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ABSTRACT

Stochastic acceleration of nonthermal electrons is investigated in the context of hard photon spectra of blazars. It is
well known that this acceleration mechanism can produce a hard electron spectrum of m nln ln 2e ( )g gº ¶ ¶ =
with the high-energy cutoff, called an ultrarelativistic Maxwellian-like distribution, where ne ( )g is an electron
energy spectrum. We revisit the formation of this characteristic spectrum, considering a particular situation where
the electrons are accelerated through gyroresonant interaction with magnetohydrodynamic wave turbulence driven
by the turbulent cascade. By solving kinetic equations of the turbulent fields, electrons, and photons emitted via the
synchrotron self-Compton (SSC) process, we demonstrate that in the non-test-particle treatment, the formation of a
Maxwellian-like distribution is prevented by the damping effect on the turbulent fields due to the electron
acceleration, at least unless an extreme parameter value is chosen. Instead, a softer electron spectrum with the index
of m ≈ −1 is produced if the Kolmogorov-type cascade is assumed. The SSC spectrum that originates from the
resultant softer electron spectrum is still hard, but somewhat softer and broader than the case of m=2. This
change of achievable hardness should be noted when this basic particle acceleration scenariois accurately tested
with observations of hard photon spectra.
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1. INTRODUCTION

It has been understood that an energy dissipation region in
the subparsec-scale jets of a subset of the active galactic
nucleus is observed in blazars by virtue of the relativistic
beaming effect (e.g., Urry & Padovani 1995; Abdo et al. 2010;
Marscher 2009; Beckmann & Shrader 2012). Observations of
blazars have been carried out from the radio to gamma-ray
bands and revealed that there existin that region nonthermal,
relativistic electrons distributed in the energy range of a few
orders of magnitude (e.g., Maraschi et al. 1994; Inoue &
Takahara 1996; Kataoka et al. 1999; Sikora & Madejski 2001;
Kino et al. 2002; Krawczynski et al. 2004; Kusunose &
Takahara 2008; Tagliaferri et al. 2008; Aharonian et al. 2009;
Tavecchio et al. 2010; Abdo et al. 2011a, 2011b; Dermer &
Lott 2012; Zhang et al. 2012; Rani et al. 2013). These electrons
mainly contribute to observed photon spectra, while how they
are accelerated is unclear so far.

Recently, a possibility has been discussed that electrons
accelerated by stochastic acceleration (SA) are observed in
some blazars (e.g., Katarzyński et al. 2006b; Ushio et al. 2009,
2010; Asano et al. 2014; Kakuwa et al. 2015). SA is a
mechanism that accelerates charged particles in turbulent fields
and is described as diffusion of the particles in momentum
space (e.g., Hall & Sturrock 1967; Ptuskin 1988; Tera-
sawa 1989; Schlickeiser & Miller 1998; Schlickeiser 2002;
Ohira 2013; Kimura et al. 2015). It has been implied that on
some assumptions the acceleration time of the highest-energy
electrons in blazars may be too long to be interpreted by
acceleration at a (mildly) relativistic shock (Inoue & Taka-
hara 1996; Garson et al. 2010; Kakuwa et al. 2015). Such slow
acceleration increases the role of SA because of its slower
nature. Also, the association between SA and the behavior of
the synchrotron peak frequency, flux amplitude, and spectral
shape around the peak has been noticed (Katarzyński
et al. 2006b; Giebels et al. 2007; Tramacere et al. 2011).

One of the features of SA is its ability to naturally produce
hard electron spectra. Actually, recent application of SA to
blazars has been concerned with hard electron and/or photon
spectra (Saugé & Henri 2004; Katarzyński et al. 2006a; Giebels
et al. 2007; Lefa et al. 2011a, 2011b; Tramacere et al. 2011;
Zheng & Zhang 2011; Asano & Hayashida 2015). In particular,
a very hard spectrum of relativistic electrons with the index
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has often been applied to observations, where ne ( )g is the
number density of the accelerated electrons per unit γ, γ the
Lorentz factor, t trad acc rad( ) ( ) ( )h g g gº the radiative cooling
efficiency, tacc ( )g the acceleration time, trad ( )g the radiative
cooling time, and a approximately constant of 1 .( ) This near-
monoenergetic spectrum is produced when the electrons
accelerated by SA are confined in the acceleration site and
then pile up around the characteristic energy where the
acceleration and the synchrotron or inverse Compton (IC)
cooling balance.
The formation of the pileup distribution1 in given turbulent

fields (i.e., the test-particle treatment) was investigated in detail
by Schlickeiser (1984, 1985) for a particular case of the
momentum-independent scattering rate (Fermi 1949; Parker &
Tidman 1958; Drury 1987). The case of the momentum-
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1 In this paper we refer to Equation (2) also as the pileup distribution. As
shown by Schlickeiser (1984) within the test-particle treatment, a different form
of pileup distribution from that due to SA can also take place as a result of
acceleration by multiple shock waves.
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dependent scattering rate hasalso been studied by, e.g.,
Bogdan & Schlickeiser (1985), Borovsky & Eilek (1986),
and Stawarz & Petrosian (2008).

Employing a non-test-particle formulation unlike these
previous works, we shall revisit the formation of thepileup
distribution. When applying SA to observations, one considers
the situation where there is a net energy transfer from turbulent
fields excited by external forces or by different species to
emitting electrons. The energy of the turbulence is then more or
less damped by the electrons. Blazar emission models
employing SA, however, have not examined the damping
effect, which can be taken into account only by performing a
non-test-particle calculation.

The purpose of this paper is to demonstrate the damping
effect on the pileup formation. Using a simplified formulation,
we calculate spectra of the turbulent fields, accelerated
electrons, and photons emitted by the electrons via the
synchrotron self-Compton (SSC) process by solving respective
kinetic equations including the damping effect. As the damping
mechanism (i.e., electron acceleration mechanism), we con-
sider gyroresonant interaction with small-amplitude, magneto-
hydrodynamic wave turbulence propagating parallel or
antiparallel to the mean magnetic field with the phase speed
of the Alfvén speed. The energy of the turbulence is assumed to
be injected at a low wavenumber where the resonance does not
occur and to be transferred to higher wavenumber by the
Kolmogorov-type energy cascade.

We do not discuss the influence of both the injection
mechanism and detailed properties of the turbulence (see, e.g.,
Eilek & Henriksen 1984; Dung & Schlickeiser 1990; Pohl &
Schlickeiser 2000; Schlickeiser & Dermer 2000; Schlickeiser
et al. 2002, for informative discussions). A model assumption
that is relevant to these points but has more direct influence on
our results is the energy transfer rate of the turbulent cascade
inwavenumber space (or, in general, the energy injection rate
at each wavenumber). The role of the assumed energy transfer
rate is like that of a spectral index of the turbulence in test-
particle models, in which the index is arbitrarily given and
plays a crucial role (e.g., Dermer et al. 1996).

In Section 2, we estimate the efficiency of the damping for
parameter values previously obtained with test-particle models.
Kinetic equations of turbulent fields, electrons, and photons are
described in Section 3, followed by Section 4, in which a
steady-state solution of this coupled system is shown for the
case of inefficient electron escape from the acceleration site
(i.e., efficient confinement). We then show that inefficient
escape, which is a required condition to establish the pileup
distribution, is accompanied by efficient damping. As a result,
electrons are prevented from piling up around the high-energy
cutoff, so that a Maxwellian-like distribution is not established.
Section 5 is a summary.

2. DAMPING EFFICIENCY

In this section, we show that under the assumptions
mentioned in Section 1, damping of turbulent fields by electron
acceleration is estimated to be efficient for parameter values
obtained in some previous works applying SA to blazars.

We introduce a quantity indicating how the damping is
effective, damping efficiency, as
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where k is the wavenumber, t t kcas cas ( )= the spectral energy
transfer time of the turbulent fields (or simply the cascade time)
at a wavenumber k, and t t kdam dam ( )= the damping time,
which is the timescale that energy of the turbulent fields with
wavenumber k is consumed by electron acceleration. Hereafter,
arguments of a function will often be omitted when they are
clear or irrelevant. The energy of the turbulent fields at
wavenumber k is supposed to be supplied by the turbulent
cascade from lower wavenumber. The damping efficiency
higher than unity, k 1,dam ( )h > implies that awavenumber
spectrum of the turbulent fields is being affected by electron
acceleration at wavenumber k.
We assume that the cascade time is estimated as the

characteristic time determined by only velocity fluctuations of
the turbulence ukd and its wavenumber k: t k u ,kcas

1( )d~ -

which leads to the Kolmogorov-type cascade (e.g., Goldstein
et al. 1995; Zhou et al. 2004). Noting that the total energy
density of the turbulent fields with wavenumber k is
kW k u ,k

2( ) rd~ we define the cascade time as
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(e.g., Miller & Roberts 1995), where W(k) is the energy density
of the turbulent fields per unit k, u c2 B w

2( )r b= the mass
density of the background plasma, v cw wb = the nonrelati-
vistic Alfvén speed in units of c, c the speed of light, and
u B 8B

2 ( )p= the energy density of the mean magnetic field B.
The inertial range spectrum formed by the pure cascade
maintains an equilibrium state with a constant energy transfer
rate in k-space, kW k t const.cas( ) = In this case we have
W k k 5 3( ) µ - from t k W kcas

3 2 1 2( ( ))µ - - (Equation (4)).
The damping time tdam depends on electron acceleration

mechanisms at work. Nonthermal electrons are assumed to be
accelerated through gyroresonant interaction with weakly
turbulent magnetohydrodynamic waves propagating parallel
or antiparallel to the mean magnetic field with the phase speed
of the Alfvén speed. The time evolution of the ensemble
average of electron phase-space density F is described by the
Fokker–Planck equation based on the quasilinear approxima-
tion (Hall & Sturrock 1967; Schlickeiser 2002):
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where gW is the gyrofrequency (including the sign of the
electron charge), p the electron momentum, Dsa the Fokker–
Planck coefficients, and xσ denotes spherical coordinates in
momentum space. We neglect spatial inhomogeneity for
simplicity. Assuming small anisotropy, one obtains the
momentum-diffusion equation of f, the isotropic part of F, as
(e.g., Schlickeiser 1989, 2002, and references therein)
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where D D D Dp pp p
2= - m mm m

is the momentum-diffusion

coefficient, and á m denotes the pitch-angle averaging. We use
an approximated form of the diffusion coefficient given by (see
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Appendix for a brief derivation)
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where Dg is the diffusion coefficient in γ space, p m v,eg=
me the electron mass, v c» the electron speed,
r r m c eBg g e

2( ) ( )g g= » the gyroradius of electrons, e the
charge of an electron, k kW k uB B( ) ( )z º the relative amplitude
of the turbulent magnetic fields, W k W k 2B ( ) ( )» the

magnetic component of W k ,( ) and k k r .res res g
1( )( ) ( )g g= º -

If W kB ( ) becomes smaller for higher k, the lower end of the
integration is more important than the upper end. The turbulent
fields withwavenumber k kres ( )g~ mainly contribute to Dγ of
electrons with Lorentz factor γ. The amplitude, k ,( )z is less
than 1 by definition since B does not consist of only the
nonrandom magnetic field component; k( )z may have to be

k 0.1( ) z in the wavenumber range relevant to the electron
acceleration to meet the assumption of weak turbulence.

In this section, we use the following estimate of the damping
time:
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is the energy transfer rate per unit volume from the turbulent
fields to the electrons by the gyroresonant interaction,
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is the acceleration time of electrons with the Lorentz factor γ,
and resg is the electron Lorentz factor defined by k r1 g res( )g=
(i.e., k eB m c kres res e

2( ) ( )g g= = ). The expression of tdam will
be reintroduced in Section 3 (Equation (23)). Note that the
actual tdam can be shorter than the estimate of Equation (9) if
ne ( )g is harder than m=0 (like a Maxwellian-like distribu-
tion, m= 2) because electrons with higher Lorentz factor than

kres ( )g g= mainly contribute to the damping in this case
(Equation (22)).

From Equations (3), (4), and (9), we obtain
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where Ts is the Thomson cross section. In Equation (12) wb is
replaced with the synchrotron cooling efficiency,
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for convenience of evaluating ,damh where
t t m c B6syn syn e T

2( ) ( )g p s g= = is the synchrotron cool-
ing time.
Now, we can evaluate the damping efficiency damh for some

previous works with Equation (12). When emission from the
electron acceleration site makes a dominant contribution to a
blazar spectrum, ne ( )g and B in this site are constrained by a
spectral fitting. Some SA models assuming such a situation
have been applied to observations (without taking into account
the damping effect), and so the damping efficiency can be
evaluated. When syn ( )h g is unknown, we assume for the
evaluation that the high-energy cutoff of ne ( )g obtained by the
spectral fitting results from the competition between the
acceleration and synchrotron cooling, i.e., 1syn ( )h g » for the
cutoff Lorentz factor; if the IC cooling is actually stronger than
the synchrotron cooling, kdam res( )h is underestimated. When

kres( )z is unknown, the upper limit of kres( )z (i.e., ∼0.1) is
substituted to show the lower limit of k .dam res( )h
Note that the estimate by Equation (12) assumes that ne ( )g is

known. Although larger amplitude kres( )z at a resonance scale
gives smaller damping efficiency kdam res( )h in this case, in
general, when one considers a coupled system of ne ( )g and
W k ,( ) larger amplitude of the turbulence may act to inject a
larger number of electrons, accelerate them to higher energy,
and confine them in the acceleration site for a longer time. As a
result, larger turbulence amplitude can enhance the damping
effect. This is the case of a simple non-test-particle model that
we will employ in Section 3.
Table 1 presents the results of the evaluation of kdam ( )h at

the resonant wavenumber kres ( )g of electrons with the high-
energy cutoff Lorentz factor. We find 1damh > for some
previous applications of SA, that is, the damping can affect the
formation ofW(k) and n ,e ( )g although they did not consider the
damping effect.2 This does not always mean that these previous
tests of SA are invalid since in the test-particle models the
mechanisms of both energy supply to the turbulence at each k
and the damping are not specified. Qualitatively speaking, if
energy supply to the turbulent fields is more rapid than our
assumption k u ,k

1( )d - the damping effect is weaker than
Equation (12), and vice versa. Anyway, Table 1 shows the
importance of performing tests of SA in blazars more self-
consistently.
We have not mentioned another type of models that

assumethat the electron acceleration site is basically a source
region of nonthermal electrons and that emission from a more
extended region is observed (e.g., Saugé & Henri 2004;
Giebels et al. 2007). If this is the case, it seems difficult to
evaluate the importance of the damping in the same manner
because less information on the acceleration site can be
extracted with such models. We only comment for this case
that when gyroresonant acceleration is considered, application

2 For reference 2 in Table 1, kdam res( )h is calculated with ne( )g at the steady
state shown in Katarzynski et al. (2006a), while they reproduced observed
photon spectra with evolving ne( )g . At the moment when their SA model fits to
the observations before reaching the steady state, the values of kdam res( )h are 3
and 2 for references 2a and 2b, respectively.
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of a Maxwellian-like electron spectrum (Equation (2)) as the
injection spectrum into the emission region requires an extreme
parameter value for the acceleration site in order to avoid
effective damping from the discussion in Section 4. Also note
that when the damping is effective, the energy spectrum of
electrons diffusing from the acceleration site into the emission
region is softer than that of electrons in the acceleration site
because higher-energy electrons escape more slowly than
lower-energy electrons, as will be seen in Figure 3.

Unlike the other works in Table 1, Asano et al. (2014)
show 1.damh < They calculated SA in a jet flow and
investigated effects of radial dependence of physical para-
meters on superposed photon spectra. It seems important to
compare this model with more samples (Asano &
Hayashida 2015).

3. KINETIC EQUATIONS

Following Section 2, we investigate, in the rest of this paper,
the damping effect on the formation of spectra of turbulent
fields, electrons, and photons, particularly focusing on the
pileup formation. Keeping the basic assumptions, Equations (4)
and (8), we adopt a simple formulation.

A diffusion equation in wavenumber space has been used to
consider energy injection, cascading, and damping in calcula-
tion of turbulence spectra for wave-particle systems:
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(e.g., Eichler 1979; Zhou & Matthaeus 1990; Miller &
Roberts 1995; Miller et al. 1996; Brunetti & Lazarian 2007),
where D D k k t ,w w

2
cas( )= º and the cascade time tcas is

given by Equation (4). The second term on the left-hand side
( F kwº¶ ¶ ) represents the energy cascade and acts to establish
the Kolmogorov spectrum q 5 3,= where
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The damping effect is represented by k ,w w( )G = G which will
be described after introducing the electron kinetic equation. If
the damping is effective, which is the case of interest, energy
transport in k-space is not pure cascade, so that W(k) is

modified from the Kolmogorov spectrum. The energy
injection into the turbulent fields is represented by
I I k Q k k ,w w winj, inj( ) ( )d= = - where Q winj, is the injection
rate per unit volume, and k( )d is the Dirac delta function. The
injection wavenumber kinj is low enough not to resonate with
electrons.
The injection wavenumber kinj is just a parameter to

determine the lower boundary of k. The amplitude of the
turbulent fields is determined by Q .winj, When W kinj( ) reaches
steady state, the balance F k Q 0w winj inj,( ) - = is achieved,
where
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Thereby, noting q 5 3= in the wavenumber range with no
damping such as around k ,inj that is,
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we find the relation Q c k u22 3 .w w Binj, 0
3 2

0( )z b= Fixing
k R2 ,0 p= where R is the spatial size of the acceleration site,
we regard 0z as a parameter instead of Q .winj,
Equation (14) describes the isotropic turbulent fields, which

cascade omnidirectionally in wavenumber space. On the other
hand, if we assume that the turbulence consists of pure parallel
or antiparallel propagating waves, that is, zero energy cascade
in perpendicular direction, the diffusion equation in parallel
wavenumber space is probably appropriate to describe the
evolution of W k( ) (as adopted in Miller & Roberts 1995).
However, the difference of these two one-dimensional treat-
ments perhaps does not matter for our results because it does
not affect the self-similarity that we will see in Section 4. We
adopt the form of Equation (14), considering only parallel and
antiparallel propagating waves as the acceleration agent
(Equation (8)). Strictly speaking, we have to take into account
the three-dimensional turbulent cascade and the acceleration by
and the damping of not only parallel or antiparallel propagating
waves but also oblique waves (e.g., Schlickeiser &
Miller 1998), although it is beyond the scope of this paper.
Using n m c p f4e e

2( ) ( )g p» instead of f, we calculate the
electron energy spectrum by the following equation modified

Table 1
Efficiency of the Damping of Turbulence by Electron Acceleration, kdam res( )h (Equation (12)), for Some Previous Works at the Wavenumber k kres res ( )g=

Refs γ n3
e ( )g g syn ( )h g B kres( )z kdam res( )h

Unit (cm−3) (G)

1ES 0229+200 1 1.5 105´ 8.4 1011´ 1 0.07 0.1 40
Mrk 501 2a 5.0 106´ 1.0 1014´ 1.7 0.05 0.1 6000
Mrk 501 2b 3.4 106´ 1.5 1012´ 1.8 0.11 0.1 30
Mrk 501 3 1.0 106´ 1.6 108´ 1 0.014 1.9 10 5´ - 500
Mrk 421 3 1.5 105´ 6.1 108´ 1 0.081 5.6 10 6´ - 400
Mrk 421 4 3.0 105´ 1.3 108´ 1 0.043 0.1 0.01
1ES 1101-232 4 7.0 105´ 1.7 108´ 0.3 0.015 0.1 0.1

Note. The damping efficiency higher than unity, k 1,dam ( )h > implies that the wavenumber spectrum of the turbulent fields is being affected by the electron
acceleration at wavenumber k. Physical quantities used for the evaluation are also shown. See also footnote 2.
References. (1) Lefa et al. (2011b, Figure 10); (2) Katarzyński et al. (2006a, Figures 3a and 4b); (3) Kakuwa et al. (2015, Figure 2); (4) Asano et al. (2014, Figures
5and 6).
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from the momentum-diffusion equation (Equation (6)):
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The second term on the left-hand side ( Fe gº¶ ¶ ) represents
SA, where Dg is given by Equation (8). The coefficient
of the third term onthe left-hand side, which represents
the systematic energy loss by radiation cooling,

,rad syn IC˙ ˙ ˙g g g= + is calculated consistently with the photon
production rate in the photon kinetic equation, where synġ and

ICġ are, respectively, the contribution from the synchrotron and
IC emission. Only the photons emitted by the accelerated
electrons are considered as target photons of IC scattering.
Spatial escape of the electrons from the acceleration site
is represented by t R c ,e e esc,e

1( ) ( )gG = G = - + - where
t tesc,e esc,e ( )g= = R2 k is the escape time, and

cr k9g res( ) ( ( ))k g z~ is the spatial diffusion coefficient along
the mean magnetic field (Longair 1992; Schlickeiser 2002).
The electron injection into the acceleration process is
represented by I I Q m c .e e inj,e inj inj e

2( ) ( ) ( )g d g g g= = - The
injection Lorentz factor ,injg which gives the lower boundary of
γ space, is fixed to 10. (Although this value of injg is physically
unrealistic if Alfvén turbulence in an electron–proton plasma is
considered, it is not significant for our purpose to demonstrate
the damping effect on thepileup formation.) We control the
electron energy injection rate per unit volume by introducing a
dimensionless parameter :ea

Q F k . 19winj,e e res inj( )( ) ( )a g=

The energy source of the electron injection is the cascading
turbulence, and ea is the efficiency of the energy transfer from
the turbulent fields to the nonthermal electrons measured
at .injg g=

The choice of the functional form of the escape time tesc,e is
not important because we will focus on hard electron spectra,
which are expected when the escape is inefficient. Our choice
of tesc,e seems to give its lower limit considering bending of the
magnetic field. If one considers more realistic t ,esc,e the escape
perhaps becomes more inefficient. Note that this results in
strengthening the importance of the damping effect because
inefficient escape leads to efficient damping, as will be
explained in Section 4.

The damping rate wG is introduced to be consistent with the
energy gain rate of the electrons (Eilek 1979; Eilek &
Henriksen 1984; Brunetti & Lazarian 2007):
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r m c eB ,g e

2( ) ( )g g» we get
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The turbulence with wavenumber k is damped by electrons
with k .res ( )g g> Assuming thatne ( )g is smaller for higher γ,
we use

k
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m ck
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This simplification does not affect the results in this paper, and
hence Equation (23) is sufficient for the current purpose. A
somewhat refined expression of the damping time tdam

compared to Equation (9) is .w
1∣ ∣G -

The energy spectrum of isotropic and homogeneous photons,
n ,ph ( ) emitted by the nonthermal electrons is calculated by
solving the photon kinetic equation identical to Equation (3) in
Kakuwa et al. (2015), where ò is the photon energy in units of
m c ,e

2 and nph ( ) is the number density of the photons per unit
ò (Jones 1968; Blumenthal & Gould 1970; Rybicki &
Lightman 1979; Li & Kusunose 2000; Finke et al. 2008).

4. STEADY-STATE SOLUTION

There are five parameters to be set to calculateW k ,( ) n ,e ( )g
and n :ph ( ) R, B, ,0z ,wb and .ea We adopt R 1016= cm,
B= 0.5 G, 1,0z = 0.05,wb = and 0.1ea = to demonstrate
the effect of the damping on these spectra. This parameter set is
an example that leads to an extremely hard electron spectrum,
the pileup electron distribution m=2, when one neglects the
damping effect. We show that such a parameter set, however,
asymptotically forms a softer spectrum n conste ( )g g » (i.e.,
m 1= - ) by the damping effect below the high-energy cutoff.
At the initial time, we assume that W(k) satisfies Equation (17)
and that there are no accelerated electrons (i.e., n 0e ( )g = ).
If the damping is neglected (i.e., 0wG = ), Equation (14)

produces a turbulence spectrum of Equation (17). Then, the
characteristic Lorentz factor syng defined by 1syn syn( )h g º can
be described as

m c e k

B

216
24w

syn

3
e
2 4

T
3

1 4
0
1 2

0
3 4 3 2

5 4
( )

⎛
⎝⎜

⎞
⎠⎟g

p
s

z b
¢ ~

from Equation (13). Hereafter, primed quantities indicate that
they are evaluated with the damping effect neglected. At

,syng g= ¢ the acceleration and synchrotron cooling balances
and the high-energy cutoff is introduced for the electron
spectrum.
The condition required for the formation of the pileup

distribution is 1esc syn( )h g¢ ¢  when the damping is neglected
(Schlickeiser 1984, 1985; Bogdan & Schlickeiser 1985;
Borovsky & Eilek 1986; Stawarz & Petrosian 2008), where

t

t

m c

e B R k3
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is the escape efficiency. We can calculate esc ( )h g¢ by just
substituting Equation (17) into (25). The adopted parameter
set given at the beginning of this section is in the parameter
region of inefficient escape: 10 1,esc syn

5( )h g¢ ¢ ~ -  where

4 10 .syn
4g¢ ~ ´ The first term on the right-hand side of

Equation (18) is not important in our situation.
The solid line in Figure 1 represents the photon spectrum

obtained by solving the kinetic equations for W k ,( ) n ,e ( )g and
nph ( ) until the steady state. Approximating the acceleration
site as a spherical, homogeneous blob moving with the Doppler
factor δ, we calculate a Fn n form spectrum by

F
d

m c n V

t4
, 26

4

L
2

2
e

2
ph

esc,ph

( )
( )

 
n

d
p

=n

where ν is the observed photon frequency given by
h m c z1 ,e

2 ( )n d= + h the Planck constant, z the redshift,
dL the luminosity distance, V the volume of the blob, and
t R cesc,ph = the photon escape time. We choose the values
of the additional parameters as 10,d = z 0.031,= dL =
4.14 1026´ cm, and V R4 3.3p=

In Figure 1, for comparison a Fn n spectrum calculated with
the damping effect neglected is shown with the dotted line for
the same parameters, except that the flux amplitude and Qinj,e
are adjusted for ease of comparison. The spectrum originates
from electrons of the pileup distribution, so that the hardest part
of the Fn n spectrum is proportional to 4 3n for both synchrotron
and IC spectrum. The solid line shows a softer and broader
spectrum than the dotted line. This is because the damping
works effectively (and prevents electrons from forming a
spectrum harder than m 1,» - as described later in this
section). It is therefore important to take account of the
damping effect when one interprets, with SA, a very hard
photon spectrum that requires a near-monoenergetic ne ( )g like
the pileup distribution.

Instead of performing calculations for various parameter
sets, here we see that in general, unless ea is extremely small
(i.e., a low electron injection rate), inefficient escape results in
efficient damping; in other words, formation of the pileup

electron distribution is affected by the damping. This can be
easily proved by confirming that the damping is evaluated as
efficient even when we start from the assumption that both the
damping and escape are inefficient.
First, suppose that the damping is inefficient. Then, we can

replace kres inj( )g in Equation (19) with an arbitrary k since the
pure turbulent cascade leads to F constw = in the inertial range.
From Equation (9), t k A k2 ,wcas ( )= Equation (19), and
F k A k W k ,w w( ) ( ) ( )~ where we denote the systematic energy
cascade rate per unit volume as A k ,w ( ) Equation (3) is
expressed by nondimensional quantities as

k
2

. 27dam res
e

1 inj
( )( )

( )
( )h g

a
h g

g
g

¢ ~
¢

Here, for convenience, 1 1( )h h g= and 1 1( )t t g= are
respectively introduced by t1 acc 1h tº and
n Q m c .e inj,e 1 inj e

2( ) ( ) ( )g g t g gº Second, suppose that the

escape is also inefficient (i.e., 1esc syn( )h g¢ ¢  ). The electrons

then pile up around ,syng¢ that is, ne ( )g g peaks around ,syng¢ and

accordingly 1( )h g¢ at syng g= ¢ becomes roughly equivalent to

.esc syn( )h g¢ ¢ As a result, in the case of 1,esc syn( )h g¢ ¢ 
,inj syng g¢ and a moderate value of ea (like the adopted

parameters), we have k 1dam res syn( ( ))h g¢ ¢  from Equation (27).
This conflicts with our first assumption of neglecting the
damping. Therefore, efficient damping seems difficult to
avoidwhen escape is inefficient. Equation (27) states that
efficient injection, efficient confinement (or inefficient escape),
and efficient acceleration of electrons to higher energy lead to
efficient damping. We should note that Equation (9) that we
used for Equation (27) probably overestimates the damping
time as mentioned in Section 2.
When the bulk of electrons reaches syng¢ (Equation (24))

before reaching the steadystate, they form the cutoff by the
competition between the acceleration and radiation cooling.
The estimate of the cutoff Lorentz factor is not affected by the
damping because the damping occurs resonantly (i.e.,
k rres g

1= - ),that is, q 5 3= is kept for k k .res syn( ) g¢ This
means that the synchrotron cooling efficiency syn ( )h g becomes
higher (1) for higher syn( )g g¢ owing to q

syn
3h gµ -

(Equation (13)). In this case, the cutoff is formed in ne ( )g to
balance the positive, diffusive flux by SA with the negative,
advective flux by the cooling in γ space, i.e., zero electron flux
in energy space F n 0.e rad e∣ ˙ ∣ ( )g g- = Figure 2 shows the
steady-state electron spectra, n ,2

e ( )g g obtained by solving the
kinetic equations with and without the IC cooling with the thin
and thick solid lines, respectively. One can see the cutoff at

,syng g= ¢ which is indicated by the right end of the red
dotted line.
At the time when electrons form the cutoff, a balance is

established also in the lower-energy side of syng¢ by the same
mechanism in the case of no damping, but not in the case of
effective damping. Since W(k) is decreased by the damping
from the initial amplitude (Equation (17)) at k kres syn( ) g¢ in
the case of effective damping, the acceleration is slowed at

syng g¢ by the lowered W k .( ) Then, the cooling becomes
efficient relative to the acceleration, so that the region where
the cooling dominates for the systematic energy change of

Figure 1. Solid line: steady-state SSC spectrum in the Fn n representation.
Damping of turbulence by electron acceleration is effective for the adopted
parameter set: R 1016= cm, B=0.5 G, 1,0z = 0.05,wb = 0.1,ea =

10,d = z 0.031,= d 4.14 10L
26= ´ cm, and V R4 3.3p= Dotted line:

steady-state SSC spectrum in the case with the damping effect neglected.
The same parameter values as the solid line are adopted, except that the flux
amplitude and Qinj,e are adjusted for ease of comparison.
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electrons extends also to the lower-energy side of syng¢ , unlike
the case without the damping. In this region, the system adjusts
both ne ( )g and W(k) (or the diffusion coefficient D ( )gg ) to
establish the balance F n 0e rad e∣ ˙ ∣ ( )g g- = to reach the steady
state. We refer to this energy/wavenumber range as the
damping region for convenience.

In Figure 3, we show the characteristic times of the turbulent
fields and the electrons at the steady state. The damping
region is seen in the range of 10 4 10 .2

syn
4( ) g g¢ ~ ´

As shown in this figure, the balances between the acceleration
and synchrotron/IC cooling and between the cascading and
damping are established in the form of t t constsyn acc synh = »
and t t constdam cas damh = » in this region, respectively. Note
that turbulent fields with q 2> formed by the effective
damping accelerate higher-energy electrons more rapidly than
lower-energy electrons since t ,q

acc
2gµ - so that the accelera-

tion and cooling can balance in such a way (i.e., constsynh » ).
This equilibrium state is a particular case of a=0 in
Equation (2).

We can find the asymptotic solution of the damping region at
the steadystate simply as follows. Let us start from const,radh =
where t t Drad acc rad rad∣ ˙ ∣h g gº = g, t ,rad rad∣ ˙ ∣g g= and

r
radġ gµ (e.g., r= 2 for the synchrotron emission). Then, q
and r are related by q r1= + owing to D .qgµg A constant r
leads to a constant q. Noting t ,w dam cashG = - we obtain

q q r r2 3 5 2 3 3 2 2dam ( )( ) ( )( )h = + - = + - from Equa-
tion (14) with W k t 0( )¶ ¶ = and I 0.w = Now, damh is
also constant. Using t ,w dam cash-G = t k q

cas
3 2( )µ - from

Equation (4)and kw
m1G µ - - from Equation (23), where

m nln lne ( )g gº ¶ ¶ , we obtain m q 5 2( )= - =
r 4 2.( )- Finally, imposing the balance

F n 0,e rad e∣ ˙ ∣ ( )g g- = where D ,rad radġ h g= - g we obtain
m r2 4 2.radh = - = - Substituting r=2 as an example,

we get

q r

m r
r r

r

1 3
2 2 1

3 3 2 2 10

4 2 3.

28
dam

rad

( )( ) ( )

⎧
⎨
⎪⎪

⎩
⎪⎪
h
h

= + =
= - = -
= + - =
= - =

When the damping is effective, the electron spectrum
approaches a non-monoenergetic spectrum, n const,e ( )g g »
when r 2.» The balance required to form a Maxwellian-like
distribution, F 0,e = is not realized around the cutoff even if the
electron escape is inefficient since systematic energy change of
electrons is dominated by radiation cooling.
Strength of the γ or k dependence of the electron energy-loss

rate, that of the acceleration rate, and thatof the spectral energy
transfer rate are simply related to each other to reach the
equilibrium. For example, in Figure 2 we can see softening of
an electron spectrum by the IC energy loss with effective
Klein–Nishina suppression.
From eB m c ke

2
res( )g » and Equations (3), (4), (13), and

(23), we can write k( )z and ne ( )g with B and wb as

k k
e

m c

F B

n
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where F ( )g is defined by Frad syn( ) ( )h g h gº (i.e.,
Frad syn˙ ( ) ˙g g g= ). Since ,radh ,damh and m are known from

Equation (28), Equation (29) gives the asymptotic spectra in
the damping region at the steadystate. The left-hand side of
Equation (29) is approximately constant, though an uncertain
parameter coming from the SSC process is included. In
Figure 2, this analytical form of the asymptotic electron

Figure 2. Solid lines: steady-state energy spectra of accelerated electrons under
the situation where turbulent fields are effectively damped owing to the
electron acceleration. The thick line represents the case with only the
synchrotron cooling, while the thin line represents the case with both the
synchrotron and IC cooling. The adopted parameter set is the same as Figure 1.
Dotted line: asymptotic electron spectrum given in Equation (29), which is
valid for the energy range where the balances are approximately established
between the acceleration and radiation cooling of the electrons
(t t constrad acc » ) and between the energy cascade and damping of the
turbulent fields (t t constcas dam » ). The right end of this line is set at the
Lorentz factor where the acceleration and cooling balance when the damping
effect is neglected, i.e., syng g= ¢ (Equation (24)).

Figure 3. Characteristic times of turbulent fields and accelerated electrons at
the steady state. The horizontal axis represents the electron Lorentz factor γ.
The timescales for the turbulence with wavenumber k are plotted at

kres ( )g g= . The thick lines represent the case taking into account only the
synchrotron cooling, while the thin lines represent the case taking into account
both the synchrotron and IC cooling. Lines show cascade time(black dot-
dashed lines),damping time(brown double-dot-dashed lines),acceleration
time(red solid lines),escape time(green dashed lines),and radiation cooling
time(blue dotted lines).
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spectrum is shown by the red dotted line with only the
synchrotron cooling considered.

It may (or may not) seem strange that the cutoff γ is
introduced at 4 10syn

4g¢ ~ ´ (not around 102) when one sees

Figure 3. In this regard, note that the cutoff region syng g¢
balances (i.e., F n 0e rad e∣ ˙ ∣ ( )g g- = ) before the formation of
the damping region, while Figure 3 displays the steady state.
The cutoff is introduced by the radiation cooling, and its
position can be estimated as syng¢ (Equation (24)) by the initial
parameters. This usual cutoff does not emerge when one treats
the situation of the efficient damping without solving the
spectrum of turbulent fields (e.g., Eilek & Henriksen 1984;
Ohno et al. 2002).

The extension of the damping region to lowerenergy/higher
wavenumber can be suppressed by the escape effect. In the
lower-energy side of the damping region, ne ( )g is determined
by the acceleration and escape effect. We do not focus on
spectra in this region because more exact formulation seems to
be needed.

The electron index m in the damping region depends on the
energy supply mechanism to the turbulent fields. Even within
the framework of the turbulent cascade, other values of m are
expected by different k dependence of the cascade time t k .cas ( )
For example, if we may consider the Kraichnan-type cascade
t k W kcas

2 1( ( ))µ - - (e.g., Dobrowolny et al. 1980; Goldstein
et al. 1995; Zhou et al. 2004; Brunetti & Lazarian 2007) instead
of the Kolmogorov one in the derivation of Equation (28), we
obtain a harder spectrum with the index of m=0 when r=2.
This is because the turbulent energy is transferred more slowly
at higherwavenumber under efficient damping, unlike the
Kolmogorov case, and accordingly, fewerlower-energy elec-
trons relative to higher-energy electrons are needed to establish
the equilibrium.

5. SUMMARY

SA of nonthermal electrons, which is caused by damping of
turbulent fields, has been discussed in blazars, in particular, as
the origin of very hard photon/electron spectra (Section 1).
Test-particle models employing SA have been discussed in
many papers, while models explicitly including the damping
effect have not been considered so far. In this paper, specifying
the damping mechanism, we have investigated the influence
of the damping effect particularly on the formation of a
Maxwellian-like spectrum (Equation (2)), which is a well-
known very hard electron spectrum produced by SA (some-
times called the pileup distribution). As the damping
mechanism, we have assumed gyroresonant interaction with
small-amplitude, magnetohydrodynamic wave turbulence
propagating parallel to the mean magnetic field with the phase
speed of the Alfvén speed. This situation has often been
mentioned in the literature.

We have shown in Section 2 and Table 1 that the damping is
estimated to be efficient when we adopt parameter values
previously obtained with test-particle models. This implies the
importance of taking into account the damping effect when one
examines the applicability of SA to blazars.

Solving kinetic equations of the turbulent fields, electrons,
and photons described in Section 3, we have shown in
Section 4 that inefficient electron escape from the acceleration
site, which is a required condition to establish a Maxwellian-
like spectrum, is accompanied by efficient damping

(Equation (27)). As a result, electrons are prevented from
piling up around the high-energy cutoff, so that a Maxwellian-
like electron spectrum is not established. At the equilibrium
state, the ratio of the radiation cooling time to the acceleration
time becomes independent of γ owing to a steepened turbulent
spectrum by the damping, so that zero electron flux in γ space
is realized. The efficient damping leads to a softer electron
spectrum, n conste ( )g g » (Figure 2), than the case of a
Maxwellian-like spectrum (m= 2). We have also presented a
simple analytical form of the asymptotic spectra of the
electrons and turbulent fields at the steadystate under efficient
damping (Equation (29)), though they have an uncertain
parameter coming from the SSC process.
Unlike the change of achievable hardness of ne ( )g from the

electron index of m=2 to m 1» - due to the damping effect,
the electron maximum energy is limited by the competition
between the acceleration and radiation cooling as in the case
without the damping. This usual cutoff does not emerge when
one treats the situation of efficient damping without solving the
evolution of turbulent fields (Eilek & Henriksen 1984; Ohno
et al. 2002).
The SSC spectrum under efficient damping is still hard, but

somewhat softer and broader than the case of no damping
because of the change of the hardness of n .e ( )g This effect
should be noted when thisbasic particle acceleration scenar-
iois compared with observations of hard blazar spectra
accurately. If the necessity of electron spectra harder than
m 1= - is observationally confirmed, the situation examined
in this paper is insufficient to explain them, and we need to
consider different situations.

The author is deeply grateful to K. Toma for his valuable
comments and advice during the course of this work and to the
anonymous referee for his/her useful suggestions. The author
would also like to thank R. Yamazaki, T. Kato, Y. Kojima, K.
Yamamoto, and N. Okabe for their valuable advice.

APPENDIX
A BRIEF DERIVATION OF THE MOMENTUM-

DIFFUSION COEFFICIENT

The pitch-angle-averaged momentum-diffusion coefficient
due to gyroresonant interaction between parallel-propagating
transverse magnetohydrodynamic waves and charged particles
can be estimated by the following procedure. The purpose here
is to present a simple calculation of the coefficient that is
identical to the rigorous expression in the approximation of
Equation (30). The resultant expression is used in Equation (8)
(see Schlickeiser 2002 and references therein for a full
derivation of all Fokker–Planck coefficients).
The gyroresonance condition between the above-mentioned

waves and a charged particle is given by k v ,gw - = W  where
v kww =   is the wave frequency, vw the phase speed parallel

to the mean magnetic field B( B B∣ º ), k the wavevector
component parallel to B, v the velocity of the particle parallel
to B, and gW the gyrofrequency (including the sign of charge).
The positive and negative signs in the dispersion relation
indicate the parallel ( k 0w > ) and antiparallel ( k 0w < )
propagation to B, respectively. Here, positive (negative) ω
denotes circular polarization in the direction of gyrorotation of
positive (negative) charges. A particle v,( )m can resonate with
waves k,( )w  satisfying the resonance condition, where v is the
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particle speedand v vm =  is the pitch-angle cosine. The
resonance can occur with waves propagating in both directions.

We take into consideration particles with

v v v 30w ( )> 

(i.e., v vw∣m  ) for simplicity. The resonance condition can
be rewritten as

k v . 31g ( )» -W 

The resonant parallel wavenumber is then approximately
independent ofthe propagation direction. The lowest k in

resonance is v r ,g g
1W = - where r vg gº W is the gyroradius

(for 0m = ).
Consider scattering by waves in a wavenumber range kD 

around the wavenumber k exactly satisfying the resonance
condition. Suppose that a particle and these waves are
coherent in phase for the time tcD in the plasma rest frame
(hereafter, the lab frame). The wave magnetic field scatters the
particle, conserving the particle energy in the frame moving
with the parallel wave phase velocity (called the wave frame),
in which the wave electric field vanishes. Noting that in the
guiding center framethe frequency of the waves in resonance
is nearly equal to the gyrofrequency and that the waves are
approximately stationary for the particle in the sense of
Equation (30), we can make a rough estimate of the change
rate of the relative phase between the waves and the particle
as v kD  in the lab frame. Hence, we have (Wentzel 1974;
Kulsrud 2005)

t
v k

2
. 32c ( )p

D »
D 

The change in particle momentum pD associated with that in
a pitch-angle cosine due to the scattering, t ,c˙m mD = D where ṁ
is the change rate of the pitch-angle cosine, is given by
(Ostrowski and Siemieniec-Oziȩbło 1997)

p p
v

v
33w ( )⎜ ⎟⎛

⎝
⎞
⎠ mD »  D

by performing Lorentz transformations between the lab
frame and the wave frame under the assumption of
Equation (30), where both pD and mD are measured in the
lab frame, and the positive and negative signs again indicate
the propagation direction parallel and antiparallel to B,
respectively. Since the momentum change is a much slower
process than the pitch-angle change due to Equation (30), we
may neglect the momentum change during the coherence
time tcD to calculate .ṁ The rate ṁ along the unperturbed
particle orbit is obtained by v Bp p q pce˙ ˙ ( ) ( )m d» » ´ ^  =

B B t1 sin ,g
2 ( ) ( )m d fW - ^ where t is the time, p p,m= p

is the momentum, qe the particle charge, v the particle
velocity, BBd d=^ ^ the magnetic field amplitude of
the resonant waves around k, ,( )w  and

t k v t constg( ) ( )f w= - + W +  (e.g., Blandford & Eichler
1987; Kulsrud 2005; Blasi 2013). We used B to normalize
B .d ^ The farther the waves and the particle are from the
resonance, the smaller ∣ ∣Dm becomes. Since the resonance is
expected to occur at a random wave phase (that is, the
constant term of t( )f is random), the sign of mD is also

random. On average, we get 0ṁ » and

B

B

1

2
1 . 342

g
2 2

2
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⎝

⎞
⎠m m

d
» W - ^

The resonant waves propagating in each direction can scatter
the particle in pitchangle. The contribution to 2ṁ by the waves
in each direction ( 2ṁº ) depends on their amplitude ( Bdº ).
The pitch-angle diffusion coefficient is hence written as
D D D ,= +m m m+ - where

D t
B k

r B

1

2 2

1
352

c g

2 2

g
2

( )
˙

∣ ∣
( )m

p m
m

» D » W
-

m 
 

(e.g., Blandford & Eichler 1987; Schlickeiser 1989) from
Equations (32) and (34), and B k B k2 2( ) ( )d= D   is the wave
power spectrum3 at the resonant wavenumber given by
Equation (31), which is approximately the same for the
resonant waves in both directions. If the waves are monochro-
matic, the resonant particle just oscillates in pitch angle and the
pitch-angle diffusion does not occur.
Unlike the pitch-angle diffusion, momentumdiffusion needs

scattering by waves propagating in both directions. Clearly, if
resonant waves propagate unidirectionally, energy of scattered
particles is kept constant in the relevant wave frame, so that the
momentum diffusion, which leads to stochastic acceleration,
does not occur. The momentum diffusion results from
combination of small momentum changes due to Dp+ and
D ,p- where D p v v Dp w

2 2( )º m  from Equation (33). In other
words, the momentum diffusion does not occur if Dp+ or Dp- is
zero. As an estimate, we may write the momentum-diffusion
coefficient Dp used in the diffusion transport equation
(Equation (6)) as

D
p

p D p D

p
v

v r B

d
B k B k

B k B k
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36
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 
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(as in the case of the homogenization of the diffusion
coefficient for inhomogeneous media), where á m indicates
the pitch-angle averagingand k is the resonant wavenumber,
which is a function of μ from Equation (31) (Skilling 1975;
Schlickeiser 1989). Note that the lower end of the integration
in Equation (36) simply comes from the present approxima-
tion, Equation (30).Intrinsically the scattering can also
occur for particles with v v 1w∣m <  (e.g.,
Schlickeiser 1989).

3 To be precise, the resonant width kD  depends on the wave amplitude and
hence on the propagation direction.

9

The Astrophysical Journal, 816:24 (10pp), 2016 January 1 Kakuwa



The integrand in Equation (36) can be divided into two parts:

B k B k

B k B k
B k
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å
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+
µ

-

+ -

+ - =

=

=

 

 






Then, one can confirm that this expression corresponds to
D D D Dp pp p

2= - m mm m
given by, e.g., Schlickeiser (1989) in

the approximation of Equation (30), where Dpp, D ,pm and Dmm
are the Fokker–Planck coefficients (Equation (5)). The term
D Dp

2
m mm originates from particle anisotropy, which is assumed

to be small in Equation (6), so that this term is less important
compared to Dpp. Correspondingly, the second term in
Equation (37) vanishes when the cross helicity, which causes
the anisotropy, is zero, B k B k .2 2( ) ( )=+ - 

Supposing zero cross helicity and zero magnetic helicity,
that is, B k B k B k B k ,2 2 2 2( ) ( ) ( )( ( ))= = - º+ -     we have

D p
v

v r B

dk

k r k
B k1

1
, 38
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where the integration variable has been changed by Equa-
tion (31) (see Dung & Schlickeiser 1990, for the influence of
the helicities under the assumption of isospectral turbulence).
The particles keep isotropy by pitch-angle scattering on a much
shorter timescale than the momentum diffusion. If B k2 ( )
becomes smaller for larger k , the lower end of the integration
is more important than the upper end. Then, wavenumber
k r p1 1g~ µ mainly contributes to Dp.
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