼ 8). Contours show the n− th order amplitude of the Fourier harmonic. A1
is the main harmonic wave and others are high order frequency coefficients.
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Figure 4.7: Warp simulation results corresponding to FODO (black) and single harmonic(rf, red)
focusing system. An initial pseudo-equilibrium distribution with thermal equilibrium form and an
rms equivalent beam tune depression η of 0.9 (a) or 0.8 (b) is loaded for all values of ν0. The two
results overlap in whole tune area.

FODO lattice and sinusoidal (rf) lattice

Figure 4.7 shows the Warp simulation result assuming FODO lattice and sinusoidal lattice. The
emittance growth is defined as the rms emittance after 100 periods divided by the initial value.
The tune depression is 0.9 in Fig. 4.7 (a) and 0.8 in (b). In both of them, the stop bands overlap
in whole tune area. We can recognize the three resonance instability region (ν0 ≈ 1/6,1/4,1/3)
which mentioned above in the FODO lattice case.

Doublet lattice and four harmonics lattice

Figure 4.8 is the same condition as Fig. 4.7, but add the results of an approximate doublet com-
posed from the first four Fourier components (n∼ 1,3,5,7) in blue line. The approximate doublet
result of the beta functions also overlap with each other in Fig. 4.8(b).

Next, we change both of the filling factor and drift ratio to Ff = 0.25 and Dr = 0.1, and keep
the other numerical conditions. Figure 4.9 shows the three focusing waveforms corresponding
to these parameters. The blue curve consists of the four Fourier components with the harmonic
number n= 1,2,3, and 4; unlike the previous example in Fig. 4.8, the even harmonics are allowed
due to the doublet being asymmetrical with Dr = 0.1. Corresponding beta functions and Warp
simulation results are given in Fig. 4.9 (b) and (c). Although the three curves do not overlap, we
can observe the three instability region near ν0 ≈ 1/6,1/4, and 1/3 in all cases.

These results shows, it is reasonable that taking Fourier harmonics to assume these doublet
lattice in the accelerator transport system.

Various combinations of filling factor and drift ratio

Figure 4.10 shows the result of three filling factors Ff = 0.25, 0.50, and 0.75 with the fixed drift
ratio Dr = 1. Panel (a) shows the focusing system, (b) is the typical beta function, (c) is the
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initial tune depression η of 0.9. The three curves in (a) illustrate the linear focusing function and
(b) plotted typical beta function for a lattice period considered in this example: the ideal piecewise
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Figure 4.9: Warp simulation results corresponding to Ff = 0.25 and Dr = 0.1 and the tune depres-
sion is 0.9. The ideal doublet result (black) and the four Fourier components result (blue) overlap
with each other.

Warp simulations for the tune depression η = 0.90 and 0.80, (d) is the second-order linearized
Vlasov analyses, and (e) is the third-order linearized Vlasov analyses. The stop band results
almost overlap ,and so there are no high dependence on the filling factor with the symmetric
lattice (Dr = 1).

Figure 4.11 is the result of three filling factors Ff = 0.25, 0.50, and 0.75 with the fixed drift
ratio Dr = 0.1. In the case of filling factor Ff = 0.25, the peak value of the emittance growth near
ν0 ≈ 1/4 is reduced. In addition, the reduction also occurs in the linearized Vlasov analyses.

Figure 4.12 is the result of three drift ratios Dr = 0.0, 0.1, and 0.5 with the fixed filling factor
Ff = 0.25. In these cases, the reduction of the peak value of the emittance growth near ν0 ≈ 1/4
depends on the drift ratio. However, the positions of the three resonance instability are the same
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in every case. When the peak reduction occurs, we can find the small side bands in the results of
linear Vlasov analysis. Therefore, We predict these reduction comes from the mode separation to
the breathing mode and the quadrupole mode in the second-order resonance [36].

Figure 4.13 shows the experimental result of various filling factors and drift ratios. The res-
onance instability regions are the same as the simulation results which shown in above. The
simulation results predict emittance growth in similar parametric regions where an envelope anal-
ysis predicts linear instability. However, these simulation and theory predictions cannot be verified
from the experimental measurements in Fig. 4.13.

4.2.3 FFDD focusing lattice

The FFDD lattice is composed by two consecutive focusings and defocusings shown in Fig. 4.14
(a). (c) is typical beta functions of the horizontal and the vertical. The black solid line in Fig.
4.14 (b) shows the stop bands the Warp simulation results of the emittance growth in the FFDD
lattice. The third order resonance peak near ν0 ≈ 1/3 is larger than sinusoidal lattice peak. This
difference comes from the envelope size of the beam in the FFDD lattice due to the third order
nonlinear instability depends on the its amplitude. Figure 4.14 (d) shows the results of the trap
experiments. There are three loss bands which are the same as the doublet results.

4.2.4 Triplet focusing lattice

The triplet lattice is composed by two defocusings and one focusing shown in Fig. 4.15 (a). (b)
is the typical beta functions of the horizontal and the vertical. In the triplet lattice, the horizontal
bare tune ν0x and the vertical bare tune ν0x no longer take the same value. Figure. 4.15 (b) shows
the operating line in the tune diagram. The grid lines are ν0x,0y = 1/6, 1/4, and 1/3. The Warp
simulation results are in Fig. 4.15 (d). The resonance instabilities rise at the intersection points
of the operating line and the resonance gird lines in the tune diagram. Therefore, the resonance
instability regions can estimate from Eq. (4.9) as with the previous lattices.

Figure 4.16 shows the experimental results in the triplet lattice system. We can find the reso-
nance instability regions which appear in the same region as the simulation result in Fig. 4.15.

4.2.5 Other complex lattices

An accelerator is composed by several lattice periods. Figure 4.17 is the schematics of the periodic
structure in the accelerator. The number of the lattice periods around the ring is so called the
“super-periodicity” and denotes Nsp. Design tune around the ring is defined as Nsp times one
lattice tune

ν ring
0 =

∮ ring 1
β (s)

ds (4.29)

= Nsp×
∮ lattice 1

β (s)
ds (4.30)

= Nsp×ν lattice
0 . (4.31)
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(d) Linearized Vlasov Analysis : 2nd order
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Figure 4.11: Simulation results fixed Dr = 0.1. Ff = 0.25 (red), Ff = 0.50 (green), Ff = 0.75
(blue). (a) Focusing systems. (b) Typical beta functions. (c) Stop band by the emittance growth in
Warp simulations. (d),(e) 2nd and 3rd order Linearized Vlasov analysis.
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Figure 4.12: Simulation results fixed Ff = 0.25. Dr = 0.0 (red), Dr = 0.1 (green), Dr = 0.5 (blue).
(a) Focusing systems. (b) Typical beta functions. (c) Stop band by the emittance growth in Warp
simulations. (d),(e) 2nd and 3rd order Linearized Vlasov analysis.
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Figure 4.13: Results of the doublet lattice experiments. The ordinates of the panels are the number
of Ar+ ions surviving after a 10 ms storage (104 periods) at a fixed bare tune. Panel (a) is the stop
band by the ion losses with fixed drift ratio. Panel (b) is the stop band with fixed filling factor. The
initial number of Ar+ ions is Nin ≈ 1.0×106 (lower curves) or Nin ≈ 5.0×106 (upper curves). We
can confirm the three loss bands induced mainly by second and third-order resonances.

In addition the collective resonance condition (4.9) is rewritten as

Ωk = k(ν0−ĈkΔν)≈ Nsp
n
2
. (4.32)

However, a lattice symmetry breaking is inevitable in real accelerators by the electromagnetic field
error, misalignment, etc. Therefore, the exact super-periodicity must be 1, and so the periodic
structure closes around the ring. When the symmetry breaking is small enough, the resonance
instability caused by the errors are negligible, but the large symmetry breaking exist in the ring,
the new resonance instability regions appear in the stop band. In the S-POD system, the lattice
structure and the lattice symmetry breaking are reproduce by superposing the low frequency rf
wave. Figure 4.18 shows the primary focusing wave (a), the lattice-induced wave (b), and the
error-induced wave(c). The size of the lattice symmetry breaking effect is corresponds to the
amplitude of the perturbation waves.

EMMA like 42 doublets ring

As an example of a ring, we pick up 42 doublets ring like EMMA (see chapter 5)[37]. Figure 4.19
is the approximated waveforms and the Warp simulation results. We assume 1% perturbative wave
towards to the primary focusing wave as the error-induced lattice symmetry breaking. Here, we
use 1MHz for the primary wave in the S-POD, the perturbative wave becomes 1/42 MHz due to
Nsp = 1. Comparison with the no-error case (Nsp = 42) of the stop bands, the resonance instability
regions are become wider by the 1% perturbative wave.

Figure 4.20 shows the Warp simulation results adding two perturbative waves. Left column
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Figure 4.14: Results of the FFDD lattice simulations. (a) FFDD focusing system, (b) Stop bands
by the emittance growth in Warp simulations. The black line is in the FFDD, and the blue dashed
line is in the sinusoidal (rf) focusing for the comparison. where the tune depression η is 0.95.
(c) Typical beta functions in the triplet lattice. Solid line is the horizontal beta function, and the
dashed line is the vertical. (d) Experimental results of the FFDD lattice. The ordinate of the
panel (d) is the number of Ar+ ions surviving after a 10 ms storage (104 periods). The initial ion
numbers differ from the doublet results, because the focusing wave frequency is lower than the
doublet wave to make two times as many box functions as the doublet lattice.

panels are the case of tune depression η = 0.85, middle panels are η = 0.90, and the right panels
are η = 0.95. The 1st row panels show the results of superposing perturbation of Nsp = 1 and 3,
the 2nd row is Nsp = 1 and 6, the 3rd row is Nsp = 1 and 14, and the 4th row is Nsp = 1 and 21. The
large peaks which appear in the stop band are consistent with Eq. (4.32). We can also observe the
small side bands in (g)∼(l). These side bands are predicted in Ref. and it comes from the growth
factor having the Fourier series element of the beta function.

4.2.6 Summary

In summary, we have studied space-charge induced resonance of an intense charged-particle beam
propagating through various periodic focusing structures. In the case of each lattice structure, the
almost all resonance instability regions are consistent with the linear Vlasov theory Eq. (4.9),
but we recognize the side instability bands which generated by the lattice symmetry breaking.
Moreover we find the time-evolution of the resonance are characterized by the resonance order.
and the resonance strength depends on the envelope form of the beam.
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Figure 4.15: Results of the triplet lattice simulations. (a) Triplet focusing system, (b) Operating
bare tune. Horizontal axis is x-coordinate bare tune and Vertical is y-coordinate bare tune. (c)
Typical beta functions in the triplet lattice. Solid line is the horizontal beta function, and the
dashed line is the vertical. (d) Stop band by the emittance growth in Warp simulations. The tune
depression η is 0.95.
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Figure 4.16: Results of the triplet lattice experiments. The ordinate of the panel is the number of
Ar+ ions surviving after a 10 ms storage (104 periods) at a fixed bare tune. The wave form is based
on Fig. 4.15 (a), the operating bare tunes are identical to Fig. 4.15 (b). The resonance positions
which shown by the ion losses are similar to the simulation results in Fig. 4.15 (d).

51



F D

F
D

F
D

F
D
F
D

F
D

F
D

F
D
F
D

F
D

F
D

FDFDFD FD

F
D

F
D

F
D

F
D

FD

F
D

F
D

F
D

F
D

(a) (b)

L
a
ttic

e
 P

e
rio

d

L
a
ttic

e
 P

e
rio

d

Figure 4.17: Super-periodicity and lattice period in accelerators. (a) Nsp = 12, (b) Nsp = 3.

(c) error-inducedwave Nsp = 1

(b) lattice-inducedwave Nsp = 3

(a) primary focusing wave 12 Focusing periods

Figure 4.18: An example of focusing waves for the S-POD. This wave assumes the 4 FODO lattice
and the super-periodicity is 3.
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Figure 4.19: Upper panel shows the primary focusing wave (red) and the perturbative wave (blue)
to reproduce the lattice symmetry breaking. Lower panels show the stop band by the Warp sim-
ulations (left:η = 0.90, right:η = 0.95), and comparing between 1% perturbative wave (black)
and 0% (red) results. The resonance instability regions near ν0 ≈ 42/6 = 7, 42/4 = 10.5, and
42/3= 14 become wider by the symmetry breaking.
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Figure 4.20: Warp simulation results with various super-periodicity perturbations. The left column
shows tune depression η = 0.85 cases, the middle column is η = 0.80, the right column is η =
0.95. (a), (b), (c) Nsp = 3, (d), (e), (f) Nsp = 6, (g), (h), (i) Nsp = 14, (j), (k), (l) Nsp = 21.
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Chapter 5

Theoretical study of resonance crossing

5.1 Motivation

In most of circular accelerators, transverse betatron tunes are usually fixed at certain optimum val-
ues that guarantee beam stability. The machine operating point is, however, not necessarily frozen
but actually moves over a wide range in some cases. For instance, when the beam is exposed to a
very strong cooling force, the interparticle Coulomb repulsion is gradually strengthened depress-
ing the effective tune. As the beam density increases in phase space, the tune shift becomes larger
and can eventually reach the magnitude of the initial bare tune at the ultralowemittance limit. Such
a unique situation is expected to occur in advanced cooling experiments if several necessary con-
ditions are satisfied [38, 39]. Another good example is nonscaling fixed field alternating gradient
(FFAG) accelerators [40]. Considerable theoretical and experimental efforts have recently been
devoted to design studies of nonscaling FFAGs for various purposes including hadron therapy,
accelerator-driven reactor systems, a muon collider, and a neutrino factory [41, 42, 43, 44, 45].
In this type of machines, the bare tunes keep decreasing rapidly while the beam is accelerated by
radio-frequency (rf) cavities. It is almost inevitable for the operating point to cross resonance stop
bands, some of which may be quite dangerous.

5.1.1 Scaling and non-scaling FFAG accelerators

The scaling properties satisfied by the magnetic field By = B0(r/r0)k maintain a constant betatron
tune, where By is the vertical magnetic field, r is the distance from the machine center, B0 is
the vertical magnetic field at r = r0, and k is the field index. By combining a time-independent
magnetic field with the stability of alternating gradient focusing, the scaling FFAG achieves a
large dynamic aperture and large acceleration range. The orbits in a scaling FFAG are similar
from injection to extraction, and the beam moves radially outward during acceleration unless k is
chosen to be negative.

By choosing to ignore the scaling restriction, an accelerator lattice designer may introduce
attractive properties such as magnet simplicity, design flexibility, and compact orbits. This vio-
lation of the scaling properties can be achieved in a number of ways, and as such the NS-FFAG
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covers a wide spectrum of possible designs [46, 47]. The linear nonscaling version of the FFAG
was proposed in order to simplify the design to the extent that only linear (quadrupole) fields were
required, easing the magnetic construction. This is the type of accelerator recently constructed
and commissioned in the United Kingdom at Daresbury Laboratory, called EMMA, the Electron
Model for Many Applications [37, 41].

5.2 Crossing of half-integer and nonlinear resonance bands

It is known that the natural resonance crossing caused by beam compression in phase space can
limit the achievable emittance [48, 49]. The cooling process is strongly interrupted once the ef-
fective operating point comes to a stop band of the linear (second-order) collective resonance. To
avoid crossing such severe stop bands throughout the whole cooling process, the design betatron
phase advance per lattice period must be below 90 degrees [49]. On the other hand, in the case of
nonscaling FFAGs, the operating point moves due to the reduction of beam focusing forces during
acceleration. It is often said that we could cross resonances without serious deterioration of beam
quality if the crossing speed is sufficiently fast. This sounds reasonable because the beam must
need a certain period of time before it recognizes that the external driving force is surely periodic.
The most important question is how fast we have to move the operating point. Numerical simu-
lations and even experimental studies with existing machines have been carried out to answer this
practical question [50, 51, 52, 53, 54].

5.2.1 Emittance-growth simulation

Low-density regime

Let us first look at the case where the collective Coulomb potential is negligible. EMMA is
currently operated in this low-density regime. In this subsection, we simply switch off space-
charge interactions in Warp simulations. Root-mean-square emittance evolution during resonance
crossing is plotted in Fig. 5.1 as a function of rf periods (time). The bare tune ν0 per single rf
period is changed from 0.4 to 0.17 in both cases by ramping the amplitude of the rf voltage. The
resonance crossing speed in the upper case roughly corresponds to 20-turn (840 FODO periods)
acceleration in EMMA while the lower case is twice faster. We naturally observe less emittance
growth for quicker resonance crossing. It has been confirmed through separate simulations that
the growth rate almost linearly increases as we slow down the bare-tune sweeping. Each panel in
Fig. 5.1 indicates a slight emittance growth near a specific rf period at which the bare tune is near
ν0 ≈ 1/3, which suggests that the emittance growth is caused by crossing a third-order resonance
stop band. Black lines have assumed 0.1 mm (rms) misalignments of the LPT electrodes that
considerably strengthen nonlinear fields. The emittance growth disappears at low density without
rod misalignments as demonstrated in Fig. 5.1 (red line).

High density regime
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Figure 5.1: Warp simulation results without space charge. The sweep range is from ν0 = 0.4
to ν0 = 0.17 (a) Sweep tune in 20 turns. (b) Sweep tune in 10 turns. Low-order nonlinearities
have been intentionally enhanced in these simulations, considering the possible electrode mis-
alignments of 0.1 mm. For reference, simulation results without the misalignments are plotted
with red lines, which indicate almost no emittance growth.

We now turn on the Coulomb potential. Because of the nonlinear nature of space-charge inter-
actions, collective resonances of various orders can be excited even in an ideal linear focusing
channel. A 1D Vlasov theory has revealed that the collective mode of m-th order becomes unsta-
ble when the following condition is fulfilled (cf. the same as Eq. (4.9)):

m(ν0−CmΔν)≈ n
2
, (5.1)

where Δν is the tune shift generated by the space-charge repulsion, Cm is the positive constant
depending on the mode number m, and n is an integer. In general, the incoherent tune shift Δν
cannot uniquely be determined due to a finite effective tune spread.

Strictly speaking, there exist not one but many resonances in the vicinity of a particular tune.
As readily understood from Eq. (5.1), resonance conditions for different collective modes become
similar whenever the corresponding ratios of n=m are identical. Those resonances with the same
n = m ratio overlap each other, which may make it difficult to distinguish the instability of one
mode from those of the others. The instability of a highly nonlinear mode is, however, generally
quite weak in practice or even invisible due to Landau damping unless the strong external driving
force of the same order is present. The amplitudes of the fourth and higher-order multipole fields
at the full aperture of the LPT are estimated to be less than 0.5% of the quadrupole amplitude even
with the 0.1 mm rms misalignments of the electrodes. Considering this fact, we reasonably expect
no strong excitation of highly nonlinear resonances.

In the condition (5.1), special attention should be paid to the factor 1/2 on the right-hand
side, which is missing in the well-known Sacherer’s coherent resonance criterion [16]. The above
condition says that there exist twice as many resonance stop bands as Sacherer predicted. Most
importantly, the linear resonance (m= 2) can occur when the tune is close not only to half integers

57



(a) = 0.99

No misalignment

0.1mm rms misalignment

1.00

1.02

1.04

1.06

1.08

1.10
0.35 0.30 0.25 0.20

Tune Ramp over 420 Focusing Periods

(b) = 0.90

0 100 200 300 400

1

2

3

4

5

6

Focusing Periods

(c) = 0.99

No misalignment

0.1mm rms misalignment

1.00

1.02

1.04

1.06

1.08

1.10
00.35 0.30 0.25 0.20

Tune Ramp over 840 Focusing Periods

(d) = 0.90

0 200 400 600 800

1

2

3

4

5

6

Focusing Periods

0

E
m

it
ta

n
c
e

G
ro

w
th

E
m

it
ta

n
c
e

G
ro

w
th

Figure 5.2: Warp simulation results with space charge. Input parameters here are similar to those
adopted in Fig. 5.1, except that the collective Coulomb potential is now turned on. Two different
tune depressions, i.e. η = 0.99 and 0.9, are chosen, for example. Red curves are obtained with no
electrode misalignments while blue curves take into account rms misalignments of 0.1 mm.

but also to quarter integers. Since ν0 crosses 1/4 in EMMA, this quarter integer linear resonance
might play a crucial role at high beam intensity. The existence of such a linear resonance has
been widely known in linear transport theories (while the above criterion applies to all nonlinear
modes as well). For instance, a 2D Vlasov theory has reached the same conclusion that the strong
second-order (m = 2) resonance can be excited once the bare tune per unit FODO cell exceeds
1/4. The theory even recommends avoiding the third-order (m = 3) resonance that occurs when
the tune per cell goes beyond 1/6 (60-degree phase advance).

The Warp simulations of resonance crossing at different speeds of bare-tune sweep result in
the emittance evolution in Fig. 5.2. The emittance growth rates are much larger than the results in
Fig. 5.1 where the Coulomb potential is ignored. In particular, the linear resonance at ν0 ≈ 1/4
has seriously affected the plasma quality at high density while no such effect is identified in the
simulations without space charge.

Although the large stop band near ν0 ≈ 1/4 can include the effect from the fourth-order reso-
nance as well, the linear instability of the m= 2 mode should be most responsible for the observed
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emittance growth. In fact, if the fourth-order resonance is really dominant there, the third-order
resonance near ν0 ≈ 1/3 has to be much stronger because, first, it is a lower-order resonance than
the fourth-order, second, the sextupole nonlinearity assumed in the simulations is greater than the
octupole and, third, we only observe the third-order stop band in Fig. 5.1 (except for an extremely
small emittance growth at ν01/4)

5.2.2 Ion-loss simulation

The tune depression η is the most important parameter that characterizes the collective behavior
of an intense beam. In fact, the resonance condition (5.1) only contains the tune shift Δν as
a space-charge-related quantity that can uniquely be determined once the choice of η is made.
The direct experimental determination of η is difficult not only in the LPT but also in any high-
intensity accelerators because it requires a precise survey of phase space. No phase-space monitor
is presently available in the S-POD system (while laser-induced fluorescence diagnostics is under
development for a nondestructive measurement of plasma emittance). Despite the lack of detailed
information of the ion distribution in phase space, it is still feasible to estimate an approximate
magnitude of η by measuring the shifts of stop bands.

The results of the resonance crossing simulations in Fig. 5.2 only weakly depend on the initial
plasma temperature Tp. Even if we change Tp to some degree, the emittance evolution patterns
are not essentially affected as long as the starting value of η is maintained. On the other hand, Tp
becomes meaningful when we numerically simulate the actual ion-loss process. In S-POD, a larger
emittance growth of a plasma naturally gives rise to more severe particle losses. We can thus judge,
through ion-loss measurements, how seriously the plasma is damaged by resonance crossing. The
amount of ion losses depends on the mechanical design of the LPT and on the plasma temperature.
While Tp is inessential in the emittance evolution, it does change the spatial extent of the plasma
at the beginning. This parameter is, therefore, of importance in ion loss simulations. According
to past S-POD experiments based on a similar LPT, the transverse temperature of an equilibrium
plasma is typically a few thousand K. We here try three different values of Tp (i.e., 0.1, 0.2, and
0.3 eV) to check how much ion losses are expected in S-POD. An example is shown in Fig. 5.3
where we have assumed the same tune depression, tune ramping speed and range as considered
in Fig. 5.2(d). In this simulation, we have simply removed particles once they hit the quadrupole
rods. Not surprisingly, many particles are lost when the LPT operating point traverses the regions
of large emittance growth. The loss rate is enhanced, as expected, at higher plasma temperature.
We have also confirmed that almost no ion losses occur over a wide range of the crossing speed u
when the tune depression is reduced to 0.99. The definition of the crossing speed u is

u=
ν ini
0 −νfin

0
Ncell

, (5.2)

where ν ini
0 and νfin

0 are the initial and finite bare tunes, and Ncell is the focusing periods required
for the tune ramping.
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Figure 5.3: Results of ion-loss simulations with the Warp code. The input parameters are identical
to those assumed in Fig. 5.2 (d), except for the initial plasma temperature Tp. The rms mis-
alignments of the electrodes have been set at 0.1 mm. The ordinate of the lower panel represents
the number of ions surviving, divided by its initial value. We here consider Tp ≈ 0.1, 0.2, and
0.3 eV, recalling previous experimental data [55]. To simulate ion losses in actual experiments,
macro-particles that have gone across the electrode boundaries are just removed. The observed Tp
dependence of emittance evolution is caused largely by the macro-particle losses.

5.2.3 Comparison with experimental results

The experimental measurement data is compared with the ion-loss simulations in Fig 5.4. The
ordinate represents the ratio of ion numbers before and after the full tune ramping from ν0 = 0.4 to
0.17. The initial plasma temperature has been set at Tp = 0.3 eV in all Warp simulations while four
different tune depressions are assumed at the beginning. These results suggest that the effective
tune depression η is initially near 0.85 at Nin ≈ 107 and changed to about 0.95 at Nin ≈ 106. The
emittance growth rates calculated from these simulations at u = 5.48× 10−4 (corresponding to
10-turn extraction from EMMA) are 1.0 for η = 0.99, 1.5 for η = 0.95, 3.4 for η = 0.90 with 5%
ion loss, and 3.9 for η = 0.85 with 23% ion loss. We thus expect that only little deterioration of
beam quality will take place in EMMA even with rather strong nonlinearity if the space-charge-
induced tune shift is less than a few % of the bare tune. Since the coherent resonance at
ν0 = 1/4 intrinsically exists in any high-intensity machines even without imperfection fields, it is
practically important to figure out how the plasma gets heated at this resonance depending on the
crossing speed and initial particle density. The upper panel in Fig. 5.5 shows the experimental
data obtains with various Nin’s. The operating tune ν0 is ramped from 0.31 to 0.23 to see the
effect from the quarter-integer stop band. The corresponding Warp simulation results with several
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Figure 5.4: Comparison of measurement data with the corresponding ion-loss simulations of the
resonance crossing. The sweep range is from 0.40 to 0.17. Empty symbols are the simulation
results (Tp = 0.3 [eV]) , and filled symbols are the experimental results.

different values of η are given in the lower panel, which agree fairly well with the experimental
observations. Although the current S-POD system has no emittance monitor, the good agreement
between the experimental and numerical results justifies using the simulation data to draw an
approximate scaling law of possible emittance growth after the intrinsic linear resonance crossing.

5.2.4 Scaling of emittance growth

Figure 5.6 shows some examples of the numerically evaluated final emittance at ν0 = 0.24 nor-
malized by the initial value at ν0 = 0.31. Since the emittance behavior during resonance crossing
is insensitive to the initial plasma temperature unless too many particles escape from the LPT ac-
ceptance (see Fig. 5.3), a lower plasma temperature (0.1 eV) has been assumed here to lighten
particle losses. Even then, a considerable amount of ions are lost when a large emittance growth
occurs. The open squares and triangles in Fig. 5.6 indicate numerical data with finite particle
losses. We clearly see the linear dependence of the emittance ratio κ1/4 on the tune depression
η in the region where particle losses are negligible. For more information, results of about 1500
systematic Warp simulations with various u and η are summarized in Fig. 5.7. The white line in
the picture indicates the border below which finite particle losses are detected during the resonance
crossing. Naturally, the emittance growth becomes more severe for a slower crossing speed and/or
higher particle density.

Each solid line in Fig. 5.6 is a simple linear fitting based on the function

κ1/4−1= e f (η0−η), (5.3)

where the fitting constants η0 and e f both depend on the resonance crossing speed u. Note that
space-charge-induced instabilities are self-limited; namely, the emittance growth is sooner or later
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resonance crossing. The sweep range is from 0.31 to 0.23. Experimental results of the quarter-
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function of the crossing speed u. The corresponding Warp simulations assuming the initial plasma
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Figure 5.7: Warp simulation results in η-u space. The color chart shows the emittance growth with
log scale. The final-to-initial emittance ratio κ1/4 after the quarter-integer resonance crossing is
evaluated from systematic Warp simulations and color-coded in η-u parameter space. The initial
plasma temperature at ν0 = 0.31 has been set at 0.1 eV in all simulations. The white solid line
indicates the border below which finite particle losses occur due to a large emittance growth before
ν0 reaches the final value 0.23.

stopped because it reduces the plasma density, thus weakening the space charge interactions. The
fitting with Eq. (5.3) is, therefore, only valid when κ1/4 is not too large. The parameter η0 roughly
represents the threshold tune depression at which the emittance starts to grow. For the examples
in Fig. 5.6, we have (e f ,η0) = (121.9,0.977) for u = 8× 10−5, (e f ,η0) = (73.1,0.964) for u =
2×10−4, (e f ,η0) = (51.0,0.949) for u= 4×10−4, and (e f ,η0) = (38.7,0.925) for u= 8×10−4.
Figure 5.8 illustrates the u dependence of the two fitting constants. A quick estimate of the critical
tune depression η0 and the slope e f can be made by approximating these curves with proper
functions of u. The solid line in each panel is a simple trial fitting function; we have here adopted

η0 ≈−gc1 lnu+gc2 and e f ≈ hc1uhc2 (5.4)

with the fitting constants (gc1,gc2) = (0.028,0.723) and (hc1,hc1) = (0.896,0.519). We are now
able to plot κ1/4 as a function of the crossing speed u by using the scaling law in Eq. (5.3)
together with Eq. (5.4). The solid lines in Fig. 5.9 show four examples with different values of η
while symbols represents Warp simulation results. We observe reasonable agreement between the
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Figure 5.9: Warp simulation data of quarter-integer resonance crossing. The u dependence of
the emittance growth rate κ1/4 is plotted for four different initial values of η . The initial plasma
temperature Tp has been set at 0.1 eV in all simulations here to minimize particle losses.

scaling law and PIC simulation results.
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5.2.5 Summary

We have investigated fundamental features of collective resonance crossing by the multi-particle
simulations and compared with the experimental results. When a machine holds very high lattice
symmetry, three instability regions are identified in Chapter 4. We conclude that these instabilities
are due mainly to the lowest- and second lowest-order resonances rather than to higher-order
nonlinear resonances; namely, one of them at ν0 ≈ 1/4 is the linear (m = 2) stop band and the
other two at ν0 ≈ 1/6 and 1/3 are the third order (m = 3) while there could exist weak higher-
order stop bands overlapping at these tunes. Although this interpretation is contradictory to that in
Ref. [52], the coherent resonance criterion in Eq. (4.9) and other previous works on space-charge
dominated beam transport [38, 49, 56, 11, 57, 58] support our conclusion. In addition, the present
numerical results suggest that crossing the nonlinear stop band at ν0 ≈ 1/6 is almost harmless.
Another third-order resonance at ν0 ≈ 1/3 is stronger, but at low particle density, the emittance
growth from this resonance crossing should be negligible in the absence of excess nonlinearity
due to electrode misalignments. The linear stop band at ν0 ≈ 1/4, generated by the lowest-order
resonance, is most dangerous and unavoidable at high density unless the tune variation range is
sufficiently narrower than 0.25 per single focusing period. As the plasma becomes denser, this
stop band grows causing serious emittance growth even at rather high resonance crossing speed.

We have also derived a simple scaling law of the emittance growth caused by the intrinsic
resonance crossing at ν0 ≈ 1/4. As shown in Eq. (5.3) and in Fig. 5.6, the emittance ratio κ1/4

before and after the quarter-integer resonance crossing has approximate linear dependence on the
tune depression η . This conclusion is consistent to the previous finding in Ref. [52]. The two
fitting parameters can roughly be estimated from Eq. (5.4) as a function of the resonance crossing
speed u.

5.3 Integer resonance crossing

We now pay particular attention to integer resonance crossing. Linear NS-FFAGs including
EMMA are unique in routinely crossing multiple first-order integer resonances, in some cases
more than ten times per acceleration cycle. Naturally, one should expect negative consequences
of such a design feature. It is, however, widely held that, in the case of fast resonance crossing,
betatron amplitudes will not grow significantly and the beam will not deteriorate. Such resonances
do not generally occur in a regular LPT because of the symmetric excitation of the four LPT elec-
trodes, which eliminates a periodic dipole component in the plasma confinement field. Here we
intentionally introduce an rf dipole field to generate stop bands of integer resonances. Considering
the typical low-intensity conditions of EMMA operation, a relatively small number of ions are
confined in the LPT, to ensure that collective space charge effects remain negligible.

5.3.1 Modeling of dipole peturbation in S-POD

EMMA is a linear NS-FFAG for electrons, the main parameters of which are given in Table 5.1.
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Energy range 10-20 [MeV]
Cell type FD doublet

Number of cells 42
Integrated quadrupole gradient 0.402(QF) and 0.367(QD) [T]

Cell length 394.481[mm]
Ring circumference 16.568[m]

Table 5.1: Main parameters of the EMMA NS-FFAG.

The design consists of 42 doublets of quadrupoles in which the dipole component is achieved
by simply sending the beam through the quadrupoles off axis. The magnets are mounted on precise
slider mechanisms in order to vary the bending and focusing field components independently. In
general, the predominant driving forces for integer resonances in a linear NS-FFAG are alignment
errors of the quadrupole magnets that cause dipole field errors and errors in the dipole magnetic
field itself if such a field is present. 1 The transverse closed orbit distortion (COD) in a circular
accelerator due to a dipole error field ΔB/B is well known and obeys the differential equation

d2xCOD
ds2

+Kx(s)xCOD =−ΔB
Bρ

, (5.5)

where ρ is the local curvature of the design beam orbit, s is the path length, and Kx is the magnetic
quadrupole focusing function determined by the machine lattice. When the average radius of the
machine is Rc, application of the smooth approximation to Eq. (5.5) yields

d2xCOD
dθ 2 +ν2

0xCOD =−R2
c

ΔB
Bρ

, (5.6)

where ν0 is the bare tune and the angle dθ(= ds/Rc) increases by 2π every single turn. The dipole
error is periodic and can thus be expanded into a Fourier series, where bn and φn are constant
parameters. The solution to Eq. (5.6) diverges when ν0 is an integer (integer resonance).

As mentioned above, the LPT is, in principle, free from integer resonances. A dipole driv-
ing force can, however, be provided by applying additional rf voltages to one or two of the four
quadrupole electrodes [2, 59, 21]. We apply either pulsed or sinusoidal perturbing voltages of op-
posite signs to two horizontal electrodes. By neglecting nonlinearity of the transverse rf focusing
fields and the space charge potential, the equation of the transverse ion motion in a LPT with a
dipole driving field can be written as

d2x
dτ2 +Krf(τ)x=− qξ

mc2R0
VD(τ), (5.7)

1In fact, in EMMA there is in addition a large septum leakage field of 0.6× 103 Tm. To emulate this strong local
dipole kick in S-POD, we need a rather high dipole voltage that causes almost instant ion losses due to the limited
aperture of the current LPT design.
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Figure 5.10: (a) rf voltages applied to the quadrupole electrodes of the trap. (b) Contour plot of the
dipole field. (c) Normalized multipole amplitude of the dipole field. Other odd order multipoles
are generated in the confinement region not only the dipole.

where m and q are the mass and charge state of confined ions, respectively, R0 is the minimum
distance to the electrode surface from the trap axis (in other words, the radius of the LPT aperture
R0 = 5 mm), τ = ct with c the speed of light, Krf is the rf quadrupole focusing function, ξ is a
constant factor depending on the geometry of the quadrupole electrodes (ξ = 0.795 in this case),
and VD is the dipole perturbation voltage indicated in Fig. 5.10. The applied voltage for four rods
are,

Vx:right(τ) = VQ(τ)+VD(t), (5.8)

Vx:left(τ) = VQ(τ)−VD(t), (5.9)

Vy:up(τ) = Vy:down(τ) = −VQ(τ). (5.10)

When the amplitude of the rf quadrupole voltages applied to the four electrode rods is VQ, Krf

is equal to Krf(τ) = 2qVQ(τ)/mc2R2
0. We now consider a NS-FFAG composed of Nsp identical

doublet focusing cells. In the EMMA case, Nsp = 42. A single turn around the machine then
corresponds to P sinusoidal periods in the function Krf (see Fig. 5.11). The time dependence of
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Krf in Eq. (5.7) is smoothed to give

d2x
dθ 2

P
+ν2

0x=−
(
Nspλ
2π

)2 qξ
mc2R0

VD(θP), (5.11)

where λ is the wavelength of single rf focusing period in the LPT and the angle θP(= 2πτ/Nspλ )
increases by 2π every turn. In general, the dipole perturbation VD is periodic with a periodicity
of 2π and can be expressed, similarly to ΔB/B, as VD = Σ jw j cos( jθP+φ j), where wj and φ j are
constants. The on-resonance solution to Eq. (5.11), i.e., the diverging orbit under the condition
ν0 = n, is given by

x = x0 cos(nθP+α)

−1
2

(
Nspλ
2π

)2 qξ
mc2R0

wnθP

n
sin(nθP+φn)

−
(
Nspλ
2π

)2 qξ
mc2R0

∑
j 
=n

w j

n2− j2
cos( jθP−φ j), (5.12)

where x0 and α are constant. Comparing the driving term in Eq. (5.11) with that in Eq. (5.6), we
find that the physical orbit distortions in these systems are similar when

VD ≈ mc2R0

qξ

(
2πR0

Nspλ

)
ΔB
Bρ

. (5.13)

This formula allows us to make a quick estimate of the dipole rf voltage VD equivalent to the
strength of a certain error field ΔB/B.

5.3.2 Ion losses on resonance

As an example of on-resonance loss, let us take a look at the ion loss behavior on the integer
resonance driven by the eighth harmonic, namely, the time evolution of ion losses when the LPT
operating point is in the middle of the stop band at ν0 = 8. To ensure there is no systematic error
in setting the primary focusing frequency, an initial tune scan is performed. The selected tune is
that which produces maximum ion losses corresponding to the center of the stop band. The results
of S-POD measurements are given in Fig. 5.12 together with the corresponding Warp simulation
data plotted by a solid line. The abscissa is not the simple time variable but has been scaled
by the amplitude wn of the eighth dipole harmonic, because the diverging term in Eq. (5.12) is
proportional to wnθP. Various different values of wn are considered corresponding to different
strengths of a dipole error source in EMMA.

In Fig. 5.12, we have chosen wn to be sufficiently low to avoid instant ion losses. We find
that the loss behavior is always similar [as predicted by Eq. (5.12)] and agrees well with the Warp
simulation unless the dipole perturbation is very small. The Warp simulations were done with
a much wider range of choices of wn, but no substantial difference was found. By contrast, the
experimental results with very low wn (less than 0.1 V) are clearly different from the others. The
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Figure 5.11: Typical waveforms of the driving rf voltages applied to the LPT electrodes. The
doublet focusing is approximated by a sinusoidal waveform oscillating at 1 MHz. As for the
dipole perturbation, two different rf waveforms are considered, namely, (a) a piecewise constant
voltage emulating the local dipole field error such as a leakage field from the septum magnet in
EMMA and (b) a sinusoidally varying voltage corresponding to a single Fourier harmonic of the
pulse voltage in (a).

deviation from the ideal numerical result becomes larger as wn is lowered. This could be caused
by nonlinearity of the focusing in the trap, which introduces an amplitude-dependent tune shift.

5.3.3 Single resonance crossing

We first explore what happens when the LPT operating point crosses a single integer resonance
stop band. In order to see the effect from a single stop band with the single harmonic perturbation
case. The integer stop band at ν0 = 8 is almost completely isolated in this case, except for a weak
nonlinear resonance at ν0 = 42/6. The operating bare tune ν0 is varied from the initial value
of 9.5 down to 7.5 at various speeds. The rate of Art ions surviving after resonance crossing is
plotted as a function of the crossing speed u in Fig. 5.13. Several different rf amplitudes are
chosen for the dipole perturbation. Filled symbols are experimental results, while open symbols
come from numerical simulations by the Warp code. The numerical data are in good agreement
with the experimental observation. The slightly higher results from the simulation arise due to the
sensitivity of ion loss to assumptions about the exact initial ion distribution. A similar systematic
experiment of single resonance crossing was done with the twelfth harmonic w12 to excite another
isolated stop band to cross-check this result. Essentially the same results as shown in Fig. 5.13
were obtained for crossing the stop band at ν0 = 12.

Guignard derived a formula to estimate coherent amplitude growth after a single integer reso-
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Figure 5.12: Time evolution of ion losses when the LPT operating point is fixed exactly on the
integer resonance at ν0 = 8. Five different sinusoidal amplitudes are considered to change the
resonance strength. The solid curve represents the corresponding Warp simulation result in which
perfectly aligned quadrupole rods have been assumed, and the dashed curve where nonlinearities
have been introduced. The initial plasma temperature is set at 0.5 eV.

nance crossing [60]:

Δ
√

ε =
π√
Qτ

2Rc

Bρ

∣∣∣∣ 1
2π

∫ 2π

0

√
βΔBexp(inθ)dθ

∣∣∣∣ , (5.14)

where ε is the amplitude of the coherent excitation of the dipole motion, Qτ is the rate of change
of tune per turn, and β is the betatron amplitude parameter. Using the relation Eq. (5.13) together
with the Fourier coefficients wn and bn, we eventually obtain the following approximate dipole
oscillation amplitude in terms of S-POD:

ΔAn = gGn
wn√
u
, (5.15)

gGn =
qλ

2πmc2R0
max(βrf)

∣∣∣∣∫ 2π

0
βrf sin(nθP)exp(inθP)dθP

∣∣∣∣ (5.16)

with βrf defined by βrf = (Nspλ )/2πR0β .
Figures 5.12 and 5.13 indicate that the numerical simulations can explain the experimental

observations. This fact justifies the use of Warp or even a simpler 1D code for a quick estimate
of the transverse amplitude of the plasma centroid after resonance crossing unless the nonlinear
effect is too strong. The maximum centroid shifts ΔAn numerically evaluated with various dipole
perturbation strengths are plotted in Fig. 5.14 as a function of crossing speed u. The existence of
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Figure 5.13: Fraction of ions remaining after integer resonance crossing. Fractional ion losses
obtained with various dipole perturbation strengths are plotted as a function of crossing speed
u. The bare tune ν0 is reduced from 9.5 to 7.5. Filled and open symbols show, respectively,
experimental data and Warp simulation results in which the initial ion distribution is Gaussian
with a temperature of 0.5 eV.

the quadrupole electrodes is ignored in this simulation, so that we can maintain all initial particles
even after the oscillation amplitude exceeds the LPT aperture size. A pure rf quadrupole focusing
field is assumed to eliminate nonlinear effects. The fitting lines in Fig. 5.14 indicate that ΔA8 scales
as ΔA8 = g8w8/

√
u, where the constant g8 is close to 0.30. This is consistent with Eq. (5.15)

derived without the smooth approximation [60] as well as the smooth-approximated formula in
Refs. [61, 62]. Under the smooth approximation, we have the same scaling formula as Eq. (5.15)
with a different coefficient, namely,

ΔAn = gBn
wn√
u
, (5.17)

gBn =
Nspqλ 2

4πmc2R0

1
n
. (5.18)

Putting n = 8, we have gB8 = 0.20, for example. In Fig. 5.15, we have compared this coeffi-
cient gBn with the nonsmoothed coefficient gGn and with Warp simulation results. The enhanced
disagreement for a higher n value is found in gBn . We have confirmed that the prediction from
the nonsmooth formula results in better agreement with numerical simulation results over a wide
range of n value.

Figure 5.16 shows how ΔA8 depends on the crossing speed. The solid curve is based on
Guignard’s formula when the maximum dipole oscillation amplitude reaches the LPT aperture of 5
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Figure 5.14: Numerical results obtained from 2D Warp simulations without space-charge inter-
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mm. Results of S-POD measurements are plotted with black dots. Here, the experimental critical
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Figure 5.16: Crossing-speed dependence of the critical perturbation voltage at which the maxi-
mum transverse shift of the plasma centroid reaches 5 mm (the LPT aperture) after single reso-
nance crossing at ν0 = 8. The solid curve is a theoretical estimate with the nonsmooth formula.
Black dots are experimental data from S-POD.

perturbation voltage corresponding to the centroid of plasma oscillations reaching the aperture
limit of 5 mm in S-POD is estimated from the experimental ion loss at a particular crossing speed
as follows: As the plasma centroid starts to oscillate on an integer resonance, the plasma is scraped
by the two horizontal electrodes. Since the oscillation frequencies of individual ions are identical
to that of the plasma centroid oscillation about the trap axis, the ions remain in synchronous
rotation about the trap axis. Therefore, roughly half of the ions confined in the LPT should hit
the electrode surface when the horizontal shift of the original plasma approaches the aperture size
(5 mm in radius). The black dots in Fig. 5.16 represent the measured perturbation voltage VD
at which 50% of initial ions are lost after crossing the stop band at ν0 = 8. We confirm that the
theoretical estimate from Eq. (5.15) agrees fairly well with S-POD data.

5.3.4 Double resonance crossing

In practice, the operating point of a NS-FFAG crosses not one but more likely several integer
stop bands. It is thus important to ask whether any new features appear when a few stop bands
are crossed consecutively. Previous simulation studies have shown interesting beam behavior
expected in multiple resonance crossing in which the phase of errors may not add and in some
instances may even cancel [63]. To investigate this issue systematically, we now introduce the
ninth dipole harmonic in addition to the eighth considered in the last section. The amplitudes of
both harmonics are always set equal here for simplicity.

Numerical simulations based on a simple linear focusing model have shown strong oscillatory
dependence of ion losses on the crossing speed as shown in Fig. 5.17, and the centroid oscillation
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Figure 5.17: Ion loss simulation results of double resonance crossing in the absence of exter-
nal field nonlinearity and space charge. The relative phase between the eighth and ninth dipole
harmonics has been fixed at 0◦ and the amplitudes are w8,9 = 0.05 V in this example.
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Figure 5.18: Centroid oscillation of double resonance crossing. The simulation parameters are
the same as Fig. 5.17. (a) is the promotion condition of the centroid oscillation and (b) is the
suppression condition.

amplitudes are shown in Fig. 5.18. When the second kick is given at the optimal timing, the ion
losses from the second resonance crossing can be suppressed almost completely. Such a favorable
effect can, however, be expected only when the external nonlinearity is negligible.

We made a conjecture that the amplitude of the coherent oscillation excited by the first integer
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Figure 5.19: Dependence of the ion survival fraction on the relative initial phase of the two sinu-
soidal dipole perturbations of a fixed strength. Three different speeds of resonance crossing are
considered with the Warp simulation, namely, u = 1.6× 104, u = 2.4× 104, and u = 4.8× 104.
The amplitudes of the eighth and ninth dipole harmonics are fixed at 0.2 V.

resonance crossing could be subsequently enhanced or reduced depending on the phase of the
coherent oscillation when the beam comes to the second integer resonance. To investigate this
more thoroughly, the dependence on the relative initial phase was investigated numerically for a
fixed perturbation with varying crossing speed in Fig. 5.19. The abscissa represents the relative
initial phase of the two sinusoidal dipole perturbation waves. The relative phase of zero degrees
means that both perturbations start to grow from zero voltage at the same time. A period of
oscillation is observed in the ion survival fraction, which depends on the relative phase between the
first and second integer resonances, confirming the idea that observed ion loss fluctuates depending
on the phase relation. With a fixed crossing speed, the ion survival fraction depends on the dipole
perturbation strength, as expected, but also the relative phase as seen in Fig. 5.20. In the best case,
the effects of resonance crossing could be almost cancelled even with a sizable dipole perturbation
such as 0.2 V if the relative phase between the two resonances is arranged to be 190◦.

5.3.5 Summary

In summary, we have first verified the theory of integer resonance crossing over a wide range
of resonance strengths and crossing speeds. We have found that the mechanism of resonance
crossing in terms of parameter dependence agrees with previous analytical works. Additionally,
we have found that the relative advance in the betatron phase between consecutive integer tunes
needs to be considered when determining effects of amplitude growth from multiple resonance
crossing. Nonlinear effects either due to the alignment of the trap in S-POD or due to chromaticity
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Figure 5.20: Dependence of ion losses on the relative initial phase of the two sinusoidal dipole
perturbations of various strengths (Warp simulation). The crossing speed has been fixed at u =
1.6×104.

and momentum spread in a FFAG are unavoidable. This means there is an interplay between the
relative phase effects and nonlinear effects which will result in a real emittance growth after integer
crossing, not just the excitation of dipole oscillations. As such, when the decoherence time is short
relative to the traversal time from one integer to another, cancellation from consecutive excitations
cannot be expected. The interplay between these various effects needs to be considered in the
design of proton and ion NS-FFAGs or other accelerators that routinely perform integer resonance
crossing.
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Chapter 6

Design study of a modified Paul trap for
nonlinear beam dynamics

The Paul trap is composed of four metallic rods symmetrically placed around the trap axis to
provide an rf quadrupole field for transverse ion confinement. The collective motion of confined
ions obeys the Hamiltonian Eq. (2.55). We now explicitly introduced the nonlinear perturbing
potential δV originating from artificial errors

H =
p2x + p2y

2
+

1
2
K(τ)(x2− y2)+δV (x,y;τ)+

q
mc2

φsc(x,y;τ), (6.1)

where the independent variable has been scaled from time t to τ = ct with c being the speed of
light, φsc is the scalar potential of the Coulomb self-field generated by the ions, and the function
K(τ) is proportional to the rf voltage applied to the quadrupole rods.

While the weak potential δV is usually ignored in standard textbooks [5], it does exist in a
real trap, enhancing nonlinear resonances under certain conditions. Such a nonlinear potential is
also present in any particle accelerator that always has finite mechanical imperfections and even
nonlinear multipole magnets for beam orbit correction [1]. In a LPT, the main source of δV is
the misalignments of the quadrupole rods. The non-hyperbolic surfaces of the rods can be another
source of weak nonlinearity. In any case, the quadrupole electrodes give rise to not only the linear
focusing potential but also the nonlinear perturbing potential. This means that it is impossible to
control the strength of δV independently of the focusing field. In an accelerator, the time structures
of K(τ) and δV (τ) are not necessarily identical; there is no direct correlation between these two
functions especially when δV (τ) comes from correction magnets.

The purpose of this study is to show a possible design of a multipole ion trap optimized for
a wider range of beam dynamics studies than the regular Paul trap. The proposed modified Paul
trap has extra electrodes that enable us to control the strengths and time structures of low-order
nonlinear fields separately from the linear focusing potential. We employ the Warp code through-
out this design study to analyze the multipole field in the trap [26]. Although Warp is known as
a Particle-In-Cell simulation code, it also has the function of an efficient Poisson solver. We here
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Figure 6.1: Cross sectional views of linear Paul traps. (a) regular Paul trap, (b) a modified Paul
trap with extra multipole rods of radius RE, (c) a modified Paul trap with extra planar electrodes of
thickness h1 and width h2. The minimum distance from the trap axis to the quadrupole electrodes’
surfaces is denoted as R0 while R1 stands for the distance to either (b) the center of each extra rod
or (c) the edge of each extra plate.

numerically seek for the best conceptual design of the multipole trap, clarifying the dependence
of nonlinear-field components on the electrode geometry.

6.1 Extra electrodes for nonlinear-field excitation

Fig 6.1(a) is a transverse cross section of a typical linear Paul trap with quadruple electrodes
approximated by cylinders of radius RQ. Extra electrodes should be small to avoid distortion of
the linear focusing field. In addition, our purpose is to control of the sextupole and octupole
nonlinearities. Fig 6.1(b) shows the case of extra electrodes formed from small cylinders between
the quadrupole cylinders. However, a flat plate electrodes as illustrated in Fig 6.1 (c) are more
practical. The reasons for this is difficult to accurately support a long tiny rod precisely. When
R0 = 5 mm, which is typical radius of our trap system, two neighboring quadrupole rods separated
by a distance of only 3.7 mm.

Note also that we usually use an electron gun to ionize neutral atoms and inject an electron
beam from side of transverse section within the trap aperture for non-neutral plasma production.
Therefore, too thick an extra electrode is not acceptable. The diameter of the extra rods in Fig
6.1(b) should be 1 millimeter order. Such a thin wire is easy to bent, it causes longitudinal asym-
metry of the plasma confinement field. From these technical considerations, we here adopt the
trap geometry as illustrated in Fig. 6.1(c). It is actually easier to insert and fix a thin plate rather
than a thin wire. The thickness and radial width of the four planar electrodes are denoted by h1 and
h2, respectively. Each plate is symmetrically set the distance R1 away from the trap axis. R1 must
be greater than the aperture radius R0 ; otherwise, the number of ions we can confine in the trap
is considerably reduced due to collisions with the plates. These extra plates are electrically iso-
lated from each other, so that we can apply arbitrary rf voltages generated by independent power
sources.
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6.2 Optimization of the extra electrodes

The rf wavelength at the typical S-POD operating frequency frf of 1 MHz is roughly 300 m, much
greater than the overall dimension of the Paul trap. We can thus employ the static-field approxi-
mation to analyze the transverse multipole fields with a specific design of electrodes. The scalar
potential φrf of the plasma confinement field can be expressed as φrf(x,y; t) = F(x,y)T (t) where
F(x,y) satisfies the Laplace equation whose general solution written with the polar coordinates
(r,θ) is

F(r,θ) =
∞

∑
n=1

Wn

(
r
R0

)n
cos(nθ +ϕn) (6.2)

withWn and ϕn being constant parameters. In a standard sinusoidal excitation of the quadrupole
electrodes, the time-dependent part is simply given by T (t) = cos(2π frft + const.). In beam
physics applications, T (t) is generally a periodic step function whose waveform emulates the
discrete lattice structure of a particular machine. The quadrupole focusing potential corresponds
to the n= 2 term in Eq. (6.2). The second multipole coefficientW2 is, therefore, much larger than
any other coefficients. A question now is how to control the coefficients of the sextupole (n = 3)
and octupole (n= 4) terms by using the planar electrodes.

6.2.1 Suppression of nonlinear multipole components

The applicability of the S-POD system to various experimental purposes ought to be maintained
even after a regular four-rod-type trap is replaced by the modified multipole trap. The potential
δV must be weakened rather than enhanced when we wish to explore any beam dynamic effects
where nonlinear driving forces are of no substantial importance. Conveniently, the extra electrodes
are usable to improve the linearity of the plasma confinement field despite that they are originally
introduced for nonlinearity enhancement. In an ideal Paul trap with no fabrication errors and no
extra electrodes,W6 is the lowest nonlinear coefficient that inevitably appears due to the symmetry
of the trap structure. We can minimize the magnitude ofW6 by requiring RQ/R0 ≈ 1.15 [64]. The
ratioW6/W2 can then be made on the order of 10−4. The planar electrodes shown in Fig. 6.1(c)
can further reduce this ratio if we carefully choose their radial position and thickness.

If these extra plates are infinitely thin and inserted precisely in the middle of two neighboring
quadrupole rods, they do not disturb the original electric field as long as they are grounded. That is
obvious because the existence of such grounded plates has no influence on the boundary condition
imposed by the original Paul-trap geometry. In reality, the plate thickness is finite, which distorts
the original electric field and enhancesW6/W2. Since the plates cannot be too thin from the view-
point of precision machining and alignment, we here assume h1 = 1 mm for example. We also
assume temporarily that the plates are very wide (h2 → ∞). Figure 6.2 (b) shows the ratioW6/W2

plotted as a function of the radial position R1 of the plates. W6 has been completely eliminated at
R1 ≈ 8.5 mm. It is always possible to find a similar operating condition for a different choice of
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Figure 6.2: Electrodes’ potentials in the normal operating mode where low-order nonlinearities are
minimized. The left panel shows the equipotential lines when all four extra plates are grounded.
The voltages of quadrupole symmetry are given to the four circular rods for transverse ion con-
finement. The plate thickness is chosen to be h1 = 1 mm. The R1-dependence of the ratioW6/W2
is plotted in the right panel.
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Figure 6.3: Calculation results of the Warp field solver with R0 = 5 [mm] and the fitted line. W6 is
completely eliminated on the line.

h1. The optimum value of R1 at whichW6 vanishes fulfills the simple scaling law

R1

R0
= 1.948+0.153log

h1
R0

(6.3)

under the condition RQ/R0 = 1.15. Figure 6.3 shows the fitting result of Eq. (6.3).
We reasonably expect that this conclusion will approximately hold even if the plate width h2 is

finite. The position of the inner edge, namely, R1 is definitely important, but on the other hand, the
outer edge must have only little effect on the field within the trap aperture unless h2 is too small.
We have confirmed that in the present case, the aperture field is insensitive to h2 if it exceeds about
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4 mm. In the following discussion, therefore, we ignore the effect of the outer edge for simplicity,
assuming that h2 has been chosen sufficiently large.

6.2.2 Octupole control mode

We now investigate how to control low-order nonlinear components. It is easy to strengthen the
octupole (n = 4) nonlinearity because the modified trap has four extra poles. W4 can be made
larger by applying equal potentials to the planar electrodes. Every four multipole components
(W4,W8,W12, · · · ) are then generated due to the symmetry of the boundary condition, but W4 is
much greater than other coefficients. The solid curves in Fig. 6.4(a) represent the equipotential
lines when an identical voltage VO is given to each plate. Figure 6.4(b) indicates the relative
octupole strength achievable with the potential configuration in the left panel. W4 is normalized
by the quadrupole strength W̃2 in the normal operating mode shown in Fig. 6.2(a)1. The abscissa
stands for the voltage ratio VO/VQ. The normalized magnitude ofW8 is also plotted for reference.
WhenVO is comparable to the linear focusing voltageVQ, the magnitude of the octupole coefficient
becomes a few percent of W̃2. This level of fourth-order nonlinearity is more than enough for a
systematic study of octupole imperfection effects in a particle accelerator. The octupole field can
be further strengthened by the use of thinner plates if necessary. According to Warp calculations,
W4 scales as

W4/W̃2 ≈ 0.0166× (h1/R0)
−0.441, (6.4)

when VO/VQ = 1, and the fitting result of Eq. (6.4) is shown in Fig. 6.5.
The strengths of nonlinear components are almost unchanged even if we excite the quadrupole

rods simultaneously with the planar electrodes. The total electric field when the quadrupole rods
also have the finite voltages ±VQ is simply the superposition of the field in Fig. 6.2(a) and that in
Fig. 6.4(a). This is because the sum of these two independent fields satisfies the same boundary
condition as the total field has to do. Suppose that there are N independent electrodes of arbitrary
cross sections fixed at certain transverse positions. Each electrode is assumed to have a constant
voltage Vi (i = 1,2, · · · ,N). The total static potential generated by these electrodes can be de-
composed into N terms as F(x,y) = ∑N

i=1 ψi(x,y) where ψi is the scalar potential derived from
the Laplace equation under the boundary condition that all electrodes except for the i-th one are
grounded. This is evident because the sum ∑N

i=1 ψi is still a solution to the Laplace equation and
satisfies the proper boundary condition.

6.2.3 Sextupole control mode

The effective excitation of the sextupole field is a bit tricky. Unlike the octupole control mode
in Fig. 6.4(a), we need to add finite voltages not only to the planar electrodes but also to the

1In the following, we use the notation W̃2 for the quadrupole strength under the normal operating condition (Fig.
6.2) to distinguish it from W2 of other operating modes; W̃2 is identical to W2 of the normal operating mode with VQ
equalized either to VO in Fig. 6.4 or to VS in Fig. 6.6. Note thatW2 is zero in the nonlinearity control modes without
electrodes’ misalignments.
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Figure 6.4: Electrodes’ potentials in the octupole control mode. The left panel shows the equipo-
tential lines when the four planar electrodes are given equal voltages VO. All four quadrupole
rods are grounded. The right panel shows the octupole strength W4 normalized by W̃2, i.e. the
quadrupole strength of the normal operating mode whenVO/VQ = 1. The plate thickness is chosen
to be h1 = 1 mm. For reference,W8/W̃2 is also plotted with a broken line.
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Figure 6.5: Calculation results of the Warp field solver with R0 = 5 [mm] and the fitted line.
W4/W̃2 becomes larger as h1 becomes smaller, because the inner radius R1 changes according to
Eq. (6.3).

quadrupole rods. Figure 6.6(a) shows an example of the boundary condition that allows us to en-
large the coefficientW3. The potentialsVS of opposite signs are given to the horizontal plates while
the vertical pair is grounded. In addition to ±VS, we apply the voltages ±VSQ to the quadrupole
rods as depicted. This electrode excitation pattern gives rise to every other multipole components.
Particular attention must be paid to the dipole componentW1 because its order is the lowest. For-
tunately,W1 can be minimized in the vicinity of the trap’s mechanical center by adjusting the ratio
VSQ/VS. As is clear from Fig. 6.6(b), the dipole component disappears when VSQ/VS ≈ 0.02. The
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Figure 6.7: Calculation results of the Warp field solver with R0 = 5 [mm] and the fitted line. (a)
The optimum voltage ratio required for the minimization ofW1. (b) Normalized multipole strength
ofW3/W̃2 andW5/W̃2 assuming VQ =VS.

optimum voltage ratio required for the minimization ofW1 obeys the scaling law

VSQ
VS

≈ 1.048×
(
h1
R0

)−0.455
, (6.5)

if the quadrupole rods are designed to satisfy the condition RQ/R0 = 1.15 and the four plates are
fixed at the radial positions defined by Eq. (6.3). Figure 6.7(a) is the fitting result of Eq. (6.5).

The strengths of the sextupole (n = 3) and decapole (n = 5) components divided by the
quadrupole strength W̃2 in the normal operating mode are evaluated in Fig. 6.8 under the con-
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Figure 6.8: Strengths of sextupole (n = 3) and decapole (n = 5) fields vs. the potential ratio
VS/VQ in the sextupole control mode. VSQ has been adjusted to the optimum value required by the
condition (6.5) to eliminate the dipole componentW1. The coefficientsW3 andW5 are normalized
by the quadrupole strength W̃2 evaluated under the normal operating condition with VQ =VS.

dition in Eq. (6.5). By increasing VS to the same level of VQ, W3 becomes a few percent of
W̃2. We have also found how these nonlinearities scale as a function of the plate thickness h1.
Provided that VSQ/VS satisfies the condition (6.5), the relative strengths follow the scaling laws
W3/W̃2 ≈ 0.0135× (h1/R0)

−0.454 and W5/W̃2 ≈ 0.0064× (h1/R0)
−0.456 (see Fig. 6.7(b)) where

we have assumed VQ = VS as an example. Interestingly, the three ratios VSQ/VS, W3/W̃2 and
W5/W̃2 have roughly the same power dependence on the geometric factor h1/R0.

6.2.4 Extra electrodes of a cylindrical shape

The basic feature of the multipole field within the trap aperture does not essentially change even
if we replace the planar electrodes in Fig. 6.1(c) by the small circular rods in Fig. 6.1(b). Apart
from a technical question of which trap geometry is easier to fabricate, the electric-field properties
of both designs turn out to be very similar to each other. First of all,W6 can be eliminated in the
normal operating mode by adjusting the radius RE of the extra rods. The scaling law in this case
is given by

R1

R0
= 2.162+0.225log

RE

R0
(6.6)

instead of Eq. (6.3). In the octupole control mode, we simply apply an identical voltage VO to all
four extra rods just like the previous case in Fig. 6.4(a). WhenVO is set equal to the quadrupole fo-
cusing voltageVQ on the main rods, the octupole coefficientW4 relative to the dominant quadrupole
coefficient W̃2 scales asW4/W̃2 ≈ 0.0153× (RE/R0)

−0.558. It is also possible in the sextupole con-
trol mode to minimize the dipole component near the trap axis. The optimum ratio of VSQ and VS
for dipole suppression can be determined from the scaling law VSQ/VS ≈ 0.963× (RE/R0)

−0.577.
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6.3 Effect of electrodes’ misalignments

It is important to figure out how the ideal multipole fields calculated in the last section are affected
by the misalignments of the electrodes. Such an artificial error is unavoidable in practice, which
results in considerable enhancement of all nonlinear fields. To check this error-induced effect, we
randomly shift all electrodes about the ideal positions, and then, expand the resultant electric field
into multipole components.

Table 6.1 summarizes the relative multipole strengths (%) in various operating modes ex-
plained in the last section. “Regular Paul trap” has the ordinary four-rod structure illustrated in
Fig. 6.1(a). The “normal operating mode” corresponds to the electrode excitation pattern in Fig.
6.2(a) where all extra plates are grounded. We have assumed that VS in the “sextupole control
mode” and VO in the “octupole control mode” are equal to VQ in the “normal operating mode”.
VSQ in the “sextupole control mode” is automatically determined from Eq. (6.5) once we choose
VS. The normalization constant W̃2 is evaluated under the boundary condition of the normal op-
erating mode. Note that the centroid of an ion plasma in the trap is located at the multipole-field
center where the dipole component vanishes. We, therefore, need to expand the scalar potential
about the field center (instead of the original mechanical center) to make a reasonable estimate of
Wn. We have here defined the field center under the boundary condition of the normal operating
mode because the plasma is exposed to this strong focusing potential most of the time. The pos-
sible error-induced shift of the field center is on the order of 0.1 mm at most even with relatively
large electrodes’ misalignments; the maximum shift was actually 0.11 mm in Case II. This number
is much smaller than the aperture size of 5 mm. As the transverse extent of an ion plasma confined
in our trap is typically around 1 mm in radius, no extra ion losses will occur due to such a tiny
shift of the plasma centroid.

The multipole coefficients in Table 1 are obtained by averaging a hundred independent Warp
data based on a hundred different sets of random numbers to define the electrode positions. The
quadrupole and planar electrodes are misaligned simultaneously. Two different sizes of root-mean-
squared (rms) errors, i.e. 50 μm (Case I) and 100 μm (Case II), are considered in the table. As
expected, all multipoles have been excited by the misalignments. The standard deviation of an
error-induced multipole coefficient calculated from the one hundred samples is somewhat smaller
than its central value listed in the table. The rms shifts of the plasma centroid are 31 μm for Case I
and 63 μm for Case II. It is quite reasonable that the nonlinear fields become stronger on average
as the rms alignment error increases. We recognize from the data in Table 6.1 that the magnitudes
of low-order multipole coefficients grow almost linearly with respect to the rms error size. A
practically important fact is that the introduction of the four extra plates does not deteriorate the
field quality of the original Paul trap without the plates. The strengths of low-order nonlinear
components caused by the error are insensitive to whether we add the four misaligned plates or
not.

It is informative to point out that the extra electrodes may be utilized to reduce the low-order
error-induced nonlinear fields in the normal operating mode. W3/W̃2 is typically on the order of
0.1% as suggested in Table 1. This unwanted third-order component can be suppressed strongly by

85



Table 6.1: Multipole strengths in various operating modes. The multipole coefficients normalized
by the quadrupole strength W̃2 (normal operating mode) are indicated in percent. It has been as-
sumed that VS =VQ in the sextupole control mode and VO =VQ in the octupole control mode. The
aperture size R0 = 5 [mm], which determines the optimum radius of the quadrupole rods to be
5.75 [mm]. The thickness of the planar electrodes has been fixed at h1 = 1 [mm]. The multipole
expansion is carried out about the electric-field center (whereW1 = 0) defined in the normal oper-
ating mode. The dipole component then becomes non-zero in the sextupole and octupole control
mode because the location of the field center slightly shifts when finite voltages are applied to the
misaligned plates.

W1/W̃2 W2/W̃2 W3/W̃2 W4/W̃2 W5/W̃2 W6/W̃2 W7/W̃2 W8/W̃2

Regular Paul trap No error 0 100 0 0 0 0.032 0 0
Case I 0 100 0.358 0.125 0.065 0.038 0.011 0.013
Case II 0 100 0.715 0.251 0.130 0.056 0.021 0.027

Multipole trap No error 0 100 0 0 0 0 0 0
(normal operating mode) Case I 0 100 0.358 0.125 0.071 0.029 0.014 0.016

Case II 0 100 0.716 0.250 0.143 0.058 0.029 0.033

Multipole trap No error 0 0 2.565 0 1.213 0 0.570 0
(sextupole control mode) Case I 0.093 0.074 2.567 0.054 1.215 0.026 0.571 0.010

Case II 0.185 0.148 2.571 0.108 1.216 0.052 0.572 0.019

Multipole trap No error 0 0 0 3.343 0 0 0 0.695
(octupole control mode) Case I 0.135 0.087 0.106 3.349 0.051 0.032 0.030 0.697

Case II 0.269 0.174 0.212 3.349 0.102 0.064 0.060 0.697

superimposing proper low voltages to all electrodes. These additional voltages for error-induced
sextupole minimization are decomposed into two specific potential configurations; one is the con-
figuration in Fig. 6.6(a) and the other the skew sextupole configuration obtained by rotating Fig.
6.6(a) by 90 degrees around the axis. Since the ratio VSQ/VS satisfies Eq. (6.5), we have only two
free parameters, i.e. the voltage VS in each configuration, to be adjusted. The optimum values of
VS’s can be determined easily if the size and direction of each electrode’s misalignment are known.
Figure 6.9 is the minimization example of W3 which is generated by the misalignment. We can
find the sextupole component is reduced after the optimization of V normal

SQ and V skew
SQ . Such infor-

mation about actual mechanical errors is indeed unknown, but we can at least measure the ion-loss
rate due to sextupole resonance with many different combinations of the additional voltages. The
data of systematic ion-loss measurements enable us to find the optimum VS’s for sextupole mini-
mization. Those data also tell us how much mechanical errors are actually contained in the trap.
Note that, Experimental simulations of intense beam dynamics by means of the S-POD system
are far faster than any multi-particle computer simulations. An ion-loss measurement based on
a particular AG focusing waveform is completed typically within ten seconds, regardless of the
plasma density. In addition, the whole experimental process is automated, so we do not have to
stay beside S-POD to retune fundamental parameters. Even if we execute a hundred independent
measurements at a hundred different operating points, that takes only less than 17 minutes.
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Figure 6.9: Calculation results of the Warp field solver. Red dots are the multipole strengths by
the misaligned rods. Blue dots are the optimized result due to eliminate the sextupole component.
In this example, we choose V normal

S /VQ =−0.275 and V skew
S /VQ = 0.173.

6.4 Particle tracking simulation

A major advantage in S-POD experiment is the high flexibility of the focusing function K(τ).
In a particle accelerator, the lattice design uniquely determines the form of K(τ). If we wish to
explore beam dynamics in a different lattice, we must construct another large-scale machine. By
contrast, K(τ) can be modified over a wide range in S-POD because the rf voltages applied to
the electrodes determines the external driving potential, in other words, this is just a matter of the
electronics system. In the multipole ion trap, K(τ) is proportional to the quadrupole voltage VQ in
Fig. 6.2(a). The upper picture in Fig. 6.10 represents a typical rf waveform for VQ imitating a so-
called “FODO” channel. The rf power supply system developed for S-POD can readily produce
much more complex waveform if necessary.

The extra planar electrodes of the multipole trap make it feasible for us to introduce a nonlinear
periodic perturbation independently of the main focusing waveform. In the case of Fig. 6.10, the
plates are excited every three FODO cells (the lower picture); namely, the period of δV (τ) in Eq.
(6.1) is chosen three times longer than that ofK(τ). This kind of situation commonly takes place in
a circular machine where a small number of nonlinear magnets are added for beam orbit correction.
Since the periodicities of the linear and nonlinear driving forces are different, we expect additional
resonance stop bands to appear, depending on how often we turn on the nonlinear perturbation. In
the present example, the nonlinearity of a particular order (n = 3 or 4) is considerably enhanced
every three FODO periods. The stability threshold of the bare betatron tune ν0 per lattice period
is then 1.5 (= 0.5× 3). At zero beam intensity, the well-known incoherent resonance condition
can be written as nν0 = m where n is the order of resonance, and m is a positive integer. We have
assumed here that the horizontal tune νx and the vertical tune νy are equal, i.e. νx = νy = ν0, for
the sake of simplicity while it is possible in S-POD to separate the two transverse tunes.

We performed test numerical simulations with theWarp code to verify the resonance condition,
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Figure 6.10: An example of the rf waveform emulating a FODO beam transport channel. The
quadrupole filling factor is chosen to be 0.25. The lower picture indicates the timing when the
octupole potential (VO) in Fig. 3(a) or the sextupole potential (VS and VSQ) in Fig. 4(a) is switched
on for nonlinearity enhancement. Each nonlinear perturbation pulse is excited every three FODO
periods. The widths of all pulses are taken identical.

incorporating the detailed multipole field distributions evaluated in the previous sections. The time
evolution of the rms emittance of an ion plasma in the multipole trap was computed assuming the
rf waveform in Fig. 6. The emittance growth rates after a hundred FODO cells are plotted in
Fig. 6.11 as a function of the bare tune ν0. The solid line in each panel is obtained from Warp
simulations in the absence of electrode alignment errors, while the broken line shows a typical case
where all electrodes are randomly shifted by the rms average of 100 μm. The repetition frequency
of a FODO waveform is set at 1 MHz, so the hundred cells correspond to 100 μs in an actual
experiment. Figure 6.10(a) shows the Warp output obtained under the normal operating condition.
We confirm that in the absence of the perturbation pulse, no resonance occurs over the whole
tune range because the external force is perfectly linear in the modified trap without electrode
misalignments (see Table 6.1). Serious instability can, however, be identified near ν0 = 1 when the
electrodes are misaligned. This is due to the third-order resonance (the lowest-order nonlinearity)
caused by the imperfection field. No other stop bands of higher order resonances are visible within
a hundred FODO periods, except for a very weak fourth-order instability at ν0 = 3/4. Needless to
say, the emittance growth rate depends on how the electrodes are misaligned. In this simulation,
we have shifted all eight electrodes so that the averaged multipole coefficients of Case II (normal
operating mode) in Table 6.1 are approximately reproduced.

Once the perturbation pulse is excited, the emittance growth picture becomes essentially differ-
ent. Figure 6.11(b) represents the case where the sextupole potential in Fig. 6.6(a) is periodically
switched on. The pulse height of the perturbation wave has been adjusted to satisfy VS = VQ in
each simulation. We observe clear instabilities at 3ν0 = m, no matter whether the misalignments
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Figure 6.11: Warp simulation results assuming the time structures of K(τ) and δV (τ) in Fig. 6.10.
The rms emittance growth rates after 100 FODO periods are plotted as a function of bare betatron
tune ν0. The Coulomb self-field potential has been ignored in these simulations. The panel (a)
is the result under the normal operating condition where no perturbation pulse is excited. Other
three panels correspond to the cases where we periodically switch on (b) only the sextupole pulse
under the conditionVS =VQ, (c) only the octupole pulse under the conditionVO =VQ, and (d) both
sextupole and octupole pulses.

are finite. The emittance behavior is changed to Fig. 6.11(c) by applying the octupole pulses
instead of the sextupole pulses. We now observe small peaks at 4ν0 = m due to the fourth-order
resonance. Figure 6.11(d) shows what happens when both sextupole and octupole perturbations
are activated. Naturally, stop bands are generated at 3ν0 = m and 4ν0 = m.

It is also possible to selectively drive only one sextupole or one octupole resonance at a specific
tune. For this purpose, we use a sinusoidal waveform for δV (τ) instead of a stepwise pulse as in
Fig. 6.10. The frequency of the sinusoidal perturbation has to be matched to that of a proper
Fourier harmonic of the original periodic pulse.

6.5 Summary

We have proposed a simple design of a multipole ion trap dedicated to fundamental beam-physics
experiments with the S-POD system. The modified Paul trap has four extra electrodes in between
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the regular quadrupole rods, which control low-order nonlinearities in the plasma confinement po-
tential. From a practical point of view, we focused our discussion on the insertion of thin metallic
plates. An efficient Poisson solver was employed to study the dependence of the aperture field on
the electrode geometry. It has been shown that the sextupole and octupole driving fields can be
enhanced independently of the quadrupole focusing potential. In the so-called normal operating
mode (Fig. 6.2), the modified trap operates just like an ordinary LPT; the field linearity can even be
improved by placing the extra plates at the optimum positions defined by Eq. (6.3). The octupole
field can be strengthened at an arbitrary moment simply by applying the same voltages to the four
plates (Fig. 6.4). In the sextupole control mode, we excite the planar electrodes and quadrupole
rods simultaneously in such a way as illustrated in Fig. 6.6. The applied voltages are chosen to
minimize the dipole component according to Eq. (6.5).

When the electrodes are shifted from their ideal positions due to mechanical imperfections,
all higher order components become finite. Such error-induced multipole fields are, however,
sufficiently weak as long as the electrode misalignments are within a reasonable level. As shown
in Table 1, the four extra plates newly introduced for nonlinearity control do not affect the field
quality of the original Paul trap. Numerical simulations actually demonstrate that we can create
the third- and/or fourth-order stop bands at specific tunes without enhancing unwanted resonances
of other orders. The present design of a multipole ion trap thus widens the range of beam dynamics
experiments we can do with the S-POD system. In particular, the stability of intense hadron beams
in a variety of nonlinear lattices can be explored experimentally and much more quickly than any
numerical simulations.

On the basis of this design study, we are now planning to construct a multipole ion trap for
S-POD. The nominal operating frequency will be set at 1 MHz, the same as the existing Paul traps
at Beam Physics Laboratory of Hiroshima University. The aperture radius R0 is 5 mm, and then,
the radius RQ of the quadrupole rods has to be 5.75 mm. The thickness h1 of the four extra plates
is probably chosen 1 mm or less. In case h1 = 1 mm, the inner edge of each plate is fixed 8.5
mm away from the trap axis, according to Eq. (6.3). The plate width h2 should be greater than
at least about 5 mm, so that the effect of the outer edge on the aperture field becomes negligible.
Under these mechanical conditions, the sextupole and octupole strengths can be increased to a
few percent of the dominant quadrupole strength with a perturbation voltage (VS or VO) of lower
than about 100 V. The required perturbation voltage can be further lowered, if necessary, by using
thinner plates2. In any case, we only need minor modifications to the current power-supply system
of S-POD for future experimental studies of intense beam dynamics with the modified Paul trap.

2Then, the optimum radial position of the inner edge comes closer to the aperture radius R0, according to Eq. (6.3).
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