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ABSTRACT. The purpose of this paper is to clarify the conditions for consistency of
the log-likelihood-based information criteria in canonical correlation analysis of ¢-
and p-dimensional random vectors when the dimension p is large but does not exceed
the sample size. Although the vector of observations is assumed to be normally
distributed, we do not know whether the underlying distribution is actually normal.
Therefore, conditions for consistency are evaluated in a high-dimensional asymptotic
framework when the underlying distribution is not normal.

1. Introduction

Canonical correlation analysis (CCA) is a statistical method employed to
investigate the relationships between a pair of ¢- and p-dimensional random
vectors, * = (z1,...,24) and y = (y1,...,Yp)’, respectively. Introductions
to CCA are provided in many textbooks for applied statistical analysis (see,
e.g., Srivastava, 2002, chap. 14.7; Timm, 2002, chap. 8.7), and it has widespread
applications in many fields (e.g., Doeswijk et al., 2011; Khalil et al., 2011; Vahedi,
2011; Sweeney et al., 2013; Vilsaint et al., 2013). Let z = (@', y’)’ be a (p + q)-
dimensional vector with

Elz] = ( Ko ) —p, Coulz] = ( Hoo Zay ) _3,

Ny Eauy Eyy
where p, and p, are mean vectors of ¢- and p-dimensions, respectively; X,
and X, are ¢ x ¢ and p X p covariance matrices of  and y, respectively; and
X4y is the ¢ x p covariance matrix of  and y. The square of the correlation
between a pair of canonical correlation variables is obtained as the eigenvalue
of 3} ExyE;yl E;y and the root of the k-th largest eigenvalue is called the k-th
canonical correlation.

In an actual data analysis, it is important to remove the irrelevant variables
for analysis. In CCA, the problem of removing irrelevant variables can be re-
garded as the selection of the redundancy model, and thus it has been widely
investigated by many authors (e.g., McKay, 1977; Fujikoshi, 1982, 1985; Ogura,
2010). Suppose that j denotes a subset of w = {1,..., ¢} containing ¢; elements,
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and x; denotes the g;-dimensional vector consisting of the elements of & indexed
by the elements of j, where ¢4 denotes the number of elements in a set of A, i.e.,
qga = #(A). For example, if j = {1,2,4}, then x; consists of the first, second,
and fourth elements of . Without loss of generality,  can be divided into
x = (x}, a:%)’, where x; and x; are ¢;- and g;-dimensional vectors, respectively.
Note that A denotes the compliment of the set A. Another expressions of u,,
¥,y and X, corresponding to the divisions of x are

uw=<”j ) zw:<§jy ) gm:<§7{ i >
H; Jy i =i
We are interested in whether the elements of x; are irrelevant variables in CCA.
Let z1,..., z, be n independent random vectors from z, and let Z be the sample
mean of z1,...,2, given by 2 = n='>""  z; and S be the usual unbiased
estimator of 3 given by § = (n — 1) 3" (2, — 2)(2; — 2)’, divided in the
same way as we divided X, as follows:

Sji Sz Siy

S = S;ET Sry - S,»*» S’-’- S’-
S\, Sy ji Ji 7y

Siy iy Sw

Suppose that z1,...,2, ~ i.d.d. Npy,(p,X). Following Fujikoshi (1985), the

candidate model that x; is irrelevant is expressed as
M;:(n—1)8 ~Wyiq(n—1,%) W

1

-1 -1 -1 -1

st tr(X,, 33, E’W) =tr(X;; X%, 2;,/)

The candidate model is called the redundancy model. If the model M; is selected
as the best model, then we regard that x; is irrelevant. An estimator of 3 under
model M; in (1) is given by

3 = arg mzin{F(s, 2) st tr(B,, 8., 2, 2h,) = (22,2, 20,1 (2)
where F'(S,3) is the Kullback-Leibler (KL) discrepancy function (see Kullback
& Leibler, 1951) assessed by the Wishart density, and it is given by

F(S,2) = (n—D{tr(Z7'S) ~log [E7'S| — (p +a)}, (3)

except for the constant term. In the covariance structure analysis, the above
discrepancy function is frequently called the maximum likelihood discrepancy
function (see Joreskog, 1967) or Stein’s loss function (see James & Stein, 1961).
From Fujikoshi and Kurata (2008) or Fujikoshi et al. (2010, chap. 11.5), we can

see that an explicit form of ﬁ]j in (2) is given by

S R R
3, = Sﬁ / SE ﬁSjj Sy |- (4)
Sjy ijJ’j Sﬁ Syy

Choosing the model by minimization of an information criterion is one of the
primary selection methods. The most famous information criterion is Akaike’s
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information criterion (AIC), which was proposed by Akaike (1973, 1974). Fu-
jikoshi (1985) identified that the selection of the redundancy model in CCA is the
selection of the covariance structure, and proposed using the AIC to select these
structure for CCA. Many other information criteria have been proposed for CCA
(see, e.g., Fujikoshi, 1985; Fujikoshi et al., 2008; Hashiyama et al. 2011). The
AIC is included in the family of log-likelihood-based information criteria (LL-
BICs); these are defined by adding a penalty term that expresses the complexity
of the model for a negative twofold maximum log-likelihood. The family of LL-
BICs includes the bias-corrected AIC (AIC.) proposed by Fujikoshi (1985), the
Bayesian information criterion (BIC) proposed by Schwarz (1978), the consistent
AIC (CAIC) proposed by Bozdogan (1987), and the Hannan-Quinn information
criterion (HQC) proposed by Hannan and Quinn (1979). The LLBIC for CCA
is written as
Icm(j) = F(S’ 2]') + m(])
|S yy-J | (5)

= (n—1)log == + m(j),
1Syy.al

where Syy.0 = Syy — SzySEEISgy (¢ = j,z) and m(j) is a positive penalty term
that expresses the complexity of the model (1). The relations between LLBIC
and most well-known information criteria are as follows:

AIC : m(j) = p* + ¢* +p + q + 2pgj,

. P+a q 4 pta
AIC, : m(j) = (n — 1)? ; -
c m(]) (n ) (n_p_qj_2+n—q—2 n—qj—2 n—1)"

BIC : m(j) = {(p+qxp;q+ 2 —P(q—%‘)}logn, (6)
CAIC : m(j) = {(p”)(p;“ D) —p(q_Qj)} (1+logn),
HQC : m(j) = 2{(p+Q)(pQ+q+1) —p(q—qj)}loglogn-

When the asymptotic probability of an information criteria selecting the
true model approaches 1, it is said to be consistent; this is one of its most
important properties. In model selections, the true model is the candidate model
with the set of true variables. The set of true variables is the smallest subset of
variables which satisfies the condition in (1). In general, AIC is not consistent
under the large-sample (LS) asymptotic framework in which only the sample
size approaches oo (see e.g., Shibata, 1976; Nishii, 1984; Fujikoshi, 1982, 1985).
When the AIC is used for model selection, its lack of consistency sometimes
becomes a target for criticism, even though its purpose is not necessary to choose
the true model.

Recently, the consistencies of various information criteria have been reported
for multivariate models under a high-dimensional (HD) asymptotic framework.
A HD asymptotic framework is one in which the sample size and dimension p
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simultaneously approach co under the condition that ¢, , = p/n — ¢ € (0,1]
(for simplicity, we will write this as “c,, — co”). Yanagihara et al. (2012)
derived the conditions for consistency of the LLBIC for model selection in a
multivariate linear regression model under the HD asymptotic framework, and
they found that the AIC meets these conditions. Since, by definition, HD data
have a large dimension p, evaluating the consistency of an information criterion
under the HD asymptotic framework is more natural for HD data than evaluating
it under the LS asymptotic framework.

The purpose of this paper is to clarify the conditions under which the LLBIC
is consistent for model selection in CCA when the HD asymptotic framework
is used. In previous works, many results were obtained under the assumption
that the true distribution of the observation vector was the normal distribution
(e.g., Shibata, 1976; Nishii, 1984; Yanagihara et al., 2014; Fujikoshi et al., 2014).
However, we are not able to determine whether this assumption is actually cor-
rect. Hence, a natural assumption for the generating mechanism of the true
model of y is

- 1/2
Y=y S () 2 e (7)
where € is a p-dimensional vector with Ele] = 0,, Covle] = I,, 0, is a p-

dimensional vector of zeros, x;, is a g;,-dimensional vector with E[z;, | = p;_,
Covlx;,] = %; ;. and j, denotes the set of the true variables.

In deriving the conditions for consistency under the HD asymptotic frame-
work, a primary problem is to prove the convergence in probability of the two
log-determinants of estimators of 3, because the size of the matrix increases
with an increase in the dimensions. Yanagihara et al. (2012, 2014) avoided this
problem by using a property of a random matrix distributed according to the
Wishart distribution (see Fujikoshi et al., 2010, chap. 3.2.4, p. 57). In the
present study, this method is unavailable, because the true distribution of the
observations in (7) is nonnormal.

Yanagihara (2013) derived the conditions under the LLBIC is consistent in
multivariate linear regression models with the assumption of a normal distribu-
tion when the HD asymptotic framework is used, even though the distribution
on the true model is not normal. In Yanagihara (2013), the moments of a specific
random matrix and the distribution of the maximum eigenvalue of the estima-
tor of the covariance matrix were used for assessing consistency. In CCA, it is
important to note that x is a random vector, which is different in the case of
a multivariate linear regression model. Hence, the conditions for consistency in
this study are derived under the assumption that x is a random vector.

This paper is organized as follows: In Section 2, we present the necessary
notations and assumptions, and then we obtain sufficient conditions to ensure
consistency under the HD asymptotic framework. In Section 3, we verify our
claim by conducting numerical experiments. In Section 4, we discuss our con-
clusions. Technical details are provided in the Appendix.



Consistency property of LLBIC in high-dimensional CCA 5

2. Main result

In this section, we show the sufficient conditions for consistency of IC,, in
(5). First, we present the necessary notations and assumptions for assessing the
consistency of an information criterion for the model M; in (1). Let yq,..., ¥y,
xy,...,xyand €y, ..., €, benindependent vectors from y, « and &, respectively.
Then, the Y, X and £ are the n X p, n X ¢ and n X p matrices given by

Y = (In - Jn)(yh .. 7yn)/a
X =(,—J,)(x1,...,T,),
E=(I,—J,)(e1,...,en),

where J,, = 1,,(1/,1,,) 711/, and 1,, is an n-dimensional vector of ones. Suppose
that X; denotes the n x g; matrix consisting of the columns of X indexed by
the elements of j. By using these matrices, the matrix form of the true model
(7) is expressed as

Y =X, 58, +E8)7 (8)
Henceforth, for simplicity, X ;, and ¢;, are represented as X . and g., respec-
tively. From the above expression, it can be seen that we can regard the true
model (8) as a multivariate linear model by considering the conditional distri-
bution of Y given X.

We now describe two classes of j that express subsets of X in the candidate
model. Let J be the set of K candidate models denoted by J = {j1,...,jx}-
We then separate J into two sets: the overspecified models, in which the set
of variables contain all variables of the true model j, in (8), that is, J; =
{j € Jlj« C j} and the underspecified models, which are the models that are
not overspecified model, that is, 7. = J, N J. In particular, we express the
minimum overspecified model that includes j € J_ as ji, and so

je=JUje (9)

By using IC,, in (5), the best subset of w, which is chosen by minimizing IC,,,
is written as
Jm = argminIC,, (4).
Jm = argminlCy, (j)
Let a p x p noncentrality matrix be denoted by

I s 1/25v -1 / ) -1 ) —1/2
FJTj - Eyy-j* Ej*yzj*j*X*(I” B P])X*Zj*j* Eﬂ*yzyyv’*’ (10)

where T'; is a p x ; matrix with rank(T';) = ~; and P; = X ;(X ;X ;)7 X}, Tt
should be noted that T';T; = O,, ,, holds if and only if j € 7, where O, is an
n X p matrix of zeros. Moreover, for j € J_, we define

_ -1 ~1/2

Aj=I,—-Pj)X.2, ;5,3 "~
It is easy to see from the definition of the noncentrality matrix in (10) that
A;-Aj = I‘jl“;-. By using a singular value decomposition, A; can be rewritten
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as
A;=H,L)/’G, (11)

where H; = (hj1,...,hj,,) and G; = (g,1,-...9;,,) are n X v; and 7; X v;
matrices, that satisfy H ;H j =1, and G;Gj = I, respectively, and L; =
diag(a1,. .., a; ;) is a diagonal matrix of order ; whose diagonal elements o .
are the squared singular values of A, which are assumed tobe aj 1 > -+ > aj 4.
Furthermore, let ||a|| denote the Euclidean norm of the vector a. Then, in
order to assess the consistency of 1C,,, the following assumption are necessary:

A1l. The true model is included in the set of candidate models, that is, j, € J.
A2. E[||e||*] exists and has the order O(p?) as p — oc.
A3. El||z||*] exists.

Ad Yje T limy oo p 8,2, 1 B = W) exists and

(218,558, ;) > 0.

Al is the basic assumption for evaluating the consistency of an information
criterion, because the probability of selecting the true model becomes 0 if it does
not hold. A2 and A3 are assumptions about the moments of the distribution
of the true model, although € and x are not assumed to represent a specific
distribution. It is easy to see that A2 holds if max,—1,. , E[e%] is bounded. A4
is used in assessing the noncentrality matrix. In the multivariate linear regression
model, X; in I‘jl"; is not random. However in CCA, X; in I‘jl"; is random.
Hence, a different assumption from the multivariate linear regression model is
required in A4. If A2 is satisfied, the multivariate kurtosis proposed by Mardia
(1970) exists as

P
1
5 = Blllel|] = p(p+2) = 3 o + 20 +2), (12)
a,b
where the notation >3" means )7 ;37" -+, and Kapeq is the fourth-

order multivariate cumulant of €, defined as
Kabed = Eleagveceal — davded — daddbd — OadObe-

Here, 044 is the Kronecker delta (i.e., d,o = 1, and d,p = 0 for a # b). It is well

known that /@(Ll) = 0 when € ~ N,(0,, I,,). In general, the order of /@(11) is

/@Ell) =O(p®) as p — o0, s € 0,2]. (13)

By using these notations and assumptions, we derived the following theorem
for the sufficiency conditions for the consistency of the penalty term m(j) (the
proof was given in the Appendix A2).
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THEOREM 1. Suppose that assumptions A1-A4 hold. Variable selection
using 1C,, is consistent when cy , — co if the following conditions are satisfied
simultaneously:

(C1) ¥j € Tp\{is}, lime, o {m(j)—m(js)}/p > —c5 " (g —q.) log(1—co).

(C2) Yj € J-, lime, e, {m(j) — m(j.)}/(nlogp) > —1/2.

We can see from Theorem 1 that the conditions for consistency are similar to
those in the multivariate regression model derived by Yanagihara and colleagues
(Yanagihara et al., 2012; Yanagihara, 2013). This is because the CCA can be
regarded as an extension of the multivariate regression model. Futhermore, the
conditions for consistency in Theorem 1 is also similar to those in Yanagihara et
al. (2014), which is derived for a CCA when a normal distribution is assumed
to the true model. This indicates that the conditions for consistency are free of
the influence of nonnormality in the distribution of the true model.

Using Theorem 1, the conditions for consistency of specific criteria can be
clarified by the following corollary (the proof is given in the Appendix A3):

COROLLARY 1. Suppose that assumptions A1-A4 are satisfied. Then we
have

1. A model selection using the AIC' is consistent when ¢, , — ¢y if co € (0, ¢4]
holds, where c,(~ 0.797) is a constant satisfying

log(1 — ¢,) + 2¢, = 0. (14)

2. Model selections using the AIC. and HQC' are consistent when ¢, , — co.

3. Model selections using the BIC' and CAIC are consistent when ¢, , — o
if co € (0,¢,/2] holds, where ¢, = min{l, min;er 1/{2(¢. —q;)}} and F_
s a set of candidate models given by

Fo={jedla.—q >0} (15)

Corollary 1 shows that, when ¢, , — co, the AIC. and HQC are always
consistent in model selection, whereas the AIC, BIC, and CAIC are not always
consistent. The consistency of the BIC and CAIC is strongly dependent on
values of parameters in the true model, but this is not true for the AIC. This
sets the BIC and CAIC at a great disadvantage compared to the AIC, because
the real values of parameters in the true model is unknowable. Table 1 lists the
conditions required for consistency for each of the following criteria: AIC, AIC,
BIC, CAIC, and HQC.

3. Numerical Study

In this section, we conduct numerical studies to examine the validity of
our claim. The probabilities of selecting the true model by the AIC, AIC,,
BIC, CAIC, and HQC were evaluated by Monte Carlo simulations with 10,000
iterations each.
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TABLE 1. Conditions for consistency

Criterion \ Consistency \ Conditions

AIC Conditionally holds | ¢y € [0, cq)
AIC. & HQC Holds S

BIC & CAIC | Conditionally holds | ¢q € [0, ¢p)

Note) ¢, and ¢ are given in COROLLARY 1.

Let Vv, = (1/1’1, .. .,I/lyp)l ~ Np(Ovap)a Vo = (Vg’l, .. .,I/qu)/ ~ Nq(0q7Iq)7

81,02 ~ X2, Wiy o, Wap ~ ii.d.x? and Wo 1y ,Wag ~ ii.d.x? be mutu-
ally independent random vectors and variables. Then, € = (e1,...,&,)" and
x = (x1,...,24) were generated from the following five distributions, as in

Yanagihara (2013):
e Distribution 1 (the multivariate normal distribution).
€ =V1, =V3.

e Distribution 2 (a scale mixture of the multivariate normal distribution).

E*\l 6 1 7\’ 6 2

e Distribution 3 (a location-scale mixture of the multivariate normal distri-

bution).
e=B " {10 (\/ %1 —77> L+ 661’/1},
z=B,"" {10 (\/ %2 —77> Loty 662'/2},

where 1) = 154/7/3/16, By = I, +100(1—7*)1,1], and By = I,+100(1—
n°)141}.
e Distribution 4 (the independent ¢-distribution).
P \/gl/l,a P \/§V2,a )
Ve T e

e Distribution 5 (the independent log-normal distribution).

. _logry, — e . _logro, — /e
¢ Vele—1) Vele—1)

It is easy to see that distributions 1, 2, and 4 are symmetric, and distributions
3 and 5 are skewed.

The mean vectors p,, and p; were generated from U(—4,4) and U(-3, 3),
respectively, and j,. = 3. Then, y was obtained from the true model (7). The
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structure of ¥ was prepared for the following four cases (cases 1 and 2 are the
same settings as in Fujikoshi, 2014):

Case 1.
I; R .
Y= > ) R = (R1705,p*q)/7 Rl :dlag(p17~'~7p5)7
R I,

(4p/21)

:27 :3 27 :’ = 207 = —_—
p1=2p, p2 =3p/2, p3 =p, ps=ps p P 1+ (Ap)20)

Case 2 (the structure of X is the same as in Case 1).

_ _ _ - p (4p/21)
=p, = 3 4’ = 2, - = 0, - .
p1=p, p2 =3p/4, p3s=p/2, ps=ps p ’/p+1 T (4p/21)

Case 3. ¥ = ®®', where ® is a (p + 5) x (p + 5) matrix whose elements are
distributed from U(0,1/p + 5).

Case 4. ¥ = &P’ where® is a (p + 8) x (p + 8) matrix whose elements are
distributed from U(0,1/p + 8).

In these settings, data are generated under the following combinations of n and
p:

o co = 0.05: (n,p) = (100,5), (200, 10), (500, 25), (1000, 50).
= (100, 10), (200, 20), (500, 50), (1000, 100).

o co=0.2: (n,p) = (100,20), (200, 40), (500, 100), (1000, 200).

o co = 0.3: (n,p) = (100,30), (200, 60), (500, 150), (1000, 300).

o ¢ =0.1: (n,p)

Tables 2 through 6 show the selection probability (i.e., the probability of
selecting the true model) when € and @ are from Distributions 1, 2, 3, 4, and
5, respectively, when using the AIC, the AIC,, the BIC, the CAIC, and the
HQC. From these tables, we can see that the selection probability of the AIC
tends to increase in most settings when p and n were large. The AIC. and
HQC had the same tendency as that of the AIC, that is, when n and p were
large, their selection probabilities tended to increase. On the other hand, the
selection probabilities of the BIC and CAIC decreased for larger values of n and
p. Moreover, it was worth noting that the selection probabilities of the BIC and
CAIC depend on the distribution settings, this may be because the conditions
for consistency of the BIC and CAIC have a strong dependence on the values of
parameters in the true model. We repeated the simulations for several models
and obtained similar results, and these validated our claim.
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Table 2. Selection probabilities of the true model (%) in the Case of Distribution 1

co = 0.05 Case 1 Case 2
n| p| AIC AIC. BIC CAIC HQC AIC AIC. BIC CAIC HQC
100 5| 80.01 79.24 31.31 15.29 67.22| 62.36 56.11 8.54 2.48 37.42
200| 10| 94.55 95.03 17.95 4.88 76.07| 93.47 9295 12.51 2.98 68.61
500 25| 99.58 99.88 1.18 0.06 83.03| 99.66 99.93 1286 1.24 97.99
1000 | 50| 99.99 100.00 0.00 0.00 85.92|100.00 100.00 6.25 0.13  99.99
co = 0.05 Case 3 Case 4
n| p| AIC AIC. BIC CAIC HQC AIC AIC. BIC CAIC HQC
100 5| 88.12 94.09 80.83 63.32 94.94| 85.77 92.28 68.05 47.49 90.37
200| 10| 96.08 98.70 96.04 84.35 99.82| 95.67 98.70 86.36 64.22 99.62
500 25| 99.68 99.92 99.99 98.41 100.00| 99.61 99.88 99.12 89.53 100.00
1000 | 50|100.00 100.00 100.00 100.00 100.00| 99.97 100.00 100.00 99.59 100.00
cop = 0.1 Case 1 Case 2
n| p| AIC AIC, BIC CAIC HQC AIC AIC, BIC CAIC HQC
100| 10| 70.89 49.01 2.14 0.15 31.16| 65.76 42.52 1.24 0.10 24.92
200| 20| 86.25 62.95 0.01 0.00 17.14| 93.81 78.96 0.22 0.01 32.36
500 50| 97.74 81.43 0.00 0.00 2.19(100.00 99.43 0.00 0.00 36.62
1000 {100 | 99.76  92.53 0.00 0.00 0.03|100.00 100.00 0.00 0.00 30.78
co = 0.1 Case 3 Case 4
n| p| AIC AIC. BIC CAIC HQC AIC AIC. BIC CAIC HQC
100| 10| 93.28 95.23 41.77 13.54 88.98| 91.66 89.10 24.65 5.28 79.32
200 20| 98.98 99.88 40.28 7.35 98.35| 99.03 99.62 17.78 1.30 94.04
500 50| 99.98 100.00 32.00 1.57 100.00 [ 100.00 100.00 9.86  0.01 99.97
1000 | 100 | 100.00 100.00 27.28 0.14 100.00 | 100.00 100.00 4.61  0.00 100.00
cop = 0.2 Case 1 Case 2
n| p| AIC AIC. BIC CAIC HQC AIC AIC, BIC CAIC HQC
100 | 20| 43.70 2.00 0.00 0.00 2.94| 54.98 4.17 0.01  0.00 5.62
200| 40| 46.18 0.70 0.00 0.00 0.02| 76.68 6.28 0.00 0.00 1.21
500|100 | 46.50 0.05 0.00 0.00 0.00| 96.04 6.35 0.00 0.00 0.00
1000 | 200 | 45.68 0.00 0.00 0.00 0.00| 99.69 4.13 0.00 0.00 0.00
co = 0.2 Case 3 Case 4
n| p| AIC AIC, BIC CAIC HQC AIC AIC, BIC CAIC HQC
100| 20| 94.18 49.12 0.85 0.00 53.71| 90.08 30.18 0.12 0.00 35.98
200| 40| 99.76 83.58 0.00 0.00 57.81| 99.52 67.62 0.00 0.00 37.10
500 | 100 | 100.00  99.96 0.00 0.00 78.03|100.00 99.49 0.00 0.00 52.33
1000 | 200 | 100.00 100.00 0.00 0.00 99.81|100.00 100.00 0.00 0.00 97.96
cp = 0.3 Case 1 Case 2
n| p| AIC AIC. BIC CAIC HQC AIC AIC. BIC CAIC HQC
100| 30| 27.92 0.00 0.00 0.00 0.10| 43.50 0.00 0.00 0.00 0.97
200 60| 21.75 0.00 0.00 0.00 0.00| 54.80 0.00 0.00 0.00 0.02
500|150 | 11.36 0.00 0.00 0.00 0.00| 68.94 0.00 0.00 0.00 0.00
1000 | 300 4.13 0.00 0.00 0.00 0.00| 80.42 0.00 0.00 0.00 0.00
co = 0.3 Case 3 Case 4
n| p| AIC AIC. BIC CAIC HQC AIC AIC, BIC CAIC HQC
100| 30| 89.60 0.29 0.00 0.00 17.18| 85.65 0.07 0.00 0.00 9.41
200| 60| 99.34 1.09 0.00 0.00 8.98 | 98.66 0.13 0.00 0.00 3.17
500|150 | 100.00 11.88 0.00 0.00 5.06 | 100.00 3.14 0.00 0.00 0.74
1000 | 300 | 100.00 97.41 0.00 0.00 50.09|100.00 93.84 0.00 0.00 33.20
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Table 3. Selection probabilities of the true model (%) in the Case of Distribution 2
co = 0.05 Case 1 Case 2
n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC
100 5|70.88 70.46 41.68 30.97 62.29|59.53 55.40 23.14 15.84 43.97
200| 10|83.11 81.24 36.61 27.35 64.22|81.02 78.56 33.51 24.30 60.22
500 | 25[90.40 87.54 29.00 21.80 62.23|94.25 92.27 39.50 30.74 72.06
1000 | 50|92.04 89.24 23.62 17.80 59.04|96.50 95.29 40.56 32.51 75.13
co = 0.05 Case 3 Case 4
n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC
100 5(82.10 85.17 66.30 56.92 81.89|78.86 81.42 60.29 49.99 77.19
200| 10(93.23 94.36 71.94 63.35 88.57|92.09 92.88 65.70 55.36 85.87
500 | 25|98.62 98.46 75.12 67.20 92.92|98.03 97.71 68.73 60.07 89.75
1000 | 50(99.49 99.30 76.25 68.69 94.38|99.34 99.04 71.52 64.30 93.01

co = 0.1 Case 1 Case 2

n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC
100| 10|64.80 51.08 17.11 10.27 40.08|61.25 47.16 15.50 9.31 36.22
200 | 20|72.02 58.14 12.12 6.83 36.35|77.47 64.79 16.47 10.28 42.66
500| 50|75.68 61.46 7.04 4.19 29.85|86.82 76.86 15.27 10.13 46.72
1000|100 |76.70 63.06 5.69 3.49 26.86|89.08 80.67 13.46 8.82 46.74
co = 0.1 Case 3 Case 4

n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC
100| 10]83.68 79.58 47.70 35.06 72.52[80.40 73.00 39.56 27.40 65.88
200 | 20|93.50 89.31 46.82 34.92 76.79|91.20 85.29 40.31 29.12 71.40
500| 50|97.27 94.75 46.91 36.65 80.37|96.54 93.27 41.18 31.03 76.67
1000 | 100 | 98.00 96.28 47.83 38.02 83.41|98.04 95.66 41.87 32.54 80.15

co = 0.2 Case 1 Case 2

n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC
100 | 20|47.43 14.72 3.47 1.45 16.31|55.08 20.38 5.48 2.42 22.46
200| 40(50.05 17.70 1.64 0.77 12.28|64.78 29.86 4.12 1.81 21.77
500|100|49.43 18.32 0.80 0.42 7.86|69.83 35.59 2.71 1.34 18.57
1000 [ 200(49.49 18.56 0.42 0.22 6.33|71.86 38.38 1.71 0.83 16.91
co = 0.2 Case 3 Case 4

n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC
100 | 20|79.91 50.57 20.96 10.53 52.44|75.03 42.11 15.57 7.22 44.63
200 | 40|87.60 62.47 17.41 8.76 52.42|84.93 56.40 13.64 6.58 46.10
500|100(93.24 75.42 15.87 8.48 56.02|91.56 70.49 12.39 6.55 50.00
1000|200 |96.31 83.78 17.75 10.84 63.24|95.63 81.52 15.48 8.92 60.03

co = 0.3 Case 1 Case 2

n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC
100| 30(37.47 2.05 0.85 0.24 7.48[48.51 4.57 1.96 0.61 13.55
200| 60(36.78 2.81 0.43 0.17 4.76|54.14 6.72 1.17 0.37 10.51
500|150(34.22 2.75 0.13 0.05 2.43|57.06 8.62 0.52 0.17 7.66
1000|300 |34.70 2.99 0.04 0.02 1.80|56.92 9.41 0.17 0.06 5.96
co = 0.3 Case 3 Case 4

n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC
100| 30|73.63 16.62 7.94 2.32 35.67|70.68 13.42 6.12 1.74 31.38
200| 60]82.74 27.83 6.00 2.17 36.05|78.83 23.01 4.81 1.73 30.72
500|150(89.72 41.14 4.98 2.02 38.36|88.05 38.43 4.29 1.76 35.95
1000 [ 300{95.06 59.40 7.02 3.09 50.27|94.51 57.81 5.91 2.89 48.35
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Table 4. Selection probabilities of the true model (%) in the Case of Distribution 3
co = 0.05 Case 1

Case 2

n

P

AIC

AIC.

BIC

CAIC

HQC

AIC

AlIC.

BIC

CAIC

HQC

100
200
500
1000

5
10
25
50

88.85
95.66
99.50
99.86

94.65
97.94
99.67
99.87

94.12
94.29
93.22
91.82

90.68
91.23
90.07
88.26

96.36
98.37
98.52
98.46

87.31
95.57
99.60
99.91

92.30
97.81
99.80
99.92

85.31
93.27
96.22
96.38

79.04
89.64
94.04
94.76

92.31
97.97
99.22
99.50

co =

0.05 Case 3

Case 4

n

P

AIC

AIC.

BIC

CAIC

HQC

AlIC

AlIC.

BIC

CAIC

HQC

100
200
500
1000

5
10
25
50

88.98
95.95
99.68
99.98

95.67
98.56
99.96
100.00

99.80
100.00
100.00
100.00

99.78
100.00
100.00
100.00

98.83
99.93
100.00
100.00

87.48
95.66
99.63
100.00

96.53
98.51
99.88
100.00

99.85
100.00
100.00
100.00

99.76
99.99
99.99
100.00

98.61
99.94
100.00
100.00

co =

0.1 Case 1

Case 2

n

p

AIC

AIC.

BIC

CAIC

HQC

AIC

AIC.

BIC

CAIC

HQC

100
200
500
1000

10
20
50
100

92.07
97.86
99.28
99.50

95.45
97.44
98.71
98.79

82.79
78.98
73.05
67.48

73.59
69.86
64.11
57.84

93.32
93.67
93.57
92.03

91.70
98.16
99.70
99.88

94.84
98.38
99.37
99.69

80.12
84.30
85.48
83.60

70.24
76.80
78.68
77.61

92.08
95.65
97.58
97.11

co =

0.1 Case 3

Case 4

P

AIC

AIC.

BIC

CAIC

HQC

AIC

AlIC.

BIC

CAIC

HQC

100
200
500
1000

10
20
50
100

94.17
98.79
99.99
100.00

99.37
99.96
100.00
100.00

99.96
99.99
100.00
100.00

99.82
99.99
100.00
100.00

99.79
100.00
100.00
100.00

94.12
98.87
100.00
100.00

99.53
99.89
100.00
100.00

99.95
99.99
100.00
100.00

99.89
99.99
99.99
100.00

99.84
100.00
100.00
100.00

co =

0.2 Case 1

Case 2

n

P

AIC

AIC.

BIC

CAIC

HQC

AIC

AIC.

BIC

CAIC

HQC

100
200
500
1000

20
40
100
200

92.60
96.22
97.15
97.43

79.33
84.23
87.72
87.97

52.46
43.23
31.62
23.28

36.37
28.85
19.98
14.81

80.81
78.19
74.35
70.63

94.40
98.19
99.02
99.24

84.37
91.50
95.05
95.81

61.07
59.73
52.37
44.88

44.56
44.81
38.88
32.47

85.66
87.59
88.36
86.65

co =

0.2 Case 3

Case 4

p

AIC

AIC.

BIC

CAIC

HQC

AIC

AIC.

BIC

CAIC

HQC

100
200
500
1000

20
40
100
200

97.54
99.78
100.00
100.00

100.00
100.00
100.00
100.00

99.92
100.00
100.00
100.00

99.63
99.93
99.98
99.99

99.98
100.00
100.00
100.00

97.36
99.81
100.00
100.00

99.97
100.00
100.00
100.00

99.90
99.96
100.00
100.00

99.66
99.88
100.00
99.99

99.97
100.00
100.00
100.00

co =

0.3 Case 1

Case 2

n

P

AIC

AlIC.

BIC

CAIC

HQC

AIC

AlIC.

BIC

CAIC

HQC

100
200
500
1000

30
60
150
300

89.84
93.25
94.29
94.62

44.40
51.09
55.46
55.92

29.49
19.56
9.90
5.34

14.31
9.03
4.47
2.13

67.31
60.82
52.73
46.42

93.39
97.12
98.08
98.34

57.59
69.56
76.25
77.47

43.18
35.49
23.36
16.54

24.00
20.54
13.05

8.23

78.32
77.67
74.07
69.95

co =

0.3 Case 3

Case 4

P

AIC

AIC.

BIC

CAIC

HQC

AIC

AIC.

BIC

CAIC

HQC

100
200
500
1000

30
60
150
300

97.85
99.90
100.00
100.00

99.93
100.00
100.00
100.00

99.77
99.92
99.98
99.99

98.69
99.49
99.83
99.93

100.00
100.00
100.00
100.00

97.81
99.89
100.00
100.00

99.90
99.99
100.00
100.00

99.72
99.92
99.97
99.99

98.79
99.47
99.83
99.96

99.98
99.99
100.00
100.00
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Table 5. Selection probabilities of the true model (%) in the Case of Distribution 4

co = 0.05 Case 1 Case 2
n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC
100 5| 7820 77.81 32.68 16.90 66.21| 62.22 55.45 9.93 3.10 38.18
200| 10| 92.82 93.13 20.00 6.68 74.06| 91.95 91.39 15.13 4.56 68.45
500 25| 99.54 99.71 2.64 0.28 80.76| 99.55 99.87 17.48 3.16 96.38
1000| 50| 99.99 99.98 0.10 0.03 84.23| 99.98 100.00 10.39 0.93 99.72
co = 0.05 Case 3 Case 4
n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC
100 5| 87.88 93.62 79.14 62.57 94.41| 86.54 92.39 68.39 48.09 90.36
200| 10| 95.49 98.14 94.70 82.68 99.87| 95.16 98.45 85.14 64.50 99.45
500 25| 99.63 99.90 99.89 98.06 100.00| 99.68 99.94 98.36 &87.81 100.00
1000 | 50|100.00 100.00 100.00 99.99 100.00 |100.00 100.00 100.00 99.20 100.00
cop = 0.1 Case 1 Case 2
n| p| AIC AIC, BIC CAIC HQC| AIC AIC, BIC CAIC HQC
100| 10| 69.39 48.63 3.18 0.34 32.22| 65.19 43.49 2.12 0.24 27.32
200| 20| 84.31 62.58 0.12 0.02 19.98| 91.63 77.31 0.62 0.04 34.25
500| 50| 96.47 79.43 0.02 0.00 3.66| 99.85 98.55 0.06 0.02 38.67
1000 [ 100 | 99.44 90.44 0.00 0.00 0.16 | 100.00  99.96 0.00 0.00 33.97
co = 0.1 Case 3 Case 4
n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC
100 10| 92.95 94.50 43.66 16.67 88.52| 91.42 88.14 28.99 7.68 79.38
200 20| 98.68 99.81 41.77 10.51 97.82| 98.82 99.54 20.37 2.26 93.68
500 | 50| 99.98 100.00 34.09 3.09 100.00| 99.98 100.00 12.52 0.23 99.94
1000 | 100 | 100.00 100.00 30.53  0.78 100.00|100.00 100.00 7.42  0.15 100.00
cop = 0.2 Case 1 Case 2
n| p| AIC AIC, BIC CAIC HQC| AIC AIC, BIC CAIC HQC
100| 20| 44.40 2.83 0.01  0.00 3.79| 55.29 6.02 0.03  0.00 7.41
200 | 40| 46.23 1.21 0.00 0.00 0.17| 74.94 9.11 0.00 0.00 2.40
500 | 100 | 46.74 0.21 0.00 0.00 0.00| 93.21 8.66 0.00 0.00 0.09
1000 | 200 | 46.50 0.03 0.00 0.00 0.00| 98.87 6.62 0.00 0.00 0.01
co = 0.2 Case 3 Case 4
n| p| AIC AIC, BIC CAIC HQC| AIC AIC, BIC CAIC HQC
100| 20| 93.63 50.57 1.16 0.01 54.88| 89.19 32.12 0.34 0.00 38.31
200| 40| 99.61 82.54 0.01 0.00 57.02| 99.44 66.86 0.01 0.00 38.29
500|100 | 100.00 99.93 0.00 0.00 77.16|100.00 99.37 0.00 0.00 52.97
1000 | 200 | 100.00 100.00 0.00 0.00 99.42|100.00 100.00 0.00 0.00 96.68
cp = 0.3 Case 1 Case 2
n| p| AIC AIC. BIC CAIC HQC| AIC AIC, BIC CAIC HQC
100| 30| 28.13 0.01 0.00 0.00 0.24| 44.62 0.02 0.00 0.00 1.77
200| 60| 23.64 0.00 0.00 0.00 0.00| 54.96 0.00 0.00 0.00 0.08
500|150 | 13.48 0.00 0.00 0.00 0.00| 67.55 0.01 0.00 0.00 0.01
1000 | 300 5.65 0.00 0.00 0.00 0.00| 78.08 0.01 0.00 0.00 0.00
cop = 0.3 Case 3 Case 4
n| p| AIC AIC, BIC CAIC HQC| AIC AIC, BIC CAIC HQC
100| 30| 88.89 0.41 0.01 0.00 19.33| 84.12 0.08 0.00 98.79 99.98
200 60| 99.23 1.56 0.00 0.00 11.25| 98.24 0.50 0.00 99.47 99.99
500 | 150 | 100.00 13.89 0.00 0.00 6.66 | 100.00 4.92 0.00 99.83 100.00
1000 | 300 | 100.00  96.20 0.00 0.00 51.00|100.00 91.87 0.00 99.96 100.00
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Table 6. Selection probabilities of the true model (%) in the Case of Distribution 5
co = 0.05 Case 1 Case 2

n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC

100| 5| 68.55 66.94 37.54 26.26 58.66|68.77 67.46 36.44 25.73 58.13
200| 10| 82.13 81.29 30.08 18.65 65.52|81.80 81.24 29.76 18.67 64.76
500| 25| 94.76 94.71 14.85 7.22 69.75|94.34 94.61 1547 7.38 69.62
1000 | 50| 98.55 98.62 5.12 1.94 70.50[98.48 98.41 5.21 1.88 70.23

co = 0.05 Case 3 Case 4

n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC

100 5| 83.07 87.90 74.46 62.14 87.55|79.29 85.69 66.74 52.36 83.95
200 10| 90.71 94.44 88.08 75.94 97.71|89.81 94.00 79.21 63.46 96.66
500| 25| 97.14 98.33 98.15 91.54 99.89|97.03 98.38 93.55 78.81 99.82
1000 | 50| 99.31 99.61 99.87 98.01 99.97]99.07 99.52 99.20 93.10 99.95

cop = 0.1 Case 1 Case 2

n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC

100| 10| 59.32 47.56 12.74 6.17 36.77|59.04 47.53 12.47 591 36.65
200| 20| 70.33 56.89 4.31 1.67 29.71|70.95 56.51 4.21 1.69 29.34
500| 50| 85.63 68.94 0.56 0.20 16.92|84.84 67.64 0.55 0.19 16.28
1000|100 | 93.21 77.33 0.08 0.02 7.46(93.14 76.98 0.06 0.03 7.27

co = 0.1 Case 3 Case 4

n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC

100| 10| 85.68 87.01 49.37 28.97 81.53|83.01 82.24 38.34 19.34 75.53
200| 20| 94.55 97.36 47.50 23.41 92.70|94.19 96.21 32.56 12.82 87.38
500| 50| 98.98 99.67 41.80 15.27 99.54(99.00 99.73 26.01 6.66 98.53
1000 | 100 | 99.79 99.88 39.29 10.02 100.00|99.84 99.93 21.94 3.76 99.98

cog = 0.2 Case 1 Case 2

n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC

100| 20| 42.87 11.39 1.35 041 12.64/42.95 11.00 1.36 0.37 12.15
200| 40| 46.97 9.62 0.18 0.04 4.73|47.13 9.12 0.11 0.04 4.43
500|100 | 48.63 5.15 0.00 0.00 0.69 | 47.48 5.17 0.00 0.00 0.64
1000 | 200 | 48.18 2.37 0.00 0.00 0.11|48.73 2.19 0.00 0.00 0.11

co = 0.2 Case 3 Case 4

n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC

100| 20| 84.44 5391 9.39 1.37 56.51|80.68 41.22 5.14 0.69 45.79
200| 40| 96.33 76.28 1.95 0.23 58.61(94.87 65.24 0.77 0.10 44.32
500100 | 99.73 97.82 0.15 0.01 68.54(99.69 94.99 0.04 0.00 53.72
1000 {200 | 99.93 100.00 0.01 0.00 93.01(99.95 100.00 0.07 0.00 85.80

cop = 0.3 Case 1 Case 2

n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC

100| 30| 32.52 091 0.26 0.02 4.55|44.24 230 0.70 0.19 9.44
200| 60| 31.53 0.32 0.01 0.01 0.80|53.04 1.71 0.06 0.00 3.75
500|150 | 24.33 0.11 0.00 0.00 0.09/60.55 0.82 0.00 0.00 0.57
1000|300| 17.70 ~ 0.05 0.00 0.00 0.00(66.13 0.30 0.00 0.00 0.10

co = 0.3 Case 3 Case 4

n| p| AIC AIC. BIC CAIC HQC| AIC AIC. BIC CAIC HQC

100| 30| 79.72  5.54 0.72 0.05 30.74|77.07 3.48 0.43 0.02 24.33
200| 60| 95.30 10.57 0.04 0.00 23.13|93.24 5.70 0.01 0.00 14.91
500 (150 | 99.86 27.58 0.01 0.00 19.93{99.79 16.97 0.00 0.00 11.77
1000 | 300 | 100.00 84.93 0.00 0.00 50.09(99.98 80.00 0.00 0.00 44.04
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4. Conclusion and Discussion

In this paper, we derived the conditions that the LLBIC in (6) is consistent
in selecting the best model for a CCA, when the normality assumption to the
true model is violated. The information criteria considered in this paper are
defined by adding a positive penalty term to the negative twofold maximum log-
likelihood, hence, the family of information criteria that we considered includes
as special cases the AIC, AIC., BIC, CAIC, and HQC. If we define consistency
by meaning that the probability of selecting the true model approaches 1, then,
in general, under the LS asymptotic framework, neither the AIC nor the AIC,
are consistent, but the BIC, CAIC, and HQC are. In this paper, we derived the
conditions for consistency under the HD asymptotic framework. Understand-
ing the asymptotic behavior of the difference between the two negative twofold
maximum log-likelihoods are important because the dimension of the maximum
log-likelihood increases with an increase in the sample size. If a normal distri-
bution is assumed to the true model, it is possible to use a method that uses the
properties of Wishart distribution (see Yanagihara et al., 2012; Fujikoshi et al.,
2014). However, we cannot use this method in this paper, because we considered
a case in which the normality assumption is violated for the true model. Hence,
to evaluate the asymptotic behavior, we considered the convergence in proba-
bility for a linear combination of elements in a symmetric idempotent random
matrix and the distribution of the maximum eigenvalues of the estimators of
the covariance matrix. A basic idea for evaluating consistency is the same as in
Yanagihara (2013). However, in Yanagihara (2013), « was not a random vector.
Hence, we extended Yanagihara’s method to the case that x is a random vector.

The results of our analysis and simulations confirmed that the AIC and
AIC, are consistent, and in some cases, the BIC is not consistent. These results
are similar to those obtained for a multivariate regression model proposed by
Yanagihara and colleagues (Yanagihara et al., 2012, 2014; Yanagihara 2013).

Appendix

A1l. Lemmas for Proving Theorems and Corollaries

In this section, we prepare some lemmas that we will use to derive the
conditions for comnsistency of the penalty term m(j) in IC,, in (5). We first
present Lemma 1, which addresses the expectation of a moment (the proof was
given in Yanagihara, 2013).

LEMMA 1. For any n X n symmetric matrix A,
E [tr {(£'A8)}] = 5" Y {(A)aa}” + plp + Dix(A”) + pir(A)?,
a=1

where /@(11) is given by (12), and (A)ap is the (a,b)th element of A.
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Next, we present Lemma 2, which is the key lemma for deriving the con-
ditions for consistency. In this study, we derived the conditions necessary for
achieving Lemma 2 (the proof was given in Yanagihara, 2013).

LEMMA 2. Let bj, be some positive constant that depends on the models,
j,0 € J. Then, we have

- 1 . “~ .
e I\ {j}, 5, UCm(0) = 1Cm (1)} 2 Ty = Tje > 0= P(jm = j) = L.
Js

Lemmas 3, 4, and 5 were used for evaluating the asymptotic behavior of
each term (the proofs are given in Appendices A4, A5 and A6).

LEMMA 3. Let W be an nxn random matriz, defined by W = E(E'E)~LE".
Then, for any ¢ € J, we obtain

1
— XWX, 5 gy
n—1

LEMMA 4. Let Amax(A) denote the mazimum eigenvalue of A, and let V ;
be a p X p matrixz defined by

1
Vj=_€(I,~P;~ H;H)E.

where P; and H; are given by (10) and (11), respectively. If assumption A2
holds, Amax(V ;) = O,(p*/?) is satisfied.

LEMMA 5. If assumptions A2 and A4 hold, ;1 = Op(np) is satisfied, and

liminf o 1/(np) > 0, where o; 1 is the mazimum diagonal element of L; given
Cn,p—>Co

by (11).

A2. Proof of Theorem 1

Let D(4,¢) (4,¢ € J) be the difference between two negative twofold maxi-
mum log-likelihoods divided by (n — 1), such that

. |Syu~j|
D(j,¢) = log 5.
( ) ‘Syy-é‘

Note that

From Lemma 2, we see that to obtain the conditions on m(j) such that IC,,(j)
is consistent, we only have to show the convergence in probability of D(j, j.) or
a lower bound on D(j, j.) divided by some constant.

First, we show the convergence in probability of D(j, j.) when j € J,. Note
that P;Y = P;E holds for all j, since X, is centralized. From the property
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of the determinant (see, e.g., Harville, 1997, chap. 18, cor. 18.1.2), the following
equation are satisfied for all j € 7, \ {j.} under the given assumptions:

YT = Py)Y| _\ €T = P)E|
Y'(I, - P;)Y| €' (In = P, )E|
I, — (E'€)E'P,E]|

S, —(£6)1€P, £

| XX, — XWX ,| | XLX.|

XX, - XWX, ||X;X;|

D(]a ]*) = log

=1lo

= log

Hence, by using Lemma 3 and (n — 1)1 X, X, % %, for all £ € J, we obtain
D(j, j«) =+ (4 — aj+) log(1 — co). (A1)

Next, we show the convergence in probability of a lower bound on D(j, j«)/logp
when j € J_. It follows that for all j € J_,

(L;/ G+ H;g)/(L;/ ‘Gl + H\E) +nV;

D(j7j*):10g ‘8/(1 _p. )8’
n B
Vi Gag0+ ERGa) (VG aGs 0+ ERja)
=log |1, + -
+ log Vil

’8/(111 - Pj*)g‘
Vi agig;. + Ehia)(aig; . + Ehyy)

n

> log |1, +

[nV |
g {1 N (V5191 + Ehi 1)V (Jajig, + Ehjq) }

n

+ log

+ log —|an|

N (VG191 +Ehj1) (JaG1g, + E hjy) }

n

> log {/\max(vj)
[nV|

’8/(111 - Pj*)g‘

= D1(j) + D2(j) + Ds(j), (A2)

+ log —log Amax (V)
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where

Dy (]) = log {/\maX(Vj) + pfj} )
: [nV|
D =log ———"——,
D3(J) = —log )‘maX(Vj)a
and & = (/@191 + E'hj1) (@519, + E'hj1)/(np).
First, we evaluate the asymptotic behavior of D;(j) in (A2). From the
equation h;’lhj,l =1, it is easy to see that
E[h;’lgglhjﬁl] = Dp.

Moreover, it follows from Lemma 1 that

E[(R) € h;1 — p)*] = £ S {(Rjak)1)aa}? + 20
a=1

= O(ma;{p,ps}),

where /@(11)

is given by (12), and s is a positive constant given by (13). Hence,
we have

R, EE'h;1 = p+ Op(max{p'/?,p*/?}) = O, (p). (A3)

Moreover, note that gj_rlg;’1 is an idempotent matrix,
(mgj,lglhj,l)Q =aj b €9;.95.E hjq
< aj71h;7158/hj,1
= O, (np?).
This implies that
\/@gjgglhj,l = Op(nl/Qp)-
From Lemma 5, (A3), and (A4), we have

& = 0p(1).
By using (A5) and Lemma 4, we obtain
1 1
= Dy(i) =
log p 19 log p
- lo {1/\ (V»)+§}+1
Ing g » max j J

2.

log {)‘max(vj) + pg]}

(A6)
Next, we evaluate the asymptotic behavior of Do(j) in (A2). From Lemma
3 and the result (I, - P; — H;H)(I,, — P;) = I, — P; — H;H’;, we can see
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that

|E'(I,, — P;)E|

|E' (I, — P;,)E|

X'/ X; - X'WX,||X. X,
|X.X. - X.WX.|| X)X,
= (kj — kj.) log(1 — co),

Ds(j) < log

= log

where W is given in Lemma 3. It follows that (I,, — P;, )(I,, — P; — H,;H) =
I, — P; , where j, is given by (9). Thus, we also have
o8 |E(I,, — P;,)E]|
|E' (I, — P;.)E|
| X5 X — X5 WX, || XX
XX, ~ XWX X)X,
Ly (kj, — k;.)log(1 — co).

Dsy(j) > 1

= log

The above upper and lower bounds on Ds(j) imply that

1 N
oy D20) 20 (A7)

Finally, we evaluate the asymptotic behavior of D3(j) in (A2). Since — logz <
—x + 1 for any > 0, we have

1 A
Ds3(j) = §logp— log

1 {)\max( J
> Slogp—¢ ———=
2 b

It follows from Lemma 4 that
1

logp
Consequently, combining (A2), (A6), (A7), and (A8) yields,

Day() 2 L. (A8)

\}

log D(j. j.) = @ (D1() + Daj) + Ds(4))

1
> D1(j) + D2(j) + D3 1(j
Z Togp P100) + D2() + Daa(5)}
1
P
As a result, from Lemma 2, (A1), and (A9), we can obtain the conditions given
in Theorem 1.

logp

(A9)
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A3. Proof of Corollary 1

First, we consider the AIC and AIC.. According to an expansion of m(j) —
m(j.) in the AIC,, the differences between the penalty terms of the AIC.s are

m(j) —m(jx)
g (2 - gy — 2 1\ 2 A10
_ (g5 —a)( CQn,p)p 14 Lt =) S0 pm ). (A10)
(1 - Cn,p) n n
Moreover, the differences between the penalty terms of the AICs are
1 . . 2¢,p

Hence, the convergence of the differences between the penalty terms of the AICs
and those of the AICs is

li ) —m(j.)} = 0.
Cn,ggconlogp{m(‘]) m(jx)} =0

This indicates that the condition C2 holds for both the AIC and the AIC..
Furthermore, it follows from equation (A10) that

. 2(q; — q;.) (AIC)
) ligC —{m(j) —m(j.)} =
e e p (¢j — ¢ ){(1=co) "+ (1 —co) %} (AIC,)

Since ¢ 1log(1—¢)+ (1 —¢)~* + (1 —¢)~2 is a monotonically increasing function
when 0 < ¢ < 1, it follows that c5'log(1 — ¢o) + (1 — co) ™' 4+ (1 — ¢g) ™2 > 0
holds. That is, the penalty terms in the AIC. always satisfy the condition C1
when j € J \ {j«}, and those in the AIC satisfy the condition C1 if ¢ € [0, ¢,),
where ¢, is given by (14).

Next, we consider the BIC and the CAIC. When j € J4\{j.}, the difference
between the penalty term of the BIC and that of the CAIC is

1
im
cnp—co plogn

{m(.]) - m(]*)} =4q; — g5, > 0.

Thus, the condition C1 holds. Moreover, it is easy to obtain

—logcnp >
enn(q; — qi) [ —=22 41 BIC
) - . (3 qJ)( log p ( )
nlogp{m(J)—m(J*)}Z -
—logec,
conlts =) (Fmene 1) (CAIC)

Since lim._,g clog ¢ = 0 holds, we obtain

1
im
cn,p—co nlogp

{m(j) —m(j.)} = colgy — g5.)-
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When j € S_NJ_, condition C2 is satisfied because cy(qj —gs) > 0 holds, where
S_ is given by (15). When j € S_, then for all j € S_, condition C2 is satisfied
if ¢g < 1/{2(g+ — ¢;)} holds.

Finally, the HQC is considered. When j € J, \ {j.}, the difference between
the penalty terms of the HQCs is

1

o m{m(ﬁ —m(j.)} = 2loglog(q; — gj.)-

Thus, the condition C1 holds. Moreover, it is easy to see that

1 . , loglogp = log(l —logcy,,/logp)
— « e 2 . — . : .
nlogp{m(j) m(j)} (45 — 4j.)cnp { log p + log p

From this equation, we obtain

lim
¢n.p—co nlogp

{m(j) —m(.)} = 0.

Hence, condition C2 holds. From the above results and Theorem 1, Corollary 1
is proved.

A4. Proof of Lemma 3

Forany £ € J,let X, = (z1,...,%q,), let = (X1, ..., Tnk)’, and let wyp
be the (a,b)th element of W. Then, ! Wx,, which is the (s,t)th element of
X, W X, is expressed as

CL';WCL't Zxasmatwaa + Zxasmbtwab (All)
a#b

Moreover, we can calculate

n
E 2 § :
-’B th I’ag atwaa + LasTosTetLdtWabWed
a#b#c#d
n
; 2
+ LasTbsTatTht waawbb+w +xasxbtwab+ (-T sLatTht
a#b

+2asTpsT at)waawab} + § {2xas$bs$atxct + (.’17 sTotTet
a#b#c

+2xasxbsxat$ct + mbsmcsxit)wabwac} ) (A12)
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where the notation Y Lay4-.. INEANS Y aim1 2on Notice that X'1,, =

as= 1a2;£a1”"

0, and so

n n n n

LasTvot = Las = Lat = 07 Laslpht = —L ¢,

a,b a=1 a=1 a#b

n

E LasThsLatLpt = (B (Bt E fL'aS at7 E xasfl'bt = a: €T :l:ta:t E .’L'as at7
a#b a#b

> 82 TarThr = Y TasThaToy = E xl Ty, (A13)
a;ﬁb a#b

E _ § 2 _ 2

TasTbsTatLlet = TosotLet = § ThsTesd gt
a#b#c a#b#c a#b#c
- Z Lqst at + Z LatTptLasThs-
a#b

Note that a’x, is the (s,t)th element of X}X,, and (n — 1)"' X, X, & 3.
Here, since W is a symmetric idempotent matrix and W1, = 0, holds, we
obtain the following equations:

ngaag|wab|§\/waawbb§1 (a:1,...,n;b:1,...,n;a7§b), (A14)

and

W>:Zwaa:pa Zwaa+zwab_p’

a#b
n
tI‘( Z waa + Z WaaWhh = p ) ]- W]-n Z Waq + Z Wap = 0
a=1 a;ﬁb a##b
I'anl Z w(m + Z (2Waqwap + w Z WapWae = 0, (A15)
a#b a#bs#c
tr(W)1, W1, = Z w2, + Z(?waawab + WaaWpy) + Z WaaWpe = 0,
a=1 a#b a#b#c
(1, W1,) Z waa + Z (WaaWap + 2wab + 4WaqWap)
a=1 a#b
+2 Z (waawbc + 2wabwac) + Z WabWed = 0.
a#b#c a#b#c#d
Since wqq (a 1,...,n) are identically distributed, and wg, (@ = 1,...,n;b =

a—+1,...,n) are also identically distributed, from the equations in (A15) and
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for a # b # ¢ # d, we obtain

p = nE[waal,

p = nBlwg,] +n(n — 1) E[w},],

p* = nBw},] +n(n — 1) Elwaaww),

0 = nEfwaa] + n(n — 1) Eluwa), (A16)
0 =nEw;,] +n(n —1) 2E[waewes] + Elwaez]) + n(n —1)(n = 2) Elwapwac),

0 =nEw],] 4+ n(n—1) 2E[waawa] + E[waawys]) +n(n —1)(n — 2) Elwaqwpe],
0 =nEw],] 4+ n(n—1) (Elwaawes] + 2E[wep2] + 4E[waqwap])

+2n(n — 1)(n = 2) (E[waawee] + 2E[wapwac))

+n(n = 1)(n — 2)(n — 3) Bl ted).

It follows from equation (A14) that E[w?,] < 1. Combining this result and
equation (A16) yields

Elwaa] = e p, Elwg) = O(n™1),
E[w?za] = 0(1)3 E[waawbb] = C?L,p + O(nil)v
E[wgb] =0(n™"), Elwaqway] = O(n™1), (A17)

Elwgawpe] = O(n™Y), EBlwagpwe.] = O(n?),

Elwapwea) = O(n™?),

as cnp —+ Co, Where a,b,c,d are arbitrary positive integers not larger than n,
and a £ b # ¢ # d.

Let o4 be the (s,t)th element of Xy,. Then, by using (A11), (A12), (A13),
and (A17), we have

1 1
E W] — coost, m

The above equations directly imply that (n—1)"'Var [,Wz;] — 0 as ¢, , — 0.
Hence, the (s,t)th element of X, W X, converges, as follows:

— E {(cc’QWact)z} — cio,.

1
n—1

/ p
IL’SWIEt —r CQOst-

Therefore, Lemma 3 is proved.
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A5. Proof of Lemma 4

It follows from elementary linear algebra that
Amex (V) < A [ 2E'€) <1/ Stn{ (£7€)?
max( ])_ max ﬁ >~ E T ( ) .
From Lemma 1, we can see that

E[;tr{(f)’f))Q}- - Loy 1 ~pp+1) +p=0().

)

The above equation and Jensen’s inequality lead us to the equation

Ztr{(g’s)Q}- < \/E [nlztr{(S’S)QH — 0"/,

This directly implies that n‘l[tr{(8’8)2}]1/2 = O,(p'/?). Hence, Lemma 4 is
proved.

E

A6. Proof of Lemma 5

It follows from elementary linear algebra that
1 1 1
— ;1 = —Amax(L;) < —tr(L;
npa]’l np’ (L;) < "o r(L;)

1

J=Y = yy g JuJx

1
= —u{X.(I,-P)X. %} %, 2 1 5 5.1
np

IN

YY-Jx JxJx

nitr{xgx*z D70 St S Sp

Lotr (U;274).

From the above equations and assumptions A2 and A4, we have

aj1 = Op(np).
Moreover, it also follows from elementary linear algebra that
1 1
—ai1 = —Amax(Lj) > tr (L,
np J)1 np a ( ]) ~;inp ( ])
/ 1 / —
%nptr{X - P;)X. % E DD S Yy ]*}

5 tr{zj*lj*zj*jx G ]* J}

Hence, with assumption A4, this implies that

1
liminf —a; 1 > 0.
Cn,p=—+Co TP

Consequently, Lemma 5 is proved.
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CHOOSING THE NUMBER OF REPETITIONS IN
THE MULTIPLE PLUG-IN OPTIMIZATION
METHOD FOR THE RIDGE PARAMETERS IN
MULTIVARIATE GENERALIZED RIDGE
REGRESSION

By

Isamu NaAcAr; Keisuke Fukul! and Hirokazu YANAGIHARAY

Abstract

Multivariate generalized ridge (MGR) regression was proposed by Yanagihara,
Nagai, and Satoh (2009) in order to avoid the multicollinearity problem in multi-
variate linear regression models. The MGR estimator is defined by using multiple
nonnegative ridge parameters in an ordinary least-squares (LS) estimator. In or-
der to optimize these ridge parameters, Yanagihara, Nagai, and Satoh (2009) and
Nagai, Yanagihara, and Satoh (2012) proposed several optimization methods. We
focus on the plug-in optimization method, which is an estimation method for the
principal optimal ridge parameters that minimizes the predicted mean squared er-
ror. The plug-in optimization method is a repeating method that uses the current
ridge parameters estimate as input in order to obtain an improved estimate. In
the present paper, we propose two criteria for choosing the number of repetitions.
We conducted several numerical studies using the proposed information criteria to
compare the LS and MGR. estimators with the optimized ridge parameters based
on some ordinary plug-in optimization methods, and those obtained by using the
optimized multiple plug-in optimization method.

Key Words and Phrases: Generalized ridge regression, Multivariate linear regression model,
Plug-in optimization method, Shrinkage estimator.

1. Introduction

In the present paper, we consider a multivariate linear regression model with n
observations of a p-dimensional vector of response variables and a k-dimensional vector
of regressors (for more detailed information, see for example, Srivastava, 2002, Chapter
9; Timm, 2002, Chapter 4). Let Y, X, and € be the n x p matrix of response variables,
the n x k matrix of nonstochastic centered explanatory variables (i.e., X'1, = 0y) of
rank(X) = k, and the n x p matrix of error variables, respectively, where n is the sample
size, 1, is an n-dimensional vector of ones, and 0 is a k-dimensional vector of zeros.

* School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337,
Japan. inagai@kwansei.ac.jp

t Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama,
Higashi-Hiroshima, Hiroshima 739-8526, Japan.

¥ Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama,
Higashi-Hiroshima, Hiroshima 739-8526, Japan.
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Suppose that n —k —p—2 > 0 and € ~ Npxp(Opxp, 2 ® I,), where X is a p x p
unknown covariance matrix, rank(X) = p, and Oy, is an n X p matrix of zeros. Then
the matrix form of the multivariate linear regression model is expressed as

Y =14 + XE+E, (1)

where p is a p-dimensional unknown location vector and = is a k x p unknown regression
coefficient matrix. We can also express the model (1) as Y ~ Npyp(1op'+ XE, 2R I,).

The maximum-likelihood or least-squares (LS) estimators of p and = are given by
& =Y'1,/n and = = (X'X)"1X'"Y, respectively, because X'1,, = 0. Since f& and
= are simple forms and are unbiased estimators of p and =, they are widely used in
actual data analysis, see, e.g., Dien et al. (2006), Sarbu et al. (2008), Saxén and Sundell
(2006), Skagerberg, Macgregor, and Kiparissides (1992), and Yoshimoto, Yanagihara,
and Ninomiya (2005). However, when multicollinearity occurs in X, the estimator of =
becomes unstable. In order to avoid this problem, multivariate generalized ridge (MGR)
regression for the model in (1) was proposed by Yanagihara, Nagai, and Satoh (2009)
(the original generalized ridge regression when p = 1 in the model (1) was proposed
by Hoerl and Kennard (1970)). The MGR estimator is defined by using multiple ridge
parameters 8 = (61,...,60;)", (6; > 0, i = 1,...,k). Nagai, Yanagihara, and Satoh
(2012) showed that the principal optimal @ that minimizes the predicted mean squared
error (PMSE) is obtained in closed form with the unknown regression coefficient, vector
and covariance matrix. '

In order to estimate the principal optimal @, Nagai, Yanagihara, and Satoh (2012)
proposed the plug-in optimization method. By replacing the LS estimator and unbiased
estimator for ¥ with unknown values, respectively, the single plug-in optimized ridge
parameters were derived. However, when multicollinearity occurs, the optimized ridge
parameters tend to be too small since the LS estimator tends to have a large variance.
Thus, to avoid under evaluation, Nagai, Yanagihara, and Satoh (2012) considered using
the MGR estimator based on the single plug-in optimized ridge parameters instead
of using the LS estimator. The double plug-in optimized ridge parameters were also
derived. Repeating this renewal method, we obtained the multiple plug-in optimized
ridge parameters derived from the MGR estimator based on the initial optimized ridge
parameters. Let s (s = 1,2,3,...) be the number of repetitions in the multiple plug-
in optimization method. Note that the single plug-in optimized ridge parameters are
obtained when s = 1 and the double ones are obtained when s = 2. In the present
paper, we wish to find the value of s that minimizes the PMSE. In order to choose s,
we propose two information criteria.

The remainder of the present paper is organized as follows: In Section 2, we illus-
trate the MGR estimator and a target PMSE. We also introduce the multiple plug-in
optimization method. In Section 3, we propose some criteria for choosing the number of
repetitions in the multiple plug-in optimization method. In Section 4, we compare the
optimization methods by conducting numerical studies.

2. Preliminaries

In this section, we introduce the MGR estimator and the principal optimal @ that
minimizes the PMSE. Yanagihara, Nagai, and Satoh (2009) proposed the MGR estima-
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tor, which is defined as follows:
Ep = (X'X +QOQ)'X'Y, (2)

where © = diag(0) is a k x k diagonal matrix and Q is a k x k orthogonal matrix that
diagonalizes X' X, i.e., Q satisfies Q' X'XQ = D, where D = diag(dy,...,ds) and
di,...,dy are the eigenvalues of X’ X. This estimator coincides with the LS estimator
when € = 0, and it coincides with the ridge estimator for the model (1) proposed by
Yanagihara and Satoh (2010) when 8 = A1, for A > 0.

Using the same orthogonal transform as was used by Nagai, Yanagihara, and Satoh
(2012), the model (1) can be rewritten as follows:

Z:L(I‘,)—I-V,
7

where I' = (yi,...,%) = QE, Z = (21,...,2,) = P[Y, V = (v1,...,v,) = PJE,
L = (diag(v/ds, ..., vdk,/n), Og11,n—k—1)', and P is an n x n orthogonal matrix that
diagonalizes (X,1,)(X,1,), that is, P, satisfies P/(X,1,)(X,1,)P, = LL'. When
p = 1, this transformation was used in Goldstein and Smith (1974), and by others.
Nagai, Yanagihara, and Satoh (2012) showed that Z ~ Nnxp(M,E® I,), where M =
(my,...,m,) = L(I',u)’. The MGR estimator of T' is defined by I'p = Q'Zy, thus
Lo = (D +©)"1C'Z where C = (D2, Opg,n—r)', which is equivalent to the estimator
obtained by substituting D + © into D in the LS estimator of T, i.e., I' = D-1C'Z.

Then the PMSE of Zy = L(f‘g,ﬁ)’, which is the predictor of Z, is defined as
follows:

PMSE([Zg] = E[r(V, Zy)],

where V- ~ Ny ,(M,E®1,), V 1L Z, and the function r(-,-) is defined by the following
discrepancy function for measuring the distance between any n x p matrices A and B:

r(A,B) =tr{(A - B)X" (A - B)'}.

From some simple calculations, we obtain PMSE[Zg] = np + E[r(Zg, M)]. Nagai,
Yanagihara, and Satoh (2012) showed that 8* = (67,...,6;), the principal optimal 6
with minimized E[r(Zg, M)], is derived as follows:

* p . .
oi_m, (i=1,...,k). (3)
However, 07, (i = 1,...,k) cannot be directly used for estimating Z since it includes the
unknowns «; and X.

Nagai, Yanagihara, and Satoh (2012) proposed the single plug-in optimization
method by substituting 4; = z;//d;, (i = 1,...,k), which is the ith row of f‘, for
Yi, (0 =1,...,k); and § = 31 | ) zz[/(n — k — 1), which is an unbiased estimator
for 3, for ¥ in 6}, (#+ = 1,..., k) which is in equation (3). Then the estimator for 07,
(¢ =1,....,k) from the single plug-in optimization method is derived as follows:

5 dp .
95:1]:"?_{9}1_1:?_'=%11 (321,...,}6), (4)
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where t; = z/S7z;, (i=1,...,k).

When multicollinearity occurs, we consider using the MGR estimator. However,
in that case, 9[ I, (¢ = 1,...,k) tends to be too small since it depends heavily on 4;
and the variance of 4; becomes large. In order to avoid this problem, we can use the
MGR estimator based on the single plug-in optimization method instead of using the
LS estimator because the variance of the MGR estimator is smaller than that of the LS
estimator. We then derive the double plug-in optimization method as

Al2] p 9“] A1) p\’ dip
6 _“_“]-W 1—|— dz 9 :(1+a) ti’ ('E:l?...,k), (d)

where 4, S = Vdiz;/(d; + 6[1]) is the ith row of 'y 11 obtained by substituting ol =

(0[1] : 9 ) for 8 in 1"9 When we iterate this method, that is, we obtain new plug-in
optlmiz('d rldge parameters by using the MGR estimator based on the current optimized
ridge parameters, the multiple plug-in optimization method is derived. This was also
proposed by Nagai, Yanagihara, and Satoh (2012), as follows:

a~f 2
s . 05_3_11 .
;) = Ak ...wgp—lﬁ[s—l] N (1+ @ ) 0 (5=123..5i=L...k) (©)

where §£0] = 0 and *}f}s_l]

is the ith row of I'; gis—11; Note that -y[ I =%, (i=1,...,k). In
the case of p = 1, ()AE” and 9_£ correspond with the optimization methods in Hoerl and

Kennard (1970), and GAES] coincides with the optimization method in Hemmerle (1975).
Numerical studies in previous papers have compared only the single or double optimized
ridge parameters. However, 85/ = (é%ﬁl,...,érl)’ is derived by using 6*~1 and (6)
for any natural number s, and there is no method for _choosing s. Hence we consider
determining the value of s that reduces the PMSE of Zel« = L(I‘n .+ ), which is the
predictor of Z based on the multiple plug-in optimization mothod

3. Method for Choosing s

In this section, we consider a method for choosing s, which was defined in (6) as
the number of repetitions in the multiple plug-in optimization method. We regard the s
which minimizes the PMSE][ 9[81] as an optimal number and we will propose information

criteria to get it. Note that 0[ d depends on £;. In order to get right this dependence, we
express 9[ oF 6'[3]( ti), (s=1,2,...; i =1,...,k). Letting wl*l(t;,) = d;/(d; —|—-l§151 (t;)) for
it =1,...,k, the ith row of I‘éM is obtained by "i/}s] = wl*l(¢;)%;. We now consider how
to estimate the PMSE(Z g1s1] for a fixed s. Hence we consider evaluating Zﬂr'é[g], which is
obtained by using 6l¢] = (é[f] (t1),- .. ,é;:] (tx))’, by stating the PMSE as follows:

PMSE[Z@[_«]] = E[T(V, Zé[ﬂ])]'

The predicted value Zélﬂl can be expressed as Zﬁ[ﬂl = (2 (égs] (t1)),---, 2k (eé}[:](tk)),
Zk+1,y -y 2n) since the ith row of Zéls; depends on 6’13] (t;) fori=1,...,k, and it does
not depend on 8 for i = k+1,...,n. Additionally, it should be kept in mind that
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23(5[5 (t:)) = wll(t:)zi, (i = 1,...,k), Zpp1 = 2k41, 21 = 0,, (i =k+2,...,n), and
Z; N p(mi, 3) where m; is the ith row of M = L(I', u)’. From a simple calculation,
we Obtdln

PMSE(Zg| = Elr(Z, Z1,)) + 2E[tr{(Zgy — M) (Z — M)E}]. (7)
Then we can see that

E[tr{(zéls] -M)(Z - M)E"1}

k P .
= E [(w[*‘](t@)zi - mf.) =z - m-i)} + E[(zk11 — me1) 7 (2041 — mMipsa))]
=1
- Z EmiE " (z; — m;)]
i=k42
K
=Y Ewll(t:)z/2" (2 — my)] +p,

=1

because E[(ék_,_l = Mpy1)' B N2k — Myep)] = tr(271E) = p and E[m|Z (2 —
m;)] = 0. If we let u; = (w1, ..., up) = B7Y%(z; — m;), where $1/2 gatisfies & =

TU/2R1/2 then u; "R »(0p,I,) and the following result is derived:

ol

Bltr{(Zg — MY (Z ~ M} = 35 Bl (1) (s + 52m,)u] +

i=1

|
Bl II

]

p
Z Elw!®(t (ti)(wij + m, X~ lf‘aep_,,)u”] +p,
1 j=1

where e, ; is a p-dimensional vector in which only the jth element is equal to one and
the other elements are zeros. Using the formula in Stein (1981) (see, e.g., Efron (2004)),
we obtain

E[wll(t;) (uij + mix~ V2e, i Yuij] = [

:E[M

0 {w (t )(uij + mi3- l’uem)}]
Oui;
o (i +m; 212, ;) + wll( t)]

0 ti o R
=E {e" pJ wau(, y €ni(U+ M~ 1/2)‘3:0-}' + w['](t-i)] .

where U = (u1,...,u,)". Since U + MXE~1/2 = Z%-1/2 and ¢; depends on u;, the
following equation is derived:

. (]
Bluf) 1)y + 5 ey i) = B [ 20 2

) ! 1/2
Pi G, Ot zi 3" /e'PJ—I_w (ti)|,

fori =1, ....kandj =1,...,p. Note that t; = 2[S71z; = (ZV2u;+m,;)' S (T 2u,; +
m;) and that $~! does not depend on u;, (e, =1,...,k) since S does not depend on z;,
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(i=1,...,k+1) and u; is obtained from z;. Thus we obtain the following differential
result:

ot;

U;

= 22”28_125.

Hence we calculate (7) as follows:

k
- o~ I dtl d t’ 5
PMSE|Zg] = BIr(Z, Zgu) + 2+ 23 B |2/ 010 Q) | i, )

owlsl(t;)

k
— E[T(z.’ Zélsl )] + 2p + 2 Z E |:2t at

=1

+pull(e)]

From this result, the unbiased estimator of (7) can be defined as follows:

wlsl (¢
Cr =1(Z, Zm])+2p+22(2£,da—ff) +pw[”](ti))‘ (8)

f=1

However, we cannot use this criterion since 7(Z, Zg,;) requires the unknown covariance
matrix 3.

In (8), we will consider estimating C} by using the idea for the C}, and M C, criteria
that was put forth in Yanagihara, Nagai, and Satoh (2009). We thus estimate the C;
criterion as follows:

DEFINITION 3.1. The criteria for choosing s are defined by

O =#(2, Zg) + 2p+22 (26258 4 b)), 0

k
. - owlsl(t;
MCY = cui(Z, Zga) +2p+2 (2::1 gy ( ) + pwll(t; )) +p(p+1), (10)
i=1

where ¢y =1 — (p+1)/(n—k—1), and #(Z, "Zé[s]) is obtained by substituting S for X
in T(Z, Zé['s])

Minimizing each criterion, we can obtain several estimators for the optimal s. Let s,
and s!, be_ obtained by minimizing the C# and MC¥ criteria, respectively. From (6),
)’ and @lsil = (65 s“] ..,GAER”]]’ in closed forms,

<1 by substituting 6lscl and @lsul into

we can obtain 66t = (9i*¢! .
respectively. Then, we can obtain
(2), respectively.

i“
nE sy and =

als el

4. Numerical Studies

By conducting numerical studies, we compare the PMSEs of the predictors of Y
consisting of the ridge regression estimators with the optimized ridge parameters by
using each method. Let R, = diag(V/1,...,,/q), which is a g x ¢ diagonal matrix, and
let Ay(p) be a g x g matrix whose (i,7)th element is pl*=7l. Then the explanatory
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matrix is X = WW¥'/2, where ¥ = R Ax(p.) Ry, and W is an n x k matrix whose
elements were generated independently from the uniform distribution on (—1,1). The
k x p unknown regression coefficient matrix = is defined by 2 = §FII, where § is a
constant term, F is defined as F' = diag(1,,0x_,), which is a k x k diagonal matrix,
and IT is defined by 1) ; ® IT; when k = 10 and by 1,/3 ® Il when k = 15. Here, IT,
and I, are given by

( 1.3794  0.0645  0.0330 \
—0.0766 —0.0241 —0.0143
—0.2618 —0.1396 —0.0951

08501 06571 0.2159 ) ~0.4619 —0.2589 —0.1798

—0.2753 —0.2432 —0.1187 )

0.2754  0.2608  0.1766 ggégg g-;ggz 3-%;}[2]
0.2603 02164  0.2066 : : 195

= Coeer | M= | 01155  0.0953  0.0812
~0.0676 —0.0663 —0.0561 _02774 —0.2395 —0.2001

_gggig _8'3;2; _83?32 0.3302  0.3072  0.2807
: : 0.0016  0.0107  0.0100

0.3240  0.3199  0.2868 . ‘
\ —03747 03727 _03554) 0.0438  0.0408  0.0381
' ' ‘ —0.3187 —0.3039 —0.2904

0.0520  0.0510  0.0493
\  0.2505  0.2451 0.2399}

IT,

Here, d controls the scale of the regression coefficient matrix, and F controls the number
of nonzero regression coefficients via k. The values of the elements of IT; and II5, which
are an essential regression coefficient matrix, are the same as in Lawless (1981). The
simulated data Y were generated iteratively from Npxp(XE, ¥ ® I,,) under several
selections of n, k, &, 4, py, and p,, where ¥ = R,A,(p,)R,, and the number of
iterations was 10,000. At each iteration, we evaluated r(XE, l}é) where l}é =1, +
X éé, which is the predicted value of Y obtained from each method. The average
of np + r(XE,Yy) across 10,000 iterations was regarded as the PMSE of f’é. In the
simulation, a standardized X was used to estimate the regression coefficients.

We obtained the optimized ridge parameter 8 = (4, ... ,6;)’ from the following
two methods:

Method 1 : 6 = 852 where s¢ = argminges CF and C¥ is defined in (9).
Method 2 : 6 = 6} where Sy = argminges MC# and MC# is defined in (10).

In this paper, we set § = {1,2,3,4,5,10,15,20,50} and let x(i) =ifori=1,...,5,
x(1) = 5(i — 4) for i = 6,7,8, and x(9) = 50, and we let #(S) be the number of elements
in the set §. To reduce the number of computations, we applied the selection method
proposed by Ruppert (2002) to select s € S, as follows:

1. Set ¢ to 1.

2. Calculate several information criteria (IC) for x(i) and x(i + 1), and denote these
IC values as IC(7) and IC(i + 1), respectively.

3. I IC(i + 1) > 0.98 x IC(4), stop iterating and go to Step 5.
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4. If i + 1 < {(S), update i as i + 1 and go to Step 2. Otherwise, if i + 1 > §(S), do
not update ¢ and go to Step 5.

5. When IC(i + 1) < IC(i), let i* = i + 1; otherwise, let i* = q.
6. Obtain the optimized s as x(i*).

By using this selection method, we can reduce the number of computations for selecting s
since it stops when there is little improvement in the information criteria when i is large,
i.e., when s becomes large. When we use the Cf criterion to obtain s, we calculate (9)
to obtain IC(i). As was done for C#, MC# in (10) is calculated for each s € S. For the
purpose of comparison with the proposed methods, we prepared the two conventional
optimization methods, as follows:

Method 3 : 8 = 61 = ([ﬁr], . ,é}:])’, which is the single plug-in optimization method
in (4).

Method 4 : § = 92 = (522], ceny éf])’ , Which is the double plug-in optimization method
in (5).

Table 1 shows the simulation results for PMSE[Yj]/{p(n + k + 1)} x 100 for the
cases in which (k,n) = (10,30) and (10,50), and Table 2 shows the results for the cases
in which (15, 30) and (15,50). In both tables, p = 6, where p(n+k+1) is the theoretical
value of the PMSE for the predictor of Y based on the LS estimators.

We can see that all of the methods improved the PMSEs of the LS estimators in
all cases since none of the values in the tables exceed 100. When k& = 10, Method 2 is
almost always the best method for small § and n. Methods 1 and 2 resulted in a greater
improvement than did Method 3 in almost all cases when k = 10 and n = 30. Methods
1 and 2 resulted in a greater improvement than did Method 3 in almost all cases when
k =10, n = 50, and § was small. When k = 15, Method 2 is always the best method
for small ¢ and large p,. Methods 1 and 2 resulted in a greater improvement than did
Method 3 in almost cases when k& = 15. Methods 1 and 2 also resulted in a greater
improvement than did Method 4 in all cases when § was small and p, was large. When
0 was small and p, was large, Method 2 also resulted in a greater improvement than did
Method 1 in almost all cases. Methods 1 and 2 resulted in the greatest improvement when
k became large and p, was small. In almost all cases, there was greater improvement
when k£ was smaller . When n or § became small, each method was improved. On
average, Method 2 was the best method, and Method 1 was the second best. Hence, we
recommend using the M C,f criterion in (10) to choose the number of repetitions in the
multiple plug-in optimization method.
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Table 1: The values of PMSE[Yg]/{p(n + k + 1)} x 100 for each method when k = 10

n =30 n = 50
Method Method
(K,0,0y:Pa) 1 2 | 3 4 1 2 | 3 4
(0,0,0.2,0.2) | 79.71 78.25 | 85.46  80.92 85.28 84.82 | 89.30 86.10
(0,0,0.2,0.95) | 79.75 78.29 | 85.50  80.96 85.31 84.85 | 89.32 86.12
(0,0,0.95,0.2) | 79.76 78.31 | 85.50 80.97 || 85.33 84.86 | 89.34  86.13
(0,0,0.95,0.95) | 79.73 78.28 | 85.49  80.94 85.35 84.88 | 89.36 86.16
(5,1,0.2,0.2) | 86.47 86.32 | 88.98 86.46 | 91.45 9154 | 92.73 91.39
(5,1,0.2,0.95) | 82.28 81.16 | 86.88  83.02 87.50 87.09 | 90.58 87.93
(5,1,0.95,0.2) | 90.29 90.63 | 91.62 90.21 || 94.20 94.29 | 94.81 94.19
(5,1,0.95,0.95) | 83.95 82.24 | 87.58  83.97 88.72 88.39 | 91.27 88.94
(6,3,0.2,0.2) | 95.63 93.90 | 94.31 93.59 || 97.33 97.24 | 97.13 97.23
(5,3,0.2,0.95) | 85.44 84.72 | 88.69 85.68 || 90.62 90.52 | 92.36  90.60
(5,3,0.95,0.2) | 96.20 96.20 | 96.36 96.08 || 98.23 98.24 | 98.09 98.12
(5,3,0.95,0.95) | 89.00 89.04 | 90.88 88.95 || 92.93 93.00 | 94.00 92.90
(10,1,0.2,0.2) | 87.12 86.67 | 89.75 87.21 94.19 94.29 | 94.67 94.17
(10,1,0.2,0.95) | 83.75 82.77 | 87.69  84.22 88.83 88.51 | 91.29 89.01
(10,1,0.95,0.2) | 91.09 91.43 | 92.25 91.03 || 96.47 96.45 | 96.30 96.44
(10,1,0.95,0.95) | 84.65 83.76 | 88.27  85.02 89.68 89.46 | 91.79 89.75
(10,3,0.2,0.2) | 93.53 93.95 | 94.14 93.49 || 98.76 98.87 | 98.72 08.96
(10,3,0.2,0.95) | 89.76 89.91 | 91.37 89.69 || 92.26 93.35 | 94.21 93.23
(10,3,0.95,0.2) | 98.12 98.09 | 97.74 98.05 || 99.51 99.51 | 99.51 99.67
(10,3,0.95,0.95) | 91.94 92.36 | 92.88 91.89 || 94.78 94.84 | 95.20 94.77
Average | 87.28 86.81 | 90.07 87.62 || 91.88 91.75] 93.50 92.09
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Table 2: The values of PMSE[?Q]/{p(n + k+ 1)} x 100 for each method when & = 15

n =30 n = 50
Method Method
(K,0,py,Pz) 1 2 | 3 4 1 2 [ 3 4
(0,0,0.2,0.2) | 74.89 72.16 | 82.13 76.43 | 79.46 78.83 | 85.39  80.96
(0,0,0.2,0.95) | 74.90 72.18 | 82.10 76.42 | 79.42 78.81 | 8536  80.94
(0,0,0.95,0.2) | 74.87 72.15 | 82.09 76.40 | 79.47 78.84 | 85.42  80.98
(0,0,0.95,0.95) | 74.91 72.20 | 82.13 76.43 || 79.43 78.82 | 85.37 80.95
(51,0.2,0.2) | 81.80 81.09 | 85.64 81.99 | 86.56 86.40 | 88.98 86.57
(5,1,0.2,0.95) | 77.29 75.13 | 8328 7826 | 82.00 81.54 | 86.56 82.85
(5,1,0.95,0.2) | 90.51 90.89 | 91.80 90.47 || 94.27 94.36 | 94.61 94.27
(5,1,0.95,0.95) | 84.04 83.56 | 87.26 84.14 || 87.74 87.55 | 89.98  87.%
(53,0.2,0.2) | 90.43 90.79 | 91.75 90.40 || 93.84 93.95 | 94.35 93.84
(5,3,0.2,0.95) | 83.64 83.21 | 86.90 83.72 || 87.39 87.19 | 89.68  87.40
(5,3,0.95,0.2) | 96.06 96.06 | 96.32 95.91 || 98.10 98.05 | 98.03 97.90
(5,3,0.95,0.95) | 90.43  90.39 | 92.03  90.40 | 92.12 92.17 | 93.36  92.08
(10,1,0.2,0.2) | 84.73 84.93 | 87.37 84.68 || 90.53 90.91 | 91.49 90.45
(10,1,0.2,0.95) | 78.56 76.48 | 84.17 79.44 || 85.20 82.71 | 87.43 83.95
(10,1,0.95,0.2) | 98.55 94.03 | 93.97 93.52 || 96.50 96.49 | 96.19 96.49
(10,1,0.95,0.95) | 83.57 82.79 | 87.06 83.74 | 87.64 87.40 | 89.98 87.69
(10,3,0.2,0.2) | 94.18 9448 [ 9457 94.10 || 98.00 97.99 | 97.65 97.96
(10,3,0.2,0.95) | 85.13 84.92 | 87.94 85.14 || 89.86 90.01 | 91.29  89.77
(10,3,0.95,0.2) | 98.60 98.73 | 98.48 98.68 || 99.34 99.34 | 99.33 99.46
(10,3,0.95,0.95) | 91.82 91.67 | 92.51 91.29 | 94.01 94.12 | 94.58 94.01
(15,1,0.2,0.2) | 88.25 89.06 | 89.86 88.19 || 92.51 92.76 | 93.08 92.49
(15,1,0.2,0.95) | 79.46 77.67 | 84.59 = 80.16 || 84.13 83.72 | 87.88  84.66
(15,1,0.95,0.2) | 95.14 93.53 | 93.81 93.12 || 96.90 96.86 | 96.70 96.86
(15,1,0.95,0.95) | 84.09 83.47 | 87.38 84.22 | 88.20 88.01 | 90.36 88.21
(15,3,0.2,0.2) | 96.43 96.46 | 96.59 96.31 || 98.47 98.68 | 98.29 98.66
(15,3,0.2,0.95) | 86.45 86.28 | 88.91  86.44 || 91.05 91.28 | 92.16  90.99
(15,3,0.95,0.2) | 98.61 98.76 | 98.49 98.71 | 99.36 99.36 | 99.36 99.48
(15,3,0.95,0.95) | 90.91 91.03 | 92.34 90.88 || 94.13 94.22 | 9470 94.12
Average | 86.45 85.86 [ 89.33 86.77 [ 90.13 90.01 | 92.06  90.42
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ABSTRACT. In the structural equation modeling, unknown parameters of a covariance
matrix are derived by minimizing the discrepancy between a sample covariance matrix
and a covariance matrix having a specified structure. When a sample covariance
matrix is a near singular matrix, Yuan and Chan (2008) proposed the estimation method
to use an adjusted sample covariance matrix instead of the sample covariance matrix in
the discrepancy function. The adjusted sample covariance matrix is defined by adding
a scalar matrix with a shrinkage parameter to the existing sample covariance matrix.
They used a constant value as the shrinkage parameter, which was chosen based solely
on the sample size and the number of dimensions of the observation, and not on the
data itself. However, selecting the shrinkage parameter from the data may lead to a
greater improvement in prediction compared to the use of a constant shrinkage
parameter. Hence, we propose an information criterion for selecting the shrinkage
parameter, and attempt to select the shrinkage parameter by an information criterion
minimization method. The proposed information criterion is based on the discrepancy
function measured by the normal theory maximum likelihood. Using the Monte Carlo
method, we demonstrate that the proposed criterion works well in the sense that the
prediction accuracy of an estimated covariance matrix is improved.

1. Introduction

Structural equation modeling (SEM) has been widely used in many fields,
especially in social and behavioral sciences (see e.g., Bollen (1989), and Yuan
and Bentler (2007)). In SEM, unknown parameters of a covariance matrix are
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derived by minimizing the discrepancy between a sample covariance matrix and
a covariance matrix having a specified structure.

Let x;,...,xy be independent random samples from x distributed accord-
ing to a p-variate normal distribution N,(u,2), where N is the sample size.
We are interested in modeling the population covariance matrix 2. Denote
the model of interest as X(@), where 8 = (0;,...,0,)’. For simplicity, we write
2(0) as Xy. Let S be an unbiased estimator of X, i.e.,

1 & i} v
S—ﬁ;(xi—x)(xi—x) ,

where ¥ is the sample mean of xi,...,xy defined by ¥ = N~! Zfil x;. Then,
the candidate model is represented by

M :nS ~ W,(n, Xy), (1)

where n= N — 1. Suppose that 2, is the true covariance matrix, i.e.,
Cov[x] = Xy. The true model is represented by

My : nS ~ W,(n, Z0). 2)

If the covariance structure can be correctly specified, then there exists 6, such
that Xy = 2y,. The classical approach to SEM fits the sample covariance
matrix § by Xy through minimizing the normal theory maximum likelihood
(ML) discrepancy function as

F(S.Zy) = t(SZ,") — loglSZ, | — p. (3)
Then, the ML estimator of 8, which is represented by @, is defined by

~

0 = arg main F(S,Zy).

In general, 6 is obtained using a modification of Newton’s algorithm (see
e.g., Lee and Jennrich (1979)), which requires an iteration process to solve the
estimating equation. When § is near singular (not full rank), the iteration
process for obtaining @ will be very unstable and may require hundreds of
iterations to reach convergence (e.g., Boomsma (1985)). A near singular S
often occurs in practical data analysis due to not only small samples but also
multicollinearity or missing data even when sample size is quite large (Wothke
(1993)). When S is literally singular, it is very likely that the iteration will
never converge.

In order to avoid such a problem, Yuan and Chan (2008) proposed a new
method in which @ is estimated by minimizing F(S,,2y), where S, =S + al),
a 1s a small positive value and I, is a p-dimensional identity matrix. Here, a is
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commonly referred to as the shrinkage parameter. Hence, a new estimator of
0 is defined by

~

0, = arg mgin F(S,,%p).

Although 6, has a constant bias, under LISREL models (see Joreskog and
Sérbom (1996), pp. 1-3), Yuan and Chan (2008) reported that 6, can be
adjusted to a consistent estimator through a simple procedure when the cova-
riance structure is the correct model. The adjusted estimator is defined as

0,=0,—q,

where j is a g-dimensional vector whose elements are ones corresponding to the
parameters on the diagonals of the covariance matrix, and otherwise are zero.
They also studied for the case that Xy is not correctly specified. There exists
a unique vector @, such that

where 6,. is a population parameter minimizing F (X + al,, Xy), ie.,

0,. = arg main F(Xo+al, Xy). (5)

Then, 8, and 6, are consistent for ,. and 0., respectively. If Xy is correctly
specified, 6,. = 6y + aj and 6. = 6.

The selection of the shrinkage parameter is crucial because if the shrinkage
parameter is changed, the estimate will be also changed. In Yuan and Chan
(2008), the shrinkage parameter was taken to be a constant, determined by only
N and p. This means that the shrinkage parameter was not chosen based on
the data. However, it is possible that the prediction could be improved by
basing the shrinkage parameter on the data itself. Furthermore, it does not
always guarantee that the estimator is proper solution by fixed a. Therefore,
we attempt to select the shrinkage parameter based on the predictive Kullback-
Leibler (KL) discrepancy (Kullback and Leibler (1951)). The basic idea is to
measure the goodness of fit of the model by the risk function assessed by the
predictive KL discrepancy. In the present paper, our objective is to select the
appropriate value of ¢ by minimizing the risk function. However, we cannot
directly use the risk function to select a because the risk function includes
unknown parameters. Hence, instead of the risk function itself, we use its
estimator.

Akaike’s information criterion (AIC) (Akaike (1973)) is an estimator of the
risk function assessed by the predictive KL information (for the AIC for SEM,
see, e.g., Cudeck and Brown (1983), Akaike (1987), Ichikawa and Konishi
(1999), Yanagihara (2005)). The objective of the present study may be
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achieved by minimizing the AIC rather than the risk function. In general, the
AIC is defined by adding the bias to the risk function, i.e., the number of
independent parameters divided by n, to the KL discrepancy function with an
estimated parameter, which is referred to as a sample discrepancy function.
However, the bias term of the AIC is obtained under the situation that the
discrepancy function for estimating @ is the same as that for evaluating the
model fit. In the present paper, the discrepancy function for estimating € is

F(S,,%9) = F(S,%9) +atr(Z,") —log|S,| +log|S|,

and that for evaluating the model is F(S,2). Since the two functions are
different, we cannot use the bias term of the ordinary AIC. Therefore, we
must revaluate the bias using the same approach as the generalized informa-
tion criterion (GIC) proposed by Konishi and Kitagawa (1996). Hence, we
denote the proposed information criterion as GIC(a). We define GIC(a) by
adding an estimator of the revaluated bias to the sample discrepancy function
F(S,%;). Then, the best a is chosen by minimizing GIC(a).

The remainder of the present paper is organized as follows: In Section 2,
we obtain GIC(a) from a stochastic expansion of 6,. In Section 3, we verify
the performance of our criteria using the Monte Carlo method. In Section 4,
we present conclusions and discussions. The proof of the theorem presented
herein is provided in the Appendix.

2. GIC for selecting the shrinkage parameter

In order to select the best a, we consider the risk function between the true
model and the candidate model. Let #(X) be an expected ML discrepancy
function defined by

Z(X) = E[F(S, 2)]
=tr(ZoX ") — E[log|S|] + log|Z| — p.

In this paper, E denotes the expectation under the true model M, in (2) with
respect to §. We measure the discrepancy between the candidate model M in
(1) and the true model M, in (2) by the predictive KL discrepancy function.
Then, we define the risk function assessed by the predictive ML discrepancy in
(3) as

R=E[2(5,)]

a

We regard the shrinkage parameter a having the smallest R as the principle
best model. Obtaining an unbiased estimator of R will allow us to correctly
evaluate the discrepancy between the data and the model, which will further
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facilitate the selection of the best shrinkage parameter. A rough estimator of
R is the sample ML discrepancy function F(S,2; ). However, since F(S, 2} )
has a bias, the information criterion can be defined as F(S,2; ) + B, where B
is an estimator of the bias given as

B =R E[F(S,X;)]. (©)
Henceforth, in order to derive B, we calculate a limiting value of B.
Let
Ay = a vec(Zyp) (7)
0 — 60/ 0),
and
82
Gy =———FX I, ~ 8
0”* 60601 ( 0+a )22) 0) 0:0[1*7 ( )
where
62
—— F(X 1, %
soag ' Fotaln o)

=24y(Z5" (Zo +aly) X5 @ Xy Ay — 4y(X5" ® X' )4y

q
=) {2, (Zo+al, — Zp) Xy Loylese].
ij
Here, e; is a g-dimensional vector, the ith element of which is 1, with all others
being 0, and Xj; = 0°Xy/30,00;,. Since 0, is the minimizer of
F(Xo+al, 2y), Gg, is a nonsingular matrix. Using the above notation,
we have the following theorem for the bias.

THEOREM 1. Suppose that a set of standard regularity conditions, as given
in Browne (1984) or Yuan and Bentler (1997), is satisfied. Then, the bias of
E[F(S,2; )] is expanded as

2
B=" tr{dy, G, Ay (Z5' 202, @ X' 20X, )+ 0(n?). (9)
The proof of this theorem, which is derived by modifying the results presented
in Yanagihara, Himeno, and Yuan (2010), is given in the Appendix. 3
By replacing 0., 0., and Xy by neglecting O(n~2) in (9) with 8,, 8,, and

S, respectively, an estimator of B is given by

D 2 —1 4/ —1 —1 —1 —1
B = ; tr{AéﬂGéu Aéa<zéa Széa ®Eéﬂ Szé” )}
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Thus, the information criterion for selecting a (GIC(a)) is defined by
GIC(a) = F(S, 24 ) + B.

Let A be a set A={a|a>0 and @, gives a proper solution}. Then, the
best a is chosen by minimizing GIC(a), i.e.,
a = arg min GIC(a).
acA

When the candidate model is correctly specified, Xy, = 2,. Then, the
bias becomes simple, as in the following corollary.

COROLLARY 1. If the candidate model is correctly specified, the bias of
E[F(S,2; )] is expanded as

2
B = ﬁq + 0(11_2).

This corollary indicates that the bias does not depend on a by neglecting the
O(n™2) term when the candidate model is correctly specified. Hence, the best
a is the value that minimizes F(S,2;) in 4.

3. Monte Carlo results

In this section, we compare the risk functions of estimated X' obtained
from the following methods.

* Method 1 (new method): We estimate ' by X , where 4 is selected by

minimizing GIC(a).

e Method 2 (Yuan and Chan’s (YC) method): We estimate 2 by X 6y

e Method 3 (ordinary ML method): We estimate 2° by 2.
Actually, since —E[log|S|] — p in the expected ML discrepancy does not
depend on the result of a selection of a, we evaluated the following expect-
ations:
Rnew :E[$<E§d)] + «, RYC :E[Q(Eé

p/N

)]+ o Ry = E[Z(Z))] + «,

where o = E[log|S|] + p. In the simulation, we used the confirmatory factor
model, which is included in the LISREL model, as the true model M, i.e., the
true covariance matrix is Xy = AodioA(’) + ¥, where A, is the true factor
loading matrix, @ is the true correlation matrix, and ¥ is the true covariance
matrix of the measurement errors. In this simulation, we defined ¥, =
I, — diag(Ao®PyA;)). As the true model, we used the two models specified
by the following parameters:
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b s 1.0 .30
Case 1: A(): 05 b y ¢0:<‘30 1.0),
0s b
b 05 05 1.0 .30 .40
Case 2: A(): 05 b 05 s ¢O: 30 1.0 .30 s
0s 0s b 40 30 1.0

where b = (.70,.70,.75,.80,.80)" and 0, is a ¢-dimensional vector of zeros.
The candidate model used in the simulation was also the confirmatory factor
model, i.e., the covariance matrix Xy = ADPA’' + ¥, where ¥ = diag(y,. ..,
¥,). In the case 1, we used the confirmatory three-factor model as the
candidate model. On the other hand, the confirmatory two-factor model
was used as the candidate model in the case 2. Hence, 4 and @ in the
candidate models were

/11 05 05 1.0 ¢12 ¢13
Case 1: A=|0s 4 05|, D=\ ¢, 10 ¢y [,
05 0s A3 $13 ¢z 1.0
A Os
. . o 1.0 ¢12
Case 2. A=]|0s5 2 |, b= .
#, 1.0
05 A3

It is easy to see that the candidate model in the case 1 is overspecified, and that
in the case 2 is underspecified. In order to obtain smaller sample sizes, we
chose N =30, 50, and 100. The number of replications is 1000.

In order to calculate Rpew, Ryc, and Ry, we first obtained an estimator
of @ for each method using R ver. 2.12.1. We then counted the frequencies
when the estimate of @ is the proper solution (i.e., an estimator of X is
positive define). Next, we recorded the value of #(Z) for each method, where
2 is an estimated X for each method. After the replication was finished,
we obtained the arithmetic mean of #(X) for each method. If all of the
estimators are proper solutions, then the arithmetic mean is regarded as a target
risk function.

From Table 1, when N = 30 in the case 1, the R, was obtained, but
Ryc and Ry were not obtained because there were several improper solutions
for a=p/N and 0. When N =50 and 100 in the case 1, since there were
no improper solutions, we could obtain all risk functions. Then, Ry, was
the smallest. On the other hand, in the case 2, R,.w and Ryc were obtained,

but Ryp was not obtained. Then, R, was smaller than Ryc. Hence, the
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Table 1. Frequencies of the proper solutions and the risk functions for each method

Frequency Risk
Case N New YC ML New YC ML
30 1000 996 987 16.8295 — —
1 50 1000 1000 1000 15.9808 15.9858 16.0088
100 1000 1000 1000 15.5024 15.5044 15.5067
30 1000 1000 972 19.2521 19.3887 —
2 50 1000 1000 987 16.1748 16.2869 —
100 1000 1000 990 14.1732 14.2618 —

proposed information criterion works well in the sense that the prediction
accuracy of an estimated covariance matrix is improved.

4. Conclusion and discussion

In the present paper, we proposed a GIC for selecting the shrinkage
parameter, which is used to obtain the estimator for SEM with a near singular
covariance matrix. In order to derive the GIC, we revaluated the bias of the
risk function. Then, GIC(a) was obtained by adding the estimator of the
revaluated bias to the sample discrepancy function. We have observed that
when the candidate model is correctly specified, the bias does not depend on «
when the O(n=2?) term is neglected, i.e., the bias term is equivalent to that of
the AIC. This means that the best a is the value that minimizes F(S, 2} )
under the condition that 6, gives a proper solution. In the Monte Carlo
results, an estimate of 8, was always a proper solution, and the risk function of
the estimated covariance matrix based on 6, with the selected ¢ was the
smallest.

In this paper, we assumed that data has normality. If we do not assume
normality to data, a kurtosis will appear in the bias to the risk function.
Hence, an estimator of kurtosis will be required to estimate the bias.
Unfortunately, Yanagihara (2007) reported that such an estimator gives a
poor value unless the sample is huge. When the sample size is large enough, a
sample covariance matrix will not become a near singular matrix in most
cases. A near singular sample covariance matrix occurs frequently under the
small or moderate sample sizes. This is almost the same as a well-known fact
that a multicollinearity frequently occur under the small or moderate sample.
In practice, we confirmed such results through many simulation experiments.
Hence, it is suitable to assume not the large sample case but the small or
moderate sample case under a near singular sample covariance matrix. There-
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fore, at present, we judge that it is necessary to deal with the case of nonnormal
when a sample covariance matrix is a near singular matrix.

Appendix

The derivation of the risk function and the proof of Theorem 1 are
presented in this appendix. First, we derive the risk function. In this paper,
we measure the discrepancy between the candidate model M in (1) and the true
model M, in (2) by the following discrepancy function:

f(Win, %) K
J log WﬂW!n,EO)dW =3

By omitting the terms that do not depend on a, we have

{£(%5,) = Z(20)}-

| 7w, 25) 1 20w = (2,

Hence, we define the risk function as R in Section 2.
Next, we prove Theorem 1. The bias of F(S, 2} ), defined in (6), can be
written as

B=E[Z(Z;) - F(S,25)] = E[tr{Z;(Zo - 8)}]. (A1)

Since Xy — S = 0, (nil/ 2) and E[S] = X, by applying the Taylor expansion to
tr{Eofl(Eo —8)} at 8, = 0., we derive

Eftr{Z; ' (Zo — $)}] = Eldp. (0, — 0.)] + O(n?),

where 6, is given by (4), and

dy, {Z,(Zo - 8)}

g 0-0.

The remainder term of the above expectation is O(n~2) because 6, can be
expressed as a function of ¥ = n'/?(§ — X)) which has an asymptotic normality
and general cumulants of elements of ¥ may be expanded as a power series
in n=! (see e.g., Hall, 1992, p. 46). Indeed, an n % term of the stochastic
expansion of tr{E(il(Eo — )} can be expressed as the third-order polynomial
of elements of V. Since V has an asymptotic normality, an expectation of the
odd-order polynomial of element V becomes O(n~'/?). Consequently, the
expectation of the n~3/? term of the stochastic expansion becomes not O(n3/?)
but O(n~?). Let Iy =(Z,' ®X,"). From this expression, we obtain

dg, = vec{Z, (8§ — Z0) 2, 1 4g, = ec’(V)Ty.dg.. (A2)

1
%V
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Since 6, is the minimizer of F(S,,ZXy), OF (84, 29)/00]y_g =0, is satisfied.
Then, under a set of standard regularity conditions, the following equation is
derived.

1

0, =4, Vec{Egl(Zé — 20— alp)Egl} - TA(; Iy vec(V).
a a a a n a a
Hence, we obtain
- _ 1
A5 vee{ 2y (X — Zo —alp) Xy} = %Agaréa vec(V). (A3)

Note that n'/2(8, — 6,.) = O,(1) and that both sides of (A3) are functions
of @,, where 0, is given by (5). Applying the Taylor expansion to (A3) at
0, =0, and comparing the O,(n"!) term on both sides of the resulting
equation, we obtain

X 1 _
6,0, = %Ggaizt;,wrgm vec(V) + 0,(n7"),

where 4y and Gy are given by (7) and (8), respectively. Note that
E[vec(V) vec' (V)] = nE[vec(S — X) vec'(S — Zp)]
= nCov[vec(S)]
= (L2 + K,)(Z0 ® X)),

where K, is the commutation matrix (see Magnus and Neudecker (1999),
p. 48). Therefore,

B = Eldy, (8, — 02.)] + O(n"?)
1
= ([0, 40.G; 45 Ty, (L2 + K,)(Z0 @ Zo)} + 00n2). (A4)

Consequently, by using the equations K,(4 ® C) = (C ® A)K, and K, vec(C)
=vec(C’) (see Magnus and Neudecker (1999), p. 47), the equation (9) in
Theorem 1 is derived.
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Comparison with Residual-Sum-of-Squares-Based Model Se-
lection Criteria for Selecting Growth Functions

Keisuke Fukui!, Mariko Yamamura!, Hirokazu Yanagihara'*

Abstract: A growth curve model used for analyzing growth is characterized by a mathematical function with
respect to time, called a growth function. As the results of analysis from a growth curve model
strongly depend on the growth function used for the analysis, the selection of growth functions is
important. A choice of growth function based on the minimization of a model selection criterion is
one of the major selection methods. In this paper, we compare the performances of growth-function
selection methods using these criteria (e.g., Mallows’ Cp criterion) through Monte Carlo simulations.
As a result, we recommend the use of a method employing the Bayesian information criterion for the
selection of growth functions.

Keywords:  growth curve model, growth-function-selection, model selection criterion, residual sum of squares

1. Introduction

A growth curve model used for analyzing growth is specified by a mathematical function, called
the growth function. A number of growth functions may be used for analysis; therefore, growth-
function-selection (GF-selection) is important because the results of analysis from a growth curve
model vary according to the growth function used. Naturally, a growth function with high prediction
performance is regarded as a better growth function. Hence, during GF-selection, the best model
should be chosen to improve prediction accuracy.

Choosing growth functions based on the minimization of a model selection criterion (MSC) is one
of the major selection methods. An MSC consists of two terms; a goodness-of-fit term and a penalty
term based on the complexity of the model. Particularly, an MSC whose goodness-of-fit term is the
residual sum of squares (RSS) is called an RSS-based MSC in this paper. An RSS-based MSC is
often used to select the best model in many fields. Because several RSS-based MSC approaches
can be used to estimate the risk function assessing the standardized mean square error (MSE) of
the prediction, we can expect that the accuracy of a growth prediction will be improved in the
sense of making the MSE small by minimizing an RSS-based MSC. However, numerous RSS-based
MSC approaches, e.g., Mallows’ Cp criterion (Mallows, 1973), are available, and the chosen growth
function will depend upon the MSC employed for GF-selection. Hence, the purpose of this study is
to compare the performances of GF-selection methods using RSS-based MSC through Monte Carlo
simulations.

The remainder of this paper is organized as follows. In Section 2, we introduce the growth curve
model and the growth functions used. In Section 3, we describe the RSS-based MSC approaches
considered for GF-selection. In Section 4, we compare the GF-selection methods considered through
numerical experiments and discuss the results.

2. Growth Curve Model
2.1 True and Candidate Models

Let y(t;) be the extent of growth at a time ¢; (i = 1,...,n), where n is the sample size. Suppose
that y(t;) is generated from the following true model:

1] y(ti) = pa(ti) + ex(ts),

where p,(t;) is the true expected value of y(t;), and e.(t1),...,e«(t,) are mutually independent
true error variables derived from the same distribution with a mean 0 and variance o2. As . (t)
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expresses the average value of the true growth, p.(t) is denoted by the growth function. However,
the true model is unknown. Hence, the following candidate model is assumed for y(¢;):

2] y(t:) = p(ts) + (i),

where p(t;) is the expected value of y(t;) under the candidate model, and e(t1), . . ., £(¢,) are mutually
independent error variables derived from the same distribution with a mean 0 and variance 0. Here,
u(t;) is denoted as the candidate growth function. In practice, we must prepare a specific function
with respect to t, whose shape is determined by unknown parameters, as the candidate growth
function.

Let p(t; 0,,) denote the candidate growth function, where 8,, represents a ¢(u)-dimensional vector.
Note that ¢(u) denotes the number of unknown parameters of a candidate growth function pu. To
use the growth curve model, 8, must be estimated from growth data. In this paper, 8, is obtained
by least squares (LS) estimation. Let the RSS be denoted by

B RSSO0 = {ylt) — ulti0,))
=1

Then, the LS estimator of 6, is derived by minimizing RSS(6,,; 1) as

[4] 0, = arg r%in RSS(0,.; ).

Using éu, a growth curve can be estimated by pu(t; BAM)
2.2 Selection of Growth Functions

Numerous growth functions have been proposed in the literature. In this paper, we consider the
following twelve candidate growth functions that were described in Zeide (1993).

(1) Bertalanffy: p(t;0) = a(1 — e 543 (0 = (a, B)').

(2) Chapman-Richards: us(t;8) = a(1 — e~ P)7 (6 = (a, 8,7)’).

(3) Gompertz: ps(t;0) = aexp(—Be™ ) (6 = (a, 8,7)").

(4) Hossfeld-4: pa(t:0) = a(1+Bt=7)71 (8 = (o, 5,7)").

(5) Korf: ps(t;0) = aexp(—=Bt=7) (0 = (a, 3,7)").

(6) Levakovic-3: ug(t;0) = a(1+ Bt=2)~7 (8 = (o, B,7)").

(7) Logistic: p7(t;0) = a1+ Be= )1 (6 = (v, 8,7)").

(8) Monomolecular: us(t; ) = a(1 — Be= ) (6 = (a, B,7)).

(9) Weibull: o(t;0) = (1 — e P1") (6 = (a, B,7)').
(10) Levakovic-1: p1o(t;0) = a(1 + Bt=7)7% (0 = (a, 8,7,6)").
(11) Sloboda : 11 (t;0) = avexp(—Be~ ") (8 = (v, B,7,0)).
(12) Yoshida-1: p12(t;0) = (14 Bt77) "1+ 46 (6 = (o, B,7,9)).

In the above list, ¢ denotes the time, and all parameters are restricted to positive values. The
candidate growth functions have been listed in the order of increasing number of unknown param-
eters, i.e., the function p; includes two parameters, the functions s to pg include three and the
functions p1g to w12 include four.

Although an estimate of a growth curve can be obtained by the LS estimation, the choice of
growth function most suited to the obtain growth data is important. In this paper, we select the best
growth function by the RSS-based MSC minimization method. Let MSCgrgss(u) denote a general
form of a RSS-based MSC. The best growth function is then determined according to

[5] L= arg min MSCRrss(1)-

pe{p1,..,pu12}
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2.3. Underspecified and Overspecified Models

An evaluation of the growth function equations given above indicate that several growth functions
are equivalent under certain conditions (e.g., Chapman-Richards with v = 3 corresponds perfectly
to Bertalanffy). In model selection, these relationships sometimes play key roles because several
MSC approaches are derived under the assumption that a candidate model includes the true model.
We define the following two specific candidate models.

e An overspecified model: a growth function of a candidate model includes that of the true model,
i.e., the true growth function can be expressed as a special case of the growth function of the
overspecified model. In general, the true model is the overspecified model. However, in this
paper, we rule out the true model from the definition of an overspecified model.

e An underspecified model: the model is neither the overspecified model nor the true model.

In practice, there is no overspecified model in most cases. An overspecified model does not exist
except under the following three cases:

(i) When the true growth function is Bertalanffy, the candidate model whose growth function is
Chapman-Richards is the overspecified model.

(ii) When the true growth function is Gompertz, the candidate model whose growth function is
Sloboda is the overspecified model.

(iii) When the true growth function are Hossfeld-4 or Levakovic-3, the candidate model whose
growth function is Levakovic-1 is the overspecified model.

3. RSS-based Model Selection Criteria

In this section, we describe explicit forms of the RSS-based MSC approaches used in this work
for GF-selection.

When the penalty for the complexity of a model is imposed additively, an estimator of o2 is
required for the use an RSS-based MSC. In the general regression model, an estimator of o2 in
the full model is typically employed. A full model is the model that includes all candidate models.
For example, if we consider growth functions (1)-(12) as candidate models, the full model includes
all growth functions (1)-(12). However, constructing the full model in the growth curve model is
difficult because there is no candidate model that includes all candidate models. Hence, we use the
following estimator of o2 derived from a local linear fitting, which was proposed by Gasser, Sroka
and Jennen-Steinmetz (1986),

n—1
1 Z (aiyi—1 + biyit1 — yi)?
n—2 a?+b?—1

o o=

)

=
where coefficients a; and b; are given by

tiv1 — t; ti —ti_
[7] a; = 1+1 ) , = ) 1—1 )
tiv1 —ti—1 tiv1 —ti—1

The representation 67 has a desirable property as an estimator of o2, e.g., 67 converges to o2 as
n — oo in probability if 1. () is twice continuously differentiable, limsup,,_, . max;—o  n—1[t; —

ti—1] < oo and Ele.(t;)*] < occ.
3.1. Mallows’ C), Criterion

Using 2¢(p) as the penalty term, Mallows’ C), criterion is defined as

B Gl = T )
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The 2¢g(p) was derived as the bias of RSS(éM; w)/63% to the risk function assessing the standardized
MSE of prediction under the assumption that the candidate model considered is not an underspec-
ified model. Hence, there is a possibility that the €}, may not correctly evaluate the complexity of
an underspecified model.

3.2. Modified C},, Criterion

The weakness of the C), criterion may be overcome using the generalized degree of freedom
(GDF), proposed by Ye (1998) instead of ¢(p). The GDF of the growth curve model was calculated
by Kamo and Yoshimoto (2013) as

[9] df (1) = q(p) + tr { (Iﬂ(é#«) - Ju(éu)>_1 Iu(é#)} )

where Iu(éu) and Ju(éu) are matrices given by

5y L Oulti; 0,) Ou(ti; 6,)
[10] IH(GM) T Z 0, 00’ 7
i=1 s 6,=0,
1 . O u(ti; 0,)
1] Ju(6,) = ;;{ym) 000} =50 Gar, o

In this paper, “a’” denotes the transpose of a vector a. Kamo and Yoshimoto (2013) proposed the
following modified C,, (MC),) expressed by replacing ¢(u) with df (1) in [8] as

RSS(6,; 1)
[12] MCp(p) = &7; + 2df ().

L

The description of the expression as “modified” indicates that the bias of RSS(é#; ©)/63% to the risk
function is corrected even under an underspecified model. A modified C), criterion was originally
proposed by Fujikoshi and Satoh (1997) in the multivariate linear regression model. As the MC,
was derived under the assumption that the candidate model may be an underspecified model, the
MC), may correctly evaluate the complexity of an underspecified model. If the candidate model
considered is an overspecified model, then df (1) converges to ¢(u) as n — oo in probability.

3.3. Bayesian Information Criterion(BIC)-type C, Criterion

The Bayesian information criterion (BIC) proposed by Schwarz (1978) is very well known MSC.
In the BIC, the penalty term is given as “(the number of parameters)x logn”. Using g(u)logn
instead of 2¢(u) in [8], the BIC-type C, (BC,) can be proposed as

13 BC ) = 0O | ) log .

Recall that the purpose of GF-selection employed here is to choose a growth function that improves
the growth-prediction of the selected model. However, a consistency property wherein the selection
probability of the true model by the MSC approaches 1 asymptotically is also an important property
of the model selection. Because BIC has a consistency property, we can expect that BC), has one
too.

3.4. Generalized Cross-Validation Criterion

The generalized cross-validation (GCV) criterion proposed by Craven and Wahba (1979) is one
of the RSS-based MSC approaches. In the GCV criterion, the penalty attributed to the complexity
of a model is imposed not additively but multiplicatively. The GCV based the GDF was proposed
by Ye (1998). The GCV for GF-selection is defined by
4 Gov(p) = —2B80kn

{1 —df(u)/n}
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If 62 does not work well, there are possibilities that C,, M C), and BC,, will possibly become unstable.
However, even if 67 does not work well, the GCV does not become unstable because the GCV in
[14] is defined without an estimator of o2.

4. Numerical Study
4.1. Setting

In this section, we compare the performance of each criterion by conducting numerical exper-
iments with several sample sizes, variances and true growth functions. At first, we prepared the
twelve true growth functions listed as cases 1-12 below.

Case 1: p.(t) is Bertalanffy as p.(t) = 100(1 — e=9-5%)3.

Case 2: p1,(t) is Chapman-Richards as p, () = 100(1 — e~ 9-41)38,
Case 3: t) is Gompertz as pu,(t) = 100 exp(—3e~-3%).
Case 4: ju1,(t) is Hossfeld-4 as p.(t) = 100(1 + 5¢t=1-5)~1
Case 5: 1. (t) is Korf as pu. () = 100 exp(—3t—1).

Case 6: 1. (t) is Levakovic-3 as . (t) = 100(1 + 5¢t=2)~!

Case 8: j1,(t) is Monomolecular as j,(t) = 100(1 — 1.35¢70-25%),
Case 9: 1, (t) is Weibull as 1, (t) = 100(1 — = 0-6t""),

Case 10:

(
e (
e (
e
e
Case 7: s
i (
i (
() is Levakovic-1 as g (t) = 100(1 + 3t=2:3) 2
e (

t) is Sloboda as . (t) = 100 exp(—4e*0~5t0'8),

)

)

)

)

)

)

t) is Logistic as g (t) = 100(1 + 5e~0-4t) =1,

)

)i

)
Case 11: 11,(t)
)

Case 12: 1. (t) is Yoshida-1 as p.(t) = 80(1 + 5t~ 14)=1 4+ 20.

We used t; =2+ 18i/(n — 1) (i =1,...,n) as the time series with n = 30, 50, 100, 300 and 500,
and generated error variables of the true model from N (0,02) with 02 = 1 and 2. The shapes of the
true growth curves are shown in Figures 1 and 2. In this paper, we assessed the performances of
the GF-selection methods according to the following two properties derived from 1,000 repetitions.

e The prediction error (PE) of the best growth function chosen by minimizing the MSC.

e The selection probability (SP) of the true growth function chosen by minimizing the MSC.

Here, the PE is defined by

n+3n/10

5] PE=L S L) - i0n)

j=n+1

where t; = 24185 /(n —1). Note that the PE is a more important property because the aim of our
study is to select a growth function that improves the growth prediction of the selection model.
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4.2. Results

Tables 1 and 2 list the PEs of the best growth functions when o2 = 1 and 2, respectively.
Additionally Tables 3 and 4 list the SPs of the true growth functions when o2 = 1 and 2, respectively.
The number in the first column labeled “case” indicates that growth function used as the true growth
function. For example, a number 1 in the first column indicates that simulation data were generated
from the true growth function of case 1, i.e., Bertalanffy. Furthermore, the addition of an asterisk *
denotes that the case is the overspecified model. In the tables, bold fonts indicate the smallest PEs
of the best growth functions, and the highest SPs of the true growth functions (although the PEs
are rounded at the second decimal place, the smallest value is based on the original values).

From the tables, we obtained the following results:

o When the number of parameters of the true growth function was not large, i.e., cases 1 to 9, BC),
was the high-performance MSC in most cases. Particularly, when the sample size was not small,
the SPs of the true growth function by BC), were always the highest among all MSC approaches.
The differences between the SPs were large in cases where an overspecified model existed, i.e.,
cases 1, 3, 4 and 6. This is because BC), has a consistency property and C,, MC), and GCV do
not, i.e., the SPs of BC), asymptotically converge to 1 although those of C,, MC}, and GCV do
not for cases 1, 3, 4 and 6.

e When the number of parameters of the true growth function was large, i.e., cases 10 to 12, BC),
was not the high-performance MSC. This is because the penalty term of BC), was too large in
cases 10 to 12. In general, BC, tends to choose a model having a smaller number of known
parameters than the true model. Conversely, C),, MC),, and GCV tend to choose a model having
a larger number of known parameters than the true model. In cases 10 to 12, none of the models
had a larger number of known parameters than the true model. Hence, the SPs of C),, M C), and
GCV tended to be higher than those of BC),. Although the PEs of the best models chosen by Cp,
MC, and GCV tended to be smaller than those chosen by BC,, the differences were not large.

Based upon the simulation results, using a selection method employing BC, is recommended for
selecting growth functions.
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Table 1. The prediction error under each case when o2 = 1.

case| n | C, MC, BC, GCV|case| n | C, MC, BC, GCV
1* (30 |1.13 1.14 1.11 1.14 7 130132 134 1.26 1.33
50 | 1.09 1.09 1.06 1.09 50 | 1.21 1.21 1.15 1.21

100 1.04 1.04 1.02 1.04 100| 1.10 1.10 1.06 1.10

300| 1.01 1.01 1.01 1.01 300| 1.02 1.02 1.02 1.02

500| 1.01 1.01 1.00 1.01 500| 1.01 f1.01 1.01 1.02

2 30 | 142 1.43 1.42 1.43 8 30 | 1.3 1.56 1.52 1.55
50 | 1.23 1.23 1.23 1.23 50 | 1.34 1.34 1.30 1.33

100| 1.09 1.09 1.08 1.09 100| 1.15 1.15 1.12 1.15

300( 1.02 1.02 1.02 1.02 300| 1.04 1.04 1.03 1.04

500( 1.01 1.03 1.01 1.02 500| 1.02 1.03 1.01 1.03

3" [ 30 | 1.53 1.3 1.41 1.54 9 30 |1.40 1.45 1.40 1.45
50 | 1.33 1.33 1.22 1.34 50 |1.29 1.31 1.29 1.31

100 1.18 1.18 1.11 1.17 100 1.15 1.17 1.15 1.16

300( 1.06 1.06 1.03 1.05 300 1.05 1.06 1.05 1.05

500| 1.02 1.02 1.01 1.03 500| 1.03 1.03 1.02 1.03

4* 130 (149 149 149 1.48| 10 | 30 |1.22 1.25 1.23 1.25
50 | 1.29 1.27 1.29 1.28 50 |1.15 1.17 1.16 1.17

100 1.13 1.13 1.13 1.12 100|1.07 1.08 1.09 1.08

300 1.03 1.03 1.02 1.03 300(1.02 1.02 1.03 1.02

500( 1.02 1.02 1.01 1.02 500| 1.14 1.14 1.16 1.13

5 30 | 1.36 1.36 1.36 1.36 | 11 | 30 |1.94 2.01 1.94 2.03
50 [ 1.21 1.21 1.22 1.21 50 |1.68 1.71 1.70 1.71

100 1.09 1.09 1.09 1.10 100{1.42 145 1.52 145

300 1.03 1.03 1.02 1.03 300(1.26 1.30 1.35 1.30

500( 1.01 1.02 1.01 1.02 500(1.04 1.04 1.05 1.05

6* |30 (131 131 1.31 1.31 | 12 | 30 | 1.60 1.58 1.60 1.58
50 | 1.17 1.16 1.16 1.16 50 | 1.43 1.43 1.44 1.43

100 1.06 1.06 1.06 1.06 100 1.27 1.26 1.30 1.26

300 1.02 1.02 1.02 1.02 300(1.12 1.12 1.24 1.12

500| 1.01 1.01 1.01 1.01 500(1.02 1.02 1.02 1.02
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Table 2. The prediction error under each case when o2 =

case| n | C, MC, BC, GCV|case| n | C, MC, BC, GCV
1 | 30 | 2.53 2.57 2.43 2.57 7 1301320 324 3.09 3.25
50 | 2.39 240 2.27 2.40 50 | 2.85 2.87 2.67 2.87

100} 2.16 2.17 2.11 2.17 100 | 248 249 2.31 2.49

3001 2.06 2.06 2.03 2.06 300| 2.13 2.13 2.08 2.13

500 | 2.03 2.06 2.02 2.06 500 | 2.06 2.06 2.04 2.07

2 30 13.47 3.55 3.51 357 | 8 30 | 4.12 4.26 4.03 4.30
50 12.91 295 295 2.95 50 [3.49 3.61 3.49 3.59

100| 2.50 2.52 2.50 2.52 100 | 2.81 2.83 2.76 2.84

300 2.14 214 2.12 2.14 300 2.22 222 2.16 2.21

500 | 2.06 2.12 2.04 2.11 5001 2.11 2.12 2.08 2.12

3* 30383 392 3.79 395| 9 |30 |3.18 3.22 3.18 3.24
50 [ 3.00 3.10 2.88 3.09 50 [ 2.80 2.84 280 2.84

100 | 2.52 2.3 2.34 2.54 100 |2.43 2.48 243 248

300 2.23 2.23 2.12 2.23 300(2.18 2.21 218 2.21

500 2.11 2.14 2.06 2.15 500|2.12 214 2.13 2.14

4* 1 30 | 3.53 3.49 3.55 3.50 | 10 | 30 [2.76 2.78 292 2.79
50 1 2.99 296 298 2.96 50 |2.46 2.47 2.51 247

100 | 2.56 2.55 2.55 2.55 100 | 2.25 2.27 2.26 2.27

300 2.18 2.18 2.18 2.18 300(2.09 2.11 211 2.11

500| 2.10 2.10 2.11 2.10 500 | 2.38 2.38 2.72 2.36

5 30 | 3.58 3.52 3.59 3.53 | 11 | 30 {4.36 4.56 4.44 4.60
50 | 2.95 2.92 295 2.92 50 | 3.57 3.69 3.62 3.71

100 | 2,51 2.51 2.51 2.1 1002.95 3.03 3.02 3.03
300213 213 2.13 2.13 300|2.53 2.56 2.57 2.56

500 | 2.08 2.08 2.07 2.08 500( 2.10 2.13 2.10 2.12

6* | 30 | 3.12 3.05 3.14 3.04| 12 | 30 | 3.59 3.51 3.59 3.53
50 | 2.69 2.68 2.70 2.67 50 | 3.06 3.04 3.07 3.04

100} 2.34 2.34 2.33 2.34 100 | 2.66 2.65 2.67 2.66

300 2.10 2.10 2.11 2.10 3001| 2.33 2.31 234 2.31

500 | 2.05 2.05 2.05 2.05 500| 2.08 2.08 2.09 2.08

10
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Table 3. The selection probability under each case when o2 = 1.

case| n | C, MC, BC, GCV|case| n | C, MC, BC, GCV
1* [ 30 |71.9 71.8 85.5 T71.1 7 |30 |80.8 79.7 89.0 79.4
50 |72.7 72.1 90.9 73.3 50 | 85.5 85.0 93.8 85.2
100 | 74.8 747 93.8 74.9 100 | 89.6 89.3 97.6 89.5
300|81.0 80.7 97.9 80.6 300(93.1 93.0 99.5 92.7
500 | 82.8 83.0 98.9 64.7 500| 89.3 89.2 99.3 77.6
2 |30 |74.1 741 788 742 | 8 |30 |76.1 753 77.9 757
50 |79.2 79.3 85.3 80.3 50 | 80.8 80.3 83.6 80.7
100 | 88.7 89.3 95.1 89.2 100 | 88.2 88.2 90.1 88.2
300193.8 94.0 98.8 93.8 300(97.1 96.8 97.9 96.8
500(97.2 96.5 98.9 95.1 500 98.8 98.3 99.3 98.2
3* |30 631 632 74.2 638 | 9 |30 (259 18.0 26.0 17.9
50 [67.0 67.0 80.9 66.8 50 | 28.2 21.3 28.5 21.1
100|73.8 73.6 89.6 73.6 100 | 38.2 32.0 38.8 32.0
300 |77.0 77.0 96.1 T77.5 300 | 52.8 50.2 58.6 49.9
500 | 88.6 88.3 98.5 81.2 500 | 60.8 60.3 67.0 55.9
4* 1 30 |57.3 552 57.7 555 | 10 |30 | 23 4.0 0.2 5.6
50 [ 70.3 67.3 70.9 67.7 50 |12.7 121 1.6 11.7
100|80.0 75.7 83.6 76.0 100 | 38.6 36.2 7.2 36.4
300 |81.2 75.6 98.6 75.5 300 77.5 773 557 T7.1
500 |87.2 77.2 98.9 68.4 500 | 49.3 50.1 46.7 50.4
5 30 |85.3 b55.7 87.5 56.1 | 11 | 30| 1.2 1.2 05 1.2
50 [87.9 56.9 90.5 57.2 50 | 4.6 4.8 1.0 4.5
100 | 89.1 55.4 95.7 549 100129 132 29 134
300 |87.4 52.8 98.4 524 300 24.9 253 15.2 25.6
500(95.8 79.4 99.6 77.1 500| 61.1 61.6 38.0 64.4
6" | 30 |54.8 54.1 55.4 545 | 12 |30 | 1.5 4.9 0.0 3.3
50 |63.7 63.1 65.6 63.0 50 | 36 6.5 0.1 53
100|714 70.3 77.4 70.8 100|128 17.5 0.3 17.1
300(83.5 819 90.4 R82.1 300(53.8 52.3 11.8 52.0
500|88.3 88.1 95.2 82.3 500 | 8.7 10.8 2.8 16.7
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Table 4. The selection probability under each case when 2 = 2.

case| n | ¢, MC, BC, GCV|case| n | C, MC, BC, GCV
1" 130 | 629 61.6 79.1 62.1 7 |30 |65.8 64.2 75.0 64.7
50 | 65.2 64.0 85.5 65.1 50 | 724 71.1 83.0 70.5

100 69.1 68.1 91.1 68.2 100| 76.2 75.3 91.6 76.4

300| 75.7 75.1 95.8 753 300| 87.6 87.0 98.0 87.3

500| 79.2 78.6 98.4 732 500| 86.5 86.4 98.8 82.3

2 30 146.2 455 449 46.2 | 8 30 | 48.5 46.0 48.7 45.7
50 | 56.7 56.1 56.9 56.2 50 | 54.3 529 54.6 53.0
100|699 69.5 73.6 69.9 100 | 66.0 64.8 67.1 65.3

300| 84.6 84.6 93.8 849 300| 83.3 83.3 86.6 83.4

500 | 90.6 88.3 98.5 86.8 500 89.7 89.1 93.5 884

3* 30509 50.7 57.8 51.1| 9 |30(109 76 10.9 7.6
50 | 54.2 53.7 66.1 53.5 50 | 14.6 8.2 14.8 8.0

100| 61.2 61.2 76.4 61.3 100 19.9 129 20.0 129

300 72.2 723 90.0 72.1 300| 35.2 28.8 35.5 28.8

500 | 84.4 83.0 95.2 79.1 5001| 42.5 399 42.8 39.5

4* 130|298 277 304 279 | 10 | 30| 1.0 7.7 0.5 7.4
50 | 37.5 35.0 38.1 35.0 50| 1.8 7.3 06 7.4

100 | 47.5 45.1 48.4 45.1 100 5.2 10.1 0.9 10.0

300 74.2 71.0 75.0 71.5 300(22.5 200 1.1 19.6

500 | 83.6 72.7 86.3 70.0 500| 35.0 37.0 13.0 38.1

5 30 | 69.6 40.3 T71.1 402 | 11 | 30 | 0.1 0.2 0.1 0.3
50 | 71.7 456 73.2 45.6 50| 0.0 0.1 00 0.1

100 | 78.2 479 80.9 479 100 0.1 0.3 0.0 0.3

300 86.6 54.1 93.7 54.3 300 5.8 5.8 0.3 5.6

500 91.5 75.1 97.7 T4.5 500| 17.9 183 0.6 24.1

6* | 30 | 283 284 284 285| 12 |30 | 0.5 2.3 0.0 2.1
50 | 37.5 373 37.6 37.6 50 | 0.7 3.1 0.0 3.0

100 | 47.0 45.9 47.1 45.7 100 1.1 43 0.0 4.0

3001 65.9 64.3 68.7 64.4 300 5.8 10.3 0.0 9.4

500 | 74.1 73.3 78.7 708 5001 2.6 6.7 03 7.7
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