

A Study on Model-Based Performance Evaluation of
Dependable Computer Systems

（ディペンダブルコンピュータシステムのモデルベース性

能評価に関する研究）

Dissertation submitted in partial fulfillment for the

degree of Doctor of Engineering

Chao Luo

Under the supervision of

Associate Professor Hiroyuki Okamura

Dependable Systems Laboratory,
Department of Information Engineering,

Graduate School of Engineering,
Hiroshima University, Higashi-Hiroshima, Japan

September 2015

iii

Abstract

Model-based performance evaluation is an analytical approach for quantifying

system performance indices by modeling the dynamic behavior of system as

stochastic processes. Queueing analysis and Markov modeling are typical meth-

ods for the model-based performance evaluation. Compared to simulation ap-

proach, the model-based approach can provide highly-accurate assesses of per-

formance measures. Therefore, this is commonly used to evaluate performance

criteria of the system in the presence of rare events such as system failures.

On the other hand, as software system is widely used in our daily lives, it

becomes more important to prevent fatal system failures in computer system

design. In other words, several dependability measures such as system reliability,

system availability and data integrity, should be estimated only from the design

of system architecture before starting the implementation. This approach is

called the model-based software performance analysis, which is one of the most

attractive topics even in software engineering.

In this thesis, we consider model-based performance evaluation of three kinds

of computer system; distributed database system, open-source software and

virtualized system, respectively.

Firstly, we focus on the performance evaluation of distributed database sys-

tems with conventional snapshot isolation (CSI) and prefix-consistent snapshot

isolation (PCSI) by considering the occurrence of communication failures be-

tween a master and replicas. We also revisit our probabilistic models for CSI

and PCSI with the restart scheme for the communication failure. We investigate

the effect of update interval of snapshot and restart timing for the communica-

tion with respect to the abort probability and system throughput.

Secondly, we turn our attention to the maintenance scheduling for open

source software products. Applying a patch is one of effective fault-tolerant

techniques. We consider an optimized patch management model from the per-

spective of users by applying an NHPP to the bug-discovery process. Also,

with analyzing the characteristic of open source software by applying software

reliability models, we predictively propose an optimal maintenance schedule for

user according to numerical illustrations.

Finally, we dedicate our interest to the performance evaluation of virtualized

iv

system with software rejuvenation. Concretely, we evaluate the virtualized sys-

tem by using the criterion of resiliency, which is an attitude for measuring the

deviation of system when changes happen. We present MRSPNs (Markov re-

generative stochastic Petri nets) for the virtualized system with cold and warm

software rejuvenation and employ the technique of transient analysis through

PH (phase-type) expansion. This technique can reduce MRSPNs to a CTMC

approximately. After applying PH expansion to MRSPNs for the virtualized

system with software rejuvenation, we present the quantitative measure to eval-

uate the system resiliency based on CTMC analysis.

vii

Acknowledgements

First and foremost, I would like to extend my sincere gratitude to my supervisor

Associate Professor Hiroyuki Okamura for leading me into the world of proba-

bilistic modeling and helping me all through the term of this thesis. Without

his guidance and advices, the completion of this thesis would not have been

possible.

Also, my thanks go to Professor Tadashi Dohi and Professor Satoshi Fujita,

for their useful suggestions and checking the manuscript.

Finally, it is my special pleasure to acknowledge the hospitality and encour-

agement of the past and present members of the Dependable Systems Labora-

tory, Department of Information Engineering, Hiroshima University.

Contents

Abstract iii

Acknowledgements vii

1 Introduction 1

1.1 Optimization of Prefix-consistent Snapshot Isolation 1

1.2 Maintenance Strategy of Open Source Software 3

1.2.1 Related Works . 4

1.3 Resiliency of Virtualized Systems 6

1.4 Organization of Dissertation . 8

2 Performance Evaluation of Snapshot Isolation in Distributed

Database System 11

2.1 Database Management System 12

2.2 Latency Distribution in Failure-Prone Environment 13

2.3 Conventional snapshot isolation (CSI) model 17

2.4 Prefix-consistent snapshot isolation (PCSI) 21

2.5 Numerical Experiments . 25

2.5.1 Distribution Assumption 26

2.5.2 Response Time . 27

2.5.3 System Throughput . 30

2.5.4 Simulations . 31

3 Optimal Planning for Open Source Software Updates 35

3.1 Bug-Correction Process . 35

3.2 Maintenance Cost Model . 37

3.3 Optimal Update Scheduling . 39

ix

x CONTENTS

3.3.1 Periodic Policy . 40

3.3.2 Aperiodic Policy . 41

3.4 Numerical Examples . 43

3.4.1 Characteristic Analysis 43

3.4.2 Real Data Analysis . 45

4 Quantifying Resiliency of Virtualized System with Software Re-

juvenation 51

4.1 Virtualized System with Software Rejuvenation 51

4.2 MRSPN-based Analysis . 53

4.2.1 MRSPN Modeling . 53

4.2.2 Transient Analysis . 56

4.3 Quantification of System Resiliency 58

4.4 Experiment . 59

5 Conclusions 67

5.1 Summary and Remarks . 67

5.2 Future Works . 69

Appendix A EM-based PH fitting 71

Bibliography 74

Publication List of the Author 83

Chapter 1

Introduction

Model-based performance evaluation is an analytical approach for quantifying

system performance indices by modeling the dynamic behavior of system as

stochastic processes. Queueing analysis and Markov modeling are typical meth-

ods for the model-based performance evaluation. Compared to simulation ap-

proach, the model-based approach can provide highly-accurate assesses of per-

formance measures. Therefore, this is commonly used to evaluate performance

criteria of the system in the presence of rare events such as system failures.

On the other hand, as software system is widely used in our daily lives, it

becomes more important to prevent fatal system failures in computer system

design. In other words, several dependability measures such as system reliability,

system availability and data integrity, should be estimated only from the design

of system architecture before starting the implementation. This approach is

called the model-based software performance analysis, which is one of the most

attractive topics even in software engineering.

In this thesis, we consider model-based performance evaluation of three kinds

of computer system; distributed database system, open-source software and

virtualized system, respectively.

1.1 Optimization of Prefix-consistent Snapshot
Isolation

In database system including distributed database system, there are four prop-

erties; (atomicity, consistency, isolation, durability), to guarantee the data in-

tegrity of database.[28] Atomicity property guarantees each transaction handled

1

2 CHAPTER 1. INTRODUCTION

entirely instead of partially. Consistency property ensures that any transaction

will bring the database from one valid state to another. Isolation property is

defined as invisibility of operations of a transaction to the other transactions.

Durability property guarantees that transactions that have committed will sur-

vive permanently. Since the isolation property critically affects throughput of

transactions in database system, we should take account of the trade-off be-

tween isolation level and system performance. When attempting to maintain

the highest level of isolation, a DBMS usually acquires locks on data which may

result in a loss of concurrency. The most basic implementation of the isolation

is based on a lock of data when it is read or written. However, it is known

that the lock-based isolation adversely affects the performance of database sys-

tem. Recent DBMSs adopt a more effective method using snapshot, so-called

snapshot isolation.[9] In the snapshot isolation, each transaction makes a copy

(snapshot) of the data at the beginning of a transaction, and updates the data

on the snapshot, instead of the original data. After the update operation, each

transaction sends a request for updating the original data, the DBMS processes

the requests according to the first-committer-wins rule. It has an advantage of

the abort probability of a transaction to the lock-based isolation. As a novel iso-

lation scheme, snapshot isolation has received much attention in various fields.

Ramesh et al. have implemented snapshot isolation for achieving atomicity in

multi-row transactions using RDBMS.[56] Also, snapshot isolation has been uti-

lized for management of scalable transactions on cloud computing platforms.[52]

On the other hand, since the snapshot isolation causes an overhead for get-

ting snapshot, the performance seriously degrades in the case of the system

with large latency for getting snapshot such as distributed database system. To

overcome this problem, Elnikety et al. proposed generalized snapshot isolation

to mitigate the overhead for getting snapshot.[18] Concretely, they presented

an implementation of generalized snapshot isolation called a prefix-consistent

snapshot isolation (PCSI), which periodically updates snapshot for a fixed time

interval, and examined the effectiveness of PCSI through the simulation study.

Bernabé-Gisbert and Zuikevičiūtė also discussed the performance of PCSI based

on a model.[10] They examined that PCSI improved response time for a trans-

action. On the other hand, PCSI essentially degrades system throughput and

1.2. MAINTENANCE STRATEGY OF OPEN SOURCE SOFTWARE 3

abort probability of a transaction unless the time interval for updating snap-

shot is optimized. Neither of [18] and [10] discussed such the optimization of

the design parameters of PCSI.

1.2 Maintenance Strategy of Open Source Soft-

ware

Nowadays, as well as the growing scale of software, the development cost is

rapidly increasing. Enterprises and individuals incline to update software in-

stead of purchasing new products. Therefore, the life cycle of software gets

longer and the burdens of maintenance and modification become significant. At

the same time, open source software becomes popular because of the price and

the modifiability. Many communities have been comprised for better communi-

cations between developers and users, and it also leads to swift feedbacks when

bugs or vulnerabilities are discovered. Combining these two aspects, we are

interested in the maintenance strategy of open source software.

The development of open source software is different from traditional soft-

ware. Traditional (closed source) software is usually developed by firms (ven-

dors) who are responsible for all the phases of software life cycle. That means

the maintenances and updates are provided by vendors unilaterally, even after

releasing. In the other hand, the quality enhancements of open source software

are promoted by both users and developers. Users have rights and interests

of reporting an experienced software failure to developers who are in charge of

modifying the potential bug related to the failure. Thus, the maintenance of

open source software can be thought as lots of bug fixes and several version-ups.

It is essentially the same as the maintenance of closed source software, but the

life cycle of open source software is much longer. The difference is, bugs are

reported by users not testers. However, from the point of view of bugs features,

there is few distinctions between open source and closed source software.

To be a user of open source software, besides reporting bugs to developers

after experiencing failures, they also have to keep their own duplication up-

to-date. The maintenance of open source software, however, are considered as

traditional means, i.e., patches and updates. A patch is a part of program

designed to fix bugs with, update a computer program or the supporting data,

4 CHAPTER 1. INTRODUCTION

and improve the usability or performance. One patch is always released by

vendor/developer with updates against one or several reported bugs or security

vulnerabilities. That is saying the patch releasing is strongly related with the

discoveries of bugs or vulnerabilities.

Generally, for the sake of reliability and security of software, patches should

be developed immediately users discover bugs. However, the development of

patches incur time and labor expenses for developers/vendors. For the closed

source software, vendors plan to release patches at a specified time interval,

and the patches fix all the bugs which have been discovered until the release

time. Due to the limitation of number of developers, the patches of open source

software cannot be developed as soon as the bugs discovered neither. That is

the motivation of discussion to the management of patches/updates.

Cavusoglu et al. have proposed a formulation for the cost of development and

distribution of patches, and also discussed the optimized periodic patch release

from the vendor perspective based on the cost function with respect to a steady-

state criterion.[14, 13] As previous research, Okamura et al. have discussed a

patch release strategy from the perspective of vendors by cost criterion.[47] Their

model assumed a NHPP as the number of discovered bugs and formulated the

expected total cost by considering the damage of exploit bugs before and after

a patch release. However, these papers have just discussed about what is the

best timing for releasing patches from the vendors’ angle. By investigating the

behavior of users, we can realize that not all patches are applied immediately

they are released. For convenience, users may occasionally apply patches even

it will bring much more risk of bug occurring. Also, less patch applying means

less cost of software update.

1.2.1 Related Works

In the past decades, software reliability models (SRMs), which describe and

analyze the software bug-discovery phenomenon, have been discussed in litera-

tures extensively.[36, 43] The classical and most important SRMs may be the

non-homogeneous Poisson process (NHPP) models developed by Goel and Oku-

moto, which describe the stochastic behavior of detecting potential bugs in the

test phase and predict the software reliability easily.[22] After that, Goel[23],

1.2. MAINTENANCE STRATEGY OF OPEN SOURCE SOFTWARE 5

Yamada et al.[70] and others[36, 42, 1] have proposed the different NHPP-based

SRMs. These SRMs are based on different debugging scenarios, and can qual-

itatively catch the software reliability growth phenomenon in test phases of

software products.

On the other hand, because the development of available patches are gov-

erned by bug-discovery and bug-correction processes, the consideration of bug-

correction process is essential for analyzing maintenance strategy of open source

software, particularly from users’ perspective. However, almost all the NHPP-

based SRMs assume the bug-correction process instantaneously, and only fo-

cus on the bug-discovery phenomenon. Schneidewind[59, 60] and Gokhale et

al.[24, 25] have discussed some concepts of software bug-correction phenomenon,

and explained the dependency between the bug-discovery/correction profiles

with analytical models and real data. Shibata et al.[61] have developed a novel

approach to analyze the software bug-discovery/correction processes simultane-

ously. Their idea to describe the bug-discovery/correction processes is to use

an Mt/M/∞ queueing model, where a fault is discovered and corrected by ex-

ponentially distributed random detection and repair times, respectively. Based

on queueing theory[11], they have assumed that the number of corrected bugs

can be modeled as an output process of an infinite server queue.

In addition, several mathematical models of patch management have been

proposed. Arora et al.[5] have considered the optimized plan for vulnerability

exposures over a software life cycle. Beattie et al.[7] have focused on the risk

that a patch re-injects a failure, and considered the optimal timing to apply

patches maximizing system availability. However, they have not dealt with the

properties of the discovery process. Cavusoglu et al. [14, 13] proposed the

patch release and management models from both vendor and user perspectives.

In addition, they discussed an equilibrium point of patch release times based

on a game theory between a vendor and a user. As an extension of Cavusoglu

et al.[14, 13], Okamura et al. have described a patch management model by using

non-homogeneous bugs-discovery process.[47] They have discussed an optimal

algorithm for minimizing the damage cost only from vendor perspective. Apart

from mathematical models, Brykczynski and Small reported practices of security

patch management, and also emphasized an importance of economic security

6 CHAPTER 1. INTRODUCTION

patch management as a part of information asset management.[12]

Moreover, we talk about the optimizing of maintenance scheduling. Marseguerra

et al. have presented an optimization approach based on the combination

of a Genetic Algorithms maximization procedure with a Monte Carlo simu-

lation, and a stochastic model of plant operation is developed from the stand-

point of its reliability/availability behavior.[39] Xia et al. have discussed the

maintenance scheduling with consideration of multi-attribute model (MAM).

They applied advance-postpone balancing (APB) and Maintenance time win-

dow (MTW) methods to utilize maintenance opportunities.[67, 68] Also, towards

the distributed energy system, they have developed a model-iteration algorithm

to optimize the maintenance schedule cycle by cycle.[69] Although these works

were done for hardware system, the methodologies for optimization of mainte-

nance schedule is worth to be referred.

1.3 Resiliency of Virtualized Systems

Virtualized system is one of the most flexible architectures to manage many

servers. In recent years, the virtualized system is used to build not only the

enterprise cloud system but also the private cloud which provides services for its

own staff in a small office. The virtualized system has the two-tier managements

for virtual machines (VMs) and virtual machine monitor (VMM). The VM is

an approach of virtualization which behaves as a real computer. It is to create

software components by emulating behavior of hardware units, and to control

them in a software platform. VM can make multiple OS environments without

redundant hardware cost. And a running virtual machine can be moved between

different physical machines without disconnecting the client. On the other hand,

VMM is the monitoring system to check behavior of VMs running on VMM. In

general, since administrators check VMs though VMM, the cost for management

can be reduced. In addition, VMM is generally installed on a physical machine,

and VMs shares the resources of physical machines such as CPU, memory and

network. Thus the virtual machine is also said to be good for the efficiency as

well as the management cost. However, although the maintenance for VMs is

easy in the virtualized system, it is not easy to make a maintenance plan for

VMM because VMM should continuously run while VMs provide their services.

1.3. RESILIENCY OF VIRTUALIZED SYSTEMS 7

That is, the aging phenomenon of VMM is serious problem in the virtualized

system.

In [37, 38], Machida et al. discussed software rejuvenation policies in a vir-

tualized system. The software rejuvenation is a proactive maintenance to avoid

the system failure caused by aging-related bugs.[29] The aging-related bugs are

defined as the bugs that cause the system performance degradation by long time

usage of the system. Typical examples of aging-related bugs are memory leak

and fragmentation. They are also reported on the virtualized platform such

as Xen. In general, it is difficult to find the root cause of aging-related bugs,

and we empirically know that the proactive maintenance such as reboot and

restarting processes is effective to prevent the system failure by aging-related

bugs. Such maintenance is generally called software rejuvenation.[31] The soft-

ware rejuvenation operation is often managed by a time-triggered policy, i.e.,

the system automatically execute the rejuvenation operation under scheduled

time. Machida et al.[37, 38] discussed the steady-state measures under three

kinds of rejuvenation policies called cold-VM, warm-VM and migrate-VM re-

juvenations in the virtualized system. Also, Okamura et al.[49] evaluated the

transient measures for the virtualized system with software rejuvenation.

The software aging is caused by the resource exhaustion with long-term

operation. On the other hand, it is also important to evaluate the system

performance when a suddenly change occurs in practice. The change includes

changes of system configuration and environments of system such as rate of

arrivals. The extreme example is a disaster like flood, fire and earthquake. To

avoid the worst scenario, it is useful to predict what happens in the system if the

system suffers such disasters. The resiliency is known as one of the attributes of

system to be evaluated for such changes. In brief, the resiliency is a resistance

of system for a change. In the research field of dependability computing, many

definitions of resiliency were proposed to characterize this concept. Laprie[33]

and Simoncini[62] defined the resiliency as the resistance of service delivery when

facing changes. In addition, based on this definition, Gohsh et al.[21] tried to

quantify the system resiliency in IaaS cloud through the modeling of system

with continuous-time Markov chains (CTMCs).

8 CHAPTER 1. INTRODUCTION

1.4 Organization of Dissertation

This thesis is organized as follows:

Firstly, in Chapter 2, we focus on the performance evaluation of conventional

snapshot isolation (CSI) and PCSI based on probabilistic models and discuss the

optimization of the design parameter of PCSI by using the probabilistic models

for the distributed database system. In [35], the model-based performance eval-

uation of CSI and PSCI with the optimization has been discussed. However,

[35] assumed that any failure did not occur during the communication between

a master and replicas. Generally, in distributed environment, communication

failures are non-negligible factors that negatively affect the performance of sys-

tems in the distributed environment. Thus, one of the purpose of this chapter is

to reveal the impact of communication failures to the system performance. Con-

cretely, this chapter revisits our probabilistic models for CSI and PCSI with the

restart scheme for the communication failure which discussed by van Moorsel

and Wolter.[40] We investigate the effect of update interval of snapshot and

restart timing for the communication with respect to the abort probability and

system throughput.

In Chapter 3, we consider a patch management model from the perspec-

tive of users by applying an NHPP to the bug-discovery process. We focus on

another part of the patch management game by Cavusoglu et al. from user

perspective.[14, 13] We expand the time-based patch release policy proposed by

Okamura et al. into a number-based policy and formulate the total cost from

user perspective.[47] Also, with analyzing the characteristic of open source soft-

ware by applying software reliability models, we predictively propose an optimal

updating schedule for user according to numerical illustrations.

In Chapter 4, we focus on the quantification of resiliency of the virtualized

system with software rejuvenation. Concretely, according to the manner of [21],

we evaluate the resiliency of the virtualized system. However, since Machida et

al.[37, 38] originally presented MRSPNs (Markov regenerative stochastic Petri

nets) for the virtualized system with software rejuvenation, we could not apply

the same approach as [21] to the virtualized system model directly. Then we em-

ploy the technique in [49], i.e., the transient analysis through PH (phase-type)

1.4. ORGANIZATION OF DISSERTATION 9

expansion. This technique can reduce MRSPNs to a CTMC approximately.

After applying PH expansion to MRSPNs for the virtualized system with soft-

ware rejuvenation, we present the quantitative measure to evaluate the system

resiliency based on CTMC analysis.

Finally, the thesis is concluded with some remarks and future directions in

Chapter 5.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Performance Evaluation of
Snapshot Isolation in
Distributed Database
System

Database systems are widely used in many fields. As the scale of database sys-

tems increases, more firms decide to deploy the database system in a distributed

environment for the sake of data integrity fault tolerance. For guaranteeing

the consistency of data, database management systems adopt isolation policies.

This chapter discusses probabilistic models for snapshot isolation of database

management system. Snapshot isolation is an effective method to enhance the

consistency of database system. Although, it degrades the system performance

where the system has large network latency such as distributed database system.

Also, under the failure-prone environment, a restart scheme is considered as one

countermeasure. This chapter proposes probabilistic models for the dynamics of

snapshot isolation of database system and exhibits the optimization of system

performance with respect to updating interval of snapshot isolation within the

failure-prone environment from the analytical point of view. Numerical exper-

iments are conducted to validate the effectiveness of analytical results by using

real traffic data.

11

12CHAPTER 2. PERFORMANCE EVALUATION OF SNAPSHOT ISOLATION

2.1 Database Management System

Database management system (DBMS) is a fundamental software to control

transactions that arrive at the database system. In DBMS, there are four

significant properties abbreviated as ACID (atomicity, consistency, isolation,

durability). The atomicity is the property ensuring that either all or none of

the operations have been executed when a transaction is completed. This cor-

responds to the commit/abort scheme. The consistency is to ensure that a

transaction does not change the database to any of inconsistent states whenever

the state of database is consistent at the beginning of the transaction. The

isolation is to make all the operations of a transaction invisible to other trans-

actions. The durability is to ensure that all the successful transactions must

persist even though a system failure occurs. In particular, since the isolation af-

fects the performance of database, four isolation levels are defined in ANSI/ISO

SQL standard; read uncommitted, read committed, repeatable reads and seri-

alizable. The serializable is the highest level of isolation. This level requests

starting and ending times of all the transactions to be serial in the execution

history of transactions. In this level, we prevent any of inconsistency such as

dirty reads, non-repeatable reads and phantom reads [9].

This chapter focuses on the serializable level of isolation. There are two

implementation schemes to achieve the serializable level. One method is the

lock-based control. In the lock-based control, DBMS acquires locks on the

data during the transaction is executed. The implementation of lock-based

control is simple. However, when a transaction spends long processing time,

the performance of database such as system throughput is drastically degraded,

since all the transactions that arrive in the processing time are canceled or

aborted. Another implementation is based on the version of database, called

the version-based control or the snapshot isolation (SI). In the SI, DBMS does

not acquire a lock on the data. Instead of locks, DBMS makes a snapshot of

database before starting a transaction, and checks write conflicts on the data

by using the snapshot at which each transaction is completed. That is, the

transaction that has no conflict with other transactions is only committed at

the termination (first-committer-wins rule [9]). Compared with the lock-based

control, the SI is expected to provide high system throughput.

2.2. LATENCY DISTRIBUTION IN FAILURE-PRONE ENVIRONMENT13

On the other hand, the SI poses a problem with response time overhead

to get the last snapshot. In the conventional snapshot isolation (CSI), since

DBMS should get the latest snapshot before processing a transaction, it can be

equated to the fact that the processing time of a transaction under the SI is

longer than that under the lock-based control. Specifically, in the case where the

SI is applied to distributed database system with a master server, the network

latency to get the latest snapshot should be considered as a part of response time.

To overcome this problem, Elnikety et al. [18] proposed the generalized snapshot

isolation (GSI) which allows us to use the ‘potentially’ latest snapshot. Under

the first-committer-wins rule, the first transaction committed on a snapshot is

a winner on the snapshot. Thus the probability of commit generally depends on

the age of snapshot at which the transaction starts. The probability of commit

with ‘young’ snapshot is higher than that with ‘older’ snapshot, because the

‘older’ snapshot is likely to be changed by other transactions. In other words, if

we could maintain a certain level of the probability of commit, it is not necessary

to use the latest snapshot. Elnikety et al. [18] focused on such the property of

SI, and proposed an implementation of GSI called prefix-consistent snapshot

isolation (PCSI) to enhance the response time. In the PCSI, the process to get

the latest snapshot is executed at every prefixed time interval. Figures 2.1 and

2.2 illustrate communication between the master and the replica in conventional

SI (CSI) and PCSI.

However, one of the transactions on the same snapshot may be committed

under the first-committer-wins rule. In the PCSI, a snapshot is used for all the

transactions that arrive during the prefixed time interval for updating snapshot,

namely, the number of transactions using the same snapshot in the PCSI is larger

than that in the CSI. It indicates that the system throughput of PCSI is lower

than that of CSI. This motivates us to consider the optimal time interval for

updating snapshot in the PCSI.

2.2 Latency Distribution in Failure-Prone Envi-

ronment

As shown in the previous section, Elnikety et al. [18] have extended the snapshot

isolation scheme to the distributed database system with innegligible latency of

14CHAPTER 2. PERFORMANCE EVALUATION OF SNAPSHOT ISOLATION

replica

master

arrival of a
transaction

request for
snapshot

processing time

request for
commit

acknowledgement
of commit/abort

time

completion of
a transaction

Figure 2.1: Schematic illustration of conventional snapshot isolation.

replica

master

arrival of a
transaction

request for
snapshot

processing time

request for
commit

acknowledgement
of commit/abort

time

update interval

Figure 2.2: Schematic illustration of prefix-consistent snapshot isolation.

communication between replicas and master. Their scheme implicitly assumed

that a replica can get a response from the master with probability one. How-

ever, when we focus on the network/transmission layer in the network model,

this assumption does not hold in any network environment. M. Tamer Özsu

et al. have discussed fundamental principles of distributed data management

and data management in different network architectures [51]. Though TCP

(transmission control protocol) equips the retransmission scheme to ensure the

end-to-end communication, the latency of communication strongly depends on

the communication environment. Richard L. Graham et al. have detailed the

features of an end-to-end network failure- tolerant message-passing system [27].

In particular, in the case of failure-prone environment, it is useful to design

both high and low layers by considering the effect of retransmission scheme in

2.2. LATENCY DISTRIBUTION IN FAILURE-PRONE ENVIRONMENT15

start restart restart completion

C (total completion time)

c c

restart time restart time

Figure 2.3: Possible sample path of the restart scheme.

low layer to the latency distribution in high layer. Hsieh et al. have studied

the maximum latency guarantee in networks [30]. In addition, the performance

model by Luo et al. [35] also assumed that the first moment of latency is finite.

If the probability that the communication failure occurs is not zero, the first

moment of latency becomes infinite. Thus we should consider the retransmission

scheme and snapshot isolation simultaneously in the model.

van Moorsel and Wolter [40] discussed the completion time under the general

restart scheme that can directly be applied to the retransmission scheme of the

Internet. According to the restart scheme [40], we first discuss the latency

distribution in the failure-prone environment.

Define the following random variables:

• L (> 0): the latency of communication from a sender to a receiver through

the network. This is a random variable having a cumulative distribution

function (c.d.f.) FL(t).

Since the communcation failure occurs in the failure-prone environment, the

c.d.f. of FL(t) is allowed to be defective, i.e., F (∞) < 1. Then the probability

of communication failure corresponds to 1− F (∞). Also, the first moment can

be defined by

E[L] =

∫ ∞

0

tdFL(t) =

∫ ∞

0

FL(t)dt, (2.1)

where, in general, F (·) = 1− F (·). Hence, when the probability of communica-

tion failure is not zero, the first moment of L, E[L] is not finite.

van Moorsel and Wolter [41] considered a general restart scheme. In their

16CHAPTER 2. PERFORMANCE EVALUATION OF SNAPSHOT ISOLATION

scheme, the sender waits for an acknowledgement from the receiver by the limit

τ (> 0). That is, if the sender does not get an acknowledgement from the receiver

until time unit τ , the sender resends a request to the receiver with the restart

overhead time c (> 0). The sender repeatedly sends requests until obtaining an

acknowledgement form the receiver. Figure 2.3 illustrates the possible sample

path under the restart scheme by van Moorsel and Wolter [41]. For the sake

of simplicity, the sender is assumed to be cancel the pervious request before

resending a new request. Let C be a completion time under such a restart

scheme. Then the c.d.f. of the completion time is given by

FC(t) = P (C ≤ t)

=

{

1− FL+L(τ)
kFL+L(t− k(τ + c)), k(τ + c) ≤ t < k(τ + c) + τ

1− FL+L(τ)
k+1, k(τ + c) + τ ≤ t < (k + 1)(τ + c).

(2.2)

In the above equation, FL+L indicates the c.d.f. of a round-trip time without

communication failure that is a 2-fold convolution of L;

FL+L(t) =

∫ t

0

FL(t− x)dFL(x). (2.3)

The expected time of the completion time holds the following equation:

E[C] =

∫ τ

0

E[C|C = x]dFL+L(x) +

∫ ∞

τ

(τ + c+ E[C])dFL+L(x)

=

∫ τ

0

xdFL+L(x) + (τ + c+ E[C])FL+L(τ). (2.4)

Then we have

E[C] =

∫ τ

0 FL+L(x)dx + cFL+L(τ)

FL+L(τ)
. (2.5)

From the above equation, we find that E[C] is always finite even if FL(∞) < 1.

Also the Laplace-Stieltjes (LS) transform of C can be derived from

E[e−sC] =

∫ τ

0

E[e−sC |C = x]dFL+L(x) +

∫ ∞

τ

e−s(τ+c)E[e−sC]dFL+L(x)

=

∫ τ

0

e−sxdFL+L(x) + e−s(τ+c)E[e−sC]FL+L(τ), (2.6)

and

E[e−sC] =

∫ τ

0
e−sxdFL+L(x)

1− e−s(τ+c)FL+L(τ)
. (2.7)

2.3. CONVENTIONAL SNAPSHOT ISOLATION (CSI) MODEL 17

The completion time under the restart scheme can be represented by C =

(τ+c)NF +L1+L2, where NF is the number of restarts, L1 and L2 are latencies

for a request and an acknowledgement, respectively, provided that L1+L2 ≤ τ .

Letting P1 = (τ + c)NF + L1 and P2 = L2 provided that L1 + L2 ≤ τ , we have

E[P1] + E[P2] = E[P1 + P2] = E[C]. (2.8)

Also, the LS transforms of P1 and P2 are

E[e−sP1] = E[e−s(τ+c)NF]× E[e−sL1 |L1 + L2 ≤ τ]

=

∞
∑

k=0

e−s(τ+c)kFL+L(τ)FL+L(τ)
k × E[e−sL1 |L1 + L2 ≤ τ]

=
FL+L(τ)

1− e−s(τ+c)FL+L(τ)
×

∫ τ

0

∫ t

0
e−sxfL(t− x)dFL(x)dt

FL+L(τ)

=

∫ τ

0

∫ t

0 e
−sxfL(t− x)dFL(x)dt

1− e−s(τ+c)FL+L(τ)
=

∫ τ

0 e−stFL(τ − t)dFL(t)

1− e−s(τ+c)FL+L(τ)
(2.9)

and

E[e−sP2] = E[L2|L1 + L2 ≤ τ]

=

∫ τ

0

∫ t

0
e−sxfL(t− x)dFL(x)dt

FL+L(τ)
=

∫ τ

0
e−stFL(τ − t)dFL(t)

FL+L(τ)
. (2.10)

It should be noted that E[e−sC] 6= E[e−sP1]E[e−sP2] since P1 and P2 are not

mutually independent random variables.

2.3 Conventional snapshot isolation (CSI) model

Consider a distributed database system having a central server (master) and

several replicas. We suppose that all the replicas have a copy of the database

in the master. Thus, in the practical situation, the master and replicas should

execute the replication procedure such as 2-phase commit. However, since this

chapter focuses only on the performance of SI between the master and a replica,

we ignore the effect of a request message from the master to replicas. In addi-

tion, we consider only the arrival stream of update transactions, because read

transactions are never aborted in the scheme of SI and there is no effect of read

transactions to the performance.

Define the following random variables:

18CHAPTER 2. PERFORMANCE EVALUATION OF SNAPSHOT ISOLATION

• C (> 0): the latency of communication between the master and a replica

with the restart scheme described in Section 3. Similar to Section 3, we

decomposes the total latency C as C = C1 + C2, where C1 is the time

for the request arrives at the master and C2 is the time required from the

master to the replica. Note that the time C1 includes canceled requests

by restarts.

• T (> 0): the time spent by a transaction (random variable having a c.d.f.

FT (t)).

Suppose that the arrival stream of update transactions to a replica is a Poisson

process with rate λR, i.e., the inter-arrival time of update transactions is given

by an exponential distribution with mean 1/λR. When a new transaction arrives

at the replica, the replica requests the latest snapshot to the master.

The total time for executing all the operations of a transaction is given by T

having the c.d.f. FT (t). After completing all the operations, the replica sends a

message of request for commit to the master. Similar to the request for snapshot,

the latency for the commit request is also given as the round-trip time C.

On the other hand, the master receives requests for commit from the other

replicas in accordance with a Poisson process with rate λA. According to the

first-committer-wins rule, the master decides a request for commit is committed

or aborted. Concretely, in the CSI scheme, if no commit occurs during the

latencies and processing time of a transaction, the transaction is committed.

Otherwise, if one or more transactions are committed during the latencies and

the processing time, the transaction is aborted. Figure 2.4 depicts possible

sample paths when transactions are aborted and committed.

Next we derive the performance measures in CSI model. This chapter con-

siders system throughput, abort probability and response time as criteria of

performance on the distributed database system. The system throughput is

defined as the number of committed transactions per unit time, i.e.,

ST = lim
t→∞

E

the number of committed

transactions during [0, t)

t
. (2.11)

The system with high throughput is better than the system with low throughput.

2.3. CONVENTIONAL SNAPSHOT ISOLATION (CSI) MODEL 19

replica

master

processing time
time

C1 C2 C1 C2T

arrival of commit request
from other replica

replica

master

processing time time

C1 C2 C1 C2T

arrival of commit request
from other replica

a transaction
is aborted

a transaction
is commited

arrival of commit request
from other replica

Figure 2.4: Possible sample paths of CSI.

To derive the system throughput of CSI, we focus on the age of snapshot.

The age of snapshot is renewed at which a request for snapshot arrives at the

master. Then we define the time interval between successive renewal points of

the age of snapshot as one cycle. From the renewal reward theorem [58], the

system throughput can be rewritten as

STCSI =

Pr

a transaction that arrives

during a cycle is committed

E[time length of one cycle]
. (2.12)

The numerator comes from the fact that one snapshot allows only one trans-

action to be committed (the first-committer-wins rule). Let Pc denote the nu-

merator in Eq. (2.12). In the case of CPI, Pc is equivalent to the probability

20CHAPTER 2. PERFORMANCE EVALUATION OF SNAPSHOT ISOLATION

that the first transaction is committed, i.e., we consider the probability that

C2 +T +C1 is faster than the arrival time of the request for commit from other

replicas. Here, in general, the probability that a random variable X having a

c.d.f. F (t) is lower than an exponentially distributed random variable Y with

mean 1/λ is given by
∫ ∞

0

λe−λtP (X ≤ t)dt = λ

∫ ∞

0

e−λtF (t)dt = F ∗(λ), (2.13)

where F ∗(s) is the LS transform of F (t), namely,

F ∗(s) =

∫ ∞

0

e−λsdF (t). (2.14)

From the LS transforms of C2 and C1, we have

Pc =

∫ ∞

0

λAe
−λAtP (C2 ≤ t)dt

∫ ∞

0

λAe
−λAtP (T ≤ t)dt

×

∫ ∞

0

λAe
−λAtP (C1 ≤ t)dt

=F ∗C1
(λA)F

∗
C2

(λA)F
∗
T (λA), (2.15)

where F ∗C1
(s) = E[e−sP1] and F ∗C2

(s) = E[e−sP2] are defined as Eqs. (2.9) and

(2.10). Also, the expected time length of one cycle is given by E[C2 + T +C1 +

C2 +XA + C1], where XA is a random variable representing the time when a

new transaction arrives at the replica after receiving the acknowledgement of a

commit request. From the memoryless property of exponential distribution, we

get E[XA] = 1/λR. Then the system throughput of CSI can be obtained by

STCSI =
F ∗C1

(λA)F
∗
C2

(λA)F
∗
T (λA)

2E[C] + E[T] + 1/λR

. (2.16)

Since the arrival rate of transaction λR is defined as the number of transac-

tions per unit time, the abort probability of a transaction is obtained by using

the system throughput, i.e.,

APCSI = 1−
STCSI

λR

. (2.17)

Also, the response time is defined by the expected time until receiving the

acknowledgement for a commit request from starting operations of a transaction.

Then we have

RTCSI = E[C1 + C2 + T + C1 + C2]

= 2E[C] + E[T]. (2.18)

2.4. PREFIX-CONSISTENT SNAPSHOT ISOLATION (PCSI) 21

Remark 4.1 (Non-homogeneous Poisson process): Non-homogeneous

Poisson process (NHPP) is also considerable for the arrivals in master. NHPP is

widely used for describing numerous random phenomena in many fields. How-

ever, it augments the difficulty of derivation of formulations and the computation

complexity. Thus, we consider Poisson process in this chapter.

2.4 Prefix-consistent snapshot isolation (PCSI)

Similar to the model of CSI, we consider the database with a master and replicas.

The update transactions that arrive at a replica are according to a Poisson

process with rate λR, and the requests for commit to the master follows a

Poisson process with mean λA. Moreover, we define the random variables that

the latency of communication (round-trip time) C and the processing time of a

transaction T under the failure-prone environment. The c.d.f.s of C and T are

also given by FC(t) and FT (t), respectively. According to the restart scheme of

van Moorsel and Wolter [41], the c.d.f. of C can be presented in Eq. (2.2) with

the restart timing and overhead τ and c. Also the latency is divided into C1

and C2 which are latency from a replica to the server and from the server to a

replica under the restart scheme.

In the PCSI, the snapshot in the replica is updated when the age of snapshot

exceeds U . The age of snapshot is larger when the time interval of updating

snapshot is longer. On the other hand, the short update interval causes the

overhead to obtain the snapshot from the master. Furthermore, we assume that,

if the time until receiving an acknowledgment exceeds update interval U , the

updating snapshot is delayed to the time until receiving the acknowledgement.

Figure 2.5 illustrates sample paths of our PCSI model.

Consider the performance measures in the PCSI. From the renewal reward

theory, the system throughput of PCSI can also be defined as Eq. (2.11). Define

a cycle as time interval between two successive renewal points of the age of

snapshot. Then the system throughput under the PCSI is given by

STPCSI =

Pr

a transaction that arrives

during a cycle and it is committed

E[time length of one cycle]
. (2.19)

22CHAPTER 2. PERFORMANCE EVALUATION OF SNAPSHOT ISOLATION

replica

master

processing time
time

C1 C2 C13 C2T

U

replica

master

processing time time

C1 C2 C1 C2T

U

arrival of commit request
from other replica

arrival of commit request
from other replica

a transaction
is commited

arrival of commit request
from other replica

a transaction
is aborted

Figure 2.5: Possible sample paths of PCSI.

First we consider the probability that a transaction arriving in a cycle is com-

mitted. Let Pp(U) be the numerator of Eq. (2.19) because the probability is a

function of time interval for updating snapshot U . Since the inter-arrival time

2.4. PREFIX-CONSISTENT SNAPSHOT ISOLATION (PCSI) 23

of transactions is given by an exponential random variable, we obtain

Pp(U) =

∫ U

0

λRe
−λRte−λAtdt

×

∫ ∞

0

λAe
−λAtP (C1 ≤ t)dt

×

∫ ∞

0

λAe
−λAtP (C2 ≤ t)dt

×

∫ ∞

0

λAe
−λAtP (T ≤ t)dt

=
λR

λR + λA

(

1− e−(λR+λA)U
)

F ∗C1
(λA)F

∗
C2

(λA)F
∗
T (λA). (2.20)

Next we derive the expected time of one cycle. Let Cp(U) denote the expected

time of one cycle. For the notational simplification, G(t) is the c.d.f. of the

random variable T + C1 + C2 = T + C since C1 and C2 belong to the same

round trip. In other words, G(t) can be obtained by the inverse LS transform

of the following LS transform:

G∗(s) = F ∗T (s)F
∗
C(s) = F ∗T (s), (2.21)

where

F ∗C(s) = E[e−sC] =

∫ τ

0 e−sxdFL+L(x)

1− e−s(τ+c)FL+L(τ)
. (2.22)

As mentioned before, system automatically renews the snapshot in U time in

case transactions terminated before time interval U . However, it is possible that

transactions are being processed until U time. For this situation, we assume

system does not update the snapshot until the accomplishment of transactions,

i.e., one cycle is considered as the period from prior snapshot to the end of

delayed transactions. Then the expected time of one cycle is given by

Cp(U) = E[C2]

+

∫ U

0

(

UG(U − t) +

∫ ∞

U−t

sdG(s)

)

λRe
−λRtdt

+ Ue−λRU + E[C1]

= U + E[C] + (E[T] + E[C])(1 − e−λRU)

−

∫ U

0

G(s)(1 − e−λR(U−s))ds, (2.23)

where G(s) = 1−G(s). Then the system throughput becomes

STPCSI(U) =
Pp(U)

Cp(U)
. (2.24)

24CHAPTER 2. PERFORMANCE EVALUATION OF SNAPSHOT ISOLATION

Also, the abort probability of a transaction and the response time can be ob-

tained as follows.

APPCSI(U) = 1−
STPCSI(U)

λR

, (2.25)

RTPCSI = E[T + C1 + C2] = E[C] + E[T]. (2.26)

Note that the response time of PCSI does not depend on the time interval for

updating the snapshot U .

As mentioned before, the system throughput of the PCSI is always less than

that of CSI. In addition, the system throughput changes with the time interval

for updating snapshot U . Therefore, in the design of PCSI, it is important

to find the optimal update interval maximizing the system throughput. This

chapter presents an analytical result on the optimal update timing in the PCSI

scheme.

Consider the first derivatives of Pp(U) and Cp(U) with respect to U . Then

we have

d

dU
Pp(U) = λRe

−(λR+λA)UF ∗C1
(λA)F

∗
C2

(λA)F
∗
T (λA) (2.27)

and

d

dU
Cp(U) =1 + (E[T] + E[C])λRe

−λRU

−

∫ U

0

G(s)λRe
−λR(U−s)ds. (2.28)

Here we define the function q(U) which is the numerator of the first derivative

of STPCSI(U):

q(U) = Cp(U)
d

dU
Pp(U)− Pp(U)

d

dU
Cp(U). (2.29)

Then we have the following result on the optimal update timing:

Theorem: There is a unique and finite solution of U∗ maximizing the system

throughput such that q(U∗) = 0 in the PCSI scheme under the restart scheme.

The maximum throughput is given by

STPCSI(U
∗) =

e−(λR+λA)U∗

F ∗C1
(λA)F

∗
C2

(λA)F
∗
T (λA)

(1/λR)(1 − Pe(U∗)) + (E[C] + E[T])e−λRU∗
, (2.30)

2.5. NUMERICAL EXPERIMENTS 25

where Pe(U) is the probability that a transaction arrives during U and the time

receiving the acknowledgement for a commit request exceeds the time for updating

snapshot U ; Pe(U) =
∫ U

0
G(U − s)λRe

−λRsds.

Proof: Consider the function q̃(U) = e−(λR+λA)Uq(u), which has the same sign

of the first derivative of STPCSI(U) with respect to U . Then we get

d

dU
q̃(U) = −λRλAe

(λR+λA)U

(

1

λR

(1− Pe(U))

+
1

λA

G(U) + (E[C] + E[T])e−λRU

)

Pp(U). (2.31)

It is straightforward to find dq̃(U)/dU < 0 for any U . Hence the function q(U)

is a monotonically decreasing function of U . From Eqs. (2.19)– (2.29), we have

q(0) = λRF
∗
C1

(λA)F
∗
C2

(λA)FT (λA)Cp(0) > 0 (2.32)

and

q(∞) =− Pp(∞)

=−
λR

λR + λA

F ∗C1
(λA)F

∗
C2

(λA)F
∗
T (λA) < 0. (2.33)

The sign of q(U) is equal to the sign of the first derivative of STPCSI(U), and

henceforth, STPCSI(U) is a concave function having a global maximum point

U∗ such that q(U∗) = 0. Also, from q(U∗) = 0, the maximum throughput can

be obtained:

STPCSI(U
∗) =

Pp(U
∗)

Cp(U∗)
=

d
dU

Pp(U)
∣

∣

U=U∗

d
dU

Cp(U)
∣

∣

U=U∗

. (2.34)

From the above theorem, we find that there exists a unique optimal update tim-

ing U∗ which minimizes the abort probability, and the optimal update timings

in terms of system throughput and abort probability are identical.

2.5 Numerical Experiments

In this section, we present numerical examples for the system throughput of

CSI and PCSI under the failure-prone environment. We examine how much the

system throughput of PCSI decreases compared to CSI. As mentioned before,

26CHAPTER 2. PERFORMANCE EVALUATION OF SNAPSHOT ISOLATION

although the response time of PCSI is improved, the system throughput of PCSI

is less than that of CSI. Thus we investigate the effectiveness of determining the

optimal time interval for updating snapshots in PCSI.

2.5.1 Distribution Assumption

Suppose that the latency of communication between a replica and the master

L is the following defective gamma distribution:

FL(t) = ps

∫ t

0

βαL

L sαL−1e−βLs

Γ(αL)
ds, 0 ≤ t < ∞, (2.35)

where αL and βL are shape and scale parameters and ps represents the success

probability of communication. Although the mean time of L is infinite, the

mean time provided that L < ∞ can be obtained as E[L|L < ∞] = αL/βL.

Also, the LS transform of L can be given by

F ∗L(s) = ps

(

βL

s+ βL

)αL

. (2.36)

Similarly, the processing time of a transaction follows the gamma distribution:

FT (t) =

∫ t

0

βαT

T sαT−1e−βT s

Γ(αT)
ds, 0 ≤ t < ∞, (2.37)

where αT and βL are shape and scale parameters. The shape parameter decides

the age property of gamma distribution. If the shape parameter is less than 1,

the gamma distribution has the decreasing failure rate (DFR) property. On the

other hand, when the shape parameter is greater than 1, the gamma distribution

has the increasing failure rate (IFR) property. The mean time of processing

becomes E[T] = αT /βT . The LS transform of T is

F ∗T (s) =

(

βT

s+ βT

)αT

. (2.38)

Then the LS transform of G(t) is given by

G∗(s) =

(

βT

s+ βT

)αT
∫ τ

0
e−sxdFL+L(x)

1− e−s(τ+c)FL+L(τ)
, (2.39)

where the c.d.f. FL+L can be derived as the 2-fold convolution of FL(t), namely,

FL+L(t) = p2s

∫ t

0

β2αL

L s2αL−1e−βLs

Γ(2αL)
ds, 0 ≤ t < ∞. (2.40)

The c.d.f. G(t) can be computed by the numerical inverse Laplace transform

technique such as Gaver’s method (see Appendix).

2.5. NUMERICAL EXPERIMENTS 27

2.5.2 Response Time

We first investigate the impacts to response time of CSI and PCSI under failure-

prone environment. In the experiments, we fix the arrival rate of transaction

in the replica λR = 1, i.e., the inter-arrival time of transaction becomes 1.

We also set the arrival rate of transaction in the master λA = 1. Moreover,

for investigating the effect of restart scheme, we set the restart time limit in

three cases, τ = 0.5, 1, 2 and a fixed restart overhead time c = 0.5 constantly.

Table 2.1 presents the response times of CSI and PCSI where λA = 1, αT =

αL = 1, E[T] = 0.01 and τ = 0.5. Note that the response times can be

calculated by Eq. (2.18) and (2.26). As same as the conclusion showed in [10,

18], it can be found from Table 2.1 that the PCSI is effective to reducing the

response time. Particularly in the case when latency is large, i.e., E[L] = 1, PCSI

provides about half the response time of CSI. Therefore, in order to examine

the impact caused by communication failures, we show the response times of

CSI and PCSI with fixing the mean time of communication latency E[L] = 1

and αT = αL = 1 in Table 2.2. From this table, it can be observed that

response times under both isolation policies reduce as the restart time limit τ

gets enlarged. In contract, Table 2.3 shows the response times when latency is

comparatively short, E[L] = 0.001. It is inferred that restart scheme reduces

system performance significantly when communication latency is too large to

be ignored. With considering the network environment, the usage of request

restart scheme is supposed be implemented in the database systems with small

communication delay. In addition, we inspect the effects from distribution of

latency time. Let αL, the shape parameter of latency time which is following

defective gamma distribution, equals 0.5, 1, 2, 5, respectively. Table 2.4 presents

the response times in a set of shape parameters of latency time distribution and

restart time limits. Notice that the response time of CSI while αL = 5 and

τ = 0.5 is much larger than other situations. Since the property of shape

parameter in gamma distribution, it can be supposed that the mean time of

latency stays steady when αL is less than 1, and stays variable when αL is

larger than 1. While αL = 5, the communication latency may values in wider

range, and it exactly represents different reasons by which the communication

delays caused.

28CHAPTER 2. PERFORMANCE EVALUATION OF SNAPSHOT ISOLATION

Table 2.1: Response times of CSI and PCSI. (τ = 0.5, αT = αL = 1)

E[T] E[L] CSI PCSI

0.001 0.0120 0.0110

0.01 0.01 0.0300 0.0200

0.1 0.2168 0.1134

1 3.5515 1.7808

0.001 0.1020 0.1010

0.1 0.01 0.1200 0.1100

0.1 0.3068 0.2034

1 3.6415 1.8708

0.001 0.5020 0.5010

0.5 0.01 0.5200 0.5100

0.1 0.7068 0.6034

1 4.0415 2.2708

0.001 1.0020 1.0010

1 0.01 1.0200 1.0100

0.1 1.2068 1.1034

1 4.5415 2.7708

2.5. NUMERICAL EXPERIMENTS 29

Table 2.2: Response times of CSI and PCSI. (E[L] = 1, αT = αL = 1)

E[T] τ CSI PCSI

0.5 3.5515 1.7808

0.01 1 2.5920 1.3010

2 2.1665 1.0883

0.5 3.6415 1.8708

0.1 1 2.6820 1.3910

2 2.2565 1.1783

0.5 4.0415 2.2708

0.5 1 3.0820 1.7910

2 2.6565 1.5783

0.5 4.5415 2.7708

1 1 3.5820 2.2910

2 3.1565 2.0783

Table 2.3: Response times of CSI and PCSI. (E[L] = 0.001, αT = αL = 1)

E[T] τ CSI PCSI

0.5 0.012 0.011

0.01 1 0.012 0.011

2 0.012 0.011

0.5 0.102 0.101

0.1 1 0.102 0.101

2 0.102 0.101

0.5 0.502 0.501

0.5 1 0.502 0.501

2 0.502 0.501

0.5 1.002 1.001

1 1 1.002 1.001

2 1.002 1.001

30CHAPTER 2. PERFORMANCE EVALUATION OF SNAPSHOT ISOLATION

Table 2.4: Response times of CSI and PCSI. (E[L] = 1,E[T] = 0.01, αT = 1)

αL τ CSI PCSI

0.5 2.1641 1.0871

0.5 1 1.9866 0.9983

2 1.9581 0.9841

0.5 3.5515 1.7808

1 1 2.5920 1.3010

2 2.1665 1.0883

0.5 6.1866 3.0983

2 1 3.1492 1.5796

2 2.1915 1.1007

0.5 17.1609 8.5855

5 1 3.7446 1.8773

2 2.0827 1.0464

2.5.3 System Throughput

Next we discuss the system performances of CSI and PCSI in terms of through-

put. In Tables 2.5–2.7, where we set the restart time τ = 0.5, 1, 2 respectively,

the system throughputs of PCSI with optimized time interval show a decrease

comparing with that in CSI. In addition, PCSI with restart scheme performs

about 90% of CSI in term of throughput, when latency is contrastively small.

And the ratio between throughputs of PCSI and CSI, when E[L] = 1.0, is re-

duced to about 55%. It implies that if the network environment is crowded,

system has to pay more expense for ensuring successful communications. In

contrast, restart scheme is more effective under unblocked network condition.

On the other hand, the performances are almost equal for each restart time τ ,

except the high latency situation, i.e., E[L] = 1.0. It can be implied that the

restart time limit will affect the system performance more significantly when la-

tency is large. Thus, the trade-off of the system performance and the guarantee

of success communication should be considered especially in lagging network.

For inspecting the sensitivity of throughput to the distribution parameters,

we fix parameters as τ = 1, E[L] = 0.001, E[T] = 0.01. Table 2.8 shows

2.5. NUMERICAL EXPERIMENTS 31

Table 2.5: System throughput of CSI and PCSI (τ = 0.5, αT = αL = 1).

E[L] CSI PCSI Interval

0.001 0.9745 0.9025 0.0453

0.010 0.9244 0.7383 0.1370

0.100 0.5803 0.3565 0.4197

1.000 0.0306 0.0166 0.9868

Table 2.6: System throughput of CSI and PCSI (τ = 1, αT = αL = 1).

E[L] CSI PCSI Interval

0.001 0.9745 0.9025 0.0453

0.010 0.9244 0.7383 0.1370

0.100 0.5803 0.3565 0.4197

1.000 0.0401 0.0219 0.9950

the throughputs with fixing αL = 2. The throughputs of CSI and PCSI are

not much differences while the shape parameter of processing time changes.

It can be inferred that the system throughput strongly depends on the mean

time of latency instead of shape parameter. Conversely, Table 2.9 presents

the throughputs where αL changes from 0.5 to 1. And it tells an identical

relationship between throughputs and shape parameter of latency.

2.5.4 Simulations

In this section, we conduct a simulation experiment based on group data of real

traffic measured in Hiroshima University, Japan. The targeted host is installed

Table 2.7: System throughput of CSI and PCSI (τ = 2, αT = αL = 1).

E[L] CSI PCSI Interval

0.001 0.9745 0.9025 0.0453

0.010 0.9244 0.7383 0.1370

0.100 0.5803 0.3616 0.4143

1.000 0.0465 0.0256 0.9928

32CHAPTER 2. PERFORMANCE EVALUATION OF SNAPSHOT ISOLATION

Table 2.8: System throughput of CSI and PCSI (αL = 2).

αT CSI PCSI Interval

0.5 0.9745 0.9018 0.0453

1.0 0.9745 0.9025 0.0454

2.0 0.9745 0.9029 0.0451

5.0 0.9744 0.9032 0.0447

Table 2.9: System throughput of CSI and PCSI (αT = 2).

αL CSI PCSI Interval

0.5 0.9745 0.9029 0.0450

1.0 0.9745 0.9029 0.0451

2.0 0.9745 0.9029 0.0451

5.0 0.9745 0.9029 0.0452

in the Department of Information Engineering in Hiroshima university. The

accessing records are collected for one day and the number of total records is

16529. We further aggregate the group data at 1 hour’s time interval so as

to summary the characteristic of arrival stream into parameters in Figure 2.6.

Also, by observing the traffic packets data in Figure 2.7, we can empirically

gain the density of traffic which can be applied as the parameters of processing

time. Then we set Monte Carlo simulations with the these system parameters

and survey the system throughputs and response times.

Next, we numerically calculate the throughput and response time by us-

ing our formulations. The mean time between arrivals 1/λA is 0.087 min and

the mean processing time E[T] is 0.018 min. We assume the latency time

E[L] = 0.01, αT = αL = 1, c = 0.5 and τ = 0.5. Table 2.10 shows the

comparison of simulation and analysis results with CSI policy. The response

times are almost the same and the analytical throughput are close to that of

simulation. The correctness of our formulations can be validated. On the other

hand, we generate requests under PCSI policy by same parameters. Since the

time interval of snapshot is difficult to be determined by observed data, we

firstly use the optimal value obtained by proposed equations, U∗ = 0.12. Then,

2.5. NUMERICAL EXPERIMENTS 33

5 10 15 20 25
hours

500

1000

1500

Number of accesses

Figure 2.6: The access data in the server.

5 10 15 20 25
hours

1000

2000

3000

4000

5000

Number of packets

Figure 2.7: The traffic data in the server.

we set different intervals of snapshot to investigate the effectiveness of proposed

optimization of snapshot interval. Table 2.11 shows the simulation results with

optimal and constant intervals, i.e., U=0.12, 1 and 0.05. The throughput under

optimal interval is larger than others. It proves the necessity of optimizing the

snapshot interval of PCSI. Meanwhile, comparing Table 2.10 and Table 2.11, op-

timized throughput in PCSI is close to that in CSI. It indicates that PCSI policy

is effective unless the time interval is optimized. According to the simulation

experiments, our conclusions are proved usable for evaluating and optimizing

the performance of CSI and PCSI.

Table 2.10: Comparison of simulation and analysis in CSI

Simulation Analysis

System Throughputs 0.6749 0.6870

Response times 0.0299 0.0300

34CHAPTER 2. PERFORMANCE EVALUATION OF SNAPSHOT ISOLATION

Table 2.11: Comparison of simulation and analysis in PCSI

Simulation Analysis

Optimal U=1 U=0.05

System Throughputs 0.6358 0.0935 0.3796 0.6510

Response times 0.0278 0.0281 0.0280 0.0280

Chapter 3

Optimal Planning for Open
Source Software Updates

Optimal Planning for Open Source Software Updates

Open source software is widely deployed for both academic and commercial

proposes. However, failures and attacks against open source software are greatly

reported. Being different from traditional software, failures of open source soft-

ware are reported by users and fixed by developers. With the overheads and

costs of updates, users would not maintain the software immediately the latest

update is released. We are attracted by the optimal maintenance problem for

open source software from users’ perspective. In this chapter, we proposes pe-

riodic and aperiodic maintenance management models with non-homogeneous

bug-discovery/correction processes in terms of total expense. Also, according to

a dynamic programming algorithm, we numerically derive the optimal mainte-

nance schedule under aperiodic policy. In numerical examples, we investigate

the efficiency of proposed policies by mathematical experiments. And, based on

bug reports of Hadoop MapReduce, we predictively illustrate the optimal main-

tenance scheduling for a real open source software product.

3.1 Bug-Correction Process

We focus on the bug-discovery/correction process in the open source project.

In general, the open source project has no clear distinction between implement

and testing phases. If users discover yet-undetected bugs in using the software,

they report details of the bugs to the community of open source project and

35

36CHAPTER 3. OPTIMAL PLANNING FOROPEN SOURCE SOFTWARE UPDATES

developers start to fix the bugs. Thus the bug-discovery process seems to be evo-

lutionary, and it is different from the traditional software development process

such as waterfall model. However, if we focus on particular versions of the soft-

ware, it is known that the number of discovered bugs is able to be represented

by the traditional software reliability growth model (SRGM).

In this chapter, we generally apply the NHPP-based SRGM for character-

izing the bug-discovery phenomenon due to two reasons: 1) The effectiveness

of NHPP-based SRGMs are affirmed for describing the stochastic behavior of

the number of detected faults, because of their tractability and goodness-of-fit

performance. Also, dozens of NHPP-based SRGMs are proposed and improved

for fitting different software projects. [36, 53] 2) According to these models,

several software reliability assessment tools are developed for evaluating soft-

ware reliability and predicting the residual bugs. [48, 55] These tools make it

possible to find the best matching model for particular software product.

Also, as mentioned by Shibata, [61] the repair time for one bug is considered

as an exponential random variable. Thus, the generation of available patches is

governed as the output of an Mt/M/∞ queueing model. According to queueing

theory, the output stream is following a NHPP model if the arrival, i.e., the

discovery process, is also a NHPP.

In the software reliability engineering, the SRGM has been used to present

the behavior of the number of faults detected in testing phase. Generally, the

model is constructed under the following assumptions:

1. The software involves a fixed and finite number of faults before testing

and it is a Poisson random variable with mean ω.

2. The times to correct a fault are stochastic and mutually independent ran-

dom variables having the cumulative distribution function F (t).

According to the above assumption, the cumulative number of faults corrected

3.2. MAINTENANCE COST MODEL 37

before time t has the following probability mass function (p.m.f.):

P (B(t) = n) =

∞
∑

m=n

P (B(t) = n|B(0) = m)P (B(0) = m)

=

∞
∑

m=n

(

m

n

)

F (t)n(1− F (t))m−n
ωm

m!
exp(−ω)

=
(ωF (t))n

n!
exp(−ωF (t)). (3.1)

The above p.m.f. is equivalent to the non-homogeneous Poisson process (NHPP)

with mean value function E[B(t)] = ωF (t).

When we focus on the particular versions of software, the above two assump-

tions are also plausible even in the open source software. Thus in this chapter,

we use the traditional SRGM to represent the bug-discovery process in the open

source project, i.e., the NHPP B(t) means the number of discovered bugs in the

particular versions of open source software. In fact, when F (t) is a truncated

logistic distribution, the corresponding NHPP model is called the inflection S-

shaped model whose mean value function draws a logistic curve. [44, 45] It has

been reported that the logistic curve fitted to the actual bug (vulnerability)

discovery process of open source software. [4, 3, 66, 2]

3.2 Maintenance Cost Model

In this chapter, we consider the maintenance model for the system whose in-

frastructure is constructed by open source software; for example, the virtual

environment is provided by Xen1 as infrastructure, some large-scale file systems

involve MapReduce2 as an important module, and even a simple Linux-based

system also relies on Linux kernel3. In such system, from the reliability and

security points of view, the infrastructure software should be kept to the latest

and stable version. Even if the infrastructure has a security hole, the system

may suffer malicious attacks and eventually happens the system or security fail-

ure such as system down, intrusion and falsification. On the other hand, during

the update of infrastructure, the system should be stopped. That is, there is a

trade-off relationship between failure and maintenance.

1http://www.xenproject.org/
2http://hadoop.apache.org/
3https://www.kernel.org/

38CHAPTER 3. OPTIMAL PLANNING FOROPEN SOURCE SOFTWARE UPDATES

Suppose that the open source software is continuously maintained in the

project. That is, if one reports a bug, developers immediately try to fix the bug.

Then the reliability growth of the particular versions of open source software is

given by an NHPP model described in the previous section. Let B(t) be the

cumulative number of corrected bugs and its p.m.f. is written by

P (B(t) = n) =
(ωF (t))n

n!
exp−ωF (t), n = 0, 1, (3.2)

Also we assume that the particular versions of open source software will be used

as infrastructure in the calendar time period [ts, te]. Note that the calendar

time starts at the time when the development of particular versions of software

begins. Without loss of generality, m updates are applied in the period [ts, te],

i.e., we define the time sequence of maintenance as ts = t0 < t1 < t2 < · · · <

tm < tm+1 = te. For notational convenience, t0 and tm+1 are equivalent to ts

and te respectively.

Here we focus on the number of residual bugs in the software. When the

number of corrected bugs B(t) is known, the number of residual bugs R(t) is

predicted by R(t) = B(∞)−B(t);

P (R(t) = n) =
(ωF (t))n

n!
exp(−ωF (t)), n = 0, 1, . . . (3.3)

where F (t) = 1−F (t). On the other hand, the number of residual bugs in user

environment can be decreased only at the time when the system is updated.

Figure 3.1 illustrates possible sample paths of the number of residual bugs in the

latest version of repository and in user environment. As shown in the figure, the

bugs corrected during [ti−1, ti] are fixed only at ti in user environment, although

the number of residual bugs in the latest version continuously decreases.

To build the cost model for maintenance, we define the following two cost

parameters:

• cm: The maintenance cost per software update.

• cf : The penalty/recovery cost per failure.

As mentioned before, the maintenance incurs some penalty cost while the system

is unavailable and the work cost for applying the update. The cost cm indicates

the total cost required for the system to undergo maintenance. When the system

3.3. OPTIMAL UPDATE SCHEDULING 39

is failed by the residual bugs, the cost cf is required to recovery the system

down, intrusion and falsification. For the sake of simplification, even if the

system failure is happened, the software update is not executed and the system

is recovered as the same version of software. Also, maintenance and recovery

time durations are negligible since time intervals of updates are relatively larger

than maintenance and recovery time durations.

Here we assume that the frequency of failure occurrences is proportional

to the number of residual bugs, i.e., the failure rate of software at time t is

given by λR(t), where λ is the parameter meaning the failure rate per bug. In

particular, it should be noted that the failure rate is piecewise constant at the

period [ti−1, ti] for each i = 1, . . . ,m in the user environment. Thus the expected

number of failures Xi at the i-th period [ti−1, ti] in the user environment is given

by

E[Xi] =

∞
∑

n=0

E[Xi|R(ti−1) = n]P (R(ti−1) = n)

= (ti − ti−1)λE[R(ti−1)]

= (ti − ti−1)λωF (ti−1). (3.4)

Thus the expected total maintenance cost in the period [t0, tm+1] becomes

C(t1, . . . , tm; t0, tm+1) = cmm+

m+1
∑

i=1

cfE[Xi]

= cmm+ cfλω

m+1
∑

i=1

(ti − ti−1)F (ti−1). (3.5)

3.3 Optimal Update Scheduling

Based on the cost model, the problem is to find the optimal schedule for updates

minimizing the expected total maintenance cost;

(t∗1, . . . , t
∗
m) = argmin

(t1,...,tm)

C(t1, . . . , tm; t0, tm+1). (3.6)

Note that t0 and tm+1 are fixed. In the chapter, we discuss two different sched-

ules under respective constraints.

40CHAPTER 3. OPTIMAL PLANNING FOROPEN SOURCE SOFTWARE UPDATES

0

2

4

6

8

10

0

2

4

6

8

10

t0 t1 t2 t3 time

time

#
o
f
re

s
id

u
a
l
b
u
g
s

o
f

th
e

la
te

s
t
v
e
rs

io
n

#
o
f
re

s
id

u
a
l
b
u
g
s

in

u
s
e
r

e
n
v
ir
o
n
m

e
n
t

R(t0)

R(t0)

R(t1)

R(t1)

R(t2)

R(t2)

R(t3)

R(t3)

Figure 3.1: Possible sample paths of the number of residual bugs.

3.3.1 Periodic Policy

The first policy is the periodic policy under which the time intervals of updates

are identical. In fact, the maintenance is performed every week, month or year

in many pragmatic systems. Let s be the time interval of updates. The expected

total cost can be rewritten by

C(s; ts, te) = cmh+ cfλωs

h−1
∑

i=0

F (ts + is) + cfλω[(te − ts)− hs]F (ts + hs),

(3.7)

where h is the number of updates that is given by h = max{n is a non-negative integer; te−

ts > ns}. The last term corresponds to the penalty/recovery cost at the period

[hs, te] since the time interval of update is (te−ts)−hs. According to the above,

we find some properties of the optimal maintenance schedule. For example, if

the number of residual bugs does not decrease, namely F (t) = constant, in the

time period t ∈ [ts, te], then the optimal maintenance policy becomes the policy

under which the system update is never applied. The cost in this case is given

by

C(s; ts, te) = cf (te − ts)λωF (ts), for s ≥ te − ts. (3.8)

3.3. OPTIMAL UPDATE SCHEDULING 41

Since lims→0 C(s; ts, te) = +∞, Eq. (3.8) also gives the upper bound of the

minimum cost. On the other hand, the penalty/recovery cost depends on the

expected area of the number of residual bugs; E[
∫ te

ts
R(t)dt]. Then the lower

bound of minimum cost is given by

C(s; ts, te) ≥ cfλω

∫ te

ts

F (t)dt, for any s. (3.9)

From these results, we have

cfλω

∫ te

ts

F (t)dt ≤ C(s∗; ts, te) ≤ cf (te − ts)λωF (ts), (3.10)

where s∗ the optimal time interval minimizing Eq. (3.7).

3.3.2 Aperiodic Policy

The second is the aperiodic policy under which the time intervals of updates are

allowed to be different. If F (t) is constant, the system update is meaningless to

reduce the maintenance cost. On contrary, while the number of residual bugs

rapidly decreases, we intuitively knows that it is better to perform the system

updates frequently. That is, the appropriate time intervals of updates depend

on behavior of the number of residual bugs and are not constant. From this

insight, we consider the aperiodic policy to determine the optimal maintenance

schedule minimizing the maintenance cost.

First we consider the optimization problem when the number of updates in

[ts, te] is fixed as m. In Eq. (3.5), we find that the original problem can be

reduced to the optimization of the following equation:

min
t1,...,tm

m+1
∑

i=1

(ti − ti−1)F (ti−1). (3.11)

This implies that cost parameters do not affect the optimal maintenance sched-

ule when the number of updates is fixed. By taking the first derivatives of Eq.

(3.11) with respect to t1, . . . , tm, we obtain the optimality condition;

t∗i+1 − t∗i =
F (t∗i−1)− F (t∗i)

f(t∗i+1)
, for i = 1, . . . ,m, (3.12)

where t∗0 = ts and t∗m+1 = te are fixed. Ideally, by solving the above non-linear

equations, we get the optimal maintenance schedule under the fixed number of

updates. However, it is not easy to compute it from the computational point of

view.

42CHAPTER 3. OPTIMAL PLANNING FOROPEN SOURCE SOFTWARE UPDATES

In this chapter, we consider the computation of the optimal maintenance

schedule based on the dynamic programing (DP) instead of solving Eq. (3.12)

directly. [8] The DP provides the optimization algorithm by dividing the original

problems to several sub-problems. Let t∗1, . . . t
∗
m be the optimal maintenance

schedule. According to the optimality principle, we have the following equations:

V ∗i = min
t

Vi(t
∗
i−1, t), i = 1, . . . ,m, (3.13)

V ∗m+1 = Vm+1(t
∗
m, t∗m+1), (3.14)

Vi(t
∗
i−1, t) = (t− t∗i−1)F (t∗i−1) + V ∗i+1, i = 1, . . . ,m, (3.15)

Vm+1(t
∗
m, t) = (t− t∗m)F (t∗m). (3.16)

In general, the optimality equation can be solved by the policy iteration. [54]

However, Vi(t
∗
i−1, t) is a linear function with respect to t. Then, to solve the

above equation, we define

V ∗i = min
t

Ṽi(t), i = 1, . . . ,m, (3.17)

V ∗m+1 = (t∗m+1 − t∗m)F (t∗m), (3.18)

Ṽi(t) = (t− t∗i−1)F (t∗i−1) + (t∗i+1 − t)F (t) + V ∗i+2, i = 1, . . . ,m− 1, (3.19)

Ṽm(t) = (t− t∗m−1)F (t∗m−1) + (t∗m+1 − t)F (t). (3.20)

Dissimilar to Eqs. (3.13) through (3.16), the function Ṽi(t) has the minimum

value in t ∈ [t∗i−1, t
∗
i+1]. Thus the policy iteration can be applied to solve them.

Concretely, the proposed policy iteration algorithm can be described as follows.

• Step 1: Determine initial values

u := 0,

ts = t
(0)
0 < t01 < · · · < t(0)m < t

(0)
m+1 = te,

(3.21)

• Step 2: Solve the following optimization problems and update the optimal

maintenance schedule:

t
(u+1)
0 := ts,

t
(u+1)
i := argmin

t
(u)
i−1≤t≤t

(u)
i+1

Ṽi(t), for i = 1, . . . ,m,

t
(u+1)
m+1 := te.

3.4. NUMERICAL EXAMPLES 43

• Step 3: For all i = 1, . . . ,m, if |t
(u+1)
i − t

(u)
i | < δ, stop the algorithm,

where δ is an error tolerance level. Otherwise, let u := u + 1 and go to

Step 2.

In Step 2, an arbitrary optimization technique should be applied. Since Ṽi(t)

has the minimum value in the range [ti−1, ti+1], it is not difficult to find it. For

instance, the golden section method would be effective to find the solution. [26]

Next we consider the optimal number of updates m∗. The problem can be

formulated as follows.

min
m

(cmm+ cfλωS
∗(m)) , (3.22)

where

S∗(m) = min
t1,...,tm

m+1
∑

i=1

(ti − ti−1)F (ti−1). (3.23)

Note that S∗(m) depends on the optimal maintenance schedule.

Suppose that the cost for update is positive, i.e., cm > 0. Then the main-

tenance cost infinitely increases as m increases, since the expected total failure

cost has the lower bound shown in the previous section. Thus it is easy to

see that the optimal number of updates exists in finite domain; 0 ≤ m∗ < ∞.

Moreover, Eq. (3.23) is a monotonically decreasing function of m and cmm is

linearly increasing with respect to m. Then we find the optimal number of

updates satisfying

m∗ = min{m ≥ 0; cm + cfλω(S
∗(m)− S∗(m− 1)) > 0}. (3.24)

3.4 Numerical Examples

3.4.1 Characteristic Analysis

We first investigate the characteristics of periodic and aperiodic maintenance

policies by numerical experiments. As mentioned before, the cost parameters

have no effect to the optimal maintenance schedule under a fixed number of

m. Without considering the cost parameters, we first define two mean value

functions for a bug-correction process:

R(t) = ω(1− e−at) (3.25)

44CHAPTER 3. OPTIMAL PLANNING FOROPEN SOURCE SOFTWARE UPDATES

and

R(t) =
ω(1− e−at)

1 + be−at
. (3.26)

The former assume that a bug-correction time follows an exponential distri-

bution, and is the same as traditional NHPP model proposed by Goel and

Okumoto. [22] The latter is based on the assumption that a bug-correction

time is a truncated logistic random variable, [44, 45] i.e., the related model is

an inflection S-shaped model and its mean value function is almost as the same

as the ones proposed by concerning literatures. [4, 3, 66, 2] We call the models

‘Exp’ and ‘Log’ in this section.

To derive the optimal maintenance times for these two models, we set the

number of total potential bugs is ω = 100 and distributions’ parameters are

a = 0.2, b = 20.0. Then the mean value functions are plotted in Figure 3.2.

For simulating the scenario that users are using open source software, we set

ts = 12(months) and the software life cycle is te − ts = 24(months). That is,

user starts using the software released one year ago and continues for two years.

5 10 15 20
months

20

40

60

80

100

number of bugs

Exp

Log

Figure 3.2: Mean value functions of Exp and Log.

Next, we compare the costs of periodic and aperiodic policies. Aperiodic pol-

icy suggests user maintaining in optimized schedule. On the contrary, periodic

policy make updates in fixed time interval. For the convenience of calculation,

we set the interval is determined by (te − ts)/(m+ 1). The cost parameters are

set as cm = 1, cf = 1, i.e., maintenance activity is considered as the same as the

3.4. NUMERICAL EXAMPLES 45

countermeasure against a failure. Table 3.1 shows the costs of Exp model under

aperiodic and periodic policies. It is clear to realize that one or two mainte-

nances are insufficient for reducing the risk of potential bugs in terms of damage

cost. However, as the frequency increases, the tendency of total cost reverses

into increasing. The non-monotonicity of total cost implies the existence of m∗,

the best maintenance frequency. In Table 3.1, we can gain the lowest cost under

aperiodic and periodic policies when m∗ = 9 and m∗ = 11 respectively. Besides,

we can observe the same phenomenon in Table 3.2 for Log model, although the

reduction of cost is not significant.

Table 3.1: Costs of aperiodic and periodic policies for Exp.

Exp

N Aperiodic Cost Periodic Cost

1 150.097 170.942

2 122.646 137.600

3 111.843 123.042

4 106.440 115.300

5 103.433 110.733

6 101.695 107.890

7 100.706 106.081

8 100.196 104.940

9 100.012 104.256

10 100.058 103.896

11 100.273 103.776

12 100.617 103.837

3.4.2 Real Data Analysis

We present an optimal maintenance schedule based on the bug reports of a

real open source software, Apache Hadoop MapReduce. Figure 3.3 describes

the cumulative number of bugs for Hadoop MapReduce Version 2.0 reported

on Apache bug-tracking system4 from Oct.2011 to Sept.2013, and estimated

4https://issues.apache.org/

46CHAPTER 3. OPTIMAL PLANNING FOROPEN SOURCE SOFTWARE UPDATES

Table 3.2: Costs of aperiodic and periodic policies for Log.

Log

N Aperiodic Cost Periodic Cost

1 183.952 187.768

2 158.500 162.044

3 147.566 150.629

4 141.792 144.433

5 138.433 140.736

6 136.394 138.431

7 135.155 136.978

8 134.438 136.086

9 134.079 135.583

10 133.978 135.359

11 134.066 135.343

12 134.153 135.476

mean value functions of bug-discovery models. Here we applied an estimation

method proposed by Okamura et al. to figure out the most fitting NHPP-based

SRM. [48] The bug-discovery model is approximately estimated as a truncated

extreme-value maximum (TEVM) distribution, whose mean value function is

given by

R(t) = ω
Λ(t)− Λ(0)

1− Λ(0)
, (3.27)

Λ(t) = exp(− exp(−
t− b

a
)), (3.28)

where a and b are parameters of TEVM distribution respectively. The parameter

estimation for all the models involved by Okamura et al. is based on maximum

likelihood estimation (MLE). [48] The estimated parameters for TEVM model

are described in Table 3.3. This table also presents the corresponding maximum

logarithmic likelihood (MLL) and Akaike’s information criterion (AIC). Com-

monly the AIC is used as an information criterion to assess the goodness-of-fit

between data and model. The model with a smaller AIC is better fitted to data.

From this argument, it can be indicated that TEVM model is better fitted to

3.4. NUMERICAL EXAMPLES 47

the bug data for Hadoop MapReduce than the others. In addition, the mean

value function in Fig. 3.3 predictively shows number of found bugs from Oct.

2013 for about one more year.

Figure 3.3: Hadoop: bug data and estimated mean value functions.

Table 3.3: Estimation results for bug data.

Model MLL AIC Parameters

Truncated Extreme-Value Maximum -268.66 543.32 ω = 389.02,

α = 193.92,

β = 382.67.

Next we perform the proposed maintenance policies with the estimated mean

value function of TEVM model which is supposed as the best fitting model

in terms of AIC in the next year. We initially investigate the time intervals

between two updates under periodic and aperiodic policies. Assume user start

using Hadoop MapReduce after two years, ts = 730 and the life period of the

48CHAPTER 3. OPTIMAL PLANNING FOROPEN SOURCE SOFTWARE UPDATES

software is one year, i.e. te − ts = 365, and the first application of Hadoop

MapReduce starts at Oct. 2013, Then the total number of updates during the

software life period is given by m = 12. We use the estimated parameters of

TEVM model to predict the residual bugs of software. Figure 3.4 illustrates

the time intervals of updates under two policies when m = 12. The intervals of

aperiodic policy are not constant strictly, and the intervals at the ending part

become longer than the ones at the beginning.

Figure 3.4: Time intervals of updating times (m = 12).

We also exam the determination of total update times, m∗. By setting the

cost parameters as cm = 1, cf = 1, and the constant bug rate λ = 0.004, we

obtain Figure 3.5. This figure numerically shows the existence of m∗ under

both aperiodic and periodic polices. From the parameters setting, we may tell a

scenario; if the costs of repairing a failure and applying a update are identical,

user should update the software 6 times for gaining the least cost.

With the above parameters, we further investigate the effectiveness of opti-

mization of m. The optimized cost under aperiodic policy and the costs with

different m are shown in Table 3.4. Under periodic policy, user update patches

3.4. NUMERICAL EXAMPLES 49

in fixed interval, which are set as half a year, two months, one month and two

weeks. Since the life period is given by a constant, the total numbers of update

are fixed as 1, 5, 11 and 25. Comparing these values with the cost when the

number of updates is optimized, we can see that the costs of periodic policy

are much higher than the aperiodic one, unless m = 5. It can be imply that

our proposal is useful to reduce the total cost. Also, by deriving m∗, redundant

updates can be averted. In practice, the available updates are not released as

frequent as one per two weeks. The result shows a practical significance for

maintenance scheduling.

Based on these numerical results, we can imply that aperiodic policy provides

more efficient maintenance plan while users update the software frequently or

infrequently. However, the periodic policy performs almost identically when

users apply the patches the same times as aperiodic policy. Thus, we can suggest

for the users of MapReduce module that the total number of patches should be

determined first. After that, the detailed patch timing can be decided equally

during the time span of usage. On the other hand, considering the characteristic

of software, we can see that the MapReduce module is used after sufficient

testing. That means residual bugs are few. In this situation, the periodic policy

is suitable for maintenance scheduling. If users begin to use a software product

without enough testing, the aperiodic policy should be strongly recommended

from the economic point of view.

Table 3.4: Total costs for aperiodic and periodic maintenance scheduling.

m∗ Aperiodic m Periodic

1 66.897(180-days)

5 54.0655(60-days) 5 55.6854(60-days)

11 58.2553(30-days)

25 70.4708(14-days)

50CHAPTER 3. OPTIMAL PLANNING FOROPEN SOURCE SOFTWARE UPDATES

Figure 3.5: Optimized number of update times m.

Chapter 4

Quantifying Resiliency of
Virtualized System with
Software Rejuvenation

This chapter considers how to evaluate the resiliency for virtualized system with

software rejuvenation. The software rejuvenation is a proactive technique to

prevent the failure caused by aging phenomenon such as resource exhaustion. In

particular, according to Gohsh et al. (2010), we compute a quantitative crite-

rion to evaluate resiliency of system by using continuous-time Markov chains

(CTMC). In addition, in order to convert general state-based models to CTMCs,

we employ PH (phase-type) expansion technique. In numerical examples, we in-

vestigate the resiliency of virtualized system with software rejuvenation under

two different rejuvenation policies.

4.1 Virtualized System with Software Rejuve-

nation

Consider the virtualized system with software rejuvenation proposed in [37,

38]. The system consists of virtual machines (VMs) and a virtual machine

monitor (VMM). The virtual machines provide services for the end users. In

general, VMs are used for Internet servers such as Web, mail and DB. Thus

the availability of VMs is important for quality of services. On the other hand,

VMM manages VMs in a physical machine. If VMM was stopped, all the VMs

on VMM should be stopped. Therefore it is important to decide optimal timings

51

52CHAPTER 4. QUANTIFYING RESILIENCYOFVIRTUALIZED SYSTEM

for triggering software rejuvenations for VM and VMM.

Machida et al. [37, 38] discussed three kinds of software rejuvenation policies

in such virtualized system; cold-VM, warm-VM and migrate-VM rejuvenations.

The cold-VM rejuvenation is the simplest rejuvenation. In the cold-VM rejuve-

nation, all the VMs running on the VMM are shut down before the rejuvenation

for VMM is performed. That is, although both VM and VMM are rejuvenated

by this operation, the time to shut down all the VMs is required. In addition,

the jobs running on VMs should be stopped or canceled before all the VMs are

shut down. The warm-VM rejuvenation is also called as the fast rejuvenation

[32]. In the warm-VM rejuvenation, instead of shutting down all the VM hosts,

they are resumed after the VMM rejuvenation and suspended before it. Since

the jobs running on the VMs are stored on memory, jobs are not canceled by

the rejuvenation though the job completion time becomes longer. Also, the

downtime is shorter than the cold-VM rejuvenation, because the time to wake

up from suspend mode is faster than boot time generally. The third rejuve-

nation is the migrate-VM rejuvenation. This scheme requires another VMM

which has the same environment as the original VMM. The live migration is

a well-known and convenient function of virtualized system, which can move

running VMs from one VMM to another VMM without downtime of service.

The migrate-VM rejuvenation utilizes the live migration of virtualized system.

That is, running VMs on one VMM are moved onto another VMM before the

VMM rejuvenation. After completion of the VMM rejuvenation, the migrated

VMs are back to the rejuvenated VMM. Although the jobs running on VMs

are never canceled by the warm-VM and migrate-VM rejuvenations, the soft-

ware aging of VMs is not rejuvenated by both the warm-VM and migrate-VM

rejuvenations. In this chapter, we consider the situation where a single VMM

is available such as private clouds. Since the migrate-VM rejuvenation requires

two or more VMMs as stand-by system. The chapter focuses on only cold-VM

and warm-VM rejuvenations, which are easily implemented even in a private

cloud environment.

4.2. MRSPN-BASED ANALYSIS 53

(a) VMM model

Phclock

PhpolicyPhtrigger

[ghpolicy]

Thpolicy

[ghreset]

Threset
[ghinterval]

Thinterval

(b) VMM clock model

Figure 4.1: Part 1 of MRSPNs for the cold-VM rejuvenation [37, 38].

4.2 MRSPN-based Analysis

4.2.1 MRSPN Modeling

Markov regenerative stochastic Petri nets (MRSPNs) are one of the versatile

tools for model-based performance evaluation [16, 20], which is extensions of

generalized stochastic Petri nets (GSPNs). MRSPN can deal with GEN tran-

sitions whose firing time follows a general distribution, while GSPN consists of

only immediate transitions and EXP transitions whose firing time follows an

exponential distribution. Thus MRSPNs have high representation ability for

stochastic modeling, and in fact, many application models arising in computer

communication systems can be described by MRSPNs [17, 34].

(i) MRSPN for Cold-VM Rejuvenation:

Figure 4.1 and 4.2 illustrate MRSPN representation for the cold-VM rejuve-

54CHAPTER 4. QUANTIFYING RESILIENCYOFVIRTUALIZED SYSTEM

nation presented in [37, 38]. The model is divided into four layered MRSPNs.

The MRSPN (a) indicates the behavior of VMM under the cold-VM rejuvena-

tion. Each places represent the state of VMM;

• Phup: VMM is in the normal state.

• Phfp: VMM is in the failure-probable state, namely, VMM is degraded by

aging-related bugs.

• Phfail: VMM has been failed (failure state).

• Phdet: The failure has been detected and the repair operation is started

(repair state).

• Phrej : The rejuvenation operation is executed (rejuvenation state).

Also, each transition presents the event that occurs in VMM;

• Thfp: VMM becomes the failure-probable state.

• Threjt, Thfprejt: The rejuvenation operation for VMM is started.

• Threj: The rejuvenation operation is completed.

• Thfail: The failure occurs in VMM.

• Thdet: The failure has been detected and the repair operation is started.

• Threpair: The repair operation is completed.

The MRSPN (b) indicates the behavior of VMM rejuvenation policy. It is

managed by time-triggered policy, namely, the rejuvenation is triggered by a

periodic time which is represented by a GEN transition (black bar). Tghinterval

is enabled when a token is deposited in Phup or Phfp. The places Phpolicy means

that VMM is ready to execute rejuvenation operation. When the guards [ghpol-

icy] is satisfied, the tokens move to Phtrigger and start the rejuvenation. When

the VMM rejuvenation finishes, the immediate transition Threset is enabled and

a token is moved to Phclock. In MRSPN (a), the transitions Threjt and Thfprejt

fire when tokens are moved into Phtrigger . Once the rejuvenation operation is

started, the time counter of rejuvenation resets.

4.2. MRSPN-BASED ANALYSIS 55

Similar to the MRSPN (a) and (b), MRSPN (c) and (d) model the behaviors

of VM and VM rejuvenation policy under the cold-VM rejuvenation. The places

Pvup, Pvfp, Pvfail, Pvdet, Pvrej correspond to the state; normal, failure-probable,

failure, repair and rejuvenation states of VM. Also Pvsd and Pvfpsd represent

that the VM is shut down due to the VMM rejuvenation. The place Pvstop

means that the VM is stopped by a failure of VMM or VMM rejuvenation. The

transitions Tvfp, Tvrejt, Tvfprejt, Tvrej , Tvfail, Tvdet and Tvrepair are similar to

the events in VMM. On the other hand, Tvpre and Tvfppre indicate the preventive

shutdown for VM. The transition Tvdw is the event where VM is stopped due

to the VMM failure. Also, Tvsd and Tvfpsd are the completion of shutdown and

Tvrestart means the completion of restart of VM.

Cold-VM rejuvenation makes the hosted VM shut down before triggering

VMM rejuvenation. This policy is represented in the guard functions for the

immediate transitions Tvpre and Tvfppre. Either Tvpre or Tvfppre are enabled

when a token is deposited in Phpolicy in the VMM clock model. Then a token

is moved into Pvsd or Pvfpsd in the VM model. When a token is deposited in

Pvstop by firing Tvsd or Tvfpsd, the immediate transition Thpolicy is enabled by

[ghpolicy] and a VMM rejuvenation process starts. This ensures that VMM

rejuvenation does not start until the hosted VM is shut down properly. As in

the definition of [ghpolicy], we assume that VMM rejuvenation can start only

when a token is deposited in Pvstop, Pvfail, Pvdet or Pvrej .

(ii) MRSPN for Warm-VM Rejuvenation:

Figure 4.3 presents MRSPN for the behavior of VM under the warm-VM

rejuvenation [37, 38]. In the warm-VM rejuvenation, VM goes to suspend mode

before executing the VMM rejuvenation. Thus only the behavior of VM in the

warm-VM rejuvenation is different from the behavior of VM in the cold-VM re-

juvenation. The guard function [gvinterval] is modified to enable Tvinterval even

while a VM is in suspended state (a token is deposited in Pvsusd or Pvfpsusd).

The clock for VM rejuvenation is not affected by VM suspension. The guard

function [ghpolicy] enables Thpolicy only when a token is deposited in Pvsusd,

Pvfpsusd, Pvfail, Pvdet or Pvrej .

Warm-VM rejuvenation uses the suspend operation to stop the execution of

VM at VMM rejuvenation. This policy is represented in the guard functions

56CHAPTER 4. QUANTIFYING RESILIENCYOFVIRTUALIZED SYSTEM

for the immediate transitions Tvpre and Tvfppre. One of the two immediate

transitions Tvpre or Tvfppre is enabled when a token is deposited in Phpolicy in

the VMM clock model. When a token is deposited in Pvsusd or Pvfpsusd by

firing Tvsus or Tvfpsus, the VMM rejuvenation can start. One of the imme-

diate transitions Tvpost or Tvfppost is enabled, when the VMM rejuvenation is

completed and a token is deposited in Phup in the VMM model. The hosted

VM resumes the execution when a token is deposited in Pvup or Pvfp by the

transitions Tvresm or Tvfpresm. As defined in [ghpolicy], the VMM rejuvenation

can start only when a token is deposited in Pvsusd, Pvfpsusd, Pvfail, Pvdet or

Pvrej .

4.2.2 Transient Analysis

In [37, 38], Machida et al. derived the steady-state availability of the virtualized

system under the cold-VM and warm-VM rejuvenation based on the MRSPN

models. On the other hand, Okamura et al. [49] performed the transient analysis

for the virtualized system with cold-VM and warm-VM rejuvenation. Since

the resiliency analysis requires the transient analysis, we describe the transient

analysis of MRSPN.

The analysis begins with building MRGP (Markov regenerative process)

from the MRSPN. MRGP is a stochastic point process which has both regen-

erative and non-regenerative time points. Generally, we consider a stochastic

process {M(t); t ≥ 0} with discrete state space. If M(t) has time points at

which the process probabilistically restarts itself, the process is called regener-

ative, and the time points are called regeneration points. Otherwise, the time

points when M(t) does not restart are called non-regeneration points. Specifi-

cally, when state transition at the regeneration points is governed by a discrete

Markov chain (DTMC), the process M(t) is an MRGP. There are several meth-

ods for the transient analysis of MRGP such as the supplementary variable

(SV) method and discretization approach [20, 64]. In this chapter, we apply the

phase-type (PH) expansion to analyze MRGP.

The fundamental idea of PH expansion is to replace general distributions

in MRGP with approximate PH distributions, and it can reduce the original

MRGP to an approximate CTMC. The PH distribution is defined by the distri-

4.2. MRSPN-BASED ANALYSIS 57

bution for an absorbing time in a CTMC, and it is known that PH distribution

can approximate any distribution with high precision [6]. Concretely, the prob-

ability density function (p.d.f.) of PH distribution is given by

fPH(t) = α exp(T t)ξ, (4.1)

where T is an infinitesimal generator on transient states in an absorbing CTMC.

The column vector ξ is the transition rates from transient states to the absorbing

state. When 1 is a column vector whose entries are 1, we have ξ = −T1. Also

α is an initial probability vector over the transient states.

To apply the PH expansion, we classify all the states of MRGP based on what

GEN transitions are enabled. In both cold-VM and warm-VM rejuvenations,

there are two GEN transitions; Thinterval and Tvinterval. Then we can divide the

state space of MRGP into three subspaces SE , SH and SHV . The subspace SE

consists of the states where any GEN transition is not enabled. The subspace

SH is a set of the states where only Thinterval is enabled. The subspace SHV

is a set of the states where both Thinterval and Tvinterval are enabled. For these

subspaces, we define Qx,y, x, y ∈ {E,H,HV } as the infinitesimal generators

of non-regenerative transitions from Sx to Sy. Moreover, AH
x,y and AV

x,y are

transition probability matrices from Sx to Sy by firings of Thinterval and Tvinterval,

respectively. Then the approximate CTMC infinitesimal generator with PH

expansion QPH can be written by

QPH = QPH
0 +QPH

1 , (4.2)

QPH
0 =

QE,E QE,H ⊗ αH O

QH,E ⊗ 1 QH,H ⊕ TH QH,HV ⊗ I ⊗ αV

QHV,E ⊗ 1⊗ 1 QHV,H ⊗ I ⊗ 1 QHV,HV ⊕ TH ⊕ TV

(4.3)

QPH
1 =

O O O

AH
H,E ⊗ ξH O O

AH
HV,E ⊗ ξH ⊗ 1 AV

HV,H ⊗ I ⊗ ξV O

(4.4)

where ⊗ and ⊕ are Kronecker product and sum and I and O are an identity ma-

trix and zero matrix, respectively. In the above, general distributions of Thinterval

58CHAPTER 4. QUANTIFYING RESILIENCYOFVIRTUALIZED SYSTEM

and Tvinterval are approximately given by the following PH distributions:

fhinterval(t) ≈ αH exp(THt)ξH , (4.5)

fvinterval(t) ≈ αV exp(T V t)ξV . (4.6)

Then the approximate transient probabilities can be computed by the ordinary

transient analysis of CTMC with the approximate infinitesimal generator QPH .

Furthermore, there are several techniques to obtain the PH distribution

which approximates a general distribution. In this chapter, we use the EM-

based maximum likelihood estimation (see Appendix).

4.3 Quantification of System Resiliency

In this section, we introduce the quantitative measure for evaluating system

resiliency based on CTMC model. As mentioned before, the resiliency is one

of the effects of system indices when a change happens. According to [21],

we evaluate the resiliency of virtualized system with rejuvenation based on the

CTMC model in the following steps:

• Step 1: Compute the state probability vector and availability in the

steady-state.

• Step 2: Generate the infinitesimal generator when the change is applied.

• Step 3: Compute the transient behavior of availability after the change

by using the infinitesimal generator of Step 2 where the initial probability

vector is the steady state probability vector in Step 1.

In [21], settling time, peak overshoot or undershoot, peak time and γ-percentile

time are computed from the transient behavior. This chapter computes the

amount of deviation of measure which is defined by the area of difference be-

tween the steady-state measure and the deviation of measure by the change.

Concretely, let QN and QC be infinitesimal generators of system behavior dur-

ing normal and change conditions. Without loss of generality, the change is

applied in the period from t = 0 to t = Te. Also it is assumed that the measure

of interest is given by a dot product of the state probability vector π and a

reward vector (column vector) r, namely, πr. In the chapter, since we consider

4.4. EXPERIMENT 59

the availability as a measure of interest, the elements of reward vector are 0 or

1. If the system is available at a state, the reward of the state is 1. Otherwise,

if the system is unavailable at a state, the reward is 0.

The steady-state probability vector πs in the normal condition can be ob-

tained from the following equations:

πsQN = 0, πs1 = 1. (4.7)

By considering the state probability vector at any time can be represented by

the matrix exponential of infinitesimal generator, the amount of deviation of

measure (AD) is given by

AD =

∫ Te

0

|πsr − πs exp(QCt)r| dt

+

∫ ∞

0

|πsr − πs exp(QCTe) exp(QN t)r| dt. (4.8)

Figure 4.4 illustrates an example of the amount of deviation of measure. The

area in the figure corresponds to the amount of deviation of measure. If the

following equations hold for any t ≥ 0:

πsr > πs exp(QCt)r, (4.9)

πsr > πs exp(QCTe) exp(QN t)r, (4.10)

then Eq. (4.8) can be simplified to

AD =πsrTe − πs

∫ Te

0

exp(QCt)dtr

+ (πs − πs exp(QCTe))

∫ ∞

0

exp(QN t)dtr, (4.11)

where we use πs exp(QN t) = πs. In the above, we can apply the technique of

cumulative measures [57] to the integrals of matrix exponentials.

4.4 Experiment

In the experiment, we investigate the amount of deviation of system availability

when a change is applied. The model parameters are set as Table 4.1 which

are also used in [37, 38]. Also VM and VMM rejuvenations are triggered by

random variables. Due to the operating situation, VM and VMM rejuvenations

may be practically varied. VM rejuvenation is periodically performed at time

60CHAPTER 4. QUANTIFYING RESILIENCYOFVIRTUALIZED SYSTEM

Table 4.1: Model parameters in the experiment.

Transition Mean Time

Thfp 1 month

Thfail 1 week

Thdet 5 minutes

Threpair 1 hour

Threju 2 minutes

Tvfp 1 week

Tvfail 3 days

Tvdet 5 minutes

Tvrepair 30 minutes

Tvreju 1 minute

Tvsd, Tvfpsd 30 seconds

Tvrestart 30 seconds

Tvsus, Tvfpsus 0.08 seconds

Tvresm, Tvfpresm 0.8 seconds

interval which follows the normal distribution with mean 0.5, 1, 2 or 7 days,

and their coefficients of variation are fixed as 0.5. Similarly, VMM rejuvenation

is periodically performed at time interval which follows the normal distribution

with mean 7 (days) and the coefficient of variation 0.1. These normal distri-

butions are approximated by PH distributions with 50 phases by applying EM

algorithm [46] (see Appendix). Furthermore, we consider the following change

condition:

• The mean time of VM failure after aging is changed to 1/60 (hrs).

In this case, the change causes the degradation of availability. Then we can

use the formula of Eq. (4.11). Also we set the time duration of change as

Te = 5, 30, 60 minutes.

First we investigate the steady-state availabilities when the change contin-

ues, i.e., Te → ∞. Table 4.2 shows the steady-state availabilities when the

rejuvenation periods in cold-Vm and warm-VM rejuvenations are 0.5, 1, 2 and

7 days. The columns ‘Normal’ mean the steady-state availabilities under the

4.4. EXPERIMENT 61

Table 4.2: The steady-state availabilities in normal and change conditions.

Rejuvenation Cold-VM Warm-VM

interval Normal Change Normal Change

0.5 days 0.9948 0.9917 0.9976 0.9946

1 days 0.9970 0.9940 0.9980 0.9952

2 days 0.9978 0.9951 0.9979 0.9956

7 days 0.9975 0.9956 0.9972 0.9958

normal condition, and the columns ‘Change’ indicate the steady-state avail-

abilities under the change condition. From this table, we can see that there

is no remarkable difference between normal and change conditions in terms of

steady-state availabilities even though the failure rate in failure-probable state

drastically increases in the change condition. This is because the aging phe-

nomenon rarely occurs because of the software rejuvenation. In the table, the

change does not affect the steady-state availability strongly, and thus the effect

of change condition is not clear in terms of steady-state availability.

Next we investigate the system resiliency against the change. Figures 4.5, 4.6

and 4.7 illustrate the behavior of availabilities after the change is applied. In the

figures, the arrow indicates the time duration of change. Also cold(0.5), cold(1),

cold(2) and cold(7) mean the availabilities under the cold-VM rejuvenation.

The number in the bracket indicates the time interval of rejuvenation for VM,

i.e., 0.5, 1, 2 and 7 days time intervals of rejuvenation. Similarly, warm(0.5),

warm(1), warm(2) and warm(7) are the availabilities under the warm-VM re-

juvenation. For all the cases, the availability decreases by applying the change.

However, the speeds to go back to the steady state depend on the rejuvenation

policies. As the rejuvenation interval is small, the speed to go back to the steady

state becomes faster. Also by comparing the cold-VM and warm-VM rejuvena-

tions, we find the effect of change in the cold-VM rejuvenation is smaller than

that in the warm-VM rejuvenation.

Tables 4.3 and 4.4 present the amount of deviation of availability under the

cold-VM and warm-VM rejuvenations, respectively. From these tables, we con-

clude that the time duration of change is insensitive to the system availability,

62CHAPTER 4. QUANTIFYING RESILIENCYOFVIRTUALIZED SYSTEM

Table 4.3: The amount of deviation of availability for the virtualized system
with software rejuvenation (cold-VM rejuvenation).

Time duration for the change

(minutes)

5 30 60

Rejuvenation 0.5 days 0.0156 0.0170 0.0186

interval 1 days 0.0275 0.0289 0.0304

2 days 0.0437 0.0450 0.0463

7 days 0.0682 0.0694 0.0704

Table 4.4: The amount of deviation of availability for the virtualized system
with software rejuvenation (warm-VM rejuvenation).

Time duration for the change

(minutes)

5 30 60

Rejuvenation 0.5 days 0.0219 0.0233 0.0249

interval 1 days 0.0377 0.0390 0.0404

2 days 0.0563 0.0576 0.0587

7 days 0.0765 0.0776 0.0785

and that the virtualized system with cold-VM rejuvenation is robust for the

change compared to the system with warm-VM rejuvenation.

The main difference between cold-VM and warm-VM rejuvenations is whether

the VMs are shut down or not at the VMM rejuvenation. Thus the VMs un-

der the cold-VM rejuvenation have more opportunities to execute rejuvenation,

compared to the warm-VM rejuvenation, and the probability of aging of VM

under the cold-VM rejuvenation is relatively low. This implies that the prob-

ability that VMs are failed under the warm-VM rejuvenation is higher than

that under the cold-VM rejuvenation when the change occurs. This is the main

reason that the cold-VM rejuvenation is more robust than the warm-VM reju-

venation. From this insight, we also find that it is important to maintain the

aging of VMs against a suddenly change of system condition.

4.4. EXPERIMENT 63

Pvup

Pvfp

Pvfail

Pvrej Pvdet

Tvfail

Tvrej Tvrepair

Tvdet

Tvfp

Tvrejt

Tvfprejt

[gvtrig]

[gvtrig]

Pvsd

Pvfpsd

Tvsd

Tvfpsd

Pvstop

Tvfppre

Tvpre

[gvhrej]

[gvhrej]

Tvrestart

[gvhup]

[gvhdw]

Tvdw

[gvhup]

[gvhup]

[gvrej]

(c) VM model

Pvclock

PvpolicyPvtrigger

[gvpolicy]

Tvpolicy

[gvreset]

Tvreset
[gvinterval]

Tvinterval

(d) VM clock model

gvinterval: (#Pvup==1) || (#Pvfp==1) || (#Pvsd==1) || (#Pvfpsd==1)
gvpolicy: (#Pvup==1) || (#Pvfp==1)
gvreset: #Pvrej==1
gvtrig: #Pvtrigger==1
gvrej: (#Pvclock==1) && (#Phup==1) || (#Phfp==1)
gvhup: (#Phup==1) || (#Phfp==1)
gvhrej: #Phpolicy==1
gvhdw: #Phfail==1

ghinterval: (#Phup==1) || (#Phfp==1)
ghpolicy: (#Pvstop==1) || (#Pvfail==1) || (#Pvdet==1) || (#Pvrej==1)
ghreset: #Phrej==1
ghtrig: #Phtrigger==1
ghrej: #Phclock==1

Guard functions

Figure 4.2: Part 2 of MRSPNs for the cold-VM rejuvenation [37, 38].

64CHAPTER 4. QUANTIFYING RESILIENCYOFVIRTUALIZED SYSTEM

Pvup

Pvfp

Pvfail

Pvrej Pvdet

Tvfail

Tvrej
Tvrepair

Tvdet

Tvfp

Tvrejt

Tvfprejt

[gvtrig]

[gvtrig]

Pvsus

Pvfpsus

Tvsus

Tvfpsus

Pvstop

Tvfppre

Tvpre

[gvhrej]

[gvhrej]

Tvrestart

[gvhup]

[gvhdw]

Tvdw

Pvfpres"

Pvfpsusd

Pvsusd

Pvres"

Tvres"

Tvfpres"

Tvpost
[gvhup]

Tvfppost
[gvhup]

[gvhup]

[gvhup]

[gvrej]

(c’) VM model

Guard functions

Figure 4.3: MRSPNs for the warm-VM rejuvenation [37, 38].

Performance measure

performance measure
in steady state

time duration
of change

performance measure
affected by the change

timet = 0 t = Te

the amount of deviation of
performance measure

a change is
applied

Figure 4.4: A schematic illustration of the amount of deviation of measure.

4.4. EXPERIMENT 65

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160 180

av
ai

la
bi

lit
y

time (minutes)

cold (0.5)
cold (1)
cold (2)
cold (7)

warm (0.5)
warm (1)
warm (2)
warm (7)

Figure 4.5: The behavior of availabilities after the change (Te = 5 minutes)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160 180

av
ai

la
bi

lit
y

time (minutes)

cold (0.5)
cold (1)
cold (2)
cold (7)

warm (0.5)
warm (1)
warm (2)
warm (7)

Figure 4.6: The behavior of availabilities after the change (Te = 30 minutes)

66CHAPTER 4. QUANTIFYING RESILIENCYOFVIRTUALIZED SYSTEM

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160 180

av
ai

la
bi

lit
y

time (minutes)

cold (0.5)
cold (1)
cold (2)
cold (7)

warm (0.5)
warm (1)
warm (2)
warm (7)

Figure 4.7: The behavior of availabilities after the change (Te = 60 minutes)

Chapter 5

Conclusions

5.1 Summary and Remarks

In Chapter 2, we have dealt with the performance analysis of snapshot isola-

tion in the database system by using probabilistic models. We have developed

the models for CSI and PCSI and have derived the optimal time interval for

updating snapshot in PCSI with restart scheme under the failure-prone com-

munication environment. In the numerical examples, we have examined the

effectiveness of the optimization of update timing. As a result, although the

PCSI is effective to reduce the response time, the system throughput of PCSI

degrades, compared to CSI. The presence of communication failure discussed

in this paper is necessary and fundamental in the application of PCSI in dis-

tributed database system which has large network latency. With considering

the network environment, the usage of request restart scheme is supposed be

implemented in the database systems with small communication delay. In this

paper, we have revealed that the effect of communication failure on the perfor-

mance of distributed database system analytically. Furthermore, Monte Carlo

simulations have been conducted for investigating the effectiveness of our pro-

posal. The results of simulations indicated the effectiveness of our proposal. As

a conclusion of the comparison of CSI and PCSI, it can be implied that the CSI

is better at keeping the data integrity, and PCSI is better at improving the com-

munication effectiveness in distributed environment, especially when network is

crowed.

In Chapter 3, we have proposed an update management model for open

67

68 CHAPTER 5. CONCLUSIONS

source software from the customer’s point of view based on a non-homogeneous

Poisson process. We have also simply modeled user’s behavior on maintenance

activity based on non-homogeneous bug-discovery/correction processes by ap-

plying an unified software reliability model. As an extension of previous study,

[47] we have proposed a novel maintenance model in terms of the update cost

and recovery cost for users. By surmising users’ behavior, two maintenance

policies (periodic and aperiodic) have been discussed theoretically. For aperi-

odic policy, we derive the optimized maintenance schedule by DP algorithm. In

the numerical examples, we have examined the characteristics of two policies by

assuming two kinds of bug-correction processes, exponential and logistic. The

existences of optimized number of update times have been proven under both

policies. Moreover, based on the real bug data for Hadoop MapReduce, we

have shown that the optimized aperiodic maintenance policy is more effective

than the periodic one. However, we have just considered the patches for fixing

common bugs, i.e., fatal bugs or security holes are not taken into account. The

counteraction for emergent accidents must be the next topic of our research. On

the other hand, the best policy with consideration for both users and vendors

could be discussed in future.

In Chapter 4, we have evaluated the resiliency of the virtualized system with

software rejuvenation. In particular, we have defined one of the quantitative cri-

teria for evaluating the resiliency as the amount of deviation of measure, and

have presented how to compute it in CTMC models. In the experiment, we fo-

cused on the amount of deviation of system availability for the virtualized system

with software rejuvenation under two different rejuvenation policies. Since the

original model was described by MRSPNs, the model has been approximated by

a CTMC model through the PH expansion. Based on the scenario; the failure

rate of virtual machine increases, we have evaluated the resiliency of system. As

a result, we find that the time duration of change is insensitive to the system

availability, the system with cold-VM rejuvenation is more robust for the change

and the system with rejuvenation has the high ability of self-recovery. Besides,

we must notice that, the resiliency in this chapter is related as the deviation of

availability. If we change the performance index, the analysis of resiliency might

show us different results.

5.2. FUTURE WORKS 69

5.2 Future Works

Concerning PCSI, the parameters should be estimated from empirical data col-

lected in working database servers, and different servers have different values of

parameters. Thus we will discuss autonomic algorithms for deciding the optimal

time interval from empirical data based on the presented models in future.

For Chapter 4, we will investigate the resiliency of system under the migrate-

VM rejuvenation, and further analyze the system resiliency of a variety of system

such as checkpoint system and backup system in the future. Additionally, we

try to combine the resiliency analysis and fault-tree models and consider the

resiliency to disasters in the life-line system.

70 CHAPTER 5. CONCLUSIONS

Appendix A

EM-based PH fitting

This paper uses the PH fitting based on maximum likelihood (ML) estimation.

Briefly speaking, ML estimation is to determine the parameters minimizing

the Kullback-Leibler (KL) divergence. Given an arbitrary probability density

function f(t), the KL divergence KL(f, g) between f(t) and any probability

density function g(t) is defined by

KL(f, g) =

∫ ∞

0

f(t) log
f(t)

g(t)
dt

=

∫ ∞

0

f(t) log f(t)dt−

∫ ∞

0

f(t) log g(t)dt. (A.1)

The problem is to find g(t) maximizing
∫∞

0
f(t) log g(t)dt. Applying a suitable

numerical integration technique, we have

∫ ∞

0

f(t) log g(t)dt ≈

K
∑

i=1

wi log g(ti), (A.2)

where wi, including f(ti), is a weight. The discretized points and their associ-

ated weights are computed by any numerical quadrature. Eq. (A.2) implies that

the parameter of g(t) are determined by the ordinary ML estimation with the

weighted samples (t1, w1), . . . , (tK , wK). In this paper, the weighted samples are

obtained from the numerical integration with the double exponential formula

[63].

On the other hand, this paper applies the EM (expectation-maximization)

algorithm to derive the ML estimations for PH distribution from weighted sam-

ples [46]. Fig. A.1 summaries one EM-step of the EM algorithm for PH distri-

butions with weighted samples (t1, w1), . . . , (tK , wK). In Fig. A.1, the symbols

[·]i and [·]i,j are the i-th entry of vector and (i, j)-entry of matrix, respectively.

71

72 APPENDIX A. EM-BASED PH FITTING

Also, ∆tk = tk − tk−1 is a time interval, q > maxi |[T]i,i| is the maximum event

rate, the matrix P equals I +T/q with the identity matrix I, and Rk is a right

truncation point with tolerance error ε;

Rk
∑

u=0

e−q∆tk
(q∆tk)

u

u!
≥ 1− ε. (A.3)

In Fig. A.1, the time complexity of the EM-step is O(ηK) where η is the number

of non-zero elements in T . This PH fitting algorithm in the paper can be utilized

by mapfit [50] as a package of statistical analysis tool R.

73

EM-step for PH fitting

1: Global step:

1.1 Forward: Compute ξ̃k and α̂k for k = 1, . . . ,K;

α̂k ← α̂k−1 exp(T∆tk), α̃0 ← α,

ξ̃k ← exp(T∆tk)ξ̃k−1, ξ̃0 ← ξ.

1.2 Backward: Compute α̃k for k = K − 1, . . . , 1;

α̃k ← α̃k+1 exp(T∆tk+1) +
wkα

αξ̃k

,

α̃K ←
wKα

αξ̃K

.

2: Local step: For each time interval ∆tk, k = 1, . . . ,K;

2.1 Forward: Compute bu for u = 1, . . . , Rk;

bu ← Pbu−1, b0 ← ξ̃k−1.

2.2 Backward: Compute cu for u = Rk − 1, . . . , 0;

cu ← cu+1P + e
−q∆tk

(q∆tk)
u+1

(u + 1)!
α̃k,

cRk
← e

−q∆tk
(q∆tk)

Rk+1

(Rk + 1)!
α̃k.

2.3 Aggregation: Compute Hk ←
1
q

∑Rk
u=0 bucu.

3: Aggregation: Compute H ←
∑K

k=1 Hk.

4: Update:

[α]i ←

K
∑

k=1

wk[α]i[ξ̃k]i

αξ̃k

/

K
∑

k=1

wk,

[ξ]i ←
K
∑

k=1

wk[α̂u]i[ξ]i

α̂kξ

/

[H]i,i,

[T]i,j ←
[T]i,j [H]j,i

[H]i,i
, i 6= j.

Figure A.1: EM-based PH fitting with weighted samples [46].

74 APPENDIX A. EM-BASED PH FITTING

Bibliography

[1] A. A. Abdel-Ghaly, P. Y. Chan and B. Littlewood, Evaluation of competing

software reliability predictions, IEEE Trans. on Software Engineering, SE-

12(9), pp. 950–967, 1986.

[2] O. H. Alhazmi and Y. K. Malaiya, Modeling the vulnerability discovery

process, Proc. 16th International Symposium on Software Reliability Engi-

neering (ISSRE’05), IEEE CS Press, pp. 129–138, 2005.

[3] O. H. Alhazmi, Measuring and enhancing prediction capabilities of vul-

nerability discovery models for Apache and IIS HTTP servers, Proc. 17th

International Symposium on Software Reliability Engineering (ISSRE’06),

IEEE CS Press, pp. 343–352, 2006.

[4] O. H. Alhazmi and Y. K. Malaiya, Application of vulnerability discovery

models to major operating systems, IEEE Trans. on Reliability, vol. 57,

no. 1, pp. 14–22, 2008.

[5] A. Arora, R. Telang and H. Xu, Optimal policy for software vulnerability

disclosure, Third Annual Workshop on Economics of Information Security

(WEIS04), 2004.

[6] S. Asmussen and G. Koole, Marked point processes as limits of Markovian

arrival streams, Journal of Applied Probability, vol. 30, pp. 365–372, 1993.

[7] S. Beattie, S. Arnold, C. Cowan, P. Wagle and C. Wright, Timing the

application of security patches for optimal uptime, Proc. 16th USENIX

Systems Administration Conference (LISA02), pp. 233–242, 2002.

[8] R. Bellman, Dynamic Programming, Princeton University Press, 1957.

75

76 BIBLIOGRAPHY

[9] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil and P. O’Neil, A

critique of ANSI SQL isolation levels, Proc. of the SIGMOD International

Conference on Management of Data, pp. 1–10, ACM Press, 1995.

[10] J. M. Bernabé-Gisbert and V. Zuikevičiūtė, A probabilistic analysis of snap-

shot isolation with partial replication, Proc. of the 2008 Sympoisum on

Reliable Distributed Systems (SRDS-2008), pp. 249–258, IEEE CS Press,

2008.

[11] G. Bolch, S. Greiner, H. Meer and K. S. Trivedi, Queueing Networks and

Markov Chains: Modeling and Performance Evaluation with Computer Sci-

ence Applications, Wiley-Interscience, New York, 1998.

[12] B. Brykczynski and R. A. Small, Reducing Internet-based intru-

sions:Effective security patch management, IEEE Software, vol. 20, no.

1, pp. 50–57, 2003.

[13] H. Cavusoglu, Economics of security patch management, The Fifth Work-

shop on the Economics of Information Security (WEIS06), 2006.

[14] H. Cavusoglu and J. Zhang, Security patch management: Share the burden

or share the damage? Management Science, vol. 54, no. 4, pp. 657–670,

2008.

[15] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury and S. Tuecke, The

data grid: Towards an architecture for the distributed management and

analysis of large scientific datasets. Journal of Network and Computer Ap-

plications, vol. 23, pp. 187–200, 2000.

[16] H. Choi, V. G. Kulkarni and K. S. Trivedi, Markov regenerative stochastic

Petri nets, Performance Evaluation, vol. 20, pp. 337–357, 1994.

[17] S. Dharmaraja, K. S. Trivedi, and D. Logothetis, Performance modeling

of wireless networks with generally distributed handoff interarrival times,

Computer Communications, vol. 26, no. 15, pp. 1747–1755, 2003.

[18] S. Elnikety, F. Pedone and W. Zwaenepoel, Database replication using

generalized snapshot isolation, Proc. of the 2005 Symposium on Reliable

Distributed Systems (SRDS-2005), pp. 73–84, IEEE CS Press, 2005.

BIBLIOGRAPHY 77

[19] D. P. Gaver, Observing stochastic processes and approximate transform

inversion, Operations Research, vol. 14, no. 3, pp. 444–459, 1966.

[20] R. German and C. Lindemann, Analysis of stochastic Petri nets by the

method of supplementary variables, Performance Evaluation, vol. 20, pp.

317–335, 1994.

[21] R. Ghosh, F. Longo, V. K. Naik, and K. S. Trivedi, Quantifying resiliency of

IaaS cloud, Proc. of 29th IEEE Symposium on Reliable Distributed Systems

(SRDS’10), pp. 343–347, IEEE CPS, 2010.

[22] A. L. Goel and K. Okumoto, Time-dependent error-detection rate model

for software reliability and other performance measures, IEEE Trans. on

Reliability, vol. R-28, pp. 206–211, 1979.

[23] A. L. Goel, Software reliability models: assumptions, limitations, and ap-

plicability, IEEE Trans. on Reliability, SE-11(12), pp. 1411–1423, 1985.

[24] S. S. Gokhale, M. R. Lyu and K. S. Trivedi, Software reliability analysis

incorporating fault detection and debugging activities, Proc. 9th Int’l Symp.

on Software Reliab. Eng., pp 202–211. IEEE CS Press, 1998.

[25] S. S. Gokhale, M. R. Lyu and K. S. Trivedi, Analysis of software fault

removal policies using a non-homogeneous continuous time Markov chain,

Software Quality Journal, 12(3), pp. 211–230, 2004.

[26] B. S. Gottfried, A stopping criterion for the golden-ratio search, Operations

Research, vol. 23, no. 3, pp. 553–555, 1975.

[27] R. Graham, S. E. Choi, D. Daniel, N. Desai, R. Minnich, C. Rasmussen, L.

Risinger and M. Sukalski, A network-failure-tolerant message-passing sys-

tem for terascale clusters. International Journal of Parallel Programming,

vol. 31, no. 4, pp. 285–303, 2003.

[28] J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques, 1st

edn, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[29] M. Grottke and K. S. Trivedi, Fighting bugs: Remove, retry, replicate, and

rejuvenate, IEEE Computer, vol. 40, no. 2, pp. 107–109, 2007.

78 BIBLIOGRAPHY

[30] I. Hsieh, F. M. Chang and S. J. Kao, A slot-based bs scheduling with

maximum latency guarantee and capacity first in 802.16 e networks, In-

ternational Journal of Communication Systems, vol. 25, no. 2, pp. 55–66,

2012.

[31] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, Software rejuve-

nation:analysis, module and applications, Proc. 25th Int’l Sympo. Fault

Tolerant Computing, pp. 381–390, 1995.

[32] K. Kourai and S. Chiba, Fast software rejuvenation of virtual machine

monitor, IEEE Trans. on Dependable and Secure Computing, vol. 8, pp.

839–851, 2010.

[33] J. C. Laprie, From dependability to resilience, Proc. of 38th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN 2008), 2008.

[34] D. Logothetis and K. S. Trivedi, Transient analysis of the leaky bucket rate

control scheme under Poisson and ON-OFF sources, Proc. of?INFOCOM,

pp. 490–497, 1994.

[35] C. Luo, H. Okamura and T. Dohi, Model-based performance optimization

of generalized snapshot isolation in database system, Ubiquitous Intelli-

gence Computing and 9th International Conference on Autonomic Trusted

Computing (UIC/ATC 2012), pp. 494 –500, 2012.

[36] M. R. Lyu, Handbook of Software Reliability Engineering, New York:

McGraw-Hill, 1996.

[37] F. Machida, D. S. Kim, and K. S. Trivedi, Modeling and analysis of soft-

ware rejuvenation in a server virtualized system, Proc. of 2nd Workshop on

Software Aging and Rejuvenation (WoSAR2010), IEEE CS Press, 2010.

[38] F. Machida, D. S. Kim, and K. S. Trivedi, Modeling and analysis of soft-

ware rejuvenation in a server virtualized system with live VM migration,

Performance Evaluation, vol. 70, no. 3, pp. 212–230, 2013.

BIBLIOGRAPHY 79

[39] M. Marseguerra and E. Zio, Optimizing maintenance and repair policies via

a combination of genetic algorithms and Monte Carlo simulation, Reliability

Engineering and System Safety, vol. 68, no. 1, pp. 69–83, 2000.

[40] A. van Moorsel and K. Wolter, Analysis and algorithms for restart, Proc.

of Quantitative Evaluation of Systems, 2004. (QEST 2004), pp. 195–204,

2004.

[41] A. van Moorsel and K. Wolter, Analysis of restart mechanisms in software

systems, IEEE Trans. on Software Engineering, vol. 32, no. 8, pp. 547–558,

2006.

[42] J. D. Musa, A. Iannino and K. Okumoto, Software Reliability Measurement,

Prediction, Application, McGraw-Hill, New York, 1987.

[43] J. D. Musa, Software Reliability Engineering, McGraw-Hill, New York,

1999.

[44] M. Ohba, Inflection S-shaped software reliability growth model, Stochastic

Models in Reliability Theory, Springer-Verlag, Berlin, pp. 144–165, 1984.

[45] H. Okamura, T. Dohi and S. Osaki, EM algorithms for logistic software re-

liability models, Proc. 22nd IASTED International Conference on Software

Engineering, ACTA Press, pp. 263–268, 2004.

[46] H. Okamura, T. Dohi, and K. S. Trivedi, A refined EM algorithm for PH

distributions, Performance Evaluation, vol. 68, pp. 938–954, 2011.

[47] H. Okamura, M. Tokuzane and T. Dohi, Optimal Security Patch Release

Timing under Non-homogeneous Vulnerability-Discovery Processes, 20th

International Symposium on Software Reliability Engineering, (ISSRE’09),

pp. 120–128. 2009.

[48] H. Okamura and T. Dohi, Experience Report: SRATS: Software Reliability

Assessment Tool on Spreadsheet, Proc. of 24th IEEE International Sym-

posium on Software Reliability Engineering (ISSRE’13), IEEE Computer

Society Press, Pasadena, 2013.

80 BIBLIOGRAPHY

[49] H. Okamura, K. Yamamoto, and T. Dohi, Transient analysis of software re-

juvenation policies in virtualized system: Phase-type expansion approach,

Quality Technology and Quantitative Management, vol. 11, no. 3, pp 335–

351, 2014.

[50] H. Okamura and T. Dohi, mapfit: An R-based tool for PH/MAP param-

eter estimation, Proc. of 12th International Conference on Quantitative

Evaluation of Systems (QEST2015), 2015 (to appear).

[51] T. Özsu and P. Valduriez, Principles of Distributed Database Systems,

Computer science, Springer, 2011.

[52] V. Padhye and A. Tripathi, Scalable transaction management with snap-

shot isolation on cloud data management systems, IEEE 5th International

Conference on Cloud Computing (CLOUD 2012), pp. 542–549, 2012.

[53] H. Pham, Handbook of Reliability Engineering, Springer, London, 2003.

[54] M. Puterman, Markov Decision Processes, John Wiley & Sons, 1994.

[55] S. Ramani, S. S. Gokhale and K. S. Trivedi, SREPT: software reliability

estimation and prediction tool, Performance Evaluation, vol. 39, issues 1?-

4, pp 37–60, 2000.

[56] D. Ramesh, A. Jain and C. Kumar, Implementation of atomicity and snap-

shot isolation for multi-row transactions on column oriented distributed

databases using rdbms, International Conference on Communications, De-

vices and Intelligent Systems (CODIS 2012), pp. 298–301, 2012.

[57] A. Reibman and K. S. Trivedi, Transient analysis of cumulative measures

of Markov model behavior, Stochastic Models, vol. 5, no. 4, pp. 683–710,

1989.

[58] S. M. Ross, Applied Probability Models with Optimization Applications,

Holden-Day, San Francisco, 1970.

[59] N. F. Schneidewind, Fault correction profiles, Proc. 14th Int’l Symp. on

Software Reliab. Eng., pp 257–267. IEEE CS Press, 2003.

BIBLIOGRAPHY 81

[60] N. F. Schneidewind, Assessing reliability risk using fault correction profiles,

Proc. 8th Int’l Symp. on High Assurance Systems Eng., pp 139–148. IEEE

CS Press, 2004.

[61] K. Shibata, K. Rinsaka, T. Dohi and H. Okamura, Quantifying soft-

ware maintainability based on a fault-detection/correction model, Proc.

of 13th Pacific Rim International Symposium on Dependable Computing

(PRDC’07), pp. 35–42, IEEE CPS, 2007.

[62] L. Simoncini, Resilient computing: An engineering discipline, Proc. of 23rd

IEEE International Symposium on Parallel and Distributed Processing, pp.

1, 2009.

[63] H. Takahasi and M. Mori, Double exponential formulas for numerical inte-

gration, Publ. RIMS, Kyoto Univ., vol. 9, pp. 721–741, 1974.

[64] M. Telek and A. Horváth, Transient analysis of Age-MRSPNs by the

method of supplementary variables, Performance Evaluation, vol. 45, pp.

205–221, 2001.

[65] P. P. Valko and J. Abate, Comparison of sequence accelerators for the gaver

method of numerical laplace transform inversion. Computers & Mathemat-

ics with Applications, vol. 48, no. 3, pp. 629–636, 2004.

[66] S. W. Woo, O. H. Alhazmi and Y. K. Malaiya, Assessing vulnerabilities in

Apache and IIS HTTP servers, Proc. 2nd IEEE International Symposium

on Dependable, Autonomic and Secure Computing (DASC’06), IEEE CS

Press, pp. 103–110, 2006.

[67] T. Xia, X. Jin, L. Xi and J. Ni, Production-driven opportunistic main-

tenance for batch production based on MAM?APB scheduling, European

Journal of Operational Research, vol. 240, no. 3, pp. 781–790, 2015.

[68] T. Xia, L. Xi, X. Zhou and J. Lee, Dynamic maintenance decision-making

for series?parallel manufacturing system based on MAM?MTW methodol-

ogy, European Journal of Operational Research, vol. 221, no. 1, pp. 231–240,

2012.

82 BIBLIOGRAPHY

[69] T. Xia, L. Xi, X. Zhou and S. Du, Modeling and optimizing maintenance

schedule for energy systems subject to degradation, Computers and Indus-

trial Engineering, vol. 63, no. 3, pp. 607–614, 2012.

[70] S. Yamada, M. Ohba and S. Osaki, S-shaped reliability growth modeling

for software error detection. IEEE Trans. on Reliability, vol. 32, no. 5, pp.

475–478, 1983.

Publication List of the
Author

[1] C. Luo, H. Okamura, T. Dohi, Performance evaluation of snapshot isolation

in distributed database system under failure-prone environment, Journal of

Supercomputing, vol. 70, no. 3, pp. 1156–1179, Dec 2014.

[2] H. Okamura, J. Guan, C. Luo, T. Dohi, Quantifying Resiliency of Virtu-

alized System with Software Rejuvenation, IEICE Transactions on Funda-

mentals, vol.E98-A, no. 10, pp. 2051–2059, Oct 2015.

[3] C. Luo, H. Okamura, T. Dohi, Optimal Planning for Open Source Software

Updates, Journal of Risk and Reliability, vol. 230, no. 1, pp. 44–53, Feb

2016.

[4] C. Luo, H. Okamura, T. Dohi, Model-Based Performance Optimization of

Generalized Snapshot Isolation in Database System, Proc. of the 9th Inter-

national Conference on Ubiquitous Intelligence & Computing and the 9th

International Conference on Autonomic & Trusted Computing (UIC/ATC

2012), pp. 494–500, IEEE CS Press, Fukuoka, Japan, Sept 2012.

[5] C. Luo, H. Okamura, T. Dohi, Analysis of fairness in distributed database

system with snapshot isolation, The 18th IEEE Pacific Rim International

Symposium on Dependable Computing (PRDC 2012) (Fast Abstract), Ni-

igata, Japan, Nov 2012.

[6] C. Luo, H. Okamura, T. Dohi, Modeling and analysis of multi-version con-

current control, The 37th Annual International Computer Software and

Applications Conference (COMPSAC 2013), pp 53–58, Kyoto, Japan, Jul

2013.

83

84 PUBLICATION LIST OF THE AUTHOR

[7] C. Luo, H. Okamura, T. Dohi, Characteristic analysis of quantitative defi-

nition of resiliency measure, IEEE 24th International Symposium on Soft-

ware Reliability Engineering (ISSRE-2013) (Fast Abstract), pp 11–12, Los

Angeles, USA, Nov 2013.

[8] H. Okamura, C. Luo, T. Dohi, Estimating response time distribution of

server application in software aging phenomenon, IEEE 5th International

Workshop on Software Aging and Rejuvenation (WoSAR-2013), in con-

junction with The 24th IEEE International Symposium on Software Re-

liability Engineering (ISSRE-2013), pp 281–284, Los Angeles, USA, Nov

2013.

[9] H. Okamura, J. Guan, C. Luo, T. Dohi, Quantifying resiliency of virtual-

ized system with software rejuvenation, Proc. of The 2014 International

Conference on Quality, Reliability, Risk, Maintenance, and Safety Engi-

neering (QR2MSE 2014), 6 pages, 2014.

[10] C. Luo, H. Okamura, T. Dohi, Optimized patch applying schedule within

multiplex software architecture, The 6th Asia-Pacific International Sympo-

sium on Advanced Reliability and Maintenance Modeling (APARM 2014),

pp. 311–318, Sapporo, Japan, Aug 2014.

