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Abstract. The purpose of this paper is to clarify the conditions for consistency of
the log-likelihood-based information criteria in canonical correlation analysis of q-
and p-dimensional random vectors when the dimension p is large but does not exceed

the sample size. Although the vector of observations is assumed to be normally
distributed, we do not know whether the underlying distribution is actually normal.
Therefore, conditions for consistency are evaluated in a high-dimensional asymptotic
framework when the underlying distribution is not normal.

1. Introduction

Canonical correlation analysis (CCA) is a statistical method employed to
investigate the relationships between a pair of q- and p-dimensional random
vectors, x = (x1, . . . , xq)

′ and y = (y1, . . . , yp)
′, respectively. Introductions

to CCA are provided in many textbooks for applied statistical analysis (see,
e.g., Srivastava, 2002, chap. 14.7; Timm, 2002, chap. 8.7), and it has widespread
applications in many fields (e.g., Doeswijk et al., 2011; Khalil et al., 2011; Vahedi,
2011; Sweeney et al., 2013; Vilsaint et al., 2013). Let z = (x′,y′)′ be a (p+ q)-
dimensional vector with

E[z] =

(
μx

μy

)
= μ, Cov[z] =

(
Σxx Σxy

Σ′
xy Σyy

)
= Σ,

where μx and μy are mean vectors of q- and p-dimensions, respectively; Σxx

and Σyy are q × q and p × p covariance matrices of x and y, respectively; and
Σxy is the q × p covariance matrix of x and y. The square of the correlation
between a pair of canonical correlation variables is obtained as the eigenvalue
of Σ−1

xxΣxyΣ
−1
yy Σ

′
xy and the root of the k-th largest eigenvalue is called the k-th

canonical correlation.
In an actual data analysis, it is important to remove the irrelevant variables

for analysis. In CCA, the problem of removing irrelevant variables can be re-
garded as the selection of the redundancy model, and thus it has been widely
investigated by many authors (e.g., McKay, 1977; Fujikoshi, 1982, 1985; Ogura,
2010). Suppose that j denotes a subset of ω = {1, . . . , q} containing qj elements,
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and xj denotes the qj-dimensional vector consisting of the elements of x indexed
by the elements of j, where qA denotes the number of elements in a set of A, i.e.,
qA = #(A). For example, if j = {1, 2, 4}, then xj consists of the first, second,
and fourth elements of x. Without loss of generality, x can be divided into
x = (x′

j ,x
′̄
j
)′, where xj and xj̄ are qj- and qj̄-dimensional vectors, respectively.

Note that Ā denotes the compliment of the set A. Another expressions of μx,
Σxy and Σxx corresponding to the divisions of x are

μx =

(
μj

μj̄

)
, Σxy =

(
Σjy

Σj̄y

)
, Σxx =

(
Σjj Σjj̄

Σ′
jj̄ Σj̄j̄

)
.

We are interested in whether the elements of xj̄ are irrelevant variables in CCA.
Let z1, . . . , zn be n independent random vectors from z, and let z̄ be the sample
mean of z1, . . . , zn given by z̄ = n−1

∑n
i=1 zi and S be the usual unbiased

estimator of Σ given by S = (n − 1)−1
∑n

i=1(zi − z̄)(zi − z̄)′, divided in the
same way as we divided Σ, as follows:

S =

(
Sxx Sxy

S′
xy Syy

)
=

⎛
⎝ Sjj Sjj̄ Sjy

S′
jj̄ S j̄j̄ S j̄y

S′
jy S ′̄

jy Syy

⎞
⎠ .

Suppose that z1, . . . , zn ∼ i.i.d. Np+q(μ,Σ). Following Fujikoshi (1985), the
candidate model that xj̄ is irrelevant is expressed as

Mj : (n− 1)S ∼ Wp+q(n− 1,Σ)

s.t. tr(Σ−1
xxΣxyΣ

−1
yy Σ

′
xy) = tr(Σ−1

jj ΣjyΣ
−1
yy Σ

′
jy).

(1)

The candidate model is called the redundancy model. If the modelMj is selected
as the best model, then we regard that xj̄ is irrelevant. An estimator of Σ under
model Mj in (1) is given by

Σ̂j = argmin
Σ

{F (S,Σ) s.t. tr(Σ−1
xxΣxyΣ

−1
yy Σ

′
xy) = tr(Σ−1

jj ΣjyΣ
−1
yy Σ

′
jy)}, (2)

where F (S,Σ) is the Kullback-Leibler (KL) discrepancy function (see Kullback
& Leibler, 1951) assessed by the Wishart density, and it is given by

F (S,Σ) = (n− 1){tr(Σ−1S)− log |Σ−1S| − (p+ q)}, (3)

except for the constant term. In the covariance structure analysis, the above
discrepancy function is frequently called the maximum likelihood discrepancy
function (see Jöreskog, 1967) or Stein’s loss function (see James & Stein, 1961).
From Fujikoshi and Kurata (2008) or Fujikoshi et al. (2010, chap. 11.5), we can

see that an explicit form of Σ̂j in (2) is given by

Σ̂j =

⎛
⎝ Sjj Sjj̄ Sjy

S′
jj̄ S j̄j̄ S′

jj̄S
−1
jj Sjy

S′
jy S′

jyS
−1
jj Sjj̄ Syy

⎞
⎠ . (4)

Choosing the model by minimization of an information criterion is one of the
primary selection methods. The most famous information criterion is Akaike’s
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information criterion (AIC), which was proposed by Akaike (1973, 1974). Fu-
jikoshi (1985) identified that the selection of the redundancy model in CCA is the
selection of the covariance structure, and proposed using the AIC to select these
structure for CCA. Many other information criteria have been proposed for CCA
(see, e.g., Fujikoshi, 1985; Fujikoshi et al., 2008; Hashiyama et al. 2011). The
AIC is included in the family of log-likelihood-based information criteria (LL-
BICs); these are defined by adding a penalty term that expresses the complexity
of the model for a negative twofold maximum log-likelihood. The family of LL-
BICs includes the bias-corrected AIC (AICc) proposed by Fujikoshi (1985), the
Bayesian information criterion (BIC) proposed by Schwarz (1978), the consistent
AIC (CAIC) proposed by Bozdogan (1987), and the Hannan-Quinn information
criterion (HQC) proposed by Hannan and Quinn (1979). The LLBIC for CCA
is written as

ICm(j) = F (S, Σ̂j) +m(j)

= (n− 1) log
|Syy·j |
|Syy·x| +m(j),

(5)

where Syy·� = Syy − S′
�yS

−1
�� S�y (� = j, x) and m(j) is a positive penalty term

that expresses the complexity of the model (1). The relations between LLBIC
and most well-known information criteria are as follows:

AIC : m(j) = p2 + q2 + p+ q + 2pqj ,

AICc : m(j) = (n− 1)2
(

p+ qj
n− p− qj − 2

+
q

n− q − 2
− qj

n− qj − 2
− p+ q

n− 1

)
,

BIC : m(j) =

{
(p+ q)(p+ q + 1)

2
− p(q − qj)

}
log n, (6)

CAIC : m(j) =

{
(p+ q)(p+ q + 1)

2
− p(q − qj)

}
(1 + log n),

HQC : m(j) = 2

{
(p+ q)(p+ q + 1)

2
− p(q − qj)

}
log log n.

When the asymptotic probability of an information criteria selecting the
true model approaches 1, it is said to be consistent; this is one of its most
important properties. In model selections, the true model is the candidate model
with the set of true variables. The set of true variables is the smallest subset of
variables which satisfies the condition in (1). In general, AIC is not consistent
under the large-sample (LS) asymptotic framework in which only the sample
size approaches ∞ (see e.g., Shibata, 1976; Nishii, 1984; Fujikoshi, 1982, 1985).
When the AIC is used for model selection, its lack of consistency sometimes
becomes a target for criticism, even though its purpose is not necessary to choose
the true model.

Recently, the consistencies of various information criteria have been reported
for multivariate models under a high-dimensional (HD) asymptotic framework.
A HD asymptotic framework is one in which the sample size and dimension p
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simultaneously approach ∞ under the condition that cn,p = p/n → c0 ∈ (0, 1]
(for simplicity, we will write this as “cn,p → c0”). Yanagihara et al. (2012)
derived the conditions for consistency of the LLBIC for model selection in a
multivariate linear regression model under the HD asymptotic framework, and
they found that the AIC meets these conditions. Since, by definition, HD data
have a large dimension p, evaluating the consistency of an information criterion
under the HD asymptotic framework is more natural for HD data than evaluating
it under the LS asymptotic framework.

The purpose of this paper is to clarify the conditions under which the LLBIC
is consistent for model selection in CCA when the HD asymptotic framework
is used. In previous works, many results were obtained under the assumption
that the true distribution of the observation vector was the normal distribution
(e.g., Shibata, 1976; Nishii, 1984; Yanagihara et al., 2014; Fujikoshi et al., 2014).
However, we are not able to determine whether this assumption is actually cor-
rect. Hence, a natural assumption for the generating mechanism of the true
model of y is

y = μy +Σ′
j∗yΣ

−1
j∗j∗(xj∗ − μj∗) +Σ

1/2
yy·j∗ε, (7)

where ε is a p-dimensional vector with E[ε] = 0p, Cov[ε] = Ip, 0p is a p-
dimensional vector of zeros, xj∗ is a qj∗-dimensional vector with E[xj∗ ] = μj∗ ,
Cov[xj∗ ] = Σj∗j∗ and j∗ denotes the set of the true variables.

In deriving the conditions for consistency under the HD asymptotic frame-
work, a primary problem is to prove the convergence in probability of the two
log-determinants of estimators of Σ, because the size of the matrix increases
with an increase in the dimensions. Yanagihara et al. (2012, 2014) avoided this
problem by using a property of a random matrix distributed according to the
Wishart distribution (see Fujikoshi et al., 2010, chap. 3.2.4, p. 57). In the
present study, this method is unavailable, because the true distribution of the
observations in (7) is nonnormal.

Yanagihara (2013) derived the conditions under the LLBIC is consistent in
multivariate linear regression models with the assumption of a normal distribu-
tion when the HD asymptotic framework is used, even though the distribution
on the true model is not normal. In Yanagihara (2013), the moments of a specific
random matrix and the distribution of the maximum eigenvalue of the estima-
tor of the covariance matrix were used for assessing consistency. In CCA, it is
important to note that x is a random vector, which is different in the case of
a multivariate linear regression model. Hence, the conditions for consistency in
this study are derived under the assumption that x is a random vector.

This paper is organized as follows: In Section 2, we present the necessary
notations and assumptions, and then we obtain sufficient conditions to ensure
consistency under the HD asymptotic framework. In Section 3, we verify our
claim by conducting numerical experiments. In Section 4, we discuss our con-
clusions. Technical details are provided in the Appendix.



Consistency property of LLBIC in high-dimensional CCA 5

2. Main result

In this section, we show the sufficient conditions for consistency of ICm in
(5). First, we present the necessary notations and assumptions for assessing the
consistency of an information criterion for the model Mj in (1). Let y1, . . . ,yn,
x1, . . . ,xn and ε1, . . . , εn be n independent vectors from y, x and ε, respectively.
Then, the Y , X and E are the n× p, n× q and n× p matrices given by

Y = (In − Jn)(y1, . . . ,yn)
′,

X = (In − Jn)(x1, . . . ,xn)
′,

E = (In − Jn)(ε1, . . . , εn)
′,

where Jn = 1n(1
′
n1n)

−11′
n and 1n is an n-dimensional vector of ones. Suppose

that Xj denotes the n × qj matrix consisting of the columns of X indexed by
the elements of j. By using these matrices, the matrix form of the true model
(7) is expressed as

Y = Xj∗Σ
−1
j∗j∗Σj∗y + EΣ1/2

yy·j∗ . (8)

Henceforth, for simplicity, Xj∗ and qj∗ are represented as X∗ and q∗, respec-
tively. From the above expression, it can be seen that we can regard the true
model (8) as a multivariate linear model by considering the conditional distri-
bution of Y given X.

We now describe two classes of j that express subsets of X in the candidate
model. Let J be the set of K candidate models denoted by J = {j1, . . . , jK}.
We then separate J into two sets: the overspecified models, in which the set
of variables contain all variables of the true model j∗ in (8), that is, J+ =
{j ∈ J |j∗ ⊆ j} and the underspecified models, which are the models that are
not overspecified model, that is, J− = J̄+ ∩ J . In particular, we express the
minimum overspecified model that includes j ∈ J− as j+, and so

j+ = j ∪ j∗. (9)

By using ICm in (5), the best subset of ω, which is chosen by minimizing ICm,
is written as

ĵm = argmin
j∈J

ICm(j).

Let a p× p noncentrality matrix be denoted by

ΓjΓ
′
j = Σ

−1/2
yy·j∗Σ

′
j∗yΣ

−1
j∗j∗X

′
∗(In − P j)X∗Σ−1

j∗j∗Σj∗yΣ
−1/2
yy·j∗ , (10)

where Γj is a p× γj matrix with rank(Γj) = γj and P j = Xj(X
′
jXj)

−1X ′
j . It

should be noted that ΓjΓ
′
j = Op,p holds if and only if j ∈ J+, where On,p is an

n× p matrix of zeros. Moreover, for j ∈ J−, we define

Aj = (In − P j)X∗Σ−1
j∗j∗Σj∗yΣ

−1/2
yy·j∗ .

It is easy to see from the definition of the noncentrality matrix in (10) that
A′

jAj = ΓjΓ
′
j . By using a singular value decomposition, Aj can be rewritten
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as

Aj = HjL
1/2
j G′

j , (11)

where Hj = (hj,1, . . . ,hj,γj ) and Gj = (gj,1, . . . , gj,γj
) are n × γj and γj × γj

matrices, that satisfy H ′
jHj = Iγj and G′

jGj = Iγj , respectively, and Lj =
diag(αj,1, . . . , αj,γj ) is a diagonal matrix of order γj whose diagonal elements αj,k

are the squared singular values ofAj , which are assumed to be αj,1 ≥ · · · ≥ αj,γj .
Furthermore, let ||a|| denote the Euclidean norm of the vector a. Then, in

order to assess the consistency of ICm, the following assumption are necessary:

A1. The true model is included in the set of candidate models, that is, j∗ ∈ J .

A2. E[||ε||4] exists and has the order O(p2) as p → ∞.

A3. E[||x||4] exists.
A4. ∀j ∈ J−, limp→∞ p−1Σj∗yΣ

−1
yy·j∗Σ

′
j∗y = Ψj exists and

tr(Σ−1
j∗ Σj∗j∗·jΣ

−1
j∗ Ψj) > 0.

A1 is the basic assumption for evaluating the consistency of an information
criterion, because the probability of selecting the true model becomes 0 if it does
not hold. A2 and A3 are assumptions about the moments of the distribution
of the true model, although ε and x are not assumed to represent a specific
distribution. It is easy to see that A2 holds if maxa=1,...,p E[ε4a] is bounded. A4
is used in assessing the noncentrality matrix. In the multivariate linear regression
model, Xj in ΓjΓ

′
j is not random. However in CCA, Xj in ΓjΓ

′
j is random.

Hence, a different assumption from the multivariate linear regression model is
required in A4. If A2 is satisfied, the multivariate kurtosis proposed by Mardia
(1970) exists as

κ
(1)
4 = E[||ε||4]− p(p+ 2) =

p∑
a,b

κaabb + p(p+ 2), (12)

where the notation
∑p

a1,a2,...
means

∑p
a1=1

∑p
a2=1 · · · , and κabcd is the fourth-

order multivariate cumulant of ε, defined as

κabcd = E[εaεbεcεd]− δabδcd − δadδbd − δadδbc.

Here, δab is the Kronecker delta (i.e., δaa = 1, and δab = 0 for a 
= b). It is well

known that κ
(1)
4 = 0 when ε ∼ Np(0p, Ip). In general, the order of κ

(1)
4 is

κ
(1)
4 = O(ps) as p → ∞, s ∈ [0, 2]. (13)

By using these notations and assumptions, we derived the following theorem
for the sufficiency conditions for the consistency of the penalty term m(j) (the
proof was given in the Appendix A2).
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Theorem 1. Suppose that assumptions A1-A4 hold. Variable selection
using ICm is consistent when cn,p → c0 if the following conditions are satisfied
simultaneously:

(C1) ∀j ∈ J+\{j∗}, limcn,p→c0{m(j)−m(j∗)}/p > −c−1
0 (qj−q∗) log(1−c0).

(C2) ∀j ∈ J−, limcn,p→c0{m(j)−m(j∗)}/(n log p) > −1/2.

We can see from Theorem 1 that the conditions for consistency are similar to
those in the multivariate regression model derived by Yanagihara and colleagues
(Yanagihara et al., 2012; Yanagihara, 2013). This is because the CCA can be
regarded as an extension of the multivariate regression model. Futhermore, the
conditions for consistency in Theorem 1 is also similar to those in Yanagihara et
al. (2014), which is derived for a CCA when a normal distribution is assumed
to the true model. This indicates that the conditions for consistency are free of
the influence of nonnormality in the distribution of the true model.

Using Theorem 1, the conditions for consistency of specific criteria can be
clarified by the following corollary (the proof is given in the Appendix A3):

Corollary 1. Suppose that assumptions A1-A4 are satisfied. Then we
have

1. A model selection using the AIC is consistent when cn,p → c0 if c0 ∈ (0, ca]
holds, where ca(≈ 0.797) is a constant satisfying

log(1− ca) + 2ca = 0. (14)

2. Model selections using the AICc and HQC are consistent when cn,p → c0.
3. Model selections using the BIC and CAIC are consistent when cn,p → c0

if c0 ∈ (0, cb/2] holds, where cb = min{1,minj∈F− 1/{2(q∗ − qj)}} and F−
is a set of candidate models given by

F− = {j ∈ J |q∗ − qj > 0}. (15)

Corollary 1 shows that, when cn,p → c0, the AICc and HQC are always
consistent in model selection, whereas the AIC, BIC, and CAIC are not always
consistent. The consistency of the BIC and CAIC is strongly dependent on
values of parameters in the true model, but this is not true for the AIC. This
sets the BIC and CAIC at a great disadvantage compared to the AIC, because
the real values of parameters in the true model is unknowable. Table 1 lists the
conditions required for consistency for each of the following criteria: AIC, AICc,
BIC, CAIC, and HQC.

3. Numerical Study

In this section, we conduct numerical studies to examine the validity of
our claim. The probabilities of selecting the true model by the AIC, AICc,
BIC, CAIC, and HQC were evaluated by Monte Carlo simulations with 10,000
iterations each.
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Table 1. Conditions for consistency

Criterion Consistency Conditions

AIC Conditionally holds c0 ∈ [0, ca)
AICc & HQC Holds - - - -
BIC & CAIC Conditionally holds c0 ∈ [0, cb)

Note) ca and cb are given in Corollary 1.

Let ν1 = (ν1,1, . . . , ν1,p)
′ ∼ Np(0p, Ip), ν2 = (ν2,1, . . . , ν2,q)

′ ∼ Nq(0q, Iq),
δ1, δ2 ∼ χ2

6, ω1,1, . . . , ω2,p ∼ i.i.d.χ2
5 and ω2,1, . . . , ω2,q ∼ i.i.d.χ2

5 be mutu-
ally independent random vectors and variables. Then, ε = (ε1, . . . , εp)

′ and
x = (x1, . . . , xq)

′ were generated from the following five distributions, as in
Yanagihara (2013):

• Distribution 1 (the multivariate normal distribution).

ε = ν1, x = ν2.

• Distribution 2 (a scale mixture of the multivariate normal distribution).

ε =

√
δ1
6
ν1, x =

√
δ2
6
ν2.

• Distribution 3 (a location-scale mixture of the multivariate normal distri-
bution).

ε = B
−1/2
1

{
10

(√
δ1
6

− η

)
1p +

√
δ1
6
ν1

}
,

x = B
−1/2
2

{
10

(√
δ2
6

− η

)
1q +

√
δ2
6
ν2

}
,

where η = 15
√

π/3/16, B1 = Ip+100(1−η2)1p1
′
p, and B2 = Iq +100(1−

η2)1q1
′
q.

• Distribution 4 (the independent t-distribution).

εa =

√
3ν1,a√
5ω1,a

, xa =

√
3ν2,a√
5ω2,a

.

• Distribution 5 (the independent log-normal distribution).

εa =
log ν1,a −

√
e√

e(e− 1)
, xa =

log ν2,a −
√
e√

e(e− 1)
.

It is easy to see that distributions 1, 2, and 4 are symmetric, and distributions
3 and 5 are skewed.

The mean vectors μy and μj∗ were generated from U(−4, 4) and U(−3, 3),
respectively, and j∗ = 3. Then, y was obtained from the true model (7). The
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structure of Σ was prepared for the following four cases (cases 1 and 2 are the
same settings as in Fujikoshi, 2014):

Case 1.

Σ =

(
I5 R′

R Ip

)
, R = (R1,O5,p−q)

′, R1 = diag(ρ1, . . . , ρ5),

ρ1 = 2ρ, ρ2 = 3ρ/2, ρ3 = ρ, ρ4 = ρ5 = 0, ρ =

√
(4p/21)

p+ 1 + (4p/21)
.

Case 2 (the structure of Σ is the same as in Case 1).

ρ1 = ρ̃, ρ2 = 3ρ̃/4, ρ3 = ρ̃/2, ρ4 = ρ5 = 0, ρ̃ =

√
p

p+ 1

√
(4p/21)

1 + (4p/21)
.

Case 3. Σ = ΦΦ′, where Φ is a (p+ 5)× (p+ 5) matrix whose elements are
distributed from U(0, 1/p+ 5).

Case 4. Σ = ΦΦ′, whereΦ is a (p + 8) × (p + 8) matrix whose elements are
distributed from U(0, 1/p+ 8).

In these settings, data are generated under the following combinations of n and
p:

• c0 = 0.05: (n, p) = (100, 5), (200, 10), (500, 25), (1000, 50).

• c0 = 0.1: (n, p) = (100, 10), (200, 20), (500, 50), (1000, 100).

• c0 = 0.2: (n, p) = (100, 20), (200, 40), (500, 100), (1000, 200).

• c0 = 0.3: (n, p) = (100, 30), (200, 60), (500, 150), (1000, 300).

Tables 2 through 6 show the selection probability (i.e., the probability of
selecting the true model) when ε and x are from Distributions 1, 2, 3, 4, and
5, respectively, when using the AIC, the AICc, the BIC, the CAIC, and the
HQC. From these tables, we can see that the selection probability of the AIC
tends to increase in most settings when p and n were large. The AICc and
HQC had the same tendency as that of the AIC, that is, when n and p were
large, their selection probabilities tended to increase. On the other hand, the
selection probabilities of the BIC and CAIC decreased for larger values of n and
p. Moreover, it was worth noting that the selection probabilities of the BIC and
CAIC depend on the distribution settings, this may be because the conditions
for consistency of the BIC and CAIC have a strong dependence on the values of
parameters in the true model. We repeated the simulations for several models
and obtained similar results, and these validated our claim.
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Table 2. Selection probabilities of the true model (%) in the Case of Distribution 1
c0 = 0.05 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 80.01 79.24 31.31 15.29 67.22 62.36 56.11 8.54 2.48 37.42
200 10 94.55 95.03 17.95 4.88 76.07 93.47 92.95 12.51 2.98 68.61
500 25 99.58 99.88 1.18 0.06 83.03 99.66 99.93 12.86 1.24 97.99

1000 50 99.99 100.00 0.00 0.00 85.92 100.00 100.00 6.25 0.13 99.99

c0 = 0.05 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 88.12 94.09 80.83 63.32 94.94 85.77 92.28 68.05 47.49 90.37
200 10 96.08 98.70 96.04 84.35 99.82 95.67 98.70 86.36 64.22 99.62
500 25 99.68 99.92 99.99 98.41 100.00 99.61 99.88 99.12 89.53 100.00

1000 50 100.00 100.00 100.00 100.00 100.00 99.97 100.00 100.00 99.59 100.00

c0 = 0.1 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 70.89 49.01 2.14 0.15 31.16 65.76 42.52 1.24 0.10 24.92
200 20 86.25 62.95 0.01 0.00 17.14 93.81 78.96 0.22 0.01 32.36

500 50 97.74 81.43 0.00 0.00 2.19 100.00 99.43 0.00 0.00 36.62
1000 100 99.76 92.53 0.00 0.00 0.03 100.00 100.00 0.00 0.00 30.78

c0 = 0.1 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 93.28 95.23 41.77 13.54 88.98 91.66 89.10 24.65 5.28 79.32

200 20 98.98 99.88 40.28 7.35 98.35 99.03 99.62 17.78 1.30 94.04
500 50 99.98 100.00 32.00 1.57 100.00 100.00 100.00 9.86 0.01 99.97

1000 100 100.00 100.00 27.28 0.14 100.00 100.00 100.00 4.61 0.00 100.00

c0 = 0.2 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 43.70 2.00 0.00 0.00 2.94 54.98 4.17 0.01 0.00 5.62
200 40 46.18 0.70 0.00 0.00 0.02 76.68 6.28 0.00 0.00 1.21
500 100 46.50 0.05 0.00 0.00 0.00 96.04 6.35 0.00 0.00 0.00

1000 200 45.68 0.00 0.00 0.00 0.00 99.69 4.13 0.00 0.00 0.00

c0 = 0.2 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 94.18 49.12 0.85 0.00 53.71 90.08 30.18 0.12 0.00 35.98
200 40 99.76 83.58 0.00 0.00 57.81 99.52 67.62 0.00 0.00 37.10
500 100 100.00 99.96 0.00 0.00 78.03 100.00 99.49 0.00 0.00 52.33

1000 200 100.00 100.00 0.00 0.00 99.81 100.00 100.00 0.00 0.00 97.96

c0 = 0.3 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 27.92 0.00 0.00 0.00 0.10 43.50 0.00 0.00 0.00 0.97
200 60 21.75 0.00 0.00 0.00 0.00 54.80 0.00 0.00 0.00 0.02

500 150 11.36 0.00 0.00 0.00 0.00 68.94 0.00 0.00 0.00 0.00
1000 300 4.13 0.00 0.00 0.00 0.00 80.42 0.00 0.00 0.00 0.00

c0 = 0.3 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 89.60 0.29 0.00 0.00 17.18 85.65 0.07 0.00 0.00 9.41

200 60 99.34 1.09 0.00 0.00 8.98 98.66 0.13 0.00 0.00 3.17
500 150 100.00 11.88 0.00 0.00 5.06 100.00 3.14 0.00 0.00 0.74

1000 300 100.00 97.41 0.00 0.00 50.09 100.00 93.84 0.00 0.00 33.20
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Table 3. Selection probabilities of the true model (%) in the Case of Distribution 2
c0 = 0.05 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 70.88 70.46 41.68 30.97 62.29 59.53 55.40 23.14 15.84 43.97
200 10 83.11 81.24 36.61 27.35 64.22 81.02 78.56 33.51 24.30 60.22
500 25 90.40 87.54 29.00 21.80 62.23 94.25 92.27 39.50 30.74 72.06

1000 50 92.04 89.24 23.62 17.80 59.04 96.50 95.29 40.56 32.51 75.13

c0 = 0.05 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 82.10 85.17 66.30 56.92 81.89 78.86 81.42 60.29 49.99 77.19
200 10 93.23 94.36 71.94 63.35 88.57 92.09 92.88 65.70 55.36 85.87
500 25 98.62 98.46 75.12 67.20 92.92 98.03 97.71 68.73 60.07 89.75

1000 50 99.49 99.30 76.25 68.69 94.38 99.34 99.04 71.52 64.30 93.01

c0 = 0.1 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 64.80 51.08 17.11 10.27 40.08 61.25 47.16 15.50 9.31 36.22
200 20 72.02 58.14 12.12 6.83 36.35 77.47 64.79 16.47 10.28 42.66

500 50 75.68 61.46 7.04 4.19 29.85 86.82 76.86 15.27 10.13 46.72
1000 100 76.70 63.06 5.69 3.49 26.86 89.08 80.67 13.46 8.82 46.74

c0 = 0.1 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 83.68 79.58 47.70 35.06 72.52 80.40 73.00 39.56 27.40 65.88

200 20 93.50 89.31 46.82 34.92 76.79 91.20 85.29 40.31 29.12 71.40
500 50 97.27 94.75 46.91 36.65 80.37 96.54 93.27 41.18 31.03 76.67

1000 100 98.00 96.28 47.83 38.02 83.41 98.04 95.66 41.87 32.54 80.15

c0 = 0.2 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 47.43 14.72 3.47 1.45 16.31 55.08 20.38 5.48 2.42 22.46
200 40 50.05 17.70 1.64 0.77 12.28 64.78 29.86 4.12 1.81 21.77
500 100 49.43 18.32 0.80 0.42 7.86 69.83 35.59 2.71 1.34 18.57

1000 200 49.49 18.56 0.42 0.22 6.33 71.86 38.38 1.71 0.83 16.91

c0 = 0.2 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 79.91 50.57 20.96 10.53 52.44 75.03 42.11 15.57 7.22 44.63
200 40 87.60 62.47 17.41 8.76 52.42 84.93 56.40 13.64 6.58 46.10
500 100 93.24 75.42 15.87 8.48 56.02 91.56 70.49 12.39 6.55 50.00

1000 200 96.31 83.78 17.75 10.84 63.24 95.63 81.52 15.48 8.92 60.03

c0 = 0.3 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 37.47 2.05 0.85 0.24 7.48 48.51 4.57 1.96 0.61 13.55
200 60 36.78 2.81 0.43 0.17 4.76 54.14 6.72 1.17 0.37 10.51

500 150 34.22 2.75 0.13 0.05 2.43 57.06 8.62 0.52 0.17 7.66
1000 300 34.70 2.99 0.04 0.02 1.80 56.92 9.41 0.17 0.06 5.96

c0 = 0.3 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 73.63 16.62 7.94 2.32 35.67 70.68 13.42 6.12 1.74 31.38

200 60 82.74 27.83 6.00 2.17 36.05 78.83 23.01 4.81 1.73 30.72
500 150 89.72 41.14 4.98 2.02 38.36 88.05 38.43 4.29 1.76 35.95

1000 300 95.06 59.40 7.02 3.09 50.27 94.51 57.81 5.91 2.89 48.35
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Table 4. Selection probabilities of the true model (%) in the Case of Distribution 3
c0 = 0.05 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 88.85 94.65 94.12 90.68 96.36 87.31 92.30 85.31 79.04 92.31
200 10 95.66 97.94 94.29 91.23 98.37 95.57 97.81 93.27 89.64 97.97
500 25 99.50 99.67 93.22 90.07 98.52 99.60 99.80 96.22 94.04 99.22

1000 50 99.86 99.87 91.82 88.26 98.46 99.91 99.92 96.38 94.76 99.50

c0 = 0.05 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 88.98 95.67 99.80 99.78 98.83 87.48 96.53 99.85 99.76 98.61
200 10 95.95 98.56 100.00 100.00 99.93 95.66 98.51 100.00 99.99 99.94
500 25 99.68 99.96 100.00 100.00 100.00 99.63 99.88 100.00 99.99 100.00

1000 50 99.98 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

c0 = 0.1 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 92.07 95.45 82.79 73.59 93.32 91.70 94.84 80.12 70.24 92.08
200 20 97.86 97.44 78.98 69.86 93.67 98.16 98.38 84.30 76.80 95.65

500 50 99.28 98.71 73.05 64.11 93.57 99.70 99.37 85.48 78.68 97.58
1000 100 99.50 98.79 67.48 57.84 92.03 99.88 99.69 83.60 77.61 97.11

c0 = 0.1 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 94.17 99.37 99.96 99.82 99.79 94.12 99.53 99.95 99.89 99.84

200 20 98.79 99.96 99.99 99.99 100.00 98.87 99.89 99.99 99.99 100.00
500 50 99.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.99 100.00

1000 100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

c0 = 0.2 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 92.60 79.33 52.46 36.37 80.81 94.40 84.37 61.07 44.56 85.66
200 40 96.22 84.23 43.23 28.85 78.19 98.19 91.50 59.73 44.81 87.59
500 100 97.15 87.72 31.62 19.98 74.35 99.02 95.05 52.37 38.88 88.36

1000 200 97.43 87.97 23.28 14.81 70.63 99.24 95.81 44.88 32.47 86.65

c0 = 0.2 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 97.54 100.00 99.92 99.63 99.98 97.36 99.97 99.90 99.66 99.97
200 40 99.78 100.00 100.00 99.93 100.00 99.81 100.00 99.96 99.88 100.00
500 100 100.00 100.00 100.00 99.98 100.00 100.00 100.00 100.00 100.00 100.00

1000 200 100.00 100.00 100.00 99.99 100.00 100.00 100.00 100.00 99.99 100.00

c0 = 0.3 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 89.84 44.40 29.49 14.31 67.31 93.39 57.59 43.18 24.00 78.32
200 60 93.25 51.09 19.56 9.03 60.82 97.12 69.56 35.49 20.54 77.67

500 150 94.29 55.46 9.90 4.47 52.73 98.08 76.25 23.36 13.05 74.07
1000 300 94.62 55.92 5.34 2.13 46.42 98.34 77.47 16.54 8.23 69.95

c0 = 0.3 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 97.85 99.93 99.77 98.69 100.00 97.81 99.90 99.72 98.79 99.98

200 60 99.90 100.00 99.92 99.49 100.00 99.89 99.99 99.92 99.47 99.99
500 150 100.00 100.00 99.98 99.83 100.00 100.00 100.00 99.97 99.83 100.00

1000 300 100.00 100.00 99.99 99.93 100.00 100.00 100.00 99.99 99.96 100.00
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Table 5. Selection probabilities of the true model (%) in the Case of Distribution 4
c0 = 0.05 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 78.20 77.81 32.68 16.90 66.21 62.22 55.45 9.93 3.10 38.18
200 10 92.82 93.13 20.00 6.68 74.06 91.95 91.39 15.13 4.56 68.45
500 25 99.54 99.71 2.64 0.28 80.76 99.55 99.87 17.48 3.16 96.38

1000 50 99.99 99.98 0.10 0.03 84.23 99.98 100.00 10.39 0.93 99.72

c0 = 0.05 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 87.88 93.62 79.14 62.57 94.41 86.54 92.39 68.39 48.09 90.36
200 10 95.49 98.14 94.70 82.68 99.87 95.16 98.45 85.14 64.50 99.45
500 25 99.63 99.90 99.89 98.06 100.00 99.68 99.94 98.36 87.81 100.00

1000 50 100.00 100.00 100.00 99.99 100.00 100.00 100.00 100.00 99.20 100.00

c0 = 0.1 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 69.39 48.63 3.18 0.34 32.22 65.19 43.49 2.12 0.24 27.32
200 20 84.31 62.58 0.12 0.02 19.98 91.63 77.31 0.62 0.04 34.25

500 50 96.47 79.43 0.02 0.00 3.66 99.85 98.55 0.06 0.02 38.67
1000 100 99.44 90.44 0.00 0.00 0.16 100.00 99.96 0.00 0.00 33.97

c0 = 0.1 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 92.95 94.50 43.66 16.67 88.52 91.42 88.14 28.99 7.68 79.38

200 20 98.68 99.81 41.77 10.51 97.82 98.82 99.54 20.37 2.26 93.68
500 50 99.98 100.00 34.09 3.09 100.00 99.98 100.00 12.52 0.23 99.94

1000 100 100.00 100.00 30.53 0.78 100.00 100.00 100.00 7.42 0.15 100.00

c0 = 0.2 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 44.40 2.83 0.01 0.00 3.79 55.29 6.02 0.03 0.00 7.41
200 40 46.23 1.21 0.00 0.00 0.17 74.94 9.11 0.00 0.00 2.40
500 100 46.74 0.21 0.00 0.00 0.00 93.21 8.66 0.00 0.00 0.09

1000 200 46.50 0.03 0.00 0.00 0.00 98.87 6.62 0.00 0.00 0.01

c0 = 0.2 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 93.63 50.57 1.16 0.01 54.88 89.19 32.12 0.34 0.00 38.31
200 40 99.61 82.54 0.01 0.00 57.02 99.44 66.86 0.01 0.00 38.29
500 100 100.00 99.93 0.00 0.00 77.16 100.00 99.37 0.00 0.00 52.97

1000 200 100.00 100.00 0.00 0.00 99.42 100.00 100.00 0.00 0.00 96.68

c0 = 0.3 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 28.13 0.01 0.00 0.00 0.24 44.62 0.02 0.00 0.00 1.77
200 60 23.64 0.00 0.00 0.00 0.00 54.96 0.00 0.00 0.00 0.08

500 150 13.48 0.00 0.00 0.00 0.00 67.55 0.01 0.00 0.00 0.01
1000 300 5.65 0.00 0.00 0.00 0.00 78.08 0.01 0.00 0.00 0.00

c0 = 0.3 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 88.89 0.41 0.01 0.00 19.33 84.12 0.08 0.00 98.79 99.98

200 60 99.23 1.56 0.00 0.00 11.25 98.24 0.50 0.00 99.47 99.99
500 150 100.00 13.89 0.00 0.00 6.66 100.00 4.92 0.00 99.83 100.00

1000 300 100.00 96.20 0.00 0.00 51.00 100.00 91.87 0.00 99.96 100.00
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Table 6. Selection probabilities of the true model (%) in the Case of Distribution 5
c0 = 0.05 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 68.55 66.94 37.54 26.26 58.66 68.77 67.46 36.44 25.73 58.13
200 10 82.13 81.29 30.08 18.65 65.52 81.80 81.24 29.76 18.67 64.76
500 25 94.76 94.71 14.85 7.22 69.75 94.34 94.61 15.47 7.38 69.62

1000 50 98.55 98.62 5.12 1.94 70.50 98.48 98.41 5.21 1.88 70.23

c0 = 0.05 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 5 83.07 87.90 74.46 62.14 87.55 79.29 85.69 66.74 52.36 83.95
200 10 90.71 94.44 88.08 75.94 97.71 89.81 94.00 79.21 63.46 96.66
500 25 97.14 98.33 98.15 91.54 99.89 97.03 98.38 93.55 78.81 99.82

1000 50 99.31 99.61 99.87 98.01 99.97 99.07 99.52 99.20 93.10 99.95

c0 = 0.1 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 59.32 47.56 12.74 6.17 36.77 59.04 47.53 12.47 5.91 36.65
200 20 70.33 56.89 4.31 1.67 29.71 70.95 56.51 4.21 1.69 29.34

500 50 85.63 68.94 0.56 0.20 16.92 84.84 67.64 0.55 0.19 16.28
1000 100 93.21 77.33 0.08 0.02 7.46 93.14 76.98 0.06 0.03 7.27

c0 = 0.1 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 10 85.68 87.01 49.37 28.97 81.53 83.01 82.24 38.34 19.34 75.53

200 20 94.55 97.36 47.50 23.41 92.70 94.19 96.21 32.56 12.82 87.38
500 50 98.98 99.67 41.80 15.27 99.54 99.00 99.73 26.01 6.66 98.53

1000 100 99.79 99.88 39.29 10.02 100.00 99.84 99.93 21.94 3.76 99.98

c0 = 0.2 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 42.87 11.39 1.35 0.41 12.64 42.95 11.00 1.36 0.37 12.15
200 40 46.97 9.62 0.18 0.04 4.73 47.13 9.12 0.11 0.04 4.43
500 100 48.63 5.15 0.00 0.00 0.69 47.48 5.17 0.00 0.00 0.64

1000 200 48.18 2.37 0.00 0.00 0.11 48.73 2.19 0.00 0.00 0.11

c0 = 0.2 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 20 84.44 53.91 9.39 1.37 56.51 80.68 41.22 5.14 0.69 45.79
200 40 96.33 76.28 1.95 0.23 58.61 94.87 65.24 0.77 0.10 44.32
500 100 99.73 97.82 0.15 0.01 68.54 99.69 94.99 0.04 0.00 53.72

1000 200 99.93 100.00 0.01 0.00 93.01 99.95 100.00 0.07 0.00 85.80

c0 = 0.3 Case 1 Case 2

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 32.52 0.91 0.26 0.02 4.55 44.24 2.30 0.70 0.19 9.44
200 60 31.53 0.32 0.01 0.01 0.80 53.04 1.71 0.06 0.00 3.75

500 150 24.33 0.11 0.00 0.00 0.09 60.55 0.82 0.00 0.00 0.57
1000 300 17.70 0.05 0.00 0.00 0.00 66.13 0.30 0.00 0.00 0.10

c0 = 0.3 Case 3 Case 4

n p AIC AICc BIC CAIC HQC AIC AICc BIC CAIC HQC

100 30 79.72 5.54 0.72 0.05 30.74 77.07 3.48 0.43 0.02 24.33

200 60 95.30 10.57 0.04 0.00 23.13 93.24 5.70 0.01 0.00 14.91
500 150 99.86 27.58 0.01 0.00 19.93 99.79 16.97 0.00 0.00 11.77

1000 300 100.00 84.93 0.00 0.00 50.09 99.98 80.00 0.00 0.00 44.04
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4. Conclusion and Discussion

In this paper, we derived the conditions that the LLBIC in (6) is consistent
in selecting the best model for a CCA, when the normality assumption to the
true model is violated. The information criteria considered in this paper are
defined by adding a positive penalty term to the negative twofold maximum log-
likelihood, hence, the family of information criteria that we considered includes
as special cases the AIC, AICc, BIC, CAIC, and HQC. If we define consistency
by meaning that the probability of selecting the true model approaches 1, then,
in general, under the LS asymptotic framework, neither the AIC nor the AICc

are consistent, but the BIC, CAIC, and HQC are. In this paper, we derived the
conditions for consistency under the HD asymptotic framework. Understand-
ing the asymptotic behavior of the difference between the two negative twofold
maximum log-likelihoods are important because the dimension of the maximum
log-likelihood increases with an increase in the sample size. If a normal distri-
bution is assumed to the true model, it is possible to use a method that uses the
properties of Wishart distribution (see Yanagihara et al., 2012; Fujikoshi et al.,
2014). However, we cannot use this method in this paper, because we considered
a case in which the normality assumption is violated for the true model. Hence,
to evaluate the asymptotic behavior, we considered the convergence in proba-
bility for a linear combination of elements in a symmetric idempotent random
matrix and the distribution of the maximum eigenvalues of the estimators of
the covariance matrix. A basic idea for evaluating consistency is the same as in
Yanagihara (2013). However, in Yanagihara (2013), x was not a random vector.
Hence, we extended Yanagihara’s method to the case that x is a random vector.

The results of our analysis and simulations confirmed that the AIC and
AICc are consistent, and in some cases, the BIC is not consistent. These results
are similar to those obtained for a multivariate regression model proposed by
Yanagihara and colleagues (Yanagihara et al., 2012, 2014; Yanagihara 2013).

Appendix

A1. Lemmas for Proving Theorems and Corollaries

In this section, we prepare some lemmas that we will use to derive the
conditions for consistency of the penalty term m(j) in ICm in (5). We first
present Lemma 1, which addresses the expectation of a moment (the proof was
given in Yanagihara, 2013).

Lemma 1. For any n× n symmetric matrix A,

E
[
tr
{
(E ′AE)2}] = κ

(1)
4

n∑
a=1

{(A)aa}2 + p(p+ 1)tr(A2) + ptr(A)2,

where κ
(1)
4 is given by (12), and (A)ab is the (a, b)th element of A.



16 Keisuke Fukui

Next, we present Lemma 2, which is the key lemma for deriving the con-
ditions for consistency. In this study, we derived the conditions necessary for
achieving Lemma 2 (the proof was given in Yanagihara, 2013).

Lemma 2. Let bj,� be some positive constant that depends on the models,
j, � ∈ J . Then, we have

∀� ∈ J \ {j}, 1

bj,�
{ICm(�)− ICm(j)} ≥ Tj,�

p−→ τj,� > 0 ⇒ P (ĵm = j) → 1.

Lemmas 3, 4, and 5 were used for evaluating the asymptotic behavior of
each term (the proofs are given in Appendices A4, A5 and A6).

Lemma 3. Let W be an n×n random matrix, defined by W = E(E ′E)−1E ′.
Then, for any � ∈ J , we obtain

1

n− 1
X ′

�WX�
p−→ c0Σ��.

Lemma 4. Let λmax(A) denote the maximum eigenvalue of A, and let V j

be a p× p matrix defined by

V j =
1

n
E ′(In − P j −HjH

′
j)E ,

where P j and Hj are given by (10) and (11), respectively. If assumption A2

holds, λmax(V j) = Op(p
1/2) is satisfied.

Lemma 5. If assumptions A2 and A4 hold, αj,1 = Op(np) is satisfied, and
lim inf
cn,p→c0

αj,1/(np) > 0, where αj,1 is the maximum diagonal element of Lj given

by (11).

A2. Proof of Theorem 1

Let D(j, �) (j, � ∈ J ) be the difference between two negative twofold maxi-
mum log-likelihoods divided by (n− 1), such that

D(j, �) = log
|Syy·j |
|Syy·�| .

Note that

ICm(j)− ICm(j∗) = (n− 1)D(j, j∗) +m(j)−m(j∗).

From Lemma 2, we see that to obtain the conditions on m(j) such that ICm(j)
is consistent, we only have to show the convergence in probability of D(j, j∗) or
a lower bound on D(j, j∗) divided by some constant.

First, we show the convergence in probability of D(j, j∗) when j ∈ J+. Note
that P jY = P jE holds for all j, since X∗ is centralized. From the property
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of the determinant (see, e.g., Harville, 1997, chap. 18, cor. 18.1.2), the following
equation are satisfied for all j ∈ J+ \ {j∗} under the given assumptions:

D(j, j∗) = log
|Y ′(In − P j)Y |
|Y ′(In − P j∗)Y | = log

|E ′(In − P j)E |
|E ′(In − P j∗)E |

= log

∣∣In − (E ′E)−1E ′P jE
∣∣∣∣In − (E ′E)−1E ′P j∗E
∣∣

= log

∣∣X ′
jXj −X ′

jWXj

∣∣ ∣∣X ′
∗X∗

∣∣∣∣X ′
∗X∗ −X ′

∗WX∗
∣∣ ∣∣X ′

jXj

∣∣ .
Hence, by using Lemma 3 and (n− 1)−1X ′

�X�
p−→ Σ�� for all � ∈ J , we obtain

D(j, j∗)
p−→ (qj − qj∗) log(1− c0). (A1)

Next, we show the convergence in probability of a lower bound onD(j, j∗)/ log p
when j ∈ J−. It follows that for all j ∈ J−,

D(j, j∗) = log

∣∣∣(L1/2
j G′

j +H ′
jE)′(L1/2

j G′
j +H ′

jE) + nV j

∣∣∣∣∣E ′(In − P j∗)E
∣∣

= log

∣∣∣∣∣Ip +

∑γj

a=1 V
−1
j (

√
αj,agj,a + E ′hj,a)(

√
αj,agj,a + E ′hj,a)

′

n

∣∣∣∣∣
+ log

|nV j |∣∣E ′(In − P j∗)E
∣∣

≥ log

∣∣∣∣∣Ip +
V −1

j (
√
αj,1gj,1 + E ′hj,1)(

√
αj,1gj,1 + E ′hj,1)

′

n

∣∣∣∣∣
+ log

|nV j |∣∣E ′(In − P j∗)E
∣∣

= log

{
1 +

(
√
αj,1gj,1 + E ′hj,1)

′V −1
j (

√
αj,1gj,1 + E ′hj,1)

n

}

+ log
|nV j |∣∣E ′(In − P j∗)E

∣∣
≥ log

{
λmax(V j) +

(
√
αj,1gj,1 + E ′hj,1)

′(√αj,1gj,1 + E ′hj,1)

n

}

+ log
|nV j |∣∣E ′(In − P j∗)E

∣∣ − log λmax(V j)

= D1(j) +D2(j) +D3(j), (A2)
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where

D1(j) = log {λmax(V j) + pξj} ,

D2(j) = log
|nV j |∣∣E ′(In − P j∗)E

∣∣ ,
D3(j) = − log λmax(V j),

and ξj = (
√
αj,1gj,1 + E ′hj,1)

′(√αj,1gj,1 + E ′hj,1)/(np).
First, we evaluate the asymptotic behavior of D1(j) in (A2). From the

equation h′
j,lhj,1 = 1, it is easy to see that

E[h′
j,1EE ′hj,1] = p.

Moreover, it follows from Lemma 1 that

E[(h′
j,1EE ′hj,1 − p)2] = κ

(1)
4

n∑
a=1

{(hj,1h
′
j,1)aa}2 + 2p

= O(max{p, ps}),

where κ
(1)
4 is given by (12), and s is a positive constant given by (13). Hence,

we have

h′
j,1EE ′hj,1 = p+Op(max{p1/2, ps/2}) = Op(p). (A3)

Moreover, note that gj,1g
′
j,1 is an idempotent matrix,(√

αj,1gj,1E ′hj,1

)2
= αj,1h

′
j,1Egj,1g

′
j,1E ′hj,1

≤ αj,1h
′
j,1EE ′hj,1

= Op(np
2).

This implies that
√
αj,1gj,1E ′hj,1 = Op(n

1/2p). (A4)

From Lemma 5, (A3), and (A4), we have

ξj = Op(1). (A5)

By using (A5) and Lemma 4, we obtain

1

log p
D1(j) =

1

log p
log {λmax(V j) + pξj}

=
1

log p
log

{
1

p
λmax(V j) + ξj

}
+ 1

p−→ 1. (A6)

Next, we evaluate the asymptotic behavior of D2(j) in (A2). From Lemma
3 and the result (In − P j −HjH

′
j)(In − P j) = In − P j −HjH

′
j , we can see
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that

D2(j) ≤ log

∣∣E ′(In − P j)E
∣∣∣∣E ′(In − P j∗)E
∣∣

= log

∣∣X ′
jXj −X ′

jWXj

∣∣ ∣∣X ′
∗X∗

∣∣∣∣X ′
∗X∗ −X ′

∗WX∗
∣∣ ∣∣X ′

jXj

∣∣
p−→ (kj − kj∗) log(1− c0),

where W is given in Lemma 3. It follows that (In −P j+)(In −P j −HjH
′
j) =

In − P j+ , where j+ is given by (9). Thus, we also have

D2(j) ≥ log

∣∣E ′(In − P j+)E
∣∣∣∣E ′(In − P j∗)E
∣∣

= log

∣∣X ′
j+Xj+ −X ′

j+WXj+

∣∣ ∣∣X ′
∗X∗

∣∣∣∣X ′
∗X∗ −X ′

∗WX∗
∣∣ ∣∣X ′

j+Xj+

∣∣
p−→ (kj+ − kj∗) log(1− c0).

The above upper and lower bounds on D2(j) imply that

1

log p
D2(j)

p−→ 0. (A7)

Finally, we evaluate the asymptotic behavior ofD3(j) in (A2). Since− log x ≤
−x+ 1 for any x ≥ 0, we have

D3(j) =
1

2
log p− log

λmax(V j)√
p

≥ 1

2
log p−

{
λmax(V j)√

p
− 1

}
= D3,1(j).

It follows from Lemma 4 that

1

log p
D3,1(j)

p−→ 1

2
. (A8)

Consequently, combining (A2), (A6), (A7), and (A8) yields,

1

log p
logD(j, j∗) =

1

log p
{D1(j) +D2(j) +D3(j)}

≥ 1

log p
{D1(j) +D2(j) +D3,1(j)}

p−→ 1

2
. (A9)

As a result, from Lemma 2, (A1), and (A9), we can obtain the conditions given
in Theorem 1.
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A3. Proof of Corollary 1

First, we consider the AIC and AICc. According to an expansion of m(j)−
m(j∗) in the AICc, the differences between the penalty terms of the AICcs are

m(j)−m(j∗)

=
(qj − q∗)(2− cn,p)p

(1− cn,p)2

(
1 +

qj + q∗ − 2

n

)(
1− 1

n

)2

+O
(
pn−1

)
.

(A10)

Moreover, the differences between the penalty terms of the AICs are

1

n log p
{m(j)−m(j∗)} =

2cn,p
log p

(qj − qj∗).

Hence, the convergence of the differences between the penalty terms of the AICs
and those of the AICcs is

lim
cn,p→c0

1

n log p
{m(j)−m(j∗)} = 0.

This indicates that the condition C2 holds for both the AIC and the AICc.
Furthermore, it follows from equation (A10) that

lim
cn,p→c0

1

p
{m(j)−m(j∗)} =

⎧⎨
⎩

2(qj − qj∗) (AIC)

(qj − qj∗){(1− c0)
−1 + (1− c0)

−2} (AICc)
.

Since c−1 log(1− c)+(1− c)−1+(1− c)−2 is a monotonically increasing function
when 0 ≤ c < 1, it follows that c−1

0 log(1 − c0) + (1 − c0)
−1 + (1 − c0)

−2 > 0
holds. That is, the penalty terms in the AICc always satisfy the condition C1
when j ∈ J \ {j∗}, and those in the AIC satisfy the condition C1 if c0 ∈ [0, ca),
where ca is given by (14).

Next, we consider the BIC and the CAIC. When j ∈ J+\{j∗}, the difference
between the penalty term of the BIC and that of the CAIC is

lim
cn,p→c0

1

p log n
{m(j)−m(j∗)} = qj − qj∗ > 0.

Thus, the condition C1 holds. Moreover, it is easy to obtain

1

n log p
{m(j)−m(j∗)} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cn,p(qj − qj∗)

(− log cn,p
log p

+ 1

)
(BIC)

cn,p(qj − qj∗)

(
1− log cn,p

log p
+ 1

)
(CAIC)

.

Since limc→0 c log c = 0 holds, we obtain

lim
cn,p→c0

1

n log p
{m(j)−m(j∗)} = c0(qj − qj∗).
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When j ∈ S̄−∩J−, condition C2 is satisfied because c0(qj−q∗) ≥ 0 holds, where
S− is given by (15). When j ∈ S−, then for all j ∈ S−, condition C2 is satisfied
if c0 < 1/{2(q∗ − qj)} holds.

Finally, the HQC is considered. When j ∈ J+ \{j∗}, the difference between
the penalty terms of the HQCs is

lim
cn,p→c0

1

p log log n
{m(j)−m(j∗)} = 2 log log(qj − qj∗).

Thus, the condition C1 holds. Moreover, it is easy to see that

1

n log p
{m(j)−m(j∗)} = 2(qj − qj∗)cn,p

{
log log p

log p
+

log(1− log cn,p/ log p)

log p

}
.

From this equation, we obtain

lim
cn,p→c0

1

n log p
{m(j)−m(j∗)} = 0.

Hence, condition C2 holds. From the above results and Theorem 1, Corollary 1
is proved.

A4. Proof of Lemma 3

For any � ∈ J , let X� = (x1, . . . ,xq�), let xk = (x1k, . . . , xnk)
′, and let wab

be the (a, b)th element of W . Then, x′
sWxt, which is the (s, t)th element of

X ′
�WX�, is expressed as

x′
sWxt =

n∑
a=1

xasxatwaa +
n∑

a �=b

xasxbtwab. (A11)

Moreover, we can calculate

(x′
sWxt)

2
=

n∑
a=1

x2
asx

2
atw

2
aa +

n∑
a �=b�=c �=d

xasxbsxctxdtwabwcd

+
n∑

a �=b

{
xasxbsxatxbt

(
waawbb + w2

ab

)
+ x2

asx
2
btw

2
ab + 2(x2

asxatxbt

+xasxbsx
2
at)waawab

}
+

n∑
a �=b �=c

{
2xasxbsxatxct + (x2

asxbtxct

+2xasxbsxatxct + xbsxcsx
2
at)wabwac

}
, (A12)
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where the notation
∑n

a1 �=a2 �=··· means
∑n

a1=1

∑n
a2=1,a2 �=a1

· · · . Notice thatX ′1n =
0q and so

n∑
a,b

xasxbt =
n∑

a=1

xas =
n∑

a=1

xat = 0,
n∑

a �=b

xasxbt = −x′
sxt,

n∑
a �=b

xasxbsxatxbt = (x′
sxt)

2 −
n∑

a=1

x2
asx

2
at,

n∑
a �=b

x2
asx

2
bt = x′

sxsx
′
txt −

n∑
a=1

x2
asx

2
at,

∑
a �=b

x2
asxatxbt =

∑
a �=b

xasxbsx
2
at = −

n∑
a=1

x2
asx

2
at, (A13)

n∑
a �=b �=c

xasxbsxatxct =

n∑
a �=b�=c

x2
asxbtxct =

n∑
a �=b�=c

xbsxcsx
2
at

=
n∑

a=1

x2
asx

2
at +

n∑
a �=b

xatxbtxasxbs.

Note that x′
sxt is the (s, t)th element of X ′

�X�, and (n − 1)−1X ′
�X�

p−→ Σ��.
Here, since W is a symmetric idempotent matrix and W1n = 0n holds, we
obtain the following equations:

0 ≤ waa ≤ |wab| ≤ √
waawbb ≤ 1 (a = 1, . . . , n; b = 1, . . . , n; a 
= b), (A14)

and

tr(W ) =

n∑
a=1

waa = p, tr(W 2) =

n∑
a=1

w2
aa +

n∑
a �=b

w2
ab = p,

tr(W )2 =
n∑

a=1

w2
aa +

n∑
a �=b

waawbb = p2, 1′
nW1n =

n∑
a=1

waa +
n∑

a �=b

wab = 0,

1′
nW

21n =
n∑

a=1

w2
aa +

n∑
a �=b

(2waawab + w2
ab) +

∑
a �=b �=c

wabwac = 0, (A15)

tr(W )1′
nW1n =

n∑
a=1

w2
aa +

n∑
a �=b

(2waawab + waawbb) +
∑

a �=b�=c

waawbc = 0,

(1′
nW1n)

2
=

n∑
a=1

w2
aa +

n∑
a �=b

(waawab + 2w2
ab + 4waawab)

+ 2
∑

a �=b �=c

(waawbc + 2wabwac) +
∑

a �=b�=c �=d

wabwcd = 0.

Since waa (a = 1, . . . , n) are identically distributed, and wab (a = 1, . . . , n; b =
a + 1, . . . , n) are also identically distributed, from the equations in (A15), and
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for a 
= b 
= c 
= d, we obtain

p = nE[waa],

p = nE[w2
aa] + n(n− 1)E[w2

ab],

p2 = nE[w2
aa] + n(n− 1)E[waawbb],

0 = nE[waa] + n(n− 1)E[wab], (A16)

0 = nE[w2
aa] + n(n− 1) (2E[waawab] + E[wab2 ]) + n(n− 1)(n− 2)E[wabwac],

0 = nE[w2
aa] + n(n− 1) (2E[waawab] + E[waawbb]) + n(n− 1)(n− 2)E[waawbc],

0 = nE[w2
aa] + n(n− 1) (E[waawbb] + 2E[wab2 ] + 4E[waawab])

+ 2n(n− 1)(n− 2) (E[waawbc] + 2E[wabwac])

+ n(n− 1)(n− 2)(n− 3)E[wabwcd].

It follows from equation (A14) that E[w2
aa] ≤ 1. Combining this result and

equation (A16) yields

E[waa] = cn,p, E[wab] = O(n−1),

E[w2
aa] = O(1), E[waawbb] = c2n,p +O(n−1),

E[w2
ab] = O(n−1), E[waawab] = O(n−1),

E[waawbc] = O(n−1), E[wabwac] = O(n−2),

E[wabwcd] = O(n−2),

(A17)

as cn,p → c0, where a, b, c, d are arbitrary positive integers not larger than n,
and a 
= b 
= c 
= d.

Let σst be the (s, t)th element of Σ��. Then, by using (A11), (A12), (A13),
and (A17), we have

1

n− 1
E [x′

sWxt] → c0σst,
1

(n− 1)2
E
[
(x′

sWxt)
2
]
→ c20σ

2
st.

The above equations directly imply that (n−1)−1V ar [x′
sWxt] → 0 as cn,p → 0.

Hence, the (s, t)th element of X ′
�WX� converges, as follows:

1

n− 1
x′
sWxt

p−→ c0σst.

Therefore, Lemma 3 is proved.
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A5. Proof of Lemma 4

It follows from elementary linear algebra that

λmax(V j) ≤ λmax

(
1

n
E ′E

)
≤
√

1

n2
tr
{(E ′E)2}.

From Lemma 1, we can see that

E

[
1

n2
tr
{(E ′E)2}] =

1

n
κ
(1)
4 +

1

n
p(p+ 1) + p = O(p).

The above equation and Jensen’s inequality lead us to the equation

E

[√
1

n2
tr
{(E ′E)2}

]
≤
√

E

[
1

n2
tr
{(E ′E)2}] = O(p1/2).

This directly implies that n−1[tr{(E ′E)2}]1/2 = Op(p
1/2). Hence, Lemma 4 is

proved.

A6. Proof of Lemma 5

It follows from elementary linear algebra that

1

np
αj,1 =

1

np
λmax(Lj) ≤ 1

np
tr(Lj)

=
1

np
tr
(
ΓjΓ

′
j

)
=

1

np
tr
{
X ′

∗(In − P j)X∗Σ−1
j∗j∗Σj∗yΣ

−1
yy·j∗Σ

′
j∗yΣ

−1
j∗j∗

}
≤ 1

np
tr
{
X ′

∗X∗Σ−1
j∗j∗Σj∗yΣ

−1
yy·j∗Σ

′
j∗yΣ

−1
j∗j∗

}
p−→ tr

(
ΨjΣ

−1
j∗j∗

)
.

From the above equations and assumptions A2 and A4, we have

αj,1 = Op(np).

Moreover, it also follows from elementary linear algebra that

1

np
αj,1 =

1

np
λmax(Lj) ≥ 1

γjnp
tr (Lj)

=
1

γjnp
tr
{
X ′

∗(In − P j)X∗Σ−1
j∗j∗Σj∗yΣ

−1
yy·j∗Σ

′
j∗yΣ

−1
j∗j∗

}
p−→ tr

{
Σ−1

j∗j∗Σj∗j∗·jΣ
−1
j∗j∗Ψj

}
.

Hence, with assumption A4, this implies that

lim inf
cn,p→c0

1

np
αj,1 > 0.

Consequently, Lemma 5 is proved.
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Abstract. In the structural equation modeling, unknown parameters of a covariance

matrix are derived by minimizing the discrepancy between a sample covariance matrix

and a covariance matrix having a specified structure. When a sample covariance

matrix is a near singular matrix, Yuan and Chan (2008) proposed the estimation method

to use an adjusted sample covariance matrix instead of the sample covariance matrix in

the discrepancy function. The adjusted sample covariance matrix is defined by adding

a scalar matrix with a shrinkage parameter to the existing sample covariance matrix.

They used a constant value as the shrinkage parameter, which was chosen based solely

on the sample size and the number of dimensions of the observation, and not on the

data itself. However, selecting the shrinkage parameter from the data may lead to a

greater improvement in prediction compared to the use of a constant shrinkage

parameter. Hence, we propose an information criterion for selecting the shrinkage

parameter, and attempt to select the shrinkage parameter by an information criterion

minimization method. The proposed information criterion is based on the discrepancy

function measured by the normal theory maximum likelihood. Using the Monte Carlo

method, we demonstrate that the proposed criterion works well in the sense that the

prediction accuracy of an estimated covariance matrix is improved.

1. Introduction

Structural equation modeling (SEM) has been widely used in many fields,

especially in social and behavioral sciences (see e.g., Bollen (1989), and Yuan

and Bentler (2007)). In SEM, unknown parameters of a covariance matrix are
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derived by minimizing the discrepancy between a sample covariance matrix and

a covariance matrix having a specified structure.

Let x1; . . . ; xN be independent random samples from x distributed accord-

ing to a p-variate normal distribution Npðm;SÞ, where N is the sample size.

We are interested in modeling the population covariance matrix S. Denote

the model of interest as SðyÞ, where y ¼ ðy1; . . . ; yqÞ0. For simplicity, we write

SðyÞ as Sy. Let S be an unbiased estimator of S, i.e.,

S ¼ 1

N � 1

XN
i¼1

ðxi � xÞðxi � xÞ0;

where x is the sample mean of x1; . . . ; xN defined by x ¼ N�1
PN

i¼1 xi. Then,

the candidate model is represented by

M : nS@Wpðn;SyÞ; ð1Þ
where n ¼ N � 1. Suppose that S0 is the true covariance matrix, i.e.,

Cov½x� ¼ S0. The true model is represented by

M0 : nS@Wpðn;S0Þ: ð2Þ
If the covariance structure can be correctly specified, then there exists y0 such

that S0 ¼ Sy0 . The classical approach to SEM fits the sample covariance

matrix S by Sy through minimizing the normal theory maximum likelihood

(ML) discrepancy function as

F ðS;SyÞ ¼ trðSS�1
y Þ � logjSS�1

y j � p: ð3Þ
Then, the ML estimator of y, which is represented by ŷy, is defined by

ŷy ¼ arg min
y

FðS;SyÞ:

In general, ŷy is obtained using a modification of Newton’s algorithm (see

e.g., Lee and Jennrich (1979)), which requires an iteration process to solve the

estimating equation. When S is near singular (not full rank), the iteration

process for obtaining ŷy will be very unstable and may require hundreds of

iterations to reach convergence (e.g., Boomsma (1985)). A near singular S

often occurs in practical data analysis due to not only small samples but also

multicollinearity or missing data even when sample size is quite large (Wothke

(1993)). When S is literally singular, it is very likely that the iteration will

never converge.

In order to avoid such a problem, Yuan and Chan (2008) proposed a new

method in which y is estimated by minimizing FðSa;SyÞ, where Sa ¼ S þ aIp,

a is a small positive value and Ip is a p-dimensional identity matrix. Here, a is
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commonly referred to as the shrinkage parameter. Hence, a new estimator of

y is defined by

ŷya ¼ arg min
y

FðSa;SyÞ:

Although ŷya has a constant bias, under LISREL models (see Jöreskog and

Sörbom (1996), pp. 1–3), Yuan and Chan (2008) reported that ŷya can be

adjusted to a consistent estimator through a simple procedure when the cova-

riance structure is the correct model. The adjusted estimator is defined as

~yya ¼ ŷya � aj;

where j is a q-dimensional vector whose elements are ones corresponding to the

parameters on the diagonals of the covariance matrix, and otherwise are zero.

They also studied for the case that Sy is not correctly specified. There exists

a unique vector y� such that

Sya� ¼ Sy� þ aIp; ð4Þ
where ya� is a population parameter minimizing FðS0 þ aIp;SyÞ, i.e.,

ya� ¼ arg min
y

F ðS0 þ aIp;SyÞ: ð5Þ

Then, ŷya and ~yya are consistent for ya� and y�, respectively. If Sy is correctly

specified, ya� ¼ y0 þ aj and y� ¼ y0.

The selection of the shrinkage parameter is crucial because if the shrinkage

parameter is changed, the estimate will be also changed. In Yuan and Chan

(2008), the shrinkage parameter was taken to be a constant, determined by only

N and p. This means that the shrinkage parameter was not chosen based on

the data. However, it is possible that the prediction could be improved by

basing the shrinkage parameter on the data itself. Furthermore, it does not

always guarantee that the estimator is proper solution by fixed a. Therefore,

we attempt to select the shrinkage parameter based on the predictive Kullback-

Leibler (KL) discrepancy (Kullback and Leibler (1951)). The basic idea is to

measure the goodness of fit of the model by the risk function assessed by the

predictive KL discrepancy. In the present paper, our objective is to select the

appropriate value of a by minimizing the risk function. However, we cannot

directly use the risk function to select a because the risk function includes

unknown parameters. Hence, instead of the risk function itself, we use its

estimator.

Akaike’s information criterion (AIC) (Akaike (1973)) is an estimator of the

risk function assessed by the predictive KL information (for the AIC for SEM,

see, e.g., Cudeck and Brown (1983), Akaike (1987), Ichikawa and Konishi

(1999), Yanagihara (2005)). The objective of the present study may be
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achieved by minimizing the AIC rather than the risk function. In general, the

AIC is defined by adding the bias to the risk function, i.e., the number of

independent parameters divided by n, to the KL discrepancy function with an

estimated parameter, which is referred to as a sample discrepancy function.

However, the bias term of the AIC is obtained under the situation that the

discrepancy function for estimating y is the same as that for evaluating the

model fit. In the present paper, the discrepancy function for estimating y is

F ðSa;SyÞ ¼ FðS;SyÞ þ a trðS�1
y Þ � logjSaj þ logjSj;

and that for evaluating the model is F ðS;SyÞ. Since the two functions are

di¤erent, we cannot use the bias term of the ordinary AIC. Therefore, we

must revaluate the bias using the same approach as the generalized informa-

tion criterion (GIC) proposed by Konishi and Kitagawa (1996). Hence, we

denote the proposed information criterion as GIC(a). We define GIC(a) by

adding an estimator of the revaluated bias to the sample discrepancy function

FðS;S ~yya
Þ. Then, the best a is chosen by minimizing GIC(a).

The remainder of the present paper is organized as follows: In Section 2,

we obtain GIC(a) from a stochastic expansion of ŷya. In Section 3, we verify

the performance of our criteria using the Monte Carlo method. In Section 4,

we present conclusions and discussions. The proof of the theorem presented

herein is provided in the Appendix.

2. GIC for selecting the shrinkage parameter

In order to select the best a, we consider the risk function between the true

model and the candidate model. Let LðSÞ be an expected ML discrepancy

function defined by

LðSÞ ¼ E½F ðS;SÞ�
¼ trðS0S

�1Þ � E½logjSj� þ logjSj � p:

In this paper, E denotes the expectation under the true model M0 in (2) with

respect to S. We measure the discrepancy between the candidate model M in

(1) and the true model M0 in (2) by the predictive KL discrepancy function.

Then, we define the risk function assessed by the predictive ML discrepancy in

(3) as

R ¼ E½LðS ~yya
Þ�:

We regard the shrinkage parameter a having the smallest R as the principle

best model. Obtaining an unbiased estimator of R will allow us to correctly

evaluate the discrepancy between the data and the model, which will further
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facilitate the selection of the best shrinkage parameter. A rough estimator of

R is the sample ML discrepancy function FðS;S ~yya
Þ. However, since F ðS;S ~yya

Þ
has a bias, the information criterion can be defined as FðS;S ~yya

Þ þ B̂B, where B̂B

is an estimator of the bias given as

B ¼ R� E½F ðS;S ~yya
Þ�: ð6Þ

Henceforth, in order to derive B̂B, we calculate a limiting value of B.

Let

Dy ¼ q

qy 0 vecðSyÞ; ð7Þ

and

Gya� ¼
q2

qyqy 0 FðS0 þ aIp;SyÞ
����
y¼ya�

; ð8Þ

where

q2

qyqy 0 FðS0 þ aIp;SyÞ

¼ 2D 0
yðS�1

y ðS0 þ aIpÞS�1
y nS�1

y ÞDy � D 0
yðS�1

y nS�1
y ÞDy

�
Xq

i; j

trfS�1
y ðS0 þ aIp � SyÞS�1

y
€SSyijgeie 0j :

Here, ei is a q-dimensional vector, the ith element of which is 1, with all others

being 0, and €SSyij ¼ q2Sy=qyiqyj . Since ya� is the minimizer of

FðS0 þ aIp;SyÞ, Gya� is a nonsingular matrix. Using the above notation,

we have the following theorem for the bias.

Theorem 1. Suppose that a set of standard regularity conditions, as given

in Browne (1984) or Yuan and Bentler (1997), is satisfied. Then, the bias of

E½FðS;S ~yya
Þ� is expanded as

B ¼ 2

n
trfDy�G

�1
ya�D

0
ya� ðS�1

ya�S0S
�1
y� nS�1

ya�S0S
�1
y� Þg þOðn�2Þ: ð9Þ

The proof of this theorem, which is derived by modifying the results presented

in Yanagihara, Himeno, and Yuan (2010), is given in the Appendix.

By replacing ya�, y�, and S0 by neglecting Oðn�2Þ in (9) with ŷya, ~yya, and

S, respectively, an estimator of B is given by

B̂B ¼ 2

n
trfD ~yya

G�1
ŷya
D 0
ŷya
ðS�1

ŷya
SS�1

~yya
nS�1

ŷya
SS�1

~yya
Þg:
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Thus, the information criterion for selecting a (GIC(a)) is defined by

GICðaÞ ¼ F ðS;S ~yya
Þ þ B̂B:

Let A be a set A ¼ fa j ab 0 and ~yya gives a proper solutiong. Then, the

best a is chosen by minimizing GIC(a), i.e.,

âa ¼ arg min
a AA

GICðaÞ:

When the candidate model is correctly specified, Sya� ¼ Sa. Then, the

bias becomes simple, as in the following corollary.

Corollary 1. If the candidate model is correctly specified, the bias of

E½FðS;S ~yya
Þ� is expanded as

B ¼ 2

n
qþOðn�2Þ:

This corollary indicates that the bias does not depend on a by neglecting the

Oðn�2Þ term when the candidate model is correctly specified. Hence, the best

a is the value that minimizes F ðS;S ~yya
Þ in A.

3. Monte Carlo results

In this section, we compare the risk functions of estimated S obtained

from the following methods.
� Method 1 (new method): We estimate S by S ~yyâa

, where âa is selected by

minimizing GIC(a).
� Method 2 (Yuan and Chan’s (YC) method): We estimate S by S ~yyp=N

.
� Method 3 (ordinary ML method): We estimate S by Sŷy.

Actually, since �E½logjSj� � p in the expected ML discrepancy does not

depend on the result of a selection of a, we evaluated the following expect-

ations:

Rnew ¼ E½LðS ~yyâa
Þ� þ a; RYC ¼ E½LðS ~yyp=N

Þ� þ a; RML ¼ E½LðSŷyÞ� þ a;

where a ¼ E½logjSj� þ p. In the simulation, we used the confirmatory factor

model, which is included in the LISREL model, as the true model M0, i.e., the

true covariance matrix is S0 ¼ L0F0L
0
0 þC0, where L0 is the true factor

loading matrix, F0 is the true correlation matrix, and C0 is the true covariance

matrix of the measurement errors. In this simulation, we defined C0 ¼
Ip � diagðL0F0L

0
0Þ. As the true model, we used the two models specified

by the following parameters:
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Case 1: L0 ¼
b 05

05 b

05 b

0
B@

1
CA; F0 ¼ 1:0 :30

:30 1:0

� �
;

Case 2: L0 ¼
b 05 05

05 b 05

05 05 b

0
B@

1
CA; F0 ¼

1:0 :30 :40

:30 1:0 :30

:40 :30 1:0

0
B@

1
CA;

where b ¼ ð:70; :70; :75; :80; :80Þ0 and 0q is a q-dimensional vector of zeros.

The candidate model used in the simulation was also the confirmatory factor

model, i.e., the covariance matrix Sy ¼ LFL 0 þC , where C ¼ diagðc1; . . . ;

cpÞ. In the case 1, we used the confirmatory three-factor model as the

candidate model. On the other hand, the confirmatory two-factor model

was used as the candidate model in the case 2. Hence, l and F in the

candidate models were

Case 1: L ¼
l1 05 05

05 l2 05

05 05 l3

0
B@

1
CA; F ¼

1:0 f12 f13
f12 1:0 f23
f13 f23 1:0

0
B@

1
CA;

Case 2: L ¼
l1 05

05 l2

05 l3

0
B@

1
CA; F ¼ 1:0 f12

f12 1:0

� �
:

It is easy to see that the candidate model in the case 1 is overspecified, and that

in the case 2 is underspecified. In order to obtain smaller sample sizes, we

chose N ¼ 30, 50, and 100. The number of replications is 1000.

In order to calculate Rnew, RYC, and RML, we first obtained an estimator

of y for each method using R ver. 2.12.1. We then counted the frequencies

when the estimate of y is the proper solution (i.e., an estimator of S is

positive define). Next, we recorded the value of LðŜSÞ for each method, where

ŜS is an estimated S for each method. After the replication was finished,

we obtained the arithmetic mean of LðŜSÞ for each method. If all of the

estimators are proper solutions, then the arithmetic mean is regarded as a target

risk function.

From Table 1, when N ¼ 30 in the case 1, the Rnew was obtained, but

RYC and RML were not obtained because there were several improper solutions

for a ¼ p=N and 0. When N ¼ 50 and 100 in the case 1, since there were

no improper solutions, we could obtain all risk functions. Then, Rnew was

the smallest. On the other hand, in the case 2, Rnew and RYC were obtained,

but RML was not obtained. Then, Rnew was smaller than RYC. Hence, the

321Selection of a shrinkage parameter in SEM



proposed information criterion works well in the sense that the prediction

accuracy of an estimated covariance matrix is improved.

4. Conclusion and discussion

In the present paper, we proposed a GIC for selecting the shrinkage

parameter, which is used to obtain the estimator for SEM with a near singular

covariance matrix. In order to derive the GIC, we revaluated the bias of the

risk function. Then, GIC(a) was obtained by adding the estimator of the

revaluated bias to the sample discrepancy function. We have observed that

when the candidate model is correctly specified, the bias does not depend on a

when the Oðn�2Þ term is neglected, i.e., the bias term is equivalent to that of

the AIC. This means that the best a is the value that minimizes F ðS;S ~yya
Þ

under the condition that ~yya gives a proper solution. In the Monte Carlo

results, an estimate of ~yyâa was always a proper solution, and the risk function of

the estimated covariance matrix based on ~yyâa with the selected a was the

smallest.

In this paper, we assumed that data has normality. If we do not assume

normality to data, a kurtosis will appear in the bias to the risk function.

Hence, an estimator of kurtosis will be required to estimate the bias.

Unfortunately, Yanagihara (2007) reported that such an estimator gives a

poor value unless the sample is huge. When the sample size is large enough, a

sample covariance matrix will not become a near singular matrix in most

cases. A near singular sample covariance matrix occurs frequently under the

small or moderate sample sizes. This is almost the same as a well-known fact

that a multicollinearity frequently occur under the small or moderate sample.

In practice, we confirmed such results through many simulation experiments.

Hence, it is suitable to assume not the large sample case but the small or

moderate sample case under a near singular sample covariance matrix. There-

Table 1. Frequencies of the proper solutions and the risk functions for each method

Frequency Risk

Case N New YC ML New YC ML

30 1000 996 987 16.8295 — —

1 50 1000 1000 1000 15.9808 15.9858 16.0088

100 1000 1000 1000 15.5024 15.5044 15.5067

30 1000 1000 972 19.2521 19.3887 —

2 50 1000 1000 987 16.1748 16.2869 —

100 1000 1000 990 14.1732 14.2618 —
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fore, at present, we judge that it is necessary to deal with the case of nonnormal

when a sample covariance matrix is a near singular matrix.

Appendix

The derivation of the risk function and the proof of Theorem 1 are

presented in this appendix. First, we derive the risk function. In this paper,

we measure the discrepancy between the candidate model M in (1) and the true

model M0 in (2) by the following discrepancy function:

ð
log

f ðW jn;S0Þ
f ðW jn;S ~yya

Þ f ðW jn;S0ÞdW ¼ n

2
fLðS ~yya

Þ �LðS0Þg:

By omitting the terms that do not depend on a, we have

ð
FðW ;S ~yya

Þ f ðW jn;S0ÞdW ¼ LðS ~yya
Þ:

Hence, we define the risk function as R in Section 2.

Next, we prove Theorem 1. The bias of FðS;S ~yya
Þ, defined in (6), can be

written as

B ¼ E½LðS ~yya
Þ � F ðS;S ~yya

Þ� ¼ E½trfS�1
~yya
ðS0 � SÞg�: ðA1Þ

Since S0 � S ¼ Opðn�1=2Þ and E½S � ¼ S0, by applying the Taylor expansion to

trfS�1
~yya
ðS0 � SÞg at ~yya ¼ y�, we derive

E½trfS�1
~yya
ðS0 � SÞg� ¼ E½dy� ð~yya � y�Þ� þOðn�2Þ;

where y� is given by (4), and

dy� ¼
q

qy 0 trfS�1
y ðS0 � SÞg

����
y¼y�

:

The remainder term of the above expectation is Oðn�2Þ because ~yya can be

expressed as a function of V ¼ n1=2ðS � S0Þ which has an asymptotic normality

and general cumulants of elements of V may be expanded as a power series

in n�1 (see e.g., Hall, 1992, p. 46). Indeed, an n�3=2 term of the stochastic

expansion of trfS�1
~yya
ðS0 � SÞg can be expressed as the third-order polynomial

of elements of V . Since V has an asymptotic normality, an expectation of the

odd-order polynomial of element V becomes Oðn�1=2Þ. Consequently, the

expectation of the n�3=2 term of the stochastic expansion becomes not Oðn�3=2Þ
but Oðn�2Þ. Let Gy ¼ ðS�1

y nS�1
y Þ. From this expression, we obtain

dy� ¼ vec 0fS�1
y� ðS � S0ÞS�1

y� gDy� ¼
1ffiffiffi
n

p vec 0ðV ÞGy�Dy� : ðA2Þ
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Since ŷya is the minimizer of F ðSa;SyÞ, qFðSa;SyÞ=qyjy¼ŷya
¼ 0q is satisfied.

Then, under a set of standard regularity conditions, the following equation is

derived.

0q ¼ D 0
ŷya
vecfS�1

ŷya
ðSŷya

� S0 � aIpÞS�1
ŷya
g � 1ffiffiffi

n
p D 0

ŷya
Gŷya

vecðV Þ:

Hence, we obtain

D 0
ŷya
vecfS�1

ŷya
ðSŷya

� S0 � aIpÞS�1
ŷya
g ¼ 1ffiffiffi

n
p D 0

ŷya
Gŷya

vecðV Þ: ðA3Þ

Note that n1=2ðŷya � ya�Þ ¼ Opð1Þ and that both sides of (A3) are functions

of ŷya, where ya� is given by (5). Applying the Taylor expansion to (A3) at

ŷya ¼ ya� and comparing the Opðn�1Þ term on both sides of the resulting

equation, we obtain

ŷya � ya� ¼ 1ffiffiffi
n

p G�1
ya�D

0
ya�Gya� vecðV Þ þOpðn�1Þ;

where Dy and Gy are given by (7) and (8), respectively. Note that

E½vecðV Þ vec 0ðV Þ� ¼ nE½vecðS � S0Þ vec 0ðS � S0Þ�
¼ nCov½vecðSÞ�
¼ ðIp2 þ KpÞðS0 nS0Þ;

where Kp is the commutation matrix (see Magnus and Neudecker (1999),

p. 48). Therefore,

B ¼ E½dy� ðŷya � ya�Þ� þOðn�2Þ

¼ 1

n
trfGy�Dy�G

�1
ya�D

0
ya�Gya� ðI p2 þ KpÞðS0 nS0Þg þOðn�2Þ: ðA4Þ

Consequently, by using the equations KpðAnCÞ ¼ ðC nAÞKp and Kp vecðC Þ
¼ vecðC 0Þ (see Magnus and Neudecker (1999), p. 47), the equation (9) in

Theorem 1 is derived.
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Comparison with Residual-Sum-of-Squares-Based Model Se-
lection Criteria for Selecting Growth Functions

Keisuke Fukui1, Mariko Yamamura1, Hirokazu Yanagihara1∗

Abstract: A growth curve model used for analyzing growth is characterized by a mathematical function with
respect to time, called a growth function. As the results of analysis from a growth curve model
strongly depend on the growth function used for the analysis, the selection of growth functions is
important. A choice of growth function based on the minimization of a model selection criterion is
one of the major selection methods. In this paper, we compare the performances of growth-function
selection methods using these criteria (e.g., Mallows’ Cp criterion) through Monte Carlo simulations.
As a result, we recommend the use of a method employing the Bayesian information criterion for the
selection of growth functions.

Keywords: growth curve model, growth-function-selection, model selection criterion, residual sum of squares

1. Introduction

A growth curve model used for analyzing growth is specified by a mathematical function, called
the growth function. A number of growth functions may be used for analysis; therefore, growth-
function-selection (GF-selection) is important because the results of analysis from a growth curve
model vary according to the growth function used. Naturally, a growth function with high prediction
performance is regarded as a better growth function. Hence, during GF-selection, the best model
should be chosen to improve prediction accuracy.

Choosing growth functions based on the minimization of a model selection criterion (MSC) is one
of the major selection methods. An MSC consists of two terms; a goodness-of-fit term and a penalty
term based on the complexity of the model. Particularly, an MSC whose goodness-of-fit term is the
residual sum of squares (RSS) is called an RSS-based MSC in this paper. An RSS-based MSC is
often used to select the best model in many fields. Because several RSS-based MSC approaches
can be used to estimate the risk function assessing the standardized mean square error (MSE) of
the prediction, we can expect that the accuracy of a growth prediction will be improved in the
sense of making the MSE small by minimizing an RSS-based MSC. However, numerous RSS-based
MSC approaches, e.g., Mallows’ Cp criterion (Mallows, 1973), are available, and the chosen growth
function will depend upon the MSC employed for GF-selection. Hence, the purpose of this study is
to compare the performances of GF-selection methods using RSS-based MSC through Monte Carlo
simulations.

The remainder of this paper is organized as follows. In Section 2, we introduce the growth curve
model and the growth functions used. In Section 3, we describe the RSS-based MSC approaches
considered for GF-selection. In Section 4, we compare the GF-selection methods considered through
numerical experiments and discuss the results.

2. Growth Curve Model

2.1 True and Candidate Models

Let y(ti) be the extent of growth at a time ti (i = 1, . . . , n), where n is the sample size. Suppose
that y(ti) is generated from the following true model:

[1] y(ti) = μ∗(ti) + ε∗(ti),

where μ∗(ti) is the true expected value of y(ti), and ε∗(t1), . . . , ε∗(tn) are mutually independent
true error variables derived from the same distribution with a mean 0 and variance σ2

∗. As μ∗(t)
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expresses the average value of the true growth, μ∗(t) is denoted by the growth function. However,
the true model is unknown. Hence, the following candidate model is assumed for y(ti):

[2] y(ti) = μ(ti) + ε(ti),

where μ(ti) is the expected value of y(ti) under the candidate model, and ε(t1), . . . , ε(tn) are mutually
independent error variables derived from the same distribution with a mean 0 and variance σ2. Here,
μ(ti) is denoted as the candidate growth function. In practice, we must prepare a specific function
with respect to t, whose shape is determined by unknown parameters, as the candidate growth
function.

Let μ(t;θμ) denote the candidate growth function, where θμ represents a q(μ)-dimensional vector.
Note that q(μ) denotes the number of unknown parameters of a candidate growth function μ. To
use the growth curve model, θμ must be estimated from growth data. In this paper, θμ is obtained
by least squares (LS) estimation. Let the RSS be denoted by

[3] RSS(θμ;μ) =

n∑
i=1

{y(ti)− μ(ti;θμ)}2 .

Then, the LS estimator of θμ is derived by minimizing RSS(θμ;μ) as

[4] θ̂μ = argmin
θμ

RSS(θμ;μ).

Using θ̂μ, a growth curve can be estimated by μ(t; θ̂μ).

2.2 Selection of Growth Functions

Numerous growth functions have been proposed in the literature. In this paper, we consider the
following twelve candidate growth functions that were described in Zeide (1993).

(1) Bertalanffy: μ1(t;θ) = α(1− e−βt)3 (θ = (α, β)′).

(2) Chapman-Richards: μ2(t;θ) = α(1− e−βt)γ (θ = (α, β, γ)′).

(3) Gompertz: μ3(t;θ) = α exp(−βe−γt) (θ = (α, β, γ)′).

(4) Hossfeld-4: μ4(t;θ) = α(1 + βt−γ)−1 (θ = (α, β, γ)′).

(5) Korf: μ5(t;θ) = α exp(−βt−γ) (θ = (α, β, γ)′).

(6) Levakovic-3: μ6(t;θ) = α(1 + βt−2)−γ (θ = (α, β, γ)′).

(7) Logistic: μ7(t;θ) = α(1 + βe−γt)−1 (θ = (α, β, γ)′).

(8) Monomolecular: μ8(t;θ) = α(1− βe−γt) (θ = (α, β, γ)′).

(9) Weibull: μ9(t;θ) = α(1− e−βtγ ) (θ = (α, β, γ)′).

(10) Levakovic-1: μ10(t;θ) = α(1 + βt−γ)−δ (θ = (α, β, γ, δ)′).

(11) Sloboda : μ11(t;θ) = α exp(−βe−γtδ ) (θ = (α, β, γ, δ)′).

(12) Yoshida-1 : μ12(t;θ) = α(1 + βt−γ)−1 + δ (θ = (α, β, γ, δ)′).

In the above list, t denotes the time, and all parameters are restricted to positive values. The
candidate growth functions have been listed in the order of increasing number of unknown param-
eters, i.e., the function μ1 includes two parameters, the functions μ2 to μ9 include three and the
functions μ10 to μ12 include four.

Although an estimate of a growth curve can be obtained by the LS estimation, the choice of
growth function most suited to the obtain growth data is important. In this paper, we select the best
growth function by the RSS-based MSC minimization method. Let MSCRSS(μ) denote a general
form of a RSS-based MSC. The best growth function is then determined according to

[5] μ̂ = arg min
μ∈{μ1,...,μ12}

MSCRSS(μ).
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2.3. Underspecified and Overspecified Models

An evaluation of the growth function equations given above indicate that several growth functions
are equivalent under certain conditions (e.g., Chapman-Richards with γ = 3 corresponds perfectly
to Bertalanffy). In model selection, these relationships sometimes play key roles because several
MSC approaches are derived under the assumption that a candidate model includes the true model.
We define the following two specific candidate models.

• An overspecified model: a growth function of a candidate model includes that of the true model,
i.e., the true growth function can be expressed as a special case of the growth function of the
overspecified model. In general, the true model is the overspecified model. However, in this
paper, we rule out the true model from the definition of an overspecified model.

• An underspecified model: the model is neither the overspecified model nor the true model.

In practice, there is no overspecified model in most cases. An overspecified model does not exist
except under the following three cases:

(i) When the true growth function is Bertalanffy, the candidate model whose growth function is
Chapman-Richards is the overspecified model.

(ii) When the true growth function is Gompertz, the candidate model whose growth function is
Sloboda is the overspecified model.

(iii) When the true growth function are Hossfeld-4 or Levakovic-3, the candidate model whose
growth function is Levakovic-1 is the overspecified model.

3. RSS-based Model Selection Criteria

In this section, we describe explicit forms of the RSS-based MSC approaches used in this work
for GF-selection.

When the penalty for the complexity of a model is imposed additively, an estimator of σ2 is
required for the use an RSS-based MSC. In the general regression model, an estimator of σ2 in
the full model is typically employed. A full model is the model that includes all candidate models.
For example, if we consider growth functions (1)-(12) as candidate models, the full model includes
all growth functions (1)-(12). However, constructing the full model in the growth curve model is
difficult because there is no candidate model that includes all candidate models. Hence, we use the
following estimator of σ2 derived from a local linear fitting, which was proposed by Gasser, Sroka
and Jennen-Steinmetz (1986),

[6] σ̂2
L =

1

n− 2

n−1∑
i=2

(aiyi−1 + biyi+1 − yi)
2

a2i + b2i − 1
,

where coefficients ai and bi are given by

[7] ai =
ti+1 − ti

ti+1 − ti−1
, bi =

ti − ti−1

ti+1 − ti−1
.

The representation σ̂2
L has a desirable property as an estimator of σ2, e.g., σ̂2

L converges to σ2 as
n → ∞ in probability if μ∗(t) is twice continuously differentiable, lim supn→∞ maxi=2,...,n−1 |ti −
ti−1| < ∞ and E[ε∗(ti)4] < ∞.

3.1. Mallows’ Cp Criterion

Using 2q(μ) as the penalty term, Mallows’ Cp criterion is defined as

[8] Cp(μ) =
RSS(θ̂μ;μ)

σ̂2
L

+ 2q(μ).
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The 2q(μ) was derived as the bias of RSS(θ̂μ;μ)/σ̂
2
L to the risk function assessing the standardized

MSE of prediction under the assumption that the candidate model considered is not an underspec-
ified model. Hence, there is a possibility that the Cp may not correctly evaluate the complexity of
an underspecified model.

3.2. Modified Cp Criterion

The weakness of the Cp criterion may be overcome using the generalized degree of freedom
(GDF), proposed by Ye (1998) instead of q(μ). The GDF of the growth curve model was calculated
by Kamo and Yoshimoto (2013) as

[9] df(μ) = q(μ) + tr

{(
Iμ(θ̂μ)− Jμ(θ̂μ)

)−1

Iμ(θ̂μ)

}
,

where Iμ(θ̂μ) and Jμ(θ̂μ) are matrices given by

[10] Iμ(θ̂μ) =
1

n

n∑
i=1

∂μ(ti;θμ)

∂θμ

∂μ(ti;θμ)

∂θ′
μ

∣∣∣∣∣
θμ=θ̂μ

,

[11] Jμ(θ̂μ) =
1

n

n∑
i=1

{y(ti)− μ(ti;θμ)} ∂2μ(ti;θμ)

∂θμ∂θ′
μ

∣∣∣∣∣
θμ=θ̂μ

.

In this paper, “a′” denotes the transpose of a vector a. Kamo and Yoshimoto (2013) proposed the
following modified Cp (MCp) expressed by replacing q(μ) with df(μ) in [8] as

[12] MCp(μ) =
RSS(θ̂μ;μ)

σ̂2
L

+ 2df(μ).

The description of the expression as “modified” indicates that the bias of RSS(θ̂μ;μ)/σ̂
2
L to the risk

function is corrected even under an underspecified model. A modified Cp criterion was originally
proposed by Fujikoshi and Satoh (1997) in the multivariate linear regression model. As the MCp

was derived under the assumption that the candidate model may be an underspecified model, the
MCp may correctly evaluate the complexity of an underspecified model. If the candidate model
considered is an overspecified model, then df(μ) converges to q(μ) as n → ∞ in probability.

3.3. Bayesian Information Criterion(BIC)-type Cp Criterion

The Bayesian information criterion (BIC) proposed by Schwarz (1978) is very well known MSC.
In the BIC, the penalty term is given as “(the number of parameters)× log n”. Using q(μ) log n
instead of 2q(μ) in [8], the BIC-type Cp (BCp) can be proposed as

[13] BCp(μ) =
RSS(θ̂μ;μ)

σ̂2
L

+ q(μ) log n.

Recall that the purpose of GF-selection employed here is to choose a growth function that improves
the growth-prediction of the selected model. However, a consistency property wherein the selection
probability of the true model by the MSC approaches 1 asymptotically is also an important property
of the model selection. Because BIC has a consistency property, we can expect that BCp has one
too.

3.4. Generalized Cross-Validation Criterion

The generalized cross-validation (GCV) criterion proposed by Craven and Wahba (1979) is one
of the RSS-based MSC approaches. In the GCV criterion, the penalty attributed to the complexity
of a model is imposed not additively but multiplicatively. The GCV based the GDF was proposed
by Ye (1998). The GCV for GF-selection is defined by

[14] GCV(μ) =
RSS(θ̂μ;μ)

{1− df(μ)/n}2 .
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If σ̂2
L does not work well, there are possibilities that Cp, MCp and BCp will possibly become unstable.

However, even if σ̂2
L does not work well, the GCV does not become unstable because the GCV in

[14] is defined without an estimator of σ2.

4. Numerical Study

4.1. Setting

In this section, we compare the performance of each criterion by conducting numerical exper-
iments with several sample sizes, variances and true growth functions. At first, we prepared the
twelve true growth functions listed as cases 1-12 below.

Case 1: μ∗(t) is Bertalanffy as μ∗(t) = 100(1− e−0.5t)3.

Case 2: μ∗(t) is Chapman-Richards as μ∗(t) = 100(1− e−0.4t)3.8.

Case 3: μ∗(t) is Gompertz as μ∗(t) = 100 exp(−3e−0.3t).

Case 4: μ∗(t) is Hossfeld-4 as μ∗(t) = 100(1 + 5t−1.5)−1.

Case 5: μ∗(t) is Korf as μ∗(t) = 100 exp(−3t−1).

Case 6: μ∗(t) is Levakovic-3 as μ∗(t) = 100(1 + 5t−2)−1.5.

Case 7: μ∗(t) is Logistic as μ∗(t) = 100(1 + 5e−0.4t)−1.

Case 8: μ∗(t) is Monomolecular as μ∗(t) = 100(1− 1.35e−0.25t).

Case 9: μ∗(t) is Weibull as μ∗(t) = 100(1− e−0.6t0.7).

Case 10: μ∗(t) is Levakovic-1 as μ∗(t) = 100(1 + 3t−2.3)−2.

Case 11: μ∗(t) is Sloboda as μ∗(t) = 100 exp(−4e−0.5t0.8).

Case 12: μ∗(t) is Yoshida-1 as μ∗(t) = 80(1 + 5t−1.4t)−1 + 20.

We used ti = 2 + 18i/(n− 1) (i = 1, . . . , n) as the time series with n = 30, 50, 100, 300 and 500,
and generated error variables of the true model from N(0, σ2

∗) with σ2
∗ = 1 and 2. The shapes of the

true growth curves are shown in Figures 1 and 2. In this paper, we assessed the performances of
the GF-selection methods according to the following two properties derived from 1, 000 repetitions.

• The prediction error (PE) of the best growth function chosen by minimizing the MSC.

• The selection probability (SP) of the true growth function chosen by minimizing the MSC.

Here, the PE is defined by

[15] PE =
1

n

n+3n/10∑
j=n+1

{
μ∗(tj)− μ̂(tj ; θ̂μ̂)

}2

,

where tj = 2+ 18j/(n− 1). Note that the PE is a more important property because the aim of our
study is to select a growth function that improves the growth prediction of the selection model.
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Figure 1. The shapes of the true growth curves (case 1 to case 6).
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Figure 2. The shapes of the true growth curves (case 7 to case 12).
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4.2. Results

Tables 1 and 2 list the PEs of the best growth functions when σ2
∗ = 1 and 2, respectively.

Additionally Tables 3 and 4 list the SPs of the true growth functions when σ2
∗ = 1 and 2, respectively.

The number in the first column labeled “case” indicates that growth function used as the true growth
function. For example, a number 1 in the first column indicates that simulation data were generated
from the true growth function of case 1, i.e., Bertalanffy. Furthermore, the addition of an asterisk ∗

denotes that the case is the overspecified model. In the tables, bold fonts indicate the smallest PEs
of the best growth functions, and the highest SPs of the true growth functions (although the PEs
are rounded at the second decimal place, the smallest value is based on the original values).

From the tables, we obtained the following results:

• When the number of parameters of the true growth function was not large, i.e., cases 1 to 9, BCp

was the high-performance MSC in most cases. Particularly, when the sample size was not small,
the SPs of the true growth function by BCp were always the highest among all MSC approaches.
The differences between the SPs were large in cases where an overspecified model existed, i.e.,
cases 1, 3, 4 and 6. This is because BCp has a consistency property and Cp, MCp and GCV do
not, i.e., the SPs of BCp asymptotically converge to 1 although those of Cp, MCp and GCV do
not for cases 1, 3, 4 and 6.

• When the number of parameters of the true growth function was large, i.e., cases 10 to 12, BCp

was not the high-performance MSC. This is because the penalty term of BCp was too large in
cases 10 to 12. In general, BCp tends to choose a model having a smaller number of known
parameters than the true model. Conversely, Cp, MCp and GCV tend to choose a model having
a larger number of known parameters than the true model. In cases 10 to 12, none of the models
had a larger number of known parameters than the true model. Hence, the SPs of Cp, MCp and
GCV tended to be higher than those of BCp. Although the PEs of the best models chosen by Cp,
MCp and GCV tended to be smaller than those chosen by BCp, the differences were not large.

Based upon the simulation results, using a selection method employing BCp is recommended for
selecting growth functions.
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Table 1. The prediction error under each case when σ2
∗ = 1.

case n Cp MCp BCp GCV case n Cp MCp BCp GCV

1∗ 30 1.13 1.14 1.11 1.14 7 30 1.32 1.34 1.26 1.33

50 1.09 1.09 1.06 1.09 50 1.21 1.21 1.15 1.21

100 1.04 1.04 1.02 1.04 100 1.10 1.10 1.06 1.10

300 1.01 1.01 1.01 1.01 300 1.02 1.02 1.02 1.02

500 1.01 1.01 1.00 1.01 500 1.01 f 1.01 1.01 1.02

2 30 1.42 1.43 1.42 1.43 8 30 1.53 1.56 1.52 1.55

50 1.23 1.23 1.23 1.23 50 1.34 1.34 1.30 1.33

100 1.09 1.09 1.08 1.09 100 1.15 1.15 1.12 1.15

300 1.02 1.02 1.02 1.02 300 1.04 1.04 1.03 1.04

500 1.01 1.03 1.01 1.02 500 1.02 1.03 1.01 1.03

3∗ 30 1.53 1.53 1.41 1.54 9 30 1.40 1.45 1.40 1.45

50 1.33 1.33 1.22 1.34 50 1.29 1.31 1.29 1.31

100 1.18 1.18 1.11 1.17 100 1.15 1.17 1.15 1.16

300 1.06 1.06 1.03 1.05 300 1.05 1.05 1.05 1.05

500 1.02 1.02 1.01 1.03 500 1.03 1.03 1.02 1.03

4∗ 30 1.49 1.49 1.49 1.48 10 30 1.22 1.25 1.23 1.25

50 1.29 1.27 1.29 1.28 50 1.15 1.17 1.16 1.17

100 1.13 1.13 1.13 1.12 100 1.07 1.08 1.09 1.08

300 1.03 1.03 1.02 1.03 300 1.02 1.02 1.03 1.02

500 1.02 1.02 1.01 1.02 500 1.14 1.14 1.16 1.13

5 30 1.36 1.36 1.36 1.36 11 30 1.94 2.01 1.94 2.03

50 1.21 1.21 1.22 1.21 50 1.68 1.71 1.70 1.71

100 1.09 1.09 1.09 1.10 100 1.42 1.45 1.52 1.45

300 1.03 1.03 1.02 1.03 300 1.26 1.30 1.35 1.30

500 1.01 1.02 1.01 1.02 500 1.04 1.04 1.05 1.05

6∗ 30 1.31 1.31 1.31 1.31 12 30 1.60 1.58 1.60 1.58

50 1.17 1.16 1.16 1.16 50 1.43 1.43 1.44 1.43

100 1.06 1.06 1.06 1.06 100 1.27 1.26 1.30 1.26

300 1.02 1.02 1.02 1.02 300 1.12 1.12 1.24 1.12

500 1.01 1.01 1.01 1.01 500 1.02 1.02 1.02 1.02
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Table 2. The prediction error under each case when σ2
∗ = 2.

case n Cp MCp BCp GCV case n Cp MCp BCp GCV

1∗ 30 2.53 2.57 2.43 2.57 7 30 3.20 3.24 3.09 3.25

50 2.39 2.40 2.27 2.40 50 2.85 2.87 2.67 2.87

100 2.16 2.17 2.11 2.17 100 2.48 2.49 2.31 2.49

300 2.06 2.06 2.03 2.06 300 2.13 2.13 2.08 2.13

500 2.03 2.06 2.02 2.06 500 2.06 2.06 2.04 2.07

2 30 3.47 3.55 3.51 3.57 8 30 4.12 4.26 4.03 4.30

50 2.91 2.95 2.95 2.95 50 3.49 3.61 3.49 3.59

100 2.50 2.52 2.50 2.52 100 2.81 2.83 2.76 2.84

300 2.14 2.14 2.12 2.14 300 2.22 2.22 2.16 2.21

500 2.06 2.12 2.04 2.11 500 2.11 2.12 2.08 2.12

3∗ 30 3.83 3.92 3.79 3.95 9 30 3.18 3.22 3.18 3.24

50 3.00 3.10 2.88 3.09 50 2.80 2.84 2.80 2.84

100 2.52 2.53 2.34 2.54 100 2.43 2.48 2.43 2.48

300 2.23 2.23 2.12 2.23 300 2.18 2.21 2.18 2.21

500 2.11 2.14 2.06 2.15 500 2.12 2.14 2.13 2.14

4∗ 30 3.53 3.49 3.55 3.50 10 30 2.76 2.78 2.92 2.79

50 2.99 2.96 2.98 2.96 50 2.46 2.47 2.51 2.47

100 2.56 2.55 2.55 2.55 100 2.25 2.27 2.26 2.27

300 2.18 2.18 2.18 2.18 300 2.09 2.11 2.11 2.11

500 2.10 2.10 2.11 2.10 500 2.38 2.38 2.72 2.36

5 30 3.58 3.52 3.59 3.53 11 30 4.36 4.56 4.44 4.60

50 2.95 2.92 2.95 2.92 50 3.57 3.69 3.62 3.71

100 2.51 2.51 2.51 2.51 100 2.95 3.03 3.02 3.03

300 2.13 2.13 2.13 2.13 300 2.53 2.56 2.57 2.56

500 2.08 2.08 2.07 2.08 500 2.10 2.13 2.10 2.12

6∗ 30 3.12 3.05 3.14 3.04 12 30 3.59 3.51 3.59 3.53

50 2.69 2.68 2.70 2.67 50 3.06 3.04 3.07 3.04

100 2.34 2.34 2.33 2.34 100 2.66 2.65 2.67 2.66

300 2.10 2.10 2.11 2.10 300 2.33 2.31 2.34 2.31

500 2.05 2.05 2.05 2.05 500 2.08 2.08 2.09 2.08

10



Comparison with RSS-based Model Selection Criteria

Table 3. The selection probability under each case when σ2
∗ = 1.

case n Cp MCp BCp GCV case n Cp MCp BCp GCV

1∗ 30 71.9 71.8 85.5 71.1 7 30 80.8 79.7 89.0 79.4

50 72.7 72.1 90.9 73.3 50 85.5 85.0 93.8 85.2

100 74.8 74.7 93.8 74.9 100 89.6 89.3 97.6 89.5

300 81.0 80.7 97.9 80.6 300 93.1 93.0 99.5 92.7

500 82.8 83.0 98.9 64.7 500 89.3 89.2 99.3 77.6

2 30 74.1 74.1 78.8 74.2 8 30 76.1 75.3 77.9 75.7

50 79.2 79.3 85.3 80.3 50 80.8 80.3 83.6 80.7

100 88.7 89.3 95.1 89.2 100 88.2 88.2 90.1 88.2

300 93.8 94.0 98.8 93.8 300 97.1 96.8 97.9 96.8

500 97.2 96.5 98.9 95.1 500 98.8 98.3 99.3 98.2

3∗ 30 63.1 63.2 74.2 63.8 9 30 25.9 18.0 26.0 17.9

50 67.0 67.0 80.9 66.8 50 28.2 21.3 28.5 21.1

100 73.8 73.6 89.6 73.6 100 38.2 32.0 38.8 32.0

300 77.0 77.0 96.1 77.5 300 52.8 50.2 58.6 49.9

500 88.6 88.3 98.5 81.2 500 60.8 60.3 67.0 55.9

4∗ 30 57.3 55.2 57.7 55.5 10 30 2.3 4.0 0.2 5.6

50 70.3 67.3 70.9 67.7 50 12.7 12.1 1.6 11.7

100 80.0 75.7 83.6 76.0 100 38.6 36.2 7.2 36.4

300 81.2 75.6 98.6 75.5 300 77.5 77.3 55.7 77.1

500 87.2 77.2 98.9 68.4 500 49.3 50.1 46.7 50.4

5 30 85.3 55.7 87.5 56.1 11 30 1.2 1.2 0.5 1.2

50 87.9 56.9 90.5 57.2 50 4.6 4.8 1.0 4.5

100 89.1 55.4 95.7 54.9 100 12.9 13.2 2.9 13.4

300 87.4 52.8 98.4 52.4 300 24.9 25.3 15.2 25.6

500 95.8 79.4 99.6 77.1 500 61.1 61.6 38.0 64.4

6∗ 30 54.8 54.1 55.4 54.5 12 30 1.5 4.9 0.0 3.3

50 63.7 63.1 65.6 63.0 50 3.6 6.5 0.1 5.3

100 71.4 70.3 77.4 70.8 100 12.8 17.5 0.3 17.1

300 83.5 81.9 90.4 82.1 300 53.8 52.3 11.8 52.0

500 88.3 88.1 95.2 82.3 500 8.7 10.8 2.8 16.7
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Table 4. The selection probability under each case when σ2
∗ = 2.

case n Cp MCp BCp GCV case n Cp MCp BCp GCV

1∗ 30 62.9 61.6 79.1 62.1 7 30 65.8 64.2 75.0 64.7

50 65.2 64.0 85.5 65.1 50 72.4 71.1 83.0 70.5

100 69.1 68.1 91.1 68.2 100 76.2 75.3 91.6 76.4

300 75.7 75.1 95.8 75.3 300 87.6 87.0 98.0 87.3

500 79.2 78.6 98.4 73.2 500 86.5 86.4 98.8 82.3

2 30 46.2 45.5 44.9 46.2 8 30 48.5 46.0 48.7 45.7

50 56.7 56.1 56.9 56.2 50 54.3 52.9 54.6 53.0

100 69.9 69.5 73.6 69.9 100 66.0 64.8 67.1 65.3

300 84.6 84.6 93.8 84.9 300 83.3 83.3 86.6 83.4

500 90.6 88.3 98.5 86.8 500 89.7 89.1 93.5 88.4

3∗ 30 50.9 50.7 57.8 51.1 9 30 10.9 7.6 10.9 7.6

50 54.2 53.7 66.1 53.5 50 14.6 8.2 14.8 8.0

100 61.2 61.2 76.4 61.3 100 19.9 12.9 20.0 12.9

300 72.2 72.3 90.0 72.1 300 35.2 28.8 35.5 28.8

500 84.4 83.0 95.2 79.1 500 42.5 39.9 42.8 39.5

4∗ 30 29.8 27.7 30.4 27.9 10 30 1.0 7.7 0.5 7.4

50 37.5 35.0 38.1 35.0 50 1.8 7.3 0.6 7.4

100 47.5 45.1 48.4 45.1 100 5.2 10.1 0.9 10.0

300 74.2 71.0 75.0 71.5 300 22.5 20.0 1.1 19.6

500 83.6 72.7 86.3 70.0 500 35.0 37.0 13.0 38.1

5 30 69.6 40.3 71.1 40.2 11 30 0.1 0.2 0.1 0.3

50 71.7 45.6 73.2 45.6 50 0.0 0.1 0.0 0.1

100 78.2 47.9 80.9 47.9 100 0.1 0.3 0.0 0.3

300 86.6 54.1 93.7 54.3 300 5.8 5.8 0.3 5.6

500 91.5 75.1 97.7 74.5 500 17.9 18.3 0.6 24.1

6∗ 30 28.3 28.4 28.4 28.5 12 30 0.5 2.3 0.0 2.1

50 37.5 37.3 37.6 37.6 50 0.7 3.1 0.0 3.0

100 47.0 45.9 47.1 45.7 100 1.1 4.3 0.0 4.0

300 65.9 64.3 68.7 64.4 300 5.8 10.3 0.0 9.4

500 74.1 73.3 78.7 70.8 500 2.6 6.7 0.3 7.7
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