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1. INTRODUCTION

The Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state [1, 2] has been investigated

both experimentally and theoretically as reviewd in some articles [3–5]. Following

the theoretical prediction of Fulde and Ferrell [1] and Larkin and Ovchinnikov [2],

there has been no convincing experimental evidence of the FFLO state, but recently

its occurrence has been suggested in strongly Pauli-limited clean type-II supercon-

ductors.

At the present, the candidate compounds are the heavy-fermion supercon-

ductor CeCoIn5 [4] and the quasi-low-dimensional organic superconductors [5–

40], such as κ–(BEDT-TTF)2Cu(NCS)2 [12–15], λ-(BETS)2FeCl4 [18–20], λ-

(BETS)2GaCl4 [21], and (TMTSF)2ClO4 [24–26, 28–40]. Interestingly, all of these

compounds are quasi-low-dimensional with respect to the conduction electron states.

The quasi-low-dimensionality stabilizes the FFLO state for two reasons. First,

the orbital pair-breaking effect is suppressed by orienting the magnetic field in the di-

rection parallel to the most conductive layer. Particularly in organics, the magnetic

field must be precisely aligned for the occurrence of the FFLO state [41]. Second,

the highly anisotropic structure of the Fermi surfaces in quasi-low-dimensional sys-

tems stabilizes the FFLO state. The center-of-mass momentum q of the Cooper

pairs is finite in the FFLO state, and it gives rise to the spatial modulation of the

order parameter characteristic of the FFLO state. Since realistic materials have

anisotropic Fermi surfaces, there exists the optimum direction of q for which the

upper critical field is maximum. When q is oriented in the optimum direction, the

FFLO state is stabilzed most. We term this the Fermi-surface effect from now on.

In anisotropic superconductors, the structure of the gap function significantly affects

the Fermi-surface effect [9, 10].

Among the above candidate compounds, the quasi-one-dimensional organic

superconductor (TMTSF)2ClO4 [25, 26, 28–33] has attracted current interest.

The electron energy dispersions of the organic superconductors (TMTSF)2X

(X = ClO4, PF6 etc.) can be expressed by the Q1D tight-binding model (ta >

tb À tc). In (TMTSF)2PF6, Hc2 exceeds the Pauli paramagnetic (Chandrasekhar-

Clogston) limit [42] [22]. However, this compound is likely to be spin triplet super-
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conductivity [23]. In (TMTSF)2ClO4, Hc2 exceeds the Pauli paramagnetic limit HP

for both a- and b′-axis [24–26], and a new principal axis different from the crystal

axis emerges above the Pauli paramagnetic limit, which may be related to occurrence

of the FFLO state [25, 26]. This compound is likely to be a spin singlet superconduc-

tivity with line nodes (d-wave state) [27]. In addition, an upturn of the temperature

dependence of the upper critical field Hc2(T ) at low temperature is consistent with

the FFLO Hc2(T ) in quasi-low-dimensional systems [8–10, 20, 43, 44].

For this compound, many theoretical studies have been proposed with respect to

the FFLO state. Recently, Lebed et al. have calculated the upper critical fields in

a- and b′-axis, taking into account both the Pauli paramagnetic and orbital pair-

breaking effect [28, 31]. The resultant values are quantitatively consistent with

the experimental data. Especially, for the magnetic field in the direction of b′-

axis, the field-induced dimensional-crossover [7, 45] leads to a hidden reentrant and

FFLO state to coexist. On the other hand, Croitoru et al. have examined angular

dependence of the upper critical field in systems with elliptic Fermi-surfaces [29]. It

has been shown that the transition temperature is maximal for the magnetic field

oriented perpendicular to q. Lebed et al. [31] and Fuseya et al. [33] have investigated

this compound, but they also have assumed simplified Fermi-surfaces. However, in

such systems, the nesting effect of the Q1D Fermi-surface is not taken into account

correctly.

In spite of the these theoretical studies, the limits of the pure FFLO state have not

been reported in Q1D systems. In this thesis, we investigate the nesting effect taking

into account Q1D Fermi-surface structure in more detail [40]. A novel dimensional

crossover, which is induced by temperature effect is reported. In addition, for the

warped Fermi surface, since the direction of the optimum q is nontrivial [9, 10], we

decide the directions of q where Hc2(T ) is maximal.

In (TMTSF)2ClO4, there is no consensus of the value of hopping energies tb/ta.

Yonezawa et al. and Lebed have estimated the values to be about 0.26 and 0.1 by the

Ginzburg-Landau slopes [26, 34]. The value determined by Huckel methods [35] and

first principles methods [36] has been estimated to be about 0.2. In Q1D systems,

the values of tb/ta assumed in previous studies are summarized in Table I. We show
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the tb/ta dependence of Hc2 in detail.

TABLE I: The approximate values of tb/ta assumed in previous studies of Q1D systems.

tb/ta 0.07 0.1 0.2 0.26

references [37] [6, 7, 28, 30, 31, 34, 38, 39] [32, 35, 36] [26]

The paper is organized as follows. In Sect. 2, fundamental properties of the FFLO

state is reviewed. In Sect. 3, the nesting effect of the FFLO state is discussed. Sect. 4

is devoted to the purpose of this study. In Sect. 5, the equations for Tc, Hc2 and HP

are formulated. In Sect. 6, numerical results are presented. In Sect. 7, we summarize

the results and discuss. We use the units where ~ = 1 and kB = 1 throughout.
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2. FFLO STATE

In this section, we review the fundamental properties of the FFLO state. The

FFLO state is the superconducting state in which the Cooper pairs have a finite

center-of-mass momentum q as shown in Fig. 1 (b) because of the spin polarization

energy, in contrast to the BCS state in which the center-of-mass momentum of the

Cooper pairs is zero as shown in Fig. 1 (a). In the absence of the magnetic field, the

latter state is more favorable than the fomer state, because the condensation energy

of the former state is larger than the latter state. However, when sufficiently strong

magnetic field is applied to type-II superconductors, the BCS state becomes unstable

because of the spin polarization energy. The critical magnetic field is estimated

by the condition that the loss in the spin polarization energy (1/2)NχH2 reaches

the superconducting condensation energy (1/2)NN(0)∆2
0. The limiting field by this

pair-breaking effect is called the Pauli paramagnetic (Chandrasekhar-Clogston) limit

HP(T ) [42], which is nothing but the upper critical field of the superconductivity

when the orbital pair-breaking effect is not considered. The transition between the

normal state and the BCS state at this field is the first order. It is known that the

Pauli paramagnetic limit for s-wave µeHP(0)/∆0 is equal to 1/
√

2.
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FIG. 1: Schematic figures of the pairing states (a) in the BCS state (k ↑, −k ↓), and (b)

in the FFLO state (k ↑, −k + q ↓) when the Fermi surfaces split by the Zeeman energy.

In the figure (b), the solid and dotted curves present the Fermi surfaces of spin-down

electrons and spin-up electrons, respectively.

The superconductivity is broken by the magnetic fields because of the Pauli

paramagnetic and orbital pair-breaking effects. In the present paper, we examine

the case that the orbital pair-breaking effect is weak. In the FFLO state, the spin

polarization energy is larger than that in the BCS state, while the superconducting

condensation energy is smaller because of the kinetic energy of the Cooper pairs.

When the Fermi surfaces split because of the Zeeman energy, the superconductivity

can occur by pairing of two electrons with (k, ↑) and (−k + q, ↓).
Figure 2 displays the schematic phase diagram when the FFLO state occurs. In
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the presence of the orbital pair-breaking effect, the transition at the upper critical

field Hc2(T ) is of second-order. On the other hand, in the absence of the orbital

pair-breaking effect, the second-order transition field between the BCS and normal

states is lower than the first-order transition field of the Pauli paramagnetic limit

HP of the BCS state. This implies that the second-order transition line is fictitious

or metastable line. For the FFLO state to occur, the second-order transition field

to the FFLO state must exceed HP. In the case that the FFLO state enhances

the upper critical field of the superconductivity, the transition field between the

FFLO and BCS states is lower than HP, because in such a case the free energy

of the FFLO state is lower than that of the normal state. In the absence of the

orbital pair-breaking effect, the FFLO state occurs below the tricritical temperature

T ∗ ≈ 0.56Tc, which does not depend on the dimensionality of the system, although

it is lowered by the orbital effect.

Tc

FFLO

Hc2

0.56Tc

H

T

Hc1

HP

second order transition

normal state vortex state 

perfect meissner state

tricritical point 

FIG. 2: Phase diagram of the FFLO state. The dotted curve shows the first-order transi-

tion from the BCS state to the normal state.

In three dimensional (3D) isotropic systems, the FFLO upper critial field is

slightly higher than HP(T ), and the area of the FFLO state in the phase diagram
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is narrow. Considering the orbital pair-breaking effect and so on, the FFLO state

would not occur in such systems. On the other hand, in quasi-two-dimensional

(Q2D) isotropic systems, it has been found that the nesting effect widen the area

of the FFLO state. This indicates the possibility of the realization of the FFLO

state in quasi-low-dimensional systems [8]. The behavior of the upper critical field

at T = 0 can be classified depending on the nesting condition. For the 3D isotropic

systems, the nesting condition is “crossing along a line”. This type of nesting re-

sults in dHc2(0)/dT = 0. Whereas, in the Q2D systems, the nesting condition is

“touching on a line”, and the Hc2(T ) exhibits a upturn near T = 0. This results in

dHc2(T )/dT > 0. The relation between the nesting conditions and the behavior of

the upper critical fields is discussed in the next section.

Next, we discuss the spacial oscillation of the order parameter in the FFLO state.

The order parameter of the superconductivity is generalized to include the FFLO

state as

∆∗
q(k) = 〈a†

−k+q/2↓a
†
k+q/2↑〉, (2.1)

where q and k are the center-of-mass and the relative momenta, respectively. In the

coordinate representation, the order parameter is expressed as

∆∗(r, r′) = 〈ψ†
↓(r)ψ†

↑(r
′)〉. (2.2)

By the Fourier transformation for ψ†
σ(r), Eq. (2.2) is written as

∆∗(r, r′) =
1

N

∑
p

∑
p′

e−i(p·r+p′·r′)〈a†
p↓a

†
p′↑〉. (2.3)

Then, the order parameter is expressed in terms of the center-of-mass coordinate R

and the relative coordinate ρ as

∆∗(R, ρ) =
1

N

∑
q

∑
k

e−i(q·R+k·ρ)〈a†
k+q/2↓a

†
−k+q/2↑〉. (2.4)

By the Fourier transformation with respect to ρ, Eq. (2.4) is rewritten as

∆∗(R,k) =
∑

q

e−iq·R〈a†
−k+q/2↓a

†
k+q/2↑〉 =

∑
q

e−iq·R∆∗
q(k). (2.5)
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Thus, the order parameter has the spatial oscillation factors e−iq·R. Hence, the

nonzero center-of-mass momenta q’s give rise to the spacial oscillation of the order

parameter with respect to the center-of-mass coordinate R.

Fulde and Ferrell examined the state in which ∆q(k) 6= 0 for a single q [1]. In

this state, the order parameter in the real space oscillate in the form

∆(R, k) = ∆1(k)eiq·R. (2.6)

Larkin and Ovchinnikov [2] proved that for the 3D isotropic systems the order

parameter expressed by the linear combinations of eiq·R and e−iq·R

∆(R) = ∆1(e
iq·R + e−iq·R) = 2∆1 cos(q · R), (2.7)

is more stable than the order parameter Eq. (2.6). Depending on the literature,

the order parameters Eq. (2.6) and Eq. (2.7) are called the FF state and the LO

state, respectively. For the isotropic 2D systems, it has been proved that the order

parameters expressed by generalized linear combinations are more stable than the

FF state and LO state [46]. In general, the order parameter is written as

∆(R) =
M∑

m=1

∆meiqm·R. (2.8)

These states have the same upper critical field within the second order transition.

When the system is isotropic, the degeneracy of q is infinite, but if we assume the

periodic structure of the order parameter in the real space, the value of M can be

equal to 1, 2, 3, 4, and 6. When the Fermi surface has anisotropic structure, the

number of the equivalent q is related to the symmetry of the Fermi surface. In the

Q1D systems near the upper critical fields, it is expected that M = 2 if q ‖ a or b,

while M = 4 otherwise.
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3. NESTING EFFECT

In this section, the concept of Fermi-surface “nesting” for the FFLO state has

been introduced [8–10] in order to investigate the Fermi-surface effect, which is anal-

ogous to those for the charge-density-wave (CDW) and spin-density-wave (SDW).

Because the FFLO state consist of the Cooper pairs of electrons with (k, ↑) and

(−k+q, ↓), the stability of the state is closely related to the extent of the overlap of

the Fermi surfaces of spin-up and spin-down electrons. Figure 3 is schematic figure

of the nesting condition. The former Fermi surface is inverted and shifted by q,

which is expressed as k → −k + q.

-k+q

k

q

-k+q
-k

q

k

FIG. 3: Nesting condition of FFLO state. The solid and dotted curves present the Fermi

surfaces of spin-down electrons and spin-up electrons, respectively.

In the one dimensional (1D) systems, the upper critical field Hc2(T ) diverges at

T → 0 [47–49]. Such divergence is due to perfect nesting, which means that the

overlap occurs in a finite area on the Fermi surface, classified as type (a) in Table II.

However, for realistic interaction strengths, such 1D systems should undergo the

nesting instabilities to CDW or SDW. Therefore, the best candidate is a quasi-two-

dimensional (Q2D) system, in which the CDW and SDW transitions are suppressed.

In such systems, the Fermi surfaces touch on one or more lines by the transformation

k → −k + q of the spin-down Fermi surface[8–10]. The nesting condition of Q2D

isotropic systems is shown in figure 4. This type of nesting results in H ′
c2(0) 	= 0 and

Hc2(0) < ∞ and the upturn of Hc2(T ) at low temperatures, classified as type (b)
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in Table II, where H ′
c2(T ) ≡ dHc2/dT . In Q2D systems, the nesting enhances the

FFLO state, but at the same time, it suppresses the CDW and SDW instabilities [8].

kx

ky

kz

0 ky

kx

-k+q

FIG. 4: Nesting condition in Q2D systems. See the caption of Fig. 3 for the meaning of

the difference lines.

Here, we should note that the Q2D systems in this context include Q1D systems

in which the interchain hopping energy tb is large enough to suppress the CDW and

SDW transitions. Although (TMTSF)2X is called Q1D, it should be classified as

Q2D regarding the nesting effect for the FFLO state.

On the other hand, in isotropic systems having spherical Fermi surfaces, the

upper critical field of the FFLO state is only slightly higher than the Pauli param-

agnetic limit of the BCS state as mentioned above. In such systems, |q| becomes

larger than 2h/vF, which is the separation between the Fermi surfaces of the spin-up

and spin-down electrons, since “crossing along a line” is a better nesting condition

than “touching at a point”. Figure 5 displays the nesting condition of 3D isotropic

systems. Such a nesting condition leads to H ′
c2(0) = 0, which is classified as type

(c) in Table II.
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kx

kz

-k+q0

FIG. 5: Nesting condition in isotropic 3D systems. See the caption of Fig. 3 for the

meaning of the difference lines.

Figure 6 shows the relation between the upper critical fields with the dimensions

of systems. In Table II, the low-temperature behaviors of Hc2(T ) are summarized.

The Q1D compounds, such as (TMTSF)2X should be classified as type (b), because

the Fermi surfaces are sufficiently warped. However, the behavior of the upper

critical field is more complicated at high temperatures, because of the shape of the

Fermi surface, the density of states, the gap anisotropy, and so on. In fact, hybrid

behaviors of types (a) to (c) occur in the intermediate temperature region T <∼ T ∗,

depending on tb/ta and ϕ, where ϕ is the angle between q and the crystal a-axis.
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Tc

T

H

1D (a)

3D (c)

Q2D (b)

T*

FIG. 6: Upper critical fields for 1D, Q2D and 3D systems.

TABLE II: Nesting conditions and low-temperature behaviors of Hc2(T ) (from Ref. [40]).

type nesting Hc2(0) H ′
c2(0) H ′′

c2(T )

(a) touch on a surface infinite N/A positive

(b) touch on a line finite negative positive

(c) crossing along a line finite zero negative

Let us consider the model that has Q1D energy dispersion

ξσ(k, h) = −2ta cos(k · a) − 2tb cos(k · b) − hσ − μ, (3.1)

where μe and μ are the magnitudes of the electron magnetic moment and chemical

potential, respectively. We have defined h = μe|H|. In Eq. (3.1), we have assumed

that ta > tb � tc, and omited the interplane hopping energy tc for simplicity.

However, it is supposed that tc is large enough to stabilize the superconducting
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long-range order, and to justify the mean-field approximation, but that it is small

enough to omit in the mean-field self-consistent equations. Introducing reciprocal

lattice vectors ā, b̄, and c̄, and the momentum components kx, ky, and kz via

k = kxā + kyb̄ + kzc̄, we obtain

ξσ(k, h) = ξk − hσ, (3.2)

with

ξk = −2ta cos(kx) − 2tb cos(ky) − µ. (3.3)

For simplicity of notation, we have redefined kx and ky so that they include the

lattice constants a and b, respectively, which is equivalent to formally taking the

length unit so that a = b = 1.

To study the nesting condition, let us define the energy difference

∆ε(ky, q, h) ≡
[
ξ↑(k, h) − ξ↓(−k + q, h)

]
kx=k↑

Fx(ky)
, (3.4)

with kσ
Fx(ky) denoting a positive function that satisfies ξσ(kσ

Fx(ky), ky, h) = 0. On

the Fermi surface, define ∆kFx(ky, q) ≡ k↓
Fx(ky)− [k↑

Fx(ky − qy) + qx]. For the vector

q that satisfies ∆kFx(ky, q) = 0, the energy difference ∆ε(ky, q, h) is zero. If there

exists a constant vector q such that ∆kFx(ky, q, h) = 0 over a finite range of ky

values, perfect nesting occurs. In that case, Hc2(T ) diverges as T → 0, as in case

(a). However, such a constant vector q does not exist when tb 6= 0.

The nesting condition is not correctly treated by the linearized energy dispersion

relation

ξ(±)
σ (k, h) ≈ v̄F (kx ± pF(ky, kz)) + ε⊥(ky, kz) − hσ − µ, (3.5)

with a constant Fermi velocity v̄F, as used by many previous authors, and +(-) stands

for the right (left) sheet of the Fermi surface. In this model, the displacement of the

Fermi surfaces of spin-up and spin-down electrons due to the Zeeman energy 2h is

compensated by a constant shift q = (2h/v̄F, 0, 0) independent of (ky, kz). Therefore,

this model exhibits the perfect nesting condition in the FFLO state. However, in

realistic Q1D systems, the Fermi velocity vF depends on ky with a variation from v̄F

of the order of tbv̄F/ta, which is small but non-negligible. The variation of vF causes

a mismatch of the Fermi surfaces which significantly change the behavior of Hc2(T )

at low temperatures.
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Equation (3.2) gives the magnitude of the Fermi velocity along the most con-

ducting chain as vF = 2ta sin(kFx) in unit of a/~, where kFx denotes the Fermi

momentum in the chain direction. For quarter-filled bands in the organics, since

kFx ∼ π/4, vF ≈
√

2ta ≡ v̄F is obtained. The energy difference ∆ε(ky, q, h) owing to

∆vF ≡ vF−v̄F is estimated to be ∆vFq <∼ tbvFq/ta ∼ tbTc
(0)/ta, since vFq ∼ h ∼ Tc

(0),

using a value of q that makes the Fermi surfaces touch on a line at a point in the

(kx, ky) plane, where Tc
(0) denotes the zero-field transition temperature. Therefore,

the crossover temperature T0 between the perfect and imperfect nesting conditions

is proportional to tbTc
(0)/ta. The constant of proportionality can be small, because

even if only a small portion of the Fermi surfaces touch on a surface, Hc2 diverges

in the limit T → 0.

At higher temperatures T ∗ >∼ T >∼ T0, one can neglect ∆ε in comparison to the

thermal energy kBT . Therefore, the upper critical field is not significantly affected

by the small mismatch in the Fermi surfaces ∆kFx because of the temperature effect.

Hence, the system behaves like a 1D system, in which the Fermi-surface nesting for

the FFLO state is perfect. However, at low temperatures, T <∼ T0, the variation

∆vF due to the warp in the Fermi surface can be substantial. For T ∼ T0, the

system begins to lose its 1D character, and when T ¿ T0 the two-dimensional (2D)

character of the system is recovered. Hence, when the interchain hopping energy

tb is small enough that T ∗ >∼ T0 ∝ tbTc/ta is satisfied, a dimensional crossover

between one and two dimensions can take place [50]. In the section 6, it is proved

by numerical calculations that such a crossover actually occurs.
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4. PURPOSE OF THIS STUDY

We analyze the pure FFLO state in Q1D systems for s- and d-wave pair-

ings. It was suggested that the FFLO state occurs in a organic superconductor

(TMTSF)2ClO4 [25, 26]. In (TMTSF)2ClO4, the line nodes are likely to exist, be-

cause the NMR measurements indicate that 1/T1 ∝ T 3 [27]. Hence, in particular,

we focus on the nodal d-wave pairings.

Although previous theoretical studies for the FFLO state are consistent with

the experimental data, the Fermi-surface effect was not treated correctly. In the

Q1D systems, tb/ta is large enough to suppress the CDW and SDW transitions.

Therefore, the Q1D system is classified as Q2D with respect to the for the nesting

effect of the FFLO state. Many previous authors assumed that the Fermi velocity vF

is constant [31, 33]. This situation implies the perfect nesting like 1D systems. We

take into account the Q1D dispersion correctly, and predict a dimensional crossover

between one and two dimensions. This crossover is induced by the temperature

effect, which will be proved by numerical calculations in Sect. 3.

We will show Hc2 for various ratios tb/ta. In (TMTSF)2ClO4, although the value

of tb/ta has been estimated by some theoretical and experimental studies, a consensus

on the ratio tb/ta has not been obtained. When tb/ta increases, since the warp in

the Fermi surface increases, the system exhibits the 2D character. In that case, the

effect to the dimensional crossover will be investigated.

The upper critical fields will be obtained for various directions of q. Many previ-

ous authors assumed that the direction of q is oriented to a most conductive chain

direction, where q is shortest. One may think that Hc2 is maximum in the direction

in which q is shortest, because the spacial oscillation in the order parameter ∆(r)

is minimal. However, in the warp Fermi surface for the square lattice tight binding

model, the optimum direction of q is nontrivial [10, 11]. In addition, for large angles

between q and a, the nesting condition has not been examined. We will clarify the

relation between the nesting condition and the direction of q for both s- and d-wave

pairings.

In this study, we will formulate the equations for Tc and Hc2, and temperature de-

pendence upper critical fields are evaluated by the numerical calculations. The main

16



goals of this research are as follows: (1) A novel dimensional crossover predicted by

nesting effect is verified numerically. (2) The upper critical fields Hc2(T ) for various

ratios tb/ta are exhibited. (3) The upper critical fields for the various directions of

q are shown. (4) We compare the theoretical results with the experimental data.
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5. FORMULATION

In this section, the previous theory for the square lattice tight-binding model is

extended to the present Q1D tight-binding model [10, 11]. In the following subsec-

tions, we formulate the equations for Tc, Hc2 and HP.

Considering the organic conductors, we assume quarter-filled band. We examine

the Hamiltonian

H =
∑
kσ

ξσ(k, h)a†
kσakσ − 1

N

∑
q

∑
k,k′

V (k,k′)a†
k+q/2↑a

†
−k+q/2↓a−k′+q/2↓ak′+q/2↑,

(5.1)

with the band dispersion of the Q1D tight-binding model (3.4), and the pairing

interaction

V (k,k′) = Vαγα(k)γα(k′), (5.2)

where N and Vα are the site number and the coupling constant of the α component

of the pairing interactions. α is the symmetry index of the gap function. We examine

s- and d-wave pairing, defining γs(ky) = 1

γd(ky) =
√

2 cos ky.
(5.3)

When q = 0, the Hamiltonian is reduced to the conventional BCS Hamiltonian. We

derive the gap equation following the same procedure as the BCS theory.
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5.1. FFLO upper critical field at finite temperatures

We adopt the mean field approximation extended to the FFLO state as

HMF =
∑
kσ

ξσ(k, h)a†
kσakσ +

∑
q

∑
k

[
∆q(k)a†

k+q/2↑a
†
−k+q/2↓ + ∆∗

q(k)a−k+q/2↓ak+q/2↑

]
,

(5.4)

where we have defined the order parameter by

∆q(k) = − 1

N

∑
k′

V (k, k′)〈a−k′+q/2↓ak′+q/2↑〉, (5.5)

with the bracket 〈· · · 〉 denoting the ensemble average. Using the Bogoliubov trans-

formation  ak+q/2↑ = ukαk↑ + vkα†
−k↓

a†
−k+q/2↓ = ukα†

−k↓ − vkαk↑,
(5.6)

the gap equation is obtained as

∆q(k
′) =

1

N

∑
k

V (k, k′)
1 − f(Ek↑) − f(Ek↓)

2Ek

∆q(k), (5.7)

where

∆q(k) = ∆qγα(k), (5.8)

and f(ε) is the Fermi distribution function. Since the summation can be rewritten

into the integral over the first Brillouin zone, we obtain

∆q(k
′) =

∫
dξk

∑
s=±

∫ π

−π

dky

2π
ρ(ξk, ky)

1 − f(Ek↑) − f(Ek↓)

2Ek

∆q(k). (5.9)

Here, we have defined the density of states ρ(ξk, ky) by

1

N

∑
k

F (k) =

∫
dξk

∑
s=±

∫ π

−π

dky

2π
ρ(ξk, ky)F (ξk, s, ky), (5.10)

for an arbitrary smooth function F (ξk, s, ky) = F (k) with s = sgn(kx), and Ekσ =

σζ + Ek with Ek =
√

ξ2
k + ∆q(k)2 and

ζ = hc2(
vF(s, ky) · q

2hc2

− 1), (5.11)
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and vF(s, ky) is the Fermi velocity. As mentioned above, the momentum dependence

of vF(s, ky) is taken into account. The integral with respect to ξk is taken over a

region near the Fermi surface. Taking the limit ∆q → 0, we obtain the Tc equation

as

log
Tc

(0)

Tc

=

∫ ∞

0

dt
∑
s=±

∫ π

−π

dky

2π

ρα(0, ky)

Nα(0)

× sinh2 βζ

2

tanh t

t [cosh2 t + sinh2(βζ/2)]
,

(5.12)

where ρα(0, ky) = ρ(0, ky)
[
γα(ky)

]2
. The length of q is optimized so that Tc or Hc2

is maximized. For numerical calculations, we rewrite Eq. (5.12) as

log
Tc

Tc
(0)

= −
∑
s=±

∫ π

−π

dky

2π

ρα(0, ky)

Nα(0)
sinh2 βζ

2

∫ ∞

0

dy log y

×

[
2 sinh2 y[

cosh2 y + sinh2(βζ/2)
]2 − 1

cosh2 y
[
cosh2 y + sinh2(βζ/2)

]]
.

(5.13)

Here, we have defined an effective density of states at the Fermi energy for α-wave

pairing Nα(0) is

Nα(0) =
∑
s=±

∫ π

−π

dky

2π
ρ(0, ky)[γα(k)]2, (5.14)

with

ρ(0, ky) =
1

2π

1

2ta sin{kFx(ky)}
, (5.15)

where kFx(ky) is the value of kx on the Fermi surface at ky.
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5.2. FFLO upper critical field at T = 0

In this subsection, the Hc2 equation at T = 0 is derived. The normal and anoma-

lous ground-state Green-functions are defined by G(t − t′) = − i
〈
T

[
ak′↑(t)a

†
k↑(t

′)
]〉

0

F+(t − t′) = i
〈
T

[
a†
−k′+q↓(t)a

†
k↑(t

′)
]〉

0
,

(5.16)

where 〈Â〉0 denotes the quantum mechanical expectation value of the operator Â

in the ground state. Here, T[· · · ] and t are the time-ordering symbol and time,

respectively. The equations of motion of the Green functions are
i
∂

∂t
G(t − t′) =δ(t − t′)δk,k′ − i

〈
T

[[
ak′↑(t), H

]
a†

k↑(t
′)
]〉

0

i
∂

∂t
F+(t − t′) =i

〈
T

[[
a†
−k′+q↓(t), H

]
a†

k↑(t
′)
]〉

0
.

(5.17)

Using Eq. (5.4), the gap equations are derived. By the Fourier transformation

Eq. (5.17) is written as (ω + iδω + ξ−k+q + h)F+
ω (k) + ∆∗

q(k)Gω(k) = 0

(ω + iδω − ξk + h)Gω(k) + ∆q(k)F+
ω (k) = 1,

(5.18)

where

∆q(k) = − 1

N

∑
k′

V (k,k′)〈a−k′+q↓ak′↑〉0. (5.19)

Therefore, the ground state gap equation is obtained as

∆∗
q(k

′) =
1

N

∑
k

∫ ∞

−∞

dω

2πi
V (k, k′)

×
∆∗

q(k)

(ω + iδω − ξk + h)(−ω − iδω − ξ−k+q − h) + |∆q(k)|2
.

(5.20)

Taking the limit ∆q → 0, we obtain the Hc2 equation:

1 − Vα

∫ ∞

−∞

dω

2πi

∫
d2k

(2π)2
[γα(k)]2

1

(ω + iδω − ξk + h)(−ω − iδω − ξ−k+q − h)
= 0.

(5.21)

The upper critical field at T = 0 is obtained by solving

hc2 =
∆α0

2
exp

[
−

∑
s=±

∫ π

−π

dky

2π

ρα(0, ky)

Nα(0)
log

∣∣∣1 − vF(s, ky) · q
2hc2

∣∣∣] , (5.22)

where the FFLO vector q is optimized so that the hc2 is maximized [9, 10]. Here,

hc2 = µeHc2, ∆α0 = 2ωc exp[−1/|Vα|Nα(0)], and ωc is the cutoff frequency.
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5.3. Pauli paramagnetic limit at finite temperatures

In the following two subsections, we formulate the HP equation. The free energies

F0 for the BCS state (q = 0) in magnetic field is obtained from the partition function

for the mean field Hamiltonian Eq. (5.4),

F0 = − 2kBT
∑

k

ln(1 + e−βEk)

+
∑

k

[
ξk − Ek +

[
∆0(k)

]2 1 − f(Ek↑) − f(Ek↓)

2Ek

]
,

(5.23)

where ∆0(k) = ∆0(T )γα(k). When ∆0(T ) = 0, this free energy is reduced to the

normal-state free-energy Fn:

Fn = −2kBT
∑

k

ln(1 + e−βξk) +
∑

k

[
ξk − |ξk|

]
. (5.24)

The difference of the free energies ∆F ≡ F0 − Fn is written as

∆F = T
∑
kσ

ln
1 + e−β(σhP+|ξk |)

1 + e−β(σhP+
√

ξ2
k+∆0(k)2)

− 1

2
NNα(0)

[
∆0(T )

]2(
1 + 2 ln

∣∣∣ ∆
(0)
α

∆0(T )

∣∣∣).

(5.25)

Then, the HP and ∆0(T ) equation is obtained from the condition ∆F = 0 as∫ π

−π

dky

2π
ρ(0, ky)

( hP

∆α0

)2

=
Nα(0)

2

(∆0(T )

∆α0

)2(
1 + 2 ln

∣∣∣ ∆
(0)
α

∆0(T )

∣∣∣)
− 2T

∆α0

∆0(T )

∆α0

∫ π

−π

dky

2π
ρ(0, ky)γα(k)

×
∑

σ

∫ ∞

0

dp cosh p ln
(1 + e−β|σhP+∆0(k) sinh p|

1 + e−β|σhP+∆0(k) cosh p|

)
,

(5.26)

where ∆
(0)
α is the order parameter at T = 0 determined by the gap equation (5.7).

On the other hand, a gap equation for q = 0 written as

ln
( ∆

(0)
α

∆0(T )

)
=

∫ π

−π

dky

2π

ρα(0, ky)

Nα(0)

∑
σ

∫ ∞

0

dp
1

eβ(σhP+∆0(k) cosh p) + 1
. (5.27)

Solving Eqs. (5.26) and (5.27) numerically, ∆0(T ) and HP are obtained.
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5.4. Pauli paramagnetic limit at T = 0

The superconducting condensation energy ∆E is determined by Eq. (5.25) at

T = 0 and H = 0. Therefore, ∆E is written as [NNα(0)|∆(0)
α |2]/2. The Pauli

paramagnetic limit HP at T = 0 is determined by the condition that the spin

polarization energy is equal to the superconducting condensation energy as

χ
HP

2

2
=

Nα(0)|∆(0)
α |2

2
, (5.28)

where χ is the spin susceptibility, and

∆(0)
α =

1

γ̄α

∆α0 (5.29)

with

1

γ̄α

= exp


√〈[

γα(k)
]2

log
[
1/|γα(k)|

]〉
F√〈[

γα(k)
]2〉

F

 . (5.30)

Here, we have defined the average over Fermi surface:

〈
· · ·

〉
F

=

∫ π

−π

dky

2π

ρ(0, ky)

N(0)

(
· · ·

)
. (5.31)

N(0) denotes the density of states. The Pauli paramagnetic limits for s- and d-wave

pairing are derived as 
hP

∆d0

=

√〈[
γd(k)

]2〉
γ̄d

1√
2

hP

∆s0

=
1√
2
,

(5.32)

where hP = µeHP
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6. NUMERICAL RESULTS

6.1. FFLO upper critical fields at finite temperatures

In this subsection, the numerical results for the temperature dependences of the

upper critical fields are shown assuming s-wave and d-wave pairings. First, we

consider the modulation vector q ‖ a, which direction of q seems favorable for

Fermi-surface nesting, since the Fermi surfaces touch by the shortest q, and thus the

spatial variation in ∆(r) is minimum. In fact, this is confirmed below by numerical

calculations.

Figure 7 (a) shows the temperature dependence of the upper critical fields for

d-wave pairing. For tb/ta <∼ 0.1, we find a new kind of dimensional crossover as

follows. Just below the tricritical temperature T ∗, the upper critical field Hc2(T )

increases steeply along the curve of the 1D system. However, with the temperature

decreased, the rate of increase in Hc2(T ) diminishes, and a shoulder appears. The

behavior of Hc2(T ) at lower temperatures is reduced to that in the 2D systems,

i.e., an upturn and a finite value at T = 0. The shoulder becomes less pronounced

for tb/ta ∼ 0.15 and completely disappears for tb/ta ∼ 0.25. Independently of the

value of tb/ta 6= 0, the low-temperature behavior is essentially that of a Q2D system

and thus classified as type (b). As tb/ta increases, the FFLO upper critical field

decreases, and for tb/ta >∼ 0.25, the upper critical field is lower than that in 2D

isotropic systems.

Figure 7 (b) shows the temperature dependence of the optimized q ≡ |q| at the

magnetic field H = Hc2(T ). Below T ≈ 0.56×Tc, the FFLO state q 6= 0 occurs. The

behavior of q is not monotonic, which reflects the behavior of Hc2(T ). As shown

in the left figure, all curves of q̄ ≡ vF0q/2h converge to unity at T = 0, where

vF0 ≡ |vFx(s, ky = 0)|. From this convergence, the Fermi surfaces touch on a line at

ky = 0 by the transformation k → −k + q of the spin-down Fermi surface.
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FIG. 7: Temperature dependence of the upper critical field and q for d-wave pairing when

tb/ta = 0.1 (from Ref. [40]). The solid curves show the results for the range of ϕ from 0 to

π/2. The dashed curve is for a 1D system. The dotted curve is for a 2D isotropic system

with dx2−y2-wave pairing when q ‖ x̂.

Figure 8 (a) shows the temperature dependence of the upper critical field for

s-wave pairing. Similar to that for d-wave pairing, a dimensional crossover from one

dimension to two dimensions is found. However, the upturn at low temperatures is

weaker than that for d-wave pairing. This difference originates from the difference

in the Fermi-surface nesting. For q ‖ a, the Fermi surfaces touch on a line at ky = 0,
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where the amplitude of the gap function is maximum for d-wave pairing.

Figure 8 (b) shows the temperature dependence of q. As shown in the left figure,

all curves of q̄ converge to unity at T = 0, which implies that the Fermi surfaces

touch on a line at ky = 0. This behavior is the same as that for d-wave pairing.
Δ

(a)

Δ

(b)

FIG. 8: Temperature dependence of the upper critical field and q for s-wave pairing when

q ‖ a (from Ref. [40]). The solid curves are for the range of tb/ta from 0.05 to 0.3. The

dashed curve plots a 1D system at tb = 0. The dotted curve is for a 2D isotropic system

with s-wave pairing.

Next, we consider the dependence of Hc2(T ) on the direction of the FFLO mod-
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ulation vector q. Figure 9 shows the results for d-wave pairing when tb/ta = 0.1.

The upturn in the low-temperature region disappears for ϕ >∼ π/4, but the large

shoulder remains. This behavior can be interpreted in terms of the nesting concept.

For a large angle ϕ >∼ π/4, the nesting condition of crossing along lines becomes

more effective than that of touching on a line near the node of the d-wave gap

function. Therefore, the low-temperature behavior is classified as type (c), but the

magnitude is much larger than that in three-dimensional (3D) isotropic systems,

because the crossing angle between the Fermi surfaces is extremely small owing to

the Q1D Fermi-surface structure. The large shoulder vanishes between ϕ = 7π/20

and 9π/20. The dimensional crossover between one and two dimensions appears

only for ϕ <∼ 3π/20.

The FFLO critical field is low when ϕ = π/2. Considering the factors that

suppress the FFLO state, particularly the orbital pair-breaking effect, this result

suggests that FFLO modulation does not occur in directions ϕ ≈ π/2 in the Q1D

materials. Therefore, in the compound (TMTSF)2ClO4, if the high-field phase for

H ‖ b′ is an FFLO state, the modulation along q and the vortices along H cannot

coexist in the form q ‖ H . In such a case, the Abrikosov functions with higher

Landau-level indexes would contribute to the state, and the spatial modulation

perpendicular to the magnetic field would be partly due to a paramagnetic effect [41,

52].
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FIG. 9: Temperature dependence of the upper critical field and q for d-wave pairing when

tb/ta = 0.1 (from Ref. [40]). The solid curves show the results for the range of ϕ from 0 to

π/2. The dashed curve is for a 1D system. The dotted curve is for a 2D isotropic system

with dx2−y2-wave pairing when q ‖ x̂.

Figure 10 shows the results for s-wave pairing when tb/ta = 0.1. Similar to the

result for d-wave pairing, a steep increase occurs just below T ∗ for ϕ <∼ 7π/20, but

the upturn at low temperatures occurs for all ϕ’s. It is found that q/h is equal to

ta/tb at T = 0.
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FIG. 10: Temperature dependence of the upper critical field and q for s-wave pairing when

tb/ta = 0.1 (from Ref. [40]). The solid curves show the results for the range of ϕ from 0

to π/2. The dashed curve presents the result for a 1D system. The dotted curve is for a

2D isotropic system with s-wave pairing.

Figure 11 presents the results for d-wave pairing when tb/ta = 0.2. Hc2(T ) is max-

imum for ϕ = 0 in the whole temperature range. The nesting condition is “crossing

along the lines” as that in the 3D systems for ϕ >∼ π/4 and the dHc2(0)/dT = 0.

When ϕ ≈ π/2, the Hc2(T ) is not strongly affected by the latio tb/ta in contrast to

ϕ ≈ 0. The result is qualitatively the same as that for tb/ta = 0.1, except that the
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value of q is smaller.
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FIG. 11: Temperature dependence of the upper critical field and q for d-wave pairing when

tb/ta = 0.2. The solid curves show the results for the range of ϕ from 0 to π/2.

Figure 12 graphs the results for s-wave pairing when tb/ta = 0.2. For ϕ <∼ 9π/20,

as angle ϕ increases, the upper critical fields Hc2(T ) decrease. In contrast, Hc2(T )

rapidly increases for 9π/20 < ϕ < π/2. When ϕ = π/2, Hc2(T ) exceeds that for

ϕ = π/4 at low temperatures.
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FIG. 12: Temperature dependence of the upper critical field and q for s-wave pairing when

tb/ta = 0.2. The solid curves show the results for the range of ϕ from 0 to π/2.

Figure 13 shows the results for d-wave pairing when tb/ta = 0.3. For ϕ <∼ 3π/20,

a small upturn remains. When ϕ = π/4, the upper critical field is slightly higher

than the Pauli paramagnetic limit. For ϕ ≈ 9π/20, the upper critical field is slightly

lower than the Pauli paramagnetic limit at T = 0.
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FIG. 13: Temperature dependence of the upper critical field and q for d-wave pairing when

tb/ta = 0.3. The solid curves show the results for the range of ϕ from 0 to π/2.

Figure 14 presents the results for s-wave pairing when tb/ta = 0.3. The value of

Hc2 for ϕ = π/2 is near that for ϕ = 0. As a mentioned above, the upper critical

field is maximum when q ‖ a, independently of tb/ta 	= 0.
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FIG. 14: Temperature dependence of the upper critical field and q for s-wave pairing when

tb/ta = 0.3. The solid curves show the results for the range of ϕ from 0 to π/2.

In Fig. 15, we compare the theoretical curve and experimental data for H ‖
a. The present theory neglects the strong coupling effect, impurity (disorder) pair

breaking, and thermal fluctuations in the Q1D system. In particular, in the presence

of these effects, the ratio Δ0/Tc
(0) would become larger than the weak coupling value

of 1.76, where Δ0 is the superconducting gap at T = 0 and H = 0. The simplest

way to take these effects into account is to change the ratio of the scaling of the

T/Tc
(0) and H/Δ0 axes. Therefore, in order to compare the present result and
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the experimental data, we introduce the ratio r = (∆true
0 /Tc

true)/(∆d0/Tc
(0)), where

∆true
0 and Tc

true are the true values of ∆0 and Tc
(0), respectively.

In the experimental data [25, 26], Hc2 saturates near T = 0.7 K and H = 3 T,

reflecting the paramagnetic limit [53], but the increase in Hc2(T ) recovers below

T ≈ 0.3 K. Hence, a tricritical point (T ∗, H∗) should exist above T = 0.3 K if the

recovery is owing to the emergence of a different superconducting phase such as the

FFLO state. As shown in Fig. 15, the experimental data for Tc can be fitted by a

fourth-order polynomial in H over a region near and above H∗. As a result, a small

shoulder appears below T = 0.2 K, corresponds to the present theory. The point

at which d2T (H)/dH2 changes its sign is the tricritical point. The values obtained

from the least-squares fit are T ∗ ≈ 0.42 K and H∗ ≈ 3.7 T. The difference between

this T ∗ and the theoretical T ∗ = 0.56 × Tc ≈ 0.81 K is owing to the orbital pair-

breaking effect. In the present theory, Hc2(T ) exhibits a second steep increase below

the shoulder near T = 0 for d-wave pairing, while it does not for s-wave pairing. The

complex behavior of Hc2(T ) for d-wave pairing is owing to the nesting effect in a

Q1D system, reflecting the structure of the d-wave gap function with line nodes near

ky = ±π/2. Hence, unless the orbital effect is too strong, the second steep increase

that indicates a d-wave FFLO state might be observed near T = 0 for H ‖ a.
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FIG. 15: Comparison of the theoretical results with the experimental data [25, 26] for

H ‖ a. The solid curve is from a least-squares fit of the transition temperatures to a

fourth-order polynomial in H below T = 0.5 K. The red dashed curve is the theoretical

result for d-wave pairing with tb/ta = 0.1, ϕ = 0, and g/r = 1.5, where g and r are the

g-factor and a factor taking into account the correction of the ratio ∆0/Tc
(0), respectively.

The closed triangle indicates the tricritical point determined by the least-squares fit. (From

Ref. [40].)
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6.2. FFLO upper critical field at T = 0

In this subsection, we present the results of the upper critical fields and the

nesting conditions at T = 0. Figure 16 plots Hc2(0) as a function of the angle ϕ for

d-wave pairing. It is found that the direction q ‖ a i.e. ϕ = 0 is the most favorable,

because of the nesting effect, for both d-wave and s-wave pairings. This remains

unchanged at finite temperatures. For ϕ >∼ π/4, the nesting condition of “crossing

along lines” becomes more effective than that of “touching on a line” near the node.

Thus, a non-monotonic behavior in Hc2(0) is observed for ϕ ≈ π/4.

Figure 17 presents ϕ dependence of the upper critical fields for s-wave pairing.

Hc2(0) decreases simply up to ϕ ≈ 9π/20. More than ϕ ≈ 9π/20, Hc2(0) shows a

small increase. This behavior can be interpreted in terms of the nesting concept. For

ϕ <∼ 9π/20, nesting condition of touching on the right Fermi surface is favorable. For

ϕ >∼ 9π/20, nesting condition of touching on the left surface becomes more effective

than that of touching on the right surface (see fig. 20).
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FIG. 16: Angle ϕ dependence of the upper critical fields and q at T = 0 (from Ref. [40]).

The curves show the results for d-wave pairing. The dashed curve shows the Pauli para-

magnetic limit for d-wave pairing with tb/ta = 0.3.
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FIG. 17: Angle ϕ dependence of the upper critical fields and q at T = 0 for s-wave pairing

(from Ref. [40]).

Figure 18 shows the Fermi-surface nesting conditions for s- and d-wave pairings

and for tb/ta = 0.1 and 0.2. The nesting conditions of both s- and d-wave pairing

are “touch on a line or lines” as in the Q2D systems at ky = 0 and they are not

the perfect nesting, independently of the ratio tb/ta. It has been proved that the

difference between the Fermi surface of spin-up elections shifted by q and that of

spin-down electrons is proportional to tbT
(0)
c /ta in section 3.
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FIG. 18: Nesting conditions for s- and d-wave pairing, when q ‖ a. Black and red solid line

are the Fermi surfaces of spin-up electrons and spin-down electrons, respectively. Dotted

curves show spin-up electrons shifted by q. The small arrow shows q/h, and connects the

points on the Fermi surfaces which touch by the transition k → k + q. Figure (a) and (b)

plot the case of tb/ta = 0.1 and 0.2, respectively.
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Figure 19 presents the nesting condition for d-wave pairing and for several values

of the angle ϕ at T = 0. For ϕ >∼ π/4, it is obtained that dHc2(0)/dT = 0, and

the nesting condition is “crossing along lines” as in the 3D systems. This change

relates to the non-monotonic behavior observed in the angle ϕ dependence of Hc2(0)

in (TMTSF)2ClO4.
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FIG. 19: Angle ϕ dependence of nesting condition for d-wave pairing and tb/ta = 0.1. See

the caption of Fig. 18 for the meaning of the difference lines.

Figure 20 shows of the nesting condition for s-wave pairing and for angle ϕ =

0, 97π/200, 49π/100, and π/2. For large angles between q and a, the curves of

Hc2(T ) show the behavior of the typical of Q2D systems, and the nesting condition
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is “touching on a line”, similarly to ϕ = 0. The difference between the s-wave and

d-wave states is due to the existance of the line nodes of the order parameter in

the d-wave state. For ϕ = 97π/200, the nesting condition of touching on the right

Fermi surface is favorable. For ϕ >∼ 49π/100, the nesting condition of touching on

the left surface becomes more effective than that of touching on the right surface.
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FIG. 20: Angle ϕ dependence of nesting condition for tb/ta = 0.1 with s-wave pairing. See

the caption of Fig. 18 for the meaning of the difference lines.
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6.3. Pauli paramagnetic limit

In this subsection, we present the numerical results for the Pauli paramagnetic

limit. Figure 21 shows the temperature dependence of the Pauli paramagnetic limit

for a 2D isotropic system. For s-wave pairing, μeHP/Δs0 = 1/
√

2 at T = 0. Although

we cannot obtain the final result for the Q1D systems, similar results are expected by

solving Eqs. (5.26) and (5.27). In Q1D system, μeHP/Δs0 is equal to 1/
√

2 at T = 0

for s-wave pairing as in the case of a 2D isotropic system. The Pauli paramagnetic

limit for d-wave pairing is maximum value, μeHP/Δd0 ≈ 0.63 (Fig. 22) at T = 0,

when tb/ta = 0.3. The results show that the temperature dependence for d-wave is

small.

Δ

FIG. 21: Temperature dependence of the Pauli paramagnetic limit for s-wave pairing. The

dashed curve shows the result for a 2D isotropic system. The solid curve is a upper critical

field for q = 0.

Figure 22 presents the Pauli paramagnetic limit for d-wave pairing at T = 0.

μeHP/Δd0 slightly increases as tb/ta increases.
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Δ

FIG. 22: tb/ta dependence of the Pauli paramagnetic limit for d-wave pairing.
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7. SUMMARY AND DISCUSSION

The temperature dependence of the upper critical field Hc2(T ) has been calculated

for various ratio of hopping integrals tb/ta and direction of q in Q1D s- and d-wave

superconductivity. The qualitatively different behaviors of Hc2 emerge depending

on the values of these parameters.

In particular, the dimensional crossover from one dimension to two dimensions

due to a temperature effect has been discovered. For q ‖ a and tb/ta <∼ 0.1, the

behavior of Hc2 looks like that of the 1D systems for T ∗ >∼ T >∼ T0, while it is reduced

to that of the Q2D systems for T <∼ T0. This dimensional crossover is found for both

s- and d-wave pairings, although the upturn at low temperature for s-wave is weaker

than that for d-wave. This crossover appears because the Fermi surfaces become

diffuse owing to the thermal excitations at the energy scale kBT . For T ∗ >∼ T >∼ T0,

the upper critical field behaves as if the Fermi-surface nesting is perfect as in the

case of 1D. For T <∼ T0, the nesting condition is “touching on a line” as in the case of

Q2D systems because the Fermi surface becomes sharp. Because T0 is proportional

to tbTc
(0)/ta, T0 is shift to high temperature side, as tb/ta increases. This dimensional

crossover is quite different from the field-induced dimensional-crossover effect that

has been studied so far by many authors [7, 45].

We have compared the present result with the experimental data in

(TMTSF)2ClO4. When H ‖ a, Hc2(T ) shows a shoulder at low temperature. This

behavior may relate to the present dimensional crossover. Detailed calculations of

the temperature dependence upper critical fields that take into account both the

Fermi-surface effect and the orbital effect remain for a future study. If the orbital

effect is too strong, the behavior of Hc2(T ) would be simplified. If not, however, the

second steep increase that indicates a d-wave FFLO state might be observed near

T = 0.

When q ‖ a and 0.2 >∼ tb/ta >∼ 0.15, Hc2(T ) show a behavior typical of Q2D

systems for s- and d-wave pairings, but a slight shoulder remains. For tb/ta >∼ 0.2,

the slight shoulder disappears and Hc2(T ) qualitatively exhibits the typical behavior

of the Q2D system in whole temperature range. This behavior may correspond to

the monotonic behavior of dHc2(T )/dT in (TMTSF)2PF6 [22] if the pairing is spin
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singlet. For q ‖ a, the behavior of Hc2(T ) below tricritical temperature T ∗ is

summarized in Table III.

TABLE III: Behaviors of Hc2(T ) below the tricritical temperature T ∗, when q ‖ a, i.e.,

ϕ = 0. The texts in the backets indicate the rate of increase.

d-wave s-wave

tb/ta T <∼ T0 T0
<∼ T <∼ T ∗ T <∼ T0 T0

<∼ T <∼ T ∗

small Q2D (large) 1D Q2D (small) 1D

large Q2D Q2D Q2D Q2D

It has been found that the upper critical field is maximum for q ‖ a both for

s-wave and d-wave pairings, independent of tb/ta. This direction of q was previously

assumed but is not obvious a priori when the Fermi surface is warped.

Hc2(T ) for d-wave pairing exhibits the qualitatively different behaviors depending

of the angles ϕ between q and a. When ϕ >∼ π/4, the upturn at low temperature dis-

appears and Hc2(T ) curve is convex upward for d-wave pairing but the large shoulder

remains. This behavior converges to a finite value Hc2(0) with dHc2(0)/dT = 0, i.e.,

corresponding to type (c) in Table II, as for 3D systems. For the optimum q, the

Fermi surfaces cross along lines, but they do not touch on a line. This situation

is irregular, as explained in Sect. 3, and it originates from the small curvature of

the Q1D Fermi surface and the existence of the line nodes. On the other hand, for

s-wave pairing, Hc2(T ) exhibits an upturn near T = 0, i.e., corresponding to type

(b) in Table II, as for Q2D systems. Then, the Fermi surfaces touch on a line for all

ϕ’s. For q ‖ b, the Hc2(T ) is slightly higher than the Pauli paramagnetic limit and

is not affected by the hopping integral parameters for both s- and d-wave pairings.

For tb/ta = 0.1, the angle ϕ dependence of Hc2(T ) below tricritical temperature T ∗

is summarized in Table IV.

Now, we discuss the relation between the directions of the FFLO modulation

vector q and the magnetic field H . For the discussion, let q0 denote the optimum

q in the absence of the orbital pair-breaking effect. This q0 is determined by the
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TABLE IV: Behaviors of Hc2(T ) below the tricritical temperature T ∗, when tb/ta = 0.1.

The texts in the backets indicate the rate of increase.

d-wave s-wave

ϕ T <∼ T0 T0
<∼ T <∼ T ∗ T <∼ T0 T0

<∼ T <∼ T ∗

small Q2D (large) 1D Q2D (small) 1D

large 3D 3D Q2D Q2D

Fermi-surface effect. There are two theoretical predictions for the relation of q and

H . When the orbital magnetic effect is strong, q is oriented to the direction of

H , as Gruenberg and Gunther proposed [51]. Since the degrees of the freedom

perpendicular to H are used by the vortex state, the spatial modulation of the

FFLO state can occur only in the direction of H . The FFLO state is stabilized

when H ‖ q0 for the Fermi-surface effect. In contrast, when the Fermi-surface effect

is much stronger than the orbital effect, q is locked in the direction of q0, independent

of the magnetic field direction [41, 52], where the component of q perpendicular to

H is realized by the Abrikosov functions with higher Landau level indexes.

In the experiment, the magnetic-field angle-dependence in Hc2 has been observed.

The experimental Hc2 for the magnetic field along b′-axis is larger than that along

a-axis. The present theoretical result that Hc2 is the highest for q ‖ a might appear

to be inconsistent with the experimental result. However, since the orbital pair–

breaking effect is weakest for H ⊥ q according to the study by Croitoru et al., the

theoretical result is consistent with the experimental result, if the direction of q is

locked in the direction of q0.

The Pauli paramagnetic limit for s-wave pairing µeHP/∆s0 = 1/
√

2 at T = 0,

independently tb/ta. That for d-wave pairing is maximum value, µeHP/∆d0 ≈ 0.63

at T = 0, when tb/ta = 0.3.

In conclusion, Q1D s-wave and d-wave superconductors with various values of

tb/ta and ϕ show qualitatively different behaviors of Hc2(T ), including hybrid be-

haviors of types (a) through (c). For tb/ta <∼ 0.1 and ϕ <∼ 3π/20, a novel dimen-
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sional crossover from one dimension to two dimensions has been uncovered, which

may be related to the non monotonic behavior of the upper critical field for H ‖ a

in (TMTSF)2ClO4. When q is parallel to the most conducting chain, Hc2(T ) is

maximum for both s-wave and d-wave pairings. If the Fermi-surface effect is too

strong, since q is oriented to the direction of q0, the theoretical angular dependence

is consistent with the experimental date.
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