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TWO-POINT HOMOGENEOUS QUANDLES WITH
CARDINALITY OF PRIME POWER

KOSHIRO WADA

ABSTRACT. The main result of this paper classifies two-point homogeneous
quandles with cardinality of prime power. More precisely, such quandles are
isomorphic to Alexander quandles defined by primitive roots over finite fields.
This result classifies all two-point homogeneous finite quandles, by combining
with the recent result of Vendramin.

1. INTRODUCTION

Quandles were introduced to study knots by Joyce ([7]). Let X be a set, and
assume that there exists a map s : X — Map(X, X) : x — s,. Here Map(X, X)
denotes the set of all maps from X to X. Then a pair (X, s) is called a quandle if
s satisfies the conditions corresponding to Reidemeister moves of classical knots
(see Definition 2.1). In knot theory, quandles provide a complete algebraic frame-
work, and provide several invariants of knots (see [2, 4] and references therein).
Among others, Carter, Jelsovsky, Kamada, Langford and Saito ([3]) gave strong
invariants, called quandle cocycle invariants, defined by quandle cocycles. They
apply it to prove the non-invertibility of the 2-twist spun trefoil by using a 3-
cocycle of the dihedral quandle R3 with cardinality 3. In [9], Mochizuki gave a
systematic method for calculating some quandle cocycles of dihedral quandles. In
addition, Nosaka ([10]) applied the method of Mochizuki, and provided quandle
cocycles of some Alexander quandles. However, in general, calculation of quandle
cocycles is difficult, even in the case of low cardinality. Therefore, it is of impor-
tance to study special classes of quandles, whose quandle structures are helpful
to induce algebraic properties of quandle cohomologies.

From this point of view, we study two-point homogeneous quandles and quan-
dles of cyclic type. A quandle (X,s) with #X > 3 is said to be two-point
homogeneous if for any (x1,x2), (y1,y2) € X x X satisfying z1 # xo and y; # ys,
there exists an inner automorphism f of (X, s) such that (f(z1), f(z2)) = (y1,¥2).
On the other hand, a quandle (X, s) with finite cardinality n > 3 is said to be
of cyclic type if s, are cyclic permutations of order n — 1 for any x € X. These
quandles have been studied in [5, 6, 8, 11, 12, 13]. In particular, all two-point
homogeneous quandles with prime cardinality were classified in [12]. In addition,
[12] proved that all quandles of cyclic type are two-point homogeneous, and gave
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the following conjecture. Note that this conjecture is true when the cardinalities
are prime numbers ([12]).

Conjecture 1.1. All two-point homogeneous quandles with finite cardinality are
of cyclic type.

Recently, Vendramin ([13]) proved that the cardinalities of two-point homoge-
neous quandles must be prime power.

In this paper, we classify two-point homogeneous quandles (X, s) with cardi-
nality of prime power. A key of the proof is that (X, s) are simple crossed sets
(Proposition 3.7). By using a classification of simple crossed sets with cardinality
of prime power in [1], we have the following.

Main theorem (Theorem 4.3). Let ¢ be a prime power and X be a quandle

with cardinality q. Then the following conditions are mutually equivalent:

(1) (X, s) is two-point homogeneous,

(2) (X, s) is isomorphic to the Alexander quandle (F,, w), where w is a primitive
root over the finite field I,

(3) (X, s) is of cyclic type.

This result is an extension of the result of [12]. Moreover, by applying the result
of Vendramin ([13]), we obtain a classification of all two-point homogeneous finite
quandles (Corollary 4.5). In particular, Corollary 4.5 shows that Conjecture 1.1
is true.

This paper is organized as follows. In Section 2, we recall some notions of
quandles. In Section 3, some properties of two-point homogeneous quandles and
quandles of cyclic type are summarized. In Section 4, we prove the main result.

2. PRELIMINARIES FOR QUANDLES
In this section we recall some notions on quandles.

Definition 2.1. Let X be a set, and assume that there exists a map s : X —
Map(X, X) :  — s,. Then a pair (X, s) is called a quandle if s satisfies the
following conditions:

(S1) Vx € X, s.(x) =z,

(S2) Vx € X, s, is bijective, and

(S3) Va,y € X, 5,05, = S5,y © 54

We denote by #X the cardinality of X.

Example 2.2. The following (X, s) are quandles:

(1) Let X be any set and s, := idy for every x € X. Then the pair (X, s) is
called the trivial quandle.
(2) Let X :={1,...,n} and s;(j) := 2¢ — j (mod n) for any i,j € X. Then the
pair (X s) is called the dihedral quandle with cardinality n.
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(3) Let ¢ be a prime power and F, be the finite field of order ¢. If w € F,
(w # 0,1), then the pair (F,,w) with the following operator is called the
Alexander quandle of order g:

(2.1) S2(y) == wy + (1 —w)x.

Definition 2.3. Let (X, s¥) and (Y, sY) be quandles, and f : X — Y be a map.

(1) f is called a homomorphism if for every x € X, fosX = 3}/@) o f holds.
(2) [ is called an isomorphism if f is a bijective homomorphism.

An isomorphism from a quandle (X, s) onto itself is called an automorphism.
The set of automorphisms of (X, s) forms a group, which is called the automor-
phism group and denoted by Aut(X,s).

Note that s, (x € X) is an automorphism of (X, s). The subgroup of Aut(X, s)
generated by {s, | z € X} is called the inner automorphism group of (X, s) and
denoted by Inn(X,s). A quandle (X, s) is said to be connected if Inn(X, s) acts
on (X, s) transitively. Let Inn(X, s), be the stabilizer subgroup of Inn(X,s) at
reX.

Definition 2.4. A quandle (X, s) is called a crossed set if s,(y) = y whenever
sy(x) = .

Definition 2.5. Let (X, s%) and (Y, sY) be finite quandles. A surjective homo-
morphism f : X — Y is called trivial if #Y is equal to either #X or 1.

Definition 2.6. A quandle (X s) is simple if it is not a trivial quandle and any
surjective homomorphism f : X — Y is trivial.

On classification of simple crossed sets with cardinality of prime power, An-
druskiewitsch and Grana ([1]) give the following theorem.

Theorem 2.7 (Corollary 3.10 in [1]). Let p be a prime number and |l € N. If a
quandle (X, s) with cardinality p' is a simple crossed set, then (X, s) isomorphic
to an Alexander quandle (F,,w), where w generates F over F).

Recall that w € F is said to generate Fy if {1,w,...,w'™'} is a basis of F
over [,

3. TWO-POINT HOMOGENEOUS QUANDLES AND QUANDLES OF CYCLIC TYPE

In this section, we recall the definitions and some properties of two-point ho-
mogeneous quandles and quandles of cyclic type, which are given in [12].

Definition 3.1. A finite quandle (X, s) with #X = n > 3 is said to be of cyclic
type if for every x € X, s, acts on X —{x} as a cyclic permutation of order n — 1.

This notion is closely related to the notion of two-point homogeneous quandles.
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Definition 3.2. A quandle (X, s) with #X > 3 is said to be two-point homoge-
neous if for any (x1,xs), (y1,y2) € X x X satisfying x; # xo and y; # yo, there
exists f € Inn(X, s) such that (f(xy), f(z2)) = (Y1, y2).

Note that quandles of cyclic type have finite cardinalities. On the other hand,
two-point homogeneous quandles are not necessarily finite.

Proposition 3.3 ([12]). Every quandle of cyclic type is two-point homogeneous.

The following are characterizations of quandles of cyclic type and two-point
homogeneous quandles.

Proposition 3.4 ([12]). Let (X, s) be a finite quandle with #X > 3. Then the
following conditions are equivalent:

(1) (X,s) is of cyclic type,
(2) (X, s) is connected, and there exists x € X such that s, acts on X — {x} as
a cyclic permutation of order #X — 1.

Proposition 3.5 ([12]). Let (X, s) be a quandle with #X > 3. Then the follow-

ing conditions are equivalent:

(1) (X, s) is two-point homogeneous,

(2) for every x € X, the action of Inn(X,s), on X — {z} is transitive,

(3) (X, s) is connected, and there exists x € X such that the action of Inn(X, s),
on X — {x} is transitive.

The following lemma will be used to prove that every two-point homogeneous
finite quandles is a simple crossed set.

Lemma 3.6. Let (X,s%) and (Y,sY) be quandles, and f : X — Y be a homo-
morphism. Then for any g € Inn(X, sX), there exists h € Inn(Y, sY) satisfying
(3.1) fog=hof.
Proof. The inner automorphism g can be written as

k

(3.2) 9=

i=1
for some x; € X, ¢; € Z. By the assumption on f, we have

(3.3) fo(s) = (sfw)of
for any € € Z. It follows that

(3.4) h = (H@}Qm)%‘) e Inn(Y, s¥)

satisfies the required condition. O

This lemma gives the following proposition for two-point homogeneous quan-
dles.
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Proposition 3.7. Every two-point homogeneous quandle with finite cardinality
1s a simple crossed set.

Proof. Let (X,s) be a two-point homogeneous quandle with finite cardinality.
We prove that (X, s) is crossed. Suppose that

(3.5) so(y) =y (z,y € X).
It is enough to consider the case x # y. By the definition of two-point homoge-
neous quandles, there exists f € Inn(X, s) such that

(3.6) f(x) =y, fly) ==
Hence one has
(3.7) sy(7) = 85wy 0 f(y) = fos.(y) = fly) = =

Next, we prove that (X, s) is simple. Take any quandle (Y, s’) and any surjec-
tive homomorphism f : X — Y. Assume that f is not injective, and we prove
#Y = 1. By the assumption, there exist z,y € X (x # y) with f(z) = f(y).
Take any z € X — {x,y}. Then there exists ¢ € Inn(X, s) satisfying

(3.8) 9(y) = 2, g(z) = .
Lemma 3.6 yields that there exists h € Inn(Y s’) satisfying
(3.9) fog=holf.

Hence we have
(3.10) f(z)=fogly)=ho fly)=ho f(z)=fog(x) = f(z).
This shows #f(X) = 1. Since f is surjective, we have #Y = 1. O

4. MAIN THEOREM

Let ¢ > 3 be a prime power. In this section, we classify two-point homoge-
neous quandles with cardinality q. We also show that all two-point homogeneous
quandles with cardinality ¢ are of cyclic type. Note that two-point homogeneous
quandles with prime cardinality are already classified in [12]. The main theorem
is an extension of the result of [12].

4.1. The inner automorphism group of (F,,w). In this subsection, we de-
termine the inner automorphism group of the Alexander quandle (F,, w) of order
q with w € F, —{0,1}. Recall that the map s : F, — Map(F,,F,) is given by
assigning
Sp:Fy=>F,ry—wy+ (1 —w)x
to each x € F,.
For each = € IF;, we define a map v, as follows:
(4.1) Yy  Fy—=Fpry—y+uo.
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Proposition 4.1. The inner automorphism group of (F,,w) satisfies
(4.2) Inn(F,,w) = {(s.)" |2 €F,k € Z} U {b, | y € F,}.

Proof. Let us denote by G the right side of (4.2). First of all, we prove G C
Inn(F,,w). It is clear that (s,)* € Inn(F,,w) for any k € Z and x € F,. Hence
we have only to prove ¢, € Inn(F,,w) for each x € F,. Note that there exists
the inverse (1 —w)~!. For z,y € F,, one has
(Sm(l—w)*1)<50>q_2(y) = Sm(l—w)*l(wq_2y)

=wily+r(l —w)(l—w)™!

= + x

This shows ¢, = (54(1-w)-1)(50)?"? € Inn(F,, w), and hence G C Inn(F,, w).
Next, we prove G D Inn(F,,w). Since G contains generators {s, | = € F,} of
Inn(F,,w), it is enough to prove that G is a group. For any a,b € Z, we show

(4.4 (50)%(50)", (52"t Gy (52)° € G
Case (1): We show (s,)%(s,)’ € G. For any z € F,, we have
(*Sx)a(sy)b(z) = <5m)a(wbz +(1- Wb)y)
(4.5) ='Wz + (1 —w)y) + (1 —w)z
= w2 (1 — Wy + (1 — w?).

(4.3)

Let o := (1 — w’)wy + (1 — w*)z.
Subcase (1)-i: We consider the case of 1 —w®*® = 0. By (4.5), we have

(4.6) (52)"(8,)"(2) = 2 + @ = 1u(2)

for any z € F,. This yields that (s,)%(s,)" = ¥, € G.
Subcase (1)-ii: We deal with the case of 1 —w*® = 0. In this case, there exists
the inverse (1 — w®™®)~1. Therefore (4.5) yields

(50)(50)"(2) = V2 + (1 = ) (1 =) o

(4.7) (),

= (8(1_wa+b)71a>
This yields (s,)%(sy)" = (Sq_watty-14) "™ € G.

Case (2): We show (s;)*), € G. Let z € F,.
Subcase (2)-i: If 1 — w® = 0, then one has

(4.8) (5)%(2) = w24+ (1 —w")zx = 2.
This yields
(4.9) (s2)"y, =, € G.
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Subcase (2)-ii: Suppose that 1 —w® # 0. Note that there exists the inverse
(1 —w*)~t. For any z € F,, we have

(82)"Yy(2) =w*(z+y)+ (1 —w)z
(4.10) =w2+ (1 —w)(1—w) Wy + (1 —w)r
= (8(1,wa)—1way+z)a(z).

ThlS yle].ds (Sx)awy = (S(lfwa)flway+m>a c G
Case (3): We show 9,(s,)* € G. For any z € F,, we have

(4.11) Yy(s3)"(2) = w2+ (1 —w")x + .
By considering two cases as in Case (2), we have 1, (s,)* € G. O

Let us concern the stabilizer subgroup of Inn(F,,w) at 0,
(4.12) Inn(Fy, w)o :={f € Inn(F,,w) | f(0) =0}.
Corollary 4.2. The group Inn(F,, w)y is generated by sq.
Proof. Since sy € Inn(F,, w)o, we have
(4.13) Inn(Fy, w)o D (so).

Hence, we have only to prove
(4.14) Inn(Fy, w)o C (so).

Take any ¢g € Inn(F,,w)o. In view of Proposition 4.1, we have only to consider
the following two cases.

Case (1): We deal with the case g = (s,)* for x € F, and a € Z . Since
(sz)*(0) = 0, one has

(4.15) 0= (5,)%0) = (1 — w")a.

Since F, is a field, one has 1 —w® =0 or = 0. If 1 —w® = 0, then (s,)*(y) =
(1 —w*)x + wy yields

(4.16) g = (s2)* =1d € (s0).

If x =0, then we have

(4.17) g = (50)" € (s0).
Case (2): We deal with the case g = 1),. Since 1,(0) = 0, we clear have z = 0
and ¢, = id € Inn(FF,,w),. Therefore (4.14) holds. O
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4.2. Proof of the main theorem. In this subsection, we prove the main the-
orem. Let ¢ be a prime power and F, be a finite field of order q. Recall that
w € F, is called a primitive root modulo q if (w) := {1, w,...,w??} =F, — {0}.

Theorem 4.3. Let g be a prime power and X be a quandle with cardinality q.

Then the following conditions are mutually equivalent:

(1) (X, s) is two-point homogeneous,

(2) (X, s) is isomorphic to the Alexzander quandle (F,,w), where w is a primitive
root over the finite field F,,

(3) (X, s) is of cyclic type.

Proof. First of all, we deal with (1) = (2). By Proposition 3.7, X is simple and
crossed. Thus, by Theorem 2.7, there exists w € F, satisfying (X,s) = (F,, w).
It is enough to show that w is a primitive root modulo ¢q. Note that (F,, w) is
two-point homogeneous. Hence, by Proposition 3.5, Inn(F,, w)y acts on F, — {0}
transitively. Thus Corollary 4.2 yields

(4.18) Fy — {0} = Inn(Fy, w)o - {1} = (s0) - {1} = (w).
Hence w is a primitive root modulo gq.

Next, we prove (2) = (3). Note that (F,,w) is connected from Proposition 4.1.
Hence it is enough to prove that s is a cyclic permutation of order ¢ — 1 from
Proposition 3.4. One knows (s¢)'(z) = w' for any x € F,— {0} and ¢t € Z. Since
w is a primitive root, we have

(4.19) (so) {1} ={l,w,w? ..., w2} =F, — {0}.

This means that sg is a cyclic permutation of order g — 1.
The implication (3) = (1) follows from Proposition 3.3. O

This theorem yields the existence of two-point homogeneous quandles with
cardinality of prime power.

Corollary 4.4. For any prime power q > 3, there exists a quandle of cyclic type,
and hence a two-point homogeneous quandle, with cardinality q.

In addition, by combining the result of [13] with Theorem 4.3, we obtain the
following corollary.

Corollary 4.5. All two-point homogeneous quandles with finite cardinality are
isomorphic to Alexander quandles defined by primitive roots over finite fields. In
particular, they are of cyclic type.
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WAL 2028 ) I F R —RITIFFN STV, &2 IREZ TR % &A%
5. 2Nz ThNS.

M 2.4 VBlp+1D2MEEA Y PLIZKEAEA Y FLTHE. 2Ty ldEHRE
T5.

AEA 2 € X CInn(X,*) IR L, (xx) 12K 2 X — {a} DWESEZIT &,
X —{a} =[] {x2) - wi
i=1

Elb. koTm=1%ZRrEiIELw.

FTfeG ITRNLT, fo(xx)=(xx)o fDBRILT 2. Ko THKWE (xx) -y, & f € G,
DT f((k2) - ) = (x2) - f(gs) LB, RG22 25 Gy 1 X — {o} ICHBK
EHT 2070, FWER G, ICX>TE Y GUILEDNMEIZET KT 2. ko T
FUCBAL T #(X — {z}) = m#((xx) - y1) = p DIRALT 5. —D#fE 2 A > Fovicnt
L& sx BEEGHRELOBOIEDPHONT VSO, 21 XD v £id &% D,
L((x) 1) £ 1B D, 4 p BERADTINLDZ Edbm=1Ek5. O

NS DMEISROIMENEZ NS,
M 2CD28EEHY RILIFKEIFEIHN?
Z ORI 2] LB THREBEROBAICMIREINTVE. 205462 ST Y FL



FRATHEL, 2 TKRME L2 (HEHOMMUT LV 73 v 5 —h v PV TEENIZE 2
513).

3 XEEHY RILOSE

CDETIE, KRB v FOLOGHEEH &M ED 12 F TORHEBEEZHENT 5.
A, Zfifin OREEA Y FLVORBBEOESLE TS, S, 2 n XRNHHE, £72 5 2
(2,...,n) €S, %5 n—1X&ENERH L T 5. ROFEMEZT n— 1 ZKEEH s DE
&%z D, LS.
1. 5(2) =2
2. {sMs1s™ |m=1,2,..,n—2} ={sP'ss;™" | m=1,2,....n— 2}
3. slEn—1RKMEWTH 5.

£ 3.1. (Tamaru)
A, & Dy i F—X—I2H iR 5.

7D, o RIBT 2KMEE A v R ZEHEICHEKT 22 £ TE 5.
PR A > FVvD D, \Z Xk 3 08E%252 5.

n D,

3 {(1,3)}

4 {(1,4,3)}

5 {(1,3,5,4),(1,4,3,5)}

6 0

7 {(1,7,4,6,5,3),(1,7,5,4,6,3)}

8 {(1,5,8,3,7,6,4),(1,7,5,4,8,3,6)}

9 {(1,4,3,8,6,9,5,7),(1,5,7,3,6,4,9,8)}

10 0

111 {(1,3,6,8,4,11,5,10,9,7),(1,4,3,7,10,5,11,9,6,8),
(1,6,8,5,3,9,4,7,11,10), (1,7,5,4,9,3,10,6,8,11)}

12 0

WD EE»S T IT5 LI, 206 DB G MR, ZoRICE
WTlEn = 3,4 D88 %ZKRWT, HOEX W &2 2K MR A > FVIZEEEL R\ I &3

D. Joyce, A classification invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982)
3

]
7-65. ,

] H. Tamaru, Two-point homogeneous quandles with prime cardinally, preprint.

| R. Fenn, C. Rourke, Racks and links in codimention two, J. Knot Theory Ramifications, 10 (1992)
43-406.

w



[4] S. Kamada, K. Oshiro, Homology groups of symmetric quandles and cocycle invariants of links
and surface-links, Amer. Math. Soc. 362 (2010), 5501-5527.

[5] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, M. Saito, Quandle cohomology and state-
sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc., 355 (2003), no. 10,
3947-3989.



