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ABSTRACT 
The log rank test and the Cox regression, or modifications thereof, emphasize the effect 

of covariates on survival rate parameter. In some cases, cured individuals, i.e., individuals 
who may not experience the event of interest may exist in the population of interest. In this 
situation, we may wish to examine the effect of covariates on both survival rate and cured 
fraction parameters. Motivated by the Japanese neuroblastoma dataset, we consider a cure 
model that accounted for the effect of covariates on both of the abovementioned parameters. 
To deal with heterogeneity that is not explained by covariates, as well as individual random 
heterogeneity, we perform a frailty variable. Moreover, some nested models are fitted to deal 
with the principle of parsimony. The effect of covariates was then evaluated by the best nested 
model. From a statistical point of view, we found that the model of analysis is flexible and 
adequate to describe the abovementioned dataset. From a medical point of view, we confirmed 
AGE and STAGE to be the most dominant prognosis factor of neuroblastoma. We also conclude 
that NMYC and FERRITIN are the other most important prognosis factors. The analysis 
designated that some of the prognosis factors of neuroblastoma probably just affected the 
median life of patients and some others are the fatal prognosis factor indicated by their effect 
which significance on both of survival rate and cured fraction parameters. The present model of 
analysis is also potentially extendable to facilitate other aspects of inferences. 
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The cure model is a method of modeling time­
to-death when cured individuals, i.e., individuals 
who may not experience the event of interest, exist 
in the population of interest. In this situation, we 
need to fit the model with an explicit parameter 
of the cured fraction to be estimated. Ignoring the 
cured component in the model may lead to a dis­
torted result. A common approach is to formulate 
the population of interest as a mixture of cured 
and susceptible individuals. The cure model was 
introduced by Boag4>, who proposed a method by 
which to estimate the proportion of patients who 
were cured of breast cancer. This initial research 

was followed by other papers3,18>. Numerous sub­
sequent analyses have been conducted using the 
concept of the cured component. More general 
concepts and examples of the application of the 
cure model in various aspects of human life can 
be found in 16). In recent decades, the development 
of modern cancer treatments has meant that the 
proportion of cured cancer patients has increased 
dramatically, and the cure model will likely 
become more attractive, especially in medical sta­
tistics. 
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geneous with respect to risk. However, in reality, 
individuals are inherently dissimilar. The hetero­
geneity may be modeled in part by covariates, but 
there will always be an unexplained residual1). 
Such a residual may be induced by unobserved 
covariates, as well as an immeasurable risk fac­
tor. Failing to account for such heterogeneity 
may lead to an imprecise conclusion6). The model 
that accounts for such heterogeneity is known as 
the frailty model, introduced at the first time by 
Vaupel et al26). The basic concept of frailty is that 
individuals have different frailties, and individu­
als who are frailer will die earlier than the others. 
Further discussion on the extended frailty model 
can be found in10,15), for example. 

Kuk and Chen 13) proposed a method by which 
to integrate the mixture component of a popula­
tion into a nonparametric proportional hazard 
model without a frailty component. Maller and 
Zou 16) and Sposto21) modeled the parameters of 
the cure model as a function of covariates, but 
their model did not account for the frailty effect 
either. Price and Manatunga20) discussed the mod­
eling of Weibull survival cure models using some 
frailty distributions, but they applied the models 
without covariates. In order to investigate the 
Japanese neuroblastoma dataset and its con­
straints, we consider a model that accounts for 
the effect of covariates on both the cured fraction 
and the survival rate. Moreover, in order to deal 
with unobserved heterogeneity, as well as individ­
ual random heterogeneity, we apply a frailty vari­
able. The general set-up of this analysis assumes 
that the covariates of interest affect the survival 
function through the links function of the model 
parameters, whereas the effect of the other cova­
riates composite individual random heterogene­
ity explained by the frailty variable. Such a model 
can be considered as an extension of the frailty 
model to allow the effect of covariates on both 
cured fraction and survival rate parameters. 

The remainder of the present paper is orga­
nized as follows. Section 2 reviews the motivat­
ing dataset and its constraints. In Section 3, we 
discuss the proposed model, a method by which 
to deal with heterogeneity, modeling and fitting 
nested models, as well as a practical interpreta­
tion. We then evaluate the model by applying it to 
an actual dataset in Section 4. In the final section, 
we present the results of this evaluation and some 
concluding remarks. 

MOTIVATING DATA 

The database used in this study was approved 
by the "Research Group for Evaluation of the 
Japanese Neuroblastoma Mass-Screening Project". 
This group is represented by graduate schools 
of medicine and related research centers of 
several universities in Japan, including the 

Natural Science Center for Basic Research and 
Development of Hiroshima University as the 
correspondence address. The consortium gath­
ered data for patients with neuroblastoma from 
the cancer registries of the Japanese Society of 
Pediatric Surgery and the Japanese Society of 
Pediatric Oncology, two major Japanese organiza­
tions that deal with neuroblastoma patients. Both 
of these organizations enrolled neuroblastoma 
cases directly from hospitals at which the patients 
had been treated. Moreover, the consortium ref­
erenced the database of the Japanese Infantile 
N euroblastoma Cooperative Study Group to 
confirm the status of clinical pathologic data of 
infants with neuroblastoma. The new single data­
base was then assembled with a careful check of 
duplicate data. 

For the registration years of 1985 to 2000, they 
obtained data for 3,720 children diagnosed as 
neuroblastoma patients. The dataset contains the 
core variables of the patients, including a unique 
sequential ID, the year of registration, the follow­
up time, and the outcome of diagnosis. The dataset 
also contains some of the most important clinical 
and histological prognosis factors, as well as the 
treatment information for each patient. In study 
of neuroblastoma it is known that age at diag­
nosis (referred to as AGE) and stage of diseases 
(referred to as STAGE) are the most important 
prognosis factors24). Here, STAGE was classified 
according to the criteria of the Japanese Society 
of Pediatric Surgery. Table la shows the distribu­
tion of the remaining observations after validat­
ing core variables, AGE and STAGE. 

The major constraint of the dataset is a lot of 
missing data on the different covariates and the 
different patients. Consequently, the number of 
observable samples decreases dramatically when 
we increase the number of covariates in the con­
sidered model. This contradiction is a problem 
because, theoretically, we need a greater number 
of samples when the model is more complicated. 
For convenience, we refer to this problem as the 
contradiction problem. Table lb shows a code 
sheet for the variables considered in this paper 
and the number of remaining observations after 
validation on AGE, STAGE and an additional 
covariate (AC). 

MODEL AND ITS IMPLEMENTATION 

1. Cured Fraction Indication and Standard 
Cure Model 

Due to the heterogeneity of individuals, the sur­
vival rate of a disease typically decreases with 
time. Patients with a high risk die earlier than 
others, and after some time, the low-risk indi­
viduals become dominant in the society. If the 
following time is sufficient, the remaining indi­
viduals will not die of disease and may be consid-
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ered cured individuals. In the context of survival 
time analyses, the cured individuals are subject 
to right censoring. In our dataset, there are three 
kinds of right censoring, i.e. alive-free-tumor, 
alive-remaining-tumor, and death for other rea­
son. The first group consists of individuals whom 
we assume are cured. If the follow-up time is long 
enough (more than five years from diagnosis) 
then we also assume the second group to be cured 
individuals. As we know, the Kaplan-Meier sur­
vival curve does not step down when the patient 
is censored. Consequently, even though we can­
not identify which individuals will be cured in our 
dataset, their presence is signaled by a leveling-off 
of the Kaplan-Meier survival curve at any positive 
value. 

If cured individuals appear to exist in the data­
set, then it is reasonable to assume that the popu­
lation of interest consists of two sub populations, 
a population that is susceptible to the disease and 
a cured population. Suppose that an individual is 
either cured with probability 1- cl> or has a prop­
er survival function S(t) with probability cl> • If T 
denotes the random time to the event of interest, 
then the cure survival function of T can be speci­
fied as 

(1) 

In parametric terminology, we assume any theo­
retical function of F(t) for modeling the probability 
distribution of random variable T and then calcu­
late S(t)=l-F(t). In application, usually we have 
initial information about the shape of the hazard 
function, and it is preferable to directly model the 
survival function by the hazard function rather 
than by the distribution of T. If F is assumed to 
be continuous with respect to the density function 
f(t)=dF(t) I dt, then the hazard function is defined 
as h(t)=f(t)/[1-F(t)]. Based on the hazard function, 
the survival function can be expressed as 

i
i 

- h(u)du 
S (t) = e 0 = e -H(t), t ~ 0, (2) 

where h(') and HO are the baseline and cumu­
lative hazard function of S(t), respectively. The 
cure survival function given in (1) deals with the 
simplest case, i.e., we assume that individuals in 
the population of interest are homogeneous with 
respect to risk. In the following two sections, we 
discuss how to deal with the heterogeneity of indi­
viduals in a population of interest. 

2. Cure Weibull Gamma-Frailty Model 
As mentioned in Section 1, we assume that 

unobserved heterogeneity composite individual 
random heterogeneity is taken into account by 
using the frailty term. The frailty variable Z is 
assumed to be a random variable varying across 
the population with E(Z)=l and variance var 
(Z)=v. This variable has as a multiplicative effect 

on the hazard function. The survival function (2) 
conditional on frailty Z=z can then be expressed as 

- f' zh(u)du 
SF

12
(t I z) = e Jo = e-zH(t), t ~ O,z ~ 0. (3) 

The unconditional survival function is character­
ized by the Laplace transform of the Z distribu­
tion, as follows: 

S/t) = Ez[S(t I Z)] = E2 [e-ZH(t)] = L2 (H(t)), t ~ 0, (4) 

i.e., the Laplace transform Lz of the cumulative 
hazard function H(t). By substituting ( 4) into (1), 
we obtain the cure frailty model, as follows: 

ScF(t)=l-rjJ+rjJL2 (H(t)), t~O,O<r/Jsl. (5) 

If we choose the distribution of the frailty variable 
Z that has an explicit form of the Laplace trans­
form, then we can use the ordinary maximum 
likelihood method for parameter estimation. 

In the present paper, we consider the Weibull 
distribution as a baseline for the hazard func­
tion of T and gamma as the distribution of Z. The 
model is then referred to as the Cured Weibull 
Gamma-Frailty (CWGF) model. The Weibull for­
mula is easy to write down and often provides a 
good fit in survival time distributions, which are 
observed in practice16). Furthermore, the Laplace 
transform of the gamma distribution is relatively 
simple and computable. Then, it follows from (5) 
that the CWGF model can be expressed as 

( 
(Att J-B 

SCWGF(t) = 1-r/J+r/J 1 +-()- ' (6) 

t ~ 0, A, ~ 0, B ~ 0, a ~ 0, 0 < rjJ s 1, 

where v=l/8 is the variance of the gamma dis­
tribution, and component (At) a is the cumulative 
hazard function of the Weibull distribution. The 
primary interests are <P and A parameters. Here, 
<P characterizes the susceptible proportion in the 
population of interest, which is consequently 
related to both fatal and non-fatal cases of the 
patients. On the other hand, A is the hazard rate 
parameter related to the survival length of fatal 
cases, so that A is concerned only with fatal cases. 

3. The use of Covariates 
If our dataset has no additional information on 

covariates related to T, then model (6) is an alter­
native solution to deal with the heterogeneity of 
individuals. In many cases, the dataset includes 
information of covariates. If the covariate is cate­
gorical data, the common practice is to distinguish 
between its categories (levels). The other impor­
tant task is to control the effects of a particular 
covariate using the other covariates. 

The most commonly used method to deal with 
covariates in survival analyses is Cox regression. 
Cox regression accounts for the effect of covari­
ates by multiplying the baseline hazard h(t) by a 
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positive function of covariates. Consequently, in a 
non-cure model, the hazard of any individual i is 
independent of t. Due to the cured fraction <P on 
(6), "A is not constant with respect tot. Therefore, it 
is rather unnatural to apply the proportional haz­
ard in the cure model. Moreover, the Cox model 
also calls attention to the effect of covariates on 
survival rate only, rather than their effect on the 
cured fraction, which in some cases may be the 
primary goal of analysis. As an alternative meth­
od by which to deal with these restrictions, we use 
a CWGF model, which assumes that both the sur­
vival rate (represented by "A) and the susceptible 
probability (represented by cp) of any individual 
i are related to covariates through the following 
link functions: 

R' e8'x; 
A7 = eP X; and rfti = , , (7) 

1 + e() X; 

where ~ and o are vectors of parameters that are 
to be estimated and Xi is the covariate vector of 
individual i. 

4. Parameter Estimation 
Let N be the number of observations, and ti is 

the value of the independent random variable T 
that represents the observed lifetime, possibly 
censored, of individual i, i=l,2,3, ... ,N If Ci is a 
censoring indicator defined as 

c.= {1, if i is a death-event case 
1 0, if i is a censored case, 

then based on (6) and (7), the likelihood function 
is defined as 

N 

L(ll I ti) =IT (fcwGF(ll I ti) t ( SCWGF(ll I fi) tc; · (8) 
i=l 

Here, fcwGF(ll It;)= - ~- ScwGF(11 J t;) is the probability 
density function of i~dividual i, and 11 is the vector 
(~, o, a, 8). For convenience in the computation, we 
re-parameterize y =ln( a) and W =ln( 8). The origi­
nal parameter a and 8 can be obtained by one­
to-one inverse transformation a=er and 8=eP. By 
this transformation, 11 (~, o, y ,W) and we allow 
the impact on all of the parameters in 11 to vary 
unrestrictedly in(-oo, +oo). This condition is more 
reasonable for the maximization of the likelihood 
function (8). In order to simplify the calculation, 
we maximized the logarithm of (8) rather than the 
original function. 

The most common method by which to find the 
maximum likelihood estimate (MLE) of param­
eters from any function as (8) or its logarithm is 
the Newton-Raphson procedure. However, the 
implementation of this procedure requires the 
inverse of the observed information matrix to be 
calculated upon each iteration. Due to the cured 
component, Sposto22) noted the difficulty caused 
by the possibility of a singular information matrix. 
Moreover, Price and Manatunga20) noted the dif-

ficulty of likelihood function optimization due to 
the possibility of multiple or boundary maxima. 
To deal with such difficulties, we use the spider 
optimization proposed by Ohtaki and Izumi 19). 

This algorithm is suitable for maximizing the 
multivariate function without its derivative and 
without the inverse of the information matrix of 
each iteration. Using this algorithm, we then plug 
the MLE into the second derivative matrix of the 
logarithm (8) and take its inverse to determine 
the asymptotic standard error of the parameter 
estimates. 

5. Interpretation 
As mentioned in the previous section, the moti­

vation for applying categorical covariates is group 
comparison among its categories. In the proposed 
CWGF model, practically speaking, it is impor­
tant to distinguish differences among the levels 
of covariates both on "A and </J. To simplify the dis­
cussion, we consider only one covariate with two 
levels (two-category case), but the method should 
work for the general case. Referring to (7), we 
assume a dummy vector Xi associated with indi­
vidual i to be two-dimensional, as follows: 

{
(1 0), (i E category 1) 

Xi = (1 1), (i E category 2) 
(9) 

The extra component 1 in (9) is needed to allow 
for the intercept term. In logistic regression termi­
nology, this coding method is called reference cell 
coding11). In general, this coding method specifies 
that all of the elements of the dummy vector are 
equal to zero for the reference category (except 
for the element of the intercept), while setting a 
single element equal to 1 for each dummy vector 
of the other category. Corresponding to vector (9), 
we define /3 = (/30 /31)' and J (60 J1)', such that 
the survival rates of category 1 and category 2 are 
Ai = e/3° and ~ = e/Jo+/3,, respectively. The relative 
risk (RR) between the two groups then becomes 

RR=~=e/3'. 
Ai 

(10) 

Similarly, based on the odds of group 1 and group 
2, i.e., rft/(l-rp1) andrft/(l-rp2), we can define the 
odds ratio (OR) as 

OR= r/J/(l-rft2) =eo'. 
rft/(1 rft1) 

(11) 

Let /J 1 be the MLE of /31, and let J 1 be the MLE 
of Jl' the estimates of RR and OR can then be 
expressed as 

and (12) 

and a 100 x (1- a) estimate of the confidence inter­
vals (Cl) of RR and OR can be given by expression 
/1,±=1-wzxSEC/31) and eJ1±=1-ii/2xSE(J1), respectively. Here, z is 
the value of the random variable z~N(0.1) corre­
sponding to the significance level a. 
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APPLICATION TO A REAL DATASET 

1. Analysis of Age at Diagnosis and Stages of 
Disease as the Most Dominant Covariates 
In our neuroblastoma dataset, all of the cova­

riates are categorical data, except for the age at 
diagnosis (referred to as AGE). AGE is the most 
important factor in assessing the prognosis of 
neuroblastoma. The younger the patient, the 
more favorable the prognosis and the better the 
chance of survival. In order to guarantee that 
the follow-up time is sufficient, we use all obser­
vations where the longest follow-up time is 19.8 
years. AGE is also potentially confounded by most 
of the other covariates. Moreover, its effect on the 
survival function is typically non-linear. In order 
to address this difficulty, we categorized AGE into 
two levels, with 1 year as the cut-off point. This 
cut-off point is the most common in the study of 
neuroblastoma, although the use of 1.5 years has 
also been suggested. The other important prog-

nosis factor is disease stage. Here, we use the 
Ja pan staging system (referred to hereinafter 
as STAGE). Originally, this covariate consists 
of six stages/categories, namely, stages I, II, III, 
IVA, IVB, and IVS. We excluded stages I and IVS 
because the number of observations or events 
were insufficient to perform analyses (see Table 
la). We then consider only four stages, namely, 
stages II, III, IVA, and IVB. Before performing 
AGE and STAGE in subsequent analyses, we 
check their extraordinary effect separately and 
jointly. 

Figure 1 shows the Kaplan-Meier survival 
curves of AGE and STAGE by their catego­
ries. From this figure, both AGE (left panel) and 
STAGE (right panel) are extremely different in 
the cured proportion of their categories, as indi­
cated by differences in their leveling-off values. 
Individuals in AGE category 2 (> 1 year) failed far 
more quickly than those in category 1 (s; 1 year) 
and level off at a value lower than 0.40 after 9 

Table la. Number of observations by AGE, STAGE and 
outcome status 

STAGE 
AGE.::;l year AGE>l year 

Censored Death-event Censored Death-event 

I 842 12 227 4 
II 692 6 86 14 
III 368 2 78 56 
IVA 94 50 116 278 
NB 64 10 23 44 
IVS 194 14 26 8 

Table lb. Code sheet and the number of remaining observations after validation 
on AGE, STAGE***) and an additional covariate(AC) 

Additional Covariate Abbreviation Category code *l N NE**l 

NMYC Amplification NMYC Non amplified=O, Amplified=l 1234 221 
Vanillye Mandelic Acid VMA Normal=O, High=l 1891 437 
Serum Ferritin FERR/TIN Normal=O, High=l 1068 262 
Homovanilic Acid HVA Normal=O, High=l 1857 428 
Lactate dehydrogenase LDH Normal=O, High=l 1421 364 
DNA Hyperploidy DNAPLOIDY Normal=O, High=l 409 91 
Neuro Specific Enalose NSE Normal=O, High=l 1375 347 
Phatologic classification PATROL. CLASS Ganglio-NB=O, NB=l 1803 411 
Size of tumor TUMORSIZE .::;10 cm=O, > 10 cm=l 1131 203 
Liver metastasis LIVER META H0=0, H1+H2+H3=1 1890 429 
Bone metastasis BONE META B0=0,B 1=1 1919 450 
Bone-marrow metastasis BMMETA BM0=0, BM1=1 1868 430 
Orib metastasis ORIBMETA E0=0, E1=1 1896 436 
Lymph node metastasis LNMETA LN0=0, LN1=1, LN2=2, LN3=3 1806 393 
Primary tumor infiltration PT! PTI0=0, PTI1=1, PTI2=2, PTI3=3 1848 423 
Sex SEX Female=O, Male=l 1927 452 

*) Code=O is the reference category 
**) Number of death-events 

***) Not including STAGE-I and JVS 
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years because there were no events after that. 
While the survival time of individuals in AGE 
category 1 declined slowly and leveled off at a 
value greater than 0.90 after 9.3 years. From the 
right-hand panel of Fig. 1, visual investigation 
of STAGE reveals a similar trend. Even though 
STAGE- NA and NB initially decline follow­
ing a similar pattern, after 2 years, STAGE-NA 
declines faster and levels off at a value signifi­
cantly lower than that for STAGE-NB. 

Figure 1 shows the results of univariate anal­
yses. Fitting a series of univariate models rarely 
provides an adequate analysis because of the pos­
sibility of a confounding effect among covariates. 
Next, we evaluate the controlled effect of AGE and 
STAGE on each other by fitting them univariate­
ly and bivariately. The analyses reveal that both 
AGE and STAGE significantly affect the cured 
fraction cp, for both the univariate and bivariate 
analyses. Table 2a presents the results of analy­
ses on cp. Table 2a shows that AGE and STAGE 
are the vital prognosis factors of neuroblastoma, 
where significantly high values of odds ratio are 
estimated both in univariate or bivariate analyses. 
The effects of AGE and STAGE also potentially 
confounded each other, as indicated by their OR in 
bivariate analyses, which are significantly lower 
compared to those in univariate analyses. Without 
control by STAGE, the death risk inAGE category 
2 is 5.57 times higher compared to AGE category 
1, but it is reduced to 3.72 after being adjusted 
for STAGE in bivariate analyses. Those odds 
ratios indicate that the proportion of fatal cases in 
younger patients is relatively low compare to that 
in older patients. The other distinction is the 6R 
of STAGE-NA, which is reduced from 7.09 to 5.39 

l. 0 

0. 9 AGE<l YEAR 

w 0. B 
f-
< o= 
::i 0. 7 
> 
> 
§5 0. 6 
Cl) 

0. 5 

0.4 AGE>l YEAR 

0 5 10 15 20 
TIME (YEAR) 

l.U 
I-
<( 
et: 

after control by AGE. The estimates of logistic 
function coefficients J presented in Table 2a have 
a high level of significance (p<0.001). Since 6R is 
a function of J, such significances also impact the 
significances of 6R represented by its confidence 
interval. 

Table 2b shows the effects of AGE and STAGE 
on survival rate parameter A. As we can see from 
this table, the estimate of hazard ratio/relative 
risk (RR ) of group AGE > 1 to group AGE :::; 1 is 
lower than 1 on both univariate and bivariate 
analysis. It is indicated that even though the num­
ber of fatal cases in younger patients is extremely 
less, their survival lengths are shorter compared 
to the fatal cases in older patients. This suggests 
that the progression of diseases for fatal cases is 
quicker in younger patients compared to older 
patients. This table also shows that the effects of 
STAGE on A are insignificant (p > 0.05), which is 
probably due to the small number of events on its 
reference category (STAGE-II). This restriction 
impact on estimates of its standard error became 
large. Furthermore, the RR of STAGE-IVA as 
the most fatal group is lower than 1. It may be 
attributed to the data distribution: around 73% 
(394 of 538) cases of this stage are patients with 
AGE > 1 years, while reversely for the reference 
group (STAGE-II) around 88% (698 of 788) cases 
are patients with AGE :::; 1 year (see Table la for 
details of data distribution). 

2. Nested Models and Their Selection Criteria 
Due to the contradiction problem mentioned in 

Section 2, we decided to evaluate the other cova­
riates one by one, each controlled by AGE and 
STAGE. This means that we use AGE and STAGE 

1. 0 
STAGE II 

0.9 

0.8 STAGE III 

_J 0. 7 
< > 

STAGE IVD 

> 
~ 0.6 
C.I) 

0. 5 

0.4 
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J I I - _I 
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Fig. 1. Kaplan-Meier survival curves for AGE (left panel) and for STAGE (right panel) by their categories. 
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as the basis covariates when assessing the effect 
of the other covariate of interest. For convenience, 
we hereinafter refer to the covariate of interest 
(other than AGE and STAGE) as the addition­
al covariate (AC). Using this nomenclature, the 
explicit forms of (7) for individual i, i=l, 2, ... ,N 
become 

A,.= /30+fJixAGE;+f32xSTAGE;+f33xAC, 
I 

(13) /Sa +8i xA GE; +62xSTA GE; +~xA C, 

and rP; = l + /5a+6ixAGE;+SixSTAGE;+~xAC, . 
For example, when we consider the effect of addi­
tional covariate NMYC, we replace ACi in (13) by 
NMYCi. 

The CWGF model (6) with link functions (13) 
is the most complicated model when perform­
ing AGE and STAGE as basis covariates with a 
single additional covariate. In order to deal with 
the principle of parsimony, we need to investigate 
the simplest possible model, while adequately 
describing our dataset, and, according to the pur-

pose of the analyses, the model must be suitable 
for inference. To deal with this theoretical frame­
work, we fit a number of nested models, as listed 
in Table 3. Functions f(J and g(·) in Table 3 refer 
to the link functions defined in (13). Table 3 shows 
that model Mo is the simplest. However, according 
to the purposes of our analyses, this model is not 
suitable for inference. We need to fit this model 
as the reference for evaluating the other possible 
models. 

To select the most adequate model among all 
nested models, as shown in Table 3, we use the 
Bayesian information criterion (BIC) proposed 
by Kass and Wasserman12). For an exposed model 
parameterized by vector llj with dimension pj, 
they defined 

BIC(M) =-2{Q/~)-Q 0 (~0)}+(pj - p0)xln(N), (14) 

where Q j(l\) and Ro(llo) are the maximized log 
likelihoods under model MJ and a reference model 
Mo. Here, N is the observable sample size under 
link function (13). Without the penalty term 

Table 2a. Effects of AGE and STAGE on cured fraction parameter 

Covariate Category 
Univariate Analysis Bivariate Analysis 

" OR OR c5 p 95%CI c5 p 95%CI 

AGE ~1 year 
*) 0.000 1.00 0.000 1.00 

> 1 year 1.718 <0.001 5.57 (4.64,6.70) 1.315 <0.001 3.72 (3.05,4.55) 

STAGE n*l 0.000 1.00 0.000 1.00 

III 0.849 <0.001 2.34 (1.85,2.96) 0.736 <0.001 2.09 (1.61,2.70) 

IVA 1.958 <0.001 7.09 (5 .60,8.96) 1.684 <0.001 5.39 (4.05,7.17) 

IVB 0.817 <0.001 2.26 (1.94,2.64) 0.695 <0.001 2.00 (1.67,2.40) 

Note: *)=Reference category 

Table 2b. Effects of AGE and STAGE on survival rate parameter 

Covariate Category 
Univariate Analysis Bivariate Analysis 

/3 p RR 95%CI /3 p RR 95%CI 

AGE ~1 year *) 0.000 1.00 0.000 1.00 

> 1 year -0.1771 0.0124 0.84 (0.73,0.96) -0.1859 0.0076 0.83 (0.72,0.95) 

STAGE n*) 0.000 1.00 0.000 1.00 

III 0.0818 0.1678 1.09 (0.97, 1.22) 0.0715 0.2283 1.07 (0.96,1.21) 

IVA -0.0790 0.0856 0.92 (0.84,1.01) -0.0872 0.0693 0.92 (0.83,1.01) 

IVB 0.0374 0.3311 1.03 (0.96,1.12) 0.0291 0.4546 1.03 (0.95,1.11) 

Note: *)=Reference category 
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(prpo)xln(N), the above BIC criterion reduces to 
the standard likelihood ratio test statistic. By cri­
terion (14), the best model is the model with the 
smallest BIC. 

3. Exploring Prognosis Factors of 
Neuroblastoma 
Since, model Mg has the largest degrees of free­

dom (do{), theoretically, this model is a candidate 
for the best fit to empirical data. However, this 
model may be too complicated for inference. On 
the other hand, even if model Mo fits our data­
set well, it is unsuitable for inference because it 
has no covariate. A compromise is to search for a 
model between models Mo and Mg by evaluating 
their BIC values. To illustrate this procedure, we 
consider Pathologic Classification (PC) and NMYC 

as examples of additional covariates. Their BIC 
values are presented in Fig. 2 (left panel). From 
the left panel of Fig. 2, model Ms of PC appears 
comparable to model M6. Due to a smaller num­
ber of parameters, in this case, we may choose 
model Ms, rather than model M6, for inference. 
In the case of NMYC, the lowest BIC is model 
Ms, which is relatively low compared to the most 
complicated model Mg. To clarify the goodness of 
fit visually, the right-hand panel shows a compari­
son of models Ms and Mo and Mg of NMYC. Due 
to the frailty effect, model Mo provides a good fit 
with respect to survival rate (up to the last event 
at 9.3 years), but provides a poor fit with respect 
to cured fraction (after 9.3 years). Model Mg pro­
vides a poor fit with respect to both survival rate 
and cured fraction. This is probably attributable 

Table 3. Some nested models of additional covariates (AC) 
using AGE and STAGE as the basis covariates 
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Fig. 2. BIC values of the nested model from NMYC and PATROL. CLASS (left panel) and fitted models Mo, 
Ms, and Mg of NMYC (right panel). 
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to the use of STAGE in the link function of 'A. As 
mentioned in the previous subsection, STAGE 
was not significantly affecting the 'A parameter. 
The use of STAGE in the link function of 'A has 
an effect on a noise for the survival function. 
Then, the compromise model is Model Mg, which 
appears to adequately fit both survival rate and 
cured fraction. When the number of events is 
sufficiently high (up to 5 years after diagnosis), 
model Mg fits the empirical data represented by 
the Kaplan-Meier survival curve very well. When 
the number of events decreases (after 5 years), the 
curve starts to flat and approaches the leveling­
off value of the Kaplan-Meier survival curve. The 
comprehensive results of parameter estimates of 
each additional covariate based on the best nested 
model are shown in Table 4. With the level of a 
=0.05, we found that a number of additional cova­
riates statistically significantly affect both the 
cured fraction and the survival rate. This is not 
a contradiction to the result on table 2b because 
their inferences are based on their own best nest­
ed model. In the case of NMYC, for example, its 
inference is based on model Mg which only used 
AGE as a basis covariate on A. Some additional 
covariates have a significant effect on either the 
cured fraction or the survival rate, whereas some 
others have not. In general, we found that the best 
nested model for all of the additional covariates in 
Table 4 is model Mg or model M4. As we can see 
from Table 3, neither of these model use STAGE 
as a basis covariate on their A. This is consistent 

with the result in Table 2b which showed that the 
effect of STAGE on 'A was insignificant. 

4. Software 
For the purpose of computation, we developed 

a computer program written in FORTRAN. This 
program begins by fitting the model with the few­
est parameters, model Mo, and then moves, one by 
one, to the more complicated model. For the pur­
pose of visualization, we also developed a program 
to calculate the value of the Kaplan-Meier esti­
mate as well as the fitted of all nested models in 
Table 3 and their BIC values. 

DISCUSSION 

We have investigated a cure survival model 
using the Weibull hazard function. To deal with the 
individual random heterogeneity that we believe to 
exist in our dataset, we applied a frailty variable 
having a gamma distribution. In order to evaluate 
the effect of covariates on both the cured fraction 
cp and the survival rate 'A, we used the logistic link 
function for cp and the log linear link function for 
A. To deal with the principle of parsimony, we then 
fitted some nested models based on different com­
binations of covariates used in cp and 'A. 

We have extended the model of Price and 
Manatunga20) by entering the covariates. The pro­
posed model differs from the model of Kuk and 
Chen1g) in that their model is a non-parametric 
model without a frailty variable. The proposed 

Table 4. Effects of additional covariates (AC) controlled by AGE and STAGE (estimat-
ed by the best nested model defined in Table 3). 

Additional Effect on survival rate Effect on cured fraction 

Covariate 
Category *l 

/J p ------ 95%CI 5 p ------ 95%CI RR OR 
NMYC Amplified 0.192 0.00 1.21 (1.11,1.33) 0.892 0.00 2.44 (1.65,3.60) 

VMA High 0.120 0.00 1.13 (1.04,1.22) 0.316 0.00 1.37 (1.14,1.65) 

FERRITIN High 0.009 0.90 1.01 (0.88,1.16) 0.714 0.00 2.04 (1.49,2.79) 

HVA High 0.018 0.68 1.02 (0.94,1.11) 0.248 0.01 1.28 (1.06, 1.55) 

LDH High 0.207 0.02 1.23 (1.03,1.47) 0.164 0.30 1.18 (0.86,1.61) 

DNAPLOIDY >2 ploidy 0.027 0.83 1.03 (0.80,1.31) 0.277 0.28 1.32 (0.80,2.18) 

NSE High 0.068 0.48 1.07 (0.89,1.29) 0.170 0.26 1.19 (0.88,1.59) 

PTL CLASS NB 0.125 0.02 1.13 (l.02,1.25) 0.171 0.13 1.19 (0.95,1.48) 

TUMORSIZE > lOcm 0.063 0.31 1.06 (0.94,1.20) 0.281 0.03 1.32 (1.03,1.71) 

LIVER META Hl+H2+H3 0.099 0.01 1.10 (1.03,1.19) 0.156 0.07 1.17 (0.99,1.38) 

BONE META Bl -0.083 0.04 0.92 (0.85,1.00) 0.382 0.01 1.46 (1.11,1.94) 

BMMETA BMI -0.014 0.74 0.99 (0.90,1.07) 0.242 0.07 1.27 (0.99,1.65) 

ORIBMETA El 0.010 0.72 1.01 (0.95,1.07) 0.224 0.06 1.25 (0.99,1.58) 

LNMETA LNl 0.078 0.37 1.08 (0.91,1.28) 0.070 0.66 1.07 (0.78,1.47) 

LN2 0.084 0.22 1.09 (0.95,1.24) 0.229 0.12 1.26 (0.94, 1.68) 

LN3 0.124 0.02 1.13 (1.02,1.25) -0.159 0.19 0.85 (0.67,1.08) 

PTI PTil 0.078 0.70 1.08 (0.73,1.61) 0.114 0.74 1.12 (0.58,2.17) 

PTI2 0.079 0.71 1.08 (0.71,1.64) 0.244 0.49 1.28 (0.64,2.54) 

PTB 0.237 0.28 1.27 (0.83, 1.94) 0.196 0.59 1.22 (0.60,2.47) 

SEX Male 0.047 0.36 1.05 (0.95,1.16) 0.105 0.31 1.11 (0.91,1.36) 
*l Compare to the reference category defined on table 1 b 
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model also differs from Maller and Zou 16) and 
Sposto21) with respect to the frailty term. They did 
not achieve the frailty variable in their models. 
Furthermore, the present analysis differs from 
previous analyses in other aspects. Most previous 
studies on the survival cure model emphasized 
the effect of covariates on only the cured fraction 
component. The present study was an attempt to 
evaluate the effect of covariates on both the cured 
fraction and the survival rate. In addition, the 
concept of fitting the nested models based on dif­
ferent combinations of covariates used in <P and 
A is a fresh concept in the study of the survival 
cure model with covariates. Moreover, the novel 
idea of performing a serial analysis of additional 
covariates controlled by the basis covariates was 
inspired by the contradiction problem of the data­
set considered herein. 

From a statistical point of view, we conclude 
that the best nested model provided an adequate 
fit to the dataset considered herein. We found 
that the use of the Weibull function as a baseline 
hazard function affects model flexibility. As any 
J . ~ +oo, ~ ~ 1 and the CWGF model reduces 
t6 a frailty model (without the cured fraction). 
When ij) ~ +oo, the estimate of gamma variance 
v ~ 0, and the CWGF model reduces to a stan-
dard cure model (without frailty). Furthermore, if 
any Jj ~ +oo andij) ~ +oo, then the CWGF model 
reduces to an ordinary Weibull model. The model 
may also be modified in a straightforward manner, 
for example, by the use of some other candidate 
for the link function of <P or A. Other theoretical 
functions that are suitable for modeling the frail­
ty variable are also available. In order to explore 
the effect of a covariate in greater detail, the link 
functions of <P and A may also be extended to allow 
interaction among covariates. 

From a medical point of view, we confirmed AGE 
and STAGE to be the most dominant prognosis 
factors of neuroblastoma. This fact is indicated by 
their huge effect on the cured fraction with very 
high reliability. Due to the enormity of their effect 
on cp, we suggest using AGE and STAGE as the 
basis covariates in assessing the effect of other 
neuroblastoma prognosis factors. With QR=2.24 
for NMYC and 2.04 for FERRITIN, these two 
covariates are the other most important prognosis 
factors, after AGE and STAGE. NMYC is also sig­
nificant with respect to its hazard ratio withRR 
=1.21. The comprehensive results in Table 4 also 
show the irregular effect of the metastasis factors. 
Clinically speaking, the effect of metastasis should 
significantly affect the survival function, but we 
found that most of the metastasis covariates in 
Table 4 were not significant with respect to either 
<P or A. The logical explanation of this irregular 
result is that their effects might be absorbed by 
STAGE. Since STAGE is not a generic covariate, 
it is specified by the combination of other covari­
ates, with metastasis as the basis factor. 

Finally, in the present study, we investigat­
ed the prognosis factor. In the future, we intend 
to investigate the effect of treatment of neuro­
blastoma. Due to the complexity of the effect of 
treatment, we may need to verify the interaction 
component in the model. It may also be neces­
sary. to verify the model by other link functions 
of <P and A Moreover, we will verify further nested 
models in order to find a more adequate model for 
the purpose of inference. 

ACKNOWLEDGMENTS 

This study was partially supported by Grants­
in-Aid for Scientific Research (B) of the JSPS 
(Grant Number 18300095) and by the 3rd_term 
Comparative Ten-year Strategy for Cancer Control. 
We thank the Committees on Tumor Registrations 
in the Japanese Society of Pediatric Surgeons and 
Japanese Society of Pediatric Oncology for the use 
of their neuroblastoma database. 

(Received October 21, 2008) 
(Accepted December 19, 2008) 

REFERENCES 

1. Aalen, 0.0. 1988. Heterogeneity in survival analy­
sis. Statistics in Medicine 7:1121-1137. 

2. Angelis, R.D., Capocaccia, R., Hakulinen, T., 
Soderman, B. and Verdecchia, A. 1999. Mixture 
models for cancer survival analyses: application to 
population-based data with covariates. Statistics in 
Medicine 18:441-454. 

3. Berkson, J. and Gage, R.P. 1952. Survival curves 
for cancer patients following treatment. Journal of 
the American Statistics Association 47:501-515. 

4. Boag, 1949. Maximum likelihood estimate of 
proportion of patients cured by cancer theraphy. 
Journal of the Royal Statistical Society, Series B 
11:15-44. 

5. Evans, A.E. and D'Angio, G.J. 2005. Age at diag­
nosis and prognosis in children with neuroblastoma. 
Journal of Clinical Oncology. 23:6443-6444. 

6. Farewell, V.T. 1982. The use of mixture model for 
the analysis of survival data. Biometrics 38:1041-
1046. 

7. Farewell, V.T. 1986. Mixture model in survival 
analysis: are they worth the risk? The Canadian 
Journal of Statistics 14:257-262. 

8. Hiyama, E., Lehara, T., Sugimoto, T., Fukuzawa, 
M., Hayashi, Y., Sasaki, F., Sugiyama, M., Kondo, 
S., Yaneda, A., Yamaoka, H., Tajiri, T., Akazawa, 
K. and Ohtaki, M. 2004. Screening at 6 months of 
age reduced mortality of neuroblastoma: A retro­
spective population-based cohort study including 
more than 13 million Japanese screened infants. 
Natural Science Center for Basic Research and 
Development, Hiroshima University, Hiroshima, 
Japan. 

9. Hiyama, E., Lehara, T., Sugimoto, T., Fukuzawa, 
M., Hayashi, Y., Sasaki, F., Sugiyama, M., 
Kondo, S., Yaneda, A., Yamaoka, H., Tajiri, T., 



CWGF Model for Exploring Neuroblastoma's Prognosis Factors 35 

Akazawa, K. and Ohtaki, M. 2008. Effectiveness 
of screening for neuroblastoma at 6 months of age: a 
retrospective population-based cohort study. Lancet 
371:1173-1180. 

10. Hougaard, P., Myglegaard, P. and Borch­
Johnsen, K. 1994. Heterogeneity models of disease 
susceptibility, with application to diabetic nephrop­
athy. Biometrics 50:1178-1188. 

11. Hosmer, D.W. and Lemeshow, S. 1989. Applied 
logistic regression. John Wiley & Sons. 

12. Kass, R.E. and Wasserman, L. 1995. A reference 
Bayesian test for nested hypothesis with large sam­
ples. Journal of the American Statistics Association 
90:928-934. 

13. Kuk, A.C. and Chen, C.H. 1992. A mixture model 
combining logistic regression with proportional haz­
ard regression. Biometrika 79:531-541. 

14. Lambert, P.C. and Thompson, J.R. 2007. Estimating 
and modeling the cure fraction in population-based 
cancer survival analysis. Biostatistics 8:576-594. 

15. Longini, I.M. and Halloran, M.E. 1996. A frail­
ty mixture model for estimating vaccine efficacy. 
Applied Statistics 45:165-173. 

16. Maller, R. and Zhou, X. 1996. Survival analysis 
with long-term survivors. John Wiley & Sons. 

17. McGilchrist, C.A. andAibett, C.W. 1991. Regression 
with frailty in survival analysis. Biometrics 47:461-
466. 

18. Mould, R.F. and Boag, J.W. 1975. A test of several 
parametric statistical models for estimating suc­
cess rate in the treatment of carcinoma cervix uteri. 

British Journal of Cancer 32:529-550. 
19. Ohtaki, M. and Izumi, S. 1999. Globally conver­

gent algorithm without derivatives for maximizing 
a multivariate function. In Proceedings of sympo­
sium on "Exploratory methods and analyses for non 
linear structures of data with random variation" at 
Hiroshima. 

20. Price, D.L. and Manatunga, A.K. 2001. Modeling 
survival data with a cured fraction using frailty 
models. Statistics in Medicine 20:722-729. 

21. Sposto, R. 2002. Cure model analyses in cancer: an 
application to data from the children's cancer group. 
Statistics in Medicine 21:293-312. 

22. Sposto, R. 1992. A comparison of test of the dif­
ference in population of patients who are cured. 
Biometrics 48:87-99. 

23. Spix, C., Aarellid, T., Steier, C., Magnani, C., 
Kaatsch, P. and Michaelis, J. 2001. Survival 
of children with neuroblastoma: time trends and 
regional differences in Europe, 1978-1992. European 
journal of cancer 37:1515-1527. 

24. Swank, R.L., Fetterman, G.H., Sieber, W.K. and 
Kiesewetter, W.B. 2002. Prognostic factor in neu­
roblastoma. Annals of Surgery 173:428-435. 

25. Sy, J.P. and Taylor, J.M.G. 2000. Estimation in 
Cox proportional hazard cure model. Biometrics 
56:227-236. 

26. Vaupel, J.W., Manton, K. and Stallard, E. 1979. 
The impact of heterogeneity in individual frailty on 
the dynamics of mortality. Demography 16:439-454. 


