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Evidence for hidden quadrupolar fluctuations behind the octupole order in Ce0.7La0.3B6
from resonant x-ray diffraction in magnetic fields
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The multipole ordered phase in Ce0.7La0.3B6, emerging below 1.5 K and named phase IV, has been studied by
resonant x-ray diffraction in magnetic fields. By utilizing diamond x-ray phase plates to rotate the incident linear
polarization and a conventional crystal analyzer system, full linear polarization analysis has been performed to
identify the order parameters. The analysis shows that the !5g (Oyz, Ozx , Oxy) quadrupoles are more induced by
the field than the !3g (O20 and O22) quadrupoles on the !5u (T β

x+y+z) antiferro-octupole order in phase IV. The
problem is that this result is contradictory to a mean-field calculation, which inevitably gives the !3g quadrupole
as the main induced moment. This result indicates that the !5g quadrupole order is close in energy. We consider
that a large fluctuation of the !5g quadrupole is hidden behind the primary ordering of the !5u octupole and that
the multipolar fluctuation significantly affects the ordering phenomenon.
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I. INTRODUCTION

A rich variety of electronic ordered phases in f electron
systems has attracted long-standing interest, where one of
the focal points in recent years is on the role of the higher
rank multipole moments as a manifestation of an interplay
between spin and unquenched orbital degrees of freedom [1,2].
For example, there are many compounds exhibiting electric
quadrupole (rank 2) orderings such as CeB6, PrPb3, DyB2C2,
TmTe, UPd3, etc. [3–7]. Although it is rare, magnetic octupole
(rank 3), and even a higher multipole, is considered as
the primary order parameter in CexLa1−xB6 (x < 0.8) and
in NpO2, respectively [8–12]. These ordered phases have
attracted special interest because of the hidden nature of the
nondipolar interactions and order parameters. It is also an
important viewpoint that the hidden orders can give rise to
a characteristic spin exciton mode on the hybridized heavy
quasiparticle band as revealed recently in CeB6 [13,14].

The interionic multipole interaction has its origin in hy-
bridization of the f electrons with the conduction and valence
electrons. The Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction in metals and superexchange interaction in insulators
are the main mechanisms of the interaction originating in
hybridization. Simultaneously, hybridization causes the Kondo
effect, which may have a significant effect on the ordering
phenomenon, e.g., as in PrFe4P12 [2]. An important theoretical
argument in the interionic interaction is that the strength of
the multipolar interaction is rank independent [1,15,16]. As
a result, the higher rank multipoles can equally be a primary
order parameter. This also means that the hidden multipolar
interactions, which do not result in actual orderings, are
equally important as the primary one because they compete
with each other, induce fluctuations, and affect the ordering
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phenomenon. However, it is usually very difficult to show
experimentally the existence of hidden fluctuations of another
order parameter. They tend to be excluded from consideration
due to a lack of evidence. In this context, it is worth mentioning
that the multipolar interaction can affect the dynamical
behavior of the system as studied in detail in the magnetic
ordered phase of UO2 [18,19].

The CexLa1−xB6 system provides a typical example in
which a wide variety of multipole ordered phases are re-
alized [20–25]. They originate in the !8-quartet crystalline
electric field (CEF) ground state of a Ce3+ ion, possessing
fifteen independent moments up to rank 3. All these moments
play important roles in the ordering phenomena [15–17]. The
H -T phase diagram of Ce0.7La0.3B6 is shown in Fig. 1. One
of the most prominent features is the significant increase in
the !5g (Oxy , Oyz, Ozx) antiferroquadrupole (AFQ) ordering
temperature (TQ) at low fields. One reason for this behavior
is that the interaction between the field-induced !2u (Txyz)
antiferro-octupole (AFO) stabilizes the !5g-AFQ ordered
phase [15]. This mechanism has actually been evidenced by
resonant x-ray diffraction (RXD) for CeB6 [27–29]. However,
to explain the significant increase in TQ satisfactorily, it is also
essential to consider the strong multipolar fluctuations [30,31].

The unusual phase at low fields (phase IV), which emerges
for x < 0.8 by La substitution, is now considered a !5u (T β)
AFO phase. [32] An RXD experiment by Mannix et al.
and an analysis of the azimuthal-angle dependence, as well
as a neutron diffraction experiment, well support the AFO
scenario [8–10]. However, this does not simply mean the
disappearance of the AFQ interaction as assumed in Ref. [32]
because the AFQ phase is easily realized by applying a mag-
netic field. If we take into account the !5g-AFQ interaction,
however, it becomes difficult to explain the cusp anomaly in
the magnetic susceptibility [33]. Also, it is not explained why
the I-II phase boundary, when the phase IV exists at low fields,
does not approach to a T > 0 point at H = 0, which is the
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FIG. 1. (Color online) The H -T phase diagram of Ce0.7La0.3B6

for H ∥ [001] and the calculated electric and magnetic charge
distributions of the antiferro-type ordered states [26]. The broken
line is a speculation. The I-II phase boundary for CeB6 is also shown
for reference.

case in CeB6 and is expected in a mean-field (MF) model with
finite !5g-AFQ interaction. This strange behavior of the AFQ
phase can be more clearly observed in the phase diagram of
Ce0.5La0.5B6 [24]. In the MF scenario, TQ for the !8 ground
state system with quadrupolar degeneracy should always be
finite. This means that the I-II phase boundary for Ce0.7La0.3B6
shown in Fig. 1 cannot be reproduced by a normal MF model.
It may be necessary to consider an unexpected case where the
!8 quartet is somehow split or an unknown effect of multipolar
fluctuation involving !5g-AFQ and !5u-AFO states. Thus there
still remain fundamental questions in the phase diagram of
CexLa1−xB6.

In the present paper, by taking full advantage of RXD in
magnetic fields with full linear polarization analysis (FLPA),
we study the field induced multipoles and discuss the hidden
AFQ interactions and fluctuations existing behind the primary
AFO ordering in Ce0.7La0.3B6. The rest of the paper is orga-
nized as follows. After describing the experimental procedure
in Sec. II, the results and analysis are presented in Sec. III.
In Sec. III A, the nature of the order parameter at zero field
is described. We show that the !5u-AFO order of ⟨±T

β
x ±

T
β
y ± T

β
z ⟩ is realized as has been proposed previously. Next,

in Sec. III B, we study the field-induced multipoles in phase IV
by using the data at both L2 and L3 edges, which is the main
subject of the paper. It is shown that the main induced moment
is the !5g-AFQ. In Sec. III C, we describe the results in the
!5g-AFQ phase at high fields, which has already been well
established in the study of CeB6. Then, using the parameters
obtained at ±4 T, we try to estimate the ordered moment of the
!5u-AFO at zero field and show that it is reduced from the full
moment value. Finally, in Sec. IV, we discuss the field-induced
multipoles in phase IV by consulting an MF calculation and
point out that the calculation cannot explain the result that the
!5g-AFQ is strongly induced. The theoretical frameworks of
FLPA and RXD are summarized in Appendix.

II. EXPERIMENTAL PROCEDURE

The single crystal sample was grown by a floating-zone
method using an image furnace with four xenon lamps [34].
A slice of the sample with a (331) surface with 1.5×2.3 mm2

FIG. 2. (Color online) Scattering geometry of the experiment and
definitions of the angles.

in size was prepared by spark cutting. The surface was finally
mirror polished.

RXD experiment has been performed at BL22XU in
SPring-8. The scattering geometry is shown in Fig. 2. A
vertical field 8-T superconducting cryomagnet, equipped with
a 3He cryostat insert, was used to achieve a high-field and
very-low-temperature environment. The sample was mounted
in the 3He cryostat, where the sample can be rotated about the
[331] axis. We define ψ = 0◦ when k × k′ coincides with the
[1̄10] direction.

In general, in RXD experiments performed at zero field,
the azimuthal-angle (ψ) scan provides extremely valuable
information in determining the order parameter [8,9]. This
method utilizes the effect that the resonance intensity depends
on the geometrical relationship between the order parameter
and the incident polarization. In magnetic fields, however, a
rotation of the sample simultaneously means a change in the
field direction, which changes the ordered state of the system
itself. Therefore it is desirable to investigate the system without
rotating the sample. One promising method, which we adopt
in the present study, is to rotate the incident polarization.

The incident x-ray from the synchrotron source is almost
perfectly π polarized with its electric field parallel to the
scattering plane. This incident polarization can be rotated to
an arbitrary angle η by rotating an x-ray phase plate system
about the incident beam [35,36]. In the present experiment,
two diamond phase plates, with thickness of 300 µm each,
were used to compensate for chromatic aberration [37]. The
resultant degree of linear polarization for σ polarization (η =
0◦) was 97.8% at 6.160 keV. For π polarization (η = 90◦), it is
equal to that of the initial beam before the phase plate, which
is more than 99.9%. The polarization state of the diffracted
beam was analyzed using the 220 reflection of an Al crystal
around the L2 edge (2θA = 89.30◦ at 6.160 keV) and the 200
reflection of a Mo crystal around the L3 edge (2θA = 86.95◦

at 5.726 keV).
The lowest temperature in the present experiment was

determined to be 1.0 K, though the sensor reading at the
lowest temperature was 0.6 K. This is due to the heating
by x-ray irradiation. The actual sample temperature under
x-ray irradiation was determined by comparing the observed
transition fields and temperatures with the phase diagram
reported in Ref. [38].
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FIG. 3. (Color online) (Left) X-ray energy dependence of the
intensity for σ -σ ′, σ -π ′, and π -π ′ channels. (Right) Temperature
dependence of the E2 resonance intensity at 6.160 keV for the σ -σ ′

channel. The solid line is a fit to a power law I ∝ |T − TIV|2β with
β = 0.70 ± 0.1.

III. RESULTS AND ANALYSIS

A. Order parameter of phase IV at zero field

At the lowest temperature of 1.0 K in phase IV, we
successfully detected a resonant peak at k − k′ = ( 3

2 , 3
2 , 1

2 ) and
ψ = 0◦ in the L2-edge experiment. The energy spectra at zero
field is shown in Fig. 3, which well reproduces the previous
data by Mannix et al. reported in Ref. [8] for ( 3

2 , 3
2 , 3

2 ). Only
a single resonance peak is observed at 6.160 keV (E2) for
σ -σ ′, whereas two peaks are observed at 6.160 keV (E2) and
at 6.167 keV (E1) for σ -π ′ and π -π ′. The E2 intensity for
σ -σ ′ disappears at TIV = 1.4 K as shown in Fig. 3, indicating
that the E2 signal reflects the order parameter of phase IV.
The critical exponent obtained from the fit to I ∝ |T − TIV|2β

was β = 0.70 ± 0.1. Although this value is smaller than 0.99
reported in Ref. [8], it is still larger than a typical value of
∼0.35 for three-dimensional systems [5].

To check the order parameter of phase IV at zero field, we
performed FLPA for the E2 signal at the lowest temperature.
Figure 4 shows the φA dependencies of the E2 intensity
at zero field for three different scattering geometries. The

FIG. 4. (Color online) φA dependencies of the E2 intensity at
zero field in phase IV. The incident polarization angle η is fixed
and φA is scanned. Solid lines show the calculated intensity curves
assuming the !5u-type AFO order of ⟨±T β

x ± T β
y ± T β

z ⟩ with four
equal domain populations.

observed intensity exhibits a characteristic oscillation, which
include similar information to an azimuthal-angle scan. As
in the analysis of the azimuthal-angle scan, our strategy is
to compare these data with the calculated intensity curves
assuming a model ordered structure. As proposed in Ref. [9],
we also adopt the !5u-AFO order with the order parameter
⟨±T

β
x ± T

β
y ± T

β
z ⟩, in which ⟨T β

x ⟩ = ⟨T β
y ⟩ = ⟨T β

z ⟩ is valid.
The (+++), (−++), (+−+), and (++−) signs correspond
to domains 1, 2, 3, and 4, respectively. In this model, the
scattering amplitude operators for domains 1 and 2, at H = 0
T and !ω = 6.160 keV (L2-E2), can be written as

F̂1 = α
(3)
E2(ω)

(
ĜT

β
x

E2 + Ĝ
T

β
y

E2 + Ĝ
T

β
z

E2

)〈
T

β
x

〉
, (1a)

F̂2 = α
(3)
E2(ω)

(
− ĜT

β
x

E2 + Ĝ
T

β
y

E2 + Ĝ
T

β
z

E2

)〈
T

β
x

〉
, (1b)

where α
(3)
E2(ω) represents the rank-3 spectral function for the

E2 resonance at !ω = 6.160 keV (see Appendix B for detailed
formalism).

From the Ĝ matrices listed in Appendix B, we see that
F̂1 gives only unrotated σ -σ ′ and π -π ′ scatterings, whereas
F̂2 gives only σ -π ′ and π -σ ′ scatterings. With respect to
domains 3 and 4, the intensities are equal to those of domains
2 and 1, respectively. The calculated intensity curves in
Fig. 4 assume equal populations of the four domains, i.e.,
the intensities from each domain are calculated independently
and are simply summed up. As shown by the solid lines,
which were obtained by putting |α(3)

E2|⟨T
β
x ⟩ = 2.6 in Eq. (1),

the data are well reproduced by this AFO model, except the
unknown discrepancy around φA = 30◦ for η = 0◦ at ( 3

2 , 3
2 , 3

2 ).
The possibility of an AFQ contribution as suggested in Refs.
[39] and [40] can be ruled out because the AFQ models hardly
explain the present result of FLPA. Thus, also from the FLPA
approach, the order parameter of phase IV can be concluded
as ⟨±T

β
x ± T

β
y ± T

β
z ⟩.

B. Field-induced multipoles in phase IV

1. L2 edge

The main subject of our study is the magnetic field effect
on the AFO order of phase IV. Figure 5 shows the H
dependencies of the E2 intensity for σ -σ ′ (η = 0◦, φA = 0◦)
and π -σ ′ (η = 90◦, φA = 0◦) channels for H ∥ [1̄10]. The
field direction is reversed to investigate the interference effect
between odd and even rank multipoles, which provides us with
a chance to extract field-induced multipoles with different
parities [27–29]. Remarkably, the σ -σ ′ intensity exhibits a
significant asymmetry in phase IV on the field reversal. By
contrast, the π -σ ′ intensity smoothly decreases with increasing
field and seems to exhibit a quadratic H dependence in phase
IV. To identify the order parameter, we performed a FLPA
measurement at H = ±1 T, the result of which is shown
in Fig. 6. It is emphasized that investigation of the order
parameter by FLPA is especially powerful in magnetic fields,
where the azimuthal scan does not make sense.

To analyze the data, we need to assume a model order
parameter. From symmetry arguments, and also from an MF
calculation, it is possible to predict what kind of multipoles
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FIG. 5. (Color online) Magnetic-field dependencies of the E2
intensity for σ -σ ′ and π -σ ′ channels. The solid lines are the
calculations described in the text. Inset in the right panel illustrates
the H -T phase diagram for H ∥ [1̄10] and the arrow represents the
sweep line.

are induced in the AFO phase, which is summarized in Table I.
These field-induced moments give rise to additional scattering
amplitudes to that of !5u-AFO at zero field. It is noted here
that, as shown in Fig. 7, the energy spectra at H = ±1 T for
σ -σ ′ remain single peaked at E2 and the interference with the
E1 resonance can be neglected. Therefore the total scattering
amplitude F̂i for domain-i (i = 1 ∼ 4) at H = ±1 T and !ω =
6.160 keV (L2-E2) can be written as

F̂i,± =
∑

ν,µ

α
(ν)
E2(ω)Ĝ(ν)

E2,µ

〈
z(ν)
µ

〉
±. (2)

We take into account all the moments listed in Table I. Since
domains 1 and 4, as well as domains 2 and 3, give the same
intensity, we give a description only for domains 1 and 2
hereafter.

We analyze the data by treating α
(ν)
E2(ω)⟨z(ν)

µ ⟩± as exper-
imental parameters, which are listed in Table II. Here, the
!5u-AFO order parameter is assumed to be constant in phase
IV. This is roughly consistent with the fact that the transition
temperature TIV changes little by the field [20,22,38]. The

FIG. 6. (Color online) Incident polarization dependencies of the
E2 intensity at H = ±1 T. φA is fixed and the incident polarization
angle η is scanned. Solid lines are the calculations.

TABLE I. Magnetic-field-induced antiferro-moments in the !5u-
AFO phase for H ∥ [1̄10], which are deduced from symmetry
analysis [15], as well as from an MF calculation.

Rank Irrep Domains 1 and 4 Domains 2 and 3
3 !5u T β

x + T β
y ± T β

z ∓T β
x ± T β

y + T β
z

1 !4u Jx − Jy Jx + Jy

2 !3g O20 O22

!5g Oyz + Ozx , Oxy Oyz + Ozx

3 !4u T α
x − T α

y T α
x + T α

y

domain population is also assumed stable in the field of
1 T. With respect to the field-induced moments, we impose
a condition that the quadrupole moments change sign with
the field reversal and the octupole moments do not. This
is an important characteristic of the AFO ordered phase as
demonstrated by the MF model calculation later. We note
that since we can construct an infinite number of numerical
(unphysical) solutions to fit the data in Fig. 6, we selected
a physically plausible set of parameters that is consistent
as much as possible with the MF calculation (with respect
to the signs and the relative ratios). The rank-1 and rank-4
contributions were neglected because they are considered to
be small at ±1 T.

Although the number of parameters seems large, the main
effect is actually dominated by two factors. Firstly, the
significant field-reversal asymmetry for σ -σ ′ and π -π ′, the
most important part of the data, is caused by the interference
between the !5u-AFO and the field induced (!3g + !5g)-AFQ
in domain 1. The !4u-AFO in domain 1 has only a marginal
effect, and can even be neglected. Secondly, the symmetric H
dependence for σ -π ′ and π -σ ′ is due to the cancellation of the
scattering amplitude of !5u-AFO by that of the !4u-AFO in
domain 2. It is again noted that the σ -σ ′ and π -π ′ intensities
arise from domain 1, and π -σ ′ and σ -π ′ intensities from
domain 2, respectively, which can be seen from the Ĝ factor
listed in Appendix B. The calculated intensities are shown
by the solid lines in Fig. 6, which reproduce the data very
well. The ⟨T α

z ⟩-AFO in domain 2, which is not expected to
appear in Table I, is supposed to be due to a small mixing
of the phase III order parameter. Finally, the ⟨O22⟩-AFQ and

FIG. 7. (Color online) X-ray energy dependencies of the inten-
sity for σ -σ ′ at H = ±1 and 0 T.
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TABLE II. The parameters in Eq. (2) to explain the result of
Fig. 6. We write α

(ν)
E2 as |α(ν)

E2|eiδ
(ν)
2 and the phase difference δ

(2)
2 − δ

(3)
2

is set to −0.15π , which best explains the data. It is noted that in
domain 1, ⟨T β

x ⟩ = ⟨T β
y ⟩ = ⟨T β

z ⟩, ⟨T α
x ⟩ = −⟨T α

y ⟩, and ⟨Oyz⟩ = ⟨Ozx⟩
is satisfied, and in domain 2, −⟨T β

x ⟩ = ⟨T β
y ⟩ = ⟨T β

z ⟩, ⟨T α
x ⟩ = ⟨T α

y ⟩,
and ⟨Oyz⟩ = ⟨Ozx⟩ is satisfied.

Domains 1 and 4 Irrep 0 T +1 T −1 T
∣∣α(3)

E2

∣∣〈T β
x

〉
!5u 2.6 2.6 2.6∣∣α(3)

E2

∣∣〈T α
x

〉
!4u 0 −0.5 ± 0.5 −0.5 ± 0.5∣∣α(2)

E2

∣∣〈O20
〉

!3g 0 −1.6 ± 0.5 1.6 ± 0.5∣∣α(2)
E2

∣∣〈Oyz

〉
!5g 0 −1.4 ± 0.5 1.4 ± 0.5∣∣α(2)

E2

∣∣〈Oxy

〉
!5g 0 3.0 ± 0.5 −3.0 ± 0.5

Domains 2 and 3∣∣α(3)
E2

∣∣〈T β
x

〉
!5u −2.6 −2.6 −2.6∣∣α(3)

E2

∣∣〈T α
x

〉
!4u 0 0.5 ± 0.2 0.5 ± 0.2∣∣α(3)

E2

∣∣〈T α
z

〉
!4u 0 0.8 ± 0.2 0.8 ± 0.2∣∣α(2)

E2

∣∣〈O22
〉

!3g 0 1 ± 1.5 −1 ± 1.5∣∣α(2)
E2

∣∣〈Oyz

〉
!5g 0 −1 ± 1 1 ± 1

⟨Oyz + Ozx⟩-AFQ in domain 2, which are listed in Table II
with very large error bars, have little effect on the fitting result
and will be excluded from the discussion later.

The peculiar H dependencies in Fig. 5 can also be explained
by considering that the field-induced AFQ and AFO moments
have linear and quadratic dependencies with H , respectively,
which will be demonstrated by the MF calculation later. In
this case, the intensity for the ε-ε′ (ε = σ or π ) channel can
be written as

Iεε′ (H ) ∝
∣∣F (3)

5u,εε′ + F
(3)
4u,εε′H

2 +
(
F

(2)
3g,εε′ + F

(2)
5g,εε′

)
H

∣∣2
, (3)

where F
(ν)
γ ,εε′ =

∑
µ∈γ α

(ν)
E2(ω)G(ν)

E2,µ,εε′ ⟨z(ν)
µ ⟩ represents the ε-ε′

scattering factor at !ω = 6.160 keV (L2-E2) for the order
parameter ⟨z(ν)

µ ⟩ at H = 1 T. The H dependencies for σ -σ ′ and
π -σ ′ are well explained as shown by the solid lines in Fig. 5.
As described above, the strong asymmetry in Iσσ ′(H ) is due
to the interference between F

(3)
5u,σσ ′ and (F (2)

3g,σσ ′ + F
(2)
5g,σσ ′) in

domain 1, and the symmetric decrease in Iπσ ′(H ) is due to the
cancellation of F

(3)
5u,πσ ′ by F

(3)
4u,πσ ′ in domain 2.

The most important piece of information obtained in
Table II is that the values for !5g-AFQ and !3g-AFQ in domain
1 are of the same order. If we take into account the fundamental
difference in the full moment between !3g and !5g quadrupoles
in the !8 CEF ground state, i.e., the fact that ⟨!8|O!3 |!8⟩ = 4
is four times larger than ⟨!8|O!5 |!8⟩ = 1, the same order of
magnitude obtained in Table II indicates that the !5g-AFQ is
much more induced than the !3g-AFQ as compared with the
full moment value.

2. L3 edge

Figure 8 shows the H dependencies of the resonant intensity
at the L3 edge. No significant intensity above background
was found at 0 T, where the signal from the !5u (T β) AFO
order should exist as was detected at the L2 edge. This is
considered to be due to the smaller |α(3)

E2| for the L3 edge

FIG. 8. (Color online) Magnetic-field dependencies of the E1
and E2 intensities for the π -π ′, π -σ ′, and σ -σ ′ channels at the L3

edge. The background level for σ -σ ′ is ∼0.4 counts/s.

than that for the L2 edge. By contrast, a magnetic field effect
was clearly observed, especially for π -π ′ at E1. The data
show that the π -π ′ intensity increases quadratically with H
in phase IV. The same behavior is weakly observed also for
π -σ ′. With respect to σ -σ ′, an asymmetric intensity on the
field reversal is weakly observed at the E2 energy, which is
likely to reflect the interference between the rank-2 and rank-3
moments as observed in the L2-edge result of Fig. 5. However,
since the relevant intensity is weak and the interference with
the nonresonant scattering described next should also be
taken into account, further discussion on this asymmetry is
difficult.

On entering phase III above 1 T, the σ -σ ′ intensity is
overwhelmed by the nonresonant signal as shown in Fig. 9.
This is due to the Thomson scattering from the aspherical
charge distribution of the AFQ order in phase III [41,42]. The
nonresonant signal is also observed in the L2-edge experiment
in Fig. 7 at H = ±1 T. The small jump at 1.5 T in Fig. 8, clearly
observed at E2 energy for σ -σ ′, may be due to the transition to
phase III’ [43]. With respect to π -π ′, the energy dependence in
Fig. 9 is characterized by the resonance at E1. The contribution
from the nonresonant scattering is | cos 2θ |2(≃ 0.12) times the
σ -σ ′ intensity, and can be neglected in the E1 resonance in
Fig. 8.

Let us analyze the H dependencies of the E1 intensity.
Among the field induced moments shown in Table I, the dipole

FIG. 9. (Color online) X-ray energy dependencies of the inten-
sity at 1.2 T for σ -σ ′ and π -π ′.
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TABLE III. The parameters in Eq. (4) to explain the H depen-
dencies of the E1 resonant intensity in Fig. 8.

Domains 1 and 4
∣∣α(2)

E1

∣∣⟨O20⟩
∣∣α(2)

E1

∣∣⟨Oyz⟩
∣∣α(2)

E1

∣∣⟨Oxy⟩
−1.6 −1.1 1.6

Domains 2 and 3
∣∣α(2)

E1

∣∣⟨O22⟩
∣∣α(2)

E1

∣∣⟨Oyz⟩
1.2 −1.1

and quadrupole moments contribute to the E1 resonance.
However, the E1 intensity here at the L3 edge is dominated by
the rank-2 signal, and the rank-1 contribution can be neglected.
This is reasoned by the fact that |α(2)

E1| is much larger than |α(1)
E1|

at the L3 edge, and also by the symmetric H dependence in
phase IV indicating little interference effect between rank-1
and rank-2 scatterings. This treatment is justified by the
previous study on CeB6 at the L3 edge [29]. Therefore the
field-dependent resonant structure factors for domains 1 and
2, at !ω = 5.726 keV (L3-E1), can be written as

F̂1(H ) =
∣∣α(2)

E1

∣∣eiδ
(2)
1

[
Ĝ

O20
E1 ⟨O20⟩

+
(
Ĝ

Oyz

E1 + Ĝ
Ozx

E1

)
⟨Oyz⟩ + Ĝ

Oxy

E1 ⟨Oxy⟩
]
H, (4a)

F̂2(H ) =
∣∣α(2)

E1

∣∣eiδ
(2)
1

[
ĜO22

E1 ⟨O22⟩ +
(
Ĝ

Oyz

E1 + Ĝ
Ozx

E1

)
⟨Oyz⟩

]
H.

(4b)

By using the parameters listed in Table III, the experimental
results can be well reproduced, which are shown by the solid
lines in Fig. 8. Since these parameters could not be determined
uniquely, the physically plausible ones were selected so that
they are consistent as much as possible with Table II and
also with the result of MF calculation described later. The
AFQ moments of domains 2 and 3 are also deduced here,
which was not obtained in the L2-edge experiment due to the
weak contribution. The resultant parameters in Table III, the
same order of magnitude for the !5g-AFQ and !3g-AFQ, again
show that the !5g-AFQ is much more induced than the !3g-
AFQ, which cannot be explained by the MF model described
later.

C. AFQ phase at high fields

1. L2 edge

The AFO order of phase IV exhibits a first-order transition
to the AFM phase III at |H | = 1 T for H ∥ [1̄10]. This
behavior can be observed in Fig. 5 as the sudden decrease
and increase intensity for σ -σ ′ and π -σ ′, respectively. The
σ -σ ′ intensity finally disappears on entering the AFQ phase
II, and the resonant signal in the AFQ phase is dominated
by the π -σ ′ scattering. In Fig. 10 the significant increase
in the π -σ ′ intensity on entering the AFM and AFQ phases
are demonstrated both for E1 and E2 resonances at the L2
edge.

The ordered structure of the multipole moments in the
AFQ phase has been well established in CeB6. For H ∥ [1̄10],
antiferro-type orderings of ⟨Jz⟩, ⟨Oyz − Ozx⟩, and ⟨Txyz⟩ are
induced by the field and a single domain state is formed [29].
The same is expected in the AFQ phase of Ce0.7La0.3B6. If

FIG. 10. (Color online) Magnetic-field dependence of the E2
and E1 intensities for the π -σ ′ channel.

we perform FLPA and if we could deduce the parameters
corresponding to these moments in the AFQ phase, the values
could be directly compared with those of Table II, which will
be of great significance. In particular, the ⟨Txyz⟩-AFO moment
in the AFQ phase, at 4 T, for example, can be a good measure
of the AFO moment because it is almost saturated and can
be used to evaluate the value of the ⟨T β⟩-AFO moment in
Table II.

In Fig. 11, the energy spectra for π -σ ′ at H = ±4 T
are shown. A significant difference in intensity by the field
reversal is observed, indicating a strong interference between
the induced moments described above. However, the spectra
are much different from those of the L3-edge experiment
reported for CeB6 [27,29]. Since the order parameters are
expected to be the same, this difference can be attributed to
the difference in the spectral functions of the L2 and the L3
edges.

Figures 12 and 13 show the results of FLPA at E1
and E2 energies, respectively. With respect to the E1
resonance, only the dipole and quadrupole moments are
involved. In the field-induced AFQ phase of Ce0.7La0.3B6,
the AFQ moment is considered to change sign by the
field reversal because it is connected to the ordered
state of phase IV in which the AFQ moments change
sign and the AFM moments do not. Thus the scattering
amplitude operator at H = ±4 T and !ω = 6.168 keV

FIG. 11. (Color online) Magnetic-field dependence of the E2
and E1 intensities for the π -σ ′ channel.
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FIG. 12. (Color online) Incident polarization dependencies of the
E1 intensity at H = ±4 T. Solid lines are the calculations.

(L2-E1) can be written as

F̂± =
∣∣α(1)

E1

∣∣eiδ
(1)
1 Ĝ

Jz

E1⟨Jz⟩ ±
∣∣α(2)

E1

∣∣eiδ
(2)
1

(
Ĝ

Oyz

E1 − Ĝ
Ozx

E1

)
⟨Oyz⟩.

(5)

In this case, the number of parameters is small, which
makes the unique determination possible. By using the
fitting parameters |α(1)

E1|⟨Jz⟩ = 4.3 ± 0.2, |α(2)
E1|⟨Oyz⟩ = 2.8 ±

0.5, and δ
(1)
1 − δ

(1)
2 = (−0.14 ± 0.05)π , the data can be well

reproduced as shown by the solid lines in Fig. 12. Using
these parameters, for π -σ ′, Iπσ ′(+4 T) = 15.1 + 6.3 = 21.4
and Iπσ ′ (−4 T) = 15.1 − 6.3 = 8.8 are calculated, and the
average value of 15.1 is divided into Idip + Iquad = 9.2 + 5.9,
indicating that the dipolar contribution is larger than the
quadrupolar contribution. This result is opposite to that of
the L3 edge [29] where the dipolar contribution is very small.
This is due to the difference in the spectral functions.

With respect to the E2 resonance, since the tail
of the E1 spectrum seems to have a significant in-
tensity at the E2 energy, it is necessary to take
into account the interference with the E1 resonance.
Then, the scattering amplitude operator at H = ±4 T

FIG. 13. (Color online) Incident polarization dependencies of the
E2 intensity at H = ±4 T. Solid lines are the calculations.

FIG. 14. (Color online) Magnetic-field dependence of the E2
and E1 intensities for the π -σ ′ channel.

and !ω = 6.161 keV (L2-E2) can be written as

F̂± =
∣∣α(1)

E1

∣∣eiδ
(1)
1 Ĝ

Jz

E1⟨Jz⟩ ±
∣∣α(2)

E1

∣∣eiδ
(2)
1

(
Ĝ

Oyz

E1 − Ĝ
Ozx

E1

)
⟨Oyz⟩

+
∣∣α(1)

E2

∣∣eiδ
(1)
2 Ĝ

Jz

E2⟨Jz⟩ ±
∣∣α(2)

E2

∣∣eiδ
(2)
2

(
Ĝ

Oyz

E2 − Ĝ
Ozx

E1

)
⟨Oyz⟩

+
∣∣α(3)

E2

∣∣eiδ
(3)
2

(
Ĝ

T α
z

E2

〈
T α

z

〉
+ Ĝ

Txyz

E2 ⟨Txyz⟩
)
. (6)

The problem of this model is that the physically plausible
parameters cannot be obtained uniquely. The data in Fig. 13
can be reproduced well by controlling |α(1)

E1|⟨Jz⟩, |α(1)
E2|⟨Jz⟩,

and |α(2)
E2|⟨Oyz⟩ for any |α(3)

E2|⟨Txyz⟩ values from 0 to 20, one
of which is shown by the solid lines in Fig. 13. Therefore,
unfortunately, |α(3)

E2|⟨Txyz⟩ cannot be determined from these
data.

2. L3 edge

Also in the L3 edge, the σ -σ ′ and π -π ′ intensities finally
disappear in the AFQ phase, and the resonant signal is
dominated by the π -σ ′ and σ -π ′ scatterings. Figure 14
demonstrates the jump in intensity at the first-order transition
at ±1 T and the significant increase in intensity in phases III
and II. It is noted that the intensity in phase IV is not zero,
which is shown in Fig. 8. The energy spectra at ±4 T is not
shown here because they are basically the same as those of
CeB6, which has been reported previously [27,29].

Figures 15 and 16 show the results of FLPA at E1 and
E2 energies, respectively. The scattering amplitude operator
for the E1 resonance at ±4 T can be written as Eq. (5),
where we use the spectral functions for the L3 edge. In this
case as well, the parameters can be determined uniquely,
which are |α(1)

E1|⟨Jz⟩ = 0.7 ± 0.3, |α(2)
E1|⟨Oyz⟩ = 6.7 ± 0.3, and

δ
(1)
1 − δ

(2)
1 = (0.8 ± 0.05)π . As shown by the solid lines in

Fig. 15, the data are well reproduced by the calculation. Using
these parameters, for π -σ ′, Iπσ ′(+4 T) = 36.47 + 3.27 =
39.74 and Iπσ ′ (−4 T) = 36.47 − 3.27 = 33.2. The average
value of 36.47 is divided into Idip + Iquad = 0.21 + 36.26,
indicating that the quadrupolar contribution is much larger
than the dipolar one. This result is consistent with the previous
report on CeB6 [29]. The difference between the L2 and L3
edges, Iπσ ′ (+4 T) > Iπσ ′ (−4 T) at the L2 edge, whereas
Iπσ ′ (+4 T) < Iπσ ′(−4 T) at the L3 edge, is due to the
difference in the spectral functions between the two edges.
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FIG. 15. (Color online) Incident polarization dependencies of the
E1 intensity at H = ±4 T. Solid lines are the calculations.

Let us finally analyze the result of the E2 resonance in
Fig. 16. As in the L2 edge, we need to consider the interference
between the E1 and E2 resonances. The full expression of the
scattering amplitude operator is given by Eq. (6), where we
use the spectral functions for the L3 edge. Although Eq. (6)
contains all the contributions from rank-1 to rank-3, in the
present analysis of the E2 resonance at the L3 edge, by
contrast, we can neglect the rank-1 contribution as shown in
the previous study on CeB6. Therefore the model scattering
amplitude at H = ±4 T and !ω = 5.719 keV (L3-E2) is
written as

F̂± = ±
∣∣α(2)

E1

∣∣eiδ
(2)
1

(
Ĝ

Oyz

E1 − Ĝ
Ozx

E1

)
⟨Oyz⟩

±
∣∣α(2)

E2

∣∣eiδ
(2)
2

(
Ĝ

Oyz

E2 − Ĝ
Ozx

E1

)
⟨Oyz⟩

+
∣∣α(3)

E2

∣∣eiδ
(3)
2

(
Ĝ

T α
z

E2

〈
T α

z

〉
+ Ĝ

Txyz

E2 ⟨Txyz⟩
)
. (7)

In this case, the situation is better than the case in the
L2 edge where the reliable determination of the parameter
was unsuccessful. Nevertheless, it is still not possible to
determine the parameters uniquely. There is a range of values
in which any set of parameters can reproduce the data in

FIG. 16. (Color online) Incident polarization dependencies of the
E2 intensity at H = ±4 T. Solid lines are the calculations.

TABLE IV. The parameters in Eq. (7) to explain the result of
Fig. 16.

∣∣α(2)
E1

∣∣ ∣∣α(2)
E2

∣∣ ∣∣α(3)
E2

∣∣ ∣∣α(3)
E2

∣∣
·⟨Oyz⟩ ·⟨Oyz⟩ ·

〈
T α

z

〉
·⟨Txyz⟩ δ

(2)
1 − δ

(3)
2 δ

(2)
2 − δ

(3)
2

3.7 1.34 4.6 8 0.1 −0.2
...

...
...

...
...

...
2.8 1.07 7.9 13 0.05 −0.4

the same manner, which is summarized in Table IV. The
solid lines in Fig. 16 are the calculations using a parame-
ter set: |α(2)

E1|⟨Oyz⟩ = 3.4, |α(2)
E2|⟨Oyz⟩ = 1.2, |α(3)

E2|⟨T α
z ⟩ = 6,

|α(3)
E2|⟨Txyz⟩ = 10, δ

(2)
1 − δ

(3)
2 = 0.08, and δ

(2)
2 − δ

(3)
2 = −0.28.

These values are in the middle of the range in Table IV. We
note that, in the previous report of Ref. [29] on CeB6, relative
ratios among various multipoles as shown in Table IV have not
been discussed. We are dealing with the same ordered state in
more detail.

To understand the interference effect more explicitly, let us
examine which parameter determines the total intensity. By
taking all the multipoles into account, we obtain Iπσ ′ (+4 T) =
14.8, Iπσ ′(−4 T) = 7.3, Iσπ ′(+4 T) = 3.1, and Iσπ ′ (−4 T) =
1.2, which well reproduce the data in Fig. 16. If we take
into account only |α(2)

E1|⟨Oyz⟩ and |α(3)
E2|⟨Txyz⟩, we obtain

Iπσ ′ (+4 T) = 13.1 and Iπσ ′(−4 T) = 8.9, which nearly ex-
plains the data for π -σ ′. Thus most of the π -σ ′ intensity is de-
termined by these two terms. This is how the resonant intensity
for π -σ ′ was analyzed in CeB6 previously [29]. However, for
σ -π ′, with these parameters only, we have Iσπ ′(+4 T) = 11.7
and Iσπ ′(−4 T) = 8.8, which is far from agreement with the
data. This disagreement is removed by including |α(3)

E2|⟨T α
z ⟩:

we have Iπσ ′(+4 T) = 13.2, Iπσ ′ (−4 T) = 9.0, Iσπ ′ (+4 T) =
2.4, and Iσπ ′(−4 T) = 1.7. While the π -σ ′ intensities are not
affected, the agreement in the σ -π ′ intensity is significantly
improved. The |α(2)

E2|⟨Oyz⟩ term slightly modifies the final
intensity to improve the total agreement.

The fitting result of Table IV shows that |α(3)
E2|⟨Txyz⟩ at

4 T is more than 8 at least. From Fig. 10 of Ref. [29],
⟨Txyz⟩ at 4 T is estimated to be induced almost to the full
moment. Therefore, let us consider |α(3)

E2|⟨Txyz⟩ = 8, which
gives the intensity in cps unit, as the value corresponding
to the full moment of ⟨Txyz⟩. The theoretical value of the
⟨Txyz⟩ full moment is 9

√
5/2 = 10.06 in the !8 CEF ground

state. In the same manner, the theoretical full moment of
⟨T β⟩ ≡ ⟨T β

x + T
β
y + T

β
z ⟩/3, the order parameter of phase IV

at H = 0 T where ⟨T β
x ⟩ = ⟨T β

y ⟩ = ⟨T β
z ⟩ is satisfied, is√

30 = 5.48.
Next, let us estimate the intensity at H = 0 T in the ⟨T β⟩-

AFO phase, which was too weak to be detected. The scattering
amplitude operator for domains 1 and 2 at H = 0 T and !ω =
5.719 keV (L3-E2) is written as

F̂1 =
∣∣α(3)

E2

∣∣eiδ
(3)
2

(
ĜT

β
x

E2 + Ĝ
T

β
y

E2 + Ĝ
T

β
z

E2

)
⟨T β⟩, (8a)

F̂2 =
∣∣α(3)

E2

∣∣eiδ
(3)
2

(
ĜT

β
x

E2 − Ĝ
T

β
y

E2 + Ĝ
T

β
z

E2

)
⟨T β⟩. (8b)
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Experimentally, from Fig. 8, the σ -σ ′ and π -σ ′ intensity at
0 T is estimated to be less than 0.2 and 0.1 cps, respectively.
If we put |α(3)

E2|⟨T β⟩ = (8 × 5.48/10.06)/4, corresponding to
one-fourth of the full moment value, we have Iσσ ′ = 0.22 cps
and Iπσ ′ = 0.066 cps, and these are the largest values we can
expect as the hidden signals from the ⟨T β⟩-AFO order for the
E2 intensity at the L3 edge. Thus we conclude that the ⟨T β⟩-
AFO order parameter at T = 1.0 K is less than one-fourth of
the full moment.

Finally, let us go back to the T dependence of the σ -σ ′

intensity at the L2 edge shown in Fig. 3. From the observed
intensity of ∼1 cps at 1.0 K, it is estimated that the full
moment of the ⟨T β⟩-AFO order would give an intensity larger
than 1 × 42 = 16 cps because the intensity is proportional to
the square of the order parameter. In actuality, from Fig. 3,
the intensity increases with decreasing temperature and is
expected to saturate at around 2.5 cps at T = 0 K. Therefore
the value of the T β-AFO at T = 0 K is estimated to be less
than

√
2.5/16 = 0.4 times the full moment.

IV. DISCUSSION

The experiment shows that both the !3g- and !5g-AFQ
are induced by the field in the !5u-AFO phase as expected
in Table I. Remarkably, however, the !5g-AFQ is induced
more than the !3g-AFQ as shown by the L2- and L3-edge
experiments. This is an important problem because it is
contradictory to what is expected from an MF calculation for
the !5u-AFO order, which is shown in Fig. 17 and described
in the following.

We consider the following Hamiltonian for the MF calcu-
lation:

H =
∑

i

[HCEF − gµB J(i) · H] −
∑

i,j

K
(o)
5u Tβ(i) · Tβ(j )

−
∑

i,j

K
(q)
5g O!5g

(i) · O!5g
(j ) −

∑

i,j

K
(o)
2u Txyz(i)Txyz(j ),

(9)

where HCEF is the cubic CEF giving the !8 ground state. The
!5g quadrupole, !5u octupole, and !2u octupole exchange in-
teractions are represented by K

(q)
5g , K (o)

5u , and K
(o)
2u , respectively.

We treat the Hamiltonian in a two-sublattice model. If we
consider K

(q)
5g =−0.6 K only, we have an !5g-AFQ transition

temperature of 0.6 K at H = 0 T, which is represented by
T

(q)
5g = 0.6 K in Fig. 17. In the same manner, the AFO

parameters K
(o)
5u and K

(o)
2u are transformed to the respective

transition temperatures, T (o)
5u and T

(o)
2u , at zero field. In all cases,

the primary order parameter is the !5u(T β)-AFO as shown
in Fig. 17(d) and accompanies the !5g-type ferroquadrupole
order as shown in Fig. 17(e).

The calculated H dependencies of the order parameters
we treated in Sec. III are shown in Figs. 17(a)–17(c). As we
assumed in Sec. III, the even and odd rank multipoles are
induced linearly and quadratically with H , respectively, and
the sign does and does not change with the field reversal. It
is noted that the !4u(T α)-AFO is induced in the same manner
as the AFM dipole moment since they belong to the same
irreducible representation.

FIG. 17. (Color online) Results of the MF calculation of Eq. (9).
The interaction parameters are represented by the respective transition
temperatures: K

(q)
5g , T

(o)
5u , and T

(o)
2u . (a)–(c) H dependencies of the

AFM dipole, AFQ, and !5u-AFO moments, respectively, for domain
1 at T = 0.1 K. (d) and (e) T dependencies of the !5u-AFO and
!5g-FQ moments, respectively, at H = 0 T. (f) T dependencies of the
domain averaged uniform magnetization. The primary !5u(T β )-AFO
is realized at zero field in all cases. Energy-level splitting of the !8

CEF ground state and the off-diagonal matrix elements responsible
for the field-induced dipole and quadrupole moments are also shown.

The most significant discrepancy between the MF calcu-
lation and the experimental result is that the !3g-AFQ in
the MF model is much more (∼10 times) strongly induced
than the !5g-AFQ because of the large off-diagonal matrix
element as shown in Fig. 17. Although the parameters for
the !3g- and !5g-AFQ moments in Tables II and III were
chosen so that their signs and ratios were as consistent as
possible with the MF calculation, they are still far from those
in Fig. 17(b). The cusp anomaly in M(T ) reported in Ref. [20]
is also difficult to explain by an MF model if we take into
account the !5g-AFQ interaction as shown by the solid line
in Fig. 17(f) [33]. Although the cusp anomaly is reproduced
without the AFQ interaction as shown by the dashed line,
the anomaly disappears if we consider the AFQ interaction
as shown by the solid line. Since the AFQ interaction should
exist in this system behind the octupole order, the MF model
has a severe difficulty in explaining the experimental results.

We consider that these difficulties are the consequence
of multipolar fluctuation. The AFQ transition temperature of
CeB6 in the MF model is estimated to be ∼7 K at zero field,
which is twice as large as the actual value of 3.3 K [45].
In Fig. 1, we notice that the curvature of the phase line at
low fields, reflecting the multipolar fluctuation effect, is more
significant in Ce0.7La0.3B6 than in CeB6. It is suggested that
the AFQ, AFO, and AFM order parameters are in strong
competition. Therefore the actual AFO transition at 1.5 K is
supposed to be a consequence of strong fluctuation. The AFO
transition temperature in the MF model can possibly be as high
as 3 K, which would reduce the magnetization at the lowest
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temperature to a value represented by the single dotted line
in Fig. 17(f). This would make a cusp if the actual transition
temperature is reduced to 1.5 K due to fluctuation. The resonant
E1 signal remaining above the transition temperature reported
in Ref. [8] might be associated with the fluctuation, which
is an unresolved problem and requires further study. A direct
observation of the excitation energy (/1 and /2 in Fig. 17)
in the !5u-AFO phase by inelastic neutron scattering will also
be important in clarifying the intrinsic strength of the AFO
interaction.

It should also be noted that the phases of !5u-AFO and the
!5g-AFQ (with !4u-AFM inside) are separated by a first-order
transition due to incompatible symmetries. In this transition,
the strongly induced !5g-AFQ below 1 T is also considered
to reflect an underlying fluctuation, which is associated with
an instability to the AFQ order in the AFO phase; it cannot
be explained by changing the MF parameters as shown in
Fig. 17(b). Furthermore, since the induction of the !5g-AFQ
occurs at low temperatures in the ordered phase where the
thermal fluctuation is suppressed and the MF behavior is
expected, quantum fluctuation is supposed to play an essential
role.

Another experimental fact that is supposed to be associated
with the quantum fluctuation is the reduction of the ordered
magnetic dipole moment (0.3 ∼ 0.4 µB) in the AFM phase
of CexLa1−xB6 [46–48]. It is not probable to ascribe this to
the Kondo effect alone, since the uniform magnetization soon
reaches 1 µB in magnetic fields and is explained by the MF
calculation [49]. It is speculated that the close degeneracy
among the AFM, AFQ, and AFO orderings causes the quantum
fluctuation and results in the reduction of the ordered moments.
In the present study, we showed that the !5u-AFO moment is
reduced from its full moment value, although the estimation
process was rather indirect. An abrupt appearance of the AFM
dipole order by a magnetic ion doping into the AFO phase also
seems to suggest the underlying instability to the AFM dipole
order [33]. The characteristic phase boundary we pointed out
in Sec. I may be related with these nearly degenerate ordered
phases of AFO, AFQ, and AFM, which are symmetrically
incompatible with each other. In any case, further experimental
study is necessary and deserves to be performed from the
viewpoint of fluctuation.

V. CONCLUSION

By utilizing resonant x-ray diffraction in magnetic fields
with full linear polarization analysis, we have identified the
field-induced multipole order parameters of Ce0.7La0.3B6, and
thereby extracted a hidden AFQ fluctuation in the !5u-AFO
ordered phase. Although the !5u-AFO should favor the !3g-
AFQ as the main induced moment, the !5g-AFQ was actually
induced much more than the !3g-AFQ. This is considered
to be caused by strong multipolar fluctuation associated with
the competition among active multipole order parameters. We
also remark that investigation of the field-induced staggered
multipoles on the primary AF-order by RXD thus provides
valuable information on the hidden multipolar interactions,
which strongly affect the ordering phenomenon but cannot be
revealed only by studying the primary order parameter.
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APPENDIX A: FORMALISM OF POLARIZATION
ANALYSIS

We use the scattering-amplitude-operator method to ana-
lyze the results of full-linear-polarization-analysis measure-
ments [44]. This method is useful for describing the observed
intensity at the detector in a general scattering geometry shown
in Fig. 2, where the incident polarization angle is rotated by
the phase plates and a crystal analyzer system is inserted to
analyze the polarization state of the scattered x ray.

We consider a 2 × 2 matrix F̂ consisting of four elements
of the scattering amplitude for σ -σ ′, σ -π ′, π -σ ′, and π -π ′

processes:

F̂ =
(

Fσσ ′ Fπσ ′

Fσπ ′ Fππ ′

)
. (A1)

This determines the state of the target system. By using the
identity matrix Î and the Pauli matrix σ̂ , F̂ can generally be
expressed as

F̂ = β Î + α · σ̂ =
(

β + α3 α1 − iα2
α1 + iα2 β − α3

)
, (A2)

where the parameters β and α = (α1,α2,α3) are

β = (Fσσ ′ + Fππ ′)/2, α1 = (Fπσ ′ + Fσπ ′)/2,
(A3)

α2 = i(Fπσ ′ − Fσπ ′)/2, α3 = (Fσσ ′ − Fππ ′ )/2.

Next, to calculate the scattering cross-section, information
on the incident photon state is necessary. This is described
by the density matrix µ̂ = (Î + P · σ̂ )/2, where the Stokes
vector P = (P1,P2,P3) represents the polarization state of
the incident photon. P1, P2, and P3 represent ±45◦, left-
or right-handed circular, and σ or π polarization state,
respectively [44]. For example, P = (0,0,1) and (0,0, − 1)
mean the perfectly σ and π polarized state, i.e., η = 0◦ and
90◦ in Fig. 2, respectively. In general, since the beam is
not perfectly polarized, we need to consider a situation with
P 2

1 + P 2
2 + P 2

3 < 1.
Once we know the matrix F̂ , the scattering cross-section

(dσ/d0) can be calculated by
(

dσ

d0

)
= Tr(µ̂F̂ †F̂ ) = β†β + α† · α + β†(P · α)

+ (P · α†)β + i P · (α† × α). (A4)
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The Stokes vector of the scattered x ray, P ′, can be obtained
from
(

dσ

d0

)
P ′ = Tr(µ̂F̂ †σ̂ F̂ )

= β†α + α†β − i(α† × α) + β†β P − iβ†(P × α)

+ i(P × α†)β + α†(P · α) − α† × (P × α).

(A5)

As an example, we show a case of fundamental Bragg
reflection from the crystal lattice by nonresonant Thomson
scattering. In this case, the scattering amplitude is written as

F̂ = −Fc

(
1 0
0 cos 2θ

)
, (A6)

where Fc represents the structure factor of the reflection. From
Eq. (A3), β = −Fc cos2 θ , α1 = α2 = 0, and α3 = −Fc sin2 θ
are obtained. Then, from Eq. (A4), the scattering cross-section
becomes

(
dσ

d0

)
= |Fc|2

[
1 − 1

2
(1 − P3) sin2 2θ

]
, (A7)

and from Eq. (A5), P ′ satisfies
(

dσ

d0

)
P ′

1 = |Fc|2P1 cos 2θ ,

(
dσ

d0

)
P ′

2 = |Fc|2P2 cos 2θ , (A8)

(
dσ

d0

)
P ′

3 = |Fc|2
[
P3 + 1

2
(1 − P3) sin2 2θ

]
.

The Stokes vector of the incident x ray, with the polarization
angle η in Fig. 2, is written as

P = PL(sin 2η, 0, cos 2η), (A9)

where PL represents the degree of linear polarization. In the
present experiment at E = 6.160 keV, for example, PL is 0.978
at η = 0◦ and over 0.999 at η = 90◦, and can be written as
PL = 0.999 − 0.022 cos2 η [37].

The intensity after diffracted by the analyzer crystal is also
described by the Thomson scattering, and Eq. (A7) is applied.
It is noted, however, that P3 must be transformed to the value
for the diffraction at the analyzer, which we write as P3A:

P3A = P ′
1 sin 2φA + P ′

3 cos 2φA. (A10)

Finally, the intensity at the detector is expressed as

I = K

(
dσ

d0

)[
1 − 1

2
(1 − P3A) sin2 2θA

]
, (A11)

where (dσ/d0) is the scattering cross-section of the sample
expressed by Eq. (A7) and K represents a constant factor.

In Fig. 18, we show the experimental result of polarization
analysis for the 111 fundamental Bragg reflection. The solid

FIG. 18. (Color online) Incident polarization dependencies of
the 111 fundamental Bragg reflection by nonresonant Thomson
scattering. Solid lines are the calculations with Eq. (A11).

lines are the calculated curves with Eq. (A11), which explains
the data very well and supports the reliability of the data
described in the main text.

APPENDIX B: RESONANT SCATTERING AMPLITUDE

Let us briefly summarize the theoretical framework of
resonant x-ray diffraction given by Nagao and Igarashi in
Ref. [28]. The scattering cross-section at an x-ray energy
E = !ω is proportional to |FE1(ω) + FE2(ω)|2, where FE1
and FE2 are the resonant scattering amplitudes for the E1 and
E2 processes, respectively. They are expressed as

FE1(ω) =
2∑

ν=0

α
(ν)
E1(ω)

2ν+1∑

µ=1

G
(ν)
E1,µ(ε,ε′)

〈
z(ν)
µ

〉
, (B1)

FE2(ω) =
4∑

ν=0

α
(ν)
E2(ω)

2ν+1∑

µ=1

G
(ν)
E2,µ(ε,ε′,k̂,k̂′)

〈
z(ν)
µ

〉
. (B2)

z(ν)
µ represents the µth component of the rank-ν multipole

tensor, which are defined in Table I of Ref. [39]. In the
data analysis, the expectation value ⟨z(ν)

µ ⟩ is regarded as an
order parameter. Conventional notations of multipoles such as
T α

x also follows the table. The multipolar order parameters
appearing in the present paper is summarized in Table V.
G

(ν)
E1,µ and G

(ν)
E2,µ are the geometrical factors for the E1 and

TABLE V. Multipolar order parameters in the !8-quartet ground
state as classified by the rank and the irreducible representation
(Irrep).

ν Irrep z(ν)
µ

1 !4u Jx , Jy , Jz

2 !3g O20, O22

2 !5g Oyz, Ozx , Oxy

3 !2u Txyz

3 !4u T α
x , T α

y , T α
x

3 !5u T β
x , T β

y , T β
x
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E2 resonances by ⟨z(ν)
µ ⟩, respectively, which are fully written

in Refs. [28] and [39]. The most important point in these
expressions is that the rank dependent energy profiles, α(ν)

E1(ω)
and α

(ν)
E2(ω), are used. This point plays an important role

in the interference effect between E1 and E2 resonances
and also between resonances by multipoles of different
ranks.

Given the scattering geometry, we can calculate G
(ν)
E1,µ(ε,ε′)

and G
(ν)
E2,µ(ε,ε′,k̂,k̂′) for σ -σ ′, σ -π ′, π -σ ′, and π -π ′ pro-

cesses. Then, we obtain 2 × 2 matrices ĜE1,µ and ĜE2,µ, and
the scattering amplitude matrices for E1 and E2 resonances
are written as

F̂E1(ω) =
2∑

ν=0

α
(ν)
E1(ω)

2ν+1∑

µ=1

Ĝ
(ν)
E1,µ

〈
z(ν)
µ

〉
, (B3)

F̂E2(ω) =
4∑

ν=0

α
(ν)
E2(ω)

2ν+1∑

µ=1

Ĝ
(ν)
E2,µ

〈
z(ν)
µ

〉
. (B4)

The followings are the Ĝ matrices for k − k′ = ( 3
2 , 3

2 , 1
2 ) in

CeB6 at ψ = 0◦ at the L2 edge (E = 6.160 keV for E2 and
E = 6.168 keV for E1). At the L3 edge, although we do not
list them, the values are approximately 5% to 10% different
from those of the L2 edge due to the difference in the Bragg
angle θ .

Ĝ
Jx

E1 = i

(
0.0000 0.5017
0.2264 −0.6348

)
, Ĝ

Jy

E1 = i

(
0.0000 0.5017
0.2264 0.6348

)
, Ĝ

Jz

E1 = i

(
0.0000 −0.7047
0.9474 0.0000

)
,

Ĝ
O20
E1 =

(
−0.5000 0.0000

0.0000 −0.5609

)
, ĜO22

E1 =
(

0.0000 0.6103
0.8204 0.0000

)
,

Ĝ
Oyz

E1 =
(

0.0000 −0.4345
0.1961 0.2735

)
, Ĝ

Ozx

E1 =
(

0.0000 0.4345
−0.1961 0.2735

)
, Ĝ

Oxy

E1 =
(

−0.8660 0.0000
0.0000 0.5781

)
, (B5)

Ĝ
Jx

E2 = i

(
−0.1507 0.1584

0.1663 −0.2647

)
, Ĝ

Jy

E2 = i

(
0.1507 0.1584
0.1663 0.2647

)
, Ĝ

Jz

E2 = i

(
0.0000 0.0780
0.0303 0.0000

)
,

Ĝ
O20
E2 =

(
−0.2250 0.0000
0.0000 0.1231

)
, ĜO22

E2 =
(

0.0000 0.1141
−0.0443 0.0000

)
, Ĝ

Oyz

E2 =
(

0.1096 0.2319
−0.2435 0.0000

)
,

Ĝ
Ozx

E2 =
(

0.1096 −0.2319
0.2435 0.0000

)
, Ĝ

Oxy

E2 =
(

0.2316 0.0000
0.0000 0.2133

)
, Ĝ

Txyz

E2 = i

(
0.0000 −0.1473
0.1982 0.0000

)
, (B6)

Ĝ
T α

x

E2 = i

(
−0.0753 0.2777
0.1729 0.0331

)
, Ĝ

T α
y

E2 = i

(
0.0753 0.2777
0.1729 −0.0331

)
, Ĝ

T α
z

E2 = i

(
0.0000 0.0343

−0.3164 0.0000

)
,

ĜT
β
x

E2 = i

(
0.2918 0.1547

−0.1136 −0.1281

)
, Ĝ

T
β
y

E2 = i

(
0.2918 −0.1547
0.1136 −0.1281

)
, Ĝ

T
β
z

E2 = i

(
0.0000 0.0000
0.0000 0.0000

)
.
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