Time-resolved IR Spectroscopy of Radicals in Chemical Reactions

(化学反応中のラジカル種の時間分解赤外分光)

by Akihiro Maeda (前田 晃宏)

Department of chemistry, Graduate School of Science, Hiroshima University

Contents of the thesis

Chapter 1.	General Introduction
Chapter 1.	

- 1.1 Introduction
- 1.2 Time-resolved IR spectrometer
- 1.3 IR observation of the photocatalytic degradation of pivalic acid on TiO₂ powder

1.4 IR observation of cyclopentane-1,3-diyl diradicals in solution References

Chapter 2. Time-resolved IR Spectrometer

- 2.1 Introduction
- 2.2 The constructed Time-resolved IR spectrometer
- 2.3 TRIR observation with the constructed TRIR spectrometer
- 2.4 Estimation of the time resolution of the TRIR spectrometer
- 2.5 The cells used for the TRIR measurement

References

- Chapter 3. IR Observation of the Photocatalytic Degradation on TiO₂ Powder
 - 3.1 Introduction
 - 3.2 IR observation of the photocatalytic degradation of pivalic acid on TiO₂ powder
 - 3.2.1 Purpose of research
 - 3.2.2 Sample preparation
 - 3.2.3 Results and discussion
 - 3.3 Summary and conclusions

References

Chapter 4. IR Observation of Cyclopentane-1,3-diyl Diradicals in Solution.

- 4.1 Introduction
- 4.2 Experimental
- 4.3 Results and discussion
 - 4.3.1 Time-resolved IR absorption spectra
 - 4.3.2 Singlet diradical DR1
 - 4.3.3 Triplet diradical DR2
 - 4.3.4 Observed CN stretching wavenumbers
 - 4.3.5 Calculated CN stretching wavenumbers
- 4.4 Conclusion

References

Appendix A

Chapter 5. General Conclusion