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Abstract

Recent surveillance technology developments motivate a regular observation of places

such as coast, slopes and highways, where disasters and accidents can happen with high

probability. Hence, any obvious change must be alerted. However, this is not practical

for a wide area. Therefore, an automatic detection of unusual change seems to be useful

and important.

In this thesis, we describe some methods which divided into online and offline approaches

to detect temporal change. The online step is a 3D-2D detection using a 3D scene

geometry at time A (reference) and the image of the same scene at time B (query or

test). The offline step is a 3D-3D registration of 3D scenes for different times which

could provide more accurate results.

To quickly detect changes and visualize the change taking place for operators at regular

observation, our online step method uses the combination of 3D-2D and 2D-2D matching.

We assume that a 3D scene geometry is given but only at time A as a reference 3D scene,

hence no 3D range finder is necessary. At time B (query), a hand-held camera is used

to take images of the same place, and the reference 3D geometry is used for 3D-2D

matching for camera pose estimation. To find a region of change in the query images,

first, the nearest image of a query image is selected from the training images. Then,

the matching between the query image and the nearest images is computed for finding

a set of non-matching points as a region of change. These change regions are visualized

by projecting 3D points back only to those regions. Experimental results show that our

method can detect change areas correctly.

In order to perform 3D-2D matching for camera pose estimation, we represent the 3D

keypoints by their corresponding 2D keypoints. A 3D keypoint is assumed to have cor-

responding 2D keypoints in two or more of the training images. These 2D keypoints

have 2D feature descriptors that can be used to characterize the 3D keypoints. There-

fore, we use the 2D feature descriptors as a feature descriptor of the corresponding 3D

keypoint. After detecting the 3D keypoints, we perform feature matching and register

the newly taken query images. Experimental results with 3D point clouds of indoor and

outdoor scenes show that the extracted 3D keypoints can be used for matching with 2D

keypoints in query images.

Once we find the change areas from the 3D-2D method, what we need to do is to improve

the accuracy of the detection result. We propose a method to register 3D point clouds



offline. The alignment result could provide the users much better result than just using

image based rough detection result. Our offline method is divided into two methods.

The first method estimates the scale of each point cloud separately: each point cloud

has its own scale that is something like the size of a scene. We call it a keyscale, which

is a representative scale and is defined for a given 3D point cloud as the minimum of the

cumulative contribution rates of PCA of descriptors over different scales. Our second

method directly estimates the ratio of scales (scale ratio) of two point clouds. Instead

of finding the minimum, this approach registers the two sets of curves of the cumulative

contribution rate of PCA by assuming that those differ only in scale. Experimental

results with simulated and real scene point clouds demonstrate that the scale alignment

of 3D point clouds can be effectively accomplished by our scale ratio estimation.

Keywords: Change Detection, Surveillance System, Online Approach, Offline Ap-

proach, 3D-2D, 3D-3D, Feature Matching, Camera Pose Estimation, Scale Ratio ICP
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λ a scalar real number

I identity matrix



Chapter 1

Introduction

Recent surveillance technology developments motivate a regular observation of places

such as coast, slopes and highways, where disasters and accidents can happen with high

probability (Figure 1.1). At coastal areas, a lot of wave dissipating blocks are placed

to decrease the power of the waves. If the configuration of the blocks is altered due to

erosion, the blocks might collapse which would diminish their effectiveness. A mountain

slope with a face exposed after a heavy rain might cause a landslide. Hence, any obvious

change must be real-time alerted. The filling beneath a highway can collapse due to

earthquakes or aging, which can result in cracks and subsidence. Such places should

Figure 1.1: Surveillance research targets.

1
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be observed all the time, however, this is not practical for a wide area. Therefore, a

real-time automatic detection of unusual change seems to be useful and important.

Surveillance technologies are very popular and useful for monitoring of behavior, ac-

tivities, or other information of the environment, and surveillance systems are widely

installed by governments, factories, schools and so on. However, surveillance systems

can NOT be easily used in all fields. For example, in our research target, we want to

alert any obvious change in a wide area. So we need a surveillance system with follow

functions:

• It is a change detection system in a wide area.

• It does not request static cameras.

• It could provide real-time change area.

• It could ensure the accuracy of detection result.

Actually, they are very challenging and difficult tasks, therefore, we analyze the possible

approaches of surveillance systems related to the task of change detection and categorize

them into three.

The first one is a simple way which monitors some places by cameras and detects security

problems by human operators. Such systems have been widely used in market malls

or parking areas over the last decades. It doesn’t request high computational cost.

However, the hand-held cameras can not be used and the detection accuracy is not

good.

The second one is an online real-time client-server systems. Oberti et al. [1] proposed a

combination surveillance system to detect change with a mobile camera. In the client,

the system captures and processes some images. In the server, the system analyzes the

images and returns the detection results to the client. This kind of systems are more

intelligent than the first kind of surveillance systems and can reduce the heavy task of

human operators. But there is a problem that the detection results are not accurate.

The third one is an offline surveillance system. Change results are detected in a long

term offline time, therefore, high accurate detection results could be provided. However,

powerful equipments and long processing time are necessary.
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In this thesis, we design systems based on the second and the third kinds of surveillance

systems. The second kind of surveillance system, online real-time client-server system,

can be used in our particularly environment. Besides, hand-held camera used real-time

change detection could be performed. Then the third kind of surveillance system, offline

system, is used for ensuring accuracy of detection results. In other words, we divide our

research goal into two sub-goals:

Figure 1.2: Module overview of the online client-server system.

Figure 1.3: Connection between clients and server.
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The first sub-goal pursued in this thesis is an online approach (corresponding to the

second category), used for a regular (e.g., monthly or bi-monthly, etc.) inspection of

a target scene (e.g., blocks on a coast), to assist users by quickly visualizing potential

candidate parts of the scene in order to identify which part of the scene could have

changed during a particular time period. In order to achieve this sub-goal, we propose

a client-server system for change detection shown in Figure 1.2. In our system, the

regular inspection of a target scene is done by using the clients, such as mobile phones

and tablets, which capture images and display candidate change results. The data are

transferred to and stored in a powerful server computer via wireless techniques (WiFi)

(see Figure 1.3).

The second sub-goal is an offline approach, used for improving the accuracy of change

detection results. In our online approach, we have estimate a rough change detection

result. However, rough result is not enough for the users. So, in order to achieve

high accuracy, powerful equipment and long time processing are provided for the offline

approach. In this approach, we assume that we have gotten the potential change areas

by using the client-server system, and 3D scene data of the areas. Then the details of

the change areas are estimated by aligning the 3D scene data.

We have described our sub-goals, but what is the definition of change have not been

introduced yet. In the following sub-sections, we will describe the definition and possible

methods of change detection.
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1.1 Change Detection Methods

1.1.1 Definition of Change

As we mentioned before, a change exists in a wide environment, which can cause unusual

accidents. But what is a common definition of change? We say that the original scene

is captured at time A, which means there is not yet any changes occurred. Then, after

a certain period of time, at time B, we capture the same scene again. So we define that

a change is a difference of objects in the scene at time A and at time B.

To build a change detection system in terms of the definition above, three possible

directions based on existing methods will be described in next section.

1.1.2 Categories of Detection Methods

2D-2D method The first most used way uses two input images taken by a fixed

camera to output a binary image in which change areas are visualized as red pixels.

We call this category a 2D-2D based change detection. An output example is shown in

Figure 1.4. A huge amount of research on change detection or moving object detection

has been studied for surveillance [2–7]. These 2D-2D based methods usually use pixel

intensity, color, and texture. It is however not appropriate for our purpose because a

Figure 1.4: 2D-2D matching based change detection.
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number of fixed cameras are needed to cover the whole scene of the observed place.

Hence, it is impractical if in particular the scene is wide and large.

3D-2D method The second possible direction is one that, instead of only 2D images

for input, uses 3D data and 2D images to output change detection results as an image.

Suppose we have a 3D point cloud at time A and a query image at time B. The output

detection results can be visualized by red color pixels in 2D query image as shown

in Figure 1.5. A fixed camera is no longer needed because the camera pose can be

Figure 1.5: 3D-2D matching based change detection.

Figure 1.6: 3D-3D matching based change detection.
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estimated by using 3D-2D matching [8–11] and we can compare the 2D query image with

3D information of the scene. This direction is the best choice for our online approach

because: 1) the client in online approach captures the 2D query image, 2) 3D information

of the scene are stored in the server, and used to campared to 2D query image. But it

is usually difficult to perform 3D-2D matching, because 3D information and 2D images

can not be directly compared. So we propose a camera pose estimation method and a

change detection method.

3D-3D method The third method uses two 3D point clouds at time A and time

B as shown in Figure 1.6. 3D point clouds are aligned to find the difference which is

visualized by different color of 3D points. There are a lot of existing methods [12–20]

for aligning point clouds. The problem is that the alignment is not easy for point clouds

different in size. In our offline approach, the 3D point clouds are reconstructed from

different sets of images taken at different points in time. Those are different in size.

Therefore, we propose methods to deal with point clouds in different size.

Till here, we have described the methods currently used for change detection. Based on

these methods, in next section, we will introduce our approaches contributions and the

thesis structures.
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1.2 Thesis Overview

This thesis presents a set of methods to perform detection of unusual 3D change for two

sub-goals: online and offline.

In the online approach, our method for camera pose estimation uses 3D-2D matching

between a 3D reference scene and a 2D query image followed by 2D-2D feature com-

parison between 2D training and query images. We assume that a 3D scene geometry

is given but only at time A as a reference. At time B, a hand-held camera is used to

take query images of the same place, and the reference 3D geometry is used for 3D-2D

matching for camera pose estimation.

For the 3D-2D matching, detecting keypoints both in the 3D point set and in the 2D

images and matching them with their local features seems to be a promising way. In

other words, in order to be able to match 3D and 2D keypoints, they should have

similar features. Existing methods [21, 22] typically utilize edges, silhouettes or texture,

as information for registering 3D data to 2D images, however these features are not

same format for 3D data and 2D images. Therefore, we represent the 3D keypoints by

their corresponding 2D keypoints. A 3D keypoint is assumed to have corresponding 2D

keypoints in two or more of the training images. These 2D keypoints have 2D feature

descriptors that can be used to characterize the 3D keypoints. Therefore, we use the

2D feature descriptors as a feature descriptor of the corresponding 3D keypoint. After

detecting the 3D keypoints, we perform feature matching and camera pose estimation.

For the change detection, utilizing 2D query images with 3D scene geometry is im-

plemented firstly. Then the nearest image of query image is selected. The matching

between the query and the nearest images is performed to find 2D keypoints with cor-

respondences and detect a region of change. The detected region of change is visualized

by projecting the 3D points back to the region.

In the offline approach, we divides the task of change detection into two steps: scale

estimation and registration followed by detection. One possible way is to estimate the

scale of each point cloud separately. In this case, each point cloud has its own scale that

is something like the size of a scene. Then we can re-scale one point cloud to another

by using the estimated scales. However, this method is computational expensive and

unstable. As an alternative, we propose a method for directly estimating the ratio of
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Figure 1.7: Thesis chapters’ structure.

scales of two point clouds. Once the scale ratio has been estimated, we can use existing

alignment methods and perform a simple change detection method.

Instead of placing related work in a single separate section, this thesis describes related

work in its context in the thesis. Consequently, multiple related work sections appear

throughout the thesis. The breakdown by chapter is as follows (The flow chart is shown

in Figure 1.7):

In Chapter 1, we have introduced the motivation of our research. We have also intro-

duced the basic view of ‘3D-2D matching’, ‘3D-2D based change detection’ and ‘3D-3D

alignment’ and their relations.

In Chapter 2, we will describe what the 3D keypoints exactly are, how to detect them

and how robust they are. This chapter is important for chapter 3. The work described
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in Chapter 2 was published in the paper “3D keypoints detection from a 3D point cloud

for real-time camera tracking” [20].

Chapter 3 describes the details of 3D-2D based change detection. Why would this

method work and how to implement it. Chapter 3 also provides sufficient evaluations to

prove that the image based change detection method can detect change areas correctly.

The use of 3D-2D detection work presented in this thesis was described in “image based

detection of 3D scene change” [23] and “camera position estimation for detecting 3D

scene change” [24].

Scale ratio ICP which used for 3D-3D alignment will be explained in Chapter 4. We will

introduce the related works about 3D scales alignment. The details of implementations

are described too. Some of the scale ratio ICP works presented in this thesis was

introduced in the paper “scale ratio ICP for 3D point clouds with difference scales” [25].

Chapter 5 presents our conclusions.



Chapter 2

3D Keypoints Detection for

3D-2D Matching

As we introduced in Chapter 1, 3D-2D matching method is important for 3D-2D based

change detection. In this chapter, we propose a method for detecting 3D keypoints in

a 3D point cloud for robust real-time camera tracking. The method detects keypoints

in 3D point clouds which are suitable for matching to 2D keypoints in query images.

Recently, it has become easy to obtain 3D point clouds by using a range finder or

3D reconstruction techniques [26–29]. To analyze 3D data with 2D images, 3D-2D

registration is usually used. Existing methods [21, 22] typically utilize edges, silhouettes

or texture, as information for registering 3D data to 2D images. In addition, detecting

keypoints both in the 3D point set and in the 2D images and matching them with their

local features seem to be a promising way for a fast 3D-2D registration.

We assume that the 3D point cloud is obtained by some 3D reconstruction techniques

which use 2D keypoints in images (we call them training/reference images). Therefore,

the camera positions of all training images and the 3D scene geometry (as a 3D point

cloud) are assumed to be obtained in advance. The key idea is to fully utilize the

relationship between the 3D point cloud and the training images. More specifically, we

define a 3D keypoint as a 3D point that has corresponding distinctive 2D keypoints in

the training images. These 3D keypoints are expected to appear with high probability

as 2D keypoints in newly taken query images.

11
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In order to match 3D and 2D keypoints, they should have similar features. For this

purpose, we represent the 3D keypoints by their corresponding 2D keypoints. A 3D

keypoint is assumed to have corresponding 2D keypoints in two or more training images.

These 2D keypoints have 2D feature descriptors that can be used to characterize the

3D keypoints. Therefore, we use the 2D feature descriptors as a feature descriptor of

the corresponding 3D keypoint. After detecting the 3D keypoints, we perform feature

matching and register the newly taken query images.

In the following sections, related work of keypoints detection is given in section 2.1. The

main idea concerning 3D keypoints detection will be introduced in section 2.2. We will

show the experimental results in section 2.3 and then conclude this chapter.
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2.1 Related work of Keypoints Detection

Here we discuss several methods that related to keypoints detection.

There are however not much work has been done on detecting 3D keypoints in a 3D

point cloud. Despite of recent progress in keypoint detection in 2D images [30, 31],

only a few works on 3D keypoint detection have been reported. Most of this work [32–

36] has been proposed for range data on a grid (a depth value z is given at each (x, y)

coordinates) usually obtained by range finders. These methods use a grid to characterize

keypoints and local features, therefore, they would not work on a point cloud which is

an arbitrary set of 3D points. Research works [37, 38] have proposed 3D keypoints

detection methods which work on 3D point clouds or mesh surfaces. But it is difficult

to find 3D-2D correspondences to perform 2D image registration.

On the other hand, several camera tracking methods which work by matching 2D frames

and 3D point clouds have been proposed in the past few years. Schindler et al. [8]

presented a method for large-scale location recognition based on video streams and

specific trained vocabulary trees. Eade and Drummond used frame-to-frame matching

and confining-search-region strategies for rapid feature matching [9]. Irshara et al. [10]

proposed a fast location recognition with structure-from-motion (SfM) point clouds by

creating synthetic views. Dong et al. [11] also propose a method based on SfM point

clouds by selecting a set of optimal keyframes.

In contrast, our approach focuses on the detection of a sparse set of 3D keypoint from

SfM point clouds, which allows camera pose estimation to be performed reasonably fast.
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2.2 3D Keypoints Detection Algorithm

In this section, we will explain the main idea of 3D keypoints detection. Firstly, we will

give a brief overview of our approach. In our approach, there are two modules: the 3D

keypoints extraction module and the camera tracking module.

The task of the 3D keypoints extraction module is to extract 3D keypoints (section 2.2.1)

and then to compute feature descriptors (section 2.2.2). For each 3D keypoint, corre-

sponding 2D features in the training images are used to compute a 3D feature of the 3D

keypoint.

After 3D keypoints and features are prepared, we go to the camera tracking module

(section 2.2.3). For each query image, 2D keypoints and their features descriptors are

extracted. Then the camera pose of the query image is estimated by using a RANSAC

based method [39] by using the matching between the 2D and 3D keypoints.

2.2.1 3D Keypoints Detection

Algorithm 1 Proposed algorithm for 3D keypoints detection.

1: Ckey = ϕ, is2DKeypoint(i) = ϕ /* empty sets */
2: for i = 1, . . . ,m do
3: ni

1 = ni
2 = 0

4: for j = 1, . . . , n do
5: project a 3D point Xi back to a training image Ij , x

i
j = PjX

i

6: if xi
j is inside of Ij then

7: if Xi is visible from xi
j then

8: ni
1 ++

9: count = #{∥ xi
j − x ∥< th d | x ∈ {all 2D keypoints in Ij}}

10: if count = 1 /* xi
j is a 2D keypoint */ then

11: ni
2 ++

12: add j to is2DKeypoint(i)
13: end if
14: end if
15: end if
16: end for
17: if ni

2 > th v then
18: add Xi to Ckey

19: end if
20: end for

In this sub-section, we describe the proposed method for detecting 3D keypoints from a

3D point cloud as shown in Algorithm 1.
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From the 3D reconstruction process, we suppose to have the following data:

• 3D points Xi(i = 1, 2, . . . , n), of a point cloud C, and associated normal vectors

ni.

• Training images Ij(j = 1, 2, . . . ,m), used for reconstruction.

• External camera parameters as a projection matrix Pj for each image Ij .

Figure 2.1: The use of distance threshold to exclude unreliable 3D keypoints. Red
points are 2D keypoints in an image and green points are 3D points. Xi is a candidate
of a 3D keypoint, but Xj is not because there are several 2D keypoints around its

projection onto the image.

We want to find a 3D keypoint to appear as a 2D keypoint in many images for establishing

the 3D-2D keypoint correspondences. Therefore, we eliminate 3D points which have

corresponding 2D points only in fewer than th v images, which is a visibility threshold

for 3D points.

Those 3D keypoints should be visible from many training images, however, merely pro-

jecting 3D points to images is not enough to check the visibility. Since points in a 3D

point cloud can be projected to inner-side of a surface, we need to use normal vectors

to ensure that the projection is performed outward from of a surface. This procedure,

usually called backface culling in graphics, is described as follows. The 3D points Xi

are projected back to all images Ij to obtain the corresponding 2D points xi
j = PjX

i.

If xi
j is outside of Ij , then it is excluded. Then the normal vectors of Xi are used for
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Figure 2.2: Histogram of ni
1, the number of images to which 3D points are projected.

Figure 2.3: Histogram of ni
2, the number of images in which 3D points appear as 2D

keypoints for different visibility thresholds.

backface-culling.

n(Xi) · (−c) < cos 60◦. (2.1)

When the angle between the normal vector n(Xi) and the viewing vector of a camera

c is less than 60 degree in this case, Xi is not able to be projected.

When there is a 2D keypoint near to xi
j as shown in Figure 2.1, i.e., the distance between

the 2D keypoint and xi
j is smaller than th d, a distance threshold (5 pixels in this case),

then Xi is said to appear as (and corresponds to) the 2D keypoint. If the distance is
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Figure 2.4: Detected 3D keypoints in 3D point cloud with (top) ni
2 ≥ 1 and (bottom)

ni
2 ≥ 7.

larger than th d, then it is not a keypoint. Often there could be more than one 2D points

within th d, however, those 3D points (Xj in Figure 2.1) are considered as outliers and

hence excluded.

Finally, we count the number ni
2 of images in which 3D points appear as 2D keypoints.

When ni
2 is larger than the visibility threshold (7 in this case), we set this 3D point as

a 3D keypoint.

Figures 2.2 and 2.3 show results for a 3D point cloud of 105,779 points reconstructed

from 25 training images (detailed in the experiments). Figure 2.2 shows how many

training images there are in which a 3D point is projected (ni
1 in the algorithm). Every

3D point appears in at least 1 training image. This figure demonstrates the need for

reducing the number of 3D points. Figure 2.3 shows the number of images in which a 3D

point appears as a 2D keypoint (ni
2 in the algorithm) for different distance thresholds

over different visibility thresholds. Now, 91% of the 3D points (80,262 points) are not

2D keypoints in any images, while only 0.9% (984 points) are 2D keypoints (th d=5

pixels, th v=7). These 3D keypoints are a reasonably small set (about 1000 points)

compared to the original 3D points, and expected to appear with high probability as 2D



Chapter 2. 3D Keypoints Detection for 3D-2D Matching 18

keypoints again in any newly taken images. They are shown in Figure 2.4 as red points

superimposed in 3D point cloud. There are too many points if the visibility threshold is

1, while a moderate number of points is obtained when visibility threshold is 7. In this

3D point cloud, we set the visibility threshold to 7 because we have sufficiently sparse

3D keypoints.

To see the effects of th d and th v, we counted how many 3D points appear in each

training image for each th d. Figure 2.5, 2.6, 2.7, 2.8 and 2.9 show ni
2 of the 3D points

projected onto each training image. Each bar shows the number of all projected points

(light gray), points corresponding to th v = 1, . . . , 6 (dark gray), and points obtained

for th v > 6 (black). Figure 2.5 shows that about 1000 3D keypoints detected by the

proposed method appear in all training images. Therefore, we can expect that about

1000 3D keypoints would also appear in newly taken images.

Till here, we have described that how to detect 3D keypoints. In next subsections, how

to generate 3D keypoint features and how to use them will be introduced.

2.2.2 Embedding 2D Features into 3D Keypoints

In order to generate 3D features, we embed 2D features into 3D keypoints. The 2D

features are actually SIFT features which will be introduced from now.

Figure 2.5: Histogram of projected points in each images when th d = 5.
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Figure 2.6: Histogram of projected points in each images when th d = 3.

Figure 2.7: Histogram of projected points in each images when th d = 1.

2.2.2.1 SIFT

First, we introduce the concept of SIFT (Scale-invariant feature transform) which first

introduced in [30]. SIFT is an algorithm to detect and describe local features in images.

For an image, SIFT is a “feature description” used for describing objects. If one scene

appears in two images, the description extracted from the two images, can then be used
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Figure 2.8: Histogram of projected points in each images when th d = 0.7.

Figure 2.9: Histogram of projected points in each images when th d = 0.5.

to identify the objects. It is easy to find the location of the objects in both images. In

order to perform a reliable recognition, changes in image scale, noise, rotation and illu-

mination should not affect the interesting points extracted result. Such extracted feature

points usually lie on high-contrast regions of images, such as object edges, corners or

shadows. Another important characteristic of these features is that the relative positions

between them in the original scene shouldn’t change from one image to another. For

example, if only the corners of desk are used as features, they would work no matter
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what is the desk’s position. But if points on the desk were also used, the recognition

would fail if the desk is rotated in the image. Similarly, if there are flexible objects exist

in two images, the features located in such objects will not work if the object changed

in the two images. However, SIFT can detect much larger number of features from the

images. It can reduces the contribution of the errors caused by these variations flexible

objects.

There are two important stage for generating SIFT as follows:

detector This is the first stage which detect the interesting points. The interesting

points are also called keypoints in SIFT framework. The keypoints detection is also the

detector for features. In order to detect SIFT keypoints, we need to implement two

steps as follows:

• DoG image generation

In this step, the image is convolved with Gaussian filters at different scales and

then the differences of Gaussian images are performed. Concretely, suppose we

have the original image I(x, y). Then we have a convolution image L(x, y, kσ) of

I(x, y) with Gaussian blur G(x, y, kσ) at scale kσ:

L(x, y, kσ) = G(x, y, kσ) ∗ I(x, y).

Then, a DoG image D(x, y, σ) is given by

D(x, y, σ) = L(x, y, kiσ)− L(x, y, kjσ).

Because a DoG image between scales kiσ and kjσ is just the difference of the

Gaussian-blurred images at scales kiσ and kjσ. For scale space extrema detection

in the SIFT algorithm, the image is first convolved with Gaussian-blurs at different

scales. The convolved images are grouped by octave (an octave corresponds to the

double value of σ), and the value of ki is selected so that we obtain a fixed number

of convolved images per octave. Then the Difference-of-Gaussian images are taken

from adjacent Gaussian-blurred images per octave.

• Maxima/Minima selection
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In this step, keypoints are selected as the maxima/minima of the Difference of

Gaussian (DoG) that occur at different scales. Once DoG images have been ob-

tained, keypoints are identified as local minima/maxima of the DoG images by

considering the scales. This is done by comparing each pixel in the DoG images

to its eight neighbors at the same scale and nine corresponding neighboring pixels

in each of the neighboring scales. If the pixel value is the maximum or minimum

among all compared pixels, it is the potential selection of keypoint.

descriptor This is the second stage which called descriptor. It has two parts of

computation: orientation and description.

• Orientation

In this step, each keypoint is assigned some orientations based on the gradient

directions of images. Once we can get the orientation of image, we can easily

achieve the rotation invariance purpose. Because the rotation invariance is actually

the keypoint descriptor represented by considering the image orientation.

Broadly, the original image I(x, y) is convoluted by Gaussian blur at scale σ to

get Gaussian-Smoothed image L(x, y, σ). So that, all computations are performed

in a scale-invariant manner. For an image sample L(x, y) at scale σ, the gra-

dient magnitude, m(x, y), and orientation, θ(x, y), are precomputed using pixel

differences:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = arctan(L(x, y + 1)− L(x, y − 1), L(x+ 1, y)− L(x− 1, y)).

The gradient magnitude, m(x, y), and orientation, θ(x, y) are computed for every

pixel in a neighboring region around the keypoint in the Gaussian-Blurred image

L. An orientation histogram with 36 bins is formed, with each bin covering 10

degrees. Each sample in the neighboring window added to a histogram bin is

weighted by its gradient magnitude and by a Gaussian-weighted circular window

with a σ that is 1.5 times that of the scale of the keypoint. The peaks in this

histogram correspond to dominant orientations. Once the histogram is filled, the

orientations corresponding to the highest peak and local peaks that are within
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80% of the highest peaks are assigned to the keypoint. In the case of multiple

orientations are going to be assigned, an additional keypoint is created having the

same location and scale as the original keypoint for each additional orientation.

• Description

Now, we want to compute the keypoints descriptors. The descriptors are highly

distinctive for different keypoints. They are also invariant to the images which are

variations such different illumination and different viewpoints. Concretely, a set of

orientation histograms are created on 4× 4 pixel neighborhoods with 8 bins each.

These histograms are computed from magnitude and orientation values of samples

in a 16×16 region around the keypoint such that each histogram contains samples

from a 4 × 4 subregion of the original neighborhood region. The magnitudes are

further weighted by a Gaussian function with equal to one half the width of the

descriptor window. The descriptor then becomes a vector of all the values of these

histograms. Since there are 4× 4 = 16 histograms, and each histogram has 8 bins,

so we can get the vector has 128 elements. This vector is then normalized to unit

length in order to enhance invariance to affine changes in illumination.

We have already finished the introduction of SIFT. So it is helpful to understand the

next section: embedding 2D features into 3D keypoints.

2.2.2.2 Embedding 2D Features into 3D keypoints

Here we describe a 3D keypoint feature descriptor for 3D-2D matching. To perform

3D-2D matching with features, 2D and 3D keypoints should have the same or similar

features.

Let the 2D feature descriptor (e.g., SIFT [30]) of a point xi
j be S(xi

j). Then the fea-

ture descriptor S(Xi) of a 3D keypoint Xi ∈ Ckey is defined by the average of the

corresponding 2D feature descriptors as follows:

S(Xi) =
1

ni
2

∑
j∈is2DKeypoint(i)

S(xi
j). (2.2)
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2.2.3 Feature Matching and Camera Pose Estimation

After generating 3D keypoints, we need to match 3D keypoints and 2D keypoints of

newly taken query images, and estimate the camera poses of those images. Estimation

is done by a well-known method for estimation of camera pose with RANSAC [39].

In the following two sub-sections, the projection matrix, estimation of R and t, and

RANSAC algorithm will be introduced.

2.2.3.1 Projection Matrix

Projection matrix1 is the camera pose of image which used to transform 3D points

onto 2D image’s coordinate. Suppose we have a point p, with coordinates X0 =

[X0, Y 0, Z0]T ∈ R3 relative to the world reference frame. As we know, the coordi-

nates X1 = [X1, Y 1, Z1]T ∈ R3 of the same point p relative to the camera frame are

given by a rigid-body transformation g = (R, t) of X0:

X1 = RX0 + t ∈ R3. (2.3)

So, we can get

x =

x
y

 =
f

Z1

X1

Y 1

 . (2.4)

where the point X1 is projected onto the image plane at. In homogeneous coordinates,

the projection can be re-written as:

Z1


x

y

1

 =


f 0 0 0

0 f 0 0

0 0 1 0



X1

Y 1

Z1

1

 . (2.5)

1This section is inspired by the textbook ‘An Invitation to 3D Vision’ [40].
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We set X1 = [X1, Y 1, Z1, 1]
T
and x = [x, y, 1]T in homogeneous coordinates, so, we can

rewrite the above equation equal to

Z1x =


f 0 0 0

0 f 0 0

0 0 1 0

X1, (2.6)

Since the coordinate Z1 (the depth of the point p) is usually unknown, we can simply

write it as an arbitrary scalar λ ∈ R.

In the above equation we can decompose the matrix into


f 0 0 0

0 f 0 0

0 0 1 0

 =


f 0 0

0 f 0

0 0 1



1 0 0 0

0 1 0 0

0 0 1 0

 . (2.7)

Then we define that,

Kf =


f 0 0

0 f 0

0 0 1

 ∈ R3×3,Π0 =


1 0 0 0

0 1 0 0

0 0 1 0

 ∈ R3×4. (2.8)

So we have

λx = KfΠ0X. (2.9)

From the coordinate transformation we have X1 = [X1, Y 1, Z1, 1]
T
, which is


X1

Y 1

Z1

1

 =

R t

0 1



X0

Y 0

Z0

1

 . (2.10)

In simple way, it is X1 = gX0.

To summarize, by using the above notation, the overall geometric model can be described

as:

λx = KfΠ0X = KfΠ0gX
0. (2.11)



Chapter 2. 3D Keypoints Detection for 3D-2D Matching 26

Here, Kf is the intrinsic camera matrix and Π0 is the extrinsic camera matrix (without

calibration information). We call KfΠ0g the standard projection matrix.

Next, we will introduce the estimation of R and t

2.2.3.2 Estimation of R and t

Assuming that we have two sets of corresponding points X =
{
X1,X2, . . . ,Xn

}
and

Y =
{
Y 1,Y 2, . . . ,Y n

}
. Their center points are X̄ = 1

n

∑
Xi and Ȳ = 1

n

∑
Y i where

i = 1, 2, . . . , n. Then we can get deviationsX ′ =
{
X1 − X̄,X2 − X̄, . . . ,Xn − X̄

}
and

Y ′ =
{
Y 1 − Ȳ ,Y 2 − Ȳ , . . . ,Y n − Ȳ

}
. In order to estimate R and t2, the objective

function which we want to solve is:

min

n∑
i=1

∥∥Y i − (RXi + t)
∥∥2. (2.12)

It is the same form of

min ∥Y − (RX + t)∥2F . (2.13)

• Estimation of R

There are three methods to estimate R which are Lagrange multiplier [42], quater-

nions [43, 44] and SVD (Singular Value Decomposition) [42, 45–47]. In this section,

we introduce the concept of SVD.

Substitute Equation 2.13 for X ′ and Y ′, we can get the function (just consider

about R)

min
∥∥Y ′ −RX ′∥∥2

F
. (2.14)

It is the same form of

min tr((Y ′ −RX ′)
T
(Y ′ −RX ′)). (2.15)

The simplify form is

max tr(Y ′TRX ′). (2.16)

2This section is inspired by the paper ‘Pose Estimation and Rotation Matrices’ [41].
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Just consider about tr(Y ′TRX ′), it is the same form of tr(RX ′Y ′T ). Because

X ′Y ′T = UΣV T (SVD), we can get

tr(Y ′TRX ′) = tr(RUΣV T ) = tr(V TRUΣ) ≤ tr(Σ). (2.17)

So when we maximize Equation 2.16, we have

V TRU = I, (2.18)

which means

R̂ = V UT . (2.19)

But the determinants of Equation 2.19 are +1 and -1. So we calculate the rotation

R as

R̂ = V HUT , (2.20)

where H =


1 0 0

0 1 0

0 0 |V UT |

.
• Estimation of t

As we know that

Y = RX + t, (2.21)

So,

Ȳ = RX̄ + t, (2.22)

which means that we can get

t = Ȳ −RX̄. (2.23)

Till here, we have known projection matrix and how to estimate it. But it is important

to find matches for the estimation. In next sub-section, the RANSAC algorithm will be

described to do robust inliners extraction.
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Figure 2.10: A least squares (orthogonal regression) fit to the point data is severely
affected by the outliers (The solid points are inliers, the open points are outliers).

Figure 2.11: A RANSAC fitted problem (The solid points are inliers, the open points
are outliers). The dotted lines indicate the threshold distance. For the lines shown the
support is 10 for line < a, b > where both of a and b are inliers; and 2 for line < c, d >

where the point c is an outlier.

2.2.3.3 RANSAC Algorithm

We will introduce the RANSAC algorithm in this section3. Suppose we have already get

a set of corresponding points, which are {X,Y }, used for camera pose estimation. But

because of the accuracy of the correspondences generation, there are some mismatched

points exist in {X,Y } which called outliers. Usually, this kind of outliers are followed

Gaussian error distribution which means most of the data are correct. So we need a

3This section is inspired by the textbook ‘An Invitation to 3D Vision’ [40].



Chapter 2. 3D Keypoints Detection for 3D-2D Matching 29

Algorithm 2 RANSAC algorithm.

1. selects N pairs of corresponding points randomly

2. estimates camera pose P by using the selected points

3. finds how many corresponding point fit P within a given tolerance. Call this K.

4. if K is big enough, accept fit and exit with success.

5. repeat 1 . . . 4 L times

6. fail if you get here

How big K has to be depends on what percentage of the data you think belongs to the
structure being fit and how many structures you have in the image. If there are multiple
structures then, after a successful fit, remove the fit data and redo RANSAC.

robust method to reject the outliers. We call the method outlier rejection algorithm

RANSAC (the RANdom SAmple Consensus) [39].

In order to simplify the problem above, we just take the 2-Dimension data as an example.

We use 2D example to visualize the outlier rejection problem. The problem is as follow:

Suppose we have a set of 2D data points in 2D coordinate. We want to take a line to

fit these 2D points. Which means that the summation of the distances when project

2D points to the line is a minimized value. The problem is illustrated in Figure 2.10

shows that the generated line without considering about outliers is incorrect. This is

actually two problems: a line fit to the data; and a classification of the data into inliers

and outliers.

The procedure of RANSAC is: first, random select two points in the 2D coordinate. A

line can be defined by using the selected two points. Then the number of points that lie

within a distance threshold is used to support the line. After some iterations, select the

most biggest support for the line fit. Now, the points within the threshold distance are

the inliers. The example can be seen in Figure 2.11. We can get a solid line < a, b >

in the example with the maximum support points number as 10. However, if the result

is estimated as the solid line < c, d >, the support is just 2 points. So we select line

< a, b > as the result. The points lie on or near line < a, b > are said to be the inliers.

The RANSAC algorithm of the camera pose estimation is summarized in Algorithm 2.
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Till here, we can use RANSAC to estimate the projection matrix. In next section, we

will introduce our evaluation experiments.
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2.3 Evaluation

2.3.1 Indoor Scene with Small Blocks

Figure 2.12: 27 training images of the indoor scene with small blocks.

The 3D point cloud of small blocks on a table is used to evaluate the accuracy of the

proposed method. The 3D point cloud was obtained by performing 3D reconstruction

with Bundler [28] followed by Patch-based Multi-view Stereo (PMVS2) [26, 27]. 27

images (2256× 1504 in size) of the small block scene were used (shown in Figure 2.12).

The scene contains a lot of small blocks that are similar to each other in color and

shape; therefore it is a difficult and challenging task. After all 27 projection matrices

were obtained; the first 25 images were used as a training set to reconstruct a 3D point

cloud of 105,779 points. Then, the 3D keypoints were computed based on this 3D point

cloud. The remaining 2 images were used for evaluation. For image 26 and image 27,

we estimated projection matrices 30 times for averaging estimates. Let the original

projection matrices be Pt (obtained by using all 27 images). For evaluating errors,

each estimated projection matrix P̂ and corresponding true projection matrix Pt were

decomposed into rotation matrices R̂ and Rt, and translation vectors t̂, tt. Translation
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(a)

(b)

Figure 2.13: Estimation results for the indoor scene. (a) Rotation matrices evaluation
for th v. (b) Translation vectors evaluation for th v.

error is evaluated by the relative error as follows:

e(tt, t̂) =
∥ tt − t̂ ∥
∥ t̂ ∥

. (2.24)

Rotation error is evaluated by the distance of two rotation matrices[40] as follows:

θ = cos−1

(
tr(RtR̂

T )− 1

2

)
. (2.25)

The results are shown in Figures 2.13(a) and (b) for different visibility thresholds. We
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(a)

(b)

Figure 2.14: Estimation results for the indoor scene. (a) Rotation matrices evaluation
for th d when th v = 0. (b) Translation vectors evaluation for th d when th v = 0.

evaluated errors for th v = 4, . . . , 7 and the smallest error is obtained when th v = 5. In

this case, the rotation error is about 0.04 [rad], while the translation error is up to 8%.

The accuracy can be improved if we use a better alternative method for camera pose

estimation, instead of the one described in section 2.2.3.

We compare the errors with the case where simply all 3D points were used, i.e., 3D

keypoints detected by our proposed method were not used. Figures 2.14 (a) and (b)

show the results for fixing th v = 0 (the visibility threshold is disabled) and different

th d (distance threshold is disabled when th d < 1). In this case, the 3D points are

simply used when they appear in the images. As shown in the figures, the average errors
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Figure 2.15: Estimation results. (top) 3D point cloud. (middle and bottom) Projec-
tion of the 3D point cloud with estimated camera poses onto image 26 and 27.
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and standard deviations are slightly larger than those in Figure 2.13 (a)(b). This means

that the proposed method keeps the same accuracy with fewer keypoints being used,

which is one of the advantages of our method.

In this experiment, all of the 2D keypoints are extracted by SiftGPU [48]. The 3D

features descriptors have the same form of SIFT[30] features of 128 dimensions.

The projected 3D points (green points) on query images 26 and 27 are shown in Fig-

ure 2.15. When we have an accurate estimation of the camera pose, the 3D points are

projected onto the images so that the projected points and the objects in the scene ap-

pear exactly the same shape and place. In particular, the projected points in Figure 2.15

are aligned along the edges of the object, which shows that the estimation is accurate,

because small error in the estimation usually leads to misalignment along the edges.

To demonstrate the robustness of the proposed method, we also applied the proposed

method to a video sequence (1280 × 720 in size) taken by a hand-held HD camera.

For most of the frames, the camera pose is estimated well in real time even with non-

optimized experimental code (about 3 fps). Because some frames are blurred where the

camera moves fast and enough number of 2D keypoints are not obtained, the camera

pose estimation fails in such few frames.

The full video sequence is available on YouTube (http://youtu.be/Wx_JGpAJTwI)

2.3.2 Outdoor Real Scene

Figure 2.16 shows another example of an outdoor scene of more complex environment and

different scale compared to the previous indoor scene. In this scene there are objects of

different size (i.e., different scales), under different lighting conditions, and with different

appearances, while the indoor scene only has small objects under controlled lighting

condition. With this experiment, we demonstrate that the proposed method works well

on different scenes. The total number of training images are 26 (2256 × 1504 in size).

Figure 2.16(a) shows some training images for 3D reconstruction. Figure 2.16(b) shows

the reconstructed 125,874 3D points. We set th v as 4 in this case. Finally, we get

410 3D keypoints. The query videos are taken in different resolutions (1280 × 720 and

640 × 480). Some snapshots of the tracking query videos are shown in Figure 2.16(c).

These results are also contained in our video on YouTube. Of course, the accuracy of
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(a) (b)

(c)

Figure 2.16: Estimation results for the outdoor scene. (a) Some training images.
(b) Reconstructed 3D point cloud. (c) Two snapshots of query videos with 3D points

superimposed.
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the proposed method depends on the specific scenes. The experimental results shown

here, however, demonstrate that the method works in two completely different situations:

scenes of different scales (from desktop to walk space), lighting conditions (artificial lights

and sunlight), and object appearance. Therefore, we expect that the proposed method

would also work well for other scenes. One of the factors affecting the performance of

the method is the number of training images. The proposed 3D keypoint detection will

fail if only a few and sparse training images are available, while if the number of training

images is huge, the method could become unfeasible because most of the 3D points will

be chosen as keypoints. Our future work includes finding the optimal balance between

the size and goodness of the training image dataset.
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2.4 Summary

In our research, we would like to build a surveillance system for change detection. Change

detection is important because that disasters and accidents can happen with high prob-

ability if the wide areas have temporary change. But it is very different for operators to

install expensive and heavy equipments in a widely outdoor area. So the detection goal

is divided to two sub-goals: online approach and offline approach. The online approach

is a kind of 3D-2D method used for a regular observation of a target scene to quickly

detect changed areas.

However, 3D-2D detection need to do 3D-2D matching first. In this chapter, we have

proposed a method for detecting 3D keypoints in a 3D point cloud for robust real-time

camera tracking. By detecting a sparse set of 3D keypoints from a large number of 3D

points, the proposed method enables us to use 3D-2D matching for a fast camera pose

estimation. A 3D keypoint is defined as a point that has corresponding 2D keypoints in

many training images. The descriptors of these 2D keypoints are used as a descriptor

of the 3D keypoint. After detecting 3D keypoints, matching between them and 2D

keypoints extracted from query images is performed and camera projection matrices of

the query images are estimated. Experiments for two 3D point clouds from two real

scenes show promising results for the proposed method.

Our method still has some limitations. First, if the camera takes a scene from a very

different viewpoint from the training images, the camera pose would not be estimated

accurately. In our experiments, we captured sufficient training images to cover the real

space. Second, if the number of training images is huge, we need to set the thresholds

carefully. Third, if the 3D keypoints are too many, matching takes much longer time.

Fourth, conversely, sometimes there are too few 3D keypoints to register query images.

In our future research, we will find a more systematic way for choosing parameters to

improve our method.

3D keypoints is the robust way for 3D scene and 2D image to estimate camera pose. It

is also important when implementing 3D-2D matching. In next chapter, we will focus on

our online change detection approach. In our online detection approach, a client-server

system is presented. A quickly change detection result is expected by using 3D point

cloud and 2D images which captured by using mobile phones and tablets. Therefore,
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3D-2D matching followed 3D keypoints detection and description will be one of the most

important parts of the online sub-goal.



Chapter 3

3D-2D based 3D Scene Change

Detection

As we know, change detection embedded in a surveillance system has became more pop-

ular and important. Any obvious change must be alerted to protect wide environment.

However, it is not practical to observe the wide areas all the time. Therefore, a rea-

sonable sub-goal pursued in this thesis is a system, used for a regular (e.g., monthly or

bi-monthly, etc.) inspection of a target scene (e.g., blocks on a coast), to assist users

by visualizing candidate parts of the scene in order to identify which part of the scene

could have changed during a particular time period.

In this chapter, we describe an online approach to detect temporal change by using a 3D

scene geometry at time A (reference) and the image of the same scene at time B (query

or test). To quickly detect changes and visualize the change taking place for operators at

regular observation, our method uses 3D-2D matching between a 3D reference scene and

2D query images followed by 2D-2D feature comparison between 2D training and query

images, which is superior to either of 3D-3D or 2D-2D matching. In the case of 3D-3D

matching [49–51], two 3D scenes are registered for change detection. This may be able

to provide a detail comparison between reference and query 3D scenes, however, this

approach is not suitable because online and real-time 3D reconstruction is very difficult

and still a challenging problem. In the case of 2D-2D matching, images taken by a fixed

camera are compared to detect changes. A huge amount of research on change detection

or moving object detection has been carried out mainly for surveillance cameras [5–7].

40
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This approach is also not appropriate for our purpose: a number of fixed cameras are

needed to cover the whole scene of the observed place, hence, it is impractical if in

particular the scene is wide and large. If the scene is observed by a hand-held camera

for taking a number of 2D images, the problem above may not arise. However, reference

and query 2D images are very difficult to register unless they have a large overlapping

area in each pair of the images. In contrast, our approach uses the combination of

3D-2D and 2D-2D matching. We assume that a 3D scene geometry is given but only

at time A as a reference 3D scene, hence no 3D range finder is necessary. At time B

(query), a hand-held camera is used to take images of the same place, and the reference

3D geometry is used for 3D-2D matching for camera pose estimation (see Chapter 2).

This enables us to perform a robust 2D-2D matching.

In the following sections, related work on scene change detection is reviewed in section

3.1. Section 3.2 outlines the concept of the proposed method. The algorithm of online

method for change detection is shown in section 3.3. Experimental results are given in

section 3.4.
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3.1 Related Work of 3D Change Detection

Recently, several 3D change detection methods with a laser range finder have been pro-

posed for environment monitoring and robot navigation. Goncalves et al. [49] proposed

a method to visualize 3D displacement map of two 3D laser-scanned scene point clouds.

Ryle et al. [50] presented a detection method of fast background subtraction of 3D ge-

ometry with voxel segmentation. Neuman et al. [51] also proposed a method for online

segmentation-based change detection for mobile robots. These methods need a 3D range

finger to obtain 3D geometries both for reference and query, hence it may not be used

near seaside coasts or mountain slopes.

With a monocular video, Eden et al. [52] proposed a method for matching 3D line

segments by using computational complexity reduction with incidence relations among

lines to detect changes. But this method is not applicable to round-shape or tapered

tube objects such as a wave dissipating block, or natural scenes where straight lines

rarely happen.

For omni-directional videos, a method for frame alignment of two video sequences fol-

lowed by change detection with color differences was proposed by Sato et al. [53].

Because there is no 3D information in the panoramic videos, it fails when scene objects

are relatively close to the camera and then images have large parallax.

A method proposed by Pollard et al. [54] updates probabilistic voxel models by using

a new image and models changes by a probability of seeing observed pixel color. This

method can deal images with arbitrary (but known) cameras, however, it strongly relies

on GMM color models and hence is not adequate to objects with similar colors.

Taneja et al. [55] proposed a method for computing 2D inconsistency maps combined

with MRF and project color difference of images back to 3D surfaces for 3D scene

change detection. The irrelevant changes such as walking people, cars and vegetation

are excluded by classifying those changes. This method uses color information of images

which is not stable for illumination changes.

Our approach is similar to the work of Taneja et al. [55]: to utilize 2D images with

3D scene geometry. Our key contribution is to use local feature descriptors [30] for
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detecting changes instead of color information, because those are well known to be ro-

bust to illumination changes, and invariant to many transformations including rotation,

translation, and scaling.
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3.2 Change Detection by using Feature UnMatching

Figure 3.1: An intuitive and illustrative example of change detection. The left image
is a reference and the right image is a query with a change (a book appears). Keypoints
with correspondences (colored lines) are in a region without changes, while points with

no correspondences are in a region of change.

The proposed online method consists of two parts: camera pose estimation by 3D-2D

matching [56], and change detection by 2D-2D matching. Since our online method

focuses on the second part, here in this section we explain the concept how we detect

changes by using 2D image feature descriptors in the training (reference) and query

images. Now we assume to have a reference 3D point cloud (at time A) and associated

2D (training or reference) images (at time A) used for 3D reconstruction. The problem

is to find changes in a query image (at time B) .

A region of change is defined in this chapter as a region in the query image in which

feature points (e.g., SIFT keypoints) do not correspond to points in the training images.

Figure 3.1 illustrates this concept with a very simple situation where on the left is shown

a training image (reference) and on the right a query image with a change, in this case

a book appears. Here, the feature points on the book have no corresponding points in

the reference image, hence those are identified as a change in the scene. Even if the

reference and query are interchanged (i.e., the book disappears), the region is still going

to be detected.

This idea may look to be so limited that only appearing and disappearing objects can

be detected, however, this is not true. Any movement of a rigid object would cause
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the appearance/disappearance of part of the surface of the object or the appearance of

part of the background that has been occluded by the object. Therefore, the proposed

concept, although quite simple, is still expected to work well s situations where objects

move as well as when those appear or disappear.

To detect those points as changes, we need to have some assumptions. The first assump-

tion is that the scene has rich texture to ensure that many feature points are extracted.

If the background has less texture, no change can be detected when an object disappears

(a)

(b)

Figure 3.2: (a) An example with less textured background. (b) A real scene example
with rich texture.
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(a)

(b)

Figure 3.3: (a) An example of repeated texture from similar objects. (b) A real scene
where keypoints between similar images are well matched.

(see an example in Figure 3.2(a)). However, this case rarely happens in our task because

real scenes like Figure 3.2(b) have always rich texture.

The second assumption is that the scene does not have repeated texture. If a feature

descriptor matches to other place in the scene, the proposed method fails (as illustrated

in Figure 3.3(a)). Another common example of repeated texture is the windows on the

walls of buildings, however, in practice those are not the target of change detection, and

real scenes like Figure 3.2(b) always have non-repeated texture. Even if those images

look to be similar to each other and repeated at first glance, standard feature descriptors

like SIFT [30] can be matched very well with few outliers (see Figure 3.3(b)).
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3.3 Change Detection and Visualization

In this section, we describe the proposed change detection and visualization method.

The main idea is to find 2D keypoints in a query image with no correspondence in the

training images . To this end, we first estimate the camera pose (i.e., the projection

matrix) of a query image by using 3D-2D matching (details in Chapter 2 and [20, 56]).

Then, we find the nearest image among the training images: the closest training image

to the query image. Using the nearest image, 2D points with no correspondence are

detected by performing 2D-2D matching. Finally, we visualize a region of change with

those 2D points by projecting the 3D point cloud of the scene.

3.3.1 Finding the Nearest Image

As shown in Figure 3.4, we want to find the closest training image to the query in

terms of the camera position and orientation. However, just comparing the camera

positions is not enough for our task because often two cameras with different positions

and orientations can capture very similar images of the same scene. In our method, we

estimate the nearest image in two steps.

Figure 3.4: An example of a nearest image to the query image.
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• First, we define and calculate the error between two (reference and query) camera

positions and orientations. Let P̂ be the camera projection matrix for the query

image and P for the training image. Those projection matrices are decomposed

into rotation matrices R̂ and R, and translation vectors t̂, t. Translation change

is defined as the relative error as follows:

e(t, t̂) =
∥ t− t̂ ∥
∥ t̂ ∥

. (3.1)

Rotation change is defined as the distance of two rotation matrices [40] as follows:

e(R, R̂) = cos−1

(
tr(RR̂T )− 1

2

)
. (3.2)

As the change of camera projection matrices involves both rotation and translation

changes, we define the distance (change) of two camera projection matrices by:

e(P, P̂ ) = e(t, t̂) + e(R, R̂). (3.3)

• This distance, however, provides just rough candidates for the nearest image.

Therefore, next we count the number of corresponding points between the query

image and each of the training images (not for all training images but only for

the several “closest” training images in terms of the distance Equation 3.3. Then

the image which has the largest number of corresponding points is selected as the

nearest image.

Figure 3.5 illustrates this concept. The distances e(P, P̂ ) between a query and each of

54 training images are shown in Figure 3.5(a). Figure 3.5(b) shows the number of cor-

respondences between the query image and each of 54 training images. In Figure 3.5(c),

the scatter plot is made based on Figure 3.5(a) and (b). The label at each point shows

the training image number. In this figure, e(P, P̂ ) should be as small as possible. If two

or more reference images have the same distance (in this example, image 27 and image

2), we select one which has more corresponding points (i.e., image 27). We expect that

the minimum number of correspondences is larger than about 2000 (it needs to be large

enough to cover the query image), and in fact the closest 4 images 26, 28, 27 and 2 have

more than 2000 correspondences.
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(a)

(b)

(c)

Figure 3.5: (a) Distances e between the query and each of the training images. (b)
The number of corresponding points between the query and each of the training images.

(c) Scatter plot of the distance and the number of correspondences.
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This result might suggest that the proposed two steps are not necessary and just either of

them is enough. However, the combination of the two steps is much better than either of

them because the first step (checking the camera projection matrices distances) greatly

reduces the computation time in the second step (counting matching points), and the

second step allows us to find the training image with the most similar appearance to the

query.

3.3.2 Change Area Detection

Figure 3.6: Change area detection. Blue points are 2D keypoints with correspon-
dences, and a “no change” area is defined around those points.

As explained in section 3.3.1, a region of change is detected by comparing the query and

the nearest images. Figure 3.7 shows an example for change detection. Figure 3.7(a)

shows the correspondence between the query and the nearest image. In Figure 3.7(b),

the 2D keypoints in the query image that have corresponding points in the nearest

image are shown in blue. Those are considered not to be changed, therefore, we mark

the corresponding areas as “no change”. In other words, we define that a pixel is in a

region of change when the distance from the pixel to the closest “no change” 2D keypoint

is larger than a threshold (see Figure 3.6). 2D keypoints that have no correspondences

are shown in red, and those are considered to be in a region of change. Because not

the whole query image could be covered by the nearest image, the top and left sides of

the query image in Figure 3.7(b) are also detected as a region of change. This problem
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(a)

(b)

Figure 3.7: Matching between the query image and nearest image. (a) Corresponding
points are marked by blue lines. (b) 2D keypoints that have correspondence (blue) and

no correspondences (red) in the query image.

is not so serious because an observer can easily recognize that it is an artefact of the

method, hence, it is left for future work.

3.3.3 Visualization

Once we have found the change detection area, we visualize the region by projecting the

3D point cloud of the scene only inside the region. In Figure 3.8, we shows a comparison

with different estimated camera poses. The top image shows the detected change area,

the three images in the left column are pose estimation results (visualized by projecting

the 3D point cloud). The top image uses the estimated (correct) camera pose, while in

the bottom image the pose was rotated by 30 degree about the y axis (for simulating a
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Figure 3.8: The relationship between camera pose and change. (top) detected change
area, (left column) correct, 10 degree error and 30 degree error camera poses, (right

column) correct and incorrect visualization results.
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very inaccurate camera pose). Notice that for the middle image with 10 degree rotated

camera pose (simulating small error), the changed area is visualized correctly, while the

3D shape may not appear correctly. The corresponding visualization of the detection

results (images in the bottom row) show that the correct camera pose is important

for better visualization. We have seen in all experiments with the dataset used in this

chapter that estimated camera poses were correct enough as shown in the left images of

Figure 3.8.
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3.4 Evaluation

3.4.1 Small Blocks

To evaluate the proposed method, first we show quantitative results for experiments

with small blocks (about 5cm × 5cm × 5cm) set on the ground (the area size where

the blocks are set is about 35cm × 15cm). We took 54 images of the scene with a

camera about 30cm away from the blocks with a variety of viewpoints. Then these 54

training images (2256×1504 in size) at time A were used to reconstruct a 3D point cloud

(Figure 3.9(a)). A query image (of the same size with the training images) at time B

taken by different viewpoint is used to detect change. In this dataset, a block was taken

away from the scene to represent the change. A hand-marked ground truth is used for

calculating true positive and false positive rates of projected 3D points. Figure 3.9(b)

shows the detection and visualization results for different thresholds.

We plot receiver operating characteristic (ROC) curves which show the fraction of cor-

rectly detected changes, the True Positive (TP) rate, against the fraction of falsely

detected (projected 3D) points, the False Positive (FP) rate. In our case, the number

of points projected inside the white area of the ground truth image is denoted by P,

and the number of points projected outside the white area is denoted by N. Similarly,

the number of points detected by our method inside the correct white region is denoted

by TP, and the number of detected points outside the correct white region is denoted

by FP. Then the TP rate is defined as the ratio TP
P and FP rate as FP

N . Each point

in Figure 3.10(a) corresponds to a different threshold (90, 70, 50, 30, 20, 10, 5 and 0).

Based on the ROC curves, or this dataset it is best to set the threshold between 20 and

30.

The figure also shows results when the 1st nearest image is not available but the kth

(k > 1) nearest images is used instead. This illustrates how sensitive the proposed

method is to the selection of the nearest image and how the detection result degrades

when the “nearest” image is far from the ideal one. This shows that even when the 4th

nearest image is used, the proposed method still works as well as when the 1st nearest

image is used.

Notice that in Figure 3.10(a) the 2nd nearest image performed better than the 1st

nearest image. The reason is that the query image cannot be always covered by the
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(a)

(b)

Figure 3.9: Experimental results for a small block dataset. (a) Point cloud, a query
image and its hand-marked ground truth. (b) Results for different thresholds (from left

to right: 0, 5, 10, 20, 30, 50, 70 and 90).
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(a) (b)

Figure 3.10: Experimental results for a small block dataset. (a) ROC curves. (b)
Detection results for other query images.

(a)

(b)

Figure 3.11: The relationship between nearest images and query image, (a) the match-
ing and change detection results by using 1st nearest image, (b) the matching and

change detection results by using 2nd nearest image.

nearest image due to the difference of the fields of view (FOVs) as shown in Figure 3.11.

There exist a kind of ”border effect” shown as the red points at the top border in the

query image when the 1st nearest image is used (Figure 3.11(a)). This effect does not

appear for the 2nd nearest image (Figure 3.11(b)) because it has much larger FOV than

the query image. We have planned to reduce the border effect in order to further improve

the performance.
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(a)

(b)

Figure 3.12: Results for outdoor blocks. (a) 3D scene point cloud. (b) Change
detection results for different query images.

3.4.2 Outdoor Real Blocks

Our research target is to detect change in a real outdoor environment. In this experiment,

a set of real block images were used for detection. 23 training images were taken in

October 2009 and query images were taken in January 2010. The results are shown

in Figure 3.12. Because no disasters or accidents had occurred in this time period, no
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change should be detected. Apart form a few wrong detections, the proposed method

works reasonably well on this real dataset. We will continue to observe this site for

finding any suspicious changes.

3.4.3 Discussion of the Evaluation

The proposed method takes 20 seconds for detection of a single query image, while

Taneja’s method [55] takes about 60 seconds. This is because our method uses 3D

points mainly for visualization shown on a 2D query image. However, Taneja’s method

focuses both on 2D images and 3D points and shows detection results in the 3D point

cloud, which takes much longer time to process. Therefore, our method is reasonably

faster than 3D point-based detection methods.
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3.5 Summary

In order to detect unusual temporary change in a widely area, we set our research goal to

be a change detection surveillance system development. But consider to the complicate

situation of target surveillance environment, such as coastal areas, mountain slopes and

highways, it is necessary to divide the research goal into two sub-goals: online approach

and offline approach. The online approach is used for real-time change detection. The

users can capture the query image of a changed scene by using mobile phones and tablets.

Then the detection result is computed and returned by a powerful server via WiFi which

can ensure the quickly processing.

In this chapter, we have focused on a quickly change detection method which is the

online real-time change detection approach. Therefore, we have proposed a method for

3D-2D based change detection. To find a region of change in a query images, first, the

nearest image is selected. Then, the matching between the query and the nearest images

is performed to find 2D keypoints with correspondences and detect a region of change.

The detected region of change is visualized by projecting the 3D points back to the

region. Our future work includes reducing wrong detection by using spatial information

such as smoothness or coherency, and implementations on mobile devices.

Our online approach is very useful in a widely area because it is portable for operators

and fast for computation. However, the online approach returns potential changed area

which are not always high accuracy. Therefore, in next chapter, we will introduce our

offline detection approach. Since we can have the 3D point cloud at time A and the

reference images at time B, we can provide such data to the offline approach. Then, a

3D-3D based high accurate point clouds alignment will be implemented.



Chapter 4

Scale Alignment of 3D Point

Clouds

As we introduced in Chapter 1, our offline model need a method to improve the detection

accuracy of change areas results. In this chapter, we propose a method for estimating

the scales of point clouds in order to align them. This is important because once point

clouds are transformed into the same scale, feature descriptors that are not scale invari-

ant such as spin image [13, 14] and NARF [15] can be used for 3D registration. Our

proposed method performs Principal Component Analysis (PCA) to generate two sets

of cumulative contribution rate curves. Then the scale ratio is defined as the scale factor

that is used to re-scale one point cloud to the other, which can be found by registration

of two sets of curves, instead by registration of the point clouds themselves.

Actually, in many cases we do not need to estimate the scales of the point clouds because

absolute scales can be obtained by using 3D capturing devices such as laser range finders

or time-of-flight (TOF) cameras or even consumer level cheap depth sensor devices like

Kinect [29]. Such devices provide a range image or a depth map, in which a depth value

z is given at each (x, y) coordinates with absolute metric [32–35]. Alternatively, we can

put calibration objects into a 3D scene to obtain the absolute length in the 3D point

cloud.

However, there are many practical situations where it is difficult to apply the strategies

above because of the following reasons.

60
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Research Challenge In order to detect unusual changes quickly, we have developed a

method which registers a 3D point cloud of a past scene with 2D images of a current scene

(see Chapter 1 and [23]). These 3D point clouds are generated by structure-from-motion

(SfM) [26–28] with a lot of 2D images taken by human operators walking around the

coast. Although a quick change detection has been achieved by the developed system, a

more accurate and detailed analysis of the change in the scene requires the registration

of 3D point clouds from the past and current scenes.

To this end, we have to deal with two problems: how to capture 3D point clouds in

target scenes, and how to align them.

Figure 4.1: Examples of target scenes and calibration objects. (Top) Small objects
on a desktop. (Bottom) Large blocks on a coast.
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Target scenes The devices mentioned above, that can capture the 3D shape of a

scene, are not appropriate for our task. This is because the observation places are very

specific, like coasts or seashores, where the waves roll into the sand and the ground

becomes slippery. Expensive devices such as range finders are therefore not expected

to be used. Consumer level devices (like Kinect, for example) are cheap but not useful

for large scale scenes or under strong sunlight. Since the target objects we consider are

usually larger than three meters in height and the operators would capture the 3D scene

during the daytime, such devices are not a good choice.

The best choice is therefore to use cheap and hand-held digital cameras to reconstruct

the target scene with SfM. However, is this case we need to estimate the scales of the

3D scenes because SfM does not provide the scales directly.

A calibration object can be used for obtaining the scale of a scene, however, this is not

enough. Figure 4.1 shows examples of commonly used calibration objects, black-and-

white checker boards, set in target scenes. These checker boards are useful in particular

for a desktop-size small scenes like the one shown in the top image of Figure 4.1. As the

target object size becomes large, as in the bottom image of Figure 4.1, the error in the

estimated scale would increase linearly, which would significantly affect the result of the

registration.

Our approach Many methods have been proposed to align two 3D point clouds, which

include Iterative Closest Point (ICP) based methods and descriptor-based methods. Our

target scenes are however difficult to be registered by those methods. Figure 4.24 shows

an example of 3D point clouds of one of the target scene. ICP-based methods would

not work well for this dataset as it does for a simple and clean dataset such as the

Stanford Bunny [57]. Descriptor-based methods also do not work as expected because

the scene has lots of clutter that makes it difficult to extract invariant descriptors stably.

Furthermore, both types of methods have the same drawback, that point clouds of

different scales are difficult to register, which will be discussed in the next section.

The approach presented in this chapter divides the task into two steps: scale estimation

and registration. One possible way is to estimate the scale of each point cloud separately.

In this case, each point cloud has its own scale that is something like the size of a scene.

We call it a keyscale [58], which is a representative scale and is defined for a given 3D

point cloud as the minimum of the cumulative contribution rates of PCA of descriptors
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(spin images [13, 14]) over different scales. Then we can re-scale one point cloud to

another by using the estimated keyscales. However, this method has two weak points.

First, finding the minimum might not be stable due to noise. Second, we need a very

small step size for an accurate keyscale estimation, which might be very expensive to

compute.

As an alternative, we propose a method for directly estimating the scale ratio, the ratio

of scales, of two point clouds [25, 58]. We assume that the two sets of curves of the

cumulative contribution rate of PCA differ only in scale. With a given initial search

range of the scale, the proposed method aligns the two sets of curves by using a concept

similar to ICP in order to estimate the scale ratio. Once the scale ratio has been

estimated, we can use existing ICP-based or descriptor-based alignment methods.
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4.1 Related Work of 3D Scale Alignment

Here we discuss several methods that could be used to estimate the scales of or align 3D

point clouds.

Some simple ways Possible simple ways might be the use of one of the sides of

the bounding box of a 3D point cloud, or the standard deviation of the point cloud

distribution. These values can be used to align the scales of two point clouds, however

this would work only when the 3D point clouds contain a single object or the same part

of a scene. Yet another way is to use mesh-resolution [13, 14], which is the median of the

distances of all edges between neighboring points in a point cloud. Obviously, this would

fail when the densities of the point distributions in the two point clouds are different.

ICP-based methods The Iterative Closest Point (ICP) method, proposed by Besl et al.

[12], is a widely used method to align two 3D point clouds. The algorithm iterates two

steps: in each iteration, closest points are selected, and a rigid transformation between

them is estimated. This estimation is usually called the orthogonal Procrustes problem

[59, 60] which has been well studied since the 1960s. Also, a similarity transformation

can be estimated [60–62] instead of the rigid transformation. ICP could provide a scale

ratio of two point clouds as a result of alignment when similarity transformation is

estimated. However, it is well known that ICP requires a good initial pose and also an

initial guess of the scale. ICP usually fails if the two point clouds differ in pose and

scale.

Descriptor-based methods In contrast to ICP, descriptor-based methods do not re-

quire any initial guess of transformation. There are several well-known 3D descriptors

such as spin images [13, 14], NARF [15], and Shape context [63].

These feature descriptors are computed at keypoints by using associated normal vectors

and a local neighborhood size. Those descriptors are then used for finding correspon-

dences between two point clouds in order to register them. One disadvantage of these

methods is the requirement of a fixed local neighborhood size to compute the descrip-

tors. It is difficult to set up the appropriate neighborhood size if the scales of the point

clouds are different.

For 3D data, there are some scale invariant features. Some extensions of 2D features

have been proposed such as 3D SIFT [16] and nD SIFT [17], but they just describe
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features of 3D volumes or n-dimensional data, not a sparse set of 3D points. Instead

of directly extending those 2D features, some researchers have proposed to combine 2D

features with 3D point clouds [18–20]. Those are effective when 2D images are available,

but not applicable to characterize the scale of 3D point clouds themselves.

Our contribution The proposed methods described in the following sections estimate

the scale ratio of two point clouds by using only local 3D shape characteristics. Since we

have separated the alignment step from the scale estimation step, we can use existing

alignment methods such as ICP or spin images once the scale ratio has been estimated

by our methods.
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4.2 Scale Estimation of a Single Point Cloud

In this section, we describe our first method for estimating the scale of a given point

cloud. This method finds an appropriate neighborhood size, which we call keyscale. We

use spin images [13, 14] in our work, however, we can use any other feature descriptors

which are not scale invariant: such as NARF [15] or Shape context [63].

(a)

(b)

Figure 4.2: A point cloud (a) and its spin images (b) obtained for different widths
w = 0.001, 0.1 and 1.0.

The main idea is that spin images require an “appropriate size” of neighborhood. Fig-

ure 4.2 illustrates how the size affects the descriptor. Descriptors like spin images are

computed at keypoints (red points on the object in Figure 4.2 (a)) with a given neigh-

borhood size. The size here is called a width w of the spin images.
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When the width is too small, as shown in the top row of Figure 4.2 (b), spin images

do not represent correctly the local geometry because usually any object surface can be

seen as flat in extremely small locality. In this case, all spin images would represent

just a plane, being the same or very similar to each other as shown in the top row of

Figure 4.2 (b).

Similarly, spin images do not represent geometry correctly if the width is too large, as

shown in the bottom row of Figure 4.2 (b). When the width is say 10 times larger than

the size of the object in consideration, any 3D point would tend to fall in the same bin

(or in small number of bins) of a histogram computed for a spin image. Again, spin

images may become very similar to each other.

Therefore, we can say that the similarity between spin images has a minimum as the

width changes. At the minimum, the spin images are most different from each other

as shown in the middle row of Figure 4.2 (b). That is the width of spin images, or the

keyscale , that characterizes the scale of a point cloud.

We define the similarity between spin images as the cumulative contribution rate of a

PCA of the spin images at a specific dimension of eigenspace. We will explain this

idea more formally in the following subsections. The key idea is that if spin images are

not approximated well by a small number of eigenvectors, then the spin images are not

similar to each other and the cumulative contribution rate decreases.

In order to well understand our method, firstly, we will introduced spin images and PCA

in next two sub-sections.

4.2.1 Spin Images

The spin image is a surface representation technique that was initially introduced by

Johnson et al. [13, 14] and is used for surface matching and object recognition in 3D

scenes. Spin images ensure the global properties of any surface in an object-oriented

coordinate system rather than in a viewer-oriented coordinate system. Object-oriented

coordinate systems are coordinate systems fixed on a surface or an object while viewer-

oriented coordinate systems are based on the viewpoint of the observer of the surface.

By using object-oriented coordinate systems, the description of a surface or an object is

view-independent and it does not change while the viewpoint changes.
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Figure 4.3: The cylindrical coordinate system and its(p,n) 2D basis (Taken from
[13, 14])

.

The key element of spin images generation is the oriented points. The oriented points

(denote as O) are 3D surface points which have an associated direction normal vector to

them. The surface which these points correspond to is defined as a polygonal mesh M

with vertices. An oriented point O at a surface mesh vertex is defined by the 3D position

of the surface vertex (denoted as p) and a reference normal vector (denoted as n). Then

we can formulate a 2D basis (p,n) which will correspond to a local coordinate system.

To achieve this we use the tangent plane P through p oriented perpendicularly to n and

the line L through p parallel to n. This will cumulated in a (α, β) cylindrical coordinate

system where α is the (non-negative) perpendicular distance to L and β is the signed

(positive or negative) perpendicular distance to P . The cylindrical coordinate system is

shown in Figure 4.3.

The oriented point basis is then used to generate a spin map, S0. S0 can be expressed as

a projection function of the 3D points x of an object to 2D coordinates (α, β) associated

with the 2D basis (p,n) that corresponds to the oriented point O. The projection

function can be seen below:

S0 : R3 → R2, (4.1)

S0(x)→ (α, β) = (

√
∥ x− p ∥2 − (nT (x− p))2,nT (x− p)). (4.2)
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Figure 4.4: Creation of the 2D array representation of a spin image (Taken from
[13, 14])

.

Figure 4.5: Spin image creation for three oriented points in the surface of an object
(Taken from [13, 14])

.

To better understand the above procedure, it is necessary to recall that the surface

of an object is represented as a mesh M with vertices. By applying the projection

Equations 4.2 to all the vertices, we create a set of points with (α, β) 2D coordinates.

Note that to create a spin image, we only need one oriented point. The other 3D points

near the oriented point are used to expressed to cumulative density. The next step is

to create a 2D array that is going to represent the spin image generated by using the
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2D basis. In order to achieve this (shown in Figure 4.4), we accumulate the 2D points

(α, β) into discrete bins. Each time a 2D point is cumulated into a bin, we update the

2D array by incrementing the surrounding bins in the table. At this point we need to

consider the noise in the data. So the contribution of the 2D point is spread to the four

surrounding bins of the 2D array by using bilinear interpolation. Some examples are

shown in Figure 4.5. By using different O points, the generated spin images are very

close to the 2D points distribution.

4.2.2 PCA

Principal Component Analysis (PCA) [64] is a variable reduction method and it’s very

famous in the area of statistics learning and data analysis. Observing data (or samples)

on a number of variables is very useful when machine learning is applied, and it’s believed

that some redundancy existed in those observed data. In this case, redundancy means

that some of the variables are correlated with one another, possibly because they are

measured in the same construct. Since this kind of redundancy existed, it’s reasonable

to believe that there is a way to reform the observed data and remove the redundancy by

using a smaller number of artificial variables (principal components) that will account

for the great majority of the variance in the observed variables. Or in another way, there

maybe a method to find a transformation matrix which can represent the observed data

in a better way.

Consider a case with a set of vectors X . Then we have a vector x and calculating the

average of the covariance matrices of all samples.

X =
1

n

∑
x∈X

(x−m) (x−m)T (4.3)

where n is the number of the samples.

An optimal transformation matrix P is consisted of the generalize eigenvectors which

correspond to the largest d′ eigenvalues of X. d′ is decided by the contribution rate of

the cumulated eigenvalues.

PCA can be done by using the singular value decomposition (SVD) of the data matrix.
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Suppose there is a n× p data matrix X, n and p is the number of observations and the

predictors, respectively. X is centered that the column means are 0. Then the SVD of

X is

X = UΣV T (4.4)

U is a n × n matrix, its columns are the eigenvector of XXT . Σ is a n × p diagonal

matrix with the eigenvalues of XXT on its diagonal line. V is p×p matrix, its columns

are the eigenvector of XTX. The optimal transformation matrix P is consists of the

first q (q ≪ p) columns in U . Now combine Σ and V together to get a new coefficient

matrix C=ΣV T , then X can be represented by U and C:

X = UC (4.5)

Then column xi in X can be represented as

xi =

n∑
j=1

ujcij (4.6)

Since P is made of first q columns in U and the left columns in U has very small

eigenvalues, xi can be approximated as:

xi ≈
q∑

j=1

pjcij (4.7)

Turn Equation 4.7 into matrix form

X ≈ PC (4.8)

= DC (4.9)

Here C is reshaped to a q × p matrix by discarding the left part to make P and C

multipliable. D is dictionary and just the same with P .

Now basing on Equation 4.9, PCA can be treated as using a linear combination of

eigenvectors (principal components, short as PCs) to represent the data. It’s the same

interpretation topic appears in linear regression which the response is a linear combina-

tion of the predictors.
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Till here, we have introduced the concepts of spin images and PCA. The contribution

rate and the keyscale will be described in next two sub-sections.

4.2.3 Contribution Rate

Next, we describe the cumulative contribution rate. We denote spin images Spini(α, β, w)

of m ×m bins as vectors swi of m2 dimensions. By performing PCA for a set of spin

images {swi }, we have m2 eigenvectors ew1 , . . . , e
w
m2 of m2 dimensions and corresponding

real eigenvalues λw
1 ≥ · · · ≥ λw

m2 ≥ 0.

Figure 4.6: Examples of contribution rate curves over different dimensions d (top)
for fixed widths w, and (bottom) different width w for fixed dimensions d.
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The cumulative contribution rate is defined as

cwd =

∑d
i=1 λ

w
i∑m2

i=1 λ
w
i

, (4.10)

where d = 1, 2, . . . ,m2. Figure 4.6 (top) gives some typical curves showing how the

cumulative contribution rate cwd increases as the dimension d increases. As we explained

above, when the width w is too small or large compared to the object, the spin images

become similar to each other. In Figure 4.6 (top), we can see that the curves approach

quickly 1 when w = 0.001 (too small) and w = 1.0 (too large): fewer dimensions are

enough to approximate the spin images if they are similar to each other. On the other

hand, the curve of w = 0.1 increases more slowly, which means that the spin images are

quite different from each other.

4.2.4 Finding the Keyscale

As described above, the idea of a keyscale is to find the appropriate spin image width

w in terms of the minimum of cumulative contribution rate. We can see this minimum

in Figure 4.6 (top), for example, at dimension d = 10. The values of cumulative contri-

bution rate are large for both w =0.001 and 1.0, however the value for w = 0.1 is much

smaller than those values.

This can be seen more clearly in Figure 4.6 (bottom) which is a plot of the cumulative

contribution rate values over different w. In this plot, the curve for d = 10 has the

minimum at w = 0.1, which is the keyscale of this sample point cloud.

4.2.5 Limitations

Our first method, explained above, can find a particular scale of point clouds as a keyscale

by determining w which gives the minimum of the curves in Figure 4.6 (bottom). This

method however has the following three problems. First, we need to choose the dimension

d to decide which curve is used. In the description above we chose d = 10 as an example,

but there is no specific reason for this. Fortunately, every curve in Figure 4.6 (bottom)

has the same minimum, but this might not be the case always. Second, the minimum is

not stable: it may change against small amounts of noise, and there might be more than
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one local minima. In the latter case, it is difficult to determine which local minima is

more appropriate as a keyscale. If there is a heavy clutter in the 3D scene, the situation

can become even worse. Third, the minimum is found at discrete steps of the width,

which is neither accurate nor efficient. There is a trade-off between these problems

because we may find a stable minimum with a larger and sparser discrete step size, but

the minimum is less accurate. A more accurate estimate may be obtained with a dense

step size, while the computational cost is more expensive and the scale ratio result is

less stable.
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4.3 Scale Ratio Estimation of Two Point Clouds

In this section, we introduce our second method that estimates the ratio of the scales

of two point clouds instead of estimating the scales of each point cloud separately. This

method is an extension of the first one: here we use all curves of all dimensions, while in

the first approach we used only a single curve of a specific dimension to find a minimum.

We will explain below how this approach works and how it solves the problems that the

first approach had.

4.3.1 Formulation

Figure 4.7: Point clouds from the bunny simulation.

The idea is that we can use all curves of all dimensions to find the scale ratio robustly.

An example of two sets of curves is shown in Figure 4.8 (a) and Figure 4.9 (a). The

point cloud is shown in Figure 4.7. We assume that the two sets of curves differ only in

scale — this is reasonable as the point clouds corresponding to these two sets of curves

should share a similar overlapping part of a 3D scene.

Of course there are some parts where the sets of curves are not similar (for example, the

left parts of Figure 4.8 (a) and Figure 4.9 (a) differ from each other). If we can remove

those parts from the sets of curves, we can “register” the two sets of curves.
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(a)

(b)

Figure 4.8: cwd curves from the original bunny simulation. (a) Original scale and (b)
the curves shown only in the initial search range found by the initialization step.

In other words, we estimate a scale difference (i.e., a scale ratio) between two sets of

curves by registering those curves. This idea simplifies the problem: before we had

to register two 3D point clouds for finding scales, but now we have a 1D registration

problem along the scale (w) axis in Figure 4.8 and Figure 4.9. We call this approach

scale ratio ICP and describe it in more detail below.

Suppose there are two sets of curves c1wd = {xdwi
, wi} and c2wd = {ydw′

i
, w′

i} where 1 ≤ d ≤

m2. Notice that here we represent the curves as sets of 2D points. The horizontal axis
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(a)

(b)

Figure 4.9: cwd curves from the 5 times larger bunny simulation. (a) 5 times larger
scale. (b) the curves above shown only in the initial search range found by the initial-

ization step.

is the width w of the spin images, and the vertical axis is the cumulative contribution

rate.

The objective function we want to minimize is

E(t) =
∑
d

∑
i

∥∥∥∥∥∥
 ydw′

i

w′
i

−
 xdwi

twi

∥∥∥∥∥∥
2

, (4.11)
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Figure 4.10: Estimated scale ratio t by curve registration using the overlapping parts
of the curves shown in Figure 4.8 (b) and Figure 4.9 (b).

where t is the unknown scale ratio to be estimated. The solution is obtained in a

closed-form. The objective function can be written as:

E(t) =
∑
d

∑
i

((
ydw′

i
− xdwi

)2
+
(
w′
i − twi

)2)
.

By taking the derivative of E(t) with respect to t, we have:

∂E(t)

∂t
= −2

∑
d

∑
i

wi

(
w′
i − twi

)
,

and by setting it to 0: ∑
i

(
−wiw

′
i + tw2

i

)
= 0,

then we have the solution,

t =

∑
iwiw

′
i∑

iw
2
i

. (4.12)

So far we have assumed that the points on each curve have corresponding points on the
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other curve, however, in fact we do not know the correspondences in advance. Therefore,

we use the strategy of the standard ICP: finding the closest points iteratively.

4.3.2 Scale Ratio ICP Algorithm

In this section, we will introduce the proposed scale ratio ICP algorithm. Because scale

ratio ICP is a variation of standard ICP. So, we will describe the standard ICP first.

4.3.2.1 ICP

The Iterative Closed Points (ICP) [12] is a widely used method to align two 3D point

clouds. It is an iterative algorithm that works in two phases: in each iteration, clos-

est points are selected, and a rigid transformation between them is estimated. In the

alignment procedure, the corresponding points are not needed. Suppose we have two

3D point clouds X and Y to do alignment. The details are shown in Algorithm 3.

Algorithm 3 ICP algorithm.

1. temporary corresponding: find the closest points for X from Y .

2. parameter: estimate transformation parameter R and t.

3. temporary matching: find the closest points for RX + t from Y .

4. iterate steps 2 and 3 until the estimate converges.

Figure 4.11 and Figure 4.12 show an example for a 4 iterations ICP alignment procedure.

The ways to estimate R and t are introduced in section 2.2.3.2. The details of scale ratio

ICP outlined above are given in next sub-section.

4.3.2.2 Scale Ratio ICP

The details of the scale ratio ICP algorithm are as follow:

1. Initialization

An exhaustive search is used to find an initial rough estimate of t. First, mesh-

resolutions [13, 14] wmesh1 and wmesh2 of the two sets of point clouds are used to
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(a) (b)

Figure 4.11: An example of ICP which contain 4 iterations, (a) Iteration 1 and (b)
iteration 2.

(a) (b)

Figure 4.12: An example of ICP which contain 4 iterations, (a) Iteration 3 and (b)
iteration 4.

set the minimums tm1 = 5wmesh1, tm2 = 5wmesh2 and maximums 100tm1, 100tm2

of spin image width w to find the overlapping part as shown in Figure 4.8 (b)

and Figure 4.9 (b). The overlapping parts are c1wd = {xdwi
, wi} where tm1 ≤ wi ≤

100tm1 and c2wd = {ydw′
i
, w′

i} where tm2 ≤ w′
i ≤ 100tm2. Then we find the minimum

in the range at discrete steps as the initial estimate tinit:

tinit = argmin
0<t≤100

tm2
tm1

E(t). (4.13)
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Then t← tinit.

2. Find putative correspondences

For each point in the set corresponding to curve c1wd , find the closest point on the

curve c2wd with the current estimate of t. Note that this process is performed for

different d independently.

3. Estimate t

Estimate t based on the current correspondences.

4. Iterate

Iterate steps 2 and 3 to update t until the estimate converges.
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4.4 Evaluation

(a)

(b)

Figure 4.13: Experimental results for the small blocks dataset. (a) Original point
clouds. (b) Estimated scale ratios over different amount of noise added to the point

clouds.

We demonstrate that the proposed method works effectively on 3D point clouds both in

simulations, and in artificial and real data experiments.

4.4.1 Simulation

For demonstrating the scale ratio approach, we generated two synthetic 3D point clouds

from the Stanford bunny [57]. One point cloud with 69,451 points was created from the
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Figure 4.14: Registration results (small blocks without change) with the estimated
scale ratio for different noise levels (0%, 0.5%, 5%, 50%).

Figure 4.15: The standard ICP fails to align the point clouds (small blocks without
change), while the scale ratio is correctly estimated.

bunny. Then, the point cloud was scaled by a factor of 5 to create the other point cloud

(both are shown in Figure 4.7). Two sets of cumulative contribution rate curves are

shown in Figure 4.8 (a), the original scale; and Figure 4.9 (a), 5 times larger scale. To

plot these curves, we did not use the initialization described in section 4.3. Therefore, the

two sets of curves are difficult to register without appropriately finding the overlapping

parts. Figure 4.8 (b) and Figure 4.9 (b) show the curves only in the range determined
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Table 4.1: Performance evaluation of several different methods on four different
datasets. Numbers in parenthesis are relative errors from the ground truth.

dataset bunny
small blocks
(no change)

small blocks
(with change) real blocks

GROUND TRUTH 5.000 2.364 2.424 1.696

STANDARD DEVIATION 5.000
4.855

(105.37%)
3.833

(58.13%)
1.593

(6.07%)

MESH RESOLUTION [13, 14] 5.000
1.162

(50.85%)
1.684

(30.53%)
1.607

(5.25%)

KEYSCALE [58] 5.000
1.400

(40.78%)
2.250

(7.18%)
1.500

(11.56%)

STANDARD ICP [12] 5.000
3.029

(28.13%)
2.561

(5.65%)
1.767

(4.19%)

SCALE RATIO ICP 5.000
2.502

(5.84%)
2.543

(4.91%)
1.607

(5.25%)

by the initialization step for finding the initial estimate of tinit. The ratio found by the

proposed scale ratio ICP is exactly the same as the ground truth. Our method worked

well for the simple dataset, but so did all other methods compared in the first column

of Table 4.1.

4.4.2 Small Blocks

Now we show experimental results on datasets of miniature blocks, each of which is

about 5 cm in height. We used the standard ICP [12] to obtain the ground truth for the

scale ratio by carefully providing the initial poses of the point clouds by hand. Then, in

order to demonstrate the robustness of the proposed method, we created noisy versions

of these datasets by adding uniform noise to each x, y, and z coordinate of every point

in the small blocks. The magnitudes of the noise were set in the range between 0.1%

and 500% of the maximum of the three sides of the bounding box of the point clouds.

The first dataset consists of a number of small blocks, shown in Figure 4.13 (a). Two

point clouds of 73,224 and 101,859 points, together with their normal vectors were

computed by 3D reconstruction from 26 and 29 images respectively, using the Bundler

[28] followed by Patch-based Multi-view Stereo (PMVS2) [26, 27]. The ground truth of

the scale ratio in Figure 4.13 (b) is 2.364. The proposed method provided acceptable

results when the noise magnitude is smaller than 1.0%. Some registration results are
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(a)

(b)

Figure 4.16: Experimental results for the small blocks dataset with change. (a)
Original point clouds. (b) Estimated scale ratios over different amounts of noise added

to the point clouds.

shown in Figure 4.14. Results for other methods including standard deviation, mesh-

resolution, keyscale and the standard ICP for noise free small blocks are shown in the

second column of Table 4.1. Our method achieved the lowest error and best performance.

The second dataset consists of the same small blocks, but one block was removed from

the scene while the others are left unchanged, as shown in Figure 4.16 (a). The ground

truth for the scale ratio is 2.424 and is shown in Figure 4.16 (b). The accuracy of
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Figure 4.17: Registration results (small blocks with change) with estimated scale
ratio for different noise levels (0%, 0.5%, 5%, and 50%).

Figure 4.18: The standard ICP fails to align the point clouds (small blocks with
change), while the scale ratio is correctly estimated.

the proposed method gradually decreases as the noise magnitude grows. However, our

method achieved again the best performance as shown in the third column of Table 4.1.

Figure 4.17 shows some 3D registration results with scale ratio estimated by scale ratio

ICP. The alignment process can be seen in our video on YouTube 1.

1http://www.youtube.com/watch?v=ZNIkZ5Dd0EU
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4.4.3 Outdoor Real Blocks

(a)

(b)

Figure 4.19: Experimental results with a real block dataset. (a) Original point clouds
and some of the images used for the 3D reconstruction. (b) Estimated scale ratios over

different amount of noise added to the point clouds.

Here we show experimental results on two real datasets to demonstrate the robustness

of the proposed method. The first dataset consists of two point clouds of 10,325 and

9,343 points computed from 24 images of real wave dissipating blocks of 5 m in height

at a coast. Some of the images used for reconstruction and the point clouds are shown

in Figure 4.19 (a). As shown in Figure 4.19 (b), the estimated scale ratio decreases

gradually from the ground truth (1.607) as the noise increases. Some registration results

are shown in Figure 4.20. Results for this dataset are shown in the forth column of
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Figure 4.20: Registration results (real blocks) with estimated scale ratio for different
noise amounts (0%, 0.5%, 5%, and 50%).

Figure 4.21: The standard ICP fails to align point clouds (real blocks) while the scale
ratio is correctly estimated.

Table 4.1. Although the result for ICP was the best one, the alignment is completely

wrong, as shown in Figure 4.21.

The second dataset is used to evaluate the effect of changing the degree of overlap

between the two point clouds. If the two point clouds overlap completely, the scale ratio

can be estimated accurately. However usually this is not the case. Therefore in this

experiment we evaluate our method in a more realistic scenario, where the two point
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(a) (b)

Figure 4.22: Evaluation for different levels of overlap. (a) The original point cloud,
and (b) the partially cut-out point clouds with an overlap rate of 70%.

(a)

(b)

Figure 4.23: Evaluation for different levels of overlap. (a) Estimated scale ratios over
different levels of overlap, and (b) The standard ICP fails to align the two point clods

and to estimate the scale.
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(a)

(b)

Figure 4.24: Example of scale alignment in a real-world scene. (a) Original point
clouds. (b) Manually registered point clouds with estimated scale ratio.
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clouds have different levels of overlap. First we reconstructed a 3D point cloud of 207,583

points. Then we manually remove some points from the left and right sides of the point

cloud by a specified percentage to generate point clouds with different levels of overlap.

Two point clouds with an overlap rate of 70% are shown in Figure 4.22. As the level of

overlap decreases, the estimated scale ratio goes away from the ground truth (1.0 in this

case), as shown in Figure 4.23 (a). We have observed that a scale ratio can be estimated

reasonably well when the overlap rate is larger than 70%. In contrast, the standard ICP

fails to estimate both the scale ratio and the alignment, as shown in Figure 4.23 (b).

These results are also available in our video on YouTube.

4.4.4 Real-World Application

Here we demonstrate a motivating example of scale estimation between quiet different

point clouds of the same scene of showing real wave-dissipating blocks on a coast. The

point clouds consist of 88,021 and 222,781 points reconstructed from 200 and 440 images

taken at different times. The proposed method estimated the scale ratio to be 4.3.

Figure 4.24 (a) shows the point clouds, and (c) shows the result of manual alignment with

the estimated scale ratio. Obviously, the scale aligned point clouds are well registered,

which demonstrates that the proposed method works efficiently even on complex real

datasets. The full video sequence is also available on YouTube.
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4.5 Summary

We have presented some methods for change detection in this thesis. These methods

are combined as a surveillance system. Since the surveillance system motivate a regular

observation of places such as coast, slopes and highways, where disasters and accidents

can happen. Therefore, to detect any obvious temporary changes is very important.

However, it is not practical in such situation. So, in this thesis, we divide the detection

goal into two sub-goals. The first sub-goal is an online approach described in previous

chapters. Then, the second sub-goal is designed as an offline approach, which is used to

achieve high accurate detection result.

In this chapter, we have focused on our offline approach. We have proposed a method

for estimating the scales of point clouds in order to align them. We defined a keyscale

and a scale ratio, which can be used to re-scale one point cloud to the other. By

performing PCA of spin images to generate two sets of cumulative contribution rate

curves, the proposed method estimates scales by finding the minimum of the curves,

or by registering the two sets of curves. Experimental results demonstrated that the

proposed method works well both for simple and difficult point cloud datasets.

Future work includes reducing the computational cost for generating spin images from

the point clouds and performing PCA. Our current implementation takes several minutes

to perform scale estimation for point clouds of the order of 100,000 points. Although a

fast response of the system is not necessary for the task we deal with, still we have to

accelerate the computation in order to handle much larger number of points.
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Conclusions

In this thesis, we have developed a surveillance system for change detection. This surveil-

lance system can be used in wide areas, such as coast, slopes and highways. Because

disasters and accidents can happen with high probability at these wide areas if there

are unusual changes exist. For example, at coastal areas, many wave dissipating blocks

are installed in order to decrease the power of the waves. If the configuration of the

wave blocks is changed by the seawater corrosion, the blocks might be collapsed which

is very dangerous when there is earthquake or heavy surge. Therefore any obvious tem-

porary change should be alerted for the users. However, in the complicate surveillance

environment, it is very difficult to observe the places all the time. The static electronic

camera is very damageable in the outdoor wet and windy conditions. Thus, a real-time

automatic unusual change detection surveillance system is useful and important.

In our surveillance system, we need to detect change in a wide area with un-fixed cam-

eras. Obviously, it is very challenging and difficult tasks. Therefore, we analyze the

possible implementations and divide the research goal into two sub-goals.

The first sub-goal, which we call online approach, is used in the wide area directly for

change detection. Therefore, a fixed camera is not request and the detection should be

real-time processing. In order to achieve this sub-goal, we have proposed a client-server

system. The client side captures images for server and displays potential change area

for operators, and the server side computes and returns estimated results. In order to

find a region of change in a query image, first, the nearest image is searched. Then the

matching between the nearest image and query image is performed to find 2D keypoints,

93
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so that a region of change could be detected by using the correspondences. At last, 3D

points are projected onto the changed region on query image.

In order to find a robust way to search nearest image and to do projection, we have pro-

posed a 3D keypoint detection and description method. We also call it 3D-2D matching

method. By detecting a sparse set of 3D keypoints from a large number of 3D points,

the proposed method enables us to use 3D-2D matching for a fast camera pose estima-

tion. A 3D keypoint is defined as a point that has corresponding 2D keypoints in many

training images. The descriptors of these 2D keypoints are used as a descriptor of the

3D keypoint. After detecting 3D keypoints, matching between them and 2D keypoints

extracted from query images is performed and camera projection matrices of the query

images are estimated.

The second sub-goal, which we call offline approach, is used for improving the accuracy

of change detection results. The online approach have provided potential candidate

changed areas, however, rough result is not enough for users. So for our offline approach,

we have proposed a 3D-3D based method for estimating the scales of point clouds in

order to align them. We defined a keyscale and a scale ratio, which can be used to

re-scale one point cloud to the other. By performing PCA of spin images to generate

two sets of cumulative contribution rate curves, the proposed method estimates scales

by finding the minimum of the curves, or by registering the two sets of curves.

In our future work, the separated online and offline approaches should be combined

together. So that the users can obtain accurate detection results in time. There are two

directions: 1) reducing the computation time while performing 3D-3D alignments, and

2) optimizing 3D-2D algorithm for image based change detection and embedding it into

cheap devices such as mobile phones and tablets.
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