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ON THE MINIMALITY OF THE CORRESPONDING
SUBMANIFOLDS TO FOUR-DIMENSIONAL SOLVSOLITONS

TAKAHIRO HASHINAGA

Abstract. In our previous study, the author and Tamaru proved that a left-
invariant Riemannian metric on a three-dimensional simply-connected solvable
Lie group is a solvsoliton if and only if the corresponding submanifold is mini-
mal. In this paper, we study the minimality of the corresponding submanifolds
to solvsolitons on four-dimensional cases. In four-dimensional nilpotent cases,
we prove that a left-invariant Riemannian metric is a nilsoliton if and only if
the corresponding submanifold is minimal. On the other hand, there exists a
four-dimensional simply-connected solvable Lie group so that the above cor-
respondence dose not hold. More precisely, there exists a solvsoliton whose
corresponding submanifold is not minimal, and a left-invariant Riemannian
metric which is not solvsoliton and whose corresponding submanifold is mini-
mal.

1. Introduction

A left-invariant Riemannian metric ⟨, ⟩ on a simply-connected solvable Lie
group G is called a solvsoliton if the following holds for some c ∈ R and D ∈
Der(g):

Ric⟨,⟩ = cI +D.

Here Ric⟨,⟩ is the Ricci operator of ⟨, ⟩, g is the Lie algebra of G, and Der(g) is the
algebra of derivations of g. When G is nilpotent, a solvsoliton on G is called a
nilsoliton. Solvsolitons have been introduced by Lauret [9, 14]. Solvsolitons have
been studied very actively and played a key role in the study of homogeneous
Ricci solitons (See, for instance, [4, 5, 6, 7, 9, 12, 13, 14, 15, 18, 19]). In particular,
every solvsoliton on a simply-connected solvable Lie group is a Ricci soliton ([14]),
and every left-invariant Ricci soliton on a solvable Lie group is isometric to a
solvsoliton ([7]).
We are studying solvsolitons from the view point of the corresponding submani-

folds. The notion of the corresponding submanifolds to left-invariant Riemannian

Key words and phrases. Lie groups, left-invariant Riemannian metrics, solvsolitons, sym-
metric spaces, minimal submanifolds.
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2 TAKAHIRO HASHINAGA

metrics has been introduced in [4]. Let n be the dimension of G. Note that the
set of all left-invariant Riemannian metrics on G can be naturally identify with
the set of all inner products on g. We define

M̃ := {⟨, ⟩ | an inner product on g} ∼= GLn(R)/O(n),(1.1)

and an equivalence relation “isometric up to scaling” on M̃. For any inner prod-
uct, we call its equivalence class the corresponding submanifold. As we will see
in Section 2, the corresponding submanifolds are R×Aut(g)-homogeneous sub-
manifolds of the noncompact Riemannian symmetric space GLn(R)/O(n). Since
solvsolitons are preserved by the action of R×Aut(g), it would be natural to ask
the following question.

Question 1. Is it possible to characterize solvsolitons by properties of the corre-
sponding submanifolds?

The author and Tamaru ([4]) proved that the answer to Question 1 is affir-
mative in the case of three-dimensional simply-connected solvable Lie groups.
More precisely, we proved that a left-invariant Riemannian metric on a three-
dimensional simply-connected solvable Lie group is a solvsoliton if and only if
the corresponding submanifold is minimal. This result makes us interested in the
minimality of the corresponding submanifolds.
The aim of this paper is to study the following question:

Question 2. Is it true that a left-invariant Riemannian metric is a solvsoliton
if and only if the corresponding submanifold is minimal?

In this paper, we examine the minimality of the corresponding submanifolds
to solvsolitons on four-dimensional simply-connected solvable Lie groups. As a
result, we show that the answer to Question 2 is affirmative in four-dimensional
nilpotent cases.

Theorem 1.1. A left-invariant Riemannian metric on a four-dimensional simply-
connected nilpotent Lie group is a nilsoliton if and only if the corresponding sub-
manifold is minimal.

On the other hand, we construct examples which show that the answer to
Question 2 is negative in general.

Theorem 1.2. There exists a four-dimensional simply-connected solvable Lie
group G which satisfies the following:

(1) There exists a left-invariant Riemannian metric on G such that it is not
a solvsoliton, and the corresponding submanifold is minimal.

(2) There exists a left-invariant Riemannian metric on G such that it is a
solvsoliton, and the corresponding submanifold is not minimal.

However we know many examples so that the corresponding submanifold to a
solvsoliton is minimal. For example, in four-dimensional cases, if the nilradical



ON THE MINIMALITY OF THE CORRESPONDING SUBMANIFOLDS 3

is abelian, then the corresponding submanifold to a solvsoliton is minimal. We
expect that Question 2 has a positive answer under certain additional conditions,
which will be studied in the forthcoming papers.
The contents of this paper is as follows. In Section 2, we recall the notion of

the corresponding submanifolds to left-invariant Riemannian metrics, and some
necessary facts on reductive homogeneous spaces. In Sections 3 and 4, we prove
Theorems 1.1 and 1.2 respectively.
The author wishes to express his thanks to Hiroshi Tamaru for valuable com-

ments and discussions. The author would like to thank Yoshio Agaoka, Kazuhiro
Shibuya, Akira Kubo and Yuichiro Taketomi for useful comments and some dis-
cussions. The author is also grateful to Christopher Khoshaba for useful com-
ments. Finally, the author would like to thank the referee for valuable comments
and helpful suggestions.

2. Preliminaries

We recall the notion of the corresponding submanifolds in Subsection 2.1. In
Subsection 2.2, we also recall some necessary facts on reductive homogeneous
spaces which we need to study the minimality of the corresponding submanifolds.

2.1. The corresponding submanifolds. In this subsection, we recall the no-
tion of the corresponding submanifolds to left-invariant Riemannian metrics. For
details we refer to [4, 8].
First of all, we recall the space of left-invariant Riemannian metrics, which

will be the ambient space of the corresponding submanifolds. Let G be an n-
dimensional simply-connected Lie group and g be the Lie algebra of G. We
consider the set of all left-invariant Riemannian metrics onG, which can naturally
be identified with

M̃ := {⟨, ⟩ | an inner product on g}.

We identify g with Rn from now on. Then, since GLn(R) acts transitively on M̃
by

g.⟨·, ·⟩ := ⟨g−1·, g−1·⟩ (for g ∈ GLn(R), ⟨, ⟩ ∈ M̃),

we have an identification

M̃ = GLn(R)/O(n).

Note that M̃ equipped with the natural GLn(R)-invariant Riemannian metric
is a noncompact Riemannian symmetric space. In order to describe this natural
metric, we recall a general theory of reductive homogeneous spaces. Let U/K be
a reductive homogeneous space, that is, there exists an AdK-invariant subspace
m of u satisfying

u = k⊕m.(2.1)
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Note that u and k are the Lie algebras of U and K, respectively, and ⊕ denotes
the direct sum as vector spaces. The decomposition (2.1) is called a reductive
decomposition. Let us denote by π : U → U/K the natural projection, and by
o := π(e) the origin of U/K. We identify m with the tangent space To(U/K) at
o by the isomorphism

dπe|m : m → To(U/K).

This identification induces a one-to-one correspondence between the set of U -
invariant Riemannian metrics on U/K and the set of AdK-invariant inner prod-
ucts on m.
Now one can see that M̃ = GLn(R)/O(n) is a reductive homogeneous space,

whose reductive decomposition is given by the subspace

sym(n) := {X ∈ gln(R) | X = tX}.
Here gln(R) is the Lie algebra of GLn(R). We define the AdO(n)-invariant inner
product on sym(n) by

⟨X, Y ⟩ := tr(XY ) (for X, Y ∈ sym(n)).

We call the GLn(R)-invariant Riemannian metric corresponding to the above
AdO(n)-invariant inner product the natural Riemannian metric.

Next, we recall the notion of “isometric up to scaling” on M̃. This gives an
equivalence relation on M̃.

Definition 2.1. Two inner products ⟨, ⟩1 and ⟨, ⟩2 on g are said to be isometric
up to scaling if there exist k > 0 and an automorphism ϕ : g → g such that
⟨·, ·⟩1 = k⟨ϕ(·),ϕ(·)⟩2.

Note that above equivalence relation gives the equivalence relation of left-
invariant Riemannian metrics on Lie groups. Assume that inner products ⟨, ⟩1
and ⟨, ⟩2 on g are isometric up to scaling. Then, the corresponding left-invariant
Riemannian metrics on G are isometric up to scaling as Riemannian metrics.

Definition 2.2. For each inner product ⟨, ⟩ on g, we call its equivalence class
[⟨, ⟩] the corresponding submanifold to ⟨, ⟩.

Note that

[⟨, ⟩] := {⟨, ⟩′ ∈ M̃ | ⟨, ⟩′ ∼ ⟨, ⟩},
where ⟨, ⟩′ ∼ ⟨, ⟩ means that ⟨, ⟩′ and ⟨, ⟩ are isometric up to scaling. Let us
denote by

R× := {c · id : g → g | c ∈ R \ {0}},
Aut(g) := {ϕ : g → g | an automorphism}.

Then, the subgroup R×Aut(g) of GLn(R) acts naturally on M̃. Let us denote by
R×Aut(g).⟨, ⟩ the R×Aut(g)-orbit through ⟨, ⟩.
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Proposition 2.3 ([8], Theorem 2.5). Let ⟨, ⟩ be an inner product on g. Then,
the corresponding submanifold [⟨, ⟩] is a homogeneous submanifold with respect to
R×Aut(g), that is,

[⟨, ⟩] = R×Aut(g).⟨, ⟩.

Next we recall the “moduli space” PM. We need PM to examine the mini-
mality of the corresponding submanifolds.

Definition 2.4. For a Lie algebra g, the quotient space of M̃ by the equivalence
relation in Definition 2.1 is called the moduli space of left-invariant Riemannian
metrics on g, and denoted by

PM := {[⟨, ⟩] | ⟨, ⟩ ∈ M̃}.

To determine PM explicitly, we will use the following expression as a double
coset space.

Proposition 2.5 ([8], Theorem 2.5). If dim g = n, then we have

PM = R×Aut(g)\GLn(R)/O(n).

Let [[g]] denote the double coset of g ∈ GLn(R), that is,

[[g]] := R×Aut(g) · g ·O(n).

Denote by ⟨, ⟩0 ∈ M̃ = GLn(R)/O(n) the origin. Then, the map

R×Aut(g)\GLn(R)/O(n) → PM : [[g]] %→ [g.⟨, ⟩0],

gives a bijection.
A subset U ⊂ GLn(R) is called a system of representatives of PM if

PM = {[g.⟨, ⟩0] | g ∈ U}.

One can easily see the following.

Lemma 2.6. Let g be an n-dimensional Lie algebra. Then U ⊂ GLn(R) is a
system of representatives of PM if and only if for each g ∈ GLn(R), there exists
g′ ∈ U such that g′ ∈ [[g]].

2.2. Standard facts on reductive homogeneous spaces. In this subsection,
we review some of the standard facts on reductive homogeneous spaces and their
homogeneous submanifolds. We refer to [1, 3].
Let U/K be a reductive homogeneous space with a reductive decomposition

u = k⊕m.

Recall that m is identified with the tangent space To(U/K). In the following, we
equip a U -invariant Riemannian metric g on U/K.
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We here recall a formula for the Levi-Civita connection ∇ of g. For any X ∈ u,
we define the fundamental vector field X∗ on U/K by

X∗
p =

d

dt
(exptX).p|t=0 (for p ∈ U/K).

Let X, Y, Z ∈ u. Then one knows (see [3]):

(2.2)

X∗
o = dπe(X),

[X∗, Y ∗] = −[X, Y ]∗,

2g(∇X∗Y ∗, Z∗) = g([X∗, Y ∗], Z∗) + g([X∗, Z∗], Y ∗) + g(X∗, [Y ∗, Z∗]).

We now consider homogeneous submanifolds in (U/K, g). Let U ′ be a Lie sub-
group of U , and consider the orbit U ′.o through the origin o. Let u′ be the Lie
algebra of U ′, and denote by ⟨, ⟩ the inner product on m corresponding to g. We
define

m′ := dπe(u
′) ∼= To(U

′.o).

Denote by m ⊖ m′ the orthogonal complement of m′ in m with respect to ⟨, ⟩.
Then, the second fundamental form h : m′ ×m′ → m⊖m′ of U ′.o at o is defined
by

h(X∗
o , Y

∗
o ) := (∇X∗Y ∗ −∇′

X∗Y ∗)o (for X, Y ∈ u′),

where ∇′ is the Levi-Civita connection of U ′.o with respect to the induced metric.
Take Z ∈ u satisfying Z∗

o ∈ m⊖m′. From (2.2), one obtains

2⟨h(X∗
o , Y

∗
o ), Z

∗
o ⟩ = ⟨[Z,X]∗o, Y

∗
o ⟩+ ⟨X∗

o , [Z, Y ]∗o⟩.(2.3)

The mean curvature vector of U ′.o at o is defined by

H := −(1/k)tr(h) = −(1/k)
∑

h(E ′
i, E

′
i),

where {E ′
i} is an orthonormal basis of m′, and k is the dimension of U ′.o. We

call U ′.o minimal if its mean curvature vector H is equal to zero. Note that we
also call U ′.o minimal when the codimension of U ′.o is equal to zero. Let l( ̸= 0)
be the codimension of U ′.o, and {ξ′1, . . . , ξ′l} be the basis of m⊖m′. Then U ′.o is
minimal if and only if

∑
⟨h(E ′

i, E
′
i), ξ

′
j⟩ = 0(2.4)

for each j = 1, . . . , l.

3. Four-dimensional nilsolitons

Our goal of this section is to prove Theorem 1.1. We first recall that all four-
dimensional simply-connected nilpotent Lie groups admit nilsolitons ([10]). After
that we examine the minimality of the corresponding submanifold to each left-
invariant Riemannian metric.
We discuss solvsolitons in the Lie algebra level. First of all, let us recall the

definition of a solvsoliton.
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Definition 3.1. An inner product ⟨, ⟩ on a solvable Lie algebra g is called a
solvsoliton if the Ricci operator satisfies

Ric⟨,⟩ = cI +D (for some c ∈ R and D ∈ Der(g)).

If g is nilpotent, then a solvsoliton on g is called a nilsoliton. We also recall a
classification of four-dimensional nilpotent Lie algebras.

Proposition 3.2 ([16]). Let g be a four-dimensional nilpotent real Lie algebra.
Then g is isomorphic to one of the following Lie algebras:

• R4, an abelian Lie algebra,
• h3 ⊕ R := span{e1, . . . , e4 | [e1, e2] = e3},
• n4 := span{e1, . . . , e4 | [e1, e2] = e3, [e1, e3] = e4}.

Note that h3 = span{e1, e2, e3 | [e1, e2] = e3} is the Heisenberg Lie algebra.
In the abelian case, it is well known that there exists only one left-invariant

Riemannian metric up to isometry and scaling, which is flat. Furthermore the
corresponding submanifold coincides with the ambient space M̃, which is mini-
mal.
For g = h3 ⊕ R or n4, let us denote by ⟨, ⟩0 the inner product on g so that

the above basis {e1, . . . , e4} is orthonormal. By Lauret, nilsolitons on four-
dimensional Lie algebras have been classified.

Proposition 3.3 ([10]). Let g = h3 ⊕ R or n4, and ⟨, ⟩ be an inner product on
g. Then the inner product ⟨, ⟩ is a nilsoliton if and only if ⟨, ⟩ ∈ [⟨, ⟩0].

Proposition 3.3 follows from the arguments about N4 in [10, Section 5]. Note
that N4 is the set of all nilpotent Lie brackets on a four-dimensional real vector
space. We also refer to [19, Table 2], a classification table of nilsolitons in four-
dimensional cases.
Next we study the minimality of the corresponding submanifolds to nilsolitons

on h3⊕R and n4. In the case of g = h3⊕R, it is known that PM = {pt} ([8, 11]).

Then the corresponding submanifold [⟨, ⟩0] coincides with the ambient space M̃,
which is minimal.
Therefore we only need to consider the case of g = n4. We first calculate Der(g)

and Aut(g). Recall that they are defined by

Der(g) = {D ∈ gl(g) | D[·, ·] = [D(·), ·] + [·, D(·)]},
Aut(g) = {ϕ ∈ GL(g) | ϕ[·, ·] = [ϕ(·),ϕ(·)]}.

By direct calculations, one can obtain matrix expressions of Der(n4) and Aut(n4)
with respect to the basis {e1, . . . , e4} as follows:

Der(n4) =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

x11 0 0 0
x21 x22 0 0
x31 x43 x11 + x22 0
x41 x42 x43 2x11 + x22

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭
,
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Aut(n4) =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

x11 0 0 0
x21 x22 0 0
x31 x32 x11x22 0
x41 x42 x11x32 x2

11x22

⎞

⎟⎟⎠ | x11, x22 ̸= 0

⎫
⎪⎪⎬

⎪⎪⎭
.(3.1)

Lemma 3.4. Let g = n4, Then the following U is a system of representatives of
PM :

U =

⎧
⎪⎪⎨

⎪⎪⎩
g(λ1,λ2) =

⎛

⎜⎜⎝

1 0 0 0
0 λ1 0 0
0 0 1 0
0 0 λ2 1

⎞

⎟⎟⎠ | λ1 > 0,λ2 ∈ R

⎫
⎪⎪⎬

⎪⎪⎭
.

Proof. Take any g ∈ GL4(R). By Lemma 2.6, we only need to show that

∃g(λ1,λ2) ∈ U : g(λ1,λ2) ∈ [[g]].

First of all, there exists k ∈ O(4) such that

gk =

⎛

⎜⎜⎝

a1 0 0 0
a2 a3 0 0
a4 a5 a6 0
a7 a8 a9 a10

⎞

⎟⎟⎠ , a1, a3, a6, a10 > 0.

By (3.1), one has

ϕ1 =

⎛

⎜⎜⎝

1 0 0 0
−a2/a1 1 0 0
−a4/a1 0 1 0

(a2a8 − a3a7)/(a1a3) −a8/a3 0 1

⎞

⎟⎟⎠ ∈ Aut(n4).

This yields that

[[g]] ∋ ϕ1gk =

⎛

⎜⎜⎝

a1 0 0 0
0 a3 0 0
0 a5 a6 0
0 0 a9 a10

⎞

⎟⎟⎠ .

By (3.1), one can take

ϕ2 = a10/(a1a6)

⎛

⎜⎜⎝

a6/a10 0 0 0
0 a1/a6 0 0
0 0 a1/a10 0
0 0 0 a1a6/a210

⎞

⎟⎟⎠ ∈ R×Aut(n4).

This yields that

[[g]] ∋ ϕ2ϕ1gk =

⎛

⎜⎜⎝

1 0 0 0
0 (a3a10)/a26 0 0
0 a5/a6 1 0
0 0 a9/a10 1

⎞

⎟⎟⎠ .
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By (3.1), one has

ϕ3 =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 −(a5a6)/(a3a10) 1 0
0 (a25a

2
6)/(a

2
3a

2
10) −(a5a6)/(a3a10) 1

⎞

⎟⎟⎠ ∈ Aut(n4).

This gives

[[g]] ∋ ϕ3ϕ2ϕ1gk =

⎛

⎜⎜⎝

1 0 0 0
0 (a3a10)/a26 0 0
0 0 1 0
0 0 a′9 1

⎞

⎟⎟⎠ .

By putting λ1 := (a3a10)/a26 > 0, and λ2 := a′9, we complete the proof. ! !
Proposition 3.5. Let g = n4. Then R×Aut(n4).⟨, ⟩0 is the unique minimal orbit.

Proof. Take any ⟨, ⟩. By Lemma 3.4, there exist λ1 > 0, and λ2 ∈ R such that

R×Aut(n4).⟨, ⟩ = R×Aut(n4).(g(λ1,λ2).⟨, ⟩0).
Let us define

U ′ := g−1
(λ1,λ2)

(R×Aut(n4))g(λ1,λ2).

Then, since g−1
(λ1,λ2)

gives an isometry of the space M̃, one has an isometric con-
gruence

R×Aut(n4).(g(λ1,λ2).⟨, ⟩0) ∼= U ′.⟨, ⟩0.
Hence we have only to study U ′.⟨, ⟩0. Let u′ be the Lie algebra of U ′. By the
expression of R⊕Der(n4), one can directly calculate

u′ = g−1
(λ1,λ2)

(R⊕Der(n4))g(λ1,λ2)

=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

r + x11 0 0 0
(1/λ1)x21 r + x22 0 0

x31 λ1x43 r + x11 + x22 0
−λ2x31 + x41 λ1(−λ2x43 + x42) λ2x11 + x43 r + 2x11 + x22

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

r′ 0 0 0
x′
21 −x11 + x′

22 0 0
x31 λ1x43 x′

22 0
x′
41 x′

42 λ2x11 + x43 x11 + x′
22

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

Let us denote by Eij the matrix whose (i, j)-entry is 1 and others are 0. It is
easy to see that {E1, . . . , E8} given by the following is a basis of u′:

E1 := E11, E2 := E22 + E33 + E44, E3 := E21,

E4 := E31, E5 := E41, E6 := E42,

E7 := λ1E32 + E43, E8 := −E22 + λ2E43 + E44.

(3.2)
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Let us put

E ′
i := (Ei)

∗
o = (1/2)(Ei +

tEi) (i = 1, . . . , 8).

Then {E ′
1, . . . , E

′
8} is a basis of m′ := dπe(u′) = {(1/2)(X + tX) | X ∈ u′}. We

also define
ξ1 := −E22 + 2E33 − E44,

ξ2 := λ1λ2(E22 − E44)− 4E32 + 4λ1E43,

and put

ξ′j := (ξj)
∗
0 = (1/2)(ξj +

tξi) (j = 1, 2).

As mentioned in Section 2, the inner product on m := sym(n) is given by

⟨X, Y ⟩ := tr(XY ) (for X, Y ∈ m).

Hence, one can see that {ξ′1, ξ′2} is a basis of m⊖m′. Here we take an orthonormal
basis of m′. Let us put

X1 := E1, X2 := (1/
√
3)E2, X3 :=

√
2E3, X4 :=

√
2E4,

X5 :=
√
2E5, X6 :=

√
2E6, X7 :=

√
2/(1 + λ2

1)E7,

X8 := T (−(λ2/(1 + λ2
1))E7 + E8),

where T =
√

2(1 + λ2
1)/(λ

2
1λ

2
2 + 4(1 + λ2

1)). Furthermore we also put

X ′
i := (Xi)

∗
o = (1/2)(Xi +

tXi) (i = 1, . . . , 8).

Since

⟨E ′
7, E

′
7⟩ = (1 + λ2

1)/2, ⟨E ′
7, E

′
8⟩ = λ2/2, ⟨E ′

8, E
′
8⟩ = (4 + λ2

2)/2,

one can see that {X ′
1, . . . , X

′
8} is an orthonormal basis of m′.

We show that U ′.⟨, ⟩0 is minimal if and only if (λ1,λ2) = (1, 0). By (2.4),
U ′.⟨, ⟩0 is minimal if and only if

{ ∑
⟨h(X ′

i, X
′
i), ξ

′
1⟩ = 0,∑

⟨h(X ′
i, X

′
i), ξ

′
2⟩ = 0.

Our first claim is that∑
⟨h(X ′

i, X
′
i), ξ

′
1⟩ = 0 if and only if λ1 = 1.(3.3)

We calculate
∑

⟨h(X ′
i, X

′
i), ξ

′
1⟩. By direct calculations, one has

[ξ1, E7] = 3(λ1E32 − E43), [ξ1, E8] = −3λ2E43.

Then, we obtain the bracket products [ξ1, Xi] as follows:

[ξ1, X3] = −X3, [ξ1, X4] = 2X4, [ξ1, X5] = −X5,

[ξ1, X7] = 3
√
2/(1 + λ2

1)(λ1E32 − E43),

[ξ1, X8] = (−3λ1λ2T/(1 + λ2
1))(E32 + λ1E43),
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and others are equal to zero. These yield that

⟨[ξ1, X3]
∗
o, (X3)

∗
o⟩ = ⟨−X ′

3, X
′
3⟩ = −1,

⟨[ξ1, X4]
∗
o, (X4)

∗
o⟩ = ⟨2X ′

4, X
′
4⟩ = 2,

⟨[ξ1, X5]
∗
o, (X5)

∗
o⟩ = ⟨−X ′

5, X
′
5⟩ = −1,

⟨[ξ1, X7]
∗
o, (X7)

∗
o⟩ = 3

√
2/(1 + λ2

1)⟨λ1(E32)
∗
o − (E43)

∗
o, X

′
7⟩

= 3(λ2
1 − 1)/(1 + λ2

1),

⟨[ξ1, X8]
∗
o, (X8)

∗
o⟩ = (−3λ1λ2T/(1 + λ2

1))⟨(E32)
∗
o + λ1(E43)

∗
o, X

′
8⟩

= −3λ2
1λ

2
2(λ

2
1 − 1)/((1 + λ2

1)(λ
2
1λ

2
2 + 4(1 + λ2

1))).

Therefore, by (2.3), we obtain

∑
⟨h(X ′

i, X
′
i), ξ

′
1⟩ =

12(λ2
1 − 1)

λ2
1λ

2
2 + 4(1 + λ2

1)
.

Since λ1 > 0, this yields our first claim (3.3).
Our second claim is, under the assumption λ1 = 1, that

∑
⟨h(X ′

i, X
′
i), ξ

′
2⟩ = 0 if and only if λ2 = 0.(3.4)

From now on we assume λ1 = 1. Then, note that

X7 = E7 = E32 + E43,

X8 = 2/
√
λ2
2 + 8((−λ2/2)E7 + E8),

ξ2 = λ2(E22 − E44)− 4E32 + 4E43.

We calculate
∑

⟨h(X ′
i, X

′
i), ξ

′
2⟩. By direct calculations, we have

[ξ2, X3] = λ2X3 − 4X4, [ξ2, X4] = 4X5,

[ξ2, X5] = −λ2X5, [ξ2, X6] = −2λ2X6,

[ξ2, X7] = 8E6 − λ2E7 = 4
√
2X6 − λ2X7,

[ξ2, X8] =
√
λ2
2 + 8(E32 − E43),
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and others are equal to zero. These yield that

⟨[ξ2, X3]
∗
o, (X3)

∗
o⟩ = ⟨λ2X

′
3 − 4X ′

4, X
′
3⟩ = λ2,

⟨[ξ2, X4]
∗
o, (X4)

∗
o⟩ = ⟨4X ′

5, X
′
4⟩ = 0,

⟨[ξ2, X5]
∗
o, (X5)

∗
o⟩ = ⟨−λ2X

′
5, X

′
5⟩ = −λ2,

⟨[ξ2, X6]
∗
o, (X6)

∗
o⟩ = ⟨−2λ2X

′
6, X

′
6⟩ = −2λ2,

⟨[ξ2, X7]
∗
o, (X7)

∗
o⟩ = ⟨4

√
2X ′

6 − λ2X
′
7, X

′
7⟩ = −λ2,

⟨[ξ2, X8]
∗
o, (X8)

∗
o⟩ =

√
λ2
2 + 8⟨(E32)

∗
o − (E43)

∗
o, X

′
8⟩

= 2⟨(E32)
∗
o − (E43)

∗
o, (−λ2/2)E

′
7 + E ′

8⟩ = −λ2.

We thus obtain
∑

⟨h(X ′
i, X

′
i), ξ

′
2⟩ = −4λ2. This yields our second claim (3.4).

This completes the proof of (2). ! !
By (3.2), all orbits of the action of R×Aut(n4) have dimension eight. Hence

this action is of cohomogeneity two, and has no singular orbits.

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Let us consider the four-dimensional
solvable Lie algebra

s4 := span{e1, . . . , e4 | [e1, e2] = e2, [e1, e3] = −e3, [e2, e3] = e4}.

We will write ⟨, ⟩0 the inner product on s4 so that the above basis is orthonormal.
We first study Der(s4) and Aut(s4) with respect to the above basis {e1, . . . , e4}.

By direct calculations, we have

Der(s4) =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

0 0 0 0
−x43 x22 0 0
−x42 0 x33 0
x41 x42 x43 x22 + x33

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭
,(4.1)

Aut(s4) ⊃

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

1 0 0 0
x21 x22 0 0
x31 0 x33 0
x41 −x31x22 −x21x33 x22x33

⎞

⎟⎟⎠ | x22, x33 ̸= 0

⎫
⎪⎪⎬

⎪⎪⎭
.(4.2)

Proposition 4.1. Let g = s4, Then the following U is a system of representatives
of PM :

U =

⎧
⎪⎪⎨

⎪⎪⎩
g(λ1,λ2,λ3,λ4) =

⎛

⎜⎜⎝

λ1 0 0 0
0 1 0 0
0 λ2 1 0
0 λ3 λ4 1

⎞

⎟⎟⎠ | λ1 > 0,λ2,λ3,λ4 ∈ R

⎫
⎪⎪⎬

⎪⎪⎭
.
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Proof. Take any g ∈ GL4(R). By Lemma 2.6, we only need to show that

∃g(λ1,λ2,λ3,λ4) ∈ U : g(λ1,λ2,λ3,λ4) ∈ [[g]].

One knows there exists k ∈ O(4) such that

gk =

⎛

⎜⎜⎝

a1 0 0 0
a2 a3 0 0
a4 a5 a6 0
a7 a8 a9 a10

⎞

⎟⎟⎠ , a1, a3, a6, a10 > 0.

By (4.2), we can take

ϕ1 =

⎛

⎜⎜⎝

1 0 0 0
−a2/a1 1 0 0
−a4/a1 0 1 0

A a4/a1 a2/a1 1

⎞

⎟⎟⎠ ∈ Aut(s4),

where A = (−a1a7 − 2a2a4)/a21. This yields that

[[g]] ∋ ϕ1gk =

⎛

⎜⎜⎝

a1 0 0 0
0 a3 0 0
0 a5 a6 0
0 a′8 a′9 a10

⎞

⎟⎟⎠ .

Furthermore, from (4.2), one can take

ϕ2 = a10/(a3a6)

⎛

⎜⎜⎝

1 0 0 0
0 a6/a10 0 0
0 0 a3/a10 0
0 0 0 (a3a6)/a210

⎞

⎟⎟⎠ ∈ R×Aut(s4).

This gives us that

[[g]] ∋ ϕ2ϕ1gk =

⎛

⎜⎜⎝

(a1a10)/(a3a6) 0 0 0
0 1 0 0
0 a5/a6 1 0
0 a′8/a10 a′9/a10 1

⎞

⎟⎟⎠ .

By putting λ1 := (a1a10)/(a3a6) > 0, λ2 = a5/a6, λ3 = a′8/a10, and λ4 = a′9/a10,
we complete the proof. ! !
By Lauret [14], solvsolitons on four-dimensional simply-connected solvable Lie

groups have been classified, and it is known that s4 admits a solvsoliton.

Proposition 4.2. An inner product ⟨, ⟩ on s4 is a solvsoliton if and only if
[⟨, ⟩] = [g(

√
3/2,0,0,0).⟨, ⟩0].

Proof. It has been proved by Lauret that a given solvable Lie algebra can admit
at most one solvsoliton up to isometry and scaling ([14, Theorem 5.1]). Hence
it is sufficient to show that g(

√
3/2,0,0,0).⟨, ⟩0 is a solvsoliton. Here, recall that
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g(
√
3/2,0,0,0).⟨, ⟩0 is an inner product so that {(

√
3/2)e1, e2, e3, e4} is orthonormal.

Note that the nilradical of s4 coincides with the Heisenberg Lie algebra h3 =
span{e2, e3, e4}, and s4 = Re1 ⊕ h3 is the orthogonal decomposition with respect
to g(

√
3/2,0,0,0).⟨, ⟩0. Then, by Lauret’s theorem([14, Theorem 4.8]), we only need

to show that g(
√
3/2,0,0,0).⟨, ⟩0 satisfies the following conditions:

(1) (h3, g(
√
3/2,0,0,0).⟨, ⟩0|h3×h3) is a nilsoliton with Ricci operator Ric = cI+D,

for some c < 0 and D ∈ Der(h3).
(2) [e1, e1] = 0.
(3) t(ad e1) ∈ Der(s4).
(4) g(

√
3/2,0,0,0).⟨e1, e1⟩0 = −(1/c)tr{(1/2)(ad e1 + t(ad e1))}2.

By direct calculations, we obtain that g(
√
3/2,0,0,0).⟨, ⟩0|h3×h3 is a nilsoliton on h3

with c = −3/2, namely Condition (1) holds. It is obvious that Conditions (2)
and (3) hold. By direct calculations, we obtain Condition (4). ! !

To prove Theorem 1.2, we consider g(t,0,0,0).⟨, ⟩0 for t > 0, which is a curve
through ⟨, ⟩0 and g(

√
3/2,0,0,0).⟨, ⟩0.

Proposition 4.3. Let g = s4, and t > 0. Then [g(t,0,0,0).⟨, ⟩0] is minimal if and
only if t = 1.

Proof. Let us define

U ′ := g−1
(t,0,0,0)(R

×Aut(s4))g(t,0,0,0).

Then, since g−1
(t,0,0,0) gives an isometry, we have an isometric congruence

[g(t,0,0,0).⟨, ⟩0] = R×Aut(s4).(g(t,0,0,0).⟨, ⟩0) ∼= U ′.⟨, ⟩0.

Hence we have only to study U ′.⟨, ⟩0. Let u′ be the Lie algebra of U ′. By (4.1),
we have

u′ :=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

r 0 0 0
−tx43 r + x22 0 0
−tx42 0 r + x33 0
tx41 x42 x43 r + x22 + x33

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

We take a basis {X1, . . . , X6} of u′ as follows:

X1 := (1/2)(E11 + E22 + E33 + E44), X2 := (1/2)(E11 + E22 − E33 − E44),

X3 := (1/2)(E11 − E22 + E33 − E44), X4 := (
√

2/(t2 + 1))(−tE21 + E43),

X5 := (
√
2/(t2 + 1))(−tE31 + E42), X6 :=

√
2E41.

Let us put

X ′
i := (Xi)

∗
o = (1/2)(Xi +

tXi) (i = 1, . . . , 6).
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Then {X ′
1, . . . , X

′
6} is an orthonormal basis of m′ = dπe(u′). Furthermore we take

ξ1 := E11 − E22 − E33 + E44, ξ2 := E21 + tE43,

ξ3 := E31 + tE42, ξ4 := E32,

and put

ξ′j := (ξj)
∗
o = (1/2)(ξj +

tξj) (j = 1, . . . , 4).

Then {ξ′1, . . . , ξ′4} is a basis of m⊖m′.
We prove that [g(t,0,0,0).⟨, ⟩0] is minimal if and only if t = 1. By (2.4), recall

that [g(t,0,0,0).⟨, ⟩0] is minimal if and only if
∑

⟨h(X ′
i, X

′
i), ξ

′
j⟩ = 0

for each j = 1, . . . , 4.
Our claim is

∑
⟨h(X ′

i, X
′
i), ξ

′
1⟩ = 0 if and only if t = 1.(4.3)

We calculate
∑

⟨h(X ′
i, X

′
i), ξ

′
1⟩. By direct calculations, we have

[ξ1, X4] = (2
√
2/(t2 + 1))(tE21 + E43),

[ξ1, X5] = (2
√
2/(t2 + 1))(tE31 + E42),

and others are equal to zero. Therefore, we have

⟨[ξ1, X4]
∗
o, (X4)

∗
o⟩ = (2

√
2/(t2 + 1))⟨t(E21)

∗
o + (E43)

∗
o, X

′
4⟩

= 2(1− t2)/(1 + t2),

⟨[ξ1, X5]
∗
o, (X5)

∗
o⟩ = (2

√
2/(t2 + 1))⟨t(E31)

∗
o + (E42)

∗
o, X

′
5⟩

= 2(1− t2)/(1 + t2).

We thus obtain
∑

⟨h(X ′
i, X

′
i), ξ

′
1⟩ = 4(1− t2)/(1 + t2).

Since t > 0, this yields (4.3).
We assume t = 1 from now on. Then, it is sufficient to show that

∑
⟨h(X ′

i, X
′
i), ξ

′
j⟩ = 0(4.4)

for each j = 2, 3, 4. Note that, when t = 1,

X4 = −E21 + E43, X5 = −E31 + E42,

ξ2 = E21 + E43, ξ3 = E31 + E42.
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We calculate
∑

⟨h(X ′
i, X

′
i), ξ

′
j⟩ for j = 2, 3, 4. The bracket products are given by

[ξ2, X3] = ξ2, [ξ2, X5] = −
√
2X6,

[ξ3, X2] = ξ3, [ξ3, X4] = −
√
2X6,

[ξ4, X2] = ξ4, [ξ4, X3] = −ξ4, [ξ4, X4] = −ξ3,

and others are equal to zero. We thus obtain that

⟨[ξj, Xi]
∗
o, (Xi)

∗
o⟩ = 0,

for any i = 1, . . . , 6 and j = 2, 3, 4. These yield (4.4), and we complete the
proof. ! !
The next theorem follows from Propositions 4.2 and 4.3, immediately.

Theorem 4.4. We have the following:

(1) Let ⟨, ⟩ = ⟨, ⟩0. Then ⟨, ⟩ is not a solvsoliton, and the corresponding sub-
manifold [⟨, ⟩] is minimal.

(2) Let ⟨, ⟩ = g((
√
3/2,0,0,0))⟨, ⟩0. Then ⟨, ⟩ is a solvsoliton, and the corresponding

submanifold [⟨, ⟩] is not minimal.
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