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ABSTRACT 
Age-specific distribution of clinical measurements in cross-sectional study is described in this 

paper. Since the distribution of measurements usually varies with age, a model with an age­
dependent structure is needed. We propose here a statistical method for describing the age-spe­
cific distribution using an extension of the power-normal-model. The age-dependent parameters 
are to be estimated through a nonparametric smoothing technique based on the local likelihood 
method. As a consequence, we can compute a smoothed percentile curve of measurements with 
reference to age. Several kinds of clinical measurements are analyzed to determine the pro­
posed method. 
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In a prognosis study, information on the per­
centile of measurement is helpful for the physician 
to screen target diseases. This requires to know 
the percent points of the distribution of clinical 
measurements beforehand. In order to estimate 
the percent points of distribution of measure­
ments, either the normal distribution model or 
lognormal distribution model has been applied so 
far. It is known that the lognormal model often 
performs well for a left skewed distribution of 
data. It should be noted, however, that some mea­
surements can not be fitted by these models, and 
an appropriate alternative model is needed. One 
effective solution may be to use the Power-normal 
distribution model3), which is based on the Box­
Cox1) transformation for normalization. This can 
be described as follows: Given an original mea­
surement of taking a positive value, the trans­
formed value yCA.) is defined by 

(1) 

where A, is the shape parameter, often termed the 
"power parameter". Formula (1) of Box-Cox trans-

formation5) is modified to a certain extent from the 
original version to satisfy the identity equation 
yCA.)=y, when A=l. The power normal model is based 
on the hypothesis that the transformed variable 
has a normal distribution (approximately). Both 
the normal model and lognormal model can be 
regarded as special cases of the power normal 
model. 

To illustrate the problem, a set of histogram and 
box-plot of the RBC (Red Blood Cell) measure­
ments at the age of about 40 years is depicted in 
Fig. 1 (the data source is Hiroshima University 
Hospital), where (a), (b) and (c) are the plots for 
logarithmic transformed measurements, the origi­
nal one and an optimized power transformed one 
using the Box-Cox model, respectively. The distri­
bution of original measurements is skewed to the 
right with a long left side tail. The computed val­
ues of the skewness are -1.15, -0.74 and -0.43 for 
the logarithmic transformation, the original one 
and the optimized Box-Cox power transformation, 
respectively. Thus, the skewness for the logarith­
mic transformation (a) is larger compared to the 
original one (b), while the distribution is not 
skewed (approximately) for the optimized Box-Cox 
power transformation (c).It should also be noticed 
that the distribution of measurements usually 
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Fig. 1. The histogram and box-plot of the RBC (Red Blood Cell) measurements are shown at the top and bottom, 
respectively. 
(a), (b) and (c) are the plots for logarithmic transformed measurements (.IL=O), original one (A=l) and optimized 
power transformed one using the Box-Cox model (.IL=l.8), respectively. 

varies with age so that it is necessary to use a 
model with an age-dependent structure10). Since 
the original version of the Box-Cox transformation 
consists of a single power parameter, all the objec­
tives may not be fitted well simultaneously, which 
has been pointed out by many researchers3,4,s,9)_ So 
far, in practical applications, statistical informa­
tion has been commonly obtained by dividing the 
objects into appropriate strata. 

In this paper, we propose an alternative statisti­
cal method for describing the age-specific distribu­
tion of clinical measurements using an extension 
of the power normal model with age-dependent 
parameters, which are to be estimated through a 
nonparametric smoothing technique. 

MATERIALS AND METHODS 

The data were collected from individuals, who 
underwent blood examinations in Hiroshima 
University Hospital during the period of lst to 
30th September, 2005. All the available data were 
collected during the above period, among them the 
total number of males was 5616 and females was 
5088. Forty five different types of laboratory tests 
for clinical prognosis were performed. All the indi­
viduals were not required to undergo all the 45 
investigations for their prognosis. Thus, the sam­
ple sizes of the laboratory tests are different from 

each other. We analyzed both the male and female 
data. In this paper we used only the female data 
for illustration. Age dependency of the measure­
ments seems to be more complicated in female 
data compared to male data. The minimum and 
maximum age of the blood examinees were 0 and 
99 years respectively. 

METHOD FOR ESTIMATING THE 
AGE-SPECIFIC DISTRIBUTION 

OF MEASUREMENTS 

Let {(yi/i) I i=l, ... , N} be a set of independent 
cross-sectional observations, where Yi denotes the 
measurement at age ti for the ith individual. We 
assume that each measurement is a sample drawn 
from a population of power normal distribution 
having the following density, 

1 ( (y(/c) - µ)
2

) /c-1 
~exp 2 y , 

-v ·.aur 2cr (2) 

where the yC:l) is given in (1) and is distributed as 
normal with meanµ and variance cr2• Using the 
local likelihood method6) with the model (2), we 
can estimate the unknown parametersµ,<:? and /l 
as a function of age, and the steps of estimation 
are stated as follows. 
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Step 1. For fixed age to, calculate the local weights 
using the normal kernel function with a band­
width h, which are specified as: 

for i=l, ... , N. 

Step 2. For given power parameter .A, make a 
transformation as follows: 

y/")=1 Yt~l +A, At:O, 

log(yi), A=O, 

for i=l, ... , N. 

Step 3. Calculate the local weighted mean and 
variance, which are given by 

respectively. Note that ft(.A,to) is well-known as 
the Nadaraya-Watson estimator7,11). 

Step 4. Obtain numerically the estimate of power 
parameter A, of the Box-Cox transformation for 
fixed age to, so that iCto) attains the maximum 
value of the local likelihood function: 

That is, iCto)=arg m¥ l(.A,to). The likelihood func­
tion is based on the weighted arithmetic mean 
after logarithmic transformation. 

Step 5. Estimate the a-percent points of the distri­
bution of original measurement y for fixed age 
to, which is specified as: 

where y~) is the a-percent points of the trans­
formed distribution defined in step 2. 

For implementation of the above algorithm, we 
adopted the value of bandwidth h="range of mea­
surement"x0.1 regardless of measurements in this 
work. Here, the value of bandwidth h has not been 
optimized. We selected the value 0.1 as trial and 
error and also for simplification or simple repre­
sentation. The value of h will be optimized in 
future. This has extended the way of estimating 
the a-percent points to the distribution of the orig­
inal measurement y for the successive fixed age 
over the age interval. Subsequently these formed 
the smoothed percentile curves of the original 
measurements y over age t. 

APPLICATION TO REAL 
DATA ANALYSIS 

The proposed local smoothing method was 
applied to the following 7 clinical tests; the mea­
surements of Red Blood Cell (million/cu.mm), 
Phosphorus (mg/dl), Lymphocyte (%), Alkaline 
Phosphate (IU/liter), Zinc Sulfate Turbidity (U), 
Magnesium (mg/dl) and C-Reactive Protein 
(mg/dl). The results are shown in Figs. 2-8. 

Red Blood Cell (RBC) 
Fig. 2 (a) shows the smoothed local skewness of 

the distribution over age. The symbol ~ denotes 
the local skewness. The distribution is skewed to 
the left when~ is positive and skewed to the right 
when ~ is negative. The distribution shows bilater­
al symmetry when ~ is zero. The distribution of 
RBC is skewed to the right with a long left side 
tail almost over age. Fig. 2 (b) shows the maxi­
mum likelihood estimates of power parameter .A. 
The value of A, varies with the corresponding value 
of~ over age. When A, takes the value zero, the log­
arithmic transformation is available, otherwise 
the power transformation is available. When A=l, 
the identical transformation is available. For this 
measurement (RBC), the value of A, is maximum at 
the age of about 40 years. The power transforma­
tion (A=l.8) is appropriate around the age of 40 
years. Fig. 2 (c) shows the mean trend of measure­
ments and the smoothed percentile curves over 
age. In Fig. 2 (c), the solid curve represents the 
smoothed mean trend of measurements over age. 
The dotted curves represent the 5% and 95% 
points, the dash dotted curves represent 10% and 
90% points and the dash curves represent 20% 
and 80% points. The width between the same 
kinds of curves represents the variance of mea­
surements. It shows that the variance is not con­
sistent but changes with age. The variance is 
relatively large in the younger age group and 
small around the age of 45 years. The original 
measurements of RBC are superimposed for refer­
ence. 
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(a) The smoothed local skewness of the distribution of Red Blood Cell (RBC) over age. The dash line shows the sym­
metry. 

(b) The smoothed maximum likelihood estimates of power parameter over age. The dash dotted line shows the iden­
tical transformation and the dash line shows the logarithmic transformation. 

(c) The solid curve shows the smoothed mean trend of the measurements over age. The dotted curves, the dash dot­
ted curves and the dash curves show 5% and 95% points, 10% and 90% points and 20% and 80% points, respec­
tively. The original measurements of RBC are superimposed for reference. 
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(a) The smoothed local skewness of the distribution of Phosphorus (P) over age. The dash line shows the symmetry. 
(b) The smoothed maximum likelihood estimates of power parameter over age. The dash dotted line shows the iden-

tical transformation and the dash line shows the logarithmic transformation. 
(c) The solid curve shows the smoothed mean trend of the measurements over age. The dotted curves, the dash dot­

ted curves and the dash curves show 5% and 95% points, 10% and 90% points and 20% and 80% points, respec­
tively. The original measurements of P are superimposed for reference. 
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(b) The smoothed maximum likelihood estimates of power parameter over age. The dash dotted line shows the iden­
tical transformation and the dash line shows the logarithmic transformation. 

(c) The solid curve shows the smoothed mean trend of measurements over age. The dotted curves, the dash dotted 
curves and the dash curves show 5% and 95% points, 10% and 90% points and 20% and 80% points, respectively. 
The original measurements of LY are superimposed for reference. 
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(a) The smoothed local skewness of the distribution of Alkaline Phosphate (ALPH) over age. 

23 

(b) The smoothed maximum likelihood estimates of power parameter over age. The dash dotted line shows the iden­
tical transformation and the dash line shows the logarithmic transformation. 

(c) The solid curve shows the smoothed mean trend of measurements over age. The dotted curves, the dash dotted 
curves and the dash curves show the 5% and 95% points, 10% and 90% points and 20% and 80% points, respec­
tively. The original measurements of ALPH are superimposed for reference. 
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(a) The smoothed local skewness of the distribution of Zinc Sulfate Turbidity (ZTT) over age. 

-

(b) The smoothed maximum likelihood estimates of power parameter over age. The dash dotted line shows the iden­
tical transformation and the dash line shows the logarithmic transformation. 

(c) The solid curve shows the smoothed mean trend of measurements over age. The dotted curves, the dash dotted 
curves and the dash curves show 5% and 95% points, 10% and 90% points and 20% and 80% points, respectively. 
The original measurements of ZTT are superimposed for reference. 
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(a) The smoothed local skewness of the distribution of Magnesium (Mg) over age. The dash line shows the SJ!Ilme­
try. 

(b) The smoothed maximum likelihood estimates of power parameter over age. The dash dotted line shows the iden­
tical transformation and the dash line shows the logarithmic transformation. 

(c) The solid curve shows the smoothed mean trend of measurements over age. The dotted curves, the dash dotted 
curves and the dash curves show 5% and 95% points, 10% and 90% points and 20% and 80% points, respectively. 
The original measurements of Mg are superimposed for reference. 
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(b) The smoothed maximum likelihood estimates of power parameter over age. The dash dotted line shows the iden­
tical transformation and the dash line shows the logarithmic transformation. 

(c) The solid curve shows the smoothed mean trend of measurements over age. The dotted curves, the dash dotted 
curves and the dash curves show 5% and 95% points, 10% and 90% points and 20% and 80% points, respectively. 
The original measurements of CRP are superimposed for reference. 
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Phosphorus (P) 
The results are shown in Fig. 3. The distribution 

is skewed to the right under the age of 10 and 
skewed to the left over the age of 10. The identical 
transformation is appropriate around the age of 10 
years. 

Lymphocyte (LY) 
The results are shown in Fig. 4. The distribution 

is skewed to the left for almost all ages. It is takes 
the maximum value around the age of 20 and a 
minimum around the age of 50. The variance is 
relatively large in the younger age group. It 
decreases gradually to the age of 30 years. 

Alkaline Phosphate (ALPH) 
The results are shown in Fig. 5. The distribution 

is skewed to the left over age. The logarithmic 
transformation is appropriate around the age of 10 
years. Large variance is observed relatively in the 
younger age group, which decreases gradually to 
the age of 30 years. The original scale of measure­
ment is used in the X axis and the log scale is used 
in the Y axis in Fig. 5 (c). 

Zinc Sulfate Turbidity (ZTT) 
The results are shown in Fig. 6. The distribution 

is skewed to left over age. The mean trend and the 
variance gradually increase with age. 

Magnesium (Mg) 
The results are shown in Fig. 7. The distribution 

is skewed to left under the age of 65 years and 
skewed to the right over the age of 65 years. The 
identical transformation is available around the 
age of 65 years. The mean trend increases over the 
age of 50 years. The comparatively small differ­
ence is observed in mean or variance because 
these estimates are not sensitive to small and 
large observations of measurement. But the power 
parameter A is sensitive to the small and large 
observations of measurement 7 (b).Another cause 
of difference may be the small sample size. 

C-Reactive Protein (CRP) 
The results are shown in Fig. 8. The distribution 

is skewed to the left. The variance increases with 
age by the age of 20 years. The original scale of 
measurement is used in the X axis and the log 
scale is used in the Y axis in Fig. 8 ( c). 

DISCUSSION 

The proposed method is considered to be versa­
tile for estimating the percent points of distribu­
tion of clinical measurements. However, it is also 
true that the result of estimation may depend on 
the bandwidth h of the nonparametric smoothing. 
In this work we adopted tentatively h="range of 
measurement"x0.1 through several trials and 

errors. The bandwidth value should be updated in 
future by a more suitable value for each measure­
ment using some optimization criterion. 

We also have to mention that "age" in this paper 
refers not only the "biological age" but the cohort 
effect2) in part. The changes among the clinical 
measurements during infancy, childhood and 
menopause or in elderly persons are known as the 
biological effect and the changes which occur due 
to the different time periods of birth or era are 
known as the cohort effect. Based on a cross-sec­
tional study, it is not possible to separate the 
effect of the "biological age" and the cohort effect 
in clinical measurements data. Therefore, the esti­
mates of the percent points of distribution for the 
measurements by the current method may not be 
applied directly to the measurements of individu­
als of other time period because the results are 
based on a cross-sectional study. 

It should be noted that the measurements in 
these data were from healthy people as well as 
people who were unhealthy due to different dis­
eases, so that the data may be heterogeneous. 
That's why, the results of the current analysis has 
no substantial meaning. If data from healthy indi­
viduals are available, our method would be more 
useful. In order to obtain more detailed and long­
range applicable percent points of the clinical 
measurements, we need further analysis using 
some more specific longitudinal data consisting of 
repeated measurements per individual. 
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