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CHAPTER 1 
 

General Introduction 
 

 

 

Parasitology is the science that deals with one of the several different kinds of 

symbiotic relationships including the parasitism (Bush et al. 2001).  Organism 

involves in parasitism are called parasite and the host (Rohde, 1993).  Bush et al. 

(2001) picked the definition of parasites according to the Oxford English Dictionary 

as the organism, which lives in or upon another organism and draw it nutrient directly 

from it. While, host is an organism that harbors a parasite, or a mutual or commensal 

symbiont, typically providing nourishment and shelter (Rohde, 1993). To define 

parasitism, one has to emphasize the damage parasites inflicted on hosts, the 

metabolic dependence of parasites on hosts, and ecological interactions between 

populations of these two species of living organisms (Bush et al. 2001).   

Ecology has been defined as the study of interactions between organisms and 

their environments and among the organisms inhabiting these environments (Sobecka, 

2012). This is a complex field of study, which is why it should be investigated on 

various levels. In the ecology of parasites, the niche which is the entirety of the 

parasite-host relationship and fragmentation, is of fundamental importance (Combes, 

1995). 

Parasite lives at the expense of the host, but it is also dependent on its host in 

many other aspects. Parasite may impose many impacts to the host. The nutritional, 

habitat, and dispersal exploitation of a parasite may lower the fitness of the host. They 

also have the ability to modify host behavior that may lead to their castration (Levri, 

1998). Based on the way of invasion to a host, parasite can be classified into several 

categories. Endoparasite is the parasite confined within the body of the host while 

ectoparasite is typically restricted to the exterior part of the host’s body (Sobecka, 

2012). Mesoparasites are the in between group, with some part of the parasite buried 

into the host tissue, and some part is exposed to the outdoor world (Kearn, 2010).  All 

parasitic nematodes and the majority of flatworms are endoparasites, while the 

majority of arthropods are ectoparasites.  
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 Copepoda is a relatively a small group of arthropod with currently more than 

11500 valid species worldwide (Boxshall & Hallsey, 2004). Half of known species of 

copepods developed symbiotic relationship with other organism (Huys & Boxshall, 

1991) including as parasite. Boxshall (2005) recognized four major groups of 

copepods which involve in parasitism, namely Monstrilloida, Siphonostomatoida, 

Cyclopoida and Harpacticoida. Large amounts of the Siphonostomatoida involving 30 

families are parasites of fishes.  Copepod from Family Pennellidae Burmeister, 1835 

and Caligidae are the common parasites on fishes (Boxshall, 2005). 

Family Pennellidae contains 20 genera (Boxshall & Halsey 2004), most of 

which are known as mesoparasites (Kabata 1979). Pennellids have been described 

from non-commercial, deep-sea fishes (Shiino 1958; Izawa 1970, 1977; Boxshall 

1986, 1989) coastal and shallow waters fishes (Nagasawa & Uyeno, 2010) and 

recently several species are reported to infect captive-kept fishes in cage-culture 

(Fukuda, 1999; Nagasawa et al. 2011; Maran et al. 2012; Ismail et al. 2013) and 

commercial aquarium (Okawachi et al. 2012). Only several species are well studied, 

such as Lernaeocera branchialis (Linnaeus, 1767), due to its severe impact to the 

aquaculture industry (Sproston, 1942, Kabata, 1962; Kabata, 1979; Pilcher et al. 1989; 

Brooker et al. 2007; Brooker et al. 2013; Khan et al. 1990).  

In comparison, parasitic copepod from Family Caligidae is the most the most 

studied parasitic copepods due to its severe impact on economic losses to finfish 

aquaculture, particularly of salmonids (Boxshall & Defaye, 2006; Pike & 

Wadsworth,1999). Caligids copepod are very speciose family comprising 34 genera 

and more than 450 species (Ho & Lin, 2004; Boxshall & Halsey, 2004; Boxshall & 

Justine, 2005; Boxshall, 2008). In Japan, 6 caligid species were recognized as pests in 

finfish aquaculture (Ho & Lin, 2004, Ohtsuka et al. 2009; Maran et al. 2011).  

In this present study, chapter 2 and 3 are detailing the research of P. 

minuticaudae particularly about the life cycle and ecology. However, instead in 

detailing the research for site-specificity in chapter 4 on P. minuticaudae, I choose C. 

fugu as the model animal for some reasons; (1) C. fugu and the hosts (T. niphobles) 

are easily obtainable from the water of Takehara Marine Station, Hiroshima 

University, (2) C. fugu imposed more economic significant in comparison to P. 

minuticaudae due to the heavy infection on Takifugu rubripes (3) the full genome 

information of the host, Takifugu rubripes is available in genomic database, thus will 

facilitate the screening of the candidate genes. Molecular approach and methodology 
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demanding high financial funding, thus the economic importance of C. fugu justifying 

the investment for the research.   

 

Purpose of this study:  

 

In this study, I aim to understand the fundamental of parasitism by exploring 

the life cycle, ecological aspect and site specificity mechanism of parasitic copepod. 

The study involving two parasitic copepods from the Order Siphonostomatoida, 

Peniculus minuticaudae (Pennellidae) and Caligus fugu (Caligidae). This two species 

share one similarity, where at least some part of its life stages are infecting the fins of 

the hosts (Ohtsuka et al. 2009; Maran et al. 2011; Nagasawa et al. 2011; Maran et al. 

2012; Okawachi et al. 2012; Ismail et at. 2013). P. minuticaudae is less studied 

copepod in comparison to C. fugu. Accordingly, I take the opportunity to describe the 

complete life cycle and study the ecological aspect of this species.  

C. fugu is a caligid copepod infecting high value species of puffers in Japan 

(Ohstuka et al. 2009). Due to its economic importance, research on C. fugu is more 

advances. Previous report on C. fugu includes many aspects such as the life cycle and 

development (Ohstuka et al. 2009), ecological (Maran et al. 2011), toxicity (Ikeda et 

al. 2006; Ito et al. 2006 Maran et al. 2007). Ohstuka et al. (2009) revealed that the 

developmental stages of this species show site-specificity to the fins of host, with a 

preference to the pectoral fins. However, host and site specificity of many parasites is 

not yet fully understood by the world scientist (Bron et al. 1993).  Thus, in this study, 

I try to apply molecular techniques in combination to behavioral study to understand 

mechanism underlying the site-specificity of infective stage of C. fugu to the fins of 

puffer.  
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CHAPTER 2 
 

Complete life cycle of a pennellid Peniculus minuticaudae Shiino, 
1956 (Copepoda: Siphonostomatoida) infecting cultured threadsail 

filefish 
 

 

2.1 Introduction  
 

The genus Peniculus von Nordmann, 1832 (Copepoda: Siphonostomatoida: 

Pennellidae) consists of 14 nominal species (Boxshall & Halsey, 2004; Maran et al. 

2012). In Japan, three Peniculus species have so far been recorded: P. minuticaudae 

Shiino, 1956, P. ostraciontis Yamaguti, 1939 and P. truncatus Shiino, 1956 (Shiino, 

1956; Yamaguti, 1939). Peniculus minuticaudae has so far been recorded from fishes 

of two different families: four fish hosts of the family Monacanthidae such as 

threadsail filefish Stephanolepis cirrhifer Temminck and Schlegel, 1850, unicorn 

leatherjacket filefish Aluterus monoceros Linnaeus, 1758, hairfinned leatherjacket 

Paramonacanthus japonicus Tilesius, 1809, black scraper Thamnaconus modestus 

Gunther, 1877 and one host of Chaetodontidae, brown-banded butterflyfish 

Chaetodon modestus Temminck and Schlegel, 1844 (Shiino, 1956; Nagasawa et al. 

2011; Okawachi et al. 2012; Maran et al. 2012). Peniculus ostraciontis parasitized 

two boxfishes such as humpback turretfish Tetrosomus gibbosus Linnaeus, 1758 and 

triangular boxfish T. concatenatus Bloch, 1785 (Ostraciidae) (Yamaguti, 1939; Shiino, 

1956), while P. truncatus was found to infect rockfish Sebastes oblongus Günther 

1877 (Shiino, 1956) and Korean rockfish S. schlegelii Hilgendorf, 1880 (Sebastidae) 

(Maran et al. 2012). 

Shiino (1956) first described the post-metamorphic female of P. minuticaudae 

recovered from wild S. cirrhifer collected from the waters of Shirahama, Wakayama 
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Prefecture, Japan. The post-metamorphic female of P. minuticaudae was recently 

redescribed from Japan (Okawachi et al. 2012) and Korean (Maran et al. 2012) waters. 

Recent reports indicated the extend of the infestation of P. minuticaudae on fishes 

kept in captivity such as in aquaculture facilities (Fukuda et al. 1999; Nagawasa et al. 

2011; Maran et al. 2012) and in a commercial aquarium (Okawachi et al. 2012). 

In general, the life cycle of pennellids is direct or indirect depending on 

species (Perkins, 1983). Some need two hosts, i.e., intermediate and definitive 

(Sproston, 1942; Ho, 1966; Perkins, 1983; Brooker et al. 2007), while some need only 

one host (Schram, 1979). Based on the discovery of different developmental stages 

(copepodid, late chalimus stages, pre-metamorphic adult female and adult male) on a 

host which was kept in an aquarium without any possible secondary host, it was 

suggested that P. minuticaudae could complete its life cycle on a single host 

(Okawachi et al. 2013). In the present study, we found all stages including copepodid, 

chalimi, adults and post-metamorphic females on the fins of cultured S. cirrhifer, 

indicating that P. minuticaudae could complete its life cycle on a single host. We also 

confirmed that the hatching stage of P. minuticaudae is copepodid, which is one of 

the two known types of hatching stage among copepods, naupliar or copepodid 

(Sproston, 1942; Ho, 1966; Schram, 1979; Perkins, 1983; Izawa, 1997; Brooker et al. 

2012). 
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2.2 Materials and Methods 
 
2.2.1 Observation of the first hatching stage 

Ovigerous post-metamorphic adult females of P. minuticaudae (n = 10) were 

collected from the fins of S. cirrhifer captured from the sea cage aquaculture facilities 

of the Fisheries Research Center, Ehime Research Institute of Agriculture, Uwajima, 

Ehime Prefecture, Japan (33°16’92”N, 132°43’94’’E) on 21 November 2011. Egg 

strings were carefully detached from the ovigerous females using fine forceps then 

transferred into vials containing filtrated sterilized seawater before being transported 

to Takehara Marine Science Station, Hiroshima, Japan (34°32’58”N, 132°92’33’’E) 

for incubation. In the laboratory, the egg strings were transferred into Petri dish 

containing fresh filtrated sterilized seawater and incubated (NK system Biotron LH-

200-RDSCT, Tokyo) at a temperature of ca. 22-25°C until hatching. Hatching of 

copepodids was confirmed by direct observation under a dissecting microscope 

Olympus SZX7. All hatching copepodids were immediately preserved in 70% ethanol 

for further study.  

 
2.2.2 Description of developmental stages 

Twenty individuals of S. cirrhifer (fork length range from 15-21 cm) were 

obtained from the Fisheries Research Center on 26 June 2011 and preserved in 10% 

neutralized formalin seawater individually in a plastic bag. They were screened to 

find the infection of copepods especially on the fins. Preserved solution was also 

filtered through a 300µm sieve to find any detached specimens. The collected 

specimens were preserved in 70% ethanol.  

Observation was carried out for descriptions of all stages except adult male 

and post-metamorphic adult female since they are already well described (Shiino, 

1956; Maran et al, 2012; Okawachi et al, 2012). Prior to observation, specimens were 
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cleared in a drop of lactophenol for 30 min, dissected and examined following the 

wooden slide procedure (Humes & Gooding, 1964). Drawing and measurements were 

made with the aid of a drawing tube attached to an Olympus BX50 differential 

interference contrast microscope. Specimens were measured intact using an ocular 

micrometer. Anatomical terminology follows Kabata (1979) and Huys & Boxshall 

(1991) and fish names conform to FishBase (2013). 

2.2.3 Scanning electron microscope (SEM) analysis 

About five to ten specimens of P. minuticaudae were used for the SEM 

microscopy analysis. The copepods were transferred to 70% ethanol and then 

dehydrated through a graded series of ethanol (90%, 99.5% and 100%) and finally by 

isoamyl alcohol. The samples were critical point-dried using CO2 gas and ion-

sputtered for observation with a scanning electron microscope JSM6510-LV (JEOL, 

Tokyo). 

 
2.3 Results 

2.3.1 Hatching of copepodid 

Eight copepodids hatched out from a single egg string after 27 hours of 

incubation and seen directly its movement after hatching. Some other copepodids 

from the same egg string hatched with a layer of membrane which hindered their 

movement and sank to the bottom of the Petri dish. Some of them were not 

completely released from the egg string. The active copepodids were collected and 

preserved in 70% ethanol for description. After three days, the observation for all 

other egg strings was discontinued due to contamination.  

 

2.3.2 Description 

Copepodid (Figure 2.1A-J) 
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Body length (based on 6 individuals hatching from incubated egg string). 

Range: 2.60–3.26 mm; average±standard deviation: 2.87±0.23 mm; (based on 5 

individuals collected from the host): 2.99–3.22 mm; 3.12±0.82 mm.  

Body (Figure 2.1A) oval with dorsal surface highly pigmented from anterior 

part of cephalothorax to caudal rami (pigmentation omitted from illustration). 

Rostrum weakly developed, rounded. Cephalothorax incorporating first pedigerous 

somite, about twice as long as free post-cephalothoracic somites and caudal rami 

combined. Widest about mid-length. Naupliar eyes conspicuous. Second pedigerous 

somite wider than long; third pedigerous somite with anlagen of leg 3 (Figure 2.1K) 

represented by paired, laterally-located papillae, each bearing one short spine; third 

free somite shorter than preceding somite, unarmed; fourth free somite bearing caudal 

rami (Figure 2.1B) armed with single long spinulose seta (seta II) and five short naked 

setae. Inner surface of ramus having hairy row.  

Antennule (Figure 2.1C) indistinctly 2-segmented, proximal segment bearing 

3 setae; terminal segment armed with 13 setae and long aesthetasc. Antenna (Figure 

2.1D, 2A) incompletely 3-segmented; proximal segment large; middle segment broad 

with 2 pointed processes posteriorly; 2 pairs of teeth-like protuberances along inner 

margin; terminal segment claw-like with spinules. Oral cone (Figure 2.1E) located on 

ventromedial line, labrum and labium not fused, arranged as equal halves. Mandible 

(Figure 2.1F) slender, proximal part cylindrical, distal part loosely inserted into mouth 

cone, flat with 10 teeth at tip. Maxillule (Figure 2.1G) indistinctly bilobed, carrying 1 

and 2 distal setae, respectively. Maxilla (Figure 2.1H) 2-segmented; proximal 

segment large, rod-like; distal segment curved, ended with blunt tip with transverse 

striation on posterior part (see Figure 2.2B). Maxilliped absent. Legs 1 (Figure 2.1I) 
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and 2 (Figure 2.1J) with coxa, basis and unisegmented rami. Armature formula of legs 

shown in Table 2.1.  

 Remarks. The copepodid of P. minuticaudae collected from the host P. 

japonicus (Okawachi et al. 2012) is similar to the hatching copepodid of P. 

minuticaudae in our study except for the larger size. Through SEM examination, 

some features of antenna (Figure 2.2A) and maxilla (Figure 2.2B) are given in detail. 

The surface terminal segment of antenna is ornamented with small spinules and along 

the inner margin there are 2 pairs of tooth-like protuberances; the innermost element 

is bifurcated (Figure 2.2A). Among pennellids, only P. minuticaudae shows these 

features, but the antenna of Cardiodectes sp. (Ho, 1966) and Lernaeenicus sprattae 

Sowerby, 1806 (Schram, 1979) are similar to those of chalimi of P. minuticaudae. 

Recently, Brooker et al. (2012) redescribed the copepodid of Lernaeocera branchialis 

Linnaeus, 1767 and reported that, the distal border of the antenna is ornamented with 

blunt processes rather than a spine. Unlike L. branchialis where sexual dimorphism 

can be detected even at copepodid stage through the setal size (finer in female) in the 

caudal ramus (Brooker et al. 2012), no sexual dimorphism can be detected in P. 

minuticaudae. 
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Figure 2.1 Peniculus minuticaudae Shiino, 1956. Copepodid stage: A, habitus, dorsal 
view; B, caudal ramus, dorsal view; C, antennule; D, antenna; E, mouth tube; F, 
mandible; G, maxillule; H, maxilla; I, leg 1, anterior surface; J, leg 2, anterior surface; 
K, leg 3, dorsal view. Scales in mm. 
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Figure 2.2 Scanning electron micrograph of Peniculus minuticaudae Shiino, 1956. A, 
antenna of copepodid stage. Arrows showing the spinules on terminal segment and 
the teeth-like protuberances on the second segment of the antenna; B, maxillae of 
copepodid stage. Arrow showing the transverse striation on posterior part of the 
maxillae. Scales in mm. 

 

First chalimus, female (Figure 2.3A-J) 

Body length (based on 5 individuals collected from S. cirrhifer): 3.13−3.35 

mm; 3.22±1.10 mm. 

Body (Figure 2.3A) slightly larger than that of copepodid. Cephalothorax 

about 1.48 times longer than free post-cephalothoracic somites combined.  Frontal 

filament (Figure 2.3B) bearing single hood extending from cephalothorax, attached to 

fin rays using two short strands. Naupliar eyes present. Second pedigerous somite 

wider than long; third pedigerous somite unarmed; third and fourth free somites 

indistinctly segmented. Anal somite bearing short caudal rami (Figure 2.3C) armed 

with six naked setae of unequal length.  
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Antennule (Figure 2.3D) indistinctly 2-segmented, proximal segment bearing 

3 marginal setae, distal segment having 13 fine setae and aesthetasc.  Antenna (Figure 

2.3E) indistinctly 3-segmented, chelate; proximal segment large; middle segment with 

2 pointed processes inwardly; distal segment claw-like, with single minute seta 

basally. Mandible (Figure 2.3F), maxillule (Figure 2.3G) and maxilla (Figure 2.3H) 

same as in those of copepodid. Mouth cone not developed. Maxilliped absent. Legs 1 

(Figure 2.3I) and 2 (Figure 2.3J) biramous, comprising protopod and both rami armed 

with six naked setae of unequal length. Armature formula of legs is shown in Table 

2.1.  

Remarks. The first chalimus differs from copepodid in the general appearance, 

the body shape, the presence of frontal filament, finer setae on the antennule, the 

structure of legs 1-3 and the absence of plumose setae on the caudal rami.  The legs 1 

and 2 of chalimus stages comprised of protopod, exopod and endopod. Setae on the 

rami become simple. No differentiation between spine and setae is found at this stage. 

In comparison to other pennellids, differences can be seen in the antenna and the 

maxilla. In Cardiodectes sp. the antennary terminal end and the terminal claw of the 

maxilla split into 3 processes (Ho, 1966). 

 

First chalimus, male (Figure 2.3K-L) 

Body length (based on 4 individuals collected from S. cirrhifer): 3.15−3.36 

mm; 3.27±0.90 mm. 

All features similar to those of female. Maxilliped (Figure 2.3L) projected as 

anlagen just behind maxilla. Remarks. The maxilliped anlagen of the first chalimus 

represent the first appearance of sexual dimorphism in P. minuticaudae. Such first 



  16

appearance of sexual dimorphism is also found in another pennellid of the first 

chalimus male of Cardiodectes medusaeus Wilson, 1908 [24]. 

 

Figure 2.3 Peniculus minuticaudae Shiino, 1956. First chalimus stage, A, female, 
habitus, dorsal view; B, frontal filament; C, caudal ramus, dorsal view; D, antennule; 
E, antenna; F, mandible; G, maxillule; H, maxilla; I, leg 1, anterior surface; J, leg 2, 
anterior surface; K, male, habitus, dorsal view; L, anlagen of maxilliped. Scales in 
mm. 
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Second chalimus, female (Figure 2.4A-K) 

Body length (based on 3 individuals collected from S. cirrhifer): 3.23−3.73 

mm; 3.48±0.26 mm.  

Body (Figure 2.4A) with elongated cephalothorax and 4 free somites. 

Cephalothorax about 1.41 times longer than free post-cephalothoracic somites 

combined. Frontal filament (Figure 2.4B) longer than in preceding stage; 2 remnants 

present at tip of frontal filament. Naupliar eyes present. Second pedigerous somites 

wider than long. Fourth pedigerous somite bearing anlagen of leg 4 ventrolaterally. 

Anal somite wider than long, bearing caudal rami (Figure 2.4C) with 6 naked setae of 

unequal length.  

Antennule (Figure 2.4D) indistinctly 2-segmented; proximal segment bearing 

7 marginal setae; distal segment with 13 setae and aesthetasc. Antenna (Figure 2.4E) 

indistinctly 3-segmented, chelate; proximal segment broad; middle segment with 2 

pointed processes inwardly; distal segment claw-like, with single minute seta at base. 

Mandible (Figure 2.4F), maxillule (Figure 2.4G) and maxilla (Figure 2.4H) similar to 

those of preceding stage. Maxilliped absent. Legs 1 (Figure 2.4I) and 2 (Figure 2.4J) 

biramous, comprising protopod with unisegmented rami.  Leg 3 (Figure 2.4K) 

uniramous with 2 setae at tip.  Armature of legs are given in Table 2.1.  

 Remarks. The second chalimus differs from the preceding stage in the frontal 

filament and the setation on legs. The frontal filament is quite prominent and more 

elongated in comparison to that of first chalimus female and two remnants are visible. 

In leg 1, one additional seta is seen on the posterior margin of protopod. In leg 2, one 

seta is added to both the exopod and the endopod.  The characteristic features of leg 

segmentation and setation are similar to those of L. branchialis (Sproston, 1942) and 

L. sprattae (Schram, 1979). Leg 3 is represented by a single ramus equipped with 2 
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simple setae terminally and leg 4 by an anlagen on the fourth thoracic somite. In 

comparison, leg 3 of the second chalimus of Cardiodectes sp. bears 6 setae and the 

rudimentary protuberance of leg 4 is specific to the female only (Ho, 1966). 

 

Second chalimus male (Figure 2.4L-M) 

Body length (based on 4 individuals collected from S. cirrhifer): 3.28−3.8 

mm; 3.45 ± 0.24 mm. 

 Body (Figure 2.4L) similar to that of female.  Cephalothorax about 1.39 times 

longer than free post-cephalothoracic somites combined. Other features similar to 

those of female except for presence of maxilliped (Figure 2.4M). Maxilliped 2-

segmented; proximal segment large and stout; distal segment tapering distally into 

blunt claw.  

 Remarks. Generally the body and appendages are similar to those of the 

female except on the presence of the maxilliped and the anal somite, which is slightly 

longer than female.  
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Figure 2.4 Peniculus minuticaudae Shiino, 1956 Second chalimus stage. A, female, 
habitus, dorsal view; B, frontal filament; C, caudal ramus, dorsal view; D, antennule; 
E, antenna; F, mandible; G, maxillule; H, maxilla; I, leg 1, anterior surface; J, leg 2, 
anterior surface; K, leg 3, anterior surface; L, male, habitus, dorsal view; M, 
maxilliped. Scales in mm. 
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Third chalimus, female (Figure 2.5A-L)  

Body length (based on 5 individuals collected from S. cirrhifer): 4.41−4.47 

mm; 4.44±0.28mm.  

 Body (Figure 2.5A) slender with cephalothorax about 1.5 times longer than 

free post-cephalothoracic somites combined, widest at mid-length. Frontal filament 

(Figure 2.5B) with 3 remnants. Fourth free somite representing genital somite. Anal 

somite bearing caudal rami (Figure 2.5C) with 6 setae of unequal length. 

Antennule (Figure 2.5D) indistinctly 2-segmented; proximal segment bearing 

15 setae on anterior margin; distal segment with 13 setae and aesthetasc. Antenna 

(Figure 2.5E), mandible (Figure 2.5F) and maxillule (Figure 2.5G), maxilla (Figure 

2.5H) as in preceding stage. Legs 1 (Figure 2.5I) and 2 (Figure 2.5J) biramous, 

comprising protopod with unisegmented rami.  Legs 3 (Figure 2.5K) and 4 (Figure 

2.5L), uniramous, 2-segmented. All legs armed with naked setae. Armature of legs 

given in Table 1.  

Remarks: Third chalimus stage has one additional free somite in comparison 

to second chalimus stage. Other differences are additional remnants on frontal 

filament, setation of antennule, development of third and fourth legs and also the 

setation of all legs.  

 

Third chalimus, male (Figure 2.5M-N) 

Body length (based on 4 individuals collected from S. cirrhifer): 3.89−3.94 

mm; 3.92±0.32 mm.  

 Body (Figure 2.5M) stubbier with cephalothorax about 1.51 times longer than 

free post-cephalothoracic somites combined.  Genital somite wider than long. All 

other features similar to those of female except for presence of maxilliped. Maxilliped 
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(Figure 2.5N) 2-segmented; proximal segment robust, unarmed; terminal segment 

tapering distally into blunt claw.  

 Remarks: Sexual dimorphism can be seen by general body appearance which 

is more stubbier than female; the presence of maxilliped and the size of genital somite 

which is shorter and wider in comparison to those of female.  

 

Fourth  chalimus, female (Figure 2.6A-L) 

Body length (based on 4 individuals collected from S. cirrhifer): 4.14−4.51 

mm; 4.35±0.16 mm.  

Body (Figure 2.6A) with more distinct body segmentation. Cephalothorax 

about 1.5 times longer than free post-cephalothoracic somites combined. Frontal 

filament (Figure 2.6B) with 4 remnants. Nauplius eyes conspicuous. Caudal rami 

(Figure 2.6C) same as in preceding stage. 

Antennule (Figure 2.6D) indistinctly 2-segmented, proximal segment bearing 

18 setae, distal segment bearing 13 setae and aesthetasc. Antenna (Figure 2.6E) as in 

preceding stage. Mandible (Figure 2.6F), maxillule (Figure 2.6G) and maxilla (Figure 

2.6H) as in preceding stage. Legs 1 (Figure 2.6I) and 2 (Figure 2.6J) biramous, each 

composed of protopod and 1-segmented rami. Legs 3 (Figure 2.6K) and 4 (Figure 

2.6L) uniramous, 2-segmented. Armature of legs given in Table 1.  

Remarks: This stage is easily distinguished from the preceding stage by: 

almost all appendages have characteristics close to the adult form; the four remnants 

on the frontal filament are clearly visible; the antennule is still indistinctly segmented 

but the segmentation is more visible compared to the previous stages; all legs have the 

equal number of elements in adults. The exopod and endopod are elongated with setae 

protruded from some indentation points, which in adults are separated into 2 segments. 
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Fourth chalimus female in the present study showed similarity to the late chalimus 

female described by Okawachi et al. (2012) except for the setation on legs 1 and 2 and 

the teeth count on mandible.  

 

Fourth chalimus, male (Figure 2.6M-N) 

Body length (based on 2 individuals collected from S. cirrhifer):  4.13–4.5 

mm; 4.31±1.60 mm.  

 Body (Figure 2.6M) shorter than that of female. Cephalothorax longer than 

wide, about 1.5 times longer than free post-cephalothoracic somites combined. 

Appendages similar to those of female except for presence of maxilliped. Maxilliped 

(Figure 2.6N) 2-segmented; proximal segment robust, unarmed; terminal segment 

tapering distally into pointed claw having single element midway. 

 Remarks: General body length is shorter than female. The strong maxilliped of 

male represents the distinct sexual dimorphism. The body segmentation and 

maxilliped’s form showed similarity to the maxilliped of late chalimus male described 

by Okawachi et al. (2012). However, the legs 1 and 2 setation between the fourth 

chalimus male of the present study is different from the late chalimus male described 

by Okawachi et al. (2012). 
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Figure 2.5 Peniculus minuticaudae Shiino, 1956. Third chalimus stage. A, female, 
habitus, dorsal view; B, frontal filament; C, caudal ramus, dorsal view; D, antennule; 
E, antenna; F, mandible; G, maxillule; H, maxilla; I, leg 1, anterior surface; J, leg 2, 
anterior surface; K, leg 3, anterior surface; L, leg 4, anterior surface; M, male, habitus, 
dorsal view; N, maxilliped. Scales in mm. 
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Figure 2.6 Peniculus minuticaudae Shiino, 1956. Fourth chalimus stage. A, female, 
habitus, dorsal view; B, frontal filament; C, caudal ramus, dorsal view; D, antennule; 
E, antenna; F, mandible; G, maxillule; H, maxilla; I, leg 1, anterior surface; J, leg 2, 
anterior surface; K, leg 3, anterior; L, leg 4, anterior surface; M, male, habitus, dorsal 
view; N, maxilliped. Scales in mm. 
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Pre-metamorphic adult female (Figure 2.7A-L) 

Body length (based on 6 individuals collected from S. cirrhifer): 5.60–6.60 

mm; 5.90±0.40 mm.  

 Body (Figure 2.7A) slender with distinct 5 post-cephalothoracic somites. 

Cephalothorax with large, conical rostrum, longer than wide, about 1.5 times longer 

than free post-cephalothoracic somites combined. Temporary frontal filament with 

five remnants (Figure 2.7B). Nauplius eyes conspicuous. Genital complex long, with 

transverse striation. Abdomen short, wider than long; carrying caudal rami with 6 

setae of unequal length (Figure 2.7C).  

Antennule (Figure 2.7D) 4-segmented, with armature formula of 9, 6, 8, 13+ae. 

Antenna (Figure 2.7E) 2-segmented, chelate; proximal segment robust, bearing 2 

pointed processes on inner margin; terminal segment claw-like with minute seta at 

base. Oral cone well developed, located at midventral surface of cephalothorax. 

Mandible (Figure 2.7F) rod-like with 10 teeth and pointed tip. Maxillule (Figure 

2.7G) bilobed with 1 and 2 setae at tip, respectively. Maxilla (Figure 2.7H) 2-

segmented; proximal segment with single process anteriorly; distal segment with 

transverse striation and 2 rows of fine setulose ornamentations. Legs 1 (Figure 2.7I) 

and 2 (Figure 2.7J) with coxa, basis, and 2-segmented rami. Legs 3 (Figure 2.7K) and 

4 (Figure 2.7L) with coxa, basis and 2-segmented exopod only. All rami armed with 

plumose setae. Armature of legs given in Table 2.1.  

 Remarks: Adult male of P. minuticaudae was first described by Okawachi et 

al. (2012). Sexual dimorphism between adult male and pre-metamorphic adult female 

can be distinctly seen on the body segmentation, the antenna and the genital structures. 

The body segmentation of the male is composed of 7 post-cephalothoracic somites 

including 2 abdominal somites. The pre-metamorphic adult female has only 5 post-
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cephalothoracic somites including 1 abdominal somite. The antenna of the male is 

similar to those of chalimus stages while, in the female, it shows swelling on the 

proximal part. Adult female that has undergone metamorphosis shows huge 

morphological differences in comparison to the pre-metamorphic adult female. The 

body segmentation of post-metamorphic adult female has been reduced due to the 

incorporation of fourth pedigerous somite with the expansion of genital complex to 

form the trunk region (Shiino, 1956; Okawachi et al. 2012; Maran et al. 2012) . The 

abdominal segment has also become indistinctly segmented from the trunk region 

(Shiino, 1956; Okawachi et al. 2012; Maran et al. 2012). The caudal rami that located 

at posterior end of pre-metamorphic female have been pushed towards the 

posteroventral part of the post-metamorphic female. The post-metamorphic females 

also lack antennules and the rami on the legs (Shiino, 1956; Okawachi et al. 2012; 

Maran et al. 2012)  which are retained in pre-metamorphic female for swimming 

purposes 
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Figure 2.7 Peniculus minuticaudae, adult female. A, habitus, dorsal view; B, frontal 
filament; C, posterior region, ventral view, s=spermatophore. D, antennule; E, 
antenna; F, mandible; G, maxillule; H, maxilla; I, leg 1, anterior; J, leg 2, anterior; K, 
leg 3, anterior; L, leg 4, anterior. Scales in mm. 
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Table 2.1 Armature formula of legs of six different stages in the life cycle of 

Peniculus minuticaudae Shiino, 1956 (Roman and Arabic numerals indicating spines 

and setae, respectively) 

Stage/Leg Segmentation 

Copepodid Coxa Basis Exopod Endopod 

Leg 1 0-0 1-0 II, II, 3 7 

Leg 2 0-0 1-0 II, II, 3 
6 
 

Chalimus I Protopod Exopod Endopod 

Leg 1 1-0 7 7 

Leg 2 1-0 7 
6 
 

Chalimus II    

Leg 1 1-1 7 7 

Leg 2 1-0 8 8 

Leg 3 0 2 
- 
 

Chalimus III    

Leg 1 1-1 8 8 

Leg 2 1-0 9 8 

Leg 3 0-0 6 - 

Leg 4 0-0 5 
- 
 

Chalimus IV    

Leg 1 1-1 9 8 

Leg 2 1-0 10 8 

Leg 3 1-0 6 - 

Leg 4 1-0 5 
- 
 

Pre-metamorphic 
adult female 

Coxa Basis Exopod Endopod 

Leg 1 0-0 1-1 I-1; I, I, 5 0-1; 7 

Leg 2 0-0 1-0 I-1; I, I, 6 0-1; 7 

Leg 3 0-0 1-0 0-0; I, 5 - 

Leg 4 0-0 1-0 0-0; I, 4 - 
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2.4 Discussion 

2.4.1 Complete life cycle of P. minuticaudae 

In this study, the presumed complete life cycle of P. minuticaudae based on the 

discovery of all stages from a single host S. cirrhifer is given (Figure 2.8). This is the 

first layout of the complete life cycle proposed for the genus Peniculus. Overall, the 

life cycle of P. minuticaudae consists of six developmental stages separated by moult, 

which is composed of one infective copepodid (Figure 2.8A), four chalimi (Figure 

2.8B-E) and adult (Figure 2.8F and 2.8G). Through the observation of hatching 

process of the egg strings incubated under laboratory conditions, we could confirm 

that the hatching stage of P. minuticaudae is copepodid. Figure 2.9A shows the 

copepodid in the egg sac just before hatching. The hatched infective copepodid has 

the ability to actively swim and search for a host (Boxshall, 2005). After the infection 

of copepodid on the hosts, particularly the fins, they moult into chalimus stages. 

Peniculus minuticaudae have four chalimus stage prior to final moulting to adult stage. 

The presence of complete and well developed swimming legs of pre-metamorphic 

adult female and adult male suggested that they have abilities to detach from a host 

for copulation, or to search for another suitable host or site of final settlement.  

The copulatory process of P. minuticaudae (Figure 2.8I) is likely to be similar 

to that of other pennellids as described by Ho  (1966) and Schram (1979). Soon after 

copulation, the fertilized pre-metamorphic female detaches and swims to find a new 

settlement site (Figure 2.8J). After the final settlement (Figure 2.8K), pre-

metamorphic adult female undergoes massive differential growth and finally becomes 

post-metamorphic adult female (Figure 2.8L) and produces eggs. Pre-copulation 

(2.8H) was also observed between adult male and various stages of female. Pre-

copulation amplexus between adult male and first chalimus stage female is shown in 
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Figure 2.9B. The male grasped the female at the base of its frontal filament. Such 

precopulatory behaviour was also reported in L. branchialis (1989). 

In the present study, all stages of P. minuticaudae from copepodid to post-

metamorphic adult female were found infecting the fins of S. cirrhifer. Five 

copepodids were found clinging on the hosts by grasping the fin ray tissue using its 

powerful antenna. Unlike L. branchialis (Brooker et al. 2012) and L. sprattae (Schram, 

1979), no copepodid of P. minuticaudae was found having a frontal filament, which 

suggests that the intrusion of frontal filament might occur very shortly before the first 

moult. Chalimus stages attached to the host by means of their frontal filament and can 

be distinguished by counting the remnants on the frontal filament, which increase by 

stage corresponding to each moult (Sproston, 1942; Ho, 1966; Schram, 1979). Adult 

male, pre-metamorphic, metamorphic and post-metamorphic adult females were 

found attached to the fin rays using their antenna. In this study, two adult females 

were found attached to the fin ray of a host by means of frontal filament. Ho (1966) 

also observed adults of Cardiodectes sp. attached to the host using frontal filament. It 

is believed that frontal filament is used for a temporary attachment (Boxshall, 2005; 

Ohstuka et al. 2009; Maran et al. 2013) and soon they will detach and swim for new 

settlement site. Metamorphing adult females can be distinguished from the pre-

metamorphic females by their slightly enlarged antennae and elongated genital 

segment. The pre-metamorphic females found on the fin of a host normally carrying 

spermatophores. In addition to the strong grasping of the antennae, the whole 

cephalothorax region of the post-metamorphic female usually covered by the scarred 

tissues of the fins. The feeding activity of the parasite might induce the proliferation 

of the fin tissues and finally scar that developed is covering the whole cephalothorax 

region of the post-metamorphic female.  As the ratio of head to whole body of post-
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metamorphic female are 1: 5.84 (Okawachi et al. 2012), the scar tissue creating a 

secure attachment for the parasite. In the case of fish burdening high density of 

parasites, some pennellid specimens were found infecting the skin near the fins.  

Okawachi et al. (2012) summarized that the life cycle of pennellids can be 

divided into four phases, i.e., first free-living, first sessile or chalimus phase, second 

free-living and second sessile phase. Two swimming stages i.e., the infective 

copepodid and the fertilized pre-metamorphic female determine the settlement site for 

the first and second sessile phase, respectively (Sproston, 1942; Schram, 1979; 

Perkins, 1983). These two stages of P. minuticaudae were found to infect a single 

host, on the same site particularly the fins, together with all other stages. From the 

findings we could confirm the suggestion of Okawachi et al. (2012) that P. 

minuticaudae could complete its life cycle on a single host.  
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Figure 2.8 Schematic life cycle of Peniculus minuticaudae. A, infective copepodid; B, 
chalimus I; C, chalimus II; D, chalimus III; E, chalimus IV; F, pre-metamorphic adult 
female; G, adult male; H, pre-copulation guarding of adult male to chalimus I female; 
I, copulation of adult male to pre-metamorphic adult female; J, fertilized pre-
metamorphic adult female with spermatophores detach from the temporary frontal 
filament and swimming for new settlement site; K, fertilized pre-metamorphic adult 
female clinging to the new settlement site on the fin ray of host; L, ovigerous post-
metamorphic female on the fin of fish host; M, fish host, threadsail filefish 
(Stephanolepis cirrhifer). Arrows showing infection sites of P. minuticaudae on the 
host. Line circles ( ___ ) indicating stages involves in precopulation. Dotted circles 
(…) indicating free-swimming stages.  
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Figure 2.9 Peniculus minuticaudae Shiino, 1956. A, copepodid in the egg sac just 
before hatching; B, precopulation guarding of adult male with chalimus I female. 
Arrow showing the male’s antennae which grasp to the female’s frontal filament. 
NE=nauplius eyes, MXLP=maxilliped, S=spermatophore, A2=antennae, FF=frontal 
filament.  

2.4.2 Comparison of life cycle among pennellids 

The complete life cycle of pennellids has so far been described only for three genera 

and species: L. branchialis (Sproston, 1942; Brooker et al. 2012), C. medusaeus (Ho, 

1966; Perkins, 1983) and L. sprattae (Schram, 1979) and now the fourth genera P. 

minuticaudae. The present study on P. minuticaudae sheds new insights into the life 

cycle of pennellids. The characteristics including the life cycle of all four genera 

(Pennellidae) are compared in this study (Table 2.2). 

The basic life cycle of copepods comprises two phases with six naupliar stages 

and five post-naupliar stages prior to adult stage (Boxshall, 2005). However, naupliar 

phase abbreviation is a common phenomenon for siphonostomatoid copepod and the 

brief summary of the naupliar stages abbreviation among siphonostomatoid copepods 

was reported by Izawa (2012). Some siphonostomatoids of the families 

Lernaeopodidae H. Milne-Edwards, 1840 (Kabata, 1973), Nicothoidae Dana, 1852 

(Ohstuka et al. 2005; Ohstuka et al. 2007) and Pennellidae (Ho, 1966; Perkins, 1983; 
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Table 2.2 Comparison on the life cycle and characteristics of four pennellids (Lernaeocera branchialis, Cardiodectes medusaeus, Lernaeenicus sprattae and Peniculus 
minuticaudae). 
 

                         Pennellids 
Characteristics 

Lernaeocera branchialis  
Linnaeus, 1767 

Cardiodectes medusaeus 
Wilson, 1917 

Lernaeenicus sprattae 
Sowerby, 1806 

Peniculus minuticaudae 
Shiino, 1956 

Developmental stages 
 
 

8 (2 naupliar, 1 copepodid, 4 
chalimi, adult) 

5 (1 copepodid, 3 chalimi, adult) 8 (2 naupliar, 1 copepodid, 4 
chalimi, adult) 

6 (1 copepodid , 4 chalimi, 
adult ) 

Host(s) needed to complete life 
cycle 
 

Double Double Single Single 

Intermediate host Mainly fishes from the family 
Pleuronectidae  

Pelagic gastropods mainly from 
the families Cavolinidae and 
Janthinidae  

- - 

Definitive host Fish of Gadidae  Fish of Myctophidae  Fish of Clupeidae  Fishes of Monocanthidae and 
Chaetodontidae  

Infection site of copepodid 
stage 

Gill lamellae Gill lamellae/ mantle tissues  Body surface and fins Fins 

Infection site of post-
metamorphic female 

Burrowing through the gill arch 
to reach the heart of the fish host

Burrowing from various parts of 
the ventral surface of the fish 
host to reach the heart  

Eyes Fins 

Possible food source of larval 
stages and post-metamorphic 
female 
 

Blood Blood Blood, coelomic and tissues 
fluid 

Presumably epithelium tissue 
and mucous 

Range size of post-
metamorphic female 

20 to 50 mm 8.5 to 15 mm 12 to 18 mm 5 to 6 mm 

References Sproston [28], Brooker et al. [6, 
7], Kearn [18] 

Ho [11], Perkins [24] Schram [25], Kearn [18] Shiino [26], Nagasawa et al. 
[19], Venmathi Maran et al. 
[29], Okawachi et al. [23], 
present study 
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Izawa, 1997) showed the most abbreviated naupliar stage by skipping the whole 

stages within the eggs and hatches directly as infective copepodid (Boxshall, 2005; 

Izawa, 2012). While the abbreviation of naupliar stage is common, siphonostomatoid 

copepods are suggested to retain the basic five post-naupliar stages prior to adult 

(Boxshall, 2005; Ohtsuka et al. 2009; Maran et al. 2013). However, due to the 

transition from free-living to parasitic mode of life, after the settlement of infective 

copepodid to the host, most siphonostomatoid copepodids parasitizing fishes 

undergoes copepodid form modification by attaching to the host by means of frontal 

filament and these forms are called as chalimus (Ho & Lin, 2004; Boxshall, 2005; 

Ohstuka et al. 2009, Maran et al. 2013). 

Among pennellids, the complete life cycle is known for four genera and 

species. Among those four genera, L. branchialis and L. sprattae retain the naupliar 

phase and in total having seven developmental stages prior to adult (two naupliar, one 

copepodid, four chalimus). While, C. medusaeus and P. minuticaudae show naupliar 

stage abbreviation and hatch directly as infective copepodid stage. Peniculus 

minuticaudae shares the similarity in the pattern of post-naupliar stages with other 

two genera L. branchialis and L. sprattae by having one copepodid and four chalimus 

stages prior to adult. However, C. medusaeus was reported with lacking of one 

chalimus stage in compared to other pennellids (cf. Table 2.2) (Ho, 1966; Perkins, 

1983). Since abbreviation of post-naupliar stages is not common among 

siphonostomatoid copepods, revision on the life cycle of C. medusaeus might be 

helpful to explain the peculiarity.  

In general, pennellids need two hosts (intermediate and definitive) to complete 

its life cycle (Boxshall & Halsey, 2004). Infective copepodid settles on an 

intermediate host, and after copulation fertilized pre-metamorphic female finds the 
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definitive host for the final settlement. The information on the intermediate and 

definitive hosts for P. minuticaudae, L. branchialis, L. sprattae and C. medusaeus are 

briefly provided (cf. Table 2). Among pennellids, L. branchialis and C. medusaeus 

need two hosts (Sproston, 1942; Ho, 1966; Perkins, 1983), while L. sprattae (Schram, 

1979; Anstensrud & Schram, 1988) and P. minuticaudae (present study) could 

complete their life cycle on a single host. For P. minuticaudae, our observation 

showed that all developmental stages infected at the same site, particularly on the fins. 

In the case of L. sprattae, infection site of the adult female after copulation differs 

from that of infective copepodid and chalimi stages. Adult female particularly infects 

the eyes of the fish host, while other developmental stages infect the fins and the body 

surface of the host (Schram, 1979; Anstensrud & Schram, 1988). 

The size of post-metamorphic adult female of P. minuticaudae is the smallest 

in compared to three other pennellids (cf. Table 2.2). Among pennellids, Peniculus, 

Peniculisa, Exopenna Boxshall, 1986, and Parinia Kazachenko & Avdeev, 1977 are 

categorized as ectoparasite, while the rest are known as mesoparasites (Kabata, 1979; 

Boxshall, 1986). In L. branchialis, L. sprattae and C. medusaeus, the whole thoracic 

region are burrowed into the body of a host (Schram, 1979; Perkins, 1983; Brooker et 

al. 2007). Judging from the way of attachment, it is suggested that post-metamorphic 

adult female of P. minuticaudae might ingest the epithelium and mucous from the fin, 

in contrast to other pennellids, which are known as blood-feeding parasites (Perkins, 

1983; Kearn, 2010; Brooker et al. 2007). The feeding type might influence the 

difference of sizes among pennellids.  

To date, the pathogenicity of P. minuticaudae has not yet been studied in 

detail. However, the findings of high prevalence and intensity on cultured fishes 

(Fukuda, 1999; Nagasawa et al. 2011, Maran et al. 2012) and the mortality of 
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aquarium-kept fishes (Okawachi et al. 2012) showed that P. minuticaudae could act 

as a potential pest to harm the fishes kept in captivity (Nagasawa et al. 2011; 

Okawachi et al. 2012; Maran et al. 2012). In the present study, we revealed that P. 

minuticaudae has abbreviated life cycle and hatch directly as infective copepodid, and 

could infect the same host and infection site. Now that we have confirmed a complete 

life cycle of P. minuticaudae with six stages (1 copepodid, 4 chalimi and adult) and 

expect that it could make a significant implication in the aquaculture industry 

especially on the control strategies.  
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CHAPTER 3 
 

Ecology of Peniculus minuticaudae 
 

 

3.1  Introduction  
 

Recently, several authors have reported the heavy infection of Peniculus 

minuticaudae Shino, 1956 on fish hosts kept in captivity. Nagasawa et al. (2011) 

recorded the infection of P. minuticaudae on two hosts Stephanolepis 

cirrhifer (Temminck & Schlegel, 1850) and Thamnaconus modestus Gunther, 1877 

collected from different cage-culture facilities in Mie and Oita Prefectures, western 

Japan with the data on the prevalence and intensity and the total number of parasites 

harbored and its distribution on fish hosts. Okawachi et al. (2012) reported several 

stages of P. minuticaudae in aquarium-held fishes from Kagoshima Prefecture, 

southern Japan. Venmathi Maran et al. (2012) redescribed adults of P. minuticaudae 

from marine ranched T. modestus in Korea. Further, recently Venmathi Maran et al. 

(2014) reported the seasonal occurrence of the parasite from the same locality. 

With the increasing and spreading incidence of P. minuticaudae on 

economically important fishes in Japan and Korea, it is essential to survey the ecology 

of this parasite on cage-cultured fish.  In this chapter, I examined the population 

dynamics of P. minuticaudae infecting S. cirrhifer cultured in cage-culture facility in 

Uwajima Bay, Ehime Prefecture, western Japan.  
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3.2 Materials and methods 

3.2.1  Sampling site 

The sampling site (Figure 3.1) Ehime Prefectural Fisheries Experimental 

Station (EPFES), Uwajima, Ehime Prefecture is located in Uwajima Bay, Shikoku 

Island, western Japan (132° 31’ 00’’ E; 33°12’72’’ N) (Fig. 3.1).   

 

 

Figure 3.1 Location of the sampling site Ehime Prefectural Fisheries Experimental 

Station.  

 

3.2.2 Hosts sampling and parasites examination 
 

Monthly samplings of the hosts were carried out from September 2011 to 

August 2012. Each host fish was collected by a scooping net, and then preserved in 

10% formalin in an individual plastic bag immediately after capture. All bags were 

monthly kept in a plastic or polystyrene container and transported from EPFES to 

Takehara Marine Science Station, Hiroshima University (TMSS), western Japan. In-

situ surface water temperature and salinity upon sampling were simultaneously 

recorded.  

Ten randomly selected fish hosts were examined every month which bring in 

total 120 fishes were examined throughout the sampling period. In the laboratory, fish 

33°	21’	N	 

132°	36’	E		

N 

1	km UWAJIMA	BAY 
UWAJIMA
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hosts were measured for standard length (SL) and total length (TL), weighted using 

precision balance (Metler Toledo PB602-S, Switzerland) and examined individually 

for parasite infection. The whole body of fish hosts was examined for parasites. Host 

fins which the parasites exclusively infected were cut and examined in details under a 

dissecting microscope (Olympus SZX7, Tokyo, Japan). However many individuals 

were detached from the host fins during the transportation from EPFES to TMSS. 

Therefore preservative formalin solution in each plastic bag was sieved using a 100 

μm modified plankton sampler to retain all detached specimens. All specimens were 

identified to each developmental stages and sex, counted and recorded, following 

Ismail et al. (2013). Copepods were preserved in vials containing 70% ethanol and 

labeled according to fish host number and month.  

Length of egg strings and total eggs count in the egg strings were counted and 

recorded for (n=15) sample of ovigerous females collected in June 2012. 

 

3.2.3 Data analysis 
 

Chi-square test was used to analyze the differences of proportion of infected to 

uninfected host (prevalence) (Rosza et al. 2000). One sample t-test was used to 

analyze the differences of total count of copepodid, post-metamorphic and pre-

copulation couples throughout the sampling period (Zar, 1984). One-way analysis of 

variance (ANOVA) followed by Tukey’s post-hoc was used to compare the 

abundance of parasite infections. For ANOVA, the data were square-root (x + 0.5)-

transformed prior to analysis to normalize distribution and equalize variance (Itoh & 

Nishida, 2008). For all statistical analysis, the software SPSS version 20 was 

employed at the significant level of 0.05. 
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3. 3 Results 

3.4.1 Environmental parameters 

Figure 3.2 shows the fluctuation of water temperature and salinity in Uwajiwa 

Bay where the fish sampling was carried out. Salinity ranges from 32.13 to 32.88 psu 

with not much fluctuation throughout the sampling period.  Water temperature 

remarkably showed a seasonal fluctuation ranging from 14.2 to 26.2 °C with the 

lowest temperature recorder in February and highest in August.  

 

Figure 3.2 Salinity and water temperature in Uwajima Bay from September 2011 to 

August 2012.   

 

3.4.2  Fish hosts 
 

Figure 3.3 shows the correlation of standard length and weight of host fishes 

examined throughout the study period. The standard length of fish ranged from 16.92 

to 22.04 cm. The weight of fish ranges from 176.5 to 274.5 g. The standard length is 

significantly correlated with the weight of fishes (r2 = 0.96, p<0.05).  
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Figure 3.3 Standard length and weight of Stephanolephis cirhiferr examined from 

September 2011 to August 2012 

 

3.4.3 Seasonal occurrence  
 

Figure 3.4 shows the prevalence Peniculus minuticaudae infecting 

Stephanolepis cirrhifer from September 2011 to August 2012. The prevalence of all 

developmental stages of Peniculus minuticaudae ranged from 30% to 100% 

throughout the study period. The prevalence remained high from September 2011 to 

June 2012, but decreased starting July to August 2012. The prevalence throughout the 

sampling period was significantly different (Chi-square test: X2=171.1, p<0.05).  

A total of 1,645 parasites were collected throughout the study period.   The 

mean intensity (total parasites/infected hosts) ranged from 0.4 to 45.2 parasites per 

host (Figure 3.5). The lowest mean intensity was recorded in July and August 2012 

(0.4 respectively) while the highest mean intensity (45.2) was recorded on June 2012. 

The minimum intensity of parasites on a single host was 0, while the maximum 

intensity of parasites burdening a single host were 123 parasites. The intensity of 

parasites collected throughout the sampling period is significantly different (Kruskal-

Wallis, H11, x=59.58, p<0.05). The detailed result is shown in Appendix A. 
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Figure 3.4 Prevalence of Peniculus minuticaudae infecting Stephanolephis chirhiferr 

from September 2011 to August 2012  

 

 

Figure 3.5 Mean intensity (total parasites/infected hosts) of Peniculus minuticaudae 

infecting Stephanolephis chirhiferr and from September 2011 to August 2012  

 

3.4.4 Composition of developmental stages   
 

Figure 3.6 shows the composition and abundance of parasites of all 

developmental stage throughout the study period. Adult females were categorized into 

four; pre-metamorphic, metamorphing, post-metamorphic and ovigerous post-

metamoprhic. The ovigerous females are the post-metamorphic adult females carrying 

egg sacs. They occurred all year round except in July 2012 with the abundance ranged 

from 0 to 109 individuals, contributing to 0 to 49% of the monthly parasites 

population. From May to June 2012, ovigerous females steadily composed 24 to 25% 

of the parasites population. Post-metamoprhic female ore the fully matured females 
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but not carrying any egg sacs were found throughout the sampling period. The 

abundance of this stage ranged from 1 to 129  individuals contributing to 13 to 67% of 

the overall parasites count every month. Metamorphing females are the adult females 

with the transition morphology characteristics between the pre-metamorphic and post-

metamorphic adult females. The abundance of metamorphing females ranged from 0 

to 19 individuals, composing up to 33% of the monthly parasite counts. Pre-

metamorphic females were identified by having 4 functional swimming legs, some are 

carrying spermatophores. The lowest total count of this stage were recorded as 0 

individuals in September, February 2011 and August 2012. While the highest 

abundance was 38 individuals in May 2012.Except for July 2012 (33%), the count of 

pre-metamorphic females only contributed to less than 10% of the monthly parasites 

counts every month.  

The total count of adult males ranged from 0 to 91 individuals, composing 0 to 

25% of the overall parasites count every month. The chalimus counts reported in this 

study were the combination of four different chalimus stages (Chalimus I, II, III and 

IV). Chalimus stages present throughout the sampling period but absent in July and 

August 2012. The abundance ranged from 0 to 85 individuals and they composed 0 to 

25% of the total counts of parasites every month. The copepodid is the hatching stage 

of P. minuticaudae,  they also can be found in the parasite population all year round 

except for July and August 2012. The total count every month ranged from 0 to 22 

copepodids and they composed up to 18% of the parasites abundance.  

The abundance of parasites collected every month was significantly varied 

seasonally (One-way ANOVA, F11, 108 = 21.3, p<0.05). The abundance in May and 

June were significantly higher in comparison to all months of the sampling period 

(post-hoc test, p<0.05) while the total parasite counts in July and August 2012 were 

significantly lower than the abundance of parasites collected in December 2011 until 

June 2012 (post-hoc, p<0.05). The detailed count of the parasites according to 

different developmental stages throughout the study is exhibited in Appendix A. 
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Figure 3.6 (A) Composition and (B) abundance of Peniculus minuticaudae per stage, 
infecting Stephanolephis chirhiferr from September 2011 to August 2012 

 

3.4.5  Distribution of Peniculus minuticaudae on the host 
 

From the overall collection of parasites found in this study, 66% of Peniculus 

minuticaudae were found attached to the fins and the remaining (specimens detached 
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from hosts) were collected from the preservative liquid (10% formalin) from the 

plastic bags containing the fish hosts (Figure 3.8). Only adult females (pre-

metamophic, metamorphing post-metamoprhic and ovigerous post-metamorphic) 

were found firmly attached on the fins. All developmental stages (copepodids and 

chalimi) together with swimming stages adult male and some adult females (pre-

metamophic, metamorphing and post-metamorphic) were found easily detached from 

the hosts. The detailed counts of individuals of P. minuticaudae attached on and 

detached from the fish hosts were tabulated in Appendix B. 

 Hence, only site-preference of adult females (pre-metamophic, metamorphing 

and post-metamorphic) attached on the fins (N=1086) were charted to different fins of 

infection site (Figure 3.7). Thirthy-eight percent of the adult females were found 

attached to the second dorsal fins of the hosts. The second most preferred site was 

both pectoral fins (23%). Eleven and 7% of the parasites were collected from anal and 

caudal fins, respectively. One percent of the parasites also can be found attached to 

the first dorsal of the hosts.   

 

Figure 3.7 Distribution of adult females (pre-metamophic, metamorphing, post-

metamorphic and ovigerous post-metamorphic) of Peniculus minuticaudae on the fins 

of Stephanolephis chirhiffer (N=1086). 

 
3.4.6  Correlation of length of egg string and number of eggs  

 

The number of eggs per string was significantly correlated with the length of 

egg string (r2= 0.986, p<0.01) (Figure 3.x). Egg strings length ranged from 1.48 to 

2.92 mm (mean±standard deviation; 2.1 ± 0.41 mm). The total eggs count per string 
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ranged from 31 to 51 eggs (mean ± standard deviation; 42 ± 7). In average, an 

ovigerous female bearing a pair of egg strings may carry a total of 84 eggs.   

‐  

 

Figure 3.8 Relationships between length of egg string and number of eggs per string 

of post-metamorphic adult females bearing eggs collected in June 2012 

 

3.4.7 Occurrence of precopulation couples  
 

In total, 20 pre-copulation couples of adult male with various stages of 

Peniculus minuticaudae were found. Adult males were found clasping the antennae to 

the base of frontal filament of chalimi or the rostrum of copepodids. The composition 

of P. minuticaudae guarded by adult males were as follows (Figure 3.9); copepodid 

(5%), chalimus I female (20%), chalimus II female (5%), chalimus III female (10%), 

chalimus IV female (50%) and chalimus IV male (10%).  The occurrence of pre-

copulation couples throughout the sampling period shows significant seasonal 

changes (One-sample t-test, p<0.001). Figure 3.10 shows the total count of pre-

copulation couples found throughout the sampling period. Nine out of 20 pre-

copulation couples were found in May 2012. Two couples were found in October and 

November 2011 respectively. One couples was found from December 2011 until 

February 2012.  
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Figure 3.11 Composition of developmental stages of Peniculus minuticaudae 

involved in precopulation guarding with adult male (N=20). 

 

 

 

Figure 3.12 Total count of precopulation couples found from September 2011 to 

August 2012 
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3.4 Discussion  
  

In this study, the observation of Peniculus minuticaudae infection on 

threadsail filefish cultured in cage-culture facility were carried out for 12 months, 

involving four different season in Japan. January to March are categorized as winter, 

April to June are spring, July to September are summer and October to December are 

autumn. Several parameters were calculated in order to observe the seasonal variation 

of the parasites population. The prevalence's of P. minuticaudae were high in all 

season except for summer, due to sharp decrease recorded in July and August 2012. In 

those two months, which are the most final sampling periods for this study, the 

abundances were also very low. The results were contradictory with a study on P. 

minuticaudae infection on black scraper T. modestus and Korean rockfish Sebastes 

schlegelii in cage culture facility in southern coast of Korea reported by Maran et al. 

(2014). In the previous study, high infections were recorded in late summer 

(September and November). However, both studies were involving small sample size 

of hosts, thus to accurately determined the seasonal prevalence and intensity of P. 

minuticaudae, larger sample size and longer observation period are required.  

 

The post-metamorphic adult females of P. minuticaudae have the ability to 

produce offspring. The adult female which attached to the host by embedding its 

antennae deep inside the fins rays and usually found with cephalothorax region 

encapsulated in hyperplasial inflammation tissues of the host’s fin (Ismail et al. 2013) 

present all year round even when the abundance were very low in July and August 

2012. The fitness of adult female particularly the post-metamorphic stages might be 

higher in comparison to other life stages due to its strong and secured attachment and 

possibly the stage might have better nutrient absorption due to its well-developed 

mouth cone. The composition of P. minuticaudae suggests that for this species, 

breeding could occur all year round whenever the post-metamorphic female 

encounters optimal condition for reproduction. However, the conditions that influence 

the reproduction capability need further investigations. The increasing water 

temperature after winter might be one of the factors, since the abundance of parasites 

particularly the ovigerous, post-metamoprhic females and copepodids show increment 

pattern starting from May 2012. Additionally almost 50% of precopulation couples 

were collected in the same month (May 2012) suggesting that spawning activity were 
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intensified during this period. Since the intensity of parasites were getting higher 

during spring, more parasite management and control should be intensified during the 

period to avoid heavy parasite infestation to the cultured hosts.  

Our data on the attachment site of adult females (pre-metamorphic, 

metamorphing and post-metamorphic) is well agreed with Nagasawa et al. (2011) and 

Maran et al. (2014). Almost 40% of the parasite specimens were found firmly 

attached to the second dorsal fins. Located on the dorsal area of the host with large 

surface area, second dorsal fins might be preferred by the parasites as it facilitates 

easy attachment during first (infective copepodid) and second (pre-metamorphic) 

infection.  

Kabata (1979) suggested that adult male of Pennellid copepods will die shortly 

after copulation. However, in this study, a total of 244 adult males were found 

detached from the host, suggesting they were loosely attached to the host prior to the 

fish sampling. Previously Izawa (2008) reported the aggregation of 108 adult males of 

unknown species of Pennellid on the branchial lamellae of Brotula multibarbata 

Temminck & Schlegel, 1846. Thus, the life span of adult male pennellids might need 

further investigation.  

Precopulatory guarding is common among various copepod orders (Boxshall, 

1990). For P. minuticaudae, the adult males were found to grasp the base of frontal 

filament chalimi or the rostrum of copepodids. In this study 20 adult males were 

found in precopulatory guarding with various stages of female chalimi, copepodid and 

even with two chalimus IV males.  Adult males were also found in precopulatory 

amplexus with pre-metamorphic adult females and adult males with a frontal filament, 

suggesting that the guarded copepod might just molt into adult and copulation might 

occur anytime soon during the preservation of the hosts. According to Kelly & Snell 

(1998), copepod males have the ability to detect diffusible sex pheromone released 

from females with antennulary chemosensors, and then identify the candidate mate by 

recognizing specific surface glycoprotein on the urosome and caudal rami of females. 

The findings that this species was actively involved in precopulatory guarding await 

further investigation. This study implies that even early female chalimus stages may 

release sex pheromone. 

To date, Peniculus minuticaudae have been reported to infect four fish host of 

Monacanthidae (Nagasawa et al. 2011; Maran et al. 2012; Ismail et al. 2013) a single 

species from family Chaetodontidae (Okawachi et al. 2012). Maran et al. (2014) 
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reported that, in the cage area where seven species of hosts are cultured together, P. 

minuticaudae exclusively infecting T. modestus (Monacanthidae). The infection on 

the Chaetodon modestus Temminck and Schlegel, 1844 occurred in a commercial 

aquarium, with limited area and choice of host. From the observation, it is suggested 

that P. minuticaudae is a host-specific to Monacanthidae fishes, with the infection on 

C. modestus considered as accidental infection due to limited choice of host. 
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Appendix A Data of composition of Peniculus minuticaudae in different life stages from September 2011 to August 2012 

Parasite stages/ sampling time 
2011 2012 

TOTAL 
S O N D J F M A M J J A

Post-metamorphic female 6 21 20 22 28 73 19 27 102 129 2 1 450 

Ovigerous post-metamorphic female 7 18 22 43 49 75 16 29 109 87 0 1 456 

Metamoprhing female 2 2 3 19 6 3 6 5 5 15 0 1 67 

Pre-metamorphic female 0 8 6 14 6 0 3 10 38 27 1 0 113 

Adult male 2 22 24 29 3 3 3 16 91 51 0 0 244 

CHIV female 0 5 7 8 3 2 0 3 19 15 0 0 62 

CHIV male 0 2 5 8 1 0 4 2 20 8 0 0 50 

CHIII female 0 2 2 2 1 0 0 0 5 0 0 0 12 

CHIII male 0 0 3 1 0 0 2 0 4 3 0 0 13 

CHII female 0 0 1 6 0 1 1 1 7 3 0 0 20 

CHII male 0 1 4 2 1 0 0 1 10 1 0 0 20 

CHI female 0 2 3 2 0 0 2 2 16 4 0 0 31 

CHI male 1 0 2 0 0 0 0 3 4 1 0 0 11 

Copepodid 4 5 7 14 3 3 8 16 22 14 0 0 96 

TOTAL 22 88 109 170 101 160 64 115 452 358 3 3 1645 
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Appendix B The distribution of Peniculus minuticaudae on the fish host 

P.minuticaudae stages/ Fins First 
dorsal fin

Second 
dorsal fin

Caudal fin Anal fin 
Pectoral 
Fin Left 

Pectoral 
Fin Right

Detached 
specimen 

TOTAL 

Post-metamorphic female  5 166 47 58 44 67 63 450 

Ovigerous post-metamorphic female 9 203 17 56 77 50 44 456 

Metamoprhing female 1 43 5 8 2 3 5 67 

Pre-metamorphic female 0 5 2 0 0 1 105 113 

Adult male 0 0 0 0 0 0 244 244 

CHIV female 0 0 0 0 0 0 62 62 

CHIV male 0 0 0 0 0 0 50 50 

CHIII female 0 0 0 0 0 0 12 12 

CHIII male 0 0 0 0 0 0 13 13 

CHII female 0 0 0 0 0 0 20 20 

CHII male 0 0 0 0 0 0 20 20 

CHI female 0 0 0 0 0 0 31 31 

CHI male 0 0 0 0 0 0 11 11 

Copepodid 0 0 0 0 0 0 96 96 

TOTAL 15 417 71 122 123 121 776 1645 
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CHAPTER 4 

 
Site-specificity of infective copepodid stage of Caligus fugu to the fins 

of puffer fish: molecular evidence 
 

 

4.1  Introduction 
 

Caligus fugu (Yamaguti, 1936) is a parasitic copepod from the family 

Caligidae (Copepoda: Siphonostomatoida) which is highly host-specific to puffer 

fishes such as Takifugu spp. The parasitic copepod from family Caligidae also known 

as “sea louse”, which is known to cause serious economic loss to aquaculture industry 

worldwide (Ho and Lin 2004). In Japan C. fugu was recorded to infect several species 

of pufferfish including the tiger puffer Takifugu rubripes (Temminck & Schlegel, 

1850), grass puffer Takifugu niphobles and the panther puffer Takifugu pardalis 

(Temminck & Schlegel, 1850) (Yamaguti, 1936; Ikeda et al., 2006; Ohtsuka et al. 

2009), fine-patterned puffer, Takifugu poecilonotus (Temminck & Schlegel, 1850), 

Takifugu alboplumbeus (Richardson, 1845) and brown-backed toadfish, 

Lagocephalus wheeleri Abe, Tabeta & Kitahama, 1984 (Nagasawa, 2011). Pufferfish 

industry in Japan has been nowadays facing an economic problem from the heavy 

infection of parasites on high value fish, the tiger puffer T. rubripes (Ohtsuka et al., 

2009; Maran et al., 2011). Towards constructing an effective parasite management, 

studies on various aspect of the pufferfish and its parasites including C. fugu has been 

carried out intensively these recent years. On C. fugu, previous studies are covering 

the fundamental biology (Ohstuka et al. 2009; Maran et al. 2011), life cycle and 

development (Ohstuka et al. 2009), seasonal occurrence (Maran et al. 2011), symbiont 

relationship with other organism (Okawachi et al. 2012) and toxicology with 

particular emphasize on tetrodotoxin (Ikeda et al. 2006, Maran et al. 2007, Ito et al. 

2006).  

 The development of C. fugu involves eight life stages; two naupliar, one 

copepodid, four chalimus and adult (Ohtsuka et al. 2009). The infective stage the 

copepodid; which have the ability to locate and establish itself on a host (Ohtsuka et 

al. 2009). The distal area of C. fugu copepodid antennules’ is equipped with two 

aesthetascs and 11 setae, five of which forked terminally; which suggest it is a 
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powerful tool in detecting mechanical or chemical stimulation during host and site 

searching activity. The copepodid are also armed with powerful antenna and 

maxilliped that can strongly grasp into the host tissues once settlement is achieved. 

The copepodid of C. fugu were exclusively attached to the fins of pufferfish, with the 

highest preference on the pectoral fin (Ohtsuka et al. 2009). The site-specificity raises 

a question; how do infective copepodid differentiate between the fins from other body 

part of the host?   

To date, no detail explanation is available regarding the recognition of host 

and site-specificity of C. fugu to the puffers. However, previous studies suggest that 

like most of other aquatic species, copepod generally do communicate via chemical 

interaction, intraspecies, interspecies and with the surrounding environment (Mordue 

& Birkett, 2009). In natural condition, copepods have the ability to response or release 

semiochemical; the chemical cues that induce specific behavior in a target organism. 

Semiochemical can be divided into two categories; allelochemicals and pheromones. 

Of these, allelochemical are the substance that mediates interspecific interaction and 

the substances that give an adaptive advantage to the receiving organism are called 

kairomones (Mordue & Birkett, 2009). According to Burke & Lodge (2002) among 

aquatic species, fish tend to emit kairomones which can be detected by zooplankton. 

To date, most of the studies regarding the semiochemical interaction in parasitic 

copepod and their host are focusing on the most economically harmful sea lice, 

Lepeophtheirus salmonis (Krøyer, 1837), a salmonid fish-specific parasite. Studies 

reported that host searching behaviour of copepodid and adult stages of sea lice L. 

salmonis involves behavioural responses towards host kairomones that enables them 

to recognize their salmonid host from other non-host fish (Devine et al. 2000; 

Ingvarsdóttir et al. 2002b; Bailey et al.  2006).  

According to Mordue & Birkett (2009) host location of sea lice is related to two 

aspects; orientation towards the natural environment of the host and host recognition. 

Infective copepodid are known to response to environmental parameters such as light 

(Bron et al. 1993; Pike & Wadsworth 2000; Genna et al. 2005) and salinity (Bron et al. 

1993; Heuch et al. 1995; Bricknell et al. 2006) to bring them to the location where 

potential host may be found. Once potential host is detected either by the perception 

to light changes (Flamarique et al. 2000; Browman et al. 2004; Genna et al.  2005) 

and mechanical vibration from the swimming activity of the host (Heuch & Karlsen 

1997; Heuch et al. 2007), copepodid also may be able to detect the chemical cues 
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released by the fish host (Devine et al. 2000; Ingvarsdóttir et al. 2002b; Bailey et al.  

2006). All these cues will activate host encounter search pattern where the copepodid 

will increase the duration and frequency of turning behaviour, involving circles and 

helices occurs, within the normal sinking and swimming behaviour (Genna et al. 

2002). Upon initial contact to the host, copepodid will grip the host tissue using its 

maxillipeds and probing tissue surface with the anterior end of the cephalothorax. If 

the host and site is suitable, the copepodid will start hooking the antennae deeply and 

released frontal filament, however if the site is not suitable, the copepodid may leave 

the host or move to a preferred infection site (Bron et al. 1991). 

Semiochemical studies in copepods need an integrated methodology (Mordue & 

Birkett, 2009) in order to identify the chemical substance involved, and to observe the 

response and behavior of copepods towards in different chemical and stimulation. To 

date, the methodology that has been used in previous study includes behavioral 

observation in y-tube arena, chemical techniques to extract and identify specific 

semiochemical (Devine et al. 2000; Ingvarsdóttir et al. 2002; Genna et al. 2005; 

Bailey et al. 2006; Pino-Marambio et al. 2007) and neurophysiological testing 

(Ingvarsdóttir et al. 2002b; Fields et al. 2007).  

 

The objectives of this chapter are:  

1. To determine if the stimulation of puffer conditioned water could stimulate the 

active swimming behavior of copepodid Caligus fugu 

2. To determine the possibility that the chemical attractant exist in the puffer 

conditioned water is in a form of protein 

3. To determine whether recombinant protein library of T. rubripes pectoral fins 

stimulate the active swimming behavior of copepodid C. fugu  

4. To screen the genes highly expressed in the fins compared to the skin of T. rubripes, 

which are supposed to be related with tissue specificity 

 

Investigation to answer the objectives number 1, 2 and 3 were carried out by 

observing the copepodid swimming behavior in a y-tube arena. For objective number 

1 and 2, swimming behavior of copepodid were observed under the stimulation of 

puffer-conditioned water and heated puffer-conditioned water. For objective number 3, 

copepodid behaviors were observed when copepodid were stimulated with a series of 
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diluted culture medium of insect cells transfected with full-length cDNA library of the 

pectoral fins of T. rubripes.   

To achieve objective 4, Suppression Subtractive Hybridization (SSH) 

technique was used to obtain a list of secreted protein encoding genes expressed 

exclusively on the pectoral fins of T. rubripes. So far chemical separation 

methodology was used to identify semiochemicals (Devine et al. 2000; Ingvarsdóttir 

et al. 2002b; Bailey et al.  2006), but in the present study I applied SSH methodology, 

which is proven to be very efficient in amplifying cDNA fragments of genes 

expressed differentially in different tissues (Diatchenko et al. 1999). Since the 

copepodid of C. fugu shows high preference to the fin, in particular, pectoral fins of 

the host in comparison to adult which roam on the body surface of the host (Ohtsuka 

et al. 2009). If fin secrets or leaks semiochemicals, genes encoding semiochemicals 

themselves (if they are secreted proteins) or enzymes synthesizing and/or modifying 

them should exist in pectoral fin more abundantly compared to in other tissues. SSH 

is an useful technique to screen such kind of genes. Because the epidermis of fins and 

skin share many similarities histologically, genes expressed in these two tissues are 

supposed to be highly overlapping with only very small differences. Thus, I chose to 

use pectoral fins and skin of T. rubripes for SSH methodology. Another advantage of 

using this approach is that vast genetic information of T. rubripes is available. T. 

rubripes is one of the model animals with almost the whole genome  has been 

sequenced and the results of the assembly were reported, and the fifth assembly is 

available online (http://www.fugu-sg.org/) at the moment. 

 

4.2 Material and methods 
 
4.2.1 Bioassay  
 

4.2.1.1 Copepod culture 
 

Grass puffer, T. niphobles were fished from neighboring waters near Takehara 

Marine Science Station, Hiroshima University, Japan (34.33° N, 132.9167° E) and 

kept in a tank as source for parasites in this study from May to August 2012. To 

obtain the copepodid, ovigerous females of C. fugu were collected from the hosts, 

carefully picked using fine forceps and transferred to Petri dishes containing filtered-

autoclaved seawater (ca. 32 psu). The Petri dishes were covered with aluminium foils 
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pricked with ball pen to make holes; to avoid over-evaporation of the medium culture. 

A maximum of 5 ovigerous females were placed in one Petri-dish to avoid 

overcrowding. The ovigerous females were incubated in total darkness, with 

controlled temperature (20 to 22 °C) in an incubator (NK System Biotron, Nippon 

Medical & Chemical Instruments Co. Ltd) until first batch of nauplii hatched. When 

the first batch of nauplii was seen, all the ovigerous females were transferred to a new 

Petri dish. After all or nearly all eggs hatched, the females were transferred back to 

the tank containing fish hosts. The naupllii were incubated in the same incubator and 

allowed to grow to copepodid stage before being used in the bioassay testing. The 

copepodids used in this study were in average day 3-4 post-hatching based on a 

preliminary testing. The 3-4 day copepodid seemed to be most active for infection. 

 
4.2.1.2 Y-tube bioassay system  

 

Y-tube bioassay system was constructed from a modified model of Bailey et al. 

(2006). Figure 4.1 shows the schematic illustration of the bioassay system.  The y-

tube was constructed using a Y-shaped glass tube with a 4 mm diameter bore. The 

length of the arms and the main leg were 4.5 cm respectively. The arms of the y-tube 

were connected to a silicon tube (7 mm diameter bore) (42 cm length) which is 

connected to tube connectors to allow the end to be sealed with pipette bulb. Sealing 

the end of the tubes using pipette bulbs create a vacuum condition to maintain the 

same level of water in both arms prior each experiment. The end of the main legs of 

the y-tube was sealed with plankton net (100 μm mesh size) to avoid copepodid 

passing to the outflow. The outflow of the Y-tube was made by connecting the end of 

main leg silicon tube to a tube connector and smaller silicon tube (diameter bore 3 

mm). A clipper and a flow controller were used to control the water flow of the 

system.  

Figure 4.2 shows the basic procedures used for all bioassay experiments. The 

technique of using the pipette bulbs in this experiment was very efficient to avoid the 

mixing of different water from stimulus and control arm. After both arms of the y-

tube were filled with water depending on experiment, pipette bulbs from both arms 

were released and water from both arms were flowing to the main leg at the rate of 

1.54 to 2.03 ml/minute. The water-flow was set-up at the beginning of every 

experimental session, by adjusting the flow-controller at the outflow of the system. 



  59

The water flow were set at the rate where clear demarcation of the water flowing from 

control and stimulus end, showed by testing the flow using red food dye.   

Figure 4.1 Y-tube bioassay system 

 

 

 

Figure 4.2 Basic procedures for the bioassay experiment using the Y-tube system 
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4.2.1.3 Behavioral response of copepodids to host-conditioned water 
 

Experimental condition 

 

 Experiments were carried out in a small dark chamber to make sure complete 

darkness. The room temperature where the small dark chamber located was set up to 

25 °C. The room was kept dark by closing all windows using black-out curtains. In 

the chamber, a retort stand was assembled as shown in Figure 4.3. The y-tube system 

was fastened to the retort stand using sellotape. On top of the retort stand, an 

aquarium fluorescent lamp was put as the only source of light, that acts as another 

trigger for the copepodid active swimming behavior. The experiment was carried out 

based on the work flow in Figure 4.2. Soon before the timing was count using a timer 

set-up to 10 minutes, the lamp was switch on and the observation started. In every 

trial, one copepodid was observed at one time for a maximum of 10 minutes. For 

every treatment, ranges of 14 to 45 copepodids were tested. In total, 428 copepodids 

were observed. 

 

Figure 4.3 Retort stand used in the experiment 

 

The observation was made based on activity classes described by Bailey et al. 

(2006). Two activity levels were categorized; “low” activity: the activity within less 
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than half of the length of main leg; “high” activity: upward swimming more than half 

length of the leg and if the copepodid swim into any arm.  For directional observation, 

if they chose the control and stimulus arms, these were classified into “control taxis” 

and “stimulus taxis”, respectively. The copepodid were tested to several stimulations 

such as fugu-conditioned water, heated fugu-conditioned water and the probe of T. 

rubripes pectoral fin’s full-length cDNA library (see below). Prior to the experiments 

using stimuli, a control experiment was carried out, observing the activity level of the 

copepodid in only filtered seawater. Below we described the preparation of the 

stimulus for every experiment.  

 
4.2.1.4 Preparation of fugu-conditioned water (FCW) and heated FCW 

 

Grass puffer, T. niphobles was collected as described above. The fish were 

kept in a tank (1000 liter) until used for the experiment. For the preparation of FCW, 

individuals of T. niphobles (134 to 210 g, average = 155 g, total number = 7) were 

isolated in a bucket containing 2 liters seawater for 4 hours prior to the experiment. 

Aeration was provided during conditioning. The FCW was used immediately after 

preparation. Water parameters during preparation were recorded by a salinometer; 

salinity (32±1 psu), water temperature (24±1 °C). 

For the preparation of heated-FCW, 500 ml of FCW was filled in a 1000 ml 

beaker and sealed with saran-wrap to avoid evaporation during heating. A water bath 

was heated up to 80 °C. The beaker containing the FCW was immersed in the water 

bath for 20 minutes with continuous shaking to make sure the heating of the FCW 

equally. Temperature of the FCW in the beaker during heating was not measured. 

After 20 minutes the heated FCW was let to cool down to room temperature and used 

for bioassay testing on the same day.  

 

 

4.2.1.5 Preparation of culture medium of insect cells transfected with full-
length cDNA library of the pectoral fins of T. rubripes.   

  
The culture medium was prepared in Fisheries Labarotary, of the University of 

Tokyo, Shizuoka, Japan with the following procedures. Total RNA was isolated from 

pectoral fins from six individuals of T. rubripes. They were pooled and 5 g total 

RNA (830 ng per individual) was prepared for cDNA synthesis by GeneRacer Kit 
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(Invitrogen). After amplification of full-length cDNAs by using adapter primers 

(GeneRacer 3 and 5 Primers) with SfiI restriction site, they were digested and ligated 

into expression vector, pISD2. The resultant cDNA library was then transfected into 

insect cell, High Five (Invitrogen). After transfection, the cells were cultured for 

three days, and the culture medium was harvested. To remove cell debris, the medium 

was centrifuged at 15,000 rpm for 30 min at 4 C, and stored at -20 C until use. 

To observe the dose-dependency of copepod activities under the stimulation of 

the culture medium, experiments were carried out in several dilution factors (X10, 

X20, X100, X150, X200, X300). For the dilution, the frozen culture medium was 

thawed at room temperature. A specific volume of culture medium was mixed in 

filtered seawater (32 ± 1 psu) to make desired diluted culture medium. The filtered-

seawater was autoclaved at 121°C for 20 minutes prior usage. Details of the 

preparation for each dilution factors are shown in Table 4.1. During the experiment of 

different dilution factor, one arm of the y-tube were filled with diluted culture 

medium while in the other arm, filtered seawater were flowing. In these series of 

experiment, the control experiments were carried out separately, by testing the 

swimming behavior of copepodid under the stimulation of culture supernatant of cells 

transfected with empty expression vector. The control culture medium was also 

diluted with filtered seawater using the same formula as the culture medium of insect 

cells transfected with full-length cDNA library of the pectoral fins of T. rubripes.   

 

Table 4.1 Preparation of diluted series of culture medium of insect cells transfected 

with full-length cDNA library of the pectoral fins of T. rubripes.   

Dilution 

factor 

Culture medium 

volume (ml) 

Filtered seawater volume 

(ml) 
Total volume (ml)

X10 1.5 13.5 15 

X20 1.5 28.5 30 

X100 1.5 148.5 150 

X150 1.5 223.5 225 

X200 1.5 298.5 300 

X300 1.5 448.5 450 
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4.2.2  Screening of the protein-encoding genes exclusively expressed in the pectoral 
fins of T. rubripes  
 

To screen for the protein-encoding genes exclusively expressed in the pectoral 

fins of the host T. rubripes, SSH PCR techniques was applied. The method allowed 

the amplification of cDNA fragments of genes exclusively expressed in targeted 

tissue but not occur in another tissue.  The methods involved RNA isolation and 

mRNA purification from the targeted tissues from puffer, subtraction of cDNAs, 

testing the efficiency of subtraction using PCR. After confirmation of the efficiency 

of subtraction process, SSH library was constructed followed by sequencing and 

further analysis of the sequences of obtained genes. After selecting the genes 

encoding secreted protein and related substances, PCR-RT analysis were carried out 

to determine if the genes were highly expressed in pectoral fins but not in the skin.  

 

4.2.2.1 RNA isolation and mRNA purification 
 

Five tiger puffer T. rubripes (n=5) were used in this experiment. The fishes were 

anesthetized in 2-phenoxyethanol before the dissection of the skin and pectoral fins. 

The skin and pectoral fins tissues then were washed extensively with phosphate 

buffered saline containing 100 units of heparin and then cut into small pieces before 

soaked in 10 volumes of RNAlater® (Life Technonogies) for one day at 4 C with 

gentle rocking and stored at -20 C until use.  

Total RNA was isolated from approximately 100 mg tissue with 2 ml or 4 ml of 

RNAiso (Takara) for skin or pectoral fin, respectively, according to the manufacture’s 

instruction. Quality of total RNA was checked by a microchip electrophoresis system, 

MultiNA (Shimadzu). For both tissues, 50 g of total RNA from each individual were 

pooled to minimize the differences in gene expressions caused by individual 

difference, and mRNA was purified by Oligotex-dT30 <Super> mRNA Purification 

Kit (Takara) according to the manufacture’s instruction. 

 

4.2.2.2 PCR-select cDNA subtraction 
 

PCR-Select cDNA Subtraction Kit (Clontech) were used to construct subtracted 

cDNA library. From pectoral fins and skin, 1.5 g of mRNA was prepared as starting 
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materials for cDNA synthesis. All procedures were carried out according to 

manufacture’s instruction manual. 

To perform subtraction in both forward (pectoral fin as tester and skin as driver) 

and reverse directions, two hybridizations were conducted followed by PCR to 

selectively amplify cDNAs differentially expressed between the two tissues. Each 

PCR amplification was conducted using a thermal cycler MyCycler (Bio-Rad) with 

the procedure and materials as described below;  

 

First PCR amplification 

Table 4.2 Materials for first PCR amplification’s premix 

Materials Volume/tube (μl) 
Sterile distilled water (SDW) 13.3 
10x Ex Taq Buffer 2.0 
dNTP mix 1.6 
Ex Taq 0.1 
PCR Primer 1 (10 μM) 2.0 

 
Premix was prepared for 6 PCR tubes and for each tube, 1 l cDNA was added as 

template. The templates that were used in this PCR were; forward subtracted cDNA, 

unsubtracted pectoral fin cDNA, reverse subtracted cDNA, and unsubtracted skin 

cDNA. PCR conditions are shown  below.  

Table 4.3 Thermal cycler setting (First PCR) 

Process Temperature Time   
Initiation 75°C   5 minute 

 
 

 

Denaturation 94 °C 30 seconds  

30 cycles 
Annealing 66 °C   30 seconds 
Extension 72 °C   1 minute 30 

seconds 
 
Holding 

 
4 °C   

 
∞ 

 
 

 

Second PCR amplification 

 The PCR products from first PCR amplification were then diluted 50 times 

with SDW and used as a template for the second PCR.  
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Table 4.4 Materials for second PCR amplification’s premix 

Materials Volume/tube (μl)
SDW 13.3 
10x Ex Taq Buffer 2.0 
dNTP mix 1.6 
Ex Taq 0.1 
Nested PCR Primer 1 (10 μM) 1.0 
Nested PCR Primer 2 R (10 μM) 1.0 

 

The reaction conditions are as follows;  

Table 4.5 Thermal cycler setting (Second PCR) 

Process Temperature Time   
Initiation 94 °C   2 minute   
Denaturation 94 °C 30 seconds  

20 cycles 
Annealing 68 °C   30 seconds 
Extension 72 °C   1 minute 30 

seconds 
Holding 72 °C 10 minutes   
 4 °C   ∞   

 

With 10 μl each PCR product, 2.5 μl loading dye was mixed and loaded into 

the well of 2% agarose gel. PCR amplicons were resolved by running at 100 mA for 

20 min. Bands were visualized by staining with ethidium bromide (EtBr). Sequences 

of all primers used in this study are summarized in Table 4.6. 

 

Table 4.6 Sequences of primers used in this study 

Name Sequence 

PCR Primer 1 CTAATACGACTCACTATAGGGC 

Nested PCR primer 1 TCGAGCGGCCGCCCGGGCAGGT 

Nested PCR primer 2R AGCGTGGTCGCGGCCGAGGT 

Tr_G3PDH-5 AGCGCTGGTGCTCGGTATGT 

Tr_G3PDH-3 TGGGGCCGTCCACTGTCTTT 

SP6 Promoter CATACGATTTAGGTGACACTATAG 

T7 Promoter TAATACGACTCACTATAGGG 

PS5-1 CTTGCTGGACGAGCACGACACCGTCTAT 

PS5-2 CGATTTGCTTCCCTCATCCCTGATCTCC 

PS10-1 GGATCAGCCCTCTGAGCCAGAAGCTACG 
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PS10-2 AACACCTTGATGTCAGGGTCGCTGGAGA 

PS11-1 TTCCTGAAGACTACCAGGATGCCCAGGA 

PS11-2 CACTCGTGTTGCACTGAGAAGAGAAG 

PS13-1 GCGCGGTTATCTTGTCGCGGCAGTAG 

PS13-2 GTACAGCTCACCTGCTTCCAATGAAC 

PS14-1  GCCCTCACTGGTGCAGGAATCATACTCTTT 

PS14-2 ACCTCTGAGGGGCGCTTAGACGATCTGC 

PS21-1 GGTCACCGGGTGTCTGAACAAGTGGAAA 

PS21-2 GTACGCCGGTGCGCTCTTCATCCAG 

PS23-1 GCTTTGCTGAAGCCATACACTCCCCTCA 

PS23-2 GGACTCTGTAAAGACAGTGACTGGAGCA 

PS34-1 GTGTAGTGATTTCCCTCGGTGCTCTCGATT 

PS34-2 GCTGCCCTGGAATCCTAAAGACGTGTGG 

PS35-1 GTACATCGCTGGTGCAAATGAGGAAGG 

PS35-2 GGGGGTTTTTCCTGGTGTTCAGC 

PS38-1 TGCTACACGTTGGCGGAGAACCGTTAAA 

PS38-2 GTTGTGACCAGGGTTTTACTCTGAGTGG 

PS44-1 CCGGTATAAGTGCAAAACGTGTGTGG 

PS44-2 GTACAGACGAGAAGGTCCTGGTGGAGAT 

PS63-1 AGCTGAGCTCAAACAGCCACGAGACCAC 

PS63-2 CGGCAGCCAAAAGAATGGTGCAAAGAAG 

PS66-1 GTACCCGGATGGATGGATGGATGGATG 

PS66-2 TAACTGTCCTGGCTGCTCTGCAGTTATG 

PS69-1 GGGCTGATATGGTTCCGCTTCCTGGTTT 

PS69-2 ACTTCTGCCGTCCCAGTTTGTGCTTGTG 

PS82-1 GGCCTTGAAGTTGGACCCGTCTGCTTCT 

PS82-2 GTCCTTTCATTCTTCTCGCCGCAGTGGT 

PS89-1 TGTCAAGAGCGAGACTCAGGGAGCCATC 

PS89-2 GCCAGCTTCCTCACAGTAAAAAGCACTG 

PS90-1 CTACCGCCACTGATGCCACTACCACCAC 

PS90-2 GGGGTGAACTTGCTGTGAAGGATGCAAA 

PS100-1 TTTGGGGAGAATAATGCCGCGGAATAGC 

PS100-2 CATGGCAAAGGAAATAAGCGCCGTGAAG 
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PS102-1 GCAGATGAGCATGCGTCTCTTCAGGA 

PS102-2 CTCTTCTGACTCTTTCATGACGCACAGC 

PS139-1 CCACACAGATGGGACTCCTCAAAATCAC 

PS139-2 GCCTGAGGCTGGTTTACCAGATTGTTGG 

PS143-1 GACTACTATGCCTGCAGTGGAATGACTC 

PS143-2 GTTCCCAAGCACACTAATGGCGTA 

PS147-1 TCCTGACATCCTTGACATCTACGGGTGA 

PS147-2 CCGTCAGAAGATGGTTGTAGATGC 

 
4.2.2.3 PCR analysis of subtraction efficiency 

Prior to construction of subtracted library, subtraction efficiency was confirmed. 

Subtracted (both forward and reverse) and unsubtracted secondary PCR products were 

diluted 10 times with SDW and used as templates for PCR. Materials for premix were 

as follows:  

Table 4.7 Materials for PCR analysis of subtraction efficiency premix 

Materials Volume/tube (μl)
SDW 6.65 
10x Ex Taq Buffer 1.00 
dNTP mix 0.80 
Ex Taq 0.05 
Tr G3PDH-5 0.50 
Tr G3PDH-3 0.50 

 

To each microtube, 9.5 l premix were added then 0.5 l template was added. 

Reaction condition as follows;  

 

Table 4.8 Thermal cycler setting (PCR analysis of subtraction efficiency) 

Process Temperature Time   
Initiation 94 °C   2 minute   
Denaturation 94 °C 30 seconds  

15 cycles Annealing 55 °C   30 seconds 
Extension 72 °C   30 seconds 
Holding −15 °C   ∞   

 

PCR amplicons were resolved in 2 % agarose gel by running at 100 mA for 20 min. 

Bands were visualized by staining with EtBr. 
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4.2.2.4 Construction of SSH library 

 

Construction of SSH library involved several steps as follows; ligation of 

secondary PCR products of forward subtracted cDNA into plasmid vector, 

transformation of E. coli competent cells, extraction of the plasmid DNA from E. coli 

and finally purification the plasmid DNA prior to sequence analysis. 

 

Ligation 

For ligation, the required materials were as listed in Table 4.9. All the material 

were mixed sterilized (autoclaved) 1.5 ml centrifuge tube then incubated at 4 °C 

overnight.   

 
Table 4.9 Materials for ligation 

Materials Volume/tube (μl) 
Secondary PCR product 1.0 
2X Buffer 
Plasmid vector (pGEM-TEasy,Promega )

2.5 
1.0 

T4 DNA ligase (Promega) 0.5 
 

Transformation 
 

The ligation product then was used for transformation of One Shot® TOP10 

Chemically Competent E. coli (Invitrogen). The material required for transformation 

procedures were as follows;  

 

Table 4.10 Materials for transformation 

Materials Volume/tube (μl) 
Competent E. coli cells - 
Ligation product 5.0 
Super Optimal broth with catabolite repression  (SOC) 0.5 

 
E. coli cells were thawed on ice, And ligation product was added to the tube 

containing E. coli cells and was tapped very gently. After gentle tapping, the cells 

were kept on ice for 30 minutes, then heat shock were applied by placing the tube on 

heat block at 42°C for 30 seconds. The tube was then immediately transferred on ice 

and kept for 2 minutes and add 450 μl pre-warmed (37°C) SOC to the cells mixture, 
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followed by inverting. The mixture were then were incubated at 37 °C with shaking at 

225 rpm for 1 hour.  

 Agar plate was warmed and dried by positioning it upside down in an 

incubator set up to 37°C. The following procedures were carried out in a sterilized 

laminar flow/biosafety cabinet. 80 μl of 5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (20 mg/ml in dimethylformamide) and 100 μl transformation 

product were spreaded onto the warmed agar plate using a glass spreader. After 

spreading, the agar plate were incubated invertly in 37 °C.  

After incubation, the E. coli will grow into colonies that were visible to the naked 

eyes. E. coli from white colonies were numbered. The E. coli colonies were picked up 

individually and cultured in 1-1.5 ml LB/Ampicillin culture medium at 37 °C with 

shaking at 200 rpm, overnight. Cultured E. coli cells were collected by centrifugation 

at 15,000 rpm (or maximum rpm) for 1 minute in 1.5 ml tubes before undergoes the 

alkaline-SDS lysis procedures to extract the plasmid. After the procedures, the 

extracted plasmid were stored at -20°C until use for sequencing.  

 

4.2.2.5 Sequences analysis 
 

Cycle sequencing was conducted using BigDye® Terminator v3.1 (Applied 

Biosystems), and nucleotide sequences were determined with 3130 Genetic Analyzer 

(Applied Biosystems). The materials required for the PCR cycle sequence were as 

follows;  

Table 4.11 Materials for transformation 

Materials Volume/tube (μl)
Premix BigDye® Terminator v3.1 1.0 
5x Buffer (Big Dye Terminator) 1.5 
Primer SP6 (1.6 μM) 1.0 
Primer T7 (1.6 μM)  1.0 
Template DNA  0.5 

 
All the listed material above were mixed and exposes to PCR cycle sequence 

according to the following reaction condition:  

 

Table 4.12 Reaction condition (PCR cycle sequence) 

Process Temperature Time   
Initiation 96 °C   1 minute   
Denaturation 96 °C 10 seconds  20 cycles 
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Annealing 50 °C   5 seconds 
Extension 60 °C    1 minutes 
Holding 4 °C   ∞   

 
 
Prior to sequencing, the PCR product of cycle sequence need to undergoes 

ethanol precipitation to remove the excessive free fluorosecent dyes. Cycle 

sequencing was conducted using BigDye® Terminator v3.1 (Applied Biosystems), 

and nucleotide sequences were determined with 3130 Genetic Analyzer (Applied 

Biosystems).  

 For sequences analysis, the raw data were by using Bioedit biological 

sequence alignment editor (http://www.mbio.ncsu.edu/bioedit/bioedit.html) to remove 

vector and primer sequences. The locations of obtained DNA fragments in the T. 

rubripes genome were determined by BLAST browser (http://www.fugu-

sg.org/blast/) under Fugu Genome Project website (http://www.fugu-sg.org/). The 

identified locations were examined by Ensemble Fugu genome browser 

(http://ensembl.fugu-sg.org/Fugu_rubripes_v5/index.html) to determine whether they 

were located on annotated genes or not. The names and full-length transcript 

sequences of annotated genes and their assigned gene ontology (GO) terms as listed in 

the database were recorded. Homologous transcripts were searched by using 

TBLASTN (http://blast.ncbi.nlm.nih.gov/Blast.cgi), and accession numbers and 

organisms showing the best score were recorded.  

 

4.2.2.6 GO analysis   
 

Collected GO IDs were manually divided into three categories based on their 

three domains: cellular component, biological process or molecular function. The 

composition of GO terms in each domain was visualized by GO Terms Classifications 

Counter tool (Hu et al. 2008). For cellular component GO_slim2 was chosen, while 

for biological process and molecular function EGAD was chosen for GO 

classification. Other parameters were left as default values. 

 

4.2.2.6 RT-PCR 
 

From the information gathered through sequences and GO terms analysis, clones 

encoding enzymes and secreted proteins were sorted. Their gene sequences were used 
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to design specific primers using Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/).  cDNA 

of skin and pectoral fins were then synthesized using SuperScript II (Life 

Technologies) according to the manufacture’s instruction. The cDNA synthesis 

procedures were started by isolating RNA from three T. rubripes and then pooled the 

RNA to 1.6 g per individual (total 4.8 g). PCR was conducted in a total volume of 

10 µl with 0.5 µl of cDNA diluted 50 times with SDW. Other reagents and reaction 

condition for PCR were listed below; 

Table 4.13 Materials for PCR  

Materials Volume/tube (μl)
SDW 6.65 
10x Ex Taq Buffer 1.00 
dNTP mix 0.80 
Ex Taq 0.05 
Template (Substracted cDNA) 0.50 
Template (Unsubstracted cDNA) 0.50 

 

Table 4.14 Reaction condition  

Process Temperature Time   
Initiation 94 °C   2 minute   
Denaturation 94 °C 30 seconds  

X cycles Annealing Y °C   30 seconds 
Extension 72 °C   30 seconds 
Holding 4 °C   ∞   

  

 Annealing temperatures and cycle numbers of clones are shown in Table 4.15. 

Analysis of amplicons was carried out by gel electrophosesis as described above. 

 

Table 4.15 Annealing temperatures and PCR cycle number of clones showing higher 

expression level in pectoral fin compared to skin 

Clone Annealing temperature (C) Cycle number 

PS10 63 38 

PS11 61 33 

PS14 63 33 

PS35 57 32 

PS67 52 30 

PS139 60 34 

PS177 54 34 
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PS186 55 24 

PS334 55 30 

PS358 54 32 

 

4.3 Results 
 

4.3.1 Bioassay  
 

4.3.1.1 Behavioral response of copepodid to the host-conditioned water  
 

Figure 4.4 shows the activity level of copepodid C. fugu under the stimuli of 

FCW and heated-FCW in comparison to the activity level in plain filtered seawater as 

a control. In the control experiment, significant percentage of copepodids showed low 

activity (92.5%) (Chi-square test, p<0.05). When tested with FCW in the stimulus 

arm, 44.4% of copepodids showed high activity level by swimming upward more than 

half length of the main leg, among them 17.8% moved upward into the stimulus arm 

where the source of FCW was flowing (Figure 4.5). In the experiment using heated-

FCW as a stimulus, the level of activation decreased, with 79.5% of copepodids 

showed low activity level while 20.5% still actively swimming upward and 2.6% 

wereable to swim to the stimulus arm (Figure 4.4). The proportion of activity level is 

significantly different between all treatment (Chi-square test, p<0.05). Further 

analysis shows that the proportion of high activity level shows by copepodids in the 

stimulation of FCW is significantly different from the activity level observed in 

control (Fisher’s exact test, p<0.05) and in the heated FCW test (Fisher’s exact test, 

p<0.05). The percentage of copepodids showing directional responses into the 

stimulus arm containing FCW also significantly higher in comparison to the control 

and heated FCW tests (Chi-square test, p<0.05).  
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Figure 4.3 Activity level of copepodid C. fugu under the stimulation of control, FCW 

and heated-FCW 

 

 

Figure 4.4 Taxis response of copepodid C. fugu under the stimulation of control, 

FCW and heated-FCW  

 

4.3.1.2 Behavioral response of copepodid to the master probe  

Copepodids were exposed to the diluted culture medium of a series of X10, X20, 

X100, X150, X200 and X300 dilution factors. Under the stimulation of diluted culture 

medium, percentages of copepodids showing high activity level ranged from 57 to 

100% (Figure 4.6). In the X10 dilution, all tested copepodids (100%) showed high 

activity level. The sequence of dilution factor according to descending percentage of 

high activity level of copepodid was as follows; X10 (100%), X150 (93%), X100 

(85%), X200 (63%), X300 (57%) and X20 (57%). The proportions of activity level of 

copepodid in all dilution factors are significantly different (Chi-square test, P < 0.001).  

 

 For observation of taxis response among copepodids in this experiment, the 
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to 36.7% (Figure 4.7). The highest percentage of positive taxis response was recorded 

under the stimulation using X150 (36.7%), followed by X10 (33.3%), X20 (28.6%), 

X100 (21.2%), X200 (13.3%) and X300 (6.7%). The percentages of copepodid shows 

directional swimming into the stimulus arms are significantly different (Chi-square 

test, p<0.05). 
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Figure 4.5 Activity level of copepodid C. fugu under the stimulation of diluted series of probe solution from the T. rupripes pectoral 

fin’s gene library 
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Figure 4.6 Taxis response of copepodid C. fugu under the stimulation of diluted series of probe solution from the T. rupripes 

pectoral fin’s gene library 
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4.3.2  Screening of the protein-encoding genes exclusively expressed in the 

pectoral fins of T. rubripes  

 
4.3.2.1 PCR Analysis of Subtraction Efficiency 

 

At first subtraction efficiency was estimated by PCR with G3PDH specific 

primers. As shown in Figure 4.8, bands of G3PDH were detected when unsubtracted 

(both pectoral fin and skin) secondary PCR products were used as templates, while no 

band was detected in the case of subtracted (both forward and reverse) secondary 

PCR products were used as templates. Since G3PDH is one of the housekeeping 

genes and we had confirmed that the expression level is roughly equal in pectoral fin 

and skin, this result indicates that subtraction was done efficiently.  

 

Figure 4.8 PCR Analysis of Subtraction Efficiency. PCR amplicon with G3PDH 

specific primers were resolved in 2 % agarose gel electrophoresis, and bands were 

visualized by staining with EtBr. Templates for PCR were secondary PCR products of 

unsubtracted pectoral fin (lane 1), forward subtracted (pectoral fin minus skin, lane 2), 

unsubtracted skin (lane 3) and reverse subtracted (skin minus pectoral fin, lane 4). 

Molecular markers are shown at the left by bards. Sizes are 100, 200, 300, 400, 500, 

600, 700, 800, 900, 1,000 and 1,500 bp. 

 
4.3.2.2 Screening of genes expressed higher in pectoral fin compared to skin 
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SSH library was constructed by inserting secondary PCR amplicon of forward 

subtracted cDNA into pGEM-T Easy vector. A total of 392 clones were sequenced, 

and the number of non-redundant sequences is 276. Of those 135 were located on 118 

annotated genes while 141 were at the positions where no genes are annotated. The 

result of TBLASTN search using sequences of full-length transcripts from annotated 

genes as queries revealed that 99 showed the highest score to translated proteins 

including hypothetical ones from T. rubripes and the remaining showed the highest 

score to those from other species. Those transcripts include 47 sequences coding 

secreted proteins or enzymes.  

 
4.3.2.3 GO analysis of the genes from pectoral fin SSH Library 

 

Figure 4.9 shows the composition of ESTs annotation according to three terms of 

the gene ontology analysis: cellular component (Figure 4.9A), molecular function 

(Figure 4.9B), and biological process (Figure 4.9C). Concerning the molecular 

function, the most represented categories are those of protein binding (19), sequence-

specific DNA binding transcription factor activity (10), zinc ion binding (8), ATP 

binding (7) and structural constituent of ribosome (6). The other molecular functions 

were represented at lower extent. In the category of cellular component, the most 

represented were intracellular (19 %), membrane (16 %), integral component of 

membrane (11 %) followed by ribosome (8 %) and nucleus (7 %). Other cellular 

components represent at lower percentage ranging from 1-4 %. In view of biological 

process, 10 % of the analyzed genes involved in regulation of transcription. Other 

biological processes that could be involved by genes identified in this study are 

proteolysis, translation, metabolic process, and also oxidation-reduction process.  
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Figure 4.9 GO term distribution of ESTs specific to pectoral fin SSH cDNA library. GO categories are provided in the (A) molecular 

function, (B) cellular components and (C) biological process vocabularies.  
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4.3.2.4 RT-PCR 
 

There are two possible chemoattractant of C. fugu: protein or non-protein small 

molecules. Secreted proteins expressed exclusively in pectoral fin and enzymes 

related to synthesis of small molecules and/or modifications of secreted proteins such 

as glycosylation are likely to be strong candidate factors determining tissue specificity 

of C. fugu copepodid. We therefore examined gene expression levels of 47 genes 

encoding secreted proteins and enzymes by RT-PCR. As the result, 10 of them (PS10, 

11, 14, 35, 67, 139, 177, 186, 334 and 358) were indeed expressed higher in pectoral 

fin compared to skin (Fig. 4.9). The amounts of PCR amplicon of G3PDH were 

almost the same in both tissues, indicating that the amplification reaction was 

successful (Fig. 4.10). 

 

 

Figure 4.10 Substracted PCR efficiency test. (PS10, 11, 14, 35, 67, 139, 177, 186, 

334 and 358) 
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4.4 Discussion 
 

Behavioral response of copepodid to the puffer-conditoned water  

 

In control experiment, copepodid were exposed to filtered-seawater, resulting 

in low activity, where they only swim and move at the base of the y-tube leg. 

According to Mordue & Birkett (2005), without the present of host, infective 

copepodid swim in a manner to conserve energy, and the result of the present study is 

in good agreement with their report. Although some small percentage of the 

copepodid swam actively in control experiment, the behavior might be due to their 

normal response to the water flow, since copepodid was known to shows upstream 

swimming against water current (Bron et al. 1993). Swimming activity increased 

when FCW was introduced to the system. They started swimming upward and 

swirling in the y-tube arena. After several attempts of upward jump and spiraling 

movement, active copepodid were usually able to swim into the arm containing the 

stimulus water. In a comparable study carried out on L. salmonis, the infective 

copepodid of the species also being activated by the stimulation of salmon-

conditioned water and the solid-phase extraction extract of salmon-conditioned water 

(Bailey et al. 2005).  

 

The experiment then was extended using heated-FCW with the inference that 

the chemoattractant might be in a form of protein. Activation and directional 

swimming were significantly reduced, however a small percentage of copepodid still 

showing active swimming behavior, suggesting that the chemicals involve as 

chemoattractant is/are protein(s) which work in combination with other type of 

chemical substance(s) that cannot be destroyed using heat. Chemical cues that 

mediating host and site specificity is very complex (Whittington, 2000). According to 

Buchmann (1998), more than a single receptor is needed for successful attachment to 

a host cell even in the case of virus, therefore, it is likely that more factors are 

operating for exhibiting host-specificity in the case of metazoan parasites since they 

are one of the more complex creatures.  

 

Behavioral observation was continued further by testing the culture medium 

supernatant of insect cells transfected with T. rubripes pectoral fins full-length cDNA 
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library. The medium is assumed to contain numerous kinds of secreted proteins 

expressed in pectoral fins, which might be functioning as semiochemical in host 

and/or site recognition of copepodid of C. fugu. Percentages of high activity were 100, 

85, 63 and 57 % at X10, X100, X200 and X300, respectively, showing dose-

dependent reaction tendency, however, at X20 and X150 the percentages were 57 and 

93 %, respectively. Such fractulation might be caused due to individual variation of 

copepodid activity level or it might be because the dilution factor used in this 

experiment is still to low contributing to overdose effect. It should be noted that at a 

maximum x300 dilution factor, copepodid still have the tendency to actively swim 

once the stimulation is detected. Thus it might be possible to dilute the medium more 

to observe whether the medium shows activity or not, which is advantageous for 

screening of attractant in the future research. The taxis response data (Figure 4.2) 

however, shows that copepodid may swim randomly, either towards the arm 

containing the culture medium or towards the control arm with filtered seawater. The 

random choice of copepodid might be influence by the factor(s) other than chemicals 

cue such as strong light and changing water current. To stabilize the y-tube assay 

system, optimization of factors, e.g, intensity and angle of light source, and 

controlling water current should be considered. 

 

Screening of the protein-encoding genes exclusively expressed in the pectoral fins 

of T. rubripes  

To date, researches regarding chemoattractant or semiochemical in parasitic 

copepods are more focused on the mechanism of host-specificity in comparison to site 

specificity. Previous reports are available for L. salmonis (Devine et al. 2000; 

Ingvarsdóttir et al. 2002b; Bailey et al.  2006) Caligus rogercresseyi, Boxshall & 

Bravo 2000 (J. Pino-Marambio et al. 2007) and Lernaeocera branchialis (Brooker et 

al. 2012). For L. salmonis, two chemical substances; isophorone and 6-methyl-5-

hepten-2-one were identified as the chemoattractant responsible for the host-

recognition of the salmon-specific louse (Ingvarsdóttir et al. 2002b; Bailey et al.  

2006). These are small, lipophilic organic molecules, with physical properties similar 

to the semiochemical used in terrestrial systems (Mordue & Birkett, 2009).  

In this study, so far ten genes encoding secreted protein and enzymes were 

shortlisted as the candidate genes that may act as the attractant being recognize by 

infective copepodid C. fugu. Even thought there is no previous study supporting that 
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copepod has the ability to detect it host using protein or protein-related substances, the 

theory need to be investigated. Another fish parasite, the monogenean are known to 

response to host glycoproteins, proteins and carbohydrates (Buchmann & 

Lindenstrom 2002). Moreover, copepods, particularly harpacticoid copepod, 

Tigripous sp. has been shown to detect protein and glycoprotein on the surface of 

female during mate recognition (Kelly & Snell 1998; Kelly et al. 1998; Ting et al. 

2000). Thus, proteins and the related substances might still be strong candidates of the 

attractant responsible for the tissue and host specificity exhibited by copepodid of C. 

fugu. 

 

 Among the candidate genes, six sequences are encoding proteins that exist as a 

component of extracellular matric (ECM). Those genes are PS10, PS11, PS14, PS67, 

PS139 and PS358. ECM might be a good candidate of the attractant since skins of fish 

is continuously regenerating and old cells are continuously discarded to the 

environment. It is likely, ECM and its component are also being discarded together in 

the process could result in functioning as attractant for the copepodid. PS10 and PS14 

are collagenase 3-like (mmpf1) and matrix metalloproteinase-9, respectively. Both are 

matrix metalloproteinase (MMP) family members, which regulates physiological 

remodelling processes such as tissue repair (Murphy and Nagase 2008). 

Thrombospondin-4-B is the gene PS11 and PS67 show the highest identity, which is 

supposed to be an adhesive glycoprotein mediating cell-to-cell and cell-to-matrix 

interactions found in zebrafish (Adolph 2002). Closest homologous protein of PS139 

is MAM domain-containing protein 2, of which function is unknown. PS358 is 

identified as fibronectin, which is a multifunctional, extracellular matrix glycoprotein 

(Hynes and Yamada 1982).  

 

PS35, S177, PS186 and PS334 are identified as heme-binding protein 2, 

hyaluronan and proteoglycan link protein 1, lipocalin and keratin, respectively. It is 

not clear that those proteins exist at the surface of fish body based on previous reports 

mainly from mammalians, but they are still candidate for the future study. 
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4.5 Conclusion 

 

In the present study, behavioral observation using Y-tube bioassay showed 

that copepodid of C. fugu positively responded to the stimulation of fugu-conditioned 

water by actively swimming upward and toward the arm containing stimulus water. 

The active and directional swimming activity was reduced after the FCW was heated, 

suggesting that at least some of the semiochemical candidate(s) might be in a form of 

water-soluble protein. In the future, negative control using non-puffer fish-

conditioned water could be tested to confirm if the results we have now shows that C. 

fugu only will activated by substances released from puffer-fish. Copepodids showed 

activation and directional response when they were stimulated with a series of diluted 

culture medium that may contain the secreted proteins expressed in pectoral fins of T. 

rupripes. Ten gene sequences encoding secreted protein or enzymes had been 

confirmed to be expressed higher in the fins in comparison to skin. The shortlisted 

secreted protein sequences are strong candidates of the chemoattractant involves in 

host and/or site recognition of copepodid C. fugu to pufferfish host, however further 

investigation to gather more candidates and to confirm their attractant activity is 

necessary to find actual genes responsible for host/tissue specificity of C. fugu.  
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Table 4.4 Genes identified from the T. rupripes pectoral fin suppression subtractive hybridization cDNA library 

Clone Accession number Animal resource and homologous gene E value GO ID GO term 

PS3 XM_003967442 Takifugu rubripes  dnaJ homolog subfamily A member 4-like 0 GO:0006457 Protein folding 

    GO:0031072 Heat shock protein binding 

    GO:0051082 Unfolded protein binding 

PS4 XM_003963139 Takifugu rubripes protein RER1-like 8.00E-142   

PS5 XM_003962526 Takifugu rubripes collagen alpha-1(X) chain-like 0 GO:0005578 Proteinaceous extracellular matrix 

    GO:0005201 Extracellular matrix structural 

constituent 

PS9 XM_003973101 Takifugu rubripes phosphatidylinositol 5-phosphate 4-kinase type-

2 gamma-like 

0   

PS10 NM_001280032 Takifugu rubripes collagenase 3-like (mmpf1) 0 GO:0006508 Proteolysis 

    GO:0031012 Extracellular matrix 

    GO:0004222 Metalloendopeptidase activity 

    GO:0008270 Zinc ion binding 

PS11 XM_003975142 Takifugu rubripes thrombospondin-4-B-like 0 GO:0005509 Calcium ion binding 

PS13 XM_003977576 Takifugu rubripes LON peptidase N-terminal domain and RING 

finger protein 1-like 

0 GO:0005515 Protein binding 

    GO:0008270 Zinc ion binding 

PS14 NM_001037870 Takifugu rubripes matrix metalloproteinase-9 (mmp-9) 0 GO:0006508 Proteolysis 

    GO:0008152 Metabolic process 

    GO:0005578 Proteinaceous extracellular matrix 
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    GO:0031012 Extracellular matrix 

    GO:0004222 Metalloendopeptidase activity 

    GO:0005509 Calcium ion binding 

    GO:0008233 Peptidase activity 

    GO:0008237 Metallopeptidase activity 

    GO:0008270 Zinc ion binding 

    GO:0016787 Hydrolase activity 

    GO:0046872 Metal ion binding 

PS21 XM_003964575 Takifugu rubripes sodium/myo-inositol cotransporter 2-like 0 GO:0006810 Transport 

    GO:0055085 Transmembrane transport 

    GO:0016020 Membrane 

    GO:0005215 Transporter activity 

PS22 XM_003975346 Takifugu rubripes twisted gastrulation protein homolog 1-like 2.00E-142   

PS23 XM_003977252 Takifugu rubripes nucleoprotein TPR-like 5.00E-72   

PS28 XM_003966742 Takifugu rubripes arylsulfatase J-like 0 GO:0008152 Metabolic process 

    GO:0008484 Sulfuric ester hydrolase activity 

PS32 XM_003962280 Takifugu rubripes fos-related antigen 2-like 6.00E-175 GO:0006355 Regulation of transcription, DNA-

templated 

    GO:0005634 Nucleus 

    GO:0003677 DNA binding 

    GO:0003700 Sequence-specific DNA binding 

transcription factor activity 

    GO:0043565 Sequence-specific DNA binding 
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    GO:0046983 Protein dimerization activity 

PS33 XM_003964476 Takifugu rubripes ATP-dependent DNA helicase Q5-like 0.00E+00   

PS34 XM_003970870 Takifugu rubripes macrophage colony-stimulating factor 1 

receptor 2-like 

0.00E+00 GO:0006468 Protein phosphorylation 

    GO:0007169 Transmembrane receptor protein 

tyrosine kinase signaling pathway 

    GO:0016020 Membrane 

    GO:0016021 Integral component of membrane 

    GO:0000166 Nucleotide binding 

    GO:0004672 Protein kinase activity 

    GO:0004713 Protein tyrosine kinase activity 

    GO:0004714 Transmembrane receptor protein 

tyrosine kinase activity 

    GO:0004872 Receptor activity 

    GO:0005515 Protein binding 

    GO:0005524 ATP binding 

    GO:0016301 Kinase activity 

    GO:0016740 Transferase activity 

PS35 XM_003964829 Takifugu rubripes  heme-binding protein 2-like 2.00E-85   

PS36 XM_004086350 Oryzias latipes melanoma-associated antigen G1-like 1.00E-77   

PS38 XM_003976842 Takifugu rubripes sushi, von Willebrand factor type A, EGF and 

pentraxin domain-containing protein 1-like 

6.00E-68   

PS44 XM_003972421 Takifugu rubripes  annexin A5-like 0.00E+00 GO:0050819 Negative regulation of coagulation 
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    GO:0005509 Calcium ion binding 

    GO:0005544 Calcium-dependent phospholipid 

binding 

PS47 XM_003976115 Takifugu rubripes nuclear factor NF-kappa-B p100 subunit-like 0.00E+00 GO:0006355 Regulation of transcription, DNA-

templated 

    GO:0005634 Nucleus 

    GO:0003700 Sequence-specific DNA binding 

transcription factor activity 

    GO:0005515 Protein binding 

PS49 XM_003971292 Takifugu rubripes GPI transamidase component PIG-S-like 0.00E+00   

PS52 XM_003964155 Takifugu rubripes inhibitor of nuclear factor kappa-B kinase 

subunit alpha-like 

0.00E+00 GO:0006468 Protein phosphorylation 

    GO:0004672 Protein kinase activity 

    GO:0004674 Protein serine/threonine kinase 

activity 

    GO:0005524 ATP binding 

PS55 XM_003964058 Takifugu rubripes  enoyl-CoA hydratase, mitochondrial-like 0.00E+00 GO:0008152 Metabolic process 

    GO:0003824 Catalytic activity 

PS63 XM_005472136 Oreochromis niloticus pleckstrin homology-like domain, family B, 

member 2 (phldb2), transcript variant X1 

0.00E+00 GO:0005515 Protein binding 

PS65 XM_003969008 Takifugu rubripes tRNA (cytosine(34)-C(5))-methyltransferase-

like 

0.00E+00   

PS66 XM_005750936 Pundamilia nyererei membrane-spanning 4-domains subfamily A 4.00E-15 GO:0016021 Integral component of membrane 
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member 3-like 

PS67 XM_003975142 Takifugu rubripes thrombospondin-4-B-like 0.00E+00   

PS69 XM_005733456 Pundamilia nyererei sodium- and chloride-dependent betaine 

transporter-like 

8.00E-56 GO:0006584 Catecholamine metabolic process 

    GO:0006836 Neurotransmitter transport 

    GO:0055114 Oxidation-reduction process 

    GO:0016021 Integral component of membrane 

    GO:0004500 Dopamine beta-monooxygenase 

activity 

    GO:0005328 Neurotransmitter:sodium symporter 

activity 

PS70 XM_003962817 Takifugu rubripes AT-rich interactive domain-containing protein 

4A-like 

0.00E+00   

PS78 XM_003967112 Takifugu rubripes dickkopf-related protein 3-like 0.00E+00   

PS81 XM_003963842 Takifugu rubripes cell division cycle 5-like protein-like 0.00E+00   

PS82 XM_003964272 Takifugu rubripes collagen alpha-1(I) chain-like, transcript variant 

1 

0.00E+00 GO:0005515 Protein binding 

PS85 XM_003963677 Takifugu rubripes thioredoxin-dependent peroxide reductase, 

mitochondrial-like 

0.00E+00   

PS89 XM_003979464 Takifugu rubripes IgM heavy chain constant region 0.00E+00 GO:0019028 Viral capsid 

    GO:0004674 Protein serine/threonine kinase 

activity 

    GO:0005515 Protein binding 
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PS90 XM_003963019 Takifugu rubripes intermediate filament protein ON3-like 0.00E+00 GO:0045095 Keratin filament 

    GO:0005198 Structural molecule activity 

PS95 XM_003967999 Takifugu rubripes leukocyte cysteine proteinase inhibitor 1-like 1.00E-67 GO:0005622 Intracellular 

    GO:0004866 Endopeptidase inhibitor activity 

PS99 XM_005811897 Xiphophorus maculatus microcephalin-like 2.00E-179 GO:0005622 Intracellular 

PS100 XM_003961332 Takifugu rubripes  ras-related C3 botulinum toxin substrate 1-like 1.00E-128 GO:0006813 Potassium ion transport 

    GO:0007264 Small gtpase mediated signal 

transduction 

    GO:0005525 GTP binding 

    GO:0008324 Cation transmembrane transporter 

activity 

PS102 XM_005730890 Pundamilia nyererei zinc finger CCCH domain-containing protein 

13-like 

0.00E+00   

PS121 XM_003962686 Takifugu rubripes ALK tyrosine kinase receptor-like 0.00E+00 GO:0006468 Protein phosphorylation 

    GO:0007169 Transmembrane receptor protein 

tyrosine kinase signaling pathway 

    GO:0016020 Membrane 

    GO:0004672 Protein kinase activity 

    GO:0004713 Protein tyrosine kinase activity 

    GO:0004714 Transmembrane receptor protein 

tyrosine kinase activity 

    GO:0005515 Protein binding 

    GO:0005524 ATP binding 
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PS125 XM_003964150 Takifugu rubripes  homeobox protein MSH-C-like 1.00E-155 GO:0006355 Regulation of transcription, DNA-

templated 

    GO:0005634 Nucleus 

    GO:0003700 Sequence-specific DNA binding 

transcription factor activity 

    GO:0005515 Protein binding 

    GO:0043565 Sequence-specific DNA binding 

PS135 XM_005801268 Xiphophorus maculatus heme-binding protein 1-like 8.00E-131   

PS137 XM_003965667 Takifugu rubripes ensconsin-like 2.00E-132   

PS138 XM_003971742 Takifugu rubripes heat shock protein HSP 90-beta-like 0.00E+00 GO:0006457 Protein folding 

    GO:0006950 Response to stress 

    GO:0005524 ATP binding 

    GO:0051082 Unfolded protein binding 

PS139 XM_003965130 Takifugu rubripes MAM domain-containing protein 2-like 0.00E+00 GO:0016020 Membrane 

PS142 XM_003977764 Takifugu rubripes E3 UFM1-protein ligase 1-like 0.00E+00 GO:0005996 Monosaccharide metabolic process 

    GO:0006184 GTP catabolic process 

    GO:0006351 Transcription, DNA-templated 

    GO:0006355 Regulation of transcription, DNA-

templated 

    GO:0006412 Translation 

    GO:0006413 Translational initiation 

    GO:0006606 Protein import into nucleus 

    GO:0006886 Intracellular protein transport 
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    GO:0007131 Reciprocal meiotic recombination 

    GO:0016032 Viral process 

    GO:0016114 Terpenoid biosynthetic process 

    GO:0019385 Methanogenesis, from acetate 

    GO:0045892 Negative regulation of transcription, 

DNA-templated 

    GO:0046649 Lymphocyte activation 

    GO:0055114 Oxidation-reduction process 

    GO:0000794 Condensed nuclear chromosome 

    GO:0005622 Intracellular 

    GO:0005634 Nucleus 

    GO:0005643 Nuclear pore 

    GO:0005737 Cytoplasm 

    GO:0005785 Signal recognition particle receptor 

complex 

    GO:0005840 Ribosome 

    GO:0005852 Eukaryotic translation initiation 

factor 3 complex 

    GO:0009986 Cell surface 

    GO:0016021 Integral component of membrane 

    GO:0000287 Magnesium ion binding 

    GO:0003677 DNA binding 

    GO:0003700 Sequence-specific DNA binding 

transcription factor activity 
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    GO:0003735 Structural constituent of ribosome 

    GO:0003743 Translation initiation factor activity 

    GO:0003887 DNA-directed DNA polymerase 

activity 

    GO:0003924 Gtpase activity 

    GO:0004872 Receptor activity 

    GO:0005047 Signal recognition particle binding 

    GO:0005525 GTP binding 

    GO:0008565 Protein transporter activity 

    GO:0016853 Isomerase activity 

    GO:0030976 Thiamine pyrophosphate binding 

    GO:0043565 Sequence-specific DNA binding 

    GO:0046429 4-hydroxy-3-methylbut-2-en-1-yl 

diphosphate synthase activity 

    GO:0046983 Protein dimerization activity 

    GO:0048029 Monosaccharide binding 

PS143 XM_003973317 Takifugu rubripes sodium- and chloride-dependent GABA 

transporter 2-like 

0.00E+00 GO:0006836 Neurotransmitter transport 

    GO:0016021 Integral component of membrane 

    GO:0005328 Neurotransmitter:sodium symporter 

activity 

PS145 XM_003964933 Takifugu rubripes heat shock 70 kDa protein 1-like 3.00E-133 GO:0006935 Chemotaxis 

    GO:0006950 Response to stress 
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    GO:0007165 Signal transduction 

    GO:0016020 Membrane 

    GO:0004888 Transmembrane signaling receptor 

activity 

    GO:0005524 ATP binding 

PS147 XM_003974305 Takifugu rubripes receptor-type tyrosine-protein phosphatase S-

like 

0.00E+00 GO:0006470 Protein dephosphorylation 

    GO:0016311 Dephosphorylation 

    GO:0004725 Protein tyrosine phosphatase activity 

    GO:0005515 Protein binding 

    GO:0016791 Phosphatase activity 

PS156 XM_003973071 Takifugu rubripes 60S acidic ribosomal protein P2-like 2.00E-27 GO:0006412 Translation 

    GO:0005622 Intracellular 

    GO:0005840 Ribosome 

    GO:0003735 Structural constituent of ribosome 

PS160 XM_003966814 Takifugu rubripes mitogen-activated protein kinase kinase kinase 

kinase 3-like 

8.00E-79   

PS165 XM_003976174 Takifugu rubripes nucleolar GTP-binding protein 1-like 0.00E+00 GO:0007264 Small gtpase mediated signal 

transduction 

    GO:0005525 GTP binding 

PS166 XM_003965807 Takifugu rubripes cathepsin S-like 0.00E+00 GO:0006508 Proteolysis 

    GO:0004197 Cysteine-type endopeptidase activity 

    GO:0008234 Cysteine-type peptidase activity 
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PS168 XM_004070229 Oryzias latipes angiopoietin-related protein 7-like 0.00E+00   

PS172 XM_003977933 Takifugu rubripes matrix metalloproteinase-14-like 0.00E+00 GO:0006508 Proteolysis 

    GO:0016020 Membrane 

    GO:0031012 Extracellular matrix 

    GO:0004222 Metalloendopeptidase activity 

    GO:0008270 Zinc ion binding 

PS177 XM_003975122 Takifugu rubripes hyaluronan and proteoglycan link protein 1-like 0.00E+00 GO:0007155 Cell adhesion 

    GO:0005515 Protein binding 

    GO:0005540 Hyaluronic acid binding 

PS178 AB437703 Takifugu sp. S4 mitochondrial gene for cytochrome b 3.00E-36 GO:0022904 Respiratory electron transport chain 

    GO:0005739 Mitochondrion 

    GO:0016020 Membrane 

    GO:0009055 Electron carrier activity 

    GO:0016491 Oxidoreductase activity 

PS179 XM_003970951 Takifugu rubripes  heat shock 70 kDa protein 4-like 0.00E+00 GO:0005524 ATP binding 

PS181 XP_003968865 60S ribosomal protein L11-like [Takifugu rubripes ] 5.00E-125 GO:0006412 Translation 

    GO:0005622 Intracellular 

    GO:0005840 Ribosome 

    GO:0003735 Structural constituent of ribosome 

PS186 XM_003967852 Takifugu rubripes  lipocalin-like 8.00E-154 GO:0006629 Lipid metabolic process 

    GO:0006810 Transport 

    GO:0005215 Transporter activity 

    GO:0005488 Binding 
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    GO:0005550 Pheromone binding 

PS189 XM_003976864 Takifugu rubripes  lysosomal protective protein-like 0.00E+00 GO:0006508 Proteolysis 

    GO:0004177 Aminopeptidase activity 

    GO:0004185 Serine-type carboxypeptidase activity 

PS191 XM_003970799 Takifugu rubripes centromere protein V-like 4.00E-61   

PS199 XM_003971618 Takifugu rubripes inositol-trisphosphate 3-kinase B-like 0.00E+00 GO:0006366 Transcription from RNA polymerase 

II promoter 

    GO:0005665 DNA-directed RNA polymerase II, 

core complex 

    GO:0003677 DNA binding 

PS204 XM_003974422 Takifugu rubripes elongation factor 1-delta-like, transcript variant 

2 

7.00E-136 GO:0006414 Translational elongation 

    GO:0005853 Eukaryotic translation elongation 

factor 1 complex 

    GO:0003746 Translation elongation factor activity 

PS207 XM_003969868 Takifugu rubripes fibronectin type III and SPRY domain-

containing protein 2-like 

0.00E+00 GO:0005515 Protein binding 

PS208 XM_003972994 Takifugu rubripes asporin-like 0.00E+00   

PS210 XM_003966663 Takifugu rubripes zinc finger E-box-binding homeobox 2-like, 

transcript variant 2 

0.00E+00 GO:0006355 Regulation of transcription, DNA-

templated 

    GO:0005622 Intracellular 

    GO:0003700 Sequence-specific DNA binding 

transcription factor activity 
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    GO:0008270 Zinc ion binding 

    GO:0043565 Sequence-specific DNA binding 

PS211 XM_003962424 Takifugu rubripes protein archease-like 4.00E-115   

PS214 XM_003968183 Takifugu rubripes 60S ribosomal protein L22-like 1-like 8.00E-68   

PS220 XM_003962519 Takifugu rubripes fermitin family homolog 2-like, transcript 

variant 1 

0.00E+00 GO:0005856 Cytoskeleton 

    GO:0005515 Protein binding 

PS227 AY651247 Sparus aurata osteopontin-like 2.00E-35 GO:0001503 Ossification 

    GO:0007155 Cell adhesion 

PS229 XM_005456599 Oreochromis niloticus disks large homolog 5-like 0.00E+00 GO:0042981 Regulation of apoptotic process 

    GO:0005622 Intracellular 

    GO:0005200 Structural constituent of cytoskeleton 

    GO:0005515 Protein binding 

PS230 XM_003978247 Takifugu rubripes mitochondrial import inner membrane 

translocase subunit TIM14-like 

8.00E-64 GO:0006457 Protein folding 

    GO:0031072 Heat shock protein binding 

    GO:0051082 Unfolded protein binding 

PS235 XM_003963691 Takifugu rubripes  kinesin light chain 1-like 5.00E-79   

PS241 XM_003974002 Takifugu rubripes elongation factor 2-like 0.00E+00 GO:0003924 Gtpase activity 

    GO:0005525 GTP binding 

PS243 XM_003963443 Takifugu rubripes glycerol-3-phosphate dehydrogenase [NAD(+)], 

cytoplasmic-like 

0.00E+00 GO:0005975 Carbohydrate metabolic process 
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    GO:0006072 Glycerol-3-phosphate metabolic 

process 

    GO:0006813 Potassium ion transport 

    GO:0008152 Metabolic process 

    GO:0046168 Glycerol-3-phosphate catabolic 

process 

    GO:0055114 Oxidation-reduction process 

    GO:0005737 Cytoplasm 

    GO:0009331 Glycerol-3-phosphate dehydrogenase 

complex 

    GO:0003824 Catalytic activity 

    GO:0004367 Glycerol-3-phosphate dehydrogenase 

[NAD+] activity 

    GO:0005488 Binding 

    GO:0008324 Cation transmembrane transporter 

activity 

    GO:0016491 Oxidoreductase activity 

    GO:0016614 Oxidoreductase activity, acting on 

CH-OH group of donors 

    GO:0016616 Oxidoreductase activity, acting on 

the CH-OH group of donors, NAD or 

NADP as acceptor 

    GO:0042803 Protein homodimerization activity 

    GO:0050662 Coenzyme binding 
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    GO:0051287 NAD binding 

PS245 XM_003966487 Takifugu rubripes neurobeachin-like protein 1-like 0.00E+00 GO:0006355 Regulation of transcription, DNA-

templated 

    GO:0005622 Intracellular 

    GO:0003700 Sequence-specific DNA binding 

transcription factor activity 

    GO:0005515 Protein binding 

    GO:0043565 Sequence-specific DNA binding 

PS246 XM_003970872 Takifugu rubripes A disintegrin and metalloproteinase with 

thrombospondin motifs 2-like 

0.00E+00 GO:0006508 Proteolysis 

    GO:0005578 Proteinaceous extracellular matrix 

    GO:0004222 Metalloendopeptidase activity 

    GO:0008237 Metallopeptidase activity 

    GO:0008270 Zinc ion binding 

PS248 XM_003972298 Takifugu rubripes actin-related protein 2/3 complex subunit 1B-

like 

0.00E+00   

PS258 XM_003965192 Takifugu rubripes nuclear pore complex protein Nup214-like 0.00E+00 GO:0006813 Potassium ion transport 

    GO:0016020 Membrane 

    GO:0005249 Voltage-gated potassium channel 

activity 

PS264 XM_005805657 Xiphophorus maculatus ceramide synthase 5-like 4.00E-175 GO:0006355 Regulation of transcription, DNA-

templated 

    GO:0003700 Sequence-specific DNA binding 
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transcription factor activity 

    GO:0043565 Sequence-specific DNA binding 

PS265 XM_003964325 Takifugu rubripes 40S ribosomal protein SA-like 0.00E+00 GO:0006412 Translation 

    GO:0005622 Intracellular 

    GO:0005840 Ribosome 

    GO:0003735 Structural constituent of ribosome 

PS266 XM_005936874 Haplochromis burtoni transport and Golgi organization protein 2 

homolog 

5.00E-156   

PS269 XM_003968449 Takifugu rubripes serine/threonine-protein phosphatase 2A 65 kDa 

regulatory subunit A beta isoform-like 

0.00E+00   

PS271 XM_003962289 Takifugu rubripes  protein tyrosine phosphatase type IVA 2-like, 

transcript variant 1 

3.00E-121 GO:0006470 Protein dephosphorylation 

    GO:0016311 Dephosphorylation 

    GO:0004725 Protein tyrosine phosphatase activity 

    GO:0016791 Phosphatase activity 

PS272 XM_003455230 Oreochromis niloticus protein S100-A13-like 5.00E-45   

PS278 NM_001173845 Salmo salar Cyclic AMP-dependent transcription factor ATF-5 

(atf5) 

0.00E+00 GO:0006355 Regulation of transcription, DNA-

templated 

    GO:0003700 Sequence-specific DNA binding 

transcription factor activity 

    GO:0043565 Sequence-specific DNA binding 

PS281 XM_003962482 Takifugu rubripes grainyhead-like protein 1 homolog, transcript 

variant 1 

0.00E+00   
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PS283 XM_003977829 Takifugu rubripes P2Y purinoceptor 1-like 0.00E+00 GO:0007186 G-protein coupled receptor signaling 

pathway 

    GO:0007596 Blood coagulation 

    GO:0035589 G-protein coupled purinergic 

nucleotide receptor signaling 

pathway 

    GO:0070493 Thrombin receptor signaling pathway 

    GO:0016021 Integral component of membrane 

    GO:0004945 Angiotensin type II receptor activity 

    GO:0004974 Leukotriene receptor activity 

    GO:0004982 N-formyl peptide receptor activity 

    GO:0005515 Protein binding 

    GO:0015057 Thrombin receptor activity 

    GO:0016494 C-X-C chemokine receptor activity 

    GO:0045028 G-protein coupled purinergic 

nucleotide receptor activity 

PS287 XM_003974496 Takifugu rubripes  angiopoietin-related protein 2-like 0.00E+00 GO:0007165 Signal transduction 

    GO:0005102 Receptor binding 

PS290 XM_003974540 Takifugu rubripes protein SET-like 4.00E-160   

PS292 XM_003967080 Takifugu rubripes NEDD4-like E3 ubiquitin-protein ligase 

WWP2-like, transcript variant 1 

0.00E+00 GO:0006464 Cellular protein modification process 

    GO:0005622 Intracellular 

    GO:0005515 Protein binding 
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    GO:0016881 Acid-amino acid ligase activity 

PS293 XM_003965929 Takifugu rubripes glyceraldehyde 3-phosphate dehydrogenase 2-

like 

0.00E+00   

PS295 XM_003968017 Takifugu rubripes glycogenin-1-like 0.00E+00   

PS298 XM_004545199 Maylandia zebra angiogenic factor with G patch and FHA 

domains 1-like 

3.00E-163 GO:0006334 Nucleosome assembly 

    GO:0000786 Nucleosome 

    GO:0005622 Intracellular 

    GO:0003676 Nucleic acid binding 

    GO:0003677 DNA binding 

    GO:0005515 Protein binding 

PS300 XM_003971754 Takifugu rubripes RNA-binding protein 25-like 4.00E-127 GO:0003676 Nucleic acid binding 

PS302 XM_005733039 Pundamilia nyererei serine/arginine-rich splicing factor 6-like 4.00E-95 GO:0006412 Translation 

    GO:0005622 Intracellular 

    GO:0005840 Ribosome 

    GO:0003676 Nucleic acid binding 

    GO:0003735 Structural constituent of ribosome 

PS303 XM_005729008 Pundamilia nyererei GPI-anchor transamidase-like 5.00E-43 GO:0006508 Proteolysis 

    GO:0004197 Cysteine-type endopeptidase activity 

PS305 XM_003974130 Takifugu rubripes AP-3 complex subunit delta-1-like, transcript 

variant 2 

0.00E+00 GO:0006508 Proteolysis 

    GO:0004197 Cysteine-type endopeptidase activity 

PS311 XM_003965802 Takifugu rubripes cytosolic 5'-nucleotidase III-like 0.00E+00   
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PS316 XM_003975841 Takifugu rubripes  myocilin-like 0.00E+00 GO:0016020 Membrane 

    GO:0004930 G-protein coupled receptor activity 

PS318 XM_003968131 Takifugu rubripes annexin A13-like 0.00E+00 GO:0005509 Calcium ion binding 

    GO:0005544 Calcium-dependent phospholipid 

binding 

PS319 XM_003976137 Takifugu rubripes synaptophysin-like 3.00E-165 GO:0006810 Transport 

    GO:0008021 Synaptic vesicle 

    GO:0016020 Membrane 

    GO:0005215 Transporter activity 

PS320 XM_003962122 Takifugu rubripes collagen alpha-2(V) chain-like 5.00E-126   

PS325 XM_003978351 Takifugu rubripes tumor suppressor candidate 3-like 7.00E-152   

PS334 NM_001011879 Takifugu rubripes keratin 0.00E+00 GO:0045095 Keratin filament 

    GO:0005198 Structural molecule activity 

PS341 XM_003974099 Takifugu rubripes elongation of very long chain fatty acids protein 

4-like 

0.00E+00 GO:0016021 Integral component of membrane 

PS346 XM_005468470 Oreochromis niloticus nucleosome-remodeling factor subunit 

BPTF-like 

0.00E+00 GO:0005515 Protein binding 

    GO:0008270 Zinc ion binding 

PS352 XM_003964395 Takifugu rubripes 26S proteasome non-ATPase regulatory subunit 

11-like 

0.00E+00   

PS357 XM_003969430 Takifugu rubripes aminopeptidase N-like 0.00E+00 GO:0008237 Metallopeptidase activity 

    GO:0008270 Zinc ion binding 

PS358 XR_172528 Takifugu rubripes fibronectin-like 2.00E-134 GO:0005576 Extracellular region 
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PS360 XM_003979409 Takifugu rubripes translation initiation factor eIF-2B subunit 

gamma-like 

0.00E+00 GO:0006355 Regulation of transcription, DNA-

templated 

    GO:0006412 Translation 

    GO:0008654 Phospholipid biosynthetic process 

    GO:0009058 Biosynthetic process 

    GO:0009103 Lipopolysaccharide biosynthetic 

process 

    GO:0055114 Oxidation-reduction process 

    GO:0005622 Intracellular 

    GO:0005840 Ribosome 

    GO:0016020 Membrane 

    GO:0003700 Sequence-specific DNA binding 

transcription factor activity 

    GO:0003735 Structural constituent of ribosome 

    GO:0008233 Peptidase activity 

    GO:0008715 CDP-diacylglycerol diphosphatase 

activity 

    GO:0016491 Oxidoreductase activity 

    GO:0016779 Nucleotidyltransferase activity 

    GO:0046872 Metal ion binding 

PS361 XR_172544 Takifugu rubripes plectin-like 0.00E+00   

PS363 XM_003963168 Takifugu rubripes serine/threonine-protein kinase receptor R3-like 0.00E+00   

PS372 XM_003966850 Takifugu rubripes 40S ribosomal protein S4, X isoform-like 0.00E+00   
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PS376 XM_003968818 Takifugu rubripes elongation factor 1-alpha-like 0.00E+00   

PS379 NM_053776 Rattus norvegicus DnaJ (Hsp40) homolog, subfamily C, member 2 

(Dnajc2) 

0.00E+00 GO:0000746 Conjugation 

    GO:0001503 Ossification 

    GO:0006184 GTP catabolic process 

    GO:0006355 Regulation of transcription, DNA-

templated 

    GO:0006606 Protein import into nucleus 

    GO:0006810 Transport 

    GO:0006886 Intracellular protein transport 

    GO:0007049 Cell cycle 

    GO:0007155 Cell adhesion 

    GO:0030198 Extracellular matrix organization 

    GO:0045893 Positive regulation of transcription, 

DNA-templated 

    GO:0005576 Extracellular region 

    GO:0005634 Nucleus 

    GO:0005643 Nuclear pore 

    GO:0005737 Cytoplasm 

    GO:0005785 Signal recognition particle receptor 

complex 

    GO:0016020 Membrane 

    GO:0016021 Integral component of membrane 
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    GO:0016529 Sarcoplasmic reticulum 

    GO:0043189 H4/H2A histone acetyltransferase 

complex 

    GO:0003677 DNA binding 

    GO:0003700 Sequence-specific DNA binding 

transcription factor activity 

    GO:0003924 Gtpase activity 

    GO:0005047 Signal recognition particle binding 

    GO:0005102 Receptor binding 

    GO:0005215 Transporter activity 

    GO:0005488 Binding 

    GO:0005515 Protein binding 

    GO:0005516 Calmodulin binding 

    GO:0005525 GTP binding 

    GO:0008565 Protein transporter activity 

    GO:0031072 Heat shock protein binding 

PS389 XM_003976988 Takifugu rubripes E3 ubiquitin-protein ligase TRIP12-like 0.00E+00 GO:0006464 Cellular protein modification process 

    GO:0005622 Intracellular 

    GO:0016881 Acid-amino acid ligase activity 
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CHAPTER 5 
 

General Discussion 
 

 

In this present study, I try to understand the fundamentals of parasitism by 

investigating three different fields. In chapter 2 and 3, I am focusing my research on 

Peniculus minuticaudae Shiino, 1956 (Pennellidae) infecting threadsail filefish, 

Stephanolepis cirrhifer (Temminck & Schlegel, 1850). While in chapter 4, the 

investigation to understand the mechanism underlying the host and site recognition 

were extended using another well-researched and economically important species, the 

Caligus fugu, infecting puffer fishes. Therefore, in this final chapter, I will try to 

discuss all of the aspects that are being investigated in this study, in relation to the 

preferences of these parasites that specifically infect the fins of the hosts.   

In chapter 2, the complete life cycle of P. minuticaudae has been described. 

The report contributes to the knowledge on the life cycle of the fourth genus of 

pennellid copepod. Previously, the complete life cycle of pennellid copepod were 

only recorded for three species which are Lernaeocera branchialis (Linnaeus, 1767) 

(Sproston, 1942; Brooker et al. 2011), Lernaeenicus sprattae (Sowerby, 1806) 

(Schram, 1979) and Cardiodectes medusaeus (Wilson C.B., 1908) (Ho, 1966; Perkins 

1983).  

From these reports, the life cycle of pennellids can be divided into four 

categories based on the number of host and the presence or absence of nauplii (Table 

5.1). The combinations are stated as follows: (1) L. branchialis (two hosts, nauplii 

present); (2) C. medusaeus (two hosts, no nauplii); (3) L. sprattae (single host, nauplii 

present); (4) P. minuticaudae (single host, no nauplii). In L. sprattae, adult females 

change their infection sites from fins and body surface to the eyes of the host for 

oviposition, whereas in P. minuticaudae, all stages including ovigerous females were 

infecting the fins of the host. Among Pennellidae, bloodsucker parasites may usually 

have two hosts, while histophagous taxa does not change its host and/or attachment 

sites. 
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Table 5.1 Comparison of hatching stages, host(s) and attachment site(s) of parasitic 
copepod in Family Pennellidae 
 

Species 
Hatchin
g stage 

Host(s) Attachment site(s) 

Intermedia
te host 

Definitive 
host 

Developme
ntal stages 

Post-
metamoprhic 
females  

L. 
branchialis 

Nauplii I Pleuronecti
dae 

Gadidae Gills Gills 
penetrating to 
the heart 
 

C. 
medusaeus 

Nauplii I Pelagic 
gastropods 
Cavolinidae

Myctophida
e 

Gills Body surface 
penetrating to 
the heart 
 

L. sprattae Copepod
id 

Clupeidaie Fins Eyes 

P. 
minuticaudae 

Copepod
id 

Mostly Monacanthidae  
  

Fins 

 
Some pennellids especially at the reproductive stage (post-metamorphic adult 

females), are known to infect the eyes of their hosts. For example, L. sprattae on sprat 

(Anstensrud & Schram, 1988) and Phrixocephalus cincinnatus Wilson C.B., 1908 on 

flounder (Kabata, 1969; 1974; Woo & Bruno, 2011). Among these examples, L. 

sprattae were known to switch their infection site; from the fins during developmental 

stages, to the eyes for adult females (Schram, 1979). Adult females will continue 

metamorphing and producing eggs after anchoring themselves deeply into the eyes 

(Schram, 1979; Woo & Bruno, 2011). The site-switching infection might be explained 

by concluding a study by Shariff (1981) on the distribution and abundance of the adult 

female Lernaea piscinae Harding, 1950 growing on big head carp. After three weeks 

of infection by L. piscinae, only the adult female infecting the eyes was retained, 

while the remaining females infecting the body surface were eliminated. It was 

suggested that copepod might stay on the eyes because eyes are an immunologically 

privileged site on the body of the host (Shariff, 1981; Woo & Bruno, 2011). 

 

The infection site of various adult females pennellids showed that they often 

choose a site that allows them to feed on the blood of the host. Lernaeenicus 

hemirhamphi Kirtisinghe, 1932 burrow deeply seeking any organ with rich blood 

supply (Natarajan & Nair, 1973). Besides the eyes, pilchard L. sprattae also pierce the 

heart occasionally (Rousset & Raibaut, 1989). L. branchialis penetrates near the 
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ventral end of the third or fourth arch; developing anchor and mouthpart in the wall of 

either the bulbus arteriosus (Kabata, 1979) or ventral aorta (Khan, 1988). 

Lernaeolophus sultanus (Milne Edwards, 1840) attached to the fish palate, anchoring 

the eye socket (Grabda, 1972). Lernaeolophus aceratus (Ho & Honma, 1983) 

attached to the gill cavity and embedded its head between the liver and vertebral 

column (Ho & Honma, 1983). Haemobaphes diceraus Wilson, 1917 and C. 

medusaeus penetrate directly into the blood vessels of the host (Grabda, 1975; Perkins, 

1983). While Peroderma cylindricum (Heller, 1865) embeds into the kidney of its 

pilchard host (Woo & Bruno, 2011).  

 

Adult female pennellids generally feed on the blood and lymph of fish from 

haemorrhage and inflammation within the granuloma (Woo & Bruno, 2011). The 

blood is more nutritious in comparison to the epithelial tissues or mucous of the host 

(). Therefore, it is clear that the site-switching among adult females pennellids is to 

obtain more nutritious food and nutrient for reproduction purposes. According to Woo 

& Bruno (2011), adaptation to a specific site increases the fitness of the parasite in a 

particular site over the parasite’s fitness in some other site. Fitness can be defined as 

the success of contributing genetic information to subsequent generations (Bush et al. 

2001). 

 

Site specificity is common among parasitic copepods. In this study, I am 

investigating two parasitic copepods from two different families, which sharing a 

similarity where at least part of the life cycle stages of these parasites prefer fins as 

their infection site. All life stages of P. minuticaudae are site-specific to the fins 

(Ismail et al. 2013) with highest preference to the pectoral fin of the host. The 

infective copepodid and developing chalimi of Caligus fugu were exclusively 

infecting the fins of puffer fishes (Ohstuka et al. 2009). Table 5.2 listed the parasitic 

copepods from various families, which at least some part of their life cycle preferring 

fins as their infection site. 

  

Site specificity is a restriction where the parasites choose and prefer a 

particular site or habitat on the host (Woo & Bruno, 2011). Why do they prefer the 

fins. 
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Table 5.2. List of some parasitic copepods that preferred fins as an attachment site  

 

Family Species Host 
Stage of life cycle attached to the 
fins 

References 

Caligidae Lepeophtheirus salmonis Salmonid fishes Copepodid and chalimus Wootten et al. (1982)  
Lepeophtheirus pectoralis Flounder, plaice All stages Boxshall (1976; 1977) 

Caligus elongatus Salmo salar,  Adult female Hogans & Trudeau (1989)  

 
Caligus epidemicus Oreochromis mossambicus 

Acanthopagrus australis  Copepodid and chalimus Lin & Ho (1993), Roubal (1994) 

Caligus fugu Pufferfishes Copepodid and chalimus Ohtsuka et al. (2009) 
Pennellidae Peniculisa wilsoni  Diodon histrix Adult female Radhakrishnan & Nair (1981) 

Lernaeenicus sprattae Pilchard and sprat Copepodid and chalimus Schram (1979) 
Salmincola edwardsii Salvelinus fontinalis Copepodid and chalimus Black et al. (1983) 

 Peniculus minuticaudae Monacanthidae All stages 
Okawachi et al. (2012); Ismail et 
al. (2013) 

Ergasilidae Neoergasilus japonicus Pimephales promelas Adult Hayden & Rogers (1998) 
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Bron (1993) suggested that rather than selection, the preferences of copepodid 

to a particular area is determined by the ability of the copepodid to attach initially and 

subsequently remain attached. The suitability of a given area for settlement maybe 

depends upon the nature of the epidermis that varies over the host body, and the 

exposure of water current at different sites. In a study carried out upon the attachment 

of L. salmonis on three different salmonid hosts by Johnson &Albrightz (1992), 

copepodids were found to have infected fins, body surface and gills of the hosts. 

However, after certain period of infection, many copepodids were eliminated from the 

gills but remained on the fins. The fins shows from moderate to mild response 

towards the feeding activity of copepodid, with the responses characterised by erosion 

of the epidermis in the vicinity of the mouth cone, lack of dermal reaction and normal 

to mild hyperplastic epithelium in the vicinity of the frontal filament. In contrast, gills 

showed extensive epithelial hyperplasia and well-developed inflammatory response. 

In this study, copepodid attached to the gills also enduring slow developmental rate in 

comparison to the copepodid attached to the fins. It is suggested that this phenomenon 

was a result of different tissue response and immunity. The copepodid may have 

preference to the fins where the immune system is less pronounces in comparison to 

the gills (Johnson &Albrightz, 1992).  

Sukhdeo and Sukhdeo (1994) suggested that the main advantage for site-

specificity is the ability for a particular parasite to maintain its relative stability and 

survival. Specificity of a particular habitat enables parasites to refine their recognition 

to relatively few but unique features of their preferred habitat. He also elaborated the 

concept of site-specificity based on three observations; (1) The parasites have the 

ability to predict and identify their preferred habitat/site, (2) parasites have the ability 

to predict the behaviour of the hosts, which may leads to the identification of their 

preferred habitat/site and (3) migrating to other site and maintain the position to that 

particular site that may become a fixed behaviour of parasite during the course of 

evolution.  

Whittington et al. (2000) suggested that parasites and their host enduring the 

coevolution to become closely adapted so that the predictability of host biology (e.g. 

their behaviour, physiology and biochemistry) can be exploited by parasites. This 

coevolution enhances the fitness of a parasite because the parasite only needs to 

evolve to adapt, maintain their position and combat the immunity for one, or a limited 

spectrum of, host species or particular organ. 
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 In chapter 4, I try to investigate the site-specificity for infective stage 

of C. fugu, the copepodid to the fins of puffer fishes. The experiments that have been 

carried out are a very small step towards achieving the aim to fully understand the 

mechanism involves in site-specificity of copepodid C. fugu to the fins. Behavioural 

study that has been carried out in this study shows that copepodid C. fugu has the 

ability of responding to the chemical cues in the host-conditioned water. In addition, 

by applying heat to the host-conditioned water, it left us with a clue that the chemical 

involves in the experiment might be in a form of protein. However, it is a long way 

ahead and more trials are required in order to identify the exact chemical substance(s) 

that may act as chemoattractant for C. fugu site recognition. However, from the 

behavioural observation of copepodid C. fugu in the y-tube bioassay experiments, it is 

worth to know that the copepodids does have the ability to response to the stimulation 

of host-conditioned water. This response might be the key to the questions that will be 

further investigated in the future.  
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Conclusion 
 

Parasites and parasitic copepod now became a problem in the growing 

aquaculture industry. The aquaculture is one of the ways of generating income for a 

country and also seems to satisfy the needs of growing human population. In natural 

condition, parasite and fish may only live in a peaceful symbiotic relationship. As we 

know, parasites can rarely kill their hosts, as they need to maintain their habitat and 

food source. However, the aquaculture systems changed the situation, where the 

groups of hosts were confined in a crowded place, giving the opportunity to the 

parasites to enhance their fitness and reproduction ability. When they were finally 

became a major problem, not only to the fish’s host but also to human,  which is also 

a potential problem to the whole system of ecology. At this stage, parasite 

management is crucial and need to be carefully planned. Fundamental understanding 

of the whole aspect of parasites is essential towards achieving a successful parasite 

management. In this three years research, only a small part of a very small parasite 

has been explored. Leaving a whole bunch of questions to remain unanswered and 

rising a thousand more questions that are yet to be investigated. I believe this is just a 

beginning of my interesting life, exploring the complex field of parasitology. 
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