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CChapter I 
 
                General Introduction 
 
  Protein posttranslational modifications are essential in mediating protein 

biological functions in living cells [1, 2]. Protein posttranslational 

modifications include phosphorylation [3, 4], peptidyl-prolyl cis-trans 

isomerization and so on [5-7]. Peptidyl-prolyl (X-Pro, X means any amino acid) 

has cis and trans configurations in proteins [8]. In cis configuration, the 

dihedral angle (ω) formed by Cα-C-N-Cα+1 is about 0º, while ω is close to 180º in 

trans configuration. Trans configuration has less energy than cis [9] and thus 

trans configuration of the peptidyl-prolyl is dominant in proteins. However, 

there are still about 5.2-6.5% X-Pro peptide bonds with cis configuration in 

proteins [10-12]. Previous studies have demonstrated that peptidyl-prolyl 

cis-trans isomerization has a very important role in regulating numerous 

cellular processes containing protein folding, ligand selection, ion-channel 

gating, phage infection, structural stability maintenance, cellular signal 

transduction and so on [9, 13-15]. Given the significance of peptidyl-prolyl 

cis-trans isomerization, the detailed biological functions and catalytic 

mechanisms for peptidyl-prolyl cis-trans isomerization will be discussed in the 

following sections.  

 

1. The biological functions of peptidyl-prolyl cis-trans isomerization 
 
Peptidyl-prolyl cis-trans isomerization in protein folding 
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  Proline residue has only one hydrogen atom connected with nitrogen. When 

X-Pro peptide bond is formed, proline nitrogen has no hydrogen and cannot 

role as hydrogen bond donor in proteins. Therefore, proline acts as a disruptor 

for protein secondary structure [16]. In α-helix, hydrogen bond is formed by the 

amide group of one residue and the carbonyl oxygen of the sequentially fourth 

residue. Obviously, proline cannot exist in the middle of α-helix and often 

locates as the first residue of α-helix. In β-sheet, proline only roles as hydrogen 

bond acceptor. Proline often exists in β-turn [17, 18], which is used to connect 

the α-helix and β-sheet in the protein.  

  Due to the specialty of the proline residue in protein structure, 

peptidyl-prolyl cis-trans isomerization is critical for protein folding [19, 20]. 

Ribonuclease A has some folding phases and four prolines [19, 21-24]; thus, it 

is often used to study the relationship between peptidyl-prolyl cis-trans 

isomerization and protein folding. P93 and P114 are in the cis configuration of 

Ribonuclease A [25]. Trans configuration of P93 and P114 will alleviate the 

protein conformational folding ability, especially P93 with trans configuration 

resulted in drastic reduced folding rate [19, 21, 26]. Additionally, the 

conformational change for P117 from trans to the cis configuration in 

Ribonuclease A also affected the rate of protein folding [19, 21]. These studies 

have shown that peptidyl-prolyl with own unique arrangement is necessary for 

protein folding. Previous studies revealed that folding of some other proteins 

were also affected by peptidyl-prolyl cis-trans isomerization, such as 

Ribonuclease T1 [27, 28]. Wedemeyer and colleagues suggested that 

peptidyl-prolyl cis-trans isomerization destroyed the formation of hydrogen 
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bonds that was thought to be critical for protein structure and thus changed 

the protein folding rate [19].  

  

Peptidyl-prolyl cis-trans isomerization in ligand selection 

  Proline is commonly found in loops of proteins [29]. Some protein loops 

interact with ligands [30]. Therefore, it is possible that the proline is involved 

in interacting with ligands. The interaction between protein and ligands is 

dependent on hydrogen bonds, van der Waals forces, and other forces [31, 32]. 

Peptidyl-prolyl cis-trans isomerization could induce local structural and 

hydrogen bonds changes, thus may affect the protein-ligand interaction. 

Peptidyl-prolyl cis-trans isomerization may be one potential mechanism for 

regulating the protein-ligand interaction.  

  Src homology 2 (SH2) domain belongs to interleukin-2 tyrosine kinase (Itk) 

that participates in immune response [33-35]. NMR spectrum of SH2 domain 

showed that some residues sequentially or spatially close to P287 had both cis 

and trans configurations [33]; when P287 residue was replaced by glycine, 

NMR spectrum showed that P287G mutant had only one conformation [33]. 

Solution structure of SH2 domain showed that P287 was located in the loop of 

SH2, and indeed P287 had both cis and trans configurations in conformers [33]. 

Previous studies demonstrated that SH2 with P287 in the cis configuration 

preferred to interact with neighboring SH3 domain [36, 37] while SH2 with 

P287 in trans configuration favored the motif with phosphotyrosine [36]. It is 

proposed that peptidyl-prolyl cis-trans isomerization roles to mediate ligand 

selection as the molecular switch [33]. 
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PPeptidyl-prolyl cis-trans isomerization in ion-channel gating 

  Ion channels are located at the cell membrane to regulate the ions to 

transfer into or out of cells. Living cells have more than 300 kinds of ion 

channels [38, 39], which are regulated by temperature [40, 41], pH [42-44] and 

other signals. Ion channels could be provided as one target for disease therapy 

[45, 46].  

  5-Hydroxytryptamine type 3 (5-HT3) receptor as an ion channel could be 

regulated by neurotransmitter [47]. There is a proline named P 8* existing in 

one loop connecting transmembrane helices [48]. NMR spectrum showed that 

some residues close to P 8* had both cis and trans configurations; mutation for 

P 8* resulted in functional loss of 5-HT3 receptor [49], which implied 

peptidyl-prolyl conformational change in this loop was related with 

ion-channel gating function [47]. It is proposed that when 5-HT3 receptor is in 

the open state for function, P 8* is in the cis configuration; while P 8* exists in 

trans configuration in the closed state of 5-HT3 receptor [47]. Peptidyl-prolyl 

cis-trans isomerization provides a unique insight to improve our 

understanding for ion-channel gating on the atomic level. 

   

Peptidyl-prolyl cis-trans isomerization in phage infection 

  Filamentous phage fd is one unusual virus that could infect Escherichia coli 

(E. coli) [50]. Gene-3-protein is found in the tip of phage, which was thought to 

be involved in infection for E.coli [50]. Gene-3-protein has two domains, named 

N1 and N2 domains that are connected by one hinge [51]. P213 is found in this 

hinge [51]. P213 residue was considered to affect N1 and N2 domains 
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interaction which was suggested to be important for infectious ability [52, 53]. 

It is proposed that when P123 is in the cis configuration, N1 and N2 domains 

will be close to each other, and the phage has no infectious ability; when P123 

is isomerized from cis to trans configuration, N1 and N2 domains will be far 

from each other, and the phage is functional [13, 53]. Hence, P213 cis-trans 

isomerization is proposed to regulate the infectious ability of the phage [53].  

 

PPeptidyl-prolyl cis-trans isomerization in protein structural stability 

  Proteins execute biological functions depending on their unique structures. 

The structural stability is needful for the roles of proteins in cells. Previous 

studies have revealed there is a balance between structural stability and 

protein function [54]. Proteins with reduced structural stability are harmful to 

physiological processes, which could cause monogenic disease [55], Parkinson’s 

disease and so on [56]. Peptidyl-prolyl cis-trans isomerization has impact on 

protein structural stability [13].  

  Up to now, the importance of peptidyl-prolyl cis-trans isomerization for 

structural stability is testified in many proteins, such as Staphylococcus 

aureus nuclease [57], G protein-coupled receptor kinase 2 (GRK2) [58]. GRK2 

could phosphorylate the G protein-coupled receptor that is related with 

cellular growth, development and so on [59-61]. GRK2 has S670-P671 motif 

where S670 could be phosphorylated to form pS670-P671 [58]. Human Pin1 

promotes the degradation of GRK2 with pS670-P671 motif [58]. Pin1 is 

momentous for performing cis-trans isomerization of pSer/pThr-Pro motif [62]. 
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Thus, it is reliable that peptidyl-prolyl cis-trans isomerization affects 

structural stability of GRK2.  

 

PPeptidyl-prolyl cis-trans isomerization in cellular signal transduction 

  Cellular functions are precisely regulated by kinds of proteins. These 

proteins form the huge network in the cells. Protein-protein interaction and 

protein-ligand interaction will transmit the outer simulative signals into the 

cells and thus cells response correctly. Proteins in cellular signal transduction 

pathways are affected by many factors, for example, peptidyl-prolyl cis-trans 

isomerization [13, 63, 64]. 

  Crk as a signaling protein is found to be overexpressed in many cancers [65, 

66]. Crk has two SH3 domains connected by one loop containing some proline 

residues [67]. Peptide bond between G237 and P238 plays an important role in 

regulating direction of both SH3 domains [67]. When peptidyl-prolyl of 

G237-P328 occupies cis conformation, both SH3 domains interact with each 

other, resulting in no functional state. Contrast, in the case of trans 

configuration, both SH3 domains are not close to each other, and Crk protein 

recovers the ligand binding affinity [67, 68]. Therefore, peptidyl-prolyl 

cis-trans isomerization mediates Crk protein function and thus controls the 

cellular signal transduction.  

 

2. The catalytic mechanisms of peptidyl-prolyl cis-trans 

isomerization 
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  Based on the above description, we know peptidyl-prolyl cis-trans 

isomerization is significant in living cells. Therefore, it is necessary to uncover 

the mechanism of peptidyl-prolyl cis-trans isomerization. It is known that 

carbon-nitrogen prolyl bond has partial double bond characteristics [69, 70]. 

The high barrier energy results in the slow process for cis-trans isomerization 

[71, 72]. The peptidyl-prolyl cis-trans isomerization is accelerated by 

peptidyl-prolyl cis-trans isomerases. Enzymes with isomerase activity are 

separated into cyclophilins, FK506 binding proteins (FKBPs), phosphotyrosyl 

phosphatase activator (PTPA) and parvulins [73-76]. The detailed catalytic 

mechanism regulated by isomerases remains controversial. In order to explain 

peptidyl-prolyl cis-trans isomerization, nucleophilic attack mechanism and 

twisting amide bond mechanism were hypothesized for isomerases. 

Nucleophilic attack mechanism was facilitated through the formation of 

covalent bond between active site cysteine residue and substrate carbonyl 

carbon; however, twisting amide bond mechanism was not assisted by the 

formation of the covalent bond [77-81]. Some peptidyl-prolyl cis-trans 

isomerases might adopt the twisting amide bond mechanism [82-84]. We will 

discuss peptidyl-prolyl cis-trans isomerization mechanism based on 

cyclophilins, FKBPs, PTPA and parvulin subfamilies in the following sections. 

 

CCyclophilins   

  Cyclophilins are widely found in many species, including mammals, bacteria 

and so on [85]. Here cyclophilin A (CyPA) is chosen as a representative for 

cyclophilins to discuss the peptidyl-prolyl cis-trans isomerization mechanism. 
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CyPA is known for binding cyclosporine A (CsA), which is a cyclic peptide 

inhibiting the lymphocyte activation [86-88]. Human cyclophilin A (hCyPA) 

could isomerize the peptidyl-prolyl bond in Itk and HIV-1 capsid proteins [36, 

89]. Fischer and colleagues thought cysteine residues in CyPA possessed a role 

in catalytic process as a nucleophile [86]. hCyPA has four cysteines, C52, C62, 

C115 and C161, respectively [90]. According to the nucleophilic attack 

mechanism [86], these four cysteines should interact with CsA covalently; 

however, replacement of every cysteine with alanine did not affect the affinity 

for CsA, which indicated that the role of cysteine thiol as a nucleophilic group 

in the catalysis was not taken [90]. The positions of four cysteines were not 

conserved in yeast CyP sequence whilst yeast CyP still had the detectable 

catalytic activity [90, 91]. Thus, it is speculated that cysteine residues have 

another role in CyPA instead of nucleophile. Values from secondary deuterium 

isotope effects for cyclophilin showed that carbonyl carbon did not rehybridize 

from sp2 to sp3 in the catalytic process, which eliminated nucleophilic attack 

mechanism [92-94]. It was hypothesized that twisting amide bond mechanism 

was accepted for hCyPA [81, 95] and R55 of hCyPA was suggested to role as 

hydrogen bond donor for proline nitrogen to facilitate the peptidyl-prolyl 

cis-trans isomerization [96], which was evidenced by that the replacement of 

R55 with alanine resulted in inactive catalytic function [97]. The role of 

cysteine residues in hCyPA remains elusive. To analyze the detailed function of 

cysteine residues will improve the understanding for peptidyl-prolyl cis-trans 

isomerization. 
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FFK506 binding proteins 

  FK506 binding proteins (FKBPs) are known for binding FK506 that is a 

chemical molecule could inhibit lymphocyte activation [98-101]. Besides 

peptidyl-prolyl cis-trans catalytic function, FKBP of archaea had 

chaperone-like activities [102], which implied that FKBP might have dual 

function in the living cells. FKBP-12 is one human FKBP, interacting with 

Smad7-Smurf1 [103], which indicates peptidyl-prolyl cis–trans isomerization 

may possess a role in regulating Smad7–Smurf1 complex. Complex crystal 

structure of FKBP and FK-506 demonstrated five hydrogen bonds existed 

between them [104]. The ketone carbonyl in the FK506 was perpendicular to 

the peptide bond plane, different from the unbound form of FK506, indicating 

the twisting amide mechanism may be accepted [104]. However, the position of 

R55 in cyclophilin was not found in FKBPs. It is speculated that the amide 

group of the residue following proline acts as hydrogen bond donor to form 

intramolecular hydrogen bond with proline nitrogen to facilitate the 

isomerization [81].  

  

Phosphotyrosyl phosphatase activator 

  Phosphotyrosyl phosphatase activator (PTPA) regulates and activates PP2A 

and PP2A-like enzymes through isomerizing peptidyl-prolyl bond [105]. PTPA 

proteins are extensively discovered in various species, scattering from yeast to 

human [106, 107]. Crystal structures of human PTPA (hPTPA), yeast PTPA1 

(Ypa1) and yeast PTPA2 (Ypa2) have demonstrated that hPTPA, Ypa1 and 

Ypa2 have the similar folds, comprising of α-helix without β-sheet [108], 
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however, other three kinds of PPIases have β-sheets in their structural core [84, 

104, 109]. Complex crystal structure of Ypa1 and peptide demonstrates that 

peptide addition leads to forming Ypa1 protein dimer, and peptide is located in 

hydrophobic groove formed by dimer interaction [108]. The communication 

mode of PTPA and substrate is significantly different from other PPIases [108], 

especially ATP or analogues are not dispensable for PP2A activation [106, 107]. 

Although PTPA shows the importance and specialty, however, to date, the 

catalytic mechanism remains elusive.  

 

PParvulins 

  Parvulin was first discovered in E.coli [110], and other parvulin proteins 

were found subsequently in human [111], plant [112]. So far, about 10 kinds of 

parvulin protein have the published structures deposited in PDB: Pin1 [113], 

Par14 [114, 115] from human, Pin1At from Arabidopsis thaliana [116], Par10 

[117], SurA [118] from E. coli, Ess1 from Candida albicans [119], PrsA-PPIases 

from Bacillus subtilis [120] and Staphylococcus aureus [121], PinA from 

Cenarchaeum symbiosum [122], and TbPin1 from Trypanosoma brucei [123]. 

According to favored substrate specificity, the above 10 kinds of PPIases are 

divided into two parts: Pin1-type parvulin (Pin1, TbPin1 and Pin1At) that 

prefers phosphorylated substrate with pSer/pThr-Pro motif [113, 123, 124]; the 

other is non Pin1-type (Par14, Par10, SurA, PinA, and both PrsA-PPIases) 

prefers non-phosphorylated substrate [112, 121, 122, 125]. Comparison shows 

that parvulin proteins have significant structural changes among them. 

Pin1At, TbPin1, PinA, Par14, Par10 have only catalytic PPIase domain 
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relative to other parvulin proteins [114-117, 121, 122]. The fold of catalytic 

PPIase domains of all parvulins are same, comprising of four α-helices and four 

β-sheets; two β-sheets are in the center of the structure and surrounded by four 

α-helices [113-123]. In the structure of PrsA from Staphylococcus aureus, it 

was the first time that Heikkinen and colleagues found there was a charge 

relay system between His-His motif located in the structural core [121]. Based 

on the high resolution of Par14 crystal structure, it was concluded that 

extended Cys/Asp-His-His-Thr/Ser motif and corresponding hydrogen bonds 

were conserved in all the parvulin proteins with isomerase activity [126]. 

However, the detailed role of tetrad motif in the parvulins is still not known.  

  Human Pin1 is representative in parvulins. Pin1 consisting of 163 residues 

was first discovered in yeast research [111]. Pin1 protein is composed of two 

domains connected by a long linker, and one domain is N-terminal WW domain 

that is in charge of binding short proline-rich motifs of substrates; the other 

one is C-terminal PPIase domain whose catalytic mechanism attracted much 

attention in the past years [113]. The isolated WW domain showed 

disappeared isomerization ability, whilst the separated PPIase domain had 

90% catalytic ability relative to the full-length Pin1 protein [127]. Pin1 prefers 

substrate with the pSer/pThr-Pro motif [113], however, due to low binding 

ability of PPIase domain for substrate, to date; there is no published structure 

for PPIase domain with natural substrates containing pSer/pThr-Pro motif to 

study the catalytic mechanism. In view of the complex crystal structure of Pin1 

and short Ala-Pro peptide, nucleophilic addition mechanism was proposed for 

catalysis [113], similar with cyclophilin [86]. Pin1 has one cysteine in the 
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active site, called C113 [113]. Ranganathan and colleagues thought that the 

thiol of cysteine would attack the carbonyl carbon and form covalent bond 

between them to facilitate the isomerization of motif [113]. However, more and 

more evidences are against nucleophilic addition mechanism of Pin1. The 

cysteine does not seem to be essential as evidenced by that C113S and C113D 

mutant did not abolish catalytic activity [128]. Behrsin and colleagues 

suggested that C113 only maintained the overall electronegative environment 

for the substrate, which might prevent the formation of carbon-nitrogen double 

bond in the substrate [128]. However, this mechanism cannot explain the 

severely decreased catalytic activity of C113S and C113D because carboxyl in 

aspartic acid, hydroxyl in serine also could function to supply the 

electronegative environment for the isomerization process. One complex 

crystal structure of Pin1 and a specially devised inhibitor where carbonyl 

group was replaced by methylene that mimicked the twisted state of the 

substrate expressed that C113 sulfur was 4.6 angstrom distant from 

methylene carbon [84]. The structure also showed that the covalent bond 

between C113-S and carbonyl carbon was not formed in the catalytic process. 

Additionally, cyclohexyl ketone inhibitors showed weak inhibition of Pin1 [129]; 

Results from secondary kinetic isotope effects meant carbonyl carbon did not 

change from sp2 to sp3 in the catalytic process, which ruled out the nucleophilic 

addition mechanism [130]. Twisting amide mechanism was proposed for Pin1 

[130]. Twisting amide mechanism was assisted by inter or intra hydrogen 

bonds. Schroeder and colleagues suggested that H59 Nε2-H would role as 

hydrogen bond donor [77]. However, complex crystal structure of Pin1 and 



 

13 
 

substrate with twisted-amide state demonstrated that there was no hydrogen 

bond between proline nitrogen and Pin1 atoms, which indicated that the amide 

group of the residue following proline acts as hydrogen bond donor to promote 

isomerization. 

  Based on the above discussion, twisting amide mechanism may be 

hypothesized for some peptidyl-prolyl cis-trans isomerases. Nucleophilic 

addition mechanism was suggested in the initial studies of CyPA and Pin1 [86, 

113]. The reason is that CyPA and Pin1 have cysteine residue in the active site, 

and thiol group of cysteine could function as nucleophile. To date, nucleophilic 

addition mechanism was ruled out by mutagenesis, kinetic isotope effects. 

However, the role of cysteine in PPIases remains elusive. Replacement of 

cysteine resulted in decreased catalytic activity. Hence, it is necessary to 

uncover the role of cysteine in PPIases, and it will help us improve the 

understanding for detailed catalytic mechanism of PPIases.   
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CChapter II 

The C113D mutation in human Pin1 causes allosteric 

structural changes in the phosphate binding pocket of 

PPIase domain through the tug-of-war in the dual 

histidine motif 

 
Summary 

  Pin1 peptidyl-prolyl isomerase (PPIase) catalyzes specifically pSer/pThr-Pro 

motif. The peptidyl-prolyl cis–trans isomerization mechanism has been 

studied by various approaches, including X-ray crystallography, site directed 

mutation to identify the functionally relevant residues, and kinetic isotope 

effect on the isomerization. However, it still remains elusive. Preceding studies 

proposed that C113 in Pin1 has a catalytic role in the conformational 

transition process through its nucleophilic attack or hydrogen bonding to 

substrate carbonyl moiety. The fact that C113D mutant Pin1 does not abolish 

the activity challenges the importance of C113 as a catalyst. To facilitate our 

understanding on the Pin1 isomerization process, the structures and dynamics 

of the wild-type and C113D mutant Pin1 PPIase domains comprising the 

residues 51–163 were compared. We found that the C113D mutation disturbed 

the hydrogen bonds among the conserved histidine residues, H59 and H157 

(“dual histidine motif”); H59 imidazole forms a tighter hydrogen bond to H157 

in the wild type, whilst it has a stronger hydrogen bond to D113 in C113D 
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mutant. C113D mutation unbalanced the tug-of-war for H59, which eventually 

resulted in the altered active loop structure having basic triad residues (K63, 

R68 and R69) engaging in the phosphate binding. The active loop distortion 

could explain the severely reduced substrate binding of C113D mutant. This 

work demonstrated that C113 had a role in maintaining the catalytic site in an 

active fold, which has been never described before. 
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11. Introduction 

  Pin1 is a highly conserved peptidyl-prolyl isomerase (PPIase) that 

specifically catalyzes the cis–trans isomerization of pSer/pThr-Pro substrates, 

thereby regulating protein functions [131-133]. Pin1 catalyzes the intrinsically 

slow conversion of the peptidyl-prolyl bond from cis to trans and vice versa, 

thus “switches” their conformation, in coupled with protein kinases to 

Ser/Thr-Pro motif. The Pin1-mediating conformation changes following 

phosphorylation are believed to constitute novel transduction pathways in 

various phosphorylation-dependent signaling processes in cells. Disordering of 

Pin1 function, therefore, leads to pathogenesis of cancer and the protein 

folding diseases including Parkinson’s and Alzheimer’s diseases [134-136]. 

Pin1 interacts with some transcription factors that are phosphorylated in cells 

essentially roles in maintaining pluripotency of the induced pluripotent stem 

(iPS) cells and the embryonic stem (ES) cells [137].  

 Pin1 comprises of two domains; a catalytic domain functioning as PPIase 

and a WW domain that binds to pSer/pThr-Pro containing substrate [113]. The 

two domains are shown to interplay when Pin1 acts [138-140], whereas PPIase 

domain is solely responsible for isomerization activity. In fact, the isolated 

PPIase domain displays comparable or more activity relative to the full-length 

Pin1 [141], which assures the isolated PPIase domain can be used for the study 

of its enzyme mechanism.  

 Pin1 is a member of the parvulin family composing of a small PPIases. 

Parvulins are classified into two types in terms of substrate specificity; 

phosphospecific (Pin1-type) and non-phosphospecific (Par14-type) [142]; the 
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non-phosphospecific type parvulins consist of only PPIase without WW domain 

[143]. All parvulins share similar folds and conserved residues in the catalytic 

site in PPIase [113], which allow the structural comparisons among the 

parvulin PPIases for assessing the roles of each conserved catalytic site 

residues. The high-resolution crystal structure of human Par14 showed the 

four conserved residues have hydrogen bonding network running across the 

catalytic site [126]. The hydrogen bonding network by the four-residue motif 

(“catalytic tetrad”) in Par14 is supposed to be conserved among all parvulin 

family PPIases to maintain the folding of the catalytic site [126]. The catalytic 

tetrad in Pin1 consists of C113-H59-H157-T152 while the Par14 counterpart is 

D74-H42-H123-T118. The tetrad motif sequence is, thus, represented as 

Cys/Asp-His-His-Thr/Ser with inclusion of the variation at fourth residue in 

the parvulins [126].  

 Pin1 catalytic mechanism on the atomic level is not well understood. The 

proximity of C113 to the carbonyl in the bound Ala-Pro dipeptide in the Pin1 

complex crystal structure deduced the nucleophile attack catalysis by C113 

(Figure II-1A) [113]. The cysteine, however, does not seem to be essential, as 

evidenced by that C113D and C113S mutations did not abolish the activity 

(Figure II-1B) [128]. Moreover, the corresponding cysteine is replaced by an 

aspartate in Par14-type PPIases [115, 143]. In an alternative proposition, SH 

group of C113 makes the hydrogen bond to the carbonyl oxygen in the 

substrate to disrupt the carbon-nitrogen -bond of the amide to rotate easily 

[128]. This mechanism cannot clearly explain the severe activity reduction for 

C113S that replaces SH with OH, in considering that both groups can work as 
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hydrogen bond donors. An elaborate study using kinetic isotope effects 

demonstrated that twisting the amide bond formation lowers the transition 

energy for isomerization, which is facilitated by hydrogen bonding to prolyl 

nitrogen from the following residue amide proton in the substrate peptide 

[130]. The crystal structure of Pin1 with a reduced amide inhibitor bound in 

the active site showed the compound structure was close to the twisted amide 

supposed to be in transition state [84].  

 Molecular dynamics simulation gave the other insights into the cis–trans 

isomerization process. Hamelberg and co-worker applied molecular dynamics 

simulation to sample the entire conformation ensembles of the Pin1 substrate 

complex, with the corresponding relative binding free energies, during the 

cis–trans conversion of the substrate [144]. The theoretical work could assess 

the binding free energies in the substrate–Pin1 complex, which are not 

accessible experimentally, and showed Pin1 preferentially binds to transition 

state substrate having ω ≈ 90° over those in cis or trans states [144]. This 

observation is consistent with the twisted amide bond mechanism mentioned 

above [130].  

 Hamelberg’s group has also demonstrated that the PPIase domain of Pin1 

in free state samples significantly wider conformations than those for the 

complexes with cis or trans peptide substrate [145]. They proposed that Pin1 

adopt conformational selection in phosphorylated substrate recognition, with 

emphasizing the importance of intrinsic structural flexibility of Pin1 PPIase 

domain [145]. The functional relevance of the structural dynamics of PPIase 

domain is also emphasized experimentally: the conformation sampling may 
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change through the contact with WW domain in response to the substrate 

bound in the domain interface [138-140].  

 In this work, we explored the mechanism for the reduced activity of C113D 

Pin1 PPIase mutant with intention to improve our understanding how Pin1 

isomerizes. C113D mutant has arose controversial arguments against the 

proposed mechanisms. C113D mutant has the catalytic tetrad motif, defined as 

Cys/Asp-His-His-Thr/Ser, but the mutant showed severely reduced activity. 

Therefore, the proposed role of the hydrogen bonding network among the 

tetrad in precisely positioning Cys/Asp moiety [126] does not seem valid for 

Pin1. In addition, the mechanism assuming C113–substrate carbonyl 

interaction hardly explains that C113D mutant retains activity, although it is 

reduced; aspartate side chain cannot be a hydrogen bond donor as thiol group 

is at neutral pH [128]. Exploring why C113D mutant has reduced its activity 

will, therefore, give us newer insights into the isomerization mechanism of 

Pin1, which prompted us to work on C113D mutant Pin1 PPIase domain.  

 The present work has shown that the reduced activity of C113D is 

primarily ascribed to its reduced binding to phosphate moiety in the substrate. 

The reduced binding could be explained by the deformed active loop 

comprising of three basic residues (K63, R68 and R69) that directly bond to 

phosphate, as evidenced by NMR structures of C113D and wild-type Pin1 

PPIases. The hydrogen bonding network among two histidines (H59 and H157) 

within the tetrad motif was observed in both wild-type and C113D mutant 

Pin1 PPIase domains. The strengths of the hydrogen bonds, however, changed 

in the C113D mutation; H59 seems pulled to H157 in the wild type, whilst it 
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has a stronger hydrogen bond to D113 in C113D mutant. H59 is in the 

“tug-of-war” of the hydrogen bonding network between the residues at 113 and 

H157 among the catalytic tetrad. The unbalancing the tug-of-war by the 

mutation altered the active loop structure presumably by destabilizing the 

catalytic site fold. The structural destabilization by C113D mutation was 

apparent, as evidenced by the elevated chemical exchanges seen in the spin 

relaxation data and the increased H/D exchange rates for most of the residues 

in C113D mutant. We eventually emphasize that C113 roles in keeping the 

catalytic site in an active fold.  
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22. Materials and methods 

2-1. Pin1 PPIase purification 

  The cDNA encoding the peptidyl-prolyl isomerase (PPIase) domain of human 

Pin1 (residues 51–163) [113] was cloned to the expression vector pET28a 

(Addgene). The recombinant plasmids were transformed to Escherishia coli 

strain BL21 (DE3) cells (New England Biolabs). The cells were grown in M9 

minimum medium at 37°C with 50 μg/ml kanamycin to an A600 of 0.6. For 

preparing the NMR samples, 15NH4Cl and 13C-glucose were used for nitrogen 

and carbon sources, respectively. The expression of the His6-tagged protein 

was induced by adding isopropyl-β-thiogalactopyranoside (IPTG) to a final 

concentration of 0.5 mM, and the cells were further cultured for 16 h at 18°C. 

Cells from a 1-liter culture medium were harvested and re-suspended in 100 

ml buffer solution (50 mM Tris-HCl, pH 8.0). The cells were broken by 

sonication and the soluble fraction was collected by the centrifugation at 

14,000 rotation per min (rpm) at 4°C for 20 min. Polyethylenimine was put 

into the supernatant to a final concentration of 0.1% to remove the DNA and 

RNA contaminants by applying another centrifugation at 14,000 rpm at 4°C 

for 20 min. The collected supernatant was applied to TALON® column 

(TAKARA Bio). After the flow through to the column with the buffer solution 

(50 mM Tris-HCl, pH 8.0), the column was further washed with the 200 ml 

solution containing 50 mM Tris-HCl, pH 8.0 and 25 mM imidazole. His6-tagged 

protein was eluted with the other buffer solution (50 mM Tris-HCl, pH 8.0 and 

400 mM imidazole). The collected His6-tagged protein was subjected to dialysis 

against 50 mM sodium phosphate buffer, pH 6.0. After the dialysis, 80-unit 
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thrombin protease solution (GE Healthcare) was put into the protein solution 

to cleave the His6-tag from the PPIase domain fragment; the proteolysis 

reaction was done at 20°C for overnight. The reactant was applied to 

cation-exchanger column HiTrap SP FF (GE Healthcare) equilibrated with 50 

mM sodium phosphate buffer, pH 6.0. PPIase domain was eluted by the NaCl 

gradient from 0 M to 1 M in 50 mM sodium phosphate buffer, pH 6.0, using 

BioLogic DuoFlowTM HPLC system (Bio-Rad). The collected fractions 

containing PPIase were subjected to the extensive dialysis against the desired 

buffer solutions according to the purposes for use.   

Site directed mutation to change C113 to D113 in Pin1 PPIase domain was 

done by using KOD FX (TOYOBO). The purification of C113D mutant PPIase 

was carried out according to the same protocol described for the wild-type 

PPIase. 

  

2-2. NMR spectroscopy and structure determination 

  The structural determination of the wild-type and C113D PPIases were done 

according to the standard procedure using isotope labeled samples [146]. A set 

of standard 3D triple-resonance data was used to assign backbone and side 

chain resonances. NOEs from 15N edited and 13C edited 3D NOESY spectra 

were used to generate the distance restraints in the structure calculation. All 

NMR data were got on a Bruker AvanceII spectrometer equipped with a triple 

resonance cryogenic probe operating at 700.33 MHz for 1H resonance frequency. 

Samples concentrations for wild-type and C113D were both 0.8 mM, in 50 mM 

sodium phosphate (pH 6.6), 100 mM Na2SO4, 1 mM DTT, 0.03% NaN3 and 5 
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mM EDTA. In the case of the samples in 50 mM Tris-HCl (pH 6.8), 1mM DTT, 

and 0.03% NaN3 contained 0.3 mM protein for both the wild-type and the 

C113D mutant PPIases. All experiments were done at 299 K. NMR data were 

processed by NMRPipe [147], and the spectral analyses were done using the 

program suite KUJIRA [148] running with NMRview [149].  

Structure calculation was carried out by the program CYANA 2.1 for fully 

automatic NOE assignments [150, 151]. The backbone dihedral angle 

restraints were generated by the TALOS+ program [152]. The 40 

lowest-energy CYANA structures were subjected to explicit water refinement 

with XPLOR-NIH [153] with the distance and dihedral restraints. The final 10 

XPLOR-NIH structures were validated using the program PROCHECK-NMR 

[154]. The structural statics for both wild-type and C113D mutant PPIase 

domains in the presence of sulfate and phosphate ions are provided in table 

II-1.  

The resonance assignments and the structural data for the wild-type and 

C113D mutant PPIase domains in the presence of sulfate and phosphate ions 

are deposited in the Biological Magnetic Resonances Bank (BMRB) and the 

Protein Data Bank (PDB): BMRB accession codes: 11559 and 11560, PDB 

accession codes: 2RUC and 2RUD. BMRB accession codes for wild-type and 

C113D mutant PPIases in the absence of sulfate and phosphate ions are 11557 

and 11558. 
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22-3. Isothermal titration calorimetry (ITC) experiments 

  ITC experiments were carried out at two temperatures, 288 K and 298 K, on 

a Microcal Auto-iTC200 calorimeter (GE Healthcare). Cdc25C peptide 

(sequence: EQPLpTPVTDL, pT represents a phosphorylated threonine) was 

dissolved in 50 mM Tris-HCl buffer solution (pH 6.8). The peptide was titrated 

into a 200 μl PPIase solution (0.1 mM protein centration, 50 mM Tris-HCl, pH 

6.8); 1.5 μl of peptide solution (1.2 mM concentration) was injected at each of 

the total 25-time titrations. The collected data were analyzed through the 

software Microcal ORIGIN (GE Healthcare). Cdc25C phosphorylated peptide 

was purchased from a company (Funakoshi) and used without further 

purification.  

 

2-4. Isomerization rate measurements  

  Isomerase activities for wild-type and C113D mutant PPIases were assessed 

by using 2D 1H-1H EXSY (EXchange SpectroscopY) [138, 155]. The sample 

contained 2 mM Cdc25C phosphopeptide with 50 μM PPIase, wild-type or 

C113D. The sample solution contained 50 mM Tris-HCl (pH 6.8), 1 mM DTT, 

and 0.03% NaN3. The experiments were done at 295 K on a 700 MHz NMR 

spectrometer. The exchange times were set to 2, 5, 10, 15, 25, 35, 50 (twice), 75, 

100 (twice), 200, 300, and 400 ms. The net exchange rate, kEX, was estimated 

to fit the equation below (eq. 1) to the ratios of the trans-to-cis exchange 

cross-peaks against the trans diagonal peaks. In estimating the kEX values, the 

buildup profiles from the signals for pT5 CH3, pT5 HN and V7 HN were 

simultaneously used for fitting, as in a global fitting manner. 
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                                              (1)                                      
 

In eq 1, kCT and kTC are the adjustable parameters in fitting and the net 

exchange rate, kEX, is defined as kEX = kCT + kTC, where kCT and kTC are the 

exchange rates from cis-to-trans and trans-to-cis, respectively. Uncertainties in 

the rate constants were estimated by using Monte Carlo simulations based on 

the duplicated data.  

 

22-5. NMR spin relaxation experiments and analysis 

  All backbone 15N R1 and R2 relaxation rates and steady-state heteronuclear 

15N NOE (hNOE) data were collected at 700 MHz NMR spectrometer at 299 K. 

Samples had 1.4 mM (wild-type) and 2.0 mM (C113D mutant) protein, 

respectively, in 50 mM sodium phosphate (pH 6.6), 5 mM EDTA, 100 mM 

Na2SO4, 1 mM DTT, and 0.03% NaN3. In the case of the samples in 50 mM 

Tris-HCl (pH 6.8), 1mM DTT, and 0.03% NaN3 contained 0.3 mM protein for 

both the wild-type and the C113D mutant PPIases. Each peak intensity was 

measured by averaging over the signal intensities at the peak center and its 

eight surrounding points (9-point averaging); each peak center was found by 

SPARKY ‘pc’ function (T.D. Goddard and D.G. Kneller, SPARKY 3, University 

of California, San Francisco). The delays for R1 measurements were trelax = 10.3 

(twice), 153.9, 307.9, 461.8, 615.7 (twice), 769.6, 923.6, 1128.8, 1539.3 ms, 

while the delays for R2 were trelax = 0.0, 16.0 (twice), 40.0, 80.0 (twice), 160.0 ms. 

The spectra for R1 and R2 were collected in an interleaved manner. For 
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measuring hNOEs, we recoded an interleaved pair of spectra in which 1H 

saturation of 3 s was applied alternatively with the relaxation delay set to 2 s. 

  R1 and R2 relaxation rate constants for each signal were determined through 

the function fitting using modelXY TCL built-in function of NMRPipe. 

Uncertainties for R1 and R2 were estimated in a Monte Carlo manner based on 

the duplicated data. The uncertainty for each hNOE value was evaluated 

using the root mean square deviation (rmsd) value on the spectral area having 

no peaks, which was gained by the NMRPipe built-in module. 

  The reduced spectral density functions including Jeff(0), J(ωh), J(ωN) were 

calculated using the software suites, REALAX version 3.1.5 [156, 157]. 

Rotational correlation times and the rotation diffusion tensors for the 

wild-type and C113D mutant were determined by using the program package 

RotDif [158] on Matlab platform (Mathworks). 

  

22-6. H/D exchange rate measurements 

  The amide proton-deuteron exchange (H/D exchange) rates were measured 

with extensively lyophilized samples; the sample solution (wild-type or C113D 

mutant PPIase in 50 mM sodium phosphate, pH 6.6, 5 mM EDTA, 100 mM 

Na2SO4, 1 mM DTT, and 0.03% NaN3) was rapidly frozen by liquid nitrogen, 

then put into a vacuum chamber for about 12 h. To remove remaining protons 

from the sample, the above lyophilized sample was again dissolved by 100 μL 

D2O (over 99.96 atom % deuterium; Sigma-Aldrich) and again lyophilized. The 

lyophilized sample in a plastic test tube was dissolved by the same volume of 

D2O as that evaporated, just prior to a series of 2D 1H-15N HSQC spectra. 
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NMR measure was initiated within 10 min after dissolving the sample. For the 

case of the wild-type, one spectrum was collected for 25 min and 24 data were 

collected sequentially. For the C113D mutant, it took 35 min for one spectrum 

and the 35 spectra were measured sequentially. There were no apparent 

structural changes caused by lyophilize to both wild-type and C113D PPIases, 

which was evidenced by the NMR spectral comparison between the data before 

and after lyophilization. H/D exchange rate for each peak was determined 

through the peak intensity change according to the measuring time; time at 

the end of each spectral collection was used as the H/D exchange delay time for 

the signals on the corresponding spectrum. In functional fitting to extract the 

H/D exchange rate, H DR , the incomplete 1HN exchange to 2DN due to the 

residual protons content in D2O solution was considered; the function in eq. 2 

was, thus, used for fitting to the HN intensity profile; 

                                           (2) 

where I0, Ib, and H DR are used as the adjustable parameters in fitting 

calculation. 

 

22-7. R2 relaxation dispersion experiments 

  Conformational exchange rates were further elucidated by using R2 

relaxation dispersion experiments using a series of 15N CPMG-HSQC spectra 

[159]. The effective transverse relaxation rates were measured by changing 

the delays between 180° pulses for 15N spins in CPMG loop. Total CPMG 

duration was kept constant at 40 ms. Samples contained 1.4 mM (wild-type) 

and 2.0 mM (C113D mutant) protein, respectively, in 50 mM sodium phosphate 
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(pH 6.6), 5 mM EDTA, 100 mM Na2SO4, 1 mM DTT, and 0.03% NaN3. In the 

case of the samples in 50 mM Tris-HCl (pH 6.8), 1mM DTT, and 0.03% NaN3 

contained 0.3 mM protein for both the wild-type and the C113D mutant 

PPIases. All the experiments were carried out at 299 K on a Bruker AvanceII 

700 MHz NMR spectrometer. Each peak intensity was estimated by the 

nine-point averaging for each cross peak with a home-written program.  

 Kinetic parameters were estimated by using a two-state model of the 

general Carver-Richards equation [160]. Functional fitting to the data was 

achieved by using a home-written program adopting the differential evolution 

optimization [161]. Uncertainties were estimated on the basis of duplicate data 

and Monte-Carlo approach, in which 32 data sets of each residue were 

generated based on an initial fit of the collected data to which Gaussian noise 

representing experimental uncertainties of R2 was added. Exchanging 

residues were grouped according to their individual R2 rates, and the residues 

in each group were subjected to the global fitting to gain the single R2 value for 

all the residues in the same group. Uncertainty for the global kinetic 

parameter was estimated by Monte-Carlo approach.  

 

22-8. Measuring histidine imidazole 15N chemical shift changes according to 

the D2O content in solution  

  The imidazole 15N chemical shifts were measured using 1H-15N HSQC 

spectra for the sample solution containing 6%, 50% and 100% D2O. The sample 

was prepared from the lyophilized protein solution with 50 mM sodium 

phosphate buffer (pH 6.6) and 100 mM sodium sulfate. To exclusively 



 

29 
 

eliminate the proton, the lyophilized sample was dissolved by D2O and then 

subjected to further lyophilization; the procedure was repeated twice to 

extensively purge protons in the sample. In the final sample solution 

containing different amount of D2O, 5 mM EDTA, 1 mM DTT and 0.03% NaN3 

was added. All data were collected at 299 K on a 700 MHz NMR spectrometer.  

 

22-9. Circular Dichroism (CD) spectroscopy to monitor the heat denaturing 

processes of the wild-type and C113D mutant 

  The molar ellipticity at 222 nm was performed to monitor the structural 

denaturing process with a JASCO-720W spectrometer. Sample solution was 

consists of 50 mM sodium phosphate (pH 6.0), 100 mM Na2SO4, and 1 mM DTT. 

Protein concentration was adjusted to 2 μM for the cases of the wild-type and 

C113D mutant. Temperature was changed in the range of 20°C to 80°C, with 

increasing rate at 1°C/min.  

 

2-10. Maleimide assay for reactivity analyses of the cysteine residues in 

Pin1 

  Maleimide assay was performed as described previously [162]. Briefly, 

proteins (2 μg) were incubated with various concentration of hydrogen 

peroxide (H2O2) in the presence of 1mM TCEP for 30 min at room temperature. 

Oxidation reaction was terminated by adding TCEP and SDS for the final 

concentration of 1 mM and 0.5%, respectively. Then, rhodamine-maleimide 

(Life Technologies) was added to the mixture to 0.2 mM final concentration, 
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and incubated at room temperature for 30 min. The reaction was stopped by 

adding SDS-PAGE sample buffer containing β-mercaptoethanol, and proteins 

were separated by SDS-PAGE. Rhodamine fluorescence was visualized by 

image reader, RAS4000 (Fujifilm, Tokyo Japan). 

 

22-11. Mass spectroscopic analyses of the oxidized peptides in Pin1 

  The wild-type Pin1 was incubated with 0.01% hydrogen peroxide in the 

presence of 1 mM TCEP for 30 min at room temperature. Proteins were 

separated from reaction ingredients by desalting column, PD-10 (GE 

healthcare). After proteins had been completely digested by trypsin, peptides 

were analyzed by LTQ (Thermo Fisher Scientific) and MASCOT search engine 

(Matrix Science).  
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33. Results 

3-1. Cis-trans isomerization rates for wild-type and C113D mutant PPIases 

 C113D mutant Pin1 PPIase showed significant reduction in kcat relative to 

the wild-type [128]. To further elucidate the role of C113 in the isomerization 

process, we directly measured the cis-trans isomerization rates for the 

wild-type and C113D mutant PPIase domains using 2D EXSY (Figure II-2A). 

In the following description, we refer to Pin1 PPIase domain as simply PPIase, 

unless otherwise noted. Cdc25C phosphorylated peptide was used as substrate. 

The cis-to-trans isomerization rates were 51.6 ±1.9 s-1 (wild-type) and 0.7 ± 0.5 

s-1 (C113D mutant) at 295 K. The rates for trans-to-cis exchange were 6.6 ± 2.1 

s-1 (wild-type) and 0.1 ± 0.0 s-1 (C113D mutant). The isomerase activity of 

C113D was approximately 70-fold lower than that of the wild-type. 

 

3-2. C113D mutant PPIase had limited affinity to the phosphorylated 

peptide 

  The binding affinity to phosphorylated peptide was compared with ITC 

(Figure II-2B). The results demonstrated that C113D mutant PPIase has very 

limited affinity to the phosphor-peptide, apparently no binding ability was 

observed; while the wild-type showed the dissociation constant KD ~ 10 mM. 

The reduced isomerization rate of C113D mutant is ascribed to its faint 

substrate affinity.  
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33-3. Induced structural change by C113D mutation assessed by NMR 

chemical shifts  

  Comparison of 2D 1H-15N HSQC spectra for the wild-type (Figure II-3A) and 

C113D mutant (Figure II-3B and II-3B-1) PPIases showed C113D mutation 

caused spectral change to a wide-range of residues in the catalytic site (Figure 

II-4A). Residues K63, R68, and R69 showed significant structural changes, 

implying the mutation may disturb the distal loop in an allosteric manner 

(Figure II-4A, right).  

  S114 and S115, which neighboring to the mutation site, showed a severe 

reduction in their signal intensities (Figure II-4B); the signal for S114 in 

C113D was observed at 8.80 ppm (1H) and 120.6 ppm (15N) (Figure II-3B-1) on 

the spectrum with extremely weak intensity, whereas the S115 signal was not 

observed. C113D substitution could facilitate their amide proton exchanges 

with water by proximate positioning of the negatively charged aspartate side 

chain to the amide groups of S114 and S115 [163].  

 

3-4. Structural changes caused by C113D mutation 

  Three dimensional structures for the wild-type and C113D mutant were 

solved by NMR under the same experimental condition (Figure II-5). The 

overlaid structures for the wild-type and C113D PPIases demonstrated the 

apparent structural changes are in the helix near the mutation site, and the 

active site loop (residues K63-T81) (Figure II-6A). In the followings, the 

observed structural differences will be described in detail.    
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  The structures near the C113 showed subtle but significant changes; the 

short helix including S114 and S115 was extended in C113D (Figure II-6B). 

The extended helix could make the amide groups in S114 and S115 stay close 

to the side chain negative charge of D113 in longer residence time than that  

for the corresponding residues in the wild-type, which may explain the reduced 

signal intensities for S114 and S115 in C113D (Figure II-4B).  

  In closer looking at the active site loop (residues K63-T81) in C113D mutant, 

the backbone structure changed from the corresponding part in the wild-type 

to disorient the side chains of the residues K63, R68 and R69, which are called 

as “basic triad” (Figure II-6C). The crystal structure of a reduced amide-Pin1 

complex (PDB code: 3NTP), which structure is considered to mimic the 

transition state complex with pSer-Pro, the residues in the basic triad have 

hydrogen bonds to the phosphate moiety in the substrate [84]. The side chain 

disorientation of the basic triad in C113D mutant may explain the severely 

reduced binding to the phosphorylated substrate (Figure II-2B).  

  To support the above discussion on the C113D active loop structure, it should 

be noted that the active loop keeps the structural rigidity comparable to the 

secondary structured parts, as evidenced by the hNOE values greater than 0.8, 

in both the wild-type and C113D mutant (Figure II-12). The structural change 

observed for the loop is, therefore, significant (Figure II-6C): in general, the 

accuracy and precision for a segment in NMR structure tend to be spoiled, if 

the segment has apparent structural flexibility indicated by low hNOE values 

(typically, < 0.5), but it is not the case for this loop. 
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  The structural determination of the wild-type and C113D mutant PPIases 

were finished in the solution containing 50 mM sodium phosphate and 100 mM 

Na2SO4. In the sample solution, phosphate or sulfate ions should stay in the 

phosphate binding pocket formed by the basic triad in both the wild-type and 

C113D mutant; which were evidenced by the chemical shift changes between 

the spectra for the proteins in solution with (Figure II-3) and without (Figure 

II-7) phosphate and sulfate ions (Figure II-8). The basic triad structures in the 

present wild-type and C113D mutant (Figure II-6C) could surrogate the 

phosphor-moiety bound state, which may consolidate the functional 

significance of the structural changes in the basic triad.  

  The C113D mutation destabilized the neighboring histidine cluster 

comprising of H59 and H157: the number of NOEs from histidine ring protons 

have significantly reduced in C113D relative to the wild-type (Figure II-6D). 

Although the spatial arrangement of the imidazole rings of H59 and H157 in 

C113D is close to that in the wild-type, their side chain dynamics should be 

increased in the mutant. NOE intensity depends not only on the inter-proton 

distance but also the internal motion to fluctuate the inter-proton distance; if 

the fluctuation on the inter-proton distance is significant, the observed NOE 

intensity for a coupled protons should be reduced [164].  

 

33-5. Histidine hydrogen bond stabilities elucidated using H/D isotope effect 

on NMR chemical shifts  

  In accordance with the destabilization to histidine cluster in the active site, 

C113D mutation perturbed the hydrogen bonds mediated by H59 and H157, 
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which was evidenced by using H/D isotope effect on the 15N chemical shifts for 

their ring moieties. The direct attachment of deuteron to 15N atom changes the 

15N chemical shifts according to the “hydron” (referring to proton or deuteron) 

position in the hydrogen bond; the secondary isotope effect is defined as 

, where (DN)  and (HN)  denote the 15N chemical shift 

values when bonded to deuteron and proton, respectively [165].  

  The tautomeric forms for H59 and H157 in Pin1 PPIase were determined by 

1H-15N HSQC using 1Hε1 and 1Hδ2 in imidazoles [166]; H59 Nε2 and H157 Nδ1 

were directly bound to proton (Figure II-9). The 15N chemical shifts for Nε2 

(H59) and Nδ1 (H157) showed high-field isotope shifts by binding to deuteron 

(Figure II-10). The identified tautomeric forms for the histidine imidazole 

rings were used in the structure calculation to define their ring orientation 

(Figure II-6D). The imidazole ring flips for H59 and H157 were the same 

between the wild-type and C113D mutant Pin1 PPIase; their ring orientations 

were similar to those found in the high-resolution Par14 crystal structure [126]. 

As expected from the Par14 structure, the hydrogen bonds between Hε2 (H59) 

and Hδ1 (H157) can form hydrogen bonds to C113 (D113) side chain Sγ (Oδ) 

atom and H59 Nδ1, respectively.  

  The stability of each hydrogen bond was elucidated based on the chemical 

exchange rates between the ND and NH states in the solution containing 50% 

D2O (Figure II-10). As demonstrated in the parts of the spectra, the signal 

shapes for Nε2 (H59) and Nδ1 (H157) observed in 50% D2O solution were 

different between the wild-type and C113D mutant, implying the hydrogen 

bonds in the histidine cluster changed in C113D mutant active site (Figure 
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II-10). The Nδ1 (H157) in the wild-type PPIase was doublet along the 15N axis, 

whilst the counterpart signal in the C113D mutant was singlet resonating at 

the mid of the chemical shifts between δ(Nδ1H) and δ(Nδ1D ) (Figure II-10A). In 

the case of the Nε2 (H59), the wild-type showed singlet but the C113D mutant 

show doublet signal (Figure II-10B). The doublet signals in 50% D2O solution 

indicates the slow H/D exchange onto the corresponding 15N nucleus; based on 

the isotope shift of δ(15N) around -1.0 ppm (Figure II-10), the H/D exchange 

rate for the proton on the 15N nucleus showing double is estimated less than 

155 s-1. The 15N imidazole nitrogen atoms showing doublet should be engaged 

in the stable hydrogen bonds.  

  The imidazole ring orientations determined in the wild-type and C113D 

mutant could assure the hydrogen bond network connecting the residues 

C113/D113-H59-H157-T152, is formed across the active site irrespective of 

mutation, as found in Par14 crystal structure [126]. In assuming the hydrogen 

bond network, 15Nε2 (H59) doublet in the C113D mutant may indicate a stable 

hydrogen bond is formed between D113 Oδ and H59 Hε2 in C113D, while 15Nδ1 

(H157) doublet indicates the stable hydrogen bond formed by Hδ1 (H157) to Nδ1 

of H59 in wild-type with reducing the stability of the hydrogen bond by Hε2 

(H59) to C113 side chain oxygen, Sγ.  

 

33-6. C113D reduced structural stability as evidenced by enhanced amide 

H/D exchange 

  The residue-specific amide H/D exchange rates were measured from a 

sequentially collected 1H-15N HSQC spectra for both the wild-type and C113D 
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mutant. The exchange rates were determined for all the residues observed on 

the first 1H-15N HSQC spectrum just after pouring D2O into the lyophilized 

sample powder. Most of the residues in C113D mutant showed enhanced H/D 

exchange rates relative to the wild-type (Figure II-11), implying C113D mutant 

PPIase structure is less stable than the wild-type.  

  

3-7. Comparing the reduced spectral density maps between the wild-type 

and C113D mutant 

 To further characterize the structural dynamics change caused by C113D 

mutation, we compared the reduced spectral density functions [167]. The 

reduced spectral density functions, Jeff(0), J(ωh), and J(ωN), can be mapped for 

each residue with the rates R1 and R2 with hNOE for 15N spin, under the 

approximation to equate the high-frequency values of the spectral density 

function J(ωH) = J(ωH-ωN) = J(ωH+ωN) [167]. The spectral density function J(ωH) 

is denoted as J(ωh) in the reduced form, to implicate the above approximation 

[167]. The reduced spectral density function Jeff(0) denotes that, since chemical 

exchange is not considered explicitly in its derivation. The entire profiles for 

the reduced spectral densities are compared (Figures II-13 and Figures II-14). 

  The difference in the Jeff(0) values between the wild-type and C113D mutant 

are plot along the residue number; each difference was calculated as ΔJeff(0) = 

Jeff(0)[C113D] – Jeff(0)[wild-type] (Figure II-15). The most of the residues in 

C113D showed larger Jeff(0) values than those for the corresponding residues 

in the wild-type (Figure II-15). This allosteric destabilization effect by C113D 

seems rather independent on the presence of the phosphate group in the 
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pocket, as the residues in the active loop showed increased Jeff(0) in the mutant 

in the solution with or without phosphate and sulfate ions (Figure II-15). In 

general, Jeff(0) dominates R2 relaxation rate, while hNOE is very sensitive to 

both changes in internal motion described by the correlation time, τi, and the 

generalized order parameter, S2. Assuming the internal motion of protein 

backbone is too fast and, thus, independent from the overall rotational motion 

represented by the correlation time, τc, the simple model-free formalism [168] 

gives the spectral density function as described below, eq. 3. 

      

                                             (3) 

 

The spectral density function of J(0) is, thus, described as in eq. 4.  

                                             (4) 

The spectral density function J(0) is dependent on S2, τi, and τc, when the 

chemical exchange is negligible.  

  The transverse relaxation rate R2 contains the rates governed by the nuclear 

spin-spin relaxation process ( 2
DDR ), chemical shift anisotropy of 15N nuclear 

spin ( 2
CSAR ), and chemical exchange process ( exR ) [167]; 

                                              (5) 

  Chemical exchange apparent in the backbone 15N spin relaxation process 

implies that the backbone conformational exchange happening in msec time 

regime [167].  

  It is noted that, in deriving the reduced spectral density functions, Rex term 

is neglected in the R2 function in eq. 5. However, Jeff(0), not the other J(ωh) and 

J(ωN), depends on R2 rate and if the chemical exchange rate, Rex, is significant,  
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the corresponding Jeff(0) value increases accordingly [167]. The hNOE profiles 

for the wild-type and C113D mutant PPIase are close to each other (Figure 

II-12), implying that C113D mutation does not apparently affect the structural 

dynamics in ns – ps time range; τi, and S2 values for the residues in C113D 

mutant are be very close those for the counterpart residues in the wild-type. 

The rotational correlation time, τc, was estimated for each the wild-type and 

C113D mutant, in considering rotational diffusion anisotropy [158]: they were 

τc = 9.4 ± 0.4 ns with rotational diffusion tensor anisotropy 1.3 ± 0.1 (wild-type) 

and τc = 9.5 ± 0.5 ns with the anisotropy 1.2 ± 0.1 (C113D mutant). In both 

cases, the axially symmetric rotational diffusion tensor model was adopted 

with statistical significance. As estimated above, the correlation time, τc, does 

not change by the C113D mutation. The changes in the dynamics parameters  

τc, τi, and S2 are marginal to explain the observed differences in Jeff(0), in 

considering the model-free function J(0) in eq. 4. The increased Jeff(0) values 

for the residues in C113D mutant, therefore, can be traced to the increased 

chemical exchange terms for R2 rate (eq. 5); which implies that most part in 

C113D mutant becomes structurally unstable to show significant 

conformational exchange apparent in msec time regime.  

  The changes in Jeff(0) values are particularly apparent for the residues in the 

phosphate binding pocket, especially residues 60–75 (Figure II-15A right), 

suggesting the binding pocket becomes structurally unstable in C113D mutant. 

The higher frequency reduced spectral density functions, J(ωh) and J(ωN), did 

not show any noticeable changes in their values induced by the mutation, 
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although those changes were dependent on the existence of phosphate and 

sulfate ions (Figures II-16 and Figures II-17).  

  R2 relaxation dispersion experiments were applied to further characterize 

the structural dynamics in ms time domains. However, the results were less 

informative due to the limited number of the residues having detectable R2 

dispersion profiles, as described in the preceding work (Table II-2) [169]. It is 

noted that the changes in the structural dynamics revealed by the R2 

dispersion profiles were dependent on the co-existence of the phosphate and 

sulfate ions (Table II-2); the number of residues showing significant R2 

dispersion increased in both the wild-type and C113D in the absence of the 

ions.  
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44. Discussion 

4-1. C113D mutation disarranges the basic triad in active loop of Pin1 

PPIase domain  

  This work has demonstrated that C113D mutation destabilizes the catalytic 

site fold in Pin1 PPIase domain, which resulted in the allosteric change in the 

loop structure having the basic triad comprising of K63, R68 and R69. Among 

the basic triad, R69 showed the largest difference in the side chain orientation 

C113D mutant relative to the wild-type (Figure II-6C). The basic triad makes 

hydrogen bonds to phosphate moiety, as shown in the crystal structures [84, 

113]. The molecular dynamics simulation of Pin1 in the complex with 

phosphorylated peptide demonstrated that the basic triad kept binding to 

substrate during isomerization; in particular, R69 and K63 form tighter 

interactions to phosphate group, while R68 is less crucial [144]. Therefore, 

disordering the basic triad structure, especially R69 side chain reorientation, 

explains the severely reduced substrate binding ability of C113D mutant, 

which was evidenced by the ITC experiments in this work (Figure II-2B).  

  C113D mutation reduces the isomerization rate for the Cdc25C 

phosphor-Ser peptide by 70-fold (Figure II-2A). In considering the above ITC 

experiments, the reduced isomerase activity of C113D mutant can be 

explained by its lowered affinity to the substrate. Since the first Pin1 crystal 

structure was reported, the role of SH group in C113 has been focused [128, 

154]. These earlier proposals emphasizing the role of SH group as a catalyst in 

the cis–trans isomerization are now called into questions due to the several 

controversial results; one of which is the fact that C113D mutant does not 
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abolish its isomerization activity [128]. The present work demonstrated that 

C113 roles in keeping the catalytic site of PPIase in active fold, in particular, to 

maintain the functionally primed form of the basic triad.  

 

44-2. Catalytic site fold was destabilized by C113D mutation  

  The allosteric structural change to the active loop could be propagated 

through the catalytic tetrad including C113, H59, H157, and T152 (Figure 

II-6D). The residues in the catalytic tetrad may form the hydrogen bonding 

network, as found in the crystal structure of Par14 [126]. In the present NMR 

analyses, no direct experimental validation was done to confirm the hydrogen 

bonding network. However, we could deduce the corresponding hydrogen 

bonding network exists in the catalytic site of PPIase for both the wild-type 

and C113D, because the defined imidazole ring flips for H59 and H157 and the 

spatial surrounding of C113/D113 and T152 in the NMR structures resemble 

the catalytic tetrad structure in Par14 (Figure II-6D). The hydrogen bonding 

network runs across the catalytic site of PPIase to connect the short helix 

having C113/D113 to the opposite side near the active loop.  

  The overall structure of C113D was similar to the wild-type structure 

(Figure II-6A), but the structural stability of C113D was significantly lower 

than that of the wild-type, as evidenced by the heat denaturing experiments 

(Figure II-18); the melting temperatures for the wild-type and C113D mutant 

were 49.4°C and 46.2°C, respectively. In addition, the less number of NOEs 

from imidazole rings of H59 and H157 in the catalytic site of C113D mutant 
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relative to the wild-type implicates the increased structural flexure of the 

histidines in the catalytic site (Figure II-6D).  

  In the mid of the catalytic tetrad, there are two conserved histidines, H59 

and H157, which is referred to as “dual histidine motif”. The dual histidine 

motif is important for keeping the Pin1 fold; H59L mutation destabilized the 

protein, thus resulted in the faint isomerization activity [170]. Our study has 

shown that C113D mutation changed the strengths of the hydrogen bonds from 

H59 and H157 (Figure II-10). In the C113D mutant, H59 imidazole has a 

stronger hydrogen bond presumably to D113 side chain oxygen, whilst H59 has 

a tighter hydrogen bond to H157 imidazole in the wild-type, which were 

elucidate using H/D isotope effect on imidazole 15N of the histidines (Figure 

II-10). The change in hydrogen bond is reminiscent of “tug-of-war” for H59 

between the C113/D113 and H157 (Figures II-19A and II-19B). In considering 

the pivotal role of H59 in maintaining catalytic site fold, it is plausible that the 

imbalance in the tug-of-war for H59 in C113D mutant destabilizes the 

structure.  

  The sulfur atom in the SH moiety is a poor hydrogen bond acceptor [171]. 

The change from SH to OH group, therefore, strengthens the hydrogen bond 

between D113 and H59 Nε2 in C113D mutant with simultaneously weakening 

the hydrogen bond between H59 and H157 imidazole (Figures II-19A and 

II-19B). The weakened inter-histidine hydrogen bond in C113D mutant is 

consistent with the increased imidazole ring dynamics as shown by the 

decreased number of NOEs from the rings (Figure II-6D).  
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44-3. Allosteric structural change in the active site loop by C113D mutation   

  The allosteric structural change in the active loop, which disorganized the 

basic triad, could be probably caused by the reduced folding stability of the 

catalytic site. The reduced structural stability by C113D mutation was 

experimentally confident; the increased H/D exchange rates for the residues 

constituting the catalytic site (Figure II-11), and the elevated conformational 

exchange as elucidated by the increased values of Jeff(0) (Figure II-15), in 

particular the residues 59 to 75 were apparent. The induced structural 

flexibility for the residues near H157 is also noticeable (Figures II-15).  

 

4-4. C113 is sensitive to oxidation and C113D mimics the oxidized form 

Pin1 

  Pin1 PPIase domain has two cysteine residues, C57 and C113. The structure 

shows C57 is buried in the structure while C113 SH moiety is exposed to the 

solvent. As expected C113 has higher sensitivity to oxidation; the H2O2 

oxidized specifically modified to C113, as assayed using maleimide 

fluorescence labeling and mass spectroscopy (Figure II-20). The excessive 

oxidation to SH group produces sulfonic acid group that structurally resembles 

carboxylic acid group as D113 in C113D mutant (Figure II-20). The C113D 

mutant could be supposed to mimic the oxidized form of Pin1 PPIase domain 

that happens inside cells under oxidative stress [133, 172]. The present study 

suggests the oxidized form of Pin1 PPIase domain reduces the binding activity 

to substrate, thus, has lowered isomerization activity.  
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55. Conclusions 

  In Chapter II, the present work has demonstrated a novel role of C113 in 

stabilizing the catalytic site fold. The change from SH to OH group disturbs 

the hydrogen bonding network formed by the catalytic tetrad because of 

unbalancing the tug-of-war for H59 between the residues at 113 and 157 

(Figure II-19). Dual histidine motif comprising of the conserved H59 and H157 

is important for keeping the catalytic site in an active fold. The imbalance of 

the tag-of-war in C113D mutant weakens the hydrogen bond among the dual 

histidine motif, thus destabilizes the catalytic site fold. The disturbed 

hydrogen bonding network in the catalytic tetrad leads to the allosteric 

disorder of the active loop including basic triad that binds to a phosphate 

moiety in the substrate, which explains the reduced substrate binding ability 

of C113D mutant. Pin1 oxidation happening in cells should reduce its 

isomerization activity through the alleviated binding to substrate, as 

anticipated from the work on C113D mutant PPIase domain being supposed to 

be a surrogate for the oxidized form of Pin1 PPIase domain. 
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FFigure II-1 

(A) Nucleophilic addition mechanism is proposed from complex crystal structure of 

Pin1 and Ala-Pro peptide (PDB: 1PIN) [113]. Red: covalent bond between thiol of 

C113 and carbonyl carbon in the catalytic process. (B) Catalytic activity was 

measured for wild-type, C113D, and C113S [128]. Substrate: WFYpSPR-pNA.  
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FFigure II-2 

(A) Experimental rate constants for the wild-type and C113D mutant were measured by 

EXSY with Cdc25C phosphorylated peptide at varying exchange times. (B) Isothermal 

titration calorimetric data for the wild-type (left) and C113D mutant (right) PPIase 

domains at 298 K. Each peak corresponds to 1.5 μl injection of Cdc25C phosphorylated 

peptide substrate solution. The red full line drawn in the wild-type ΔH plot (left bottom) is 

the best-fit model function assuming 1:1 protein–substrate stoichiometry.  
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Figure II-3 

Backbone resonance assignment for PPIases drawn on the 1N-15N HSQC spectrum with 

ions. (A) wild-type, amide groups of 109 residues (95.61%) were assigned except four 

prolines and E30. (B) C113D mutant, amide groups of 108 residues (94.74%) were 

assigned except four prolines, E30, and S115. (B-1) Backbone resonance assignment for 

residues in the box of (B).   
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FFigure II-4 

(A) Residue-wise plot for the normalized chemical shift differences between the wild-type 

and C113D mutant in the presence of sulfate and phosphate ions. The normalized 

chemical shift difference for each residue is defined as, 1 2 15 2( H) ( N/ 5) , 

where Δδ1H and Δδ15N are the chemical shift difference in 1H and 15N dimensions, 

respectively [173]. According to the magnitude of Δδ, the residues in the C113D mutant 

structure were colored differently: over Δδave + 1 σ (red), over Δδave + 0.5σ (purple), and 

over Δδave + 0.25 σ (yellow), where Δδave is the average value for Δδ and σ is the standard 

deviation of Δσ calculated over the entire residues. (B) The overlaid presentation of the 

parts of the 1H-15N spectra for the wild-type (black) and C113D mutant (red) in the 

presence of sulfate and phosphate ions, which show the signals for S114 (left) and S115 

(right) have disappeared on the spectrum for C113D mutant. The S114 signal was 

observed far from the displayed spectral region with very weak intensity while the S115 

resonance was not observed in anywhere on the spectrum for C113D mutant. 
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FFigure II-5 

(A) Three dimensional solution structure for wild-type PPIase domain. (B) Three 

dimensional solution structure for C113D mutant PPIase domain. Obvious structural 

changes could be observed between wild-type and C113D mutant PPIase domains.  
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FFigure II-6 

(A) Structure overlap between the wild-type (gray) and C113D mutant (cyan) PPIase 

domains determined in this work. (B) Close up view of the structures near the mutation 

site of the wild-type (left, gray) and C113D mutant (right, cyan). (C) The active loop 

structure comprising of the basic tetrad, K63, R68 and R69; the wild-type (left, gray) and 

C113D mutant (right, cyan). (D) The observed NOEs from the imidazole ring protons are 

drawn in yellow lines; the wild-type (left) and C113D (right). All figures were built by the 

program PyMOL (Schrödinger, LLC).  
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FFigure II-7 

Backbone resonance assignment for PPIases drawn on the 1N-15N HSQC spectrum 

without ions. (A) wild-type, amide groups of 109 residues (95.61%) were assigned except 

four prolines and E30. (B) C113D mutant, amide groups of 107 residues (93.86%) were 

assigned except four prolines, E30, S114, and S115.   
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FFigure II-8 

Plot of the normalized chemical shift differences for the backbone chemical shifts between 

the presence and absence of sulfate and phosphate ions. (A) The wild-type and (B) C113D 

mutant. According to the magnitude of the normalized chemical shift difference, which is 

defined as 1 2 15 2( H) ( N/ 5) , where Δδ1H  and Δδ15N are the chemical shift 

difference in 1H and 15N dimensions, respectively, the residues in the wild-type and C113D 

mutant PPIase domain structures were colored differently (right): over Δδave + 1 σ (red), 

over Δδave + 0.5σ (purple), and over Δδave + 0.25 δ (yellow), where Δδave is the average value 

for Δδ and σ is the standard deviation of Δσ calculated over the entire residues. 
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Figure II-9 

1H-15N HSQC spectra for the imidazole rings of histidines in Pin1. (A) The wild-type and 

(B) C113D mutant. A set of signals marked with asterisks come from the histidine residue 

at position 0 in the segment comprising of GSH sequence, which was attached to the 

N-terminus due to the reason of plasmid construction 
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FFigure II-10 

H/D isotope effects on the chemical shifts for 15N nuclei in the histidine imidazole ring 

were measured in the solutions having different D2O contents. (A) The 1H-15Nδ1 HSQC 

signals for H157 collected in the solution containing 6% (black, left), 50% (blue, middle), 

and 100% (red, right); data in the upper and lower panels are for the wild-type and C113D 

mutant, respectively. (B) The same data set for 1H-15Nε2 signals for H59 of the wild-type 

(upper) and C113D mutant (lower).  
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FFigure II-11 

H/D exchange rates for the residues in the wild-type (black) and C113D (red) mutant. The 

residues without exchange rates showed no observable peaks on the first 1H-15N HSQC 

spectrum in a series of data collection, implying their amide protons have rapidly 

exchanged to deuterons within about 10 min.  

 

 

 

 

 

 



 

69 
 

  

 



 

70 
 

  

 

 

 

 

 



 

71 
 

FFigure II-12 

Heteronuclear NOE (hNOE) values plot against the residue number. (A) wild-type, (B) 

C113D mutant. The value marked with an asterisk is less reliable because the residue 

showed very small signal intensity even under non-saturating condition. (A) and (B) were 

finished in the presence of sulfate and phosphate ions. (C) wild-type, (D) C113D mutant. 

(C) and (D) were finished in the absence of sulfate and phosphate ions. 
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FFigure II-13 

The comparison of the reduced spectral density function values of Jeff(0), J(ωN), and J(ωh) = 

J(ωH) = J(ωH-ωN) = J(ωH+ωN) for the data collected in the presence of sulfate and phosphate 

ions. The bars in red are data for the C113D mutant, and the black bars are those for the 

wild-type. 
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FFigure II-14 

The comparison of the reduced spectral density function values of Jeff(0), J(ωN), and J(ωh) 

for the data collected in the absence of sulfate and phosphate ions. The bars in red are 

data for the C113D mutant and the black bars are those for the wild-type.  
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FFigure II-15 

The residue-wise difference plot for Jeff(0) for the data collected in the presence of sulfate 

and phosphate ions (A) and in the absence of the ions (B). Δ Jeff(0) was calculated from the 

value for C113D mutant minus that for the wild-type. The difference was calculated for 

each residue as 113(0) (0) (0)C D wild type
eff eff effJ J J  , where Jeff(0)C113D and Jeff(0)wild-type the 

values for C113D mutant and the wild-type, respectively. The residues in the C113D 

mutant structure are colored according to the magnitude of the ΔJeff(0) value; over 

ΔJeff(0)ave + 1σ (red), over ΔJeff(0)ave + 0.5σ (magenta), less than ΔJeff(0)ave - 1σ (blue) and 

less than ΔJeff(0)ave – 0.5σ (cyan).  
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FFigure II-16 

The residue-wise difference plot for J(ωN) for the data collected in the presence of sulfate 

and phosphate ions (A) and in the absence of the ions (B). ΔJ(ωN) was calculated from the 

value for C113D mutant minus that for the wild-type. 
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FFigure II-17 

The residue-wise difference plot for J(ωh) for the data collected in the presence of sulfate 

and phosphate ions (A) and in the absence of the ions (B). ΔJ(ωh) was calculated from the 

value for C113D mutant minus that for the wild-type. 
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Figure II-18 

The heat induced protein denaturing measured by CD molar ellipticity at 222 nm. Blue 

line indicates the profile for the wild-type Pin1 PPIase domain, while the red line is for 

C113D mutant. 
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FFigure II-19 

Hydrogen bonding network and the tag-of-war for H59. (A) The wild-type PPIase domain, 

H59 forms stronger hydrogen bond to H157. (B) In the C113D mutant, H59 strengthen the 

hydrogen bonding to C113 with weakening the hydrogen bond to H157. (C) Oxidation to 

Pin1 PPIase preferentially converts C113 thiol group to sulfonate moiety, which resembles 

D113 side chain structure. Oxygen atom in sulfonate group plays as a better hydrogen 

bond acceptor than the sulfur atom in thiol of C113. The oxidized C113 would strengthen 

the hydrogen bond from H59 with weakening hydrogen bond between H59 and H157, as 

in C113D mutant. The oxidized Pin1 would be inactivated to the comparable level of 

C113D mutant Pin1.  
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Figure II-20 

Oxidation of the cysteine residues in Pin1. (A) Complete oxidation of a thiol group of 

cysteine leads to forming cysteic acid. The difference in the mass between them should be 

forty-eight corresponding to three oxygen. (B) Maleimide assay revealed the preferred 

reactivity of C113 in Pin1. Cysteine modification blocked the labeling of Pin1 proteins by 

rhodamine-maleimide. Increasing amount of H2O2 blocked the maleimide labeling of Pin1 

(right). C113 in C57A mutant protein showed more sensitive (left), but C57 in C113D 

mutant protein showed less sensitive to oxidation (center). (C) Mass spectroscopic 

analysis revealed the existence of cysteic acid at the position of C113 in H2O2-treated Pin1. 

In the control peptide, C113 showed 103 molecular mass in MS/MS analysis (upper panel). 

On the contrary, in the H2O2-treated Pin1 protein, corresponding C113 showed 151 

suggesting the formation of sulfonic acid as shown in A. 
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Table II-1 
 
Structural statistics of the each final 10 structures of the wild-type (WT) and C113D mutant 
(C113D) PPIase domains of human Pin1 
 

   WT   C113D 

RMSDs from NOE upper distance restraints (Å)   

Intra-residual (|i-j| = 0) (539 for WT, and 540 for C113D)      0.000±0.004 0.000 ± 0.010 

Medium-range (1 ≤ |i-j| ≤ 4) (1140, and 969)                 0.006 ± 0.048 0.008 ± 0.052 

Long-range (|i-j| > 4) (1062, and 881)                      0.012 ± 0.069 0.013 ± 0.088 

Total (2741, and 2390) 0.007 ± 0.053 0.008 ± 0.063 
RMSDs from dihedral angle restraints (  and ) (°)  
(88 for WT, and 82 for C113D)a 0.068 ± 0.178 0.143 ± 0.396 

RMSDs from ideal stereochemistry   

Bonds (Å) 0.005 ± 0.000 0.005 ± 0.000 

Angles (º) 0.510 ± 0.007 0.534 ± 0.010 

Impropers (º) 0.793 ± 0.052 0.776 ± 0.040 

Ramachandran plotb (%)   

Residues in most favored regions 87.1 87.8 

Residues in additional allowed regions 12.8 11.8 
    Residues in generously allowed regions 0.1 0.3 

Residues in disallowed regions 0.0 0.1 

Average RMSDs to the mean structure (Å)c   

Backbone  (N,CA,C’,O) 0.68 ± 0.15 0.74 ± 0.16 

All non-hydrogen 1.18 ± 0.19 1.23 ± 0.21 
 
a The angle restraints were from TALOS+ with the angle ranges ±30°. 
 
b For the residues R54-R161 in the 10 lowest energy structures. 
 
c For the residues in the secondary structured parts (residues R54-V62, K82-K97, F103-Q109,  
 
 S114-A118, D121-S126, K132-S138, V150-F151, and G155-R161 for wild-type, and R54-V62, 
  
 K82-K97, F103-Q109, S114-A118, A124-S126, K132-F139, M146-F151, and G155-R161 for  
  
 C113D mutant, respectively).  
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Table II-2 
 
Conformational exchange in Pin1 PPIase domains for the wild-type and C113D mutant 
 
Sample Residues in a Group a Rex / sec-1 b 
Wild-type 
(with ions) 

C57 651 ± 48 
E104 
F125 
T143 

Wild-type 
 (without ions) 

C57 1099 ± 154 

E83 

Q94 

E104 

F134 
T143 

C113D mutant  
(with ions)  

C57 773 ± 71 

Q94 
T143 

C113D mutant 
(without ions) 

LF c Q94 710 ± 63 

E104 

T143 

D153 
HF c C57 1660 ± 124 

R69 

E83 
F125 

M130 

Q131 

 

a The residues in a group were subjected to the global fitting to determine the unique Rex value for the 
grouped residues. 

 

b Values of Rex were calculated from the fits of data to the Caver-Richards equation in the 
fast-exchange regime.  

 

c The residues in the C113D mutant were classified into two classes showing different conformation 
exchange; LF and HF are the groups comprising the residues showing the higher- and lower 
conformational exchange rate, respectively. 
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  Chapter III 

 General conclusions 

1. C113D mutant with partial cis-trans isomerization rate is against 

nucleophilic attack mechanism  

  In nucleophilic attack mechanism for human Pin1 PPIase domain, C113 

sulfur will form covalent bond to the carbonyl carbon of the substrate to 

facilitate the isomerization process. It is known that the carboxyl group of 

D113 in C113D mutant does not form covalent bond with the carbonyl carbon, 

however, our work shows that C113D mutant still has partial cis-trans 

isomerization rate, not the abolished catalytic function. This phenomenon is 

against previous proposed nucleophilic attack mechanism. In twisting amide 

bond mechanism, C113 sulfur was suggested to be far from methylene carbon 

in transition state. However, twisting amide bond mechanism did not show the 

role of C113 in the catalytic process. The present work has shown that C113 

has a role in maintaining the catalytic site in an active fold, challenging the 

catalytic role of C113 in the catalytic process. In C113D mutant, the binding 

pocket residues show the allosteric changes and the active loop reveals reduced 

structurally stability, indicating decreased binding ability for the peptide, 

which may explain the decreased cis-trans isomerization rate. 

  

2. Oxidized Pin1 in Alzheimer’s disease 

  Our work has shown that C113D mutant mimics the oxidized form of Pin1. 

Oxidized Pin1 is proposed to have the reduced catalytic activity which is 
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ascribed to the low binding ability for substrate. Tau protein is one substrate of 

Pin1 in the cells and tau is hyper-phosphorylated and accumulated in 

Alzheimer’s disease [134], which was thought to be related with oxidized Pin1 

[172]. It is speculated that oxidized Pin1 loses the binding ability for tau 

protein and thus cannot isomerize tau protein, which induces the tau protein 

to be abnormal formation in Alzheimer’s disease. 

  C113D mutant shows a reduced structural stability that is evidenced by H/D 

exchange and CD spectrum experiments. It is proposed that the oxidized Pin1 

also has reduced structural stability; thus, the hydrophobic region of oxidized 

Pin1 has the higher possibility to be exposed to solvent relative to wild-type. 

Hydrophobic area of oxidized Pin1 is prone to interact with each other to form 

the accumulation compared with wild-type. Previous study showed that Pin1 

was observed to be accumulated that may be related with Alzheimer’s disease, 

although the role of accumulation was still elusive [174]. Hence, our work 

provides new insights into the Pin1 accumulation mechanism in the 

Alzheimer’s disease.  
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