

赤外光解離分光法による アニリンイオンの溶媒和構造と 分子間プロトン移動反応の研究

<u>井口佳哉</u>(分子研)

本川芳樹 君(九大院理、大学院生) 大橋和彦 助教授(九大院理) 関谷 博教授(九大院理) 西 信之教授(分子研)

分子クラスターイオン

◆分子クラスターイオン内の正電荷の存在形態、幾何構造 何がイオンコアとなっているのか?

◆イオンコア構造は、クラスターを構成する個々の分子のイオン化ポテン シャル、プロトン親和力(PA)に大きく影響される。

◆(芳香族分子) ー (アミン、水) クラスターイオン 芳香族分子イオンからのプロトン移動反応→<mark>イオンコアの交代</mark>

2つの等価な水素結合サイト

アニリンイオンを含むクラスターイオン

A) アニリンーアミン(1:1)イオン

B) アニリンー水 (1:n) イオン (n=1-8)

分子の種類、個数を変えて、<mark>溶媒のプロトン</mark> <mark>親和力を変化</mark>させることができる。

溶媒和構造、分子間プロトン移動反応

質量選別 赤外光解離分光法 → 赤外スペクトル 密度汎関数法 → 構造最適化、赤外スペクトル計算

アニリンーアミン(1:1)イオン

アニリンーアミン(1:1)イオン

Μ	プロトン親和力 kcal/ mol	
アンモニア [NH ₃]	204.0	
メチルアミン [NH ₂ CH ₃ , <mark>MA</mark>]	214.9	
ジメチルアミン[NH(CH ₃) ₂ , <mark>DMA</mark>]	222.2	
トリメチルアミン[N(CH ₃) ₃ , TMA]	226.8	

アミンはどのサイトに溶媒和していくのか? 分子間プロトン移動反応が発生するのか? 溶媒分子のプロトン親和力が増大するとどうなるのか?

赤外光解離スペクトル

最適化構造

B3LYP/cc-pVDZ

プロトン親和力 / kcal mol⁻¹ 204.0 214.9 222.2 226.8 アンモニア メチルアミン ジメチルアミン トリメチルアミン プロトン移動 プロトン移動 非プロトン移動 非プロトン移動 非プロトン移動

プロトン親和力が増加すると、プロトン移動型が安定となる ジメチルアミンでは両方の構造が安定

 $(\Delta E = +56 \text{ cm}^{-1})$

赤外スペクトルの比較

フリーNH

- アンモニア、メチルアミン フリーNHのバンド位置をよく再現 → 非プロトン移動型
- ・ ジメチルアミン
 プロトン移動型構造の方が、実測のフ
 リーNHのバンド位置をよく再現
 → プロトン移動型
 - トリメチルアミン 3100 cm⁻¹付近にCH伸縮振動が出現 光解離スペクトルの強度パターンをよ く再現

→ プロトン移動型

アニリンーアミン(1:1)イオン

溶媒のプロトン親和力

溶媒のプロトン親和力の増加に伴い、アニリンサイトから プロトンが引き抜かれることを確認した。

アニリンー水 (1:n) イオン

芳香族分子イオンの水和クラスター

・水クラスターのプロトン親和力 サイズ増加に伴い増加する。

> → クラスター内の水分子の 個数を増加させることで、溶 媒のプロトン親和力を増大さ せることができる

•水がある分子数を超えるとイオンから水クラスターヘプロトン移動し、 ラジカルとプロトン付加水クラスターを生成する。

本研究

•水和アニリンイオン [aniline–(H₂O)_n]⁺ (n = 1-8)

- ・赤外光解離分光法 → 赤外スペクトルを得る
 ・密度汎関数法 B3LYP/cc-pVDZレベル

 ^{この比較により} ^{安定構造を決定}

 構造最適化、赤外スペクトル計算
- •溶媒和構造、分子間プロトン移動反応
 - cf. Nakanaga and Ito (2001) $[aniline-(H_2O)_{2-6}]^+$ 赤外光解離スペクトル 多光子イオン化 n = 2, 3 鎖状構造 $n \ge 4$ 環状構造 プロトン移動に関する記述なし

赤外光解離スペクトル

≥ 3550 cm⁻¹ フリーOHの伸縮振動

< 3550 cm⁻¹ 水素結合したOHの伸縮振動 NH伸縮振動

赤外光解離スペクトル フリーOH伸縮振動領域

・複数のローレンツ関数によりスペクトル を分解できる。

- *n* = 1, 2 2個
- *n*=3 3個
- *n* = 4, 5 4個

•サイズが大きくなると、水の対称伸縮振動、反対称伸縮振動の強度が弱くなる。

→ 環状構造?

Aniline⁺–(H₂O)_{1,2} 安定構造と赤外スペクトル

n = 1および2の安定構造はそれぞれ11、21。

Aniline⁺–(H₂O)₃ 安定構造と赤外スペクトル

2800–3500 cm⁻¹の領域で強度の近い3本のバンドが存在するのは3Iのみ。 free OHの領域 3Iが3696 cm⁻¹の弱いショルダーを再現。

n = 3の安定構造は3I。

Aniline⁺--(H₂O)₄ 赤外スペクトル

4Iと類似しているが、3550cm⁻¹の弱いバンドとfree OHの領域の一致がよくない。 free OHの領域 4Iと4IIのスペクトルの重ね合わせで説明可能。

AAに溶媒和したADの、水素結合したOHの伸縮振動が↓の位置に出現。 → 4IIの存在を示唆。

n = 4では、4Iと4IIが共存。

Aniline⁺--(H₂O)₅ 安定構造

5 I (5-member cyclic + 1)

 $\Delta E = 0 \text{ cm}^{-1}$

5 II (6-member cyclic)

 $\Delta E = +313 \text{ cm}^{-1}$

5 III (3-2 branched) $\Delta E = +935 \text{ cm}^{-1}$

Aniline⁺–(H₂O)₅ 赤外スペクトル

スペクトル全体のパターンが実測と類似しているのは5I。 free OHの領域 5Iが実測スペクトルの4つの極大の存在を再現。

n = 5の安定構造は5I。

Aniline⁺–(H₂O)₁₋₅の構造

n = 4を境界として構造が変化

n = 1-3鎖状構造n = 4鎖状・環状構造n = 5環状構造

n = 5では、環構造をターミネートしている水分子に、残りの1分子が溶媒和する ことにより環状構造を安定にしている。

$[Aniline-(H_2O)_{6-8}]^+$

n = 1-5と6-8でスペクトルが非常に異なる。 3000 cm⁻¹付近の強い吸収が消滅。3400 cm⁻¹付近にブロードな吸収を観測。 水分子の対称伸縮、反対称伸縮振動が弱い。環状構造か?

÷

スペクトルの比較

n = 6-8ではaniline+のNH伸縮振動が観測されず。3400cm⁻¹付近にブロードな吸収。

n ≥ 6で分子間プロトン移動反応が発生。

[Aniline--(H2O)6] + 最適化構造

5-member cyclic + 1

cyclic proton-transferred

n = 5以下では存在しなかった、プロトン移動した
 環状構造が*n* = 6から出現。
 → 実測の結果を支持。

安定なクラスター構造の特徴

✓イオンコアのすべてのOH基が水素結合している時にその構造が
 安定に存在できる。
 ✓環状構造をターミネートしている分子に溶媒和する、余分な1分子の存在
 (、で示した分子)が、環状プロトン移動構造を安定化している。

アニリンー水(1:*n*)イオン

•[aniline-(H₂O)_n]⁺の幾何構造を明らかにした。

•環状構造、プロトン移動構造が安定に存在するには、周囲の溶媒によるコア構造の安定化が重要な役割を果たしている。

まとめ

アニリンイオンへの溶媒分子種や分子数を変化させて、その溶媒和構造、 分子間プロトン移動反応を議論した。

◆アニリンーアミン(1:1)イオン

●一方のNH基に偏って溶媒和した構造をとる。

芳香族ラジカルとアミン分子が、その間に存在するプロトンを引き合って いる。

●アミン分子のプロトン親和力が増加していくと、あるところからプロトンが アミンへと移動し、イオンコアをプロトン付加アミンに交代させる。

◆アニリンー水(1:n)イオン

●両方のNH基が水素結合に関与し、サイズが増加すると鎖状→環状へと構造変化する。

● n ≥ 6 では、環状構造をとりながらプロトンを移動させた構造をとる。